Skeletal muscle and fetal alcohol spectrum disorder.
Myrie, Semone B; Pinder, Mark A
2018-04-01
Skeletal muscle is critical for mobility and many metabolic functions integral to survival and long-term health. Alcohol can affect skeletal muscle physiology and metabolism, which will have immediate and long-term consequences on health. While skeletal muscle abnormalities, including morphological, biochemical, and functional impairments, are well-documented in adults that excessively consume alcohol, there is a scarcity of information about the skeletal muscle in the offspring prenatally exposed to alcohol ("prenatal alcohol exposure"; PAE). This minireview examines the available studies addressing skeletal muscle abnormalities due to PAE. Growth restriction, fetal alcohol myopathy, and abnormalities in the neuromuscular system, which contribute to deficits in locomotion, are some direct, immediate consequences of PAE on skeletal muscle morphology and function. Long-term health consequences of PAE-related skeletal abnormalities include impaired glucose metabolism in the skeletal muscle, resulting in glucose intolerance and insulin resistance, leading to an increased risk of type 2 diabetes. In general, there is limited information on the morphological, biochemical, and functional features of skeletal abnormalities in PAE offspring. There is a need to understand how PAE affects muscle growth and function at the cellular level during early development to improve the immediate and long-term health of offspring suffering from PAE.
NASA Astrophysics Data System (ADS)
Gao, Yingxin; Zhang, Chi
2015-03-01
A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure-function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure-function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure-function relationship of skeletal muscle into the design of artificial muscle.
Brotto, Leticia S.; Bougoin, Sylvain; Nosek, Thomas M.; Reid, Michael; Hardin, Brian; Pan, Zui; Ma, Jianjie; Parness, Jerome
2011-01-01
Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca2+ to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca2+ entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca2+ to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca2+ release channel-mediated Ca2+ release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca2+ entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle. PMID:21666285
Thornton, Angela M; Zhao, Xiaoli; Weisleder, Noah; Brotto, Leticia S; Bougoin, Sylvain; Nosek, Thomas M; Reid, Michael; Hardin, Brian; Pan, Zui; Ma, Jianjie; Parness, Jerome; Brotto, Marco
2011-06-01
Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca(2+) to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca(2+) entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca(2+) to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca(2+) release channel-mediated Ca(2+) release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca(2+) entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle.
Skeletal muscle mitochondria: a major player in exercise, health and disease.
Russell, Aaron P; Foletta, Victoria C; Snow, Rod J; Wadley, Glenn D
2014-04-01
Maintaining skeletal muscle mitochondrial content and function is important for sustained health throughout the lifespan. Exercise stimulates important key stress signals that control skeletal mitochondrial biogenesis and function. Perturbations in mitochondrial content and function can directly or indirectly impact skeletal muscle function and consequently whole-body health and wellbeing. This review will describe the exercise-stimulated stress signals and molecular mechanisms positively regulating mitochondrial biogenesis and function. It will then discuss the major myopathies, neuromuscular diseases and conditions such as diabetes and ageing that have dysregulated mitochondrial function. Finally, the impact of exercise and potential pharmacological approaches to improve mitochondrial function in diseased populations will be discussed. Exercise activates key stress signals that positively impact major transcriptional pathways that transcribe genes involved in skeletal muscle mitochondrial biogenesis, fusion and metabolism. The positive impact of exercise is not limited to younger healthy adults but also benefits skeletal muscle from diseased populations and the elderly. Impaired mitochondrial function can directly influence skeletal muscle atrophy and contribute to the risk or severity of disease conditions. Pharmacological manipulation of exercise-induced pathways that increase skeletal muscle mitochondrial biogenesis and function in critically ill patients, where exercise may not be possible, may assist in the treatment of chronic disease. This review highlights our understanding of how exercise positively impacts skeletal muscle mitochondrial biogenesis and function. Exercise not only improves skeletal muscle mitochondrial health but also enables us to identify molecular mechanisms that may be attractive targets for therapeutic manipulation. This article is part of a Special Issue entitled Frontiers of mitochondrial research. Copyright © 2013 Elsevier B.V. All rights reserved.
Influence of physical exercise on microRNAs in skeletal muscle regeneration, aging and diseases
Ultimo, Simona; Zauli, Giorgio; Martelli, Alberto M.; Vitale, Marco; McCubrey, James A.; Capitani, Silvano; Neri, Luca M.
2018-01-01
Skeletal muscle is a dynamic tissue with remarkable plasticity and its growth and regeneration are highly organized, with the activation of specific transcription factors, proliferative pathways and cytokines. The decline of skeletal muscle tissue with age, is one of the most important causes of functional loss of independence in older adults. Maintaining skeletal muscle function throughout the lifespan is a prerequisite for good health and independent living. Physical activity represents one of the most effective preventive agents for muscle decay in aging. Several studies have underlined the importance of microRNAs (miRNAs) in the control of myogenesis and of skeletal muscle regeneration and function. In this review, we reported an overview and recent advances about the role of miRNAs expressed in the skeletal muscle, miRNAs regulation by exercise in skeletal muscle, the consequences of different physical exercise training modalities in the skeletal muscle miRNA profile, their regulation under pathological conditions and the role of miRNAs in age-related muscle wasting. Specific miRNAs appear to be involved in response to different types of exercise and therefore to play an important role in muscle fiber identity and myofiber gene expression in adults and elder population. Understanding the roles and regulation of skeletal muscle miRNAs during muscle regeneration may result in new therapeutic approaches in aging or diseases with impaired muscle function or re-growth. PMID:29682218
Galindo, Cristi L; Soslow, Jonathan H; Brinkmeyer-Langford, Candice L; Gupte, Manisha; Smith, Holly M; Sengsayadeth, Seng; Sawyer, Douglas B; Benson, D Woodrow; Kornegay, Joe N; Markham, Larry W
2016-04-01
In Duchenne muscular dystrophy (DMD), abnormal cardiac function is typically preceded by a decade of skeletal muscle disease. Molecular reasons for differences in onset and progression of these muscle groups are unknown. Human biomarkers are lacking. We analyzed cardiac and skeletal muscle microarrays from normal and golden retriever muscular dystrophy (GRMD) dogs (ages 6, 12, or 47+ mo) to gain insight into muscle dysfunction and to identify putative DMD biomarkers. These biomarkers were then measured using human DMD blood samples. We identified GRMD candidate genes that might contribute to the disparity between cardiac and skeletal muscle disease, focusing on brain-derived neurotropic factor (BDNF) and osteopontin (OPN/SPP1, hereafter indicated as SPP1). BDNF was elevated in cardiac muscle of younger GRMD but was unaltered in skeletal muscle, while SPP1 was increased only in GRMD skeletal muscle. In human DMD, circulating levels of BDNF were inversely correlated with ventricular function and fibrosis, while SPP1 levels correlated with skeletal muscle function. These results highlight gene expression patterns that could account for differences in cardiac and skeletal disease in GRMD. Most notably, animal model-derived data were translated to DMD and support use of BDNF and SPP1 as biomarkers for cardiac and skeletal muscle involvement, respectively.
The role of skeletal muscle in the pathophysiology and management of knee osteoarthritis.
Krishnasamy, Priathashini; Hall, Michelle; Robbins, Sarah R
2018-05-01
The role of skeletal muscle in the pathophysiology of knee OA is poorly understood. To date, the majority of literature has focused on the association of muscle strength with OA symptoms, disease onset and progression. However, deficits or improvements in skeletal muscle strength do not fully explain the mechanisms behind outcome measures in knee OA, such as pain, function and structural disease. This review aims to summarize components of skeletal muscle, providing a holistic view of skeletal muscle mechanisms that includes muscle function, quality and composition and their interactions. Similarly, the role of skeletal muscle in the management of knee OA will be discussed.
Skeletal Muscle Tissue Engineering: Methods to Form Skeletal Myotubes and Their Applications
Ostrovidov, Serge; Hosseini, Vahid; Ahadian, Samad; Fujie, Toshinori; Parthiban, Selvakumar Prakash; Ramalingam, Murugan; Bae, Hojae; Kaji, Hirokazu
2014-01-01
Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined. PMID:24320971
Skeletal muscle proteomic signature and metabolic impairment in pulmonary hypertension.
Malenfant, Simon; Potus, François; Fournier, Frédéric; Breuils-Bonnet, Sandra; Pflieger, Aude; Bourassa, Sylvie; Tremblay, Ève; Nehmé, Benjamin; Droit, Arnaud; Bonnet, Sébastien; Provencher, Steeve
2015-05-01
Exercise limitation comes from a close interaction between cardiovascular and skeletal muscle impairments. To better understand the implication of possible peripheral oxidative metabolism dysfunction, we studied the proteomic signature of skeletal muscle in pulmonary arterial hypertension (PAH). Eight idiopathic PAH patients and eight matched healthy sedentary subjects were evaluated for exercise capacity, skeletal muscle proteomic profile, metabolism, and mitochondrial function. Skeletal muscle proteins were extracted, and fractioned peptides were tagged using an iTRAQ protocol. Proteomic analyses have documented a total of 9 downregulated proteins in PAH skeletal muscles and 10 upregulated proteins compared to healthy subjects. Most of the downregulated proteins were related to mitochondrial structure and function. Focusing on skeletal muscle metabolism and mitochondrial health, PAH patients presented a decreased expression of oxidative enzymes (pyruvate dehydrogenase, p < 0.01) and an increased expression of glycolytic enzymes (lactate dehydrogenase activity, p < 0.05). These findings were supported by abnormal mitochondrial morphology on electronic microscopy, lower citrate synthase activity (p < 0.01) and lower expression of the transcription factor A of the mitochondria (p < 0.05), confirming a more glycolytic metabolism in PAH skeletal muscles. We provide evidences that impaired mitochondrial and metabolic functions found in the lungs and the right ventricle are also present in skeletal muscles of patients. • Proteomic and metabolic analysis show abnormal oxidative metabolism in PAH skeletal muscle. • EM of PAH patients reveals abnormal mitochondrial structure and distribution. • Abnormal mitochondrial health and function contribute to exercise impairments of PAH. • PAH may be considered a vascular affliction of heart and lungs with major impact on peripheral muscles.
Skeletal muscle tissue transcriptome differences in lean and obese female beagle dogs.
Grant, R W; Vester Boler, B M; Ridge, T K; Graves, T K; Swanson, K S
2013-08-01
Skeletal muscle is a large and insulin-sensitive tissue that is an important contributor to metabolic homeostasis and energy expenditure. Many metabolic processes are altered with obesity, but the contribution of muscle tissue in this regard is unclear. A limited number of studies have compared skeletal muscle gene expression of lean and obese dogs. Using microarray technology, our objective was to identify genes and functional classes differentially expressed in skeletal muscle of obese (14.6 kg; 8.2 body condition score; 44.5% body fat) vs. lean (8.6 kg; 4.1 body condition score; 22.9% body fat) female beagle adult dogs. Alterations in 77 transcripts was observed in genes pertaining to the functional classes of signaling, transport, protein catabolism and proteolysis, protein modification, development, transcription and apoptosis, cell cycle and differentiation. Genes differentially expressed in obese vs. lean dog skeletal muscle indicate oxidative stress and altered skeletal muscle cell differentiation. Many genes traditionally associated with lipid, protein and carbohydrate metabolism were not altered in obese vs. lean dogs, but genes pertaining to endocannabinoid metabolism, insulin signaling, type II diabetes mellitus and carnitine transport were differentially expressed. The relatively small response of skeletal muscle could indicate that changes are occurring at a post-transcriptional level, that other tissues (e.g., adipose tissue) were buffering skeletal muscle from metabolic dysfunction or that obesity-induced changes in skeletal muscle require a longer period of time and that the length of our study was not sufficient to detect them. Although only a limited number of differentially expressed genes were detected, these results highlight genes and functional classes that may be important in determining the etiology of obesity-induced derangement of skeletal muscle function. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.
Pigna, Eva; Renzini, Alessandra; Greco, Emanuela; Simonazzi, Elena; Fulle, Stefania; Mancinelli, Rosa; Moresi, Viviana; Adamo, Sergio
2018-02-24
Denervation triggers numerous molecular responses in skeletal muscle, including the activation of catabolic pathways and oxidative stress, leading to progressive muscle atrophy. Histone deacetylase 4 (HDAC4) mediates skeletal muscle response to denervation, suggesting the use of HDAC inhibitors as a therapeutic approach to neurogenic muscle atrophy. However, the effects of HDAC4 inhibition in skeletal muscle in response to long-term denervation have not been described yet. To further study HDAC4 functions in response to denervation, we analyzed mutant mice in which HDAC4 is specifically deleted in skeletal muscle. After an initial phase of resistance to neurogenic muscle atrophy, skeletal muscle with a deletion of HDAC4 lost structural integrity after 4 weeks of denervation. Deletion of HDAC4 impaired the activation of the ubiquitin-proteasome system, delayed the autophagic response, and dampened the OS response in skeletal muscle. Inhibition of the ubiquitin-proteasome system or the autophagic response, if on the one hand, conferred resistance to neurogenic muscle atrophy; on the other hand, induced loss of muscle integrity and inflammation in mice lacking HDAC4 in skeletal muscle. Moreover, treatment with the antioxidant drug Trolox prevented loss of muscle integrity and inflammation in in mice lacking HDAC4 in skeletal muscle, despite the resistance to neurogenic muscle atrophy. These results reveal new functions of HDAC4 in mediating skeletal muscle response to denervation and lead us to propose the combined use of HDAC inhibitors and antioxidant drugs to treat neurogenic muscle atrophy.
Bish, Lawrence T; Yarchoan, Mark; Sleeper, Meg M; Gazzara, Jeffrey A; Morine, Kevin J; Acosta, Pedro; Barton, Elisabeth R; Sweeney, H Lee
2011-01-01
Duchenne muscular dystrophy (DMD) is a degenerative disorder affecting skeletal and cardiac muscle for which there is no effective therapy. Angiotension receptor blockade (ARB) has excellent therapeutic potential in DMD based on recent data demonstrating attenuation of skeletal muscle disease progression during 6-9 months of therapy in the mdx mouse model of DMD. Since cardiac-related death is major cause of mortality in DMD, it is important to evaluate the effect of any novel treatment on the heart. Therefore, we evaluated the long-term impact of ARB on both the skeletal muscle and cardiac phenotype of the mdx mouse. Mdx mice received either losartan (0.6 g/L) (n = 8) or standard drinking water (n = 9) for two years, after which echocardiography was performed to assess cardiac function. Skeletal muscle weight, morphology, and function were assessed. Fibrosis was evaluated in the diaphragm and heart by Trichrome stain and by determination of tissue hydroxyproline content. By the study endpoint, 88% of treated mice were alive compared to only 44% of untreated (p = 0.05). No difference in skeletal muscle morphology, function, or fibrosis was noted in losartan-treated animals. Cardiac function was significantly preserved with losartan treatment, with a trend towards reduction in cardiac fibrosis. We saw no impact on the skeletal muscle disease progression, suggesting that other pathways that trigger fibrosis dominate over angiotensin II in skeletal muscle long term, unlike the situation in the heart. Our study suggests that ARB may be an important prophylactic treatment for DMD-associated cardiomyopathy, but will not impact skeletal muscle disease.
Sharples, Adam P; Stewart, Claire E; Seaborne, Robert A
2016-08-01
Skeletal muscle mass, quality and adaptability are fundamental in promoting muscle performance, maintaining metabolic function and supporting longevity and healthspan. Skeletal muscle is programmable and can 'remember' early-life metabolic stimuli affecting its function in adult life. In this review, the authors pose the question as to whether skeletal muscle has an 'epi'-memory? Following an initial encounter with an environmental stimulus, we discuss the underlying molecular and epigenetic mechanisms enabling skeletal muscle to adapt, should it re-encounter the stimulus in later life. We also define skeletal muscle memory and outline the scientific literature contributing to this field. Furthermore, we review the evidence for early-life nutrient stress and low birth weight in animals and human cohort studies, respectively, and discuss the underlying molecular mechanisms culminating in skeletal muscle dysfunction, metabolic disease and loss of skeletal muscle mass across the lifespan. We also summarize and discuss studies that isolate muscle stem cells from different environmental niches in vivo (physically active, diabetic, cachectic, aged) and how they reportedly remember this environment once isolated in vitro. Finally, we will outline the molecular and epigenetic mechanisms underlying skeletal muscle memory and review the epigenetic regulation of exercise-induced skeletal muscle adaptation, highlighting exercise interventions as suitable models to investigate skeletal muscle memory in humans. We believe that understanding the 'epi'-memory of skeletal muscle will enable the next generation of targeted therapies to promote muscle growth and reduce muscle loss to enable healthy aging. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Wakabayashi, Hidetaka; Takahashi, Rimiko; Watanabe, Naoko; Oritsu, Hideyuki; Shimizu, Yoshitaka
2017-06-01
The aim of this study was to assess the prevalence of skeletal muscle mass loss and its association with swallowing function in patients with dysphagia after cardiovascular surgery. A retrospective cohort study was performed in 65 consecutive patients with dysphagia after cardiovascular surgery who were prescribed speech therapy. Skeletal muscle index (SMI) was calculated as total psoas muscle area assessed via abdominal computed tomography divided by height squared. Cutoff values were 6.36 cm 2 /m 2 for men and 3.92 cm 2 /m 2 for women. The Food Intake Level Scale (FILS) was used to assess the swallowing function. Univariate and ordered logistic regression analyses were applied to examine the associations between skeletal muscle mass loss and dysphagia. The study included 50 men and 15 women (mean age 73 ± 8 y). The mean SMI was 4.72 ± 1.37 cm 2 /m 2 in men and 3.33 ± 1.42 cm 2 /m 2 in women. Skeletal muscle mass loss was found in 53 (82%) patients. Twelve had tracheostomy cannula. Thirteen were non-oral feeding (FILS levels 1-3), 5 were oral food intake and alternative nutrition (levels 4-6), and 47 were oral food intake alone (levels 7-9) at discharge. The FILS at discharge was significantly lower in patients with skeletal muscle mass loss. Ordered logistic regression analysis of swallowing function showed that skeletal muscle mass loss and tracheostomy cannula were associated independently with the FILS at discharge. The prevalence of skeletal muscle mass loss is very high, and skeletal muscle mass loss is associated with swallowing function. Copyright © 2017 Elsevier Inc. All rights reserved.
Chapman, Mark A.; Zhang, Jianlin; Banerjee, Indroneal; Guo, Ling T.; Zhang, Zhiwei; Shelton, G. Diane; Ouyang, Kunfu; Lieber, Richard L.; Chen, Ju
2014-01-01
Proper localization and anchorage of nuclei within skeletal muscle is critical for cellular function. Alterations in nuclear anchoring proteins modify a number of cellular functions including mechanotransduction, nuclear localization, chromatin positioning/compaction and overall organ function. In skeletal muscle, nesprin 1 and desmin are thought to link the nucleus to the cytoskeletal network. Thus, we hypothesize that both of these factors play a key role in skeletal muscle function. To examine this question, we utilized global ablation murine models of nesprin 1, desmin or both nesprin 1 and desmin. Herein, we have created the nesprin-desmin double-knockout (DKO) mouse, eliminating a major fraction of nuclear-cytoskeletal connections and enabling understanding of the importance of nuclear anchorage in skeletal muscle. Globally, DKO mice are marked by decreased lifespan, body weight and muscle strength. With regard to skeletal muscle, DKO myonuclear anchorage was dramatically decreased compared with wild-type, nesprin 1−/− and desmin−/− mice. Additionally, nuclear-cytoskeletal strain transmission was decreased in DKO skeletal muscle. Finally, loss of nuclear anchorage in DKO mice coincided with a fibrotic response as indicated by increased collagen and extracellular matrix deposition and increased passive mechanical properties of muscle bundles. Overall, our data demonstrate that nesprin 1 and desmin serve redundant roles in nuclear anchorage and that the loss of nuclear anchorage in skeletal muscle results in a pathological response characterized by increased tissue fibrosis and mechanical stiffness. PMID:24943590
The Correlation of Skeletal and Cardiac Muscle Dysfunction in Duchenne Muscular Dystrophy.
Posner, Andrew D; Soslow, Jonathan H; Burnette, W Bryan; Bian, Aihua; Shintani, Ayumi; Sawyer, Douglas B; Markham, Larry W
2016-01-01
Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle and cardiac dysfunction. While skeletal muscle dysfunction precedes cardiomyopathy, the relationship between the progressive decline in skeletal and cardiac muscle function is unclear. This relationship is especially important given that the myocardial effects of many developing DMD therapies are largely unknown. Our objective was to assess the relationship between progression of skeletal muscle weakness and onset of cardiac dysfunction in DMD. A total of 77 DMD subjects treated at a single referral center were included. Demographic information, quantitative muscle testing (QMT), subjective muscle strength, cardiac function, and current and retrospective medications were collected. A Spearman rank correlation was used to evaluate for an association between subjective strength and fractional shortening. The effects of total QMT and arm QMT on fractional shortening were examined in generalized least square with and without adjustments for age, ambulatory status, and duration of corticosteroids and cardiac specific medications. We found a significant correlation between maintained subjective skeletal muscle arm and leg strength and maintained cardiac function as defined by fractional shortening (rho=0.47, p=0.004 and rho=0.48, p=0.003, respectively). We also found a significant association between QMT and fractional shortening among non-ambulatory DMD subjects (p=0.03), while this association was not significant in ambulatory subjects. Our findings allow us to conclude that in this population, there exists a significant relationship between skeletal muscle and cardiac function in non-ambulatory DMD patients. While this does not imply a causal relationship, a possible association between skeletal and cardiac muscle function suggests that researchers should carefully monitor cardiac function, even when the primary outcome measures are not cardiac in nature.
Gehlert, Sebastian; Bloch, Wilhelm; Suhr, Frank
2015-01-01
Calcium (Ca2+) plays a pivotal role in almost all cellular processes and ensures the functionality of an organism. In skeletal muscle fibers, Ca2+ is critically involved in the innervation of skeletal muscle fibers that results in the exertion of an action potential along the muscle fiber membrane, the prerequisite for skeletal muscle contraction. Furthermore and among others, Ca2+ regulates also intracellular processes, such as myosin-actin cross bridging, protein synthesis, protein degradation and fiber type shifting by the control of Ca2+-sensitive proteases and transcription factors, as well as mitochondrial adaptations, plasticity and respiration. These data highlight the overwhelming significance of Ca2+ ions for the integrity of skeletal muscle tissue. In this review, we address the major functions of Ca2+ ions in adult muscle but also highlight recent findings of critical Ca2+-dependent mechanisms essential for skeletal muscle-regulation and maintenance. PMID:25569087
Ectopic lipid deposition and the metabolic profile of skeletal muscle in ovariectomized mice.
Jackson, Kathryn C; Wohlers, Lindsay M; Lovering, Richard M; Schuh, Rosemary A; Maher, Amy C; Bonen, Arend; Koves, Timothy R; Ilkayeva, Olga; Thomson, David M; Muoio, Deborah M; Spangenburg, Espen E
2013-02-01
Disruptions of ovarian function in women are associated with increased risk of metabolic disease due to dysregulation of peripheral glucose homeostasis in skeletal muscle. Our previous evidence suggests that alterations in skeletal muscle lipid metabolism coupled with altered mitochondrial function may also develop. The objective of this study was to use an integrative metabolic approach to identify potential areas of dysfunction that develop in skeletal muscle from ovariectomized (OVX) female mice compared with age-matched ovary-intact adult female mice (sham). The OVX mice exhibited significant increases in body weight, visceral, and inguinal fat mass compared with sham mice. OVX mice also had significant increases in skeletal muscle intramyocellular lipids (IMCL) compared with the sham animals, which corresponded to significant increases in the protein content of the fatty acid transporters CD36/FAT and FABPpm. A targeted metabolic profiling approach identified significantly lower levels of specific acyl carnitine species and various amino acids in skeletal muscle from OVX mice compared with the sham animals, suggesting a potential dysfunction in lipid and amino acid metabolism, respectively. Basal and maximal mitochondrial oxygen consumption rates were significantly impaired in skeletal muscle fibers from OVX mice compared with sham animals. Collectively, these data indicate that loss of ovarian function results in increased IMCL storage that is coupled with alterations in mitochondrial function and changes in the skeletal muscle metabolic profile.
Ectopic lipid deposition and the metabolic profile of skeletal muscle in ovariectomized mice
Jackson, Kathryn C.; Wohlers, Lindsay M.; Lovering, Richard M.; Schuh, Rosemary A.; Maher, Amy C.; Bonen, Arend; Koves, Timothy R.; Ilkayeva, Olga; Thomson, David M.; Muoio, Deborah M.
2013-01-01
Disruptions of ovarian function in women are associated with increased risk of metabolic disease due to dysregulation of peripheral glucose homeostasis in skeletal muscle. Our previous evidence suggests that alterations in skeletal muscle lipid metabolism coupled with altered mitochondrial function may also develop. The objective of this study was to use an integrative metabolic approach to identify potential areas of dysfunction that develop in skeletal muscle from ovariectomized (OVX) female mice compared with age-matched ovary-intact adult female mice (sham). The OVX mice exhibited significant increases in body weight, visceral, and inguinal fat mass compared with sham mice. OVX mice also had significant increases in skeletal muscle intramyocellular lipids (IMCL) compared with the sham animals, which corresponded to significant increases in the protein content of the fatty acid transporters CD36/FAT and FABPpm. A targeted metabolic profiling approach identified significantly lower levels of specific acyl carnitine species and various amino acids in skeletal muscle from OVX mice compared with the sham animals, suggesting a potential dysfunction in lipid and amino acid metabolism, respectively. Basal and maximal mitochondrial oxygen consumption rates were significantly impaired in skeletal muscle fibers from OVX mice compared with sham animals. Collectively, these data indicate that loss of ovarian function results in increased IMCL storage that is coupled with alterations in mitochondrial function and changes in the skeletal muscle metabolic profile. PMID:23193112
Exercise Promotes Healthy Aging of Skeletal Muscle
Cartee, Gregory D.; Hepple, Russell T.; Bamman, Marcas M.; Zierath, Juleen R.
2016-01-01
Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics, and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes “healthy aging” by inducing modifications in skeletal muscle. PMID:27304505
Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish.
Housley, Michael P; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y R
2016-06-01
Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy.
Skeletal Muscle Function during Exercise—Fine-Tuning of Diverse Subsystems by Nitric Oxide
Suhr, Frank; Gehlert, Sebastian; Grau, Marijke; Bloch, Wilhelm
2013-01-01
Skeletal muscle is responsible for altered acute and chronic workload as induced by exercise. Skeletal muscle adaptations range from immediate change of contractility to structural adaptation to adjust the demanded performance capacities. These processes are regulated by mechanically and metabolically induced signaling pathways, which are more or less involved in all of these regulations. Nitric oxide is one of the central signaling molecules involved in functional and structural adaption in different cell types. It is mainly produced by nitric oxide synthases (NOS) and by non-enzymatic pathways also in skeletal muscle. The relevance of a NOS-dependent NO signaling in skeletal muscle is underlined by the differential subcellular expression of NOS1, NOS2, and NOS3, and the alteration of NO production provoked by changes of workload. In skeletal muscle, a variety of highly relevant tasks to maintain skeletal muscle integrity and proper signaling mechanisms during adaptation processes towards mechanical and metabolic stimulations are taken over by NO signaling. The NO signaling can be mediated by cGMP-dependent and -independent signaling, such as S-nitrosylation-dependent modulation of effector molecules involved in contractile and metabolic adaptation to exercise. In this review, we describe the most recent findings of NO signaling in skeletal muscle with a special emphasis on exercise conditions. However, to gain a more detailed understanding of the complex role of NO signaling for functional adaptation of skeletal muscle (during exercise), additional sophisticated studies are needed to provide deeper insights into NO-mediated signaling and the role of non-enzymatic-derived NO in skeletal muscle physiology. PMID:23538841
AMPK in skeletal muscle function and metabolism
Kjøbsted, Rasmus; Hingst, Janne R.; Fentz, Joachim; Foretz, Marc; Sanz, Maria-Nieves; Pehmøller, Christian; Shum, Michael; Marette, André; Mounier, Remi; Treebak, Jonas T.; Wojtaszewski, Jørgen F. P.; Viollet, Benoit; Lantier, Louise
2018-01-01
Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK’s role as an energy sensor is particularly critical in tissues displaying highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives that need to be investigated. Furthermore, we discuss the possible role of AMPK as a therapeutic target as well as different AMPK activators and their potential for future drug development.—Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M.-N., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., Lantier, L. AMPK in skeletal muscle function and metabolism. PMID:29242278
Effects of regular exercise training on skeletal muscle contractile function
NASA Technical Reports Server (NTRS)
Fitts, Robert H.
2003-01-01
Skeletal muscle function is critical to movement and one's ability to perform daily tasks, such as eating and walking. One objective of this article is to review the contractile properties of fast and slow skeletal muscle and single fibers, with particular emphasis on the cellular events that control or rate limit the important mechanical properties. Another important goal of this article is to present the current understanding of how the contractile properties of limb skeletal muscle adapt to programs of regular exercise.
Vermillion, Katie L.; Anderson, Kyle J.; Hampton, Marshall
2015-01-01
Throughout the hibernation season, the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) experiences extreme fluctuations in heart rate, metabolism, oxygen consumption, and body temperature, along with prolonged fasting and immobility. These conditions necessitate different functional requirements for the heart, which maintains contractile function throughout hibernation, and the skeletal muscle, which remains largely inactive. The adaptations used to maintain these contractile organs under such variable conditions serves as a natural model to study a variety of medically relevant conditions including heart failure and disuse atrophy. To better understand how two different muscle tissues maintain function throughout the extreme fluctuations of hibernation we performed Illumina HiSeq 2000 sequencing of cDNAs to compare the transcriptome of heart and skeletal muscle across the circannual cycle. This analysis resulted in the identification of 1,076 and 1,466 differentially expressed genes in heart and skeletal muscle, respectively. In both heart and skeletal muscle we identified a distinct cold-tolerant mechanism utilizing peroxisomal metabolism to make use of elevated levels of unsaturated depot fats. The skeletal muscle transcriptome also shows an early increase in oxidative capacity necessary for the altered fuel utilization and increased oxygen demand of shivering. Expression of the fetal gene expression profile is used to maintain cardiac tissue, either through increasing myocyte size or proliferation of resident cardiomyocytes, while skeletal muscle function and mass are protected through transcriptional regulation of pathways involved in protein turnover. This study provides insight into how two functionally distinct muscles maintain function under the extreme conditions of mammalian hibernation. PMID:25572546
Chapman, Mark A; Zhang, Jianlin; Banerjee, Indroneal; Guo, Ling T; Zhang, Zhiwei; Shelton, G Diane; Ouyang, Kunfu; Lieber, Richard L; Chen, Ju
2014-11-15
Proper localization and anchorage of nuclei within skeletal muscle is critical for cellular function. Alterations in nuclear anchoring proteins modify a number of cellular functions including mechanotransduction, nuclear localization, chromatin positioning/compaction and overall organ function. In skeletal muscle, nesprin 1 and desmin are thought to link the nucleus to the cytoskeletal network. Thus, we hypothesize that both of these factors play a key role in skeletal muscle function. To examine this question, we utilized global ablation murine models of nesprin 1, desmin or both nesprin 1 and desmin. Herein, we have created the nesprin-desmin double-knockout (DKO) mouse, eliminating a major fraction of nuclear-cytoskeletal connections and enabling understanding of the importance of nuclear anchorage in skeletal muscle. Globally, DKO mice are marked by decreased lifespan, body weight and muscle strength. With regard to skeletal muscle, DKO myonuclear anchorage was dramatically decreased compared with wild-type, nesprin 1(-/-) and desmin(-/-) mice. Additionally, nuclear-cytoskeletal strain transmission was decreased in DKO skeletal muscle. Finally, loss of nuclear anchorage in DKO mice coincided with a fibrotic response as indicated by increased collagen and extracellular matrix deposition and increased passive mechanical properties of muscle bundles. Overall, our data demonstrate that nesprin 1 and desmin serve redundant roles in nuclear anchorage and that the loss of nuclear anchorage in skeletal muscle results in a pathological response characterized by increased tissue fibrosis and mechanical stiffness. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Muscle function in COPD: a complex interplay
Donaldson, Anna V; Maddocks, Matthew; Martolini, Dario; Polkey, Michael I; Man, William D-C
2012-01-01
The skeletal muscles play an essential role in life, providing the mechanical basis for respiration and movement. Skeletal muscle dysfunction is prevalent in all stages of chronic obstructive pulmonary disease (COPD), and significantly influences symptoms, functional capacity, health related quality of life, health resource usage and even mortality. Furthermore, in contrast to the lungs, the skeletal muscles are potentially remedial with existing therapy, namely exercise-training. This review summarizes clinical and laboratory observations of the respiratory and peripheral skeletal muscles (in particular the diaphragm and quadriceps), and current understanding of the underlying etiological processes. As further progress is made in the elucidation of the molecular mechanisms of skeletal muscle dysfunction, new pharmacological therapies are likely to emerge to treat this important extra-pulmonary manifestation of COPD. PMID:22973093
3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink.
Choi, Yeong-Jin; Kim, Taek Gyoung; Jeong, Jonghyeon; Yi, Hee-Gyeong; Park, Ji Won; Hwang, Woonbong; Cho, Dong-Woo
2016-10-01
Engineered skeletal muscle tissues that mimic the structure and function of native muscle have been considered as an alternative strategy for the treatment of various muscular diseases and injuries. Here, it is demonstrated that 3D cell-printing of decellularized skeletal muscle extracellular matrix (mdECM)-based bioink facilitates the fabrication of functional skeletal muscle constructs. The cellular alignment and the shape of the tissue constructs are controlled by 3D cell-printing technology. mdECM bioink provides the 3D cell-printed muscle constructs with a myogenic environment that supports high viability and contractility as well as myotube formation, differentiation, and maturation. More interestingly, the preservation of agrin is confirmed in the mdECM, and significant increases in the formation of acetylcholine receptor clusters are exhibited in the 3D cell-printed muscle constructs. In conclusion, mdECM bioink and 3D cell-printing technology facilitate the mimicking of both the structural and functional properties of native muscle and hold great promise for producing clinically relevant engineered muscle for the treatment of muscular injuries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ito, Akira; Yamamoto, Yasunori; Sato, Masanori; Ikeda, Kazushi; Yamamoto, Masahiro; Fujita, Hideaki; Nagamori, Eiji; Kawabe, Yoshinori; Kamihira, Masamichi
2014-04-24
Electrical impulses are necessary for proper in vivo skeletal muscle development. To fabricate functional skeletal muscle tissues in vitro, recapitulation of the in vivo niche, including physical stimuli, is crucial. Here, we report a technique to engineer skeletal muscle tissues in vitro by electrical pulse stimulation (EPS). Electrically excitable tissue-engineered skeletal muscle constructs were stimulated with continuous electrical pulses of 0.3 V/mm amplitude, 4 ms width, and 1 Hz frequency, resulting in a 4.5-fold increase in force at day 14. In myogenic differentiation culture, the percentage of peak twitch force (%Pt) was determined as the load on the tissue constructs during the artificial exercise induced by continuous EPS. We optimized the stimulation protocol, wherein the tissues were first subjected to 24.5%Pt, which was increased to 50-60%Pt as the tissues developed. This technique may be a useful approach to fabricate tissue-engineered functional skeletal muscle constructs.
Phua, Wendy Wen Ting; Wong, Melissa Xin Yu; Liao, Zehuan; Tan, Nguan Soon
2018-05-10
Skeletal muscle comprises 30⁻40% of the total body mass and plays a central role in energy homeostasis in the body. The deregulation of energy homeostasis is a common underlying characteristic of metabolic syndrome. Over the past decades, peroxisome proliferator-activated receptors (PPARs) have been shown to play critical regulatory roles in skeletal muscle. The three family members of PPAR have overlapping roles that contribute to the myriad of processes in skeletal muscle. This review aims to provide an overview of the functions of different PPAR members in energy homeostasis as well as during skeletal muscle metabolic disorders, with a particular focus on human and relevant mouse model studies.
Phua, Wendy Wen Ting; Wong, Melissa Xin Yu; Liao, Zehuan
2018-01-01
Skeletal muscle comprises 30–40% of the total body mass and plays a central role in energy homeostasis in the body. The deregulation of energy homeostasis is a common underlying characteristic of metabolic syndrome. Over the past decades, peroxisome proliferator-activated receptors (PPARs) have been shown to play critical regulatory roles in skeletal muscle. The three family members of PPAR have overlapping roles that contribute to the myriad of processes in skeletal muscle. This review aims to provide an overview of the functions of different PPAR members in energy homeostasis as well as during skeletal muscle metabolic disorders, with a particular focus on human and relevant mouse model studies. PMID:29747466
Exercise Promotes Healthy Aging of Skeletal Muscle.
Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M; Zierath, Juleen R
2016-06-14
Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle. Copyright © 2016 Elsevier Inc. All rights reserved.
Cho, Yoshitake; Hazen, Bethany C.; Gandra, Paulo G.; Ward, Samuel R.; Schenk, Simon; Russell, Aaron P.; Kralli, Anastasia
2016-01-01
Skeletal muscle mitochondrial content and oxidative capacity are important determinants of muscle function and whole-body health. Mitochondrial content and function are enhanced by endurance exercise and impaired in states or diseases where muscle function is compromised, such as myopathies, muscular dystrophies, neuromuscular diseases, and age-related muscle atrophy. Hence, elucidating the mechanisms that control muscle mitochondrial content and oxidative function can provide new insights into states and diseases that affect muscle health. In past studies, we identified Perm1 (PPARGC1- and ESRR-induced regulator, muscle 1) as a gene induced by endurance exercise in skeletal muscle, and regulating mitochondrial oxidative function in cultured myotubes. The capacity of Perm1 to regulate muscle mitochondrial content and function in vivo is not yet known. In this study, we use adeno-associated viral (AAV) vectors to increase Perm1 expression in skeletal muscles of 4-wk-old mice. Compared to control vector, AAV1-Perm1 leads to significant increases in mitochondrial content and oxidative capacity (by 40–80%). Moreover, AAV1-Perm1–transduced muscles show increased capillary density and resistance to fatigue (by 33 and 31%, respectively), without prominent changes in fiber-type composition. These findings suggest that Perm1 selectively regulates mitochondrial biogenesis and oxidative function, and implicate Perm1 in muscle adaptations that also occur in response to endurance exercise.—Cho, Y., Hazen, B. C., Gandra, P. G., Ward, S. R., Schenk, S., Russell, A. P., Kralli, A. Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle. PMID:26481306
Satellite Cells and the Muscle Stem Cell Niche
Yin, Hang; Price, Feodor
2013-01-01
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration. PMID:23303905
Muscle glycogen and cell function--Location, location, location.
Ørtenblad, N; Nielsen, J
2015-12-01
The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates that the subcellular localization of glycogen has to be considered to fully understand the role of glycogen metabolism and signaling in skeletal muscle function. Here, we propose that the effect of low muscle glycogen on excitation-contraction coupling may serve as a built-in mechanism, which links the energetic state of the muscle fiber to energy utilization. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Omega-3 Fatty Acids and Skeletal Muscle Health
Jeromson, Stewart; Gallagher, Iain J.; Galloway, Stuart D. R.; Hamilton, D. Lee
2015-01-01
Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle. PMID:26610527
Sex hormones and skeletal muscle weakness.
Sipilä, Sarianna; Narici, Marco; Kjaer, Michael; Pöllänen, Eija; Atkinson, Ross A; Hansen, Mette; Kovanen, Vuokko
2013-06-01
Human ageing is accompanied with deterioration in endocrine functions the most notable and well characterized of which being the decrease in the production of sex hormones. Current research literature suggests that low sex hormone concentration may be among the key mechanism for sarcopenia and muscle weakness. Within the European large scale MYOAGE project, the role of sex hormones, estrogens and testosterone, in causing the aging-related loss of muscle mass and function was further investigated. Hormone replacement therapy (HRT) in women is shown to diminish age-associated muscle loss, loss in fast muscle function (power), and accumulation of fat in skeletal muscle. Further HRT raises the protein synthesis rate in skeletal muscle after resistance training, and has an anabolic effect upon connective tissue in both skeletal muscle and tendon, which influences matrix structure and mechanical properties. HRT influences gene expression in e.g. cytoskeletal and cell-matrix proteins, has a stimulating effect upon IGF-I, and a role in IL-6 and adipokine regulation. Despite low circulating steroid-hormone level, postmenopausal women have a high local concentration of steroidogenic enzymes in skeletal muscle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra, Ana, E-mail: ana-sierra@uiowa.edu; Subbotina, Ekaterina, E-mail: ekaterina-subbotina@uiowa.edu; Zhu, Zhiyong, E-mail: zhiyong-zhu@uiowa.edu
Sarcolemmal ATP-sensitive potassium (K{sub ATP}) channels control skeletal muscle energy use through their ability to adjust membrane excitability and related cell functions in accordance with cellular metabolic status. Mice with disrupted skeletal muscle K{sub ATP} channels exhibit reduced adipocyte size and increased fatty acid release into the circulation. As yet, the molecular mechanisms underlying this link between skeletal muscle K{sub ATP} channel function and adipose mobilization have not been established. Here, we demonstrate that skeletal muscle-specific disruption of K{sub ATP} channel function in transgenic (TG) mice promotes production and secretion of musclin. Musclin is a myokine with high homology tomore » atrial natriuretic peptide (ANP) that enhances ANP signaling by competing for elimination. Augmented musclin production in TG mice is driven by a molecular cascade resulting in enhanced acetylation and nuclear exclusion of the transcription factor forkhead box O1 (FOXO1) – an inhibitor of transcription of the musclin encoding gene. Musclin production/secretion in TG is paired with increased mobilization of fatty acids and a clear trend toward increased circulating ANP, an activator of lipolysis. These data establish K{sub ATP} channel-dependent musclin production as a potential mechanistic link coupling “local” skeletal muscle energy consumption with mobilization of bodily resources from fat. Understanding such mechanisms is an important step toward designing interventions to manage metabolic disorders including those related to excess body fat and associated co-morbidities. - Highlights: • ATP-sensitive K{sup +} channels regulate musclin production by skeletal muscles. • Lipolytic ANP signaling is promoted by augmented skeletal muscle musclin production. • Skeletal muscle musclin transcription is promoted by a CaMKII/HDAC/FOXO1 pathway. • Musclin links adipose mobilization to energy use in K{sub ATP} channel deficient skeletal muscle.« less
The Impact of Aerobic Exercise on the Muscle Stem Cell Response.
Joanisse, Sophie; Snijders, Tim; Nederveen, Joshua P; Parise, Gianni
2018-04-16
Satellite cells are indispensable for skeletal muscle repair and regeneration and are associated with muscle growth in humans. Aerobic exercise training results in improved skeletal muscle health also translating to an increase in satellite cell pool activation. We postulate that aerobic exercise improves satellite cell function in skeletal muscle.
Skeletal and cardiac muscle pericytes: Functions and therapeutic potential
Murray, Iain R.; Baily, James E.; Chen, William C.W.; Dar, Ayelet; Gonzalez, Zaniah N.; Jensen, Andrew R.; Petrigliano, Frank A.; Deb, Arjun; Henderson, Neil C.
2017-01-01
Pericytes are periendothelial mesenchymal cells residing within the microvasculature. Skeletal muscle and cardiac pericytes are now recognized to fulfill an increasing number of functions in normal tissue homeostasis, including contributing to microvascular function by maintaining vessel stability and regulating capillary flow. In the setting of muscle injury, pericytes contribute to a regenerative microenvironment through release of trophic factors and by modulating local immune responses. In skeletal muscle, pericytes also directly enhance tissue healing by differentiating into myofibers. Conversely, pericytes have also been implicated in the development of disease states, including fibrosis, heterotopic ossication and calcification, atherosclerosis, and tumor angiogenesis. Despite increased recognition of pericyte heterogeneity, it is not yet clear whether specific subsets of pericytes are responsible for individual functions in skeletal and cardiac muscle homeostasis and disease. PMID:27595928
Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish
Housley, Michael P.; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A.; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y. R.
2016-01-01
Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy. PMID:27294373
Aberrant Mitochondrial Homeostasis in the Skeletal Muscle of Sedentary Older Adults
Safdar, Adeel; Hamadeh, Mazen J.; Kaczor, Jan J.; Raha, Sandeep; deBeer, Justin; Tarnopolsky, Mark A.
2010-01-01
The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass) and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adult subjects has confounded previous reports. The objective of the present study was to investigate if a recreationally active lifestyle in older adults can conserve skeletal muscle strength and functionality, chronic systemic inflammation, mitochondrial biogenesis and oxidative capacity, and cellular antioxidant capacity. To that end, muscle biopsies were taken from the vastus lateralis of young and age-matched recreationally active older and sedentary older men and women (N = 10/group; ♀ = ♂). We show that a physically active lifestyle is associated with the partial compensatory preservation of mitochondrial biogenesis, and cellular oxidative and antioxidant capacity in skeletal muscle of older adults. Conversely a sedentary lifestyle, associated with osteoarthritis-mediated physical inactivity, is associated with reduced mitochondrial function, dysregulation of cellular redox status and chronic systemic inflammation that renders the skeletal muscle intracellular environment prone to reactive oxygen species-mediated toxicity. We propose that an active lifestyle is an important determinant of quality of life and molecular progression of aging in skeletal muscle of the elderly, and is a viable therapy for attenuating and/or reversing skeletal muscle strength declines and mitochondrial abnormalities associated with aging. PMID:20520725
Expression and functional characterization of Smyd1a in myofibril organization of skeletal muscles.
Gao, Jie; Li, Junling; Li, Bao-Jun; Yagil, Ezra; Zhang, Jianshe; Du, Shao Jun
2014-01-01
Smyd1, the founding member of the Smyd family including Smyd-1, 2, 3, 4 and 5, is a SET and MYND domain containing protein that plays a key role in myofibril assembly in skeletal and cardiac muscles. Bioinformatic analysis revealed that zebrafish genome contains two highly related smyd1 genes, smyd1a and smyd1b. Although Smyd1b function is well characterized in skeletal and cardiac muscles, the function of Smyd1a is, however, unknown. To investigate the function of Smyd1a in muscle development, we isolated smyd1a from zebrafish, and characterized its expression and function during muscle development via gene knockdown and transgenic expression approaches. The results showed that smyd1a was strongly expressed in skeletal muscles of zebrafish embryos. Functional analysis revealed that knockdown of smyd1a alone had no significant effect on myofibril assembly in zebrafish skeletal muscles. However, knockdown of smyd1a and smyd1b together resulted in a complete disruption of myofibril organization in skeletal muscles, a phenotype stronger than knockdown of smyd1a or smyd1b alone. Moreover, ectopic expression of zebrafish smyd1a or mouse Smyd1 transgene could rescue the myofibril defects from the smyd1b knockdown in zebrafish embryos. Collectively, these data indicate that Smyd1a and Smyd1b share similar biological activity in myofibril assembly in zebrafish embryos. However, Smyd1b appears to play a major role in this process.
Call, Jarrod A.; Wilson, Rebecca J.; Laker, Rhianna C.; Zhang, Mei; Kundu, Mondira
2017-01-01
Autophagy is a conserved cellular process for degrading aggregate proteins and dysfunctional organelle. It is still debatable if autophagy and mitophagy (a specific process of autophagy of mitochondria) play important roles in myogenic differentiation and functional regeneration of skeletal muscle. We tested the hypothesis that autophagy is critical for functional regeneration of skeletal muscle. We first observed time-dependent increases (3- to 6-fold) of autophagy-related proteins (Atgs), including Ulk1, Beclin1, and LC3, along with reduced p62 expression during C2C12 differentiation, suggesting increased autophagy capacity and flux during myogenic differentiation. We then used cardiotoxin (Ctx) or ischemia-reperfusion (I/R) to induce muscle injury and regeneration and observed increases in Atgs between days 2 and 7 in adult skeletal muscle followed by increased autophagy flux after day 7. Since Ulk1 has been shown to be essential for mitophagy, we asked if Ulk1 is critical for functional regeneration in skeletal muscle. We subjected skeletal muscle-specific Ulk1 knockout mice (MKO) to Ctx or I/R. MKO mice had significantly impaired recovery of muscle strength and mitochondrial protein content post-Ctx or I/R. Imaging analysis showed that MKO mice have significantly attenuated recovery of mitochondrial network at 7 and 14 days post-Ctx. These findings suggest that increased autophagy protein and flux occur during muscle regeneration and Ulk1-mediated mitophagy is critical for recovery for the mitochondrial network and hence functional regeneration. PMID:28356270
TAK1 regulates skeletal muscle mass and mitochondrial function
Hindi, Sajedah M.; Sato, Shuichi; Xiong, Guangyan; Bohnert, Kyle R.; Gibb, Andrew A.; Gallot, Yann S.; McMillan, Joseph D.; Hill, Bradford G.
2018-01-01
Skeletal muscle mass is regulated by a complex array of signaling pathways. TGF-β–activated kinase 1 (TAK1) is an important signaling protein, which regulates context-dependent activation of multiple intracellular pathways. However, the role of TAK1 in the regulation of skeletal muscle mass remains unknown. Here, we report that inducible inactivation of TAK1 causes severe muscle wasting, leading to kyphosis, in both young and adult mice.. Inactivation of TAK1 inhibits protein synthesis and induces proteolysis, potentially through upregulating the activity of the ubiquitin-proteasome system and autophagy. Phosphorylation and enzymatic activity of AMPK are increased, whereas levels of phosphorylated mTOR and p38 MAPK are diminished upon inducible inactivation of TAK1 in skeletal muscle. In addition, targeted inactivation of TAK1 leads to the accumulation of dysfunctional mitochondria and oxidative stress in skeletal muscle of adult mice. Inhibition of TAK1 does not attenuate denervation-induced muscle wasting in adult mice. Finally, TAK1 activity is highly upregulated during overload-induced skeletal muscle growth, and inactivation of TAK1 prevents myofiber hypertrophy in response to functional overload. Overall, our study demonstrates that TAK1 is a key regulator of skeletal muscle mass and oxidative metabolism. PMID:29415881
McGregor, Robin A; Poppitt, Sally D; Cameron-Smith, David
2014-09-01
Progressive age-related changes in skeletal muscle mass and composition, underpin decreases in muscle function, which can inturn lead to impaired mobility and quality of life in older adults. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression in skeletal muscle and are associated with aging. Accumulating evidence suggests that miRNAs play an important role in the age-related changes in skeletal muscle mass, composition and function. At the cellular level, miRNAs have been demonstrated to regulate muscle cell proliferation and differentiation. Furthermore, miRNAs are involved in the transitioning of muscle stem cells from a quiescent, to either an activated or senescence state. Evidence from animal and human studies has shown miRNAs are modulated in muscle atrophy and hypertrophy. In addition, miRNAs have been implicated in changes in muscle fiber composition, fat infiltration and insulin resistance. Both exercise and dietary interventions can combat age-related changes in muscle mass, composition and function, which may be mediated by miRNA modulation in skeletal muscle. Circulating miRNA species derived from myogenic cell populations represent potential biomarkers of aging muscle and the molecular responses to exercise or diet interventions, but larger validation studies are required. In future therapeutic approaches targeting miRNAs, either through exercise, diet or drugs may be able to slow down or prevent the age-related changes in skeletal muscle mass, composition, function, hence help maintain mobility and quality of life in old age. Copyright © 2014 Elsevier B.V. All rights reserved.
Laughlin, M. Harold
2015-01-01
Type 2 diabetes (T2D) alters capillary hemodynamics, causes capillary rarefaction in skeletal muscle, and alters endothelial and vascular smooth muscle cell phenotype, resulting in impaired vasodilatory responses. These changes contribute to altered blood flow responses to physiological stimuli, such as exercise and insulin secretion. T2D-induced microvascular dysfunction impairs glucose and insulin delivery to skeletal muscle (and other tissues such as skin and nervous), thereby reducing glucose uptake and perpetuating hyperglycemia and hyperinsulinemia. In patients with T2D, exercise training (EX) improves microvascular vasodilator and insulin signaling and attenuates capillary rarefaction in skeletal muscle. EX-induced changes subsequently augment glucose and insulin delivery as well as glucose uptake. If these adaptions occur in a sufficient amount of tissue, and skeletal muscle in particular, chronic exposure to hyperglycemia and hyperinsulinemia and the risk of microvascular complications in all vascular beds will decrease. We postulate that EX programs that engage as much skeletal muscle mass as possible and recruit as many muscle fibers within each muscle as possible will generate the greatest improvements in microvascular function, providing that the duration of the stimulus is sufficient. Primary improvements in microvascular function occur in tissues (skeletal muscle primarily) engaged during exercise, and secondary improvements in microvascular function throughout the body may result from improved blood glucose control. We propose that the added benefit of combined resistance and aerobic EX programs and of vigorous intensity EX programs is not simply “more is better.” Rather, we believe the additional benefit is the result of EX-induced adaptations in and around more muscle fibers, resulting in more muscle mass and the associated microvasculature being changed. Thus, to acquire primary and secondary improvements in microvascular function and improved blood glucose control, EX programs should involve upper and lower body exercise and modulate intensity to augment skeletal muscle fiber recruitment. Under conditions of limited mobility, it may be necessary to train skeletal muscle groups separately to maximize whole body skeletal muscle fiber recruitment. PMID:26408541
Zhang, Jing; Liu, Yu Lan
2017-01-01
Pork is one of the most economical sources of animal protein for human consumption. Meat quality is an important economic trait for the swine industry, which is primarily determined by prenatal muscle development and postnatal growth. Identification of the molecular mechanisms underlying skeletal muscle development is a key priority. MicroRNAs (miRNAs) are a class of small noncoding RNAs that have emerged as key regulators of skeletal muscle development. A number of muscle-related miRNAs have been identified by functional gain and loss experiments in mouse model. However, determining miRNA-mRNA interactions involved in pig skeletal muscle still remains a significant challenge. For a comprehensive understanding of miRNA-mediated mechanisms underlying muscle development, miRNAome analyses of pig skeletal muscle have been performed by deep sequencing. Additionally, porcine miRNA single nucleotide polymorphisms have been implicated in muscle fiber types and meat quality. The present review provides an overview of current knowledge on recently identified miRNAs involved in myogenesis, muscle fiber type and muscle protein metabolism. Undoubtedly, further systematic understanding of the functions of miRNAs in pig skeletal muscle development will be helpful to expand the knowledge of basic skeletal muscle biology and be beneficial for the genetic improvement of meat quality traits. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Ninagawa, Nana Takenaka; Isobe, Eri; Hirayama, Yuri; Murakami, Rumi; Komatsu, Kazumi; Nagai, Masataka; Kobayashi, Mami; Kawabata, Yuka; Torihashi, Shigeko
2013-08-01
We previously established that mesenchymal stem cells originating from mouse embryonic stem (ES) cells (E-MSCs) showed markedly higher potential for differentiation into skeletal muscles in vitro than common mesenchymal stem cells (MSCs). Further, the E-MSCs exhibited a low risk for teratoma formation. Here we evaluate the potential of E-MSCs for differentiation into skeletal muscles in vivo and reveal the regeneration and functional recovery of injured muscle by transplantation. E-MSCs were transplanted into the tibialis anterior (TA) muscle 24 h following direct clamping. After transplantation, the myogenic differentiation of E-MSCs, TA muscle regeneration, and re-innervation were morphologically analyzed. In addition, footprints and gaits of each leg under spontaneous walking were measured by CatWalk XT, and motor functions of injured TA muscles were precisely analyzed. Results indicate that >60% of transplanted E-MSCs differentiated into skeletal muscles. The cross-sectional area of the injured TA muscles of E-MSC-transplanted animals increased earlier than that of control animals. E-MSCs also promotes re-innervation of the peripheral nerves of injured muscles. Concerning function of the TA muscles, we reveal that transplantation of E-MSCs promotes the recovery of muscles. This is the first report to demonstrate by analysis of spontaneous walking that transplanted cells can accelerate the functional recovery of injured muscles. Taken together, the results show that E-MSCs have a high potential for differentiation into skeletal muscles in vivo as well as in vitro. The transplantation of E-MSCs facilitated the functional recovery of injured muscles. Therefore, E-MSCs are an efficient cell source in transplantation.
Ninagawa, Nana Takenaka; Isobe, Eri; Hirayama, Yuri; Murakami, Rumi; Komatsu, Kazumi; Nagai, Masataka; Kobayashi, Mami; Kawabata, Yuka
2013-01-01
Abstract We previously established that mesenchymal stem cells originating from mouse embryonic stem (ES) cells (E-MSCs) showed markedly higher potential for differentiation into skeletal muscles in vitro than common mesenchymal stem cells (MSCs). Further, the E-MSCs exhibited a low risk for teratoma formation. Here we evaluate the potential of E-MSCs for differentiation into skeletal muscles in vivo and reveal the regeneration and functional recovery of injured muscle by transplantation. E-MSCs were transplanted into the tibialis anterior (TA) muscle 24 h following direct clamping. After transplantation, the myogenic differentiation of E-MSCs, TA muscle regeneration, and re-innervation were morphologically analyzed. In addition, footprints and gaits of each leg under spontaneous walking were measured by CatWalk XT, and motor functions of injured TA muscles were precisely analyzed. Results indicate that >60% of transplanted E-MSCs differentiated into skeletal muscles. The cross-sectional area of the injured TA muscles of E-MSC–transplanted animals increased earlier than that of control animals. E-MSCs also promotes re-innervation of the peripheral nerves of injured muscles. Concerning function of the TA muscles, we reveal that transplantation of E-MSCs promotes the recovery of muscles. This is the first report to demonstrate by analysis of spontaneous walking that transplanted cells can accelerate the functional recovery of injured muscles. Taken together, the results show that E-MSCs have a high potential for differentiation into skeletal muscles in vivo as well as in vitro. The transplantation of E-MSCs facilitated the functional recovery of injured muscles. Therefore, E-MSCs are an efficient cell source in transplantation. PMID:23914336
Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.
We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation,more » myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through mechanisms involving its adhesive and signaling functions.« less
Tropomodulin isoforms regulate thin filament pointed-end capping and skeletal muscle physiology
Gokhin, David S.; Lewis, Raymond A.; McKeown, Caroline R.; Nowak, Roberta B.; Kim, Nancy E.; Littlefield, Ryan S.; Lieber, Richard L.
2010-01-01
During myofibril assembly, thin filament lengths are precisely specified to optimize skeletal muscle function. Tropomodulins (Tmods) are capping proteins that specify thin filament lengths by controlling actin dynamics at pointed ends. In this study, we use a genetic targeting approach to explore the effects of deleting Tmod1 from skeletal muscle. Myofibril assembly, skeletal muscle structure, and thin filament lengths are normal in the absence of Tmod1. Tmod4 localizes to thin filament pointed ends in Tmod1-null embryonic muscle, whereas both Tmod3 and -4 localize to pointed ends in Tmod1-null adult muscle. Substitution by Tmod3 and -4 occurs despite their weaker interactions with striated muscle tropomyosins. However, the absence of Tmod1 results in depressed isometric stress production during muscle contraction, systemic locomotor deficits, and a shift to a faster fiber type distribution. Thus, Tmod3 and -4 compensate for the absence of Tmod1 structurally but not functionally. We conclude that Tmod1 is a novel regulator of skeletal muscle physiology. PMID:20368620
Trinchese, Giovanna; Cavaliere, Gina; De Filippo, Chiara; Aceto, Serena; Prisco, Marina; Chun, Jong Tai; Penna, Eduardo; Negri, Rossella; Muredda, Laura; Demurtas, Andrea; Banni, Sebastiano; Berni-Canani, Roberto; Mattace Raso, Giuseppina; Calignano, Antonio; Meli, Rosaria; Greco, Luigi; Crispino, Marianna; Mollica, Maria P
2018-01-01
Scope: Milk from various species differs in nutrient composition. In particular, human milk (HM) and donkey milk (DM) are characterized by a relative high level of triacylglycerol enriched in palmitic acid in sn-2 position. These dietary fats seem to exert beneficial nutritional properties through N-acylethanolamine tissue modulation. The aim of this study is to compare the effects of cow milk (CM), DM, and HM on inflammation and glucose and lipid metabolism, focusing on mitochondrial function, efficiency, and dynamics in skeletal muscle, which is the major determinant of resting metabolic rate. Moreover, we also evaluated the levels of endocannabinoids and N-acylethanolamines in liver and skeletal muscle, since tissue fatty acid profiles can be modulated by nutrient intervention. Procedures: To this aim, rats were fed with CM, DM, or HM for 4 weeks. Then, glucose tolerance and insulin resistance were analyzed. Pro-inflammatory and anti-inflammatory cytokines were evaluated in serum and skeletal muscle. Skeletal muscle was also processed to estimate mitochondrial function, efficiency, and dynamics, oxidative stress, and antioxidant/detoxifying enzyme activities. Fatty acid profiles, endocannabinoids, and N-acylethanolamine congeners were determined in liver and skeletal muscle tissue. Results: We demonstrated that DM or HM administration reducing inflammation status, improves glucose disposal and insulin resistance and reduces lipid accumulation in skeletal muscle. Moreover, HM or DM administration increases redox status, and mitochondrial uncoupling, affecting mitochondrial dynamics in the skeletal muscle. Interestingly, HM and DM supplementation increase liver and muscle levels of the N-oleoylethanolamine (OEA), a key regulator of lipid metabolism and inflammation. Conclusions: HM and DM have a healthy nutritional effect, acting on inflammatory factors and glucose and lipid metabolism. This beneficial effect is associated to a modulation of mitochondrial function, efficiency, and dynamics and to an increase of OEA levels in skeletal muscle.
Trinchese, Giovanna; Cavaliere, Gina; De Filippo, Chiara; Aceto, Serena; Prisco, Marina; Chun, Jong Tai; Penna, Eduardo; Negri, Rossella; Muredda, Laura; Demurtas, Andrea; Banni, Sebastiano; Berni-Canani, Roberto; Mattace Raso, Giuseppina; Calignano, Antonio; Meli, Rosaria; Greco, Luigi; Crispino, Marianna; Mollica, Maria P.
2018-01-01
Scope: Milk from various species differs in nutrient composition. In particular, human milk (HM) and donkey milk (DM) are characterized by a relative high level of triacylglycerol enriched in palmitic acid in sn-2 position. These dietary fats seem to exert beneficial nutritional properties through N-acylethanolamine tissue modulation. The aim of this study is to compare the effects of cow milk (CM), DM, and HM on inflammation and glucose and lipid metabolism, focusing on mitochondrial function, efficiency, and dynamics in skeletal muscle, which is the major determinant of resting metabolic rate. Moreover, we also evaluated the levels of endocannabinoids and N-acylethanolamines in liver and skeletal muscle, since tissue fatty acid profiles can be modulated by nutrient intervention. Procedures: To this aim, rats were fed with CM, DM, or HM for 4 weeks. Then, glucose tolerance and insulin resistance were analyzed. Pro-inflammatory and anti-inflammatory cytokines were evaluated in serum and skeletal muscle. Skeletal muscle was also processed to estimate mitochondrial function, efficiency, and dynamics, oxidative stress, and antioxidant/detoxifying enzyme activities. Fatty acid profiles, endocannabinoids, and N-acylethanolamine congeners were determined in liver and skeletal muscle tissue. Results: We demonstrated that DM or HM administration reducing inflammation status, improves glucose disposal and insulin resistance and reduces lipid accumulation in skeletal muscle. Moreover, HM or DM administration increases redox status, and mitochondrial uncoupling, affecting mitochondrial dynamics in the skeletal muscle. Interestingly, HM and DM supplementation increase liver and muscle levels of the N-oleoylethanolamine (OEA), a key regulator of lipid metabolism and inflammation. Conclusions: HM and DM have a healthy nutritional effect, acting on inflammatory factors and glucose and lipid metabolism. This beneficial effect is associated to a modulation of mitochondrial function, efficiency, and dynamics and to an increase of OEA levels in skeletal muscle. PMID:29472867
Functional classification of skeletal muscle networks. I. Normal physiology
Wang, Yu; Winters, Jack
2012-01-01
Extensive measurements of the parts list of human skeletal muscle through transcriptomics and other phenotypic assays offer the opportunity to reconstruct detailed functional models. Through integration of vast amounts of data present in databases and extant knowledge of muscle function combined with robust analyses that include a clustering approach, we present both a protein parts list and network models for skeletal muscle function. The model comprises the four key functional family networks that coexist within a functional space; namely, excitation-activation family (forward pathways that transmit a motoneuronal command signal into the spatial volume of the cell and then use Ca2+ fluxes to bind Ca2+ to troponin C sites on F-actin filaments, plus transmembrane pumps that maintain transmission capacity); mechanical transmission family (a sophisticated three-dimensional mechanical apparatus that bidirectionally couples the millions of actin-myosin nanomotors with external axial tensile forces at insertion sites); metabolic and bioenergetics family (pathways that supply energy for the skeletal muscle function under widely varying demands and provide for other cellular processes); and signaling-production family (which represents various sensing, signal transduction, and nuclear infrastructure that controls the turn over and structural integrity and regulates the maintenance, regeneration, and remodeling of the muscle). Within each family, we identify subfamilies that function as a unit through analysis of large-scale transcription profiles of muscle and other tissues. This comprehensive network model provides a framework for exploring functional mechanisms of the skeletal muscle in normal and pathophysiology, as well as for quantitative modeling. PMID:23085959
Stugiewicz, Magdalena; Tkaczyszyn, Michał; Kasztura, Monika; Banasiak, Waldemar; Ponikowski, Piotr; Jankowska, Ewa A
2016-07-01
Skeletal and respiratory myopathy not only constitutes an important pathophysiological feature of heart failure and chronic obstructive pulmonary disease, but also contributes to debilitating symptomatology and predicts worse outcomes in these patients. Accumulated evidence from laboratory experiments, animal models, and interventional studies in sports medicine suggests that undisturbed systemic iron homeostasis significantly contributes to the effective functioning of skeletal muscles. In this review, we discuss the role of iron status for the functioning of skeletal muscle tissue, and highlight iron deficiency as an emerging therapeutic target in chronic diseases accompanied by a marked muscle dysfunction. © 2016 The Authors. European Journal of Heart Failure © 2016 European Society of Cardiology.
Perandini, Luiz Augusto; Chimin, Patricia; Lutkemeyer, Diego da Silva; Câmara, Niels Olsen Saraiva
2018-06-01
Chronic inflammation impairs skeletal muscle regeneration. Although many cells are involved in chronic inflammation, macrophages seem to play an important role in impaired muscle regeneration since these cells are associated with skeletal muscle stem cell (namely, satellite cells) activation and fibro-adipogenic progenitor cell (FAP) survival. Specifically, an imbalance of M1 and M2 macrophages seems to lead to impaired satellite cell activation, and these are the main cells that function during skeletal muscle regeneration, after muscle damage. Additionally, this imbalance leads to the accumulation of FAPs in skeletal muscle, with aberrant production of pro-fibrotic factors (e.g., extracellular matrix components), impairing the niche for proper satellite cell activation and differentiation. Treatments aiming to block the inflammatory pro-fibrotic response are partially effective due to their side effects. Therefore, strategies reverting chronic inflammation into a pro-regenerative pattern are required. In this review, we first describe skeletal muscle resident macrophage ontogeny and homeostasis, and explain how macrophages are replenished after muscle injury. We next discuss the potential role of chronic physical activity and exercise in restoring the M1 and M2 macrophage balance and consequently, the satellite cell niche to improve skeletal muscle regeneration after injury. © 2018 Federation of European Biochemical Societies.
Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle
Quattrocelli, Mattia; Swinnen, Melissa; Giacomazzi, Giorgia; Camps, Jordi; Barthélemy, Ines; Ceccarelli, Gabriele; Caluwé, Ellen; Grosemans, Hanne; Thorrez, Lieven; Pelizzo, Gloria; Muijtjens, Manja; Verfaillie, Catherine M.; Blot, Stephane; Janssens, Stefan; Sampaolesi, Maurilio
2015-01-01
Conditions such as muscular dystrophies (MDs) that affect both cardiac and skeletal muscles would benefit from therapeutic strategies that enable regeneration of both of these striated muscle types. Protocols have been developed to promote induced pluripotent stem cells (iPSCs) to differentiate toward cardiac or skeletal muscle; however, there are currently no strategies to simultaneously target both muscle types. Tissues exhibit specific epigenetic alterations; therefore, source-related lineage biases have the potential to improve iPSC-driven multilineage differentiation. Here, we determined that differential myogenic propensity influences the commitment of isogenic iPSCs and a specifically isolated pool of mesodermal iPSC-derived progenitors (MiPs) toward the striated muscle lineages. Differential myogenic propensity did not influence pluripotency, but did selectively enhance chimerism of MiP-derived tissue in both fetal and adult skeletal muscle. When injected into dystrophic mice, MiPs engrafted and repaired both skeletal and cardiac muscle, reducing functional defects. Similarly, engraftment into dystrophic mice of canine MiPs from dystrophic dogs that had undergone TALEN-mediated correction of the MD-associated mutation also resulted in functional striatal muscle regeneration. Moreover, human MiPs exhibited the same capacity for the dual differentiation observed in murine and canine MiPs. The findings of this study suggest that MiPs should be further explored for combined therapy of cardiac and skeletal muscles. PMID:26571398
Zhou, Rui; Wang, Yi Xin; Long, Ke Ren; Jiang, An An; Jin, Long
2018-04-20
Skeletal muscle is an essential tissue to maintain the normal functions of an organism. It is also closely associated with important economic performance, such as carcass weight, of domestic animals. In recent years, studies using high-throughput sequencing techniques have identified numerous long non-coding RNAs (lncRNAs) with myogenic functions involved in regulation of gene expression at multiple levels, including epigenetic, transcriptional and post-transcriptional regulation. These lncRNAs target myogenic factors, which participate in all processes of skeletal muscle development, including proliferation, migration and differentiation of skeletal muscle stem cells, proliferation, differentiation and fusion of myocytes, muscle hypertrophy and conversion of muscle fiber types. In this review, we summarize the functional roles of lncRNAs in regulation of myogenesis in humans and mice, describe the methods for the analysis of lncRNA function, discuss the progress of lncRNA research in domestic animals, and highlight the current problems and challenges in lncRNA research on livestock production. We hope to provide a useful reference for research on lncRNA in domestic animals, thereby further identifying the molecular regulatory mechanisms in skeletal muscle growth and development.
Stoll, Elizabeth A; Karapavlovic, Nevena; Rosa, Hannah; Woodmass, Michael; Rygiel, Karolina; White, Kathryn; Turnbull, Douglass M; Faulkes, Chris G
2016-01-01
The naked mole-rat (NMR) Heterocephalus glaber is an exceptionally long-lived rodent, living up to 32 years in captivity. This extended lifespan is accompanied by a phenotype of negligible senescence, a phenomenon of very slow changes in the expected physiological characteristics with age. One of the many consequences of normal aging in mammals is the devastating and progressive loss of skeletal muscle, termed sarcopenia, caused in part by respiratory enzyme dysfunction within the mitochondria of skeletal muscle fibers. Here we report that NMRs avoid sarcopenia for decades. Muscle fiber integrity and mitochondrial ultrastructure are largely maintained in aged animals. While mitochondrial Complex IV expression and activity remains stable, Complex I expression is significantly decreased. We show that aged naked mole-rat skeletal muscle tissue contains some mitochondrial DNA rearrangements, although the common mitochondrial DNA deletions associated with aging in human and other rodent skeletal muscles are not present. Interestingly, NMR skeletal muscle fibers demonstrate a significant increase in mitochondrial DNA copy number. These results have intriguing implications for the role of mitochondria in aging, suggesting Complex IV, but not Complex I, function is maintained in the long-lived naked mole rat, where sarcopenia is avoided and healthy muscle function is maintained for decades. PMID:27997359
Call, Jarrod A; Wilson, Rebecca J; Laker, Rhianna C; Zhang, Mei; Kundu, Mondira; Yan, Zhen
2017-06-01
Autophagy is a conserved cellular process for degrading aggregate proteins and dysfunctional organelle. It is still debatable if autophagy and mitophagy (a specific process of autophagy of mitochondria) play important roles in myogenic differentiation and functional regeneration of skeletal muscle. We tested the hypothesis that autophagy is critical for functional regeneration of skeletal muscle. We first observed time-dependent increases (3- to 6-fold) of autophagy-related proteins (Atgs), including Ulk1, Beclin1, and LC3, along with reduced p62 expression during C2C12 differentiation, suggesting increased autophagy capacity and flux during myogenic differentiation. We then used cardiotoxin (Ctx) or ischemia-reperfusion (I/R) to induce muscle injury and regeneration and observed increases in Atgs between days 2 and 7 in adult skeletal muscle followed by increased autophagy flux after day 7 Since Ulk1 has been shown to be essential for mitophagy, we asked if Ulk1 is critical for functional regeneration in skeletal muscle. We subjected skeletal muscle-specific Ulk1 knockout mice (MKO) to Ctx or I/R. MKO mice had significantly impaired recovery of muscle strength and mitochondrial protein content post-Ctx or I/R. Imaging analysis showed that MKO mice have significantly attenuated recovery of mitochondrial network at 7 and 14 days post-Ctx. These findings suggest that increased autophagy protein and flux occur during muscle regeneration and Ulk1-mediated mitophagy is critical for recovery for the mitochondrial network and hence functional regeneration. Copyright © 2017 the American Physiological Society.
Biomimetic Scaffolds for Regeneration of Volumetric Muscle Loss in Skeletal Muscle Injuries
Grasman, Jonathan M.; Zayas, Michelle J.; Page, Ray; Pins, George D.
2015-01-01
Skeletal muscle injuries typically result from traumatic incidents such as combat injuries where soft-tissue extremity injuries are present in one of four cases. Further, about 4.5 million reconstructive surgical procedures are performed annually as a result of car accidents, cancer ablation, or cosmetic procedures. These combat- and trauma-induced skeletal muscle injuries are characterized by volumetric muscle loss (VML), which significantly reduces the functionality of the injured muscle. While skeletal muscle has an innate repair mechanism, it is unable to compensate for VML injuries because large amounts of tissue including connective tissue and basement membrane are removed or destroyed. This results in in a significant need to develop off-the-shelf biomimetic scaffolds to direct skeletal muscle regeneration. Here, the structure and organization of native skeletal muscle tissue is described in order to reveal clear design parameters that are necessary for scaffolds to mimic in order to successfully regenerate muscular tissue. We review the literature with respect to the materials and methodologies used to develop scaffolds for skeletal muscle tissue regeneration as well as the limitations of these materials. We further discuss the variety of cell sources and different injury models to provide some context for the multiple approaches used to evaluate these scaffold materials. Recent findings are highlighted to address the state of the field and directions are outlined for future strategies, both in scaffold design and in the use of different injury models to evaluate these materials, for regenerating functional skeletal muscle. PMID:26219862
Protective role of Parkin in skeletal muscle contractile and mitochondrial function.
Gouspillou, Gilles; Godin, Richard; Piquereau, Jérome; Picard, Martin; Mofarrahi, Mahroo; Mathew, Jasmin; Purves-Smith, Fennigje M; Sgarioto, Nicolas; Hepple, Russell T; Burelle, Yan; Hussain, Sabah N A
2018-04-22
Parkin, an E3 ubiquitin ligase encoded by the Park2 gene, has been implicated in the regulation of mitophagy, a quality control process in which defective mitochondria are degraded. The exact physiological significance of Parkin in regulating mitochondrial function and contractility in skeletal muscle remains largely unexplored. Using Park2 -/- mice, we show that Parkin ablation causes a decrease in muscle specific force, a severe decrease in mitochondrial respiration, mitochondrial uncoupling and an increased susceptibility to opening of the permeability transition pore. These results demonstrate that Parkin plays a protective role in the maintenance of normal mitochondrial and contractile functions in skeletal muscles. Parkin is an E3 ubiquitin ligase encoded by the Park2 gene. Parkin has been implicated in the regulation of mitophagy, a quality control process in which defective mitochondria are sequestered in autophagosomes and delivered to lysosomes for degradation. Although Parkin has been mainly studied for its implication in neuronal degeneration in Parkinson disease, its role in other tissues remains largely unknown. In the present study, we investigated the skeletal muscles of Park2 knockout (Park2 -/- ) mice to test the hypothesis that Parkin plays a physiological role in mitochondrial quality control in normal skeletal muscle, a tissue highly reliant on mitochondrial content and function. We first show that the tibialis anterior (TA) of Park2 -/- mice display a slight but significant decrease in its specific force. Park2 -/ - muscles also show a trend for type IIB fibre hypertrophy without alteration in muscle fibre type proportion. Compared to Park2 +/+ muscles, the mitochondrial function of Park2 -/- skeletal muscles was significantly impaired, as indicated by the significant decrease in ADP-stimulated mitochondrial respiratory rates, uncoupling, reduced activities of respiratory chain complexes containing mitochondrial DNA (mtDNA)-encoded subunits and increased susceptibility to opening of the permeability transition pore. Muscles of Park2 -/- mice also displayed a decrease in the content of the mitochondrial pro-fusion protein Mfn2 and an increase in the pro-fission protein Drp1 suggesting an increase in mitochondrial fragmentation. Finally, Park2 ablation resulted in an increase in basal autophagic flux in skeletal muscles. Overall, the results of the present study demonstrate that Parkin plays a protective role in the maintenance of normal mitochondrial and contractile functions in normal skeletal muscles. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Woodall, Benjamin P.; Woodall, Meryl C.; Luongo, Timothy S.; Grisanti, Laurel A.; Tilley, Douglas G.; Elrod, John W.; Koch, Walter J.
2016-01-01
GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2fl/fl) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β2-adrenergic receptor (β2AR) agonist, was significantly enhanced in MLC-Cre:GRK2fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β2AR-induced hypertrophy. PMID:27566547
Manring, Heather; Abreu, Eduardo; Brotto, Leticia; Weisleder, Noah; Brotto, Marco
2013-01-01
Research over the last decade strengthened the understanding that skeletal muscles are not only the major tissue in the body from a volume point of view but also function as a master regulator contributing to optimal organismal health. These new contributions to the available body of knowledge triggered great interest in the roles of skeletal muscle beyond contraction. The World Health Organization, through its Global Burden of Disease (GBD) report, recently raised further awareness about the key importance of skeletal muscles as the GDB reported musculoskeletal (MSK) diseases have become the second greatest cause of disability, with more than 1.7 billion people in the globe affected by a diversity of MSK conditions. Besides their role in MSK disorders, skeletal muscles are also seen as principal metabolic organs with essential contributions to metabolic disorders, especially those linked to physical inactivity. In this review, we have focused on the unique function of new genes/proteins (i.e., MTMR14, MG29, sarcalumenin, KLF15) that during the last few years have helped provide novel insights about muscle function in health and disease, muscle fatigue, muscle metabolism, and muscle aging. Next, we provide an in depth discussion of how these genes/proteins converge into a common function of acting as regulators of intracellular calcium homeostasis. A clear link between dysfunctional calcium homeostasis is established and the special role of store-operated calcium entry is analyzed. The new knowledge that has been generated by the understanding of the roles of previously unknown modulatory genes of the skeletal muscle excitation-contraction coupling (ECC) process brings exciting new possibilities for treatment of MSK diseases, muscle regeneration, and skeletal muscle tissue engineering. The next decade of skeletal muscle and MSK research is bound to bring to fruition applied knowledge that will hopefully offset the current heavy and sad burden of MSK diseases on the planet. PMID:24600395
Manring, Heather; Abreu, Eduardo; Brotto, Leticia; Weisleder, Noah; Brotto, Marco
2014-01-01
Research over the last decade strengthened the understanding that skeletal muscles are not only the major tissue in the body from a volume point of view but also function as a master regulator contributing to optimal organismal health. These new contributions to the available body of knowledge triggered great interest in the roles of skeletal muscle beyond contraction. The World Health Organization, through its Global Burden of Disease (GBD) report, recently raised further awareness about the key importance of skeletal muscles as the GDB reported musculoskeletal (MSK) diseases have become the second greatest cause of disability, with more than 1.7 billion people in the globe affected by a diversity of MSK conditions. Besides their role in MSK disorders, skeletal muscles are also seen as principal metabolic organs with essential contributions to metabolic disorders, especially those linked to physical inactivity. In this review, we have focused on the unique function of new genes/proteins (i.e., MTMR14, MG29, sarcalumenin, KLF15) that during the last few years have helped provide novel insights about muscle function in health and disease, muscle fatigue, muscle metabolism, and muscle aging. Next, we provide an in depth discussion of how these genes/proteins converge into a common function of acting as regulators of intracellular calcium homeostasis. A clear link between dysfunctional calcium homeostasis is established and the special role of store-operated calcium entry is analyzed. The new knowledge that has been generated by the understanding of the roles of previously unknown modulatory genes of the skeletal muscle excitation-contraction coupling (ECC) process brings exciting new possibilities for treatment of MSK diseases, muscle regeneration, and skeletal muscle tissue engineering. The next decade of skeletal muscle and MSK research is bound to bring to fruition applied knowledge that will hopefully offset the current heavy and sad burden of MSK diseases on the planet.
Effects of exercise on obesity-induced mitochondrial dysfunction in skeletal muscle
Heo, Jun-Won; No, Mi-Hyun; Park, Dong-Ho; Kang, Ju-Hee; Seo, Dae Yun; Han, Jin; Neufer, P. Darrell
2017-01-01
Obesity is known to induce inhibition of glucose uptake, reduction of lipid metabolism, and progressive loss of skeletal muscle function, which are all associated with mitochondrial dysfunction in skeletal muscle. Mitochondria are dynamic organelles that regulate cellular metabolism and bioenergetics, including ATP production via oxidative phosphorylation. Due to these critical roles of mitochondria, mitochondrial dysfunction results in various diseases such as obesity and type 2 diabetes. Obesity is associated with impairment of mitochondrial function (e.g., decrease in O2 respiration and increase in oxidative stress) in skeletal muscle. The balance between mitochondrial fusion and fission is critical to maintain mitochondrial homeostasis in skeletal muscle. Obesity impairs mitochondrial dynamics, leading to an unbalance between fusion and fission by favorably shifting fission or reducing fusion proteins. Mitophagy is the catabolic process of damaged or unnecessary mitochondria. Obesity reduces mitochondrial biogenesis in skeletal muscle and increases accumulation of dysfunctional cellular organelles, suggesting that mitophagy does not work properly in obesity. Mitochondrial dysfunction and oxidative stress are reported to trigger apoptosis, and mitochondrial apoptosis is induced by obesity in skeletal muscle. It is well known that exercise is the most effective intervention to protect against obesity. Although the cellular and molecular mechanisms by which exercise protects against obesity-induced mitochondrial dysfunction in skeletal muscle are not clearly elucidated, exercise training attenuates mitochondrial dysfunction, allows mitochondria to maintain the balance between mitochondrial dynamics and mitophagy, and reduces apoptotic signaling in obese skeletal muscle. PMID:29200899
Cardiac troponin T and fast skeletal muscle denervation in ageing
Xu, Zherong; Feng, Xin; Dong, Juan; Wang, Zhong‐Min; Lee, Jingyun; Furdui, Cristina; Files, Daniel Clark; Beavers, Kristen M.; Kritchevsky, Stephen; Milligan, Carolanne; Jin, Jian‐Ping; Delbono, Osvaldo
2017-01-01
Abstract Background Ageing skeletal muscle undergoes chronic denervation, and the neuromuscular junction (NMJ), the key structure that connects motor neuron nerves with muscle cells, shows increased defects with ageing. Previous studies in various species have shown that with ageing, type II fast‐twitch skeletal muscle fibres show more atrophy and NMJ deterioration than type I slow‐twitch fibres. However, how this process is regulated is largely unknown. A better understanding of the mechanisms regulating skeletal muscle fibre‐type specific denervation at the NMJ could be critical to identifying novel treatments for sarcopenia. Cardiac troponin T (cTnT), the heart muscle‐specific isoform of TnT, is a key component of the mechanisms of muscle contraction. It is expressed in skeletal muscle during early development, after acute sciatic nerve denervation, in various neuromuscular diseases and possibly in ageing muscle. Yet the subcellular localization and function of cTnT in skeletal muscle is largely unknown. Methods Studies were carried out on isolated skeletal muscles from mice, vervet monkeys, and humans. Immunoblotting, immunoprecipitation, and mass spectrometry were used to analyse protein expression, real‐time reverse transcription polymerase chain reaction was used to measure gene expression, immunofluorescence staining was performed for subcellular distribution assay of proteins, and electromyographic recording was used to analyse neurotransmission at the NMJ. Results Levels of cTnT expression in skeletal muscle increased with ageing in mice. In addition, cTnT was highly enriched at the NMJ region—but mainly in the fast‐twitch, not the slow‐twitch, muscle of old mice. We further found that the protein kinase A (PKA) RIα subunit was largely removed from, while PKA RIIα and RIIβ are enriched at, the NMJ—again, preferentially in fast‐twitch but not slow‐twitch muscle in old mice. Knocking down cTnT in fast skeletal muscle of old mice: (i) increased PKA RIα and reduced PKA RIIα at the NMJ; (ii) decreased the levels of gene expression of muscle denervation markers; and (iii) enhanced neurotransmission efficiency at NMJ. Conclusions Cardiac troponin T at the NMJ region contributes to NMJ functional decline with ageing mainly in the fast‐twitch skeletal muscle through interfering with PKA signalling. This knowledge could inform useful targets for prevention and therapy of age‐related decline in muscle function. PMID:28419739
[Skeletal muscles, physical activity and health].
Saltin, B; Helge, J W
2000-11-01
The metabolic capacity of skeletal muscle plays a significant role for insulin sensitivity and the blood lipid profile. The metabolic capacity of the muscle is a function of the individual's physical activity level. This is also true for the content of type IIa muscle fibres, which is reduced, and the number of capillaries, which is elevated with muscle usage. Several of these skeletal muscle features are risk factors for or linked with life-style induced diseases such as type II diabetes, hypertension, hyperlipemia and obesity. The central role of the skeletal muscle and its functional metabolic capacity for life style diseases highlights the importance of people maintaining daily physical activity. This article focuses on the link between the metabolic capacity of skeletal muscle and the metabolic syndrome and briefly discusses the explanations for this relationship. As one important aspect if skeletal muscle has a high capacity for lipid oxidation, then more saturated fatty acids are oxidised and more unsaturated fatty acids are built in the phospholipid fraction of the plasma membrane, giving it more fluidity and improved insulin sensitivity. Moreover, the article points at the role of these fatty acids in activating genes via the PPAR-receptor system essential for enzyme and transport proteins in the lipid metabolism.
Use of mRNA expression signatures to discover small molecule inhibitors of skeletal muscle atrophy
Adams, Christopher M.; Ebert, Scott M.; Dyle, Michael C.
2017-01-01
Purpose of review Here, we discuss a recently developed experimental strategy for discovering small molecules with potential to prevent and treat skeletal muscle atrophy. Recent findings Muscle atrophy involves and requires widespread changes in skeletal muscle gene expression, which generate complex but measurable patterns of positive and negative changes in skeletal muscle mRNA levels (a.k.a. mRNA expression signatures of muscle atrophy). Many bioactive small molecules generate their own characteristic mRNA expression signatures, and by identifying small molecules whose signatures approximate mirror images of muscle atrophy signatures, one may identify small molecules with potential to prevent and/or reverse muscle atrophy. Unlike a conventional drug discovery approach, this strategy does not rely on a predefined molecular target but rather exploits the complexity of muscle atrophy to identify small molecules that counter the entire spectrum of pathological changes in atrophic muscle. We discuss how this strategy has been used to identify two natural compounds, ursolic acid and tomatidine, that reduce muscle atrophy and improve skeletal muscle function. Summary Discovery strategies based on mRNA expression signatures can elucidate new approaches for preserving and restoring muscle mass and function. PMID:25807353
Use of mRNA expression signatures to discover small molecule inhibitors of skeletal muscle atrophy.
Adams, Christopher M; Ebert, Scott M; Dyle, Michael C
2015-05-01
Here, we discuss a recently developed experimental strategy for discovering small molecules with potential to prevent and treat skeletal muscle atrophy. Muscle atrophy involves and requires widespread changes in skeletal muscle gene expression, which generate complex but measurable patterns of positive and negative changes in skeletal muscle mRNA levels (a.k.a. mRNA expression signatures of muscle atrophy). Many bioactive small molecules generate their own characteristic mRNA expression signatures, and by identifying small molecules whose signatures approximate mirror images of muscle atrophy signatures, one may identify small molecules with potential to prevent and/or reverse muscle atrophy. Unlike a conventional drug discovery approach, this strategy does not rely on a predefined molecular target but rather exploits the complexity of muscle atrophy to identify small molecules that counter the entire spectrum of pathological changes in atrophic muscle. We discuss how this strategy has been used to identify two natural compounds, ursolic acid and tomatidine, that reduce muscle atrophy and improve skeletal muscle function. Discovery strategies based on mRNA expression signatures can elucidate new approaches for preserving and restoring muscle mass and function.
Ferry, Arnaud; Benchaouir, Rachid; Joanne, Pierre; Peat, Rachel A; Mougenot, Nathalie; Agbulut, Onnik; Butler-Browne, Gillian
2015-11-01
The effects of voluntary activity initiated in adult mdx (C57BL/10ScSc-DMD(mdx) /J) mice on skeletal and cardiac muscle function have not been studied extensively. We studied the effects of 3 months of voluntary wheel running initiated at age 7 months on hindlimb muscle weakness, increased susceptibility to muscle contraction-induced injury, and left ventricular function in mdx mice. We found that voluntary wheel running did not worsen the deficit in force-generating capacity and the force drop after lengthening contractions in either mdx mouse gender. It increased the absolute maximal force of skeletal muscle in female mdx mice. Moreover, it did not affect left ventricular function, structural heart dimensions, cardiac gene expression of inflammation, fibrosis, or remodeling markers. These results indicate that voluntary activity initiated at age 7 months had no detrimental effects on skeletal or cardiac muscles in either mdx mouse gender. © 2015 Wiley Periodicals, Inc.
Merritt, Edward K; Cannon, Megan V; Hammers, David W; Le, Long N; Gokhale, Rohit; Sarathy, Apurva; Song, Tae J; Tierney, Matthew T; Suggs, Laura J; Walters, Thomas J; Farrar, Roger P
2010-09-01
Skeletal muscle injury resulting in tissue loss poses unique challenges for surgical repair. Despite the regenerative potential of skeletal muscle, if a significant amount of tissue is lost, skeletal myofibers will not grow to fill the injured area completely. Prior work in our lab has shown the potential to fill the void with an extracellular matrix (ECM) scaffold, resulting in restoration of morphology, but not functional recovery. To improve the functional outcome of the injured muscle, a muscle-derived ECM was implanted into a 1 x 1 cm(2), full-thickness defect in the lateral gastrocnemius (LGAS) of Lewis rats. Seven days later, bone-marrow-derived mesenchymal stem cells (MSCs) were injected directly into the implanted ECM. Partial functional recovery occurred over the course of 42 days when the LGAS was repaired with an MSC-seeded ECM producing 85.4 +/- 3.6% of the contralateral LGAS. This was significantly higher than earlier recovery time points (p < 0.05). The specific tension returned to 94 +/- 9% of the contralateral limb. The implanted MSC-seeded ECM had more blood vessels and regenerating skeletal myofibers than the ECM without cells (p < 0.05). The data suggest that the repair of a skeletal muscle defect injury by the implantation of a muscle-derived ECM seeded with MSCs can improve functional recovery after 42 days.
Renal function alterations during skeletal muscle disuse in simulated microgravity
NASA Technical Reports Server (NTRS)
Tucker, Bryan J.
1992-01-01
This project was to examine the alterations in renal functions during skeletal muscle disuse in simulated microgravity. Although this area could cover a wide range of investigative efforts, the limited funding resulted in the selection of two projects. These projects would result in data contributing to an area of research deemed high priority by NASA and would address issues of the alterations in renal response to vasoactive stimuli during conditions of skeletal muscle disuse as well as investigate the contribution of skeletal muscle disuse, conditions normally found in long term human exposure to microgravity, to the balance of fluid and macromolecules within the vasculature versus the interstitium. These two projects selected are as follows: investigate the role of angiotensin 2 on renal function during periods of simulated microgravity and skeletal muscle disuse to determine if the renal response is altered to changes in circulating concentrations of angiotensin 2 compared to appropriate controls; and determine if the shift of fluid balance from vasculature to the interstitium, the two components of extracellular fluid volume, that occur during prolonged exposure to microgravity and skeletal muscle disuse is a result, in part, to alterations in the fluid and macromolecular balance in the peripheral capillary beds, of which the skeletal muscle contains the majority of recruitment capillaries. A recruitment capillary bed would be most sensitive to alterations in Starling forces and fluid and macromolecular permeability.
Skeletal muscle regeneration and impact of aging and nutrition.
Domingues-Faria, Carla; Vasson, Marie-Paule; Goncalves-Mendes, Nicolas; Boirie, Yves; Walrand, Stephane
2016-03-01
After skeletal muscle injury a regeneration process takes place to repair muscle. Skeletal muscle recovery is a highly coordinated process involving cross-talk between immune and muscle cells. It is well known that the physiological activities of both immune cells and muscle stem cells decline with advancing age, thereby blunting the capacity of skeletal muscle to regenerate. The age-related reduction in muscle repair efficiency contributes to the development of sarcopenia, one of the most important factors of disability in elderly people. Preserving muscle regeneration capacity may slow the development of this syndrome. In this context, nutrition has drawn much attention: studies have demonstrated that nutrients such as amino acids, n-3 polyunsaturated fatty acids, polyphenols and vitamin D can improve skeletal muscle regeneration by targeting key functions of immune cells, muscle cells or both. Here we review the process of skeletal muscle regeneration with a special focus on the cross-talk between immune and muscle cells. We address the effect of aging on immune and skeletal muscle cells involved in muscle regeneration. Finally, the mechanisms of nutrient action on muscle regeneration are described, showing that quality of nutrition may help to preserve the capacity for skeletal muscle regeneration with age. Copyright © 2015 Elsevier B.V. All rights reserved.
In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease.
Khodabukus, Alastair; Prabhu, Neel; Wang, Jason; Bursac, Nenad
2018-04-25
Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Measurement of Maximum Isometric Force Generated by Permeabilized Skeletal Muscle Fibers.
Roche, Stuart M; Gumucio, Jonathan P; Brooks, Susan V; Mendias, Christopher L; Claflin, Dennis R
2015-06-16
Analysis of the contractile properties of chemically skinned, or permeabilized, skeletal muscle fibers offers a powerful means by which to assess muscle function at the level of the single muscle cell. Single muscle fiber studies are useful in both basic science and clinical studies. For basic studies, single muscle fiber contractility measurements allow investigation of fundamental mechanisms of force production, and analysis of muscle function in the context of genetic manipulations. Clinically, single muscle fiber studies provide useful insight into the impact of injury and disease on muscle function, and may be used to guide the understanding of muscular pathologies. In this video article we outline the steps required to prepare and isolate an individual skeletal muscle fiber segment, attach it to force-measuring apparatus, activate it to produce maximum isometric force, and estimate its cross-sectional area for the purpose of normalizing the force produced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, Philip A.; Duan, Jicheng; Qian, Wei-Jun
Mitochondrial oxidative stress is a common feature of skeletal myopathies across multiple conditions; however, the mechanism by which it contributes to skeletal muscle dysfunction remains controversial. Oxidative damage to proteins, lipids, and DNA has received the most attention, yet an important role for reversible redox post-translational modifications (PTMs) in pathophysiology is emerging. The possibility that these PTMs can exert dynamic control of muscle function implicates them as a mechanism contributing to skeletal muscle dysfunction in chronic disease. Herein, we discuss the significance of thiol-based redox dependent modifications to mitochondrial, myofibrillar and excitation-contraction (EC) coupling proteins with an emphasis on howmore » these changes could alter skeletal muscle performance under chronically stressed conditions. A major barrier to a better mechanistic understanding of the role of reversible redox PTMs in muscle function is the technical challenges associated with accurately measuring the changes of site-specific redox PTMs. Here we will critically review current approaches with an emphasis on sample preparation artifacts, quantitation, and specificity. Despite these challenges, the ability to accurately quantify reversible redox PTMs is critical to understanding the mechanisms by which mitochondrial oxidative stress contributes to skeletal muscle dysfunction in chronic diseases.« less
Effect of spaceflight on the functional, biochemical, and metabolic properties of skeletal muscle
NASA Technical Reports Server (NTRS)
Baldwin, K. M.
1996-01-01
This paper summarizes the effects of spaceflight on the functional, morphological, and biochemical properties of human and rodent skeletal muscle. The findings suggest that following as little as 5-6 in space there are deficits in both human and rodent motor capacity, strength, and endurance properties of skeletal muscle. The reduced strength is associated, in part, with a reduction in muscle mass as reflected in smaller cross-sectional areas of both fast- and slow-twitch fibers. Available evidence in animal models suggests that slow-twitch fibers are more sensitive to the atrophying process. Accompanying the atrophy is a transformation of slow to fast protein phenotype involving myosin heavy chain and sarcoplasmic reticulum protein isoforms. These transformations appear to be regulated, in part, by pretranslational processes. Data on the oxidative capacity of rodent skeletal muscle suggest a bias toward preferential utilization of carbohydrate as the primary substrate. These collective findings suggest that skeletal muscles comprised chiefly of slow fibers are highly dependent on gravity for the normal expression of protein mass and slow phenotype. Future studies need to focus on elucidating the mechanisms associated with the atrophy response, as well as identifying suitable exercise and other countermeasures capable of preserving the structural and functional integrity of skeletal muscle.
Urciuolo, Anna; Urbani, Luca; Perin, Silvia; Maghsoudlou, Panagiotis; Scottoni, Federico; Gjinovci, Asllan; Collins-Hooper, Henry; Loukogeorgakis, Stavros; Tyraskis, Athanasios; Torelli, Silvia; Germinario, Elena; Fallas, Mario Enrique Alvarez; Julia-Vilella, Carla; Eaton, Simon; Blaauw, Bert; Patel, Ketan; De Coppi, Paolo
2018-05-30
Pathological conditions affecting skeletal muscle function may lead to irreversible volumetric muscle loss (VML). Therapeutic approaches involving acellular matrices represent an emerging and promising strategy to promote regeneration of skeletal muscle following injury. Here we investigated the ability of three different decellularised skeletal muscle scaffolds to support muscle regeneration in a xenogeneic immune-competent model of VML, in which the EDL muscle was surgically resected. All implanted acellular matrices, used to replace the resected muscles, were able to generate functional artificial muscles by promoting host myogenic cell migration and differentiation, as well as nervous fibres, vascular networks, and satellite cell (SC) homing. However, acellular tissue mainly composed of extracellular matrix (ECM) allowed better myofibre three-dimensional (3D) organization and the restoration of SC pool, when compared to scaffolds which also preserved muscular cytoskeletal structures. Finally, we showed that fibroblasts are indispensable to promote efficient migration and myogenesis by muscle stem cells across the scaffolds in vitro. This data strongly support the use of xenogeneic acellular muscles as device to treat VML conditions in absence of donor cell implementation, as well as in vitro model for studying cell interplay during myogenesis.
Regulatory circuitry of TWEAK-Fn14 system and PGC-1α in skeletal muscle atrophy program
Hindi, Sajedah M.; Mishra, Vivek; Bhatnagar, Shephali; Tajrishi, Marjan M.; Ogura, Yuji; Yan, Zhen; Burkly, Linda C.; Zheng, Timothy S.; Kumar, Ashok
2014-01-01
Skeletal muscle wasting attributed to inactivity has significant adverse functional consequences. Accumulating evidence suggests that peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and TNF-like weak inducer of apoptosis (TWEAK)-Fn14 system are key regulators of skeletal muscle mass in various catabolic states. While the activation of TWEAK-Fn14 signaling causes muscle wasting, PGC-1α preserves muscle mass in several conditions, including functional denervation and aging. However, it remains unknown whether there is any regulatory interaction between PGC-1α and TWEAK-Fn14 system during muscle atrophy. Here we demonstrate that TWEAK significantly reduces the levels of PGC-1α and mitochondrial content (∼50%) in skeletal muscle. Levels of PGC-1α are significantly increased in skeletal muscle of TWEAK-knockout (KO) and Fn14-KO mice compared to wild-type mice on denervation. Transgenic (Tg) overexpression of PGC-1α inhibited progressive muscle wasting in TWEAK-Tg mice. PGC-1α inhibited the TWEAK-induced activation of NF-κB (∼50%) and dramatically reduced (∼90%) the expression of atrogenes such as MAFbx and MuRF1. Intriguingly, muscle-specific overexpression of PGC-1α also prevented the inducible expression of Fn14 in denervated skeletal muscle. Collectively, our study demonstrates that TWEAK induces muscle atrophy through repressing the levels of PGC-1α. Overexpression of PGC-1α not only blocks the TWEAK-induced atrophy program but also diminishes the expression of Fn14 in denervated skeletal muscle.—Hindi, S. M., Mishra, V., Bhatnagar, S., Tajrishi, M. M., Ogura, Y., Yan, Z., Burkly, L. C., Zheng, T. S., Kumar, A. Regulatory circuitry of TWEAK-Fn14 system and PGC-1α in skeletal muscle atrophy program. PMID:24327607
Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis
Kumar, Avinash; Davuluri, Gangarao; deSilva, Rafaella Nasciemento; Engelen, Marielle PKJ; TenHave, Gabrie; Prayson, Richard; Deutz, Nicolaas EP; Dasarathy, Srinivasan
2017-01-01
Sarcopenia or skeletal muscle loss is a frequent, potentially reversible complication in cirrhosis that adversely affects clinical outcomes. Hyperammonemia is a consistent abnormality in cirrhosis that results in impaired skeletal muscle protein synthesis and breakdown (proteostasis). Despite availability of effective ammonia lowering therapies, whether lowering ammonia restores proteostasis and reverses muscle mass is unknown. Myotube diameter, protein synthesis and molecular responses in C2C12 murine myotubes to withdrawal of ammonium acetate following 24 h exposure to 10mM ammonium acetate were complemented by in vivo studies in the hyperammonemic portacaval anastomosis rat (PCA) and sham operated, pair-fed (SO) Sprague- Dawley rats treated with ammonia lowering therapy by L-ornithine L-aspartate and rifaximin orally for 4 weeks. We observed reduced myotube diameter, impaired protein synthesis and increased autophagy flux in response to hyperammonemia that were partially reversed following 24h and 48h withdrawal of ammonium acetate. Consistently, 4 weeks of ammonia lowering therapy resulted in significant lowering of blood and skeletal muscle ammonia, increase in lean body mass, improved grip strength and higher skeletal muscle mass, diameter and an increase in type II fibers in the treated compared to untreated PCA rats. Increased skeletal muscle myostatin expression, reduced mTORC1 function, and the hyperammonemic stress response including autophagy markers were also reversed in the PCA rats treated with ammonia lowering therapy. Despite significant improvement, molecular and functional readouts were not completely reversed by ammonia lowering measures. Conclusions Ammonia lowering therapy results in improvement in skeletal muscle phenotype, function and molecular perturbations of hyperammonemia. These preclinical studies complement previous studies on ammonia induced skeletal muscle loss and lay the foundation for prolonged ammonia lowering therapy to reverse sarcopenia of cirrhosis. PMID:28195332
Negredo, Pilar; Rivero, José-Luis L; González, Beatriz; Ramón-Cueto, Almudena; Manso, Rafael
2008-01-01
Paralysed skeletal muscle of rats with spinal cord injury (SCI) undergoes atrophy and a switch in gene expression pattern which leads to faster, more fatigable phenotypes. Olfactory ensheathing glia (OEG) transplants have been reported to promote axonal regeneration and to restore sensory-motor function in animals with SCI. We hypothesized that OEG transplants could attenuate skeletal muscle phenotypic deterioration and that this effect could underlie the functional recovery observed in behavioural tests. A variety of morphological, metabolic and molecular markers were assessed in soleus (SOL) and extensor digitorum longus (EDL) muscles of spinal cord transected (SCT), OEG-transplanted rats 8 months after the intervention and compared with non-transplanted SCT rats and sham-operated (without SCT) controls (C). A multivariate analysis encompassing all the parameters indicated that OEG-transplanted rats displayed skeletal muscle phenotypes intermediate between non-transplanted and sham-operated controls, but different from both. A high correlation was observed between behaviourally tested sensory-motor functional capacity and expression level of slow- and fast-twitch hind limb skeletal muscle phenotypic markers, particularly the histochemical glycerol-3-phosphate dehydrogenase activity (−0.843, P < 0.0001) and the fraction of variant 2s of the slow regulatory myosin light chain isoform (0.848, P < 0.0001) in SOL. Despite the mean overall effect of OEG transplants in patterning skeletal muscle protein expression towards normal, in 6 out of 9 animals they appeared insufficient to overcome fibre type switching and to support a consistent and generalized long-term maintenance of normal skeletal muscle characteristics. The interplay of OEG and exercise-mediated neurotrophic actions is a plausible mechanism underlying OEG transplantation effects on paralysed skeletal muscle. PMID:18372308
Sex-Based Differences in Skeletal Muscle Kinetics and Fiber-Type Composition
Haizlip, K. M.; Harrison, B. C.
2015-01-01
Previous studies have identified over 3,000 genes that are differentially expressed in male and female skeletal muscle. Here, we review the sex-based differences in skeletal muscle fiber composition, myosin heavy chain expression, contractile function, and the regulation of these physiological differences by thyroid hormone, estrogen, and testosterone. The findings presented lay the basis for the continued work needed to fully understand the skeletal muscle differences between males and females. PMID:25559153
What's So Special about FGF19-Unique Effects Reported on Skeletal Muscle Mass and Function.
Glass, David J
2017-08-01
In a recent study published in Nature Medicine, Benoit et al. (2017) reported unique effects of FGF19 on mouse skeletal muscle: FGF19 induced skeletal muscle hypertrophy and blocked muscle atrophy, acting via FGF receptors and ßKlotho, while a related FGF21 hormone was ineffective. Copyright © 2017 Elsevier Inc. All rights reserved.
Petchey, Louisa K; Risebro, Catherine A; Vieira, Joaquim M; Roberts, Tom; Bryson, John B; Greensmith, Linda; Lythgoe, Mark F; Riley, Paul R
2014-07-01
Correct regulation of troponin and myosin contractile protein gene isoforms is a critical determinant of cardiac and skeletal striated muscle development and function, with misexpression frequently associated with impaired contractility or disease. Here we reveal a novel requirement for Prospero-related homeobox factor 1 (Prox1) during mouse heart development in the direct transcriptional repression of the fast-twitch skeletal muscle genes troponin T3, troponin I2, and myosin light chain 1. A proportion of cardiac-specific Prox1 knockout mice survive beyond birth with hearts characterized by marked overexpression of fast-twitch genes and postnatal development of a fatal dilated cardiomyopathy. Through conditional knockout of Prox1 from skeletal muscle, we demonstrate a conserved requirement for Prox1 in the repression of troponin T3, troponin I2, and myosin light chain 1 between cardiac and slow-twitch skeletal muscle and establish Prox1 ablation as sufficient to cause a switch from a slow- to fast-twitch muscle phenotype. Our study identifies conserved roles for Prox1 between cardiac and skeletal muscle, specifically implicated in slow-twitch fiber-type specification, function, and cardiomyopathic disease.
Petchey, Louisa K.; Risebro, Catherine A.; Vieira, Joaquim M.; Roberts, Tom; Bryson, John B.; Greensmith, Linda; Lythgoe, Mark F.; Riley, Paul R.
2014-01-01
Correct regulation of troponin and myosin contractile protein gene isoforms is a critical determinant of cardiac and skeletal striated muscle development and function, with misexpression frequently associated with impaired contractility or disease. Here we reveal a novel requirement for Prospero-related homeobox factor 1 (Prox1) during mouse heart development in the direct transcriptional repression of the fast-twitch skeletal muscle genes troponin T3, troponin I2, and myosin light chain 1. A proportion of cardiac-specific Prox1 knockout mice survive beyond birth with hearts characterized by marked overexpression of fast-twitch genes and postnatal development of a fatal dilated cardiomyopathy. Through conditional knockout of Prox1 from skeletal muscle, we demonstrate a conserved requirement for Prox1 in the repression of troponin T3, troponin I2, and myosin light chain 1 between cardiac and slow-twitch skeletal muscle and establish Prox1 ablation as sufficient to cause a switch from a slow- to fast-twitch muscle phenotype. Our study identifies conserved roles for Prox1 between cardiac and skeletal muscle, specifically implicated in slow-twitch fiber-type specification, function, and cardiomyopathic disease. PMID:24938781
Carson, James A; Hardee, Justin P; VanderVeen, Brandon N
2016-06-01
While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle's metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cardiac troponin T and fast skeletal muscle denervation in ageing.
Xu, Zherong; Feng, Xin; Dong, Juan; Wang, Zhong-Min; Lee, Jingyun; Furdui, Cristina; Files, Daniel Clark; Beavers, Kristen M; Kritchevsky, Stephen; Milligan, Carolanne; Jin, Jian-Ping; Delbono, Osvaldo; Zhang, Tan
2017-10-01
Ageing skeletal muscle undergoes chronic denervation, and the neuromuscular junction (NMJ), the key structure that connects motor neuron nerves with muscle cells, shows increased defects with ageing. Previous studies in various species have shown that with ageing, type II fast-twitch skeletal muscle fibres show more atrophy and NMJ deterioration than type I slow-twitch fibres. However, how this process is regulated is largely unknown. A better understanding of the mechanisms regulating skeletal muscle fibre-type specific denervation at the NMJ could be critical to identifying novel treatments for sarcopenia. Cardiac troponin T (cTnT), the heart muscle-specific isoform of TnT, is a key component of the mechanisms of muscle contraction. It is expressed in skeletal muscle during early development, after acute sciatic nerve denervation, in various neuromuscular diseases and possibly in ageing muscle. Yet the subcellular localization and function of cTnT in skeletal muscle is largely unknown. Studies were carried out on isolated skeletal muscles from mice, vervet monkeys, and humans. Immunoblotting, immunoprecipitation, and mass spectrometry were used to analyse protein expression, real-time reverse transcription polymerase chain reaction was used to measure gene expression, immunofluorescence staining was performed for subcellular distribution assay of proteins, and electromyographic recording was used to analyse neurotransmission at the NMJ. Levels of cTnT expression in skeletal muscle increased with ageing in mice. In addition, cTnT was highly enriched at the NMJ region-but mainly in the fast-twitch, not the slow-twitch, muscle of old mice. We further found that the protein kinase A (PKA) RIα subunit was largely removed from, while PKA RIIα and RIIβ are enriched at, the NMJ-again, preferentially in fast-twitch but not slow-twitch muscle in old mice. Knocking down cTnT in fast skeletal muscle of old mice: (i) increased PKA RIα and reduced PKA RIIα at the NMJ; (ii) decreased the levels of gene expression of muscle denervation markers; and (iii) enhanced neurotransmission efficiency at NMJ. Cardiac troponin T at the NMJ region contributes to NMJ functional decline with ageing mainly in the fast-twitch skeletal muscle through interfering with PKA signalling. This knowledge could inform useful targets for prevention and therapy of age-related decline in muscle function. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.
Three-dimensional optical coherence micro-elastography of skeletal muscle tissue
Chin, Lixin; Kennedy, Brendan F.; Kennedy, Kelsey M.; Wijesinghe, Philip; Pinniger, Gavin J.; Terrill, Jessica R.; McLaughlin, Robert A.; Sampson, David D.
2014-01-01
In many muscle pathologies, impairment of skeletal muscle function is closely linked to changes in the mechanical properties of the muscle constituents. Optical coherence micro-elastography (OCME) uses optical coherence tomography (OCT) imaging of tissue under a quasi-static, compressive mechanical load to map variations in tissue mechanical properties on the micro-scale. We present the first study of OCME on skeletal muscle tissue. We show that this technique can resolve features of muscle tissue including fibers, fascicles and tendon, and can also detect necrotic lesions in skeletal muscle from the mdx mouse model of Duchenne muscular dystrophy. In many instances, OCME provides better or additional contrast complementary to that provided by OCT. These results suggest that OCME could provide new understanding and opportunity for assessment of skeletal muscle pathologies. PMID:25401023
Stem cells, angiogenesis and muscle healing: a potential role in massage therapies?
Best, Thomas M; Gharaibeh, Burhan; Huard, Johnny
2013-11-01
Skeletal muscle injuries are among the most common and frequently disabling injuries sustained by athletes. Repair of injured skeletal muscle is an area that continues to present a challenge for sports medicine clinicians and researchers due, in part, to complete muscle recovery being compromised by development of fibrosis leading to loss of function and susceptibility to re-injury. Injured skeletal muscle goes through a series of coordinated and interrelated phases of healing including degeneration, inflammation, regeneration and fibrosis. Muscle regeneration initiated shortly after injury can be limited by fibrosis which affects the degree of recovery and predisposes the muscle to reinjury. It has been demonstrated in animal studies that antifibrotic agents that inactivate transforming growth factor (TGF)-β1 have been effective at decreasing scar tissue formation. Several studies have also shown that vascular endothelial growth factor (VEGF) can increase the efficiency of skeletal muscle repair by increasing angiogenesis and, at the same time, reducing the accumulation of fibrosis. We have isolated and thoroughly characterised a population of skeletal muscle-derived stem cells (MDSCs) that enhance repair of damaged skeletal muscle fibres by directly differentiating into myofibres and secreting paracrine factors that promote tissue repair. Indeed, we have found that MDSCs transplanted into skeletal and cardiac muscles have been successful at repair probably because of their ability to secrete VEGF that works in a paracrine fashion. The application of these techniques to the study of sport-related muscle injuries awaits investigation. Other useful strategies to enhance skeletal muscle repair through increased vascularisation may include gene therapy, exercise, neuromuscular electrical stimulation and, potentially, massage therapy. Based on recent studies showing an accelerated recovery of muscle function from intense eccentric exercise through massage-based therapies, we believe that this treatment modality offers a practical and non-invasive form of therapy for skeletal muscle injuries. However, the biological mechanism(s) behind the beneficial effect of massage are still unclear and require further investigation using animal models and potentially randomised, human clinical studies.
Stem cells, angiogenesis and muscle healing: a potential role in massage therapies?
Best, Thomas M; Gharaibeh, Burhan; Huard, Johnny
2013-06-01
Skeletal muscle injuries are among the most common and frequently disabling injuries sustained by athletes. Repair of injured skeletal muscle is an area that continues to present a challenge for sports medicine clinicians and researchers due, in part, to complete muscle recovery being compromised by development of fibrosis leading to loss of function and susceptibility to re-injury. Injured skeletal muscle goes through a series of coordinated and interrelated phases of healing including degeneration, inflammation, regeneration and fibrosis. Muscle regeneration initiated shortly after injury can be limited by fibrosis which affects the degree of recovery and predisposes the muscle to reinjury. It has been demonstrated in animal studies that antifibrotic agents that inactivate transforming growth factor (TGF)-β1 have been effective at decreasing scar tissue formation. Several studies have also shown that vascular endothelial growth factor (VEGF) can increase the efficiency of skeletal muscle repair by increasing angiogenesis and, at the same time, reducing the accumulation of fibrosis. We have isolated and thoroughly characterised a population of skeletal muscle-derived stem cells (MDSCs) that enhance repair of damaged skeletal muscle fibres by directly differentiating into myofibres and secreting paracrine factors that promote tissue repair. Indeed, we have found that MDSCs transplanted into skeletal and cardiac muscles have been successful at repair probably because of their ability to secrete VEGF that works in a paracrine fashion. The application of these techniques to the study of sport-related muscle injuries awaits investigation. Other useful strategies to enhance skeletal muscle repair through increased vascularisation may include gene therapy, exercise, neuromuscular electrical stimulation and, potentially, massage therapy. Based on recent studies showing an accelerated recovery of muscle function from intense eccentric exercise through massage-based therapies, we believe that this treatment modality offers a practical and non-invasive form of therapy for skeletal muscle injuries. However, the biological mechanism(s) behind the beneficial effect of massage are still unclear and require further investigation using animal models and potentially randomised, human clinical studies.
Call, Jarrod A.; Chain, Kristopher H.; Martin, Kyle S.; Lira, Vitor A.; Okutsu, Mitsuharu; Zhang, Mei; Yan, Zhen
2015-01-01
Background Exercise training enhances extracellular superoxide dismutase (EcSOD) expression in skeletal muscle and elicits positive health outcomes in individuals with diabetes. The goal of this study was to determine if enhanced skeletal muscle expression of EcSOD is sufficient to mitigate streptozotocin (STZ)-induced diabetic cardiomyopathy (DCM). Methods and Results Exercise training promotes EcSOD expression in skeletal muscle and provides protection against DCM; however, it is not known if enhanced EcSOD expression in skeletal muscle plays a functional role in this protection. Here, we show that skeletal muscle-specific EcSOD transgenic mice (TG) are protected from cardiac hypertrophy, fibrosis and dysfunction under the condition of type-1 diabetes induced by STZ injection. We also show that both exercise training and muscle-specific transgenic expression of EcSOD result in elevated EcSOD protein in the blood and heart without increased transcription in the heart, suggesting enhanced expression of EcSOD from skeletal muscle redistributes to the heart. Importantly, cardiac tissue in TG mice displayed significantly reduced oxidative stress, aberrant cell signaling and inflammatory cytokine expression compared with wild type mice under the same diabetic condition. Conclusions Enhanced expression of EcSOD in skeletal muscle is sufficient to mitigate STZ-induced DCM through attenuation of oxidative stress, aberrant cell signaling and inflammation, suggesting a cross-organ mechanism by which exercise training improves cardiac function in diabetes. PMID:25504759
Comprehensive Analysis of Tropomyosin Isoforms in Skeletal Muscles by Top-down Proteomics
Jin, Yutong; Peng, Ying; Lin, Ziqing; Chen, Yi-Chen; Wei, Liming; Hacker, Timothy A.; Larsson, Lars; Ge, Ying
2016-01-01
Mammalian skeletal muscles are heterogeneous in nature and are capable of performing various functions. Tropomyosin (Tpm) is a major component of the thin filament in skeletal muscles and plays an important role in controlling muscle contraction and relaxation. Tpm is known to consist of multiple isoforms resulting from different encoding genes and alternative splicing, along with post-translational modifications. However, a systematic characterization of Tpm isoforms in skeletal muscles is still lacking. Therefore, we employed top-down mass spectrometry (MS) to identify and characterize Tpm isoforms present in different skeletal muscles from multiple species, including swine, rat, and human. Our study revealed that Tpm1.1 and Tpm2.2 are the two major Tpm isoforms in swine and rat skeletal muscles, whereas Tpm1.1, Tpm2.2, and Tpm3.12 are present in human skeletal muscles. Tandem MS was utilized to identify the sequences of the major Tpm isoforms. Furthermore, quantitative analysis revealed muscle-type specific differences in the abundance of un-modified and modified Tpm isoforms in rat and human skeletal muscles. This study represents the first systematic investigation of Tpm isoforms in skeletal muscles, which not only demonstrates the capabilities of top-down MS for the comprehensive characterization of skeletal myofilament proteins but also provides the basis for further studies on these Tpm isoforms in muscle-related diseases. PMID:27090236
Kackstein, Katharina; Teren, Andrej; Matsumoto, Yasuharu; Mangner, Norman; Möbius-Winkler, Sven; Linke, Axel; Schuler, Gerhard; Punkt, Karla; Adams, Volker
2013-05-01
Activation of the renin-angiotensin-aldosterone system and increased levels of angiotensin II (Ang-II) occurs in numerous cardiovascular diseases such as chronic heart failure (CHF). Another hallmark in CHF is a reduced exercise tolerance with impaired skeletal muscle function. The aim of this study was to investigate in an animal model the impact of Ang-II on skeletal muscle function and concomitant molecular alterations. Mice were infused with Ang-II for 4 weeks. Subsequently, skeletal muscle function of the soleus muscle was assessed. Expression of selected proteins was quantified by qRT-PCR and Western blot. Infusion of Ang-II resulted in a 33% reduction of contractile force, despite a lack of changes in muscle weight. At the molecular level an increased expression of NAD(P)H oxidase and a reduced expression of Sirt1, PGC-1α and IGF-1 were noticed. No change was evident for the ubiquitin E3-ligases MuRF1 and MafBx and α-sarcomeric actin expression. Cytophotometrical analysis of the soleus muscle revealed a metabolic shift toward a glycolytic profile. This study provides direct evidence of Ang-II-mediated, metabolic deterioration of skeletal muscle function despite preserved muscle mass. One may speculate that the Ang-II-mediated loss of muscle force is due to an activation of NAD(P)H oxidase expression and a subsequent ROS-induced down regulation of IGF-1, PGC-1α and Sirt1. Copyright © 2012 Elsevier GmbH. All rights reserved.
Suga, Tadashi; Kinugawa, Shintaro; Takada, Shingo; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Masaki, Yoshihiro; Furihata, Takaaki; Takahashi, Masashige; Sobirin, Mochamad A; Ono, Taisuke; Hirabayashi, Kagami; Yokota, Takashi; Tanaka, Shinya; Okita, Koichi; Tsutsui, Hiroyuki
2014-01-01
Exercise training (EX) and diet restriction (DR) are essential for effective management of obesity and insulin resistance in diabetes mellitus. However, whether these interventions ameliorate the limited exercise capacity and impaired skeletal muscle function in diabetes patients remains unexplored. Therefore, we investigated the effects of EX and/or DR on exercise capacity and skeletal muscle function in diet-induced diabetic mice. Male C57BL/6J mice that were fed a high-fat diet (HFD) for 8 weeks were randomly assigned for an additional 4 weeks to 4 groups: control, EX, DR, and EX+DR. A lean group fed with a normal diet was also studied. Obesity and insulin resistance induced by a HFD were significantly but partially improved by EX or DR and completely reversed by EX+DR. Although exercise capacity decreased significantly with HFD compared with normal diet, it partially improved with EX and DR and completely reversed with EX+DR. In parallel, the impaired mitochondrial function and enhanced oxidative stress in the skeletal muscle caused by the HFD were normalized only by EX+DR. Although obesity and insulin resistance were completely reversed by DR with an insulin-sensitizing drug or a long-term intervention, the exercise capacity and skeletal muscle function could not be normalized. Therefore, improvement in impaired skeletal muscle function, rather than obesity and insulin resistance, may be an important therapeutic target for normalization of the limited exercise capacity in diabetes. In conclusion, a comprehensive lifestyle therapy of exercise and diet normalizes the limited exercise capacity and impaired muscle function in diabetes mellitus.
Lifting the nebula: novel insights into skeletal muscle contractility.
Ottenheijm, Coen A C; Granzier, Henk
2010-10-01
Nebulin is a giant protein and a constituent of the skeletal muscle sarcomere. The name of this protein refers to its unknown (i.e., nebulous) function. However, recent rapid advances reveal that nebulin plays important roles in the regulation of muscle contraction. When these functions of nebulin are compromised, muscle weakness ensues, as is the case in patients with nemaline myopathy.
Regulatory circuitry of TWEAK-Fn14 system and PGC-1α in skeletal muscle atrophy program.
Hindi, Sajedah M; Mishra, Vivek; Bhatnagar, Shephali; Tajrishi, Marjan M; Ogura, Yuji; Yan, Zhen; Burkly, Linda C; Zheng, Timothy S; Kumar, Ashok
2014-03-01
Skeletal muscle wasting attributed to inactivity has significant adverse functional consequences. Accumulating evidence suggests that peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and TNF-like weak inducer of apoptosis (TWEAK)-Fn14 system are key regulators of skeletal muscle mass in various catabolic states. While the activation of TWEAK-Fn14 signaling causes muscle wasting, PGC-1α preserves muscle mass in several conditions, including functional denervation and aging. However, it remains unknown whether there is any regulatory interaction between PGC-1α and TWEAK-Fn14 system during muscle atrophy. Here we demonstrate that TWEAK significantly reduces the levels of PGC-1α and mitochondrial content (∼50%) in skeletal muscle. Levels of PGC-1α are significantly increased in skeletal muscle of TWEAK-knockout (KO) and Fn14-KO mice compared to wild-type mice on denervation. Transgenic (Tg) overexpression of PGC-1α inhibited progressive muscle wasting in TWEAK-Tg mice. PGC-1α inhibited the TWEAK-induced activation of NF-κB (∼50%) and dramatically reduced (∼90%) the expression of atrogenes such as MAFbx and MuRF1. Intriguingly, muscle-specific overexpression of PGC-1α also prevented the inducible expression of Fn14 in denervated skeletal muscle. Collectively, our study demonstrates that TWEAK induces muscle atrophy through repressing the levels of PGC-1α. Overexpression of PGC-1α not only blocks the TWEAK-induced atrophy program but also diminishes the expression of Fn14 in denervated skeletal muscle.
Carson, James A.; Hardee, Justin P.; VanderVeen, Brandon N.
2015-01-01
While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle’s metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function regulation, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed. PMID:26593326
Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting
Breitbart, Astrid; Auger-Messier, Mannix; Molkentin, Jeffery D.
2011-01-01
A significant proportion of heart failure patients develop skeletal muscle wasting and cardiac cachexia, which is associated with a very poor prognosis. Recently, myostatin, a cytokine from the transforming growth factor-β (TGF-β) family and a known strong inhibitor of skeletal muscle growth, has been identified as a direct mediator of skeletal muscle atrophy in mice with heart failure. Myostatin is mainly expressed in skeletal muscle, although basal expression is also detectable in heart and adipose tissue. During pathological loading of the heart, the myocardium produces and secretes myostatin into the circulation where it inhibits skeletal muscle growth. Thus, genetic elimination of myostatin from the heart reduces skeletal muscle atrophy in mice with heart failure, whereas transgenic overexpression of myostatin in the heart is capable of inducing muscle wasting. In addition to its endocrine action on skeletal muscle, cardiac myostatin production also modestly inhibits cardiomyocyte growth under certain circumstances, as well as induces cardiac fibrosis and alterations in ventricular function. Interestingly, heart failure patients show elevated myostatin levels in their serum. To therapeutically influence skeletal muscle wasting, direct inhibition of myostatin was shown to positively impact skeletal muscle mass in heart failure, suggesting a promising strategy for the treatment of cardiac cachexia in the future. PMID:21421824
USDA-ARS?s Scientific Manuscript database
The long-term impact of burn trauma on skeletal muscle bioenergetics remains unknown. Here, we determined respiratory capacity and function of skeletal muscle mitochondria in healthy individuals and in burn victims for up to two years post-injury. Biopsies were collected from the m. vastus lateralis...
The regulation of skeletal muscle fiber-type composition by betaine is associated with NFATc1/MyoD.
Du, Jingjing; Shen, Linyuan; Zhang, Peiwen; Tan, Zhendong; Cheng, Xiao; Luo, Jia; Zhao, Xue; Yang, Qiong; Gu, Hao; Jiang, An'an; Ma, Jideng; Tang, Qianzi; Jin, Long; Shuai, Surong; Li, Mingzhou; Jiang, Yanzhi; Tang, Guoqing; Bai, Lin; Li, Xuewei; Wang, Jinyong; Zhang, Shunhua; Zhu, Li
2018-06-06
Increasing evidence indicates that muscular dysfunction or alterations in skeletal muscle fiber-type composition not only are involved in muscle metabolism and function but also can limit functional capacity. Therefore, understanding the mechanisms regulating key events during skeletal myogenesis is necessary. Betaine is a naturally occurring component of commonly eaten foods. Here, we showed that 10 mM betaine supplementation in vitro significantly repressed myoblast proliferation and enhanced myoblast differentiation. This effect can be mediated by regulation of miR-29b-3p. Further analysis showed that betaine supplementation in vitro regulated skeletal muscle fiber-type composition through the induction of NFATc1 and the negative regulation of MyoD expression. Furthermore, mice fed with 10 mM betaine in water for 133 days showed no impairment in overall health. Consistently, betaine supplementation increased muscle mass, promoted muscle formation, and modulated the ratio of fiber types in skeletal muscle in vivo. These findings shed light on the diverse biological functions of betaine and indicate that betaine supplementation may lead to new therapies for diseases such as muscular dystrophy or other diseases related to muscle dysfunction. Betaine supplementation inhibits proliferation and promotes differentiation of C2C12 myoblasts. Betaine supplementation regulates fast to slow muscle fiber-type conversion and is associated with NFATc1/MyoD. Betaine supplementation enhances skeletal myogenesis in vivo. Betaine supplementation does not impair health of mice.
Skeletal Muscle Pathophysiology: The Emerging Role of Spermine Oxidase and Spermidine.
Cervelli, Manuela; Leonetti, Alessia; Duranti, Guglielmo; Sabatini, Stefania; Ceci, Roberta; Mariottini, Paolo
2018-02-14
Skeletal muscle comprises approximately 40% of the total body mass. Preserving muscle health and function is essential for the entire body in order to counteract chronic diseases such as type II diabetes, cardiovascular diseases, and cancer. Prolonged physical inactivity, particularly among the elderly, causes muscle atrophy, a pathological state with adverse outcomes such as poor quality of life, physical disability, and high mortality. In murine skeletal muscle C2C12 cells, increased expression of the spermine oxidase (SMOX) enzyme has been found during cell differentiation. Notably, SMOX overexpression increases muscle fiber size, while SMOX reduction was enough to induce muscle atrophy in multiple murine models. Of note, the SMOX reaction product spermidine appears to be involved in skeletal muscle atrophy/hypertrophy. It is effective in reactivating autophagy, ameliorating the myopathic defects of collagen VI-null mice. Moreover, spermidine treatment, if combined with exercise, can affect D-gal-induced aging-related skeletal muscle atrophy. This review hypothesizes a role for SMOX during skeletal muscle differentiation and outlines its role and that of spermidine in muscle atrophy. The identification of new molecular pathways involved in the maintenance of skeletal muscle health could be beneficial in developing novel therapeutic lead compounds to treat muscle atrophy.
Papa, Evan V; Dong, Xiaoyang; Hassan, Mahdi
2017-01-01
Human aging results in a variety of changes to skeletal muscle. Sarcopenia is the age-associated loss of muscle mass and is one of the main contributors to musculoskeletal impairments in the elderly. Previous research has demonstrated that resistance training can attenuate skeletal muscle function deficits in older adults, however few articles have focused on the effects of resistance training on functional mobility. The purpose of this systematic review was to 1) present the current state of literature regarding the effects of resistance training on functional mobility outcomes for older adults with skeletal muscle function deficits and 2) provide clinicians with practical guidelines that can be used with seniors during resistance training, or to encourage exercise. We set forth evidence that resistance training can attenuate age-related changes in functional mobility, including improvements in gait speed, static and dynamic balance, and fall risk reduction. Older adults should be encouraged to participate in progressive resistance training activities, and should be admonished to move along a continuum of exercise from immobility, toward the recommended daily amounts of activity.
Zabielski, Piotr; Lanza, Ian R.; Gopala, Srinivas; Holtz Heppelmann, Carrie J.; Bergen, H. Robert; Dasari, Surendra
2016-01-01
Insulin plays pivotal role in cellular fuel metabolism in skeletal muscle. Despite being the primary site of energy metabolism, the underlying mechanism on how insulin deficiency deranges skeletal muscle mitochondrial physiology remains to be fully understood. Here we report an important link between altered skeletal muscle proteome homeostasis and mitochondrial physiology during insulin deficiency. Deprivation of insulin in streptozotocin-induced diabetic mice decreased mitochondrial ATP production, reduced coupling and phosphorylation efficiency, and increased oxidant emission in skeletal muscle. Proteomic survey revealed that the mitochondrial derangements during insulin deficiency were related to increased mitochondrial protein degradation and decreased protein synthesis, resulting in reduced abundance of proteins involved in mitochondrial respiration and β-oxidation. However, a paradoxical upregulation of proteins involved in cellular uptake of fatty acids triggered an accumulation of incomplete fatty acid oxidation products in skeletal muscle. These data implicate a mismatch of β-oxidation and fatty acid uptake as a mechanism leading to increased oxidative stress in diabetes. This notion was supported by elevated oxidative stress in cultured myotubes exposed to palmitate in the presence of a β-oxidation inhibitor. Together, these results indicate that insulin deficiency alters the balance of proteins involved in fatty acid transport and oxidation in skeletal muscle, leading to impaired mitochondrial function and increased oxidative stress. PMID:26718503
Substance P and neurokinin A metabolism by cultured human skeletal muscle myocytes and fibroblasts.
Russell, J S; Chi, H; Lantry, L E; Stephens, R E; Ward, P E
1996-01-01
A recent study determined that cultured human skeletal muscle adult myoblasts, myotubes, and fibroblasts degraded angiotensins and kinins via neutral endopeptidase-24.11 (NEP-24.11: EC 3.4.24.11) and aminopeptidase N (APN: EC 3.4.11.2). Due to the possible importance of other peptides to skeletal muscle blood flow and function, the present study looked specifically at the metabolism of the neurokinins substance P (SP) and neurokinin A (NKA) by skeletal muscle peptidases. The results show that SP is degraded not only by NEP-24.11, but also sequentially by dipeptidyl(amino)peptidase IV (DAP IV: EC 3.4.14.5)/APN. NKA is unaffected by DAP IV but is metabolized by NEP-24.11 and APN. NEP-24.11 was inhibited by phosphoramidon (IC50 = 80 nM), thiorphan and ZINCOV, DAP IV by diprotin A (IC50 = 8 microM), and APN by amastatin (IC50 = 50 nM) and bestatin (IC50 = 100 microM). Skeletal muscle myocyte and fibroblast metabolism of SP and NKA may regulate local skeletal muscle vascular and extravascular functions including SP- and NKA-mediated nerve-induced vasodilation. Inhibition of both NEP-24.11 and DAP IV/APN may increase skeletal muscle blood flow and decrease peripheral vascular resistance via potentiation of local neurokinin levels.
Hwee, Darren T; Kennedy, Adam R; Hartman, James J; Ryans, Julie; Durham, Nickie; Malik, Fady I; Jasper, Jeffrey R
2015-04-01
Heart failure-mediated skeletal myopathy, which is characterized by muscle atrophy and muscle metabolism dysfunction, often manifests as dyspnea and limb muscle fatigue. We have previously demonstrated that increasing Ca(2+) sensitivity of the sarcomere by a small-molecule fast skeletal troponin activator improves skeletal muscle force and exercise performance in healthy rats and models of neuromuscular disease. The objective of this study was to investigate the effect of a novel fast skeletal troponin activator, CK-2127107 (2-aminoalkyl-5-N-heteroarylpyrimidine), on skeletal muscle function and exercise performance in rats exhibiting heart failure-mediated skeletal myopathy. Rats underwent a left anterior descending coronary artery ligation, resulting in myocardial infarction and a progressive decline in cardiac function [left anterior descending coronary artery heart failure (LAD-HF)]. Compared with sham-operated control rats, LAD-HF rat hindlimb and diaphragm muscles exhibited significant muscle atrophy. Fatigability was increased during repeated in situ isokinetic plantar flexor muscle contractions. CK-2127107 produced a leftward shift in the force-Ca(2+) relationship of skinned, single diaphragm, and extensor digitorum longus fibers. Exercise performance, which was assessed by rotarod running, was lower in vehicle-treated LAD-HF rats than in sham controls (116 ± 22 versus 193 ± 31 seconds, respectively; mean ± S.E.M.; P = 0.04). In the LAD-HF rats, a single oral dose of CK-2127107 (10 mg/kg p.o.) increased running time compared with vehicle treatment (283 ± 47 versus 116 ± 22 seconds; P = 0.0004). In summary, CK-2127107 substantially increases exercise performance in this heart failure model, suggesting that modulation of skeletal muscle function by a fast skeletal troponin activator may be a useful therapeutic in heart failure-associated exercise intolerance. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Renin-angiotensin system: an old player with novel functions in skeletal muscle.
Cabello-Verrugio, Claudio; Morales, María Gabriela; Rivera, Juan Carlos; Cabrera, Daniel; Simon, Felipe
2015-05-01
Skeletal muscle is a tissue that shows the most plasticity in the body; it can change in response to physiological and pathological stimuli. Among the diseases that affect skeletal muscle are myopathy-associated fibrosis, insulin resistance, and muscle atrophy. A common factor in these pathologies is the participation of the renin-angiotensin system (RAS). This system can be functionally separated into the classical and nonclassical RAS axis. The main components of the classical RAS pathway are angiotensin-converting enzyme (ACE), angiotensin II (Ang-II), and Ang-II receptors (AT receptors), whereas the nonclassical axis is composed of ACE2, angiotensin 1-7 [Ang (1-7)], and the Mas receptor. Hyperactivity of the classical axis in skeletal muscle has been associated with insulin resistance, atrophy, and fibrosis. In contrast, current evidence supports the action of the nonclassical RAS as a counter-regulator axis of the classical RAS pathway in skeletal muscle. In this review, we describe the mechanisms involved in the pathological effects of the classical RAS, advances in the use of pharmacological molecules to inhibit this axis, and the beneficial effects of stimulation of the nonclassical RAS pathway on insulin resistance, atrophy, and fibrosis in skeletal muscle. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hsu-Pin; Hsu, Shu-Yuan; Wu, Wen-Ai
Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB{sup +/−} mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species.more » The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity.« less
Harimoto, N; Yoshizumi, T; Izumi, T; Motomura, T; Harada, N; Itoh, S; Ikegami, T; Uchiyama, H; Soejima, Y; Nishie, A; Kamishima, T; Kusaba, R; Shirabe, K; Maehara, Y
2017-11-01
Sarcopenia is an independent predictor of death after living-donor liver transplantation (LDLT). However, the ability of the Asian Working Group for Sarcopenia criteria for sarcopenia (defined as reduced skeletal muscle mass plus low muscle strength) to predict surgical outcomes in patients who have undergone LDLT has not been determined. This study prospectively enrolled 366 patients who underwent LDLT at Kyushu University Hospital. Skeletal muscle area (determined by computed tomography), hand-grip strength, and gait speed were measured in 102 patients before LDLT. We investigated the relationship between sarcopenia and surgical outcomes after LDLT performed in three time periods. The number of patients with lower skeletal muscle area has increased to 52.9% in recent years. The incidence of sarcopenia according to the Asian Working Group for Sarcopenia criteria was 23.5% (24/102). Patients with sarcopenia (defined by skeletal muscle area and functional parameters) had significantly lower skeletal muscle area and weaker hand-grip strength than did those without sarcopenia. Compared with non-sarcopenic patients, patients with sarcopenia also had significantly worse liver function, greater estimated blood loss, greater incidence of postoperative complications of Clavien-Dindo grade IV or greater (including amount of ascites on postoperative day 14, total bilirubin on postoperative day 14, and postoperative sepsis), and longer postoperative hospital stay. Multiple logistic regression analysis revealed sarcopenia as a significant predictor of 6-month mortality. The combination of skeletal muscle mass and function can predict surgical outcomes in LDLT patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Randolph, Matthew E.; Pavlath, Grace K.
2015-01-01
The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547
Woodall, Benjamin P; Woodall, Meryl C; Luongo, Timothy S; Grisanti, Laurel A; Tilley, Douglas G; Elrod, John W; Koch, Walter J
2016-10-14
GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2 fl/fl ) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2 fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β 2 -adrenergic receptor (β 2 AR) agonist, was significantly enhanced in MLC-Cre:GRK2 fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β 2 AR-induced hypertrophy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis.
Goh, Qingnian; Dearth, Christopher L; Corbett, Jacob T; Pierre, Philippe; Chadee, Deborah N; Pizza, Francis X
2015-02-15
We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. Copyright © 2014 Elsevier Inc. All rights reserved.
Intercellular Adhesion Molecule-1 Expression by Skeletal Muscle Cells Augments Myogenesis
Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.
2014-01-01
We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. PMID:25281303
Ryall, James G; Gregorevic, Paul; Plant, David R; Sillence, Martin N; Lynch, Gordon S
2002-12-01
Potential treatments for skeletal muscle wasting and weakness ideally possess both anabolic and ergogenic properties. Although the beta(2)-adrenoceptor agonist clenbuterol has well-characterized effects on skeletal muscle, less is known about the therapeutic potential of the related beta(2)-adrenoceptor agonist fenoterol. We administered an equimolar dose of either clenbuterol or fenoterol to rats for 4 wk to compare their effects on skeletal muscle and tested the hypothesis that fenoterol would produce more powerful anabolic and ergogenic effects. Clenbuterol treatment increased fiber cross-sectional area (CSA) by 6% and maximal isometric force (P(o)) by 20% in extensor digitorum longus (EDL) muscles, whereas fiber CSA in soleus muscles decreased by 3% and P(o) was unchanged, compared with untreated controls. In the EDL muscles, fenoterol treatment increased fiber CSA by 20% and increased P(o) by 12% above values achieved after clenbuterol treatment. Soleus muscles of fenoterol-treated rats exhibited a 13% increase in fiber CSA and a 17% increase in P(o) above that of clenbuterol-treated rats. These data indicate that fenoterol has greater effects on the functional properties of rat skeletal muscles than clenbuterol.
A focus on extracellular Ca2+ entry into skeletal muscle
Cho, Chung-Hyun; Woo, Jin Seok; Perez, Claudio F; Lee, Eun Hui
2017-01-01
The main task of skeletal muscle is contraction and relaxation for body movement and posture maintenance. During contraction and relaxation, Ca2+ in the cytosol has a critical role in activating and deactivating a series of contractile proteins. In skeletal muscle, the cytosolic Ca2+ level is mainly determined by Ca2+ movements between the cytosol and the sarcoplasmic reticulum. The importance of Ca2+ entry from extracellular spaces to the cytosol has gained significant attention over the past decade. Store-operated Ca2+ entry with a low amplitude and relatively slow kinetics is a main extracellular Ca2+ entryway into skeletal muscle. Herein, recent studies on extracellular Ca2+ entry into skeletal muscle are reviewed along with descriptions of the proteins that are related to extracellular Ca2+ entry and their influences on skeletal muscle function and disease. PMID:28912570
Tarpey, Michael D; Amorese, Adam J; Balestrieri, Nicholas P; Ryan, Terence E; Schmidt, Cameron A; McClung, Joseph M; Spangenburg, Espen E
2018-04-17
The ability to assess skeletal muscle function and delineate regulatory mechanisms is essential to uncovering therapeutic approaches that preserve functional independence in a disease state. Skeletal muscle provides distinct experimental challenges due to inherent differences across muscle groups, including fiber type and size that may limit experimental approaches. The flexor digitorum brevis (FDB) possesses numerous properties that offer the investigator a high degree of experimental flexibility to address specific hypotheses. To date, surprisingly few studies have taken advantage of the FDB to investigate mechanisms regulating skeletal muscle function. The purpose of this study was to characterize and experimentally demonstrate the value of the FDB muscle for scientific investigations. First, we characterized the FDB phenotype and provide reference comparisons to skeletal muscles commonly used in the field. We developed approaches allowing for experimental assessment of force production, in vitro and in vivo microscopy, and mitochondrial respiration to demonstrate the versatility of the FDB. As proof-of principle, we performed experiments to alter force production or mitochondrial respiration to validate the flexibility the FDB affords the investigator. The FDB is made up of small predominantly type IIa and IIx fibers that collectively produce less peak isometric force than the extensor digitorum longus (EDL) or soleus muscles, but demonstrates a greater fatigue resistance than the EDL. Unlike the other muscles, inherent properties of the FDB muscle make it amenable to multiple in vitro- and in vivo-based microscopy methods. Due to its anatomical location, the FDB can be used in cardiotoxin-induced muscle injury protocols and is amenable to electroporation of cDNA with a high degree of efficiency allowing for an effective means of genetic manipulation. Using a novel approach, we also demonstrate methods for assessing mitochondrial respiration in the FDB, which are comparable to the commonly used gastrocnemius muscle. As proof of principle, short-term overexpression of Pgc1α in the FDB increased mitochondrial respiration rates. The results highlight the experimental flexibility afforded the investigator by using the FDB muscle to assess mechanisms that regulate skeletal muscle function.
Kim, Kyoung Min; Jang, Hak Chul; Lim, Soo
2016-01-01
Aging processes are inevitably accompanied by structural and functional changes in vital organs. Skeletal muscle, which accounts for 40% of total body weight, deteriorates quantitatively and qualitatively with aging. Skeletal muscle is known to play diverse crucial physical and metabolic roles in humans. Sarcopenia is a condition characterized by significant loss of muscle mass and strength. It is related to subsequent frailty and instability in the elderly population. Because muscle tissue is involved in multiple functions, sarcopenia is closely related to various adverse health outcomes. Along with increasing recognition of the clinical importance of sarcopenia, several international study groups have recently released their consensus on the definition and diagnosis of sarcopenia. In practical terms, various skeletal muscle mass indices have been suggested for assessing sarcopenia: appendicular skeletal muscle mass adjusted for height squared, weight, or body mass index. A different prevalence and different clinical implications of sarcopenia are highlighted by each definition. The discordances among these indices have emerged as an issue in defining sarcopenia, and a unifying definition for sarcopenia has not yet been attained. This review aims to compare these three operational definitions and to introduce an optimal skeletal muscle mass index that reflects the clinical implications of sarcopenia from a metabolic perspective. PMID:27334763
Targeting mitochondrial function and proteostasis to mitigate dynapenia.
Musci, Robert V; Hamilton, Karyn L; Miller, Benjamin F
2018-01-01
Traditionally, interventions to treat skeletal muscle aging have largely targeted sarcopenia-the age-related loss of skeletal muscle mass. Dynapenia refers to the age-related loss in skeletal muscle function due to factors outside of muscle mass, which helps to inform treatment strategies for aging skeletal muscle. There is evidence that mechanisms to maintain protein homeostasis and proteostasis, deteriorate with age. One key mechanism to maintain proteostasis is protein turnover, which is an energetically costly process. When there is a mismatch between cellular energy demands and energy provision, inelastic processes related to metabolism are maintained, but there is competition for the remaining energy between the elastic processes of somatic maintenance and growth. With aging, mitochondrial dysfunction reduces ATP generation capacity, constraining the instantaneous supply of energy, thus compromising growth and somatic maintenance processes. Further, with age the need for somatic maintenance increases because of the accumulation of protein damage. In this review, we highlight the significant role mitochondria have in maintaining skeletal muscle proteostasis through increased energy provision, protein turnover, and substrate flux. In addition, we provide evidence that improving mitochondrial function could promote a cellular environment that is conducive to somatic maintenance, and consequently for mitigating dynapenia. Finally, we highlight interventions, such as aerobic exercise, that could be used to improve mitochondrial function and improve outcomes related to dynapenia.
PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle.
Hatazawa, Yukino; Tadaishi, Miki; Nagaike, Yuta; Morita, Akihito; Ogawa, Yoshihiro; Ezaki, Osamu; Takai-Igarashi, Takako; Kitaura, Yasuyuki; Shimomura, Yoshiharu; Kamei, Yasutomi; Miura, Shinji
2014-01-01
Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α) is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA) metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT) 2, branched-chain α-keto acid dehydrogenase (BCKDH), which catabolize BCAA. The expression of BCKDH kinase (BCKDK), which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.
PGC-1α-Mediated Branched-Chain Amino Acid Metabolism in the Skeletal Muscle
Nagaike, Yuta; Morita, Akihito; Ogawa, Yoshihiro; Ezaki, Osamu; Takai-Igarashi, Takako; Kitaura, Yasuyuki; Shimomura, Yoshiharu; Kamei, Yasutomi; Miura, Shinji
2014-01-01
Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α) is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA) metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT) 2, branched-chain α-keto acid dehydrogenase (BCKDH), which catabolize BCAA. The expression of BCKDH kinase (BCKDK), which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism. PMID:24638054
Smith, Aaron G; Muscat, George E O
2005-10-01
Skeletal muscle is a major mass peripheral tissue that accounts for approximately 40% of the total body mass and a major player in energy balance. It accounts for >30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the patho-physiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidemia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease.
NASA Technical Reports Server (NTRS)
Witzmann, F. A.; Kim, D. H.; Fitts, R. H.
1982-01-01
The present study was undertaken to characterize the time course and extent of recovery in the isometric and isotonic contractile properties of fast and slow skeletal muscle following 6 wk of hindlimb immobilization. Female Sprague-Dawley rats were randomly assigned to an immobilized group or a control group. The results of the study show that fast and slow skeletal muscles possess the ability to completely recover normal contractile function following 6 wk of hindlimb immobilization. The rate of recovery is dependent on the fiber type composition of the affected muscle.
Jiang, H; Ge, X
2014-01-01
Growth hormone, also called somatotropin (ST), is a polypeptide hormone produced by the anterior pituitary. The major functions of GH include stimulating bone and skeletal muscle growth, lipolysis, milk production, and expression of the IGF-I gene in the liver. Based on these functions, recombinant bovine ST (bST) and recombinant porcine ST (pST) have been used to improve milk production in dairy cows and lean tissue growth in pigs, respectively. However, despite these applications, the mechanisms of action of GH are not fully understood. Indeed, there has been a lot of controversy over the role of liver-derived circulating IGF-I and locally produced IGF-I in mediating the growth-stimulatory effect of GH during the last 15 yr. It is in this context that we have conducted studies to further understand how GH stimulates skeletal muscle growth in cattle. Our results do not support a role of skeletal muscle-derived IGF-I in GH-stimulated skeletal muscle growth in cattle. Our results indicate that GH stimulates skeletal muscle growth in cattle, in part, by stimulating protein synthesis in muscle through a GH receptor-mediated, IGF-I-independent mechanism. In this review, besides discussing these results, we also argue that liver-derived circulating IGF-I should be still considered as the major mechanism that mediates the growth-stimulatory effect of GH on skeletal muscle in cattle and other domestic animals.
Corona, Benjamin T.; Ward, Catherine L.; Baker, Hannah B.; Walters, Thomas J.
2014-01-01
The frank loss of a large volume of skeletal muscle (i.e., volumetric muscle loss [VML]) can lead to functional debilitation and presents a significant problem to civilian and military medicine. Current clinical treatment for VML involves the use of free muscle flaps and physical rehabilitation; however, neither are effective in promoting regeneration of skeletal muscle to replace the tissue that was lost. Toward this end, skeletal muscle tissue engineering therapies have recently shown great promise in offering an unprecedented treatment option for VML. In the current study, we further extend our recent progress (Machingal et al., 2011, Tissue Eng; Corona et al., 2012, Tissue Eng) in the development of tissue engineered muscle repair (TEMR) constructs (i.e., muscle-derived cells [MDCs] seeded on a bladder acellular matrix (BAM) preconditioned with uniaxial mechanical strain) for the treatment of VML. TEMR constructs were implanted into a VML defect in a tibialis anterior (TA) muscle of Lewis rats and observed up to 12 weeks postinjury. The salient findings of the study were (1) TEMR constructs exhibited a highly variable capacity to restore in vivo function of injured TA muscles, wherein TEMR-positive responders (n=6) promoted an ≈61% improvement, but negative responders (n=7) resulted in no improvement compared to nonrepaired controls, (2) TEMR-positive and -negative responders exhibited differential immune responses that may underlie these variant responses, (3) BAM scaffolds (n=7) without cells promoted an ≈26% functional improvement compared to uninjured muscles, (4) TEMR-positive responders promoted muscle fiber regeneration within the initial defect area, while BAM scaffolds did so only sparingly. These findings indicate that TEMR constructs can improve the in vivo functional capacity of the injured musculature at least, in part, by promoting generation of functional skeletal muscle fibers. In short, the degree of functional recovery observed following TEMR implantation (BAM+MDCs) was 2.3×-fold greater than that observed following implantation of BAM alone. As such, this finding further underscores the potential benefits of including a cellular component in the tissue engineering strategy for VML injury. PMID:24066899
Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle
Goodyear, Laurie J.
2014-01-01
Exercise is a well-established tool to prevent and combat type 2 diabetes. Exercise improves whole body metabolic health in people with type 2 diabetes, and adaptations to skeletal muscle are essential for this improvement. An acute bout of exercise increases skeletal muscle glucose uptake, while chronic exercise training improves mitochondrial function, increases mitochondrial biogenesis, and increases the expression of glucose transporter proteins and numerous metabolic genes. This review focuses on the molecular mechanisms that mediate the effects of exercise to increase glucose uptake in skeletal muscle. PMID:25434013
Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3
USDA-ARS?s Scientific Manuscript database
We have previously reported that the expression of mitochondrial deacetylase SIRT3 is high in the slow oxidative muscle and that the expression of muscle SIRT3 level is increased by dietary restriction or exercise training. To explore the function of SIRT3 in skeletal muscle, we report here the esta...
Precocious glucocorticoid exposure reduces skeletal muscle satellite cells in the fetal rat
USDA-ARS?s Scientific Manuscript database
Perinatal skeletal muscle growth rates are a function of protein and myonuclear accretion. Precocious exposure of the fetus to glucocorticoids (GLC) in utero impairs muscle growth. Reduced muscle protein synthesis rates contribute to this response, but the consequences for myonuclear hyperplasia are...
Redox Control of Skeletal Muscle Regeneration.
Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi
2017-08-10
Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.
Redox Control of Skeletal Muscle Regeneration
Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane
2017-01-01
Abstract Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276–310. PMID:28027662
Skeletal Muscle Pathophysiology: The Emerging Role of Spermine Oxidase and Spermidine
Duranti, Guglielmo; Sabatini, Stefania; Ceci, Roberta; Mariottini, Paolo
2018-01-01
Skeletal muscle comprises approximately 40% of the total body mass. Preserving muscle health and function is essential for the entire body in order to counteract chronic diseases such as type II diabetes, cardiovascular diseases, and cancer. Prolonged physical inactivity, particularly among the elderly, causes muscle atrophy, a pathological state with adverse outcomes such as poor quality of life, physical disability, and high mortality. In murine skeletal muscle C2C12 cells, increased expression of the spermine oxidase (SMOX) enzyme has been found during cell differentiation. Notably, SMOX overexpression increases muscle fiber size, while SMOX reduction was enough to induce muscle atrophy in multiple murine models. Of note, the SMOX reaction product spermidine appears to be involved in skeletal muscle atrophy/hypertrophy. It is effective in reactivating autophagy, ameliorating the myopathic defects of collagen VI-null mice. Moreover, spermidine treatment, if combined with exercise, can affect D-gal-induced aging-related skeletal muscle atrophy. This review hypothesizes a role for SMOX during skeletal muscle differentiation and outlines its role and that of spermidine in muscle atrophy. The identification of new molecular pathways involved in the maintenance of skeletal muscle health could be beneficial in developing novel therapeutic lead compounds to treat muscle atrophy. PMID:29443878
Computer-aided mechanogenesis of skeletal muscle organs from single cells in vitro
NASA Technical Reports Server (NTRS)
Vanderburgh, Herman H.; Swasdison, Somporn; Karlisch, Patricia
1991-01-01
Complex mechanical forces generated in the growing embryo play an important role in organogenesis. Computerized application of similar forces to differentiating skeletal muscle myoblasts in vitro generate three dimensional artificial muscle organs. These organs contain parallel networks of long unbranched myofibers organized into fascicle-like structures. Tendon development is initiated and the muscles are capable of performing directed, functional work. Kinetically engineered organs provide a new method for studying the growth and development of normal and diseased skeletal muscle.
Computer aided mechanogenesis of skeletal muscle organs from single cells in vitro
NASA Technical Reports Server (NTRS)
Vandenburgh, Herman H.; Swasdison, Somporn; Karlisch, Patricia
1990-01-01
Complex mechanical forces generated in the growing embryo play an important role in organogenesis. Computerized application of similar forces to differentiating skeletal muscle myoblasts in vitro generate three dimensional artificial muscle organs. These organs contain parallel networks of long unbranched myofibers organized into fascicle-like structures. Tendon development is initiated and the muscles are capable of performing directed, functional work. Kinetically engineered organs provide a new method for studying the growth and development of normal and diseased skeletal muscle.
Role of nitric oxide in skeletal muscle glucose uptake during exercise.
Hong, Yet Hoi; Betik, Andrew C; McConell, Glenn K
2014-12-01
Nitric oxide is produced within skeletal muscle fibres and has various functions in skeletal muscle. There is evidence that NO may be essential for normal increases in skeletal muscle glucose uptake during contraction/exercise. Although there have been some discrepant results, it has been consistently demonstrated that inhibition of NO synthase (NOS) attenuates the increase in skeletal muscle glucose uptake during contraction in mouse and rat muscle ex vivo, during in situ contraction in rats and during exercise in humans. The NO-mediated increase in skeletal muscle glucose uptake during contraction/exercise is probably due to the modulation of intramuscular signalling that ultimately increases glucose transporter 4 (GLUT4) translocation and is, surprisingly, independent of blood flow. In this review, we discuss the evidence for and against a role of NO in regulating skeletal muscle glucose uptake during contraction/exercise and outline the possible mechanism(s) involved. Emerging findings regarding the role of neuronal NOS mu (nNOSμ) in this process are also discussed. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.
Compromised store-operated Ca2+ entry in aged skeletal muscle.
Zhao, Xiaoli; Weisleder, Noah; Thornton, Angela; Oppong, Yaa; Campbell, Rachel; Ma, Jianjie; Brotto, Marco
2008-08-01
In aged skeletal muscle, changes to the composition and function of the contractile machinery cannot fully explain the observed decrease in the specific force produced by the contractile machinery that characterizes muscle weakness during aging. Since modification in extracellular Ca(2+) entry in aged nonexcitable and excitable cells has been recently identified, we evaluated the functional status of store-operated Ca(2+) entry (SOCE) in aged mouse skeletal muscle. Using Mn(2+) quenching of Fura-2 fluorescence and confocal-microscopic imaging of Ca(2+) movement from the transverse tubules, we determined that SOCE was severely compromised in muscle fibers isolated from aged mice (26-27 months) as compared with those from young (2-5 months) mice. While reduced SOCE in aged skeletal muscle does not appear to result from altered expression levels of STIM1 or reduced expression of mRNA for Orai, this reduction in SOCE is mirrored in fibers isolated from young mice null for mitsugumin-29, a synaptophysin-related protein that displays decreased expression in aged skeletal muscle. Our data suggest that decreased mitsugumin-29 expression and reduced SOCE may contribute to the diminished intracellular Ca(2+) homeostatic capacity generally associated with muscle aging.
Compromised store-operated Ca2+ entry in aged skeletal muscle
Zhao, Xiaoli; Weisleder, Noah; Thornton, Angela; Oppong, Yaa; Campbell, Rachel; Ma, Jianjie; Brotto, Marco
2010-01-01
Summary In aged skeletal muscle, changes to the composition and function of the contractile machinery cannot fully explain the observed decrease in the specific force produced by the contractile machinery that characterizes muscle weakness during aging. Since modification in extracellular Ca2+ entry in aged nonexcitable and excitable cells has been recently identified, we evaluated the functional status of store-operated Ca2+ entry (SOCE) in aged mouse skeletal muscle. Using Mn2+ quenching of Fura-2 fluorescence and confocal-microscopic imaging of Ca2+ movement from the transverse tubules, we determined that SOCE was severely compromised in muscle fibers isolated from aged mice (26–27 months) as compared with those from young (2–5 months) mice. While reduced SOCE in aged skeletal muscle does not appear to result from altered expression levels of STIM1 or reduced expression of mRNA for Orai, this reduction in SOCE is mirrored in fibers isolated from young mice null for mitsugumin-29, a synaptophysin-related protein that displays decreased expression in aged skeletal muscle. Our data suggest that decreased mitsugumin-29 expression and reduced SOCE may contribute to the diminished intracellular Ca2+ homeostatic capacity generally associated with muscle aging. PMID:18505477
Regulation of skeletal muscle blood flow during exercise in ageing humans
Hearon, Christopher M.
2015-01-01
Abstract The regulation of skeletal muscle blood flow and oxygen delivery to contracting skeletal muscle is complex and involves the mechanical effects of muscle contraction; local metabolic, red blood cell and endothelium‐derived substances; and the sympathetic nervous system (SNS). With advancing age in humans, skeletal muscle blood flow is typically reduced during dynamic exercise and this is due to a lower vascular conductance, which could ultimately contribute to age‐associated reductions in aerobic exercise capacity, a primary predictor of mortality in both healthy and diseased ageing populations. Recent findings have highlighted the contribution of endothelium‐derived substances to blood flow control in contracting muscle of older adults. With advancing age, impaired nitric oxide availability due to scavenging by reactive oxygen species, in conjunction with elevated vasoconstrictor signalling via endothelin‐1, reduces the local vasodilatory response to muscle contraction. Additionally, ageing impairs the ability of contracting skeletal muscle to blunt sympathetic vasoconstriction (i.e. ‘functional sympatholysis’), which is critical for the proper regulation of tissue blood flow distribution and oxygen delivery, and could further reduce skeletal muscle perfusion during high intensity and/or large muscle mass exercise in older adults. We propose that initiation of endothelium‐dependent hyperpolarization is the underlying signalling event necessary to properly modulate sympathetic vasoconstriction in contracting muscle, and that age‐associated impairments in red blood cell adenosine triphosphate release and stimulation of endothelium‐dependent vasodilatation may explain impairments in both local vasodilatation and functional sympatholysis with advancing age in humans. PMID:26332887
Li, Dong-Jie; Fu, Hui; Zhao, Ting; Ni, Min; Shen, Fu-Ming
2016-05-01
Physical exercise induces many adaptive changes in skeletal muscle and the whole body and improves metabolic characteristics. Fibroblast growth-factor 23 (FGF23) is a unique member of the FGF family that acts as a hormone regulating phosphate metabolism, calcitriol concentration, and kidney functions. The role of FGF23 in exercise and skeletal muscle is largely unknown yet. C57BL/6J mice were exercised on a motor treadmill. Mice serum FGF23 levels; FGF23 mRNA expression in various organs including the liver, heart, skeletal muscle tissue, and thyroid; and FGF23 receptor Klotho mRNA expression were examined using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunoblotting, respectively, after a single bout of acute exercise (60min), exhaustive exercise, and chronic prolonged exercise (60min every day for one week). C57BL/6J mice were injected with recombinant FGF23 (100mg/kg, twice per day, i.p.) or vehicle control (saline) for 3days, and then the exercise performance, reactive oxygen species (ROS), H2O2 production, and mitochondrial functional biomarkers in muscle (gene expression of sirtuin 1, PPAR-δ, PGC-1α and mitochondrial transcription factor A [TFAM], and citrate synthase activity) were assayed. Three forms of exercise, acute exercise, exhaustive exercise, and chronic exercise, increased serum FGF23 levels. However, only chronic exercise upregulated FGF23 mRNA and protein expression in skeletal muscle. FGF23 mRNA expression in the heart, liver, and thyroid was not affected. FGF23 protein was mainly located in the cytoplasm in skeletal muscle tissue and the localization of FGF23 was not altered by exercise. Exogenous FGF23 treatment significantly extended the time to exhaustion and reduced the exercise-induced ROS and H2O2 production. FGF23 treatment increased the mRNA level of PPAR-δ and citrate synthase activity, but did not influence the mRNA expression of sirtuin 1, PGC-1α, and TFAM in skeletal muscle. These results demonstrate that exercise-stimulated FGF23 promotes exercise performance via controlling the excess ROS production and enhancing mitochondrial function in skeletal muscle, which reveals an entirely novel role of FGF23 in skeletal muscle. Copyright © 2016 Elsevier Inc. All rights reserved.
Ju, Yawen; Li, Jie; Xie, Chao; Ritchlin, Christopher T; Xing, Lianping; Hilton, Matthew J; Schwarz, Edward M
2013-09-01
The troponin complex, which consists of three regulatory proteins (troponin C, troponin I, and troponin T), is known to regulate muscle contraction in skeletal and cardiac muscle, but its role in smooth muscle remains controversial. Troponin T3 (TnnT3) is a fast skeletal muscle troponin believed to be expressed only in skeletal muscle cells. To determine the in vivo function and tissue-specific expression of Tnnt3, we obtained the heterozygous Tnnt3+/flox/lacZ mice from Knockout Mouse Project (KOMP) Repository. Tnnt3(lacZ/+) mice are smaller than their WT littermates throughout development but do not display any gross phenotypes. Tnnt3(lacZ/lacZ) embryos are smaller than heterozygotes and die shortly after birth. Histology revealed hemorrhagic tissue in Tnnt3(lacZ/lacZ) liver and kidney, which was not present in Tnnt3(lacZ/+) or WT, but no other gross tissue abnormalities. X-gal staining for Tnnt3 promoter-driven lacZ transgene expression revealed positive staining in skeletal muscle and diaphragm and smooth muscle cells located in the aorta, bladder, and bronchus. Collectively, these findings suggest that troponins are expressed in smooth muscle and are required for normal growth and breathing for postnatal survival. Moreover, future studies with this mouse model can explore TnnT3 function in adult muscle function using the conditional-inducible gene deletion approach Copyright © 2013 Wiley Periodicals, Inc.
Crist, Colin
2017-01-01
Skeletal muscle is the most abundant tissue in our body, is responsible for generating the force required for movement, and is also an important thermogenic organ. Skeletal muscle is an enigmatic tissue because while on the one hand, skeletal muscle regeneration after injury is arguably one of the best-studied stem cell-dependent regenerative processes, on the other hand, skeletal muscle is still subject to many degenerative disorders with few therapeutic options in the clinic. It is important to develop new regenerative medicine-based therapies for skeletal muscle. Future therapeutic strategies should take advantage of rapidly developing technologies enabling the differentiation of skeletal muscle from human pluripotent stem cells, along with precise genome editing, which will go hand in hand with a steady and focused approach to understanding underlying mechanisms of skeletal muscle development, regeneration, and disease. In this review, I focus on highlighting the recent advances that particularly have relied on developmental and molecular biology approaches to understanding muscle development and stem cell function. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
2011-04-01
has a role in the impaired recovery of skeletal muscle with age. Keywords Tourniquet; sarcopenia ; muscle regeneration; mTOR; FoxO Correspondence...Prescribed by ANSI Std Z39-18 INTRODUCTION Sarcopenia is the progressive decline in skeletal muscle mass and function with advanced aging (See Adamo...clinically-relevant problem. Considering the large proportion of orthopedic surgeries performed on elderly individuals, the extent of damage and subsequent
Striated Muscle Function, Regeneration, and Repair
Shadrin, I.Y.; Khodabukus, A.; Bursac, N.
2016-01-01
As the only striated muscle tissues in the body, skeletal and cardiac muscle share numerous structural and functional characteristics, while exhibiting vastly different size and regenerative potential. Healthy skeletal muscle harbors a robust regenerative response that becomes inadequate after large muscle loss or in degenerative pathologies and aging. In contrast, the mammalian heart loses its regenerative capacity shortly after birth, leaving it susceptible to permanent damage by acute injury or chronic disease. In this review, we compare and contrast the physiology and regenerative potential of native skeletal and cardiac muscles, mechanisms underlying striated muscle dysfunction, and bioengineering strategies to treat muscle disorders. We focus on different sources for cellular therapy, biomaterials to augment the endogenous regenerative response, and progress in engineering and application of mature striated muscle tissues in vitro and in vivo. Finally, we discuss the challenges and perspectives in translating muscle bioengineering strategies to clinical practice. PMID:27271751
Owens, Daniel J; Webber, Daniel; Impey, Samuel G; Tang, Jonathan; Donovan, Timothy F; Fraser, William D; Morton, James P; Close, Graeme L
2014-06-01
Vitamin D may be a regulator of skeletal muscle function, although human trials investigating this hypothesis are limited to predominantly elderly populations. We aimed to assess the effect of oral vitamin D3 in healthy young males upon skeletal muscle function. Participants (n = 29) received an oral dose of 10,000 IU day(-1) vitamin D3 (VITD) or a visually identical placebo (PLB) for 3 months. Serum 25[OH]D and intact parathyroid hormone (iPTH) were measured at baseline and at week 4, 8 and 12. Muscle function was assessed in n = 22 participants by isokinetic dynamometry and percutaneous isometric electromyostimulation at baseline and at week 6 and 12. Baseline mean total serum 25[OH]D was 40 ± 17 and 41 ± 20 nmol L(-1) for PLB and VITD, respectively. VITD showed a significant improvement in total 25[OH]D at week 4 (150 ± 31 nmol L(-1)) that remained elevated throughout the trial (P < 0.005). Contrastingly, PLB showed a significant decrease in 25[OH]D at week 12 (25 ± 15 nmol L(-1)) compared with baseline. Despite marked increases in total serum 25[OH]D in VITD and a decrease in PLB, there were no significant changes in any of the muscle function outcome measures at week 6 or 12 for either group (P > 0.05). Elevating total serum 25[OH]D to concentrations > 120 nmol L(-1) has no effect on skeletal muscle function. We postulate that skeletal muscle function is only perturbed in conditions of severe deficiency (<12.5 nmol L(-1)).
Integrative Analysis of Porcine microRNAome during Skeletal Muscle Development
Qin, Lijun; Chen, Yaosheng; Liu, Xiaohong; Ye, Sanxing; Yu, Kaifan; Huang, Zheng; Yu, Jingwei; Zhou, Xingyu; Chen, Hu; Mo, Delin
2013-01-01
Pig is an important agricultural animal for meat production and provides a valuable model for many human diseases. Functional studies have demonstrated that microRNAs (miRNAs) play critical roles in almost all aspects of skeletal muscle development and disease pathogenesis. To investigate the miRNAs involved in regulating different periods of skeletal muscle development, we herein performed a comprehensive research for porcine microRNAome (miRNAome) during 10 skeletal muscle developmental stages including 35, 49, 63, 77, 91 dpc (days post coitum) and 2, 28, 90, 120, 180 dpn (days postnatal) using Solexa sequencing technology. Our results extend the repertoire of pig miRNAome to 247 known miRNAs processed from 210 pre-miRNAs and 297 candidate novel miRNAs through comparison with known miRNAs in the miRBase. Expression analysis of the 15 most abundant miRNAs in every library indicated that functional miRNAome may be smaller and tend to be highly expressed. A series of muscle-related miRNAs summarized in our study present different patterns between myofibers formation phase and muscle maturation phase, providing valuable reference for investigation of functional miRNAs during skeletal muscle development. Analysis of temporal profiles of miRNA expression identifies 18 novel candidate myogenic miRNAs in pig, which might provide new insight into regulation mechanism mediated by miRNAs underlying muscle development. PMID:24039761
Ca2+ Overload and Sarcoplasmic Reticulum Instability in tric-a Null Skeletal Muscle*
Zhao, Xiaoli; Yamazaki, Daiju; Park, Ki Ho; Komazaki, Shinji; Tjondrokoesoemo, Andoria; Nishi, Miyuki; Lin, Peihui; Hirata, Yutaka; Brotto, Marco; Takeshima, Hiroshi; Ma, Jianjie
2010-01-01
The sarcoplasmic reticulum (SR) of skeletal muscle contains K+, Cl−, and H+ channels may facilitate charge neutralization during Ca2+ release. Our recent studies have identified trimeric intracellular cation (TRIC) channels on SR as an essential counter-ion permeability pathway associated with rapid Ca2+ release from intracellular stores. Skeletal muscle contains TRIC-A and TRIC-B isoforms as predominant and minor components, respectively. Here we test the physiological function of TRIC-A in skeletal muscle. Biochemical assay revealed abundant expression of TRIC-A relative to the skeletal muscle ryanodine receptor with a molar ratio of TRIC-A/ryanodine receptor ∼5:1. Electron microscopy with the tric-a−/− skeletal muscle showed Ca2+ overload inside the SR with frequent formation of Ca2+ deposits compared with the wild type muscle. This elevated SR Ca2+ pool in the tric-a−/− muscle could be released by caffeine, whereas the elemental Ca2+ release events, e.g. osmotic stress-induced Ca2+ spark activities, were significantly reduced likely reflecting compromised counter-ion movement across the SR. Ex vivo physiological test identified the appearance of “alternan” behavior with isolated tric-a−/− skeletal muscle, i.e. transient and drastic increase in contractile force appeared within the decreasing force profile during repetitive fatigue stimulation. Inhibition of SR/endoplasmic reticulum Ca2+ ATPase function could lead to aggravation of the stress-induced alternans in the tric-a−/− muscle. Our data suggests that absence of TRIC-A may lead to Ca2+ overload in SR, which in combination with the reduced counter-ion movement may lead to instability of Ca2+ movement across the SR membrane. The observed alternan behavior with the tric-a−/− muscle may reflect a skeletal muscle version of store overload-induced Ca2+ release that has been reported in the cardiac muscle under stress conditions. PMID:20858894
A new therapeutic effect of simvastatin revealed by functional improvement in muscular dystrophy.
Whitehead, Nicholas P; Kim, Min Jeong; Bible, Kenneth L; Adams, Marvin E; Froehner, Stanley C
2015-10-13
Duchenne muscular dystrophy (DMD) is a lethal, degenerative muscle disease with no effective treatment. DMD muscle pathogenesis is characterized by chronic inflammation, oxidative stress, and fibrosis. Statins, cholesterol-lowering drugs, inhibit these deleterious processes in ischemic diseases affecting skeletal muscle, and therefore have potential to improve DMD. However, statins have not been considered for DMD, or other muscular dystrophies, principally because skeletal-muscle-related symptoms are rare, but widely publicized, side effects of these drugs. Here we show positive effects of statins in dystrophic skeletal muscle. Simvastatin dramatically reduced damage and enhanced muscle function in dystrophic (mdx) mice. Long-term simvastatin treatment vastly improved overall muscle health in mdx mice, reducing plasma creatine kinase activity, an established measure of muscle damage, to near-normal levels. This reduction was accompanied by reduced inflammation, more oxidative muscle fibers, and improved strength of the weak diaphragm muscle. Shorter-term treatment protected against muscle fatigue and increased mdx hindlimb muscle force by 40%, a value comparable to current dystrophin gene-based therapies. Increased force correlated with reduced NADPH Oxidase 2 protein expression, the major source of oxidative stress in dystrophic muscle. Finally, in old mdx mice with severe muscle degeneration, simvastatin enhanced diaphragm force and halved fibrosis, a major cause of functional decline in DMD. These improvements were accompanied by autophagy activation, a recent therapeutic target for DMD, and less oxidative stress. Together, our findings highlight that simvastatin substantially improves the overall health and function of dystrophic skeletal muscles and may provide an unexpected, novel therapy for DMD and related neuromuscular diseases.
A new therapeutic effect of simvastatin revealed by functional improvement in muscular dystrophy
Whitehead, Nicholas P.; Kim, Min Jeong; Bible, Kenneth L.; Adams, Marvin E.; Froehner, Stanley C.
2015-01-01
Duchenne muscular dystrophy (DMD) is a lethal, degenerative muscle disease with no effective treatment. DMD muscle pathogenesis is characterized by chronic inflammation, oxidative stress, and fibrosis. Statins, cholesterol-lowering drugs, inhibit these deleterious processes in ischemic diseases affecting skeletal muscle, and therefore have potential to improve DMD. However, statins have not been considered for DMD, or other muscular dystrophies, principally because skeletal-muscle-related symptoms are rare, but widely publicized, side effects of these drugs. Here we show positive effects of statins in dystrophic skeletal muscle. Simvastatin dramatically reduced damage and enhanced muscle function in dystrophic (mdx) mice. Long-term simvastatin treatment vastly improved overall muscle health in mdx mice, reducing plasma creatine kinase activity, an established measure of muscle damage, to near-normal levels. This reduction was accompanied by reduced inflammation, more oxidative muscle fibers, and improved strength of the weak diaphragm muscle. Shorter-term treatment protected against muscle fatigue and increased mdx hindlimb muscle force by 40%, a value comparable to current dystrophin gene-based therapies. Increased force correlated with reduced NADPH Oxidase 2 protein expression, the major source of oxidative stress in dystrophic muscle. Finally, in old mdx mice with severe muscle degeneration, simvastatin enhanced diaphragm force and halved fibrosis, a major cause of functional decline in DMD. These improvements were accompanied by autophagy activation, a recent therapeutic target for DMD, and less oxidative stress. Together, our findings highlight that simvastatin substantially improves the overall health and function of dystrophic skeletal muscles and may provide an unexpected, novel therapy for DMD and related neuromuscular diseases. PMID:26417069
MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type
Wu, Hai; Naya, Francisco J.; McKinsey, Timothy A.; Mercer, Brian; Shelton, John M.; Chin, Eva R.; Simard, Alain R.; Michel, Robin N.; Bassel-Duby, Rhonda; Olson, Eric N.; Williams, R. Sanders
2000-01-01
Different patterns of motor nerve activity drive distinctive programs of gene transcription in skeletal muscles, thereby establishing a high degree of metabolic and physiological specialization among myofiber subtypes. Recently, we proposed that the influence of motor nerve activity on skeletal muscle fiber type is transduced to the relevant genes by calcineurin, which controls the functional activity of NFAT (nuclear family of activated T cell) proteins. Here we demonstrate that calcineurin-dependent gene regulation in skeletal myocytes is mediated also by MEF2 transcription factors, and is integrated with additional calcium-regulated signaling inputs, specifically calmodulin-dependent protein kinase activity. In skeletal muscles of transgenic mice, both NFAT and MEF2 binding sites are necessary for properly regulated function of a slow fiber-specific enhancer, and either forced expression of activated calcineurin or motor nerve stimulation up-regulates a MEF2-dependent reporter gene. These results provide new insights into the molecular mechanisms by which specialized characteristics of skeletal myofiber subtypes are established and maintained. PMID:10790363
Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging
Umanskaya, Alisa; Santulli, Gaetano; Andersson, Daniel C.; Reiken, Steven R.; Marks, Andrew R.
2014-01-01
Age-related skeletal muscle dysfunction is a leading cause of morbidity that affects up to half the population aged 80 or greater. Here we tested the effects of increased mitochondrial antioxidant activity on age-dependent skeletal muscle dysfunction using transgenic mice with targeted overexpression of the human catalase gene to mitochondria (MCat mice). Aged MCat mice exhibited improved voluntary exercise, increased skeletal muscle specific force and tetanic Ca2+ transients, decreased intracellular Ca2+ leak and increased sarcoplasmic reticulum (SR) Ca2+ load compared with age-matched wild type (WT) littermates. Furthermore, ryanodine receptor 1 (the sarcoplasmic reticulum Ca2+ release channel required for skeletal muscle contraction; RyR1) from aged MCat mice was less oxidized, depleted of the channel stabilizing subunit, calstabin1, and displayed increased single channel open probability (Po). Overall, these data indicate a direct role for mitochondrial free radicals in promoting the pathological intracellular Ca2+ leak that underlies age-dependent loss of skeletal muscle function. This study harbors implications for the development of novel therapeutic strategies, including mitochondria-targeted antioxidants for treatment of mitochondrial myopathies and other healthspan-limiting disorders. PMID:25288763
In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System
Guo, Xiufang; Greene, Keshel; Akanda, Nesar; Smith, Alec; Stancescu, Maria; Lambert, Stephen; Vandenburgh, Herman; Hickman, James
2013-01-01
In vitro human skeletal muscle systems are valuable tools for the study of human muscular development, disease and treatment. However, published in vitro human muscle systems have so far only demonstrated limited differentiation capacities. Advanced differentiation features such as cross-striations and contractility have only been observed in co-cultures with motoneurons. Furthermore, it is commonly regarded that cultured human myotubes do not spontaneously contract, and any contraction has been considered to originate from innervation. This study developed a serum-free culture system in which human skeletal myotubes demonstrated advanced differentiation. Characterization by immunocytochemistry, electrophysiology and analysis of contractile function revealed these major features: A) well defined sarcomeric development, as demonstrated by the presence of cross-striations. B) finely developed excitation-contraction coupling apparatus characterized by the close apposition of dihydropyridine receptors on T-tubules and Ryanodine receptors on sarcoplasmic reticulum membranes. C) spontaneous and electrically controlled contractility. This report not only demonstrates an improved level of differentiation of cultured human skeletal myotubes, but also provides the first published evidence that such myotubes are capable of spontaneous contraction. Use of this functional in vitro human skeletal muscle system would advance studies concerning human skeletal muscle development and physiology, as well as muscle-related disease and therapy. PMID:24516722
In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System.
Guo, Xiufang; Greene, Keshel; Akanda, Nesar; Smith, Alec; Stancescu, Maria; Lambert, Stephen; Vandenburgh, Herman; Hickman, James
2014-01-01
In vitro human skeletal muscle systems are valuable tools for the study of human muscular development, disease and treatment. However, published in vitro human muscle systems have so far only demonstrated limited differentiation capacities. Advanced differentiation features such as cross-striations and contractility have only been observed in co-cultures with motoneurons. Furthermore, it is commonly regarded that cultured human myotubes do not spontaneously contract, and any contraction has been considered to originate from innervation. This study developed a serum-free culture system in which human skeletal myotubes demonstrated advanced differentiation. Characterization by immunocytochemistry, electrophysiology and analysis of contractile function revealed these major features: A) well defined sarcomeric development, as demonstrated by the presence of cross-striations. B) finely developed excitation-contraction coupling apparatus characterized by the close apposition of dihydropyridine receptors on T-tubules and Ryanodine receptors on sarcoplasmic reticulum membranes. C) spontaneous and electrically controlled contractility. This report not only demonstrates an improved level of differentiation of cultured human skeletal myotubes, but also provides the first published evidence that such myotubes are capable of spontaneous contraction. Use of this functional in vitro human skeletal muscle system would advance studies concerning human skeletal muscle development and physiology, as well as muscle-related disease and therapy.
Dufresne, Sébastien S; Boulanger-Piette, Antoine; Frenette, Jérôme
2017-03-01
Our recent work showed that daily injections of osteoprotegerin (OPG)-immunoglobulin fragment complex (OPG-Fc) completely restore the function of fast-twitch extensor digitorum longus muscles in dystrophic mdx mice, a murine model of Duchenne muscular dystrophy. However, despite marked improvements, OPG-Fc was not as effective in preventing the loss of function of slow-twitch soleus and diaphragm muscles. Because β 2 -agonists enhance the function of slow- and fast-twitch dystrophic muscles and because their use is limited by their adverse effects on bone and cardiac tissues, we hypothesized that OPG-Fc, a bone and skeletal muscle protector, acts synergistically with β 2 -agonists and potentiates their positive effects on skeletal muscles. We observed that the content of β 2 -adrenergic receptors, which are mainly expressed in skeletal muscle, is significantly reduced in dystrophic muscles but is rescued by the injection of OPG-Fc. Most important, OPG-Fc combined with a low dose of formoterol, a member of a new generation of β 2 -agonists, histologically and functionally rescued slow-twitch dystrophic muscles. This combination of therapeutic agents, which have already been tested and approved for human use, may open up new therapeutic avenues for Duchenne muscular dystrophy and possibly other neuromuscular diseases. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Effects of moderate heart failure and functional overload on rat plantaris muscle
NASA Technical Reports Server (NTRS)
Spangenburg, Espen E.; Lees, Simon J.; Otis, Jeff S.; Musch, Timothy I.; Talmadge, Robert J.; Williams, Jay H.
2002-01-01
It is thought that changes in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) of skeletal muscle contribute to alterations in skeletal muscle function during congestive heart failure (CHF). It is well established that exercise training can improve muscle function. However, it is unclear whether similar adaptations will result from exercise training in a CHF patient. Therefore, the purpose of this study was to determine whether skeletal muscle during moderate CHF adapts to increased activity, utilizing the functional overload (FO) model. Significant increases in plantaris mass of the CHF-FO and sham-FO groups compared with the CHF and control (sham) groups were observed. Ca(2+) uptake rates were significantly elevated in the CHF group compared with all other groups. No differences were detected in Ca(2+) uptake rates between the CHF-FO, sham, and sham-FO groups. Increases in Ca(2+) uptake rates in moderate-CHF rats were not due to changes in SERCA isoform proportions; however, FO may have attenuated the CHF-induced increases through alterations in SERCA isoform expression. Therefore, changes in skeletal muscle Ca(2+) handling during moderate CHF may be due to alterations in regulatory mechanisms, which exercise may override, by possibly altering SERCA isoform expression.
Skeletal muscle atrophy in bioengineered skeletal muscle: a new model system.
Lee, Peter H U; Vandenburgh, Herman H
2013-10-01
Skeletal muscle atrophy has been well characterized in various animal models, and while certain pathways that lead to disuse atrophy and its associated functional deficits have been well studied, available drugs to counteract these deficiencies are limited. An ex vivo tissue-engineered skeletal muscle offers a unique opportunity to study skeletal muscle physiology in a controlled in vitro setting. Primary mouse myoblasts isolated from adult muscle were tissue engineered into bioartificial muscles (BAMs) containing hundreds of aligned postmitotic muscle fibers expressing sarcomeric proteins. When electrically stimulated, BAMs generated measureable active forces within 2-3 days of formation. The maximum isometric tetanic force (Po) increased for ∼3 weeks to 2587±502 μN/BAM and was maintained at this level for greater than 80 days. When BAMs were reduced in length by 25% to 50%, muscle atrophy occurred in as little as 6 days. Length reduction resulted in significant decreases in Po (50.4%), mean myofiber cross-sectional area (21.7%), total protein synthesis rate (22.0%), and noncollagenous protein content (6.9%). No significant changes occurred in either the total metabolic activity or protein degradation rates. This study is the first in vitro demonstration that length reduction alone can induce skeletal muscle atrophy, and establishes a novel in vitro model for the study of skeletal muscle atrophy.
The TWEAK-Fn14 system: breaking the silence of cytokine-induced skeletal muscle wasting.
Bhatnagar, S; Kumar, A
2012-01-01
The occurrence of skeletal muscle atrophy, a devastating complication of a large number of disease states and inactivity/disuse conditions, provides a never ending quest to identify novel targets for its therapy. Proinflammatory cytokines are considered the mediators of muscle wasting in chronic diseases; however, their role in disuse atrophy has just begun to be elucidated. An inflammatory cytokine, tumor necrosis factor (TNF)- like weak inducer of apoptosis (TWEAK), has recently been identified as a potent inducer of skeletal muscle wasting. TWEAK activates various proteolytic pathways and stimulates the degradation of myofibril protein both in vitro and in vivo. Moreover, TWEAK mediates the loss of skeletal muscle mass and function in response to denervation, a model of disuse atrophy. Adult skeletal muscle express very low to minimal levels of TWEAK receptor, Fn14. Specific catabolic conditions such as denervation, immobilization, or unloading rapidly increase the expression of Fn14 in skeletal muscle which in turn stimulates the TWEAK activation of various catabolic pathways leading to muscle atrophy. In this article, we have discussed the emerging roles and the mechanisms of action of TWEAK-Fn14 system in skeletal muscle with particular reference to different models of muscle atrophy and injury and its potential to be used as a therapeutic target for prevention of muscle loss.
Skeletal muscle tensile strain dependence: hyperviscoelastic nonlinearity
Wheatley, Benjamin B; Morrow, Duane A; Odegard, Gregory M; Kaufman, Kenton R; Donahue, Tammy L Haut
2015-01-01
Introduction Computational modeling of skeletal muscle requires characterization at the tissue level. While most skeletal muscle studies focus on hyperelasticity, the goal of this study was to examine and model the nonlinear behavior of both time-independent and time-dependent properties of skeletal muscle as a function of strain. Materials and Methods Nine tibialis anterior muscles from New Zealand White rabbits were subject to five consecutive stress relaxation cycles of roughly 3% strain. Individual relaxation steps were fit with a three-term linear Prony series. Prony series coefficients and relaxation ratio were assessed for strain dependence using a general linear statistical model. A fully nonlinear constitutive model was employed to capture the strain dependence of both the viscoelastic and instantaneous components. Results Instantaneous modulus (p<0.0005) and mid-range relaxation (p<0.0005) increased significantly with strain level, while relaxation at longer time periods decreased with strain (p<0.0005). Time constants and overall relaxation ratio did not change with strain level (p>0.1). Additionally, the fully nonlinear hyperviscoelastic constitutive model provided an excellent fit to experimental data, while other models which included linear components failed to capture muscle function as accurately. Conclusions Material properties of skeletal muscle are strain-dependent at the tissue level. This strain dependence can be included in computational models of skeletal muscle performance with a fully nonlinear hyperviscoelastic model. PMID:26409235
AMPKγ3 is dispensable for skeletal muscle hypertrophy induced by functional overload.
Riedl, Isabelle; Osler, Megan E; Björnholm, Marie; Egan, Brendan; Nader, Gustavo A; Chibalin, Alexander V; Zierath, Juleen R
2016-03-15
Mechanisms regulating skeletal muscle growth involve a balance between the activity of serine/threonine protein kinases, including the mammalian target of rapamycin (mTOR) and 5'-AMP-activated protein kinase (AMPK). The contribution of different AMPK subunits to the regulation of cell growth size remains inadequately characterized. Using AMPKγ3 mutant-overexpressing transgenic Tg-Prkag3(225Q) and AMPKγ3-knockout (Prkag3(-/-)) mice, we investigated the requirement for the AMPKγ3 isoform in functional overload-induced muscle hypertrophy. Although the genetic disruption of the γ3 isoform did not impair muscle growth, control sham-operated AMPKγ3-transgenic mice displayed heavier plantaris muscles in response to overload hypertrophy and underwent smaller mass gain and lower Igf1 expression compared with wild-type littermates. The mTOR signaling pathway was upregulated with functional overload but unchanged between genetically modified animals and wild-type littermates. Differences in AMPK-related signaling pathways between transgenic, knockout, and wild-type mice did not impact muscle hypertrophy. Glycogen content was increased following overload in wild-type mice. In conclusion, our functional, transcriptional, and signaling data provide evidence against the involvement of the AMPKγ3 isoform in the regulation of skeletal muscle hypertrophy. Thus, the AMPKγ3 isoform is dispensable for functional overload-induced muscle growth. Mechanical loading can override signaling pathways that act as negative effectors of mTOR signaling and consequently promote skeletal muscle hypertrophy. Copyright © 2016 the American Physiological Society.
AMPKγ3 is dispensable for skeletal muscle hypertrophy induced by functional overload
Riedl, Isabelle; Osler, Megan E.; Björnholm, Marie; Egan, Brendan; Nader, Gustavo A.; Chibalin, Alexander V.
2016-01-01
Mechanisms regulating skeletal muscle growth involve a balance between the activity of serine/threonine protein kinases, including the mammalian target of rapamycin (mTOR) and 5′-AMP-activated protein kinase (AMPK). The contribution of different AMPK subunits to the regulation of cell growth size remains inadequately characterized. Using AMPKγ3 mutant-overexpressing transgenic Tg-Prkag3225Q and AMPKγ3-knockout (Prkag3−/−) mice, we investigated the requirement for the AMPKγ3 isoform in functional overload-induced muscle hypertrophy. Although the genetic disruption of the γ3 isoform did not impair muscle growth, control sham-operated AMPKγ3-transgenic mice displayed heavier plantaris muscles in response to overload hypertrophy and underwent smaller mass gain and lower Igf1 expression compared with wild-type littermates. The mTOR signaling pathway was upregulated with functional overload but unchanged between genetically modified animals and wild-type littermates. Differences in AMPK-related signaling pathways between transgenic, knockout, and wild-type mice did not impact muscle hypertrophy. Glycogen content was increased following overload in wild-type mice. In conclusion, our functional, transcriptional, and signaling data provide evidence against the involvement of the AMPKγ3 isoform in the regulation of skeletal muscle hypertrophy. Thus, the AMPKγ3 isoform is dispensable for functional overload-induced muscle growth. Mechanical loading can override signaling pathways that act as negative effectors of mTOR signaling and consequently promote skeletal muscle hypertrophy. PMID:26758685
Ramos, Fresnida J.; Chen, Steven C.; Garelick, Michael G.; Dai, Dao-Fu; Liao, Chen-Yu; Schreiber, Katherine H.; MacKay, Vivian L.; An, Elroy H.; Strong, Randy; Ladiges, Warren C.; Rabinovitch, Peter S.; Kaeberlein, Matt; Kennedy, Brian K.
2013-01-01
Mutations in LMNA, the gene that encodes A-type lamins, cause multiple diseases including dystrophies of the skeletal muscle and fat, dilated cardiomyopathy, and progeria-like syndromes (collectively termed laminopathies). Reduced A-type lamin function, however, is most commonly associated with skeletal muscle dystrophy and dilated cardiomyopathy rather than lipodystrophy or progeria. The mechanisms underlying these diseases are only beginning to be unraveled. We report that mice deficient in Lmna, which corresponds to the human gene LMNA, have enhanced mTORC1 (mammalian target of rapamycin complex 1) signaling specifically in tissues linked to pathology, namely, cardiac and skeletal muscle. Pharmacologic reversal of elevated mTORC1 signaling by rapamycin improves cardiac and skeletal muscle function and enhances survival in mice lacking A-type lamins. At the cellular level, rapamycin decreases the number of myocytes with abnormal desmin accumulation and decreases the amount of desmin in both muscle and cardiac tissue of Lmna–/– mice. In addition, inhibition of mTORC1 signaling with rapamycin improves defective autophagic-mediated degradation in Lmna–/– mice. Together, these findings point to aberrant mTORC1 signaling as a mechanistic component of laminopathies associated with reduced A-type lamin function and offer a potential therapeutic approach, namely, the use of rapamycin-related mTORC1 inhibitors. PMID:22837538
Suminski, Richard R; Mattern, Craig O; Devor, Steven T
2002-01-01
Skeletal muscle properties are related to disease (e.g. obesity) and physical performance. For example, a predominance of type I muscle fibres is associated with better performance in endurance sports and a lower risk of obesity. Disease and physical performance also differ among certain racial groups. African Americans are more likely than Caucasians to develop obesity, diabetes mellitus and hypertension. Empirical studies indicate that aerobic capacity is lower in African Americans than Caucasians. Because genetics is a partial determinant of skeletal muscle properties, it is reasonable to assume that skeletal muscle properties vary as a function of race. As such, genetically determined and race-specific skeletal muscle properties may partially explain racial disparities in disease and physical performance. However, additional research is needed in this area to enable the development of more definitive conclusions.
Matrix metalloproteinase inhibition negatively affects muscle stem cell behavior
Bellayr, Ian; Holden, Kyle; Mu, Xiaodong; Pan, Haiying; Li, Yong
2013-01-01
Skeletal muscle is a large and complex system that is crucial for structural support, movement and function. When injured, the repair of skeletal muscle undergoes three phases: inflammation and degeneration, regeneration and fibrosis formation in severe injuries. During fibrosis formation, muscle healing is impaired because of the accumulation of excess collagen. A group of zinc-dependent endopeptidases that have been found to aid in the repair of skeletal muscle are matrix metalloproteinases (MMPs). MMPs are able to assist in tissue remodeling through the regulation of extracellular matrix (ECM) components, as well as contributing to cell migration, proliferation, differentiation and angiogenesis. In the present study, the effect of GM6001, a broad-spectrum MMP inhibitor, on muscle-derived stem cells (MDSCs) is investigated. We find that MMP inhibition negatively impacts skeletal muscle healing by impairing MDSCs in migratory and multiple differentiation abilities. These results indicate that MMP signaling plays an essential role in the wound healing of muscle tissue because their inhibition is detrimental to stem cells residing in skeletal muscle. PMID:23329998
Li, Yan; Fan, Yihui; Pan, Haiou; Qian, Haifeng; Qi, Xiguang; Wu, Gangcheng; Zhang, Hui; Xu, Meijuan; Rao, Zhiming; Wang, Li; Ying, Hao
2018-05-26
Skeletal muscles plays a crucial role in metabolism and exercise. Fuctional β-glucan is polysaccharide that is found in the cell walls of cereal, which is known to reduce cholesterol and lipid, prevent diabetes, cancer and cardiovascular diseases. In an attempt to identify β-glucan that could promote skeletal muscle function, we analyzed the proliferation, differentiation, metabolism and anti-fibrotic properties of β-glucan in C2C12 muscle cells. Treatment of β-glucan in C2C12 myoblasts led to increased proliferation and differentiation. Besides that, we found that C2C12 myotubes treated with β-glucan displayed a fast-to-slow muscle fiber conversion and improved oxidative metabolism. Further study revealed that β-glucan treatment could prevent myotubes from becoming myofibroblasts. Together, our study suggests that functional β-glucan might have a therapeutic potential to improve skeletal muscle function, which might contribute to the development of β-glucan. Copyright © 2018. Published by Elsevier B.V.
Brotto, Marco A; Biesiadecki, Brandon J; Brotto, Leticia S; Nosek, Thomas M; Jin, Jian-Ping
2006-02-01
Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin, troponin T (TnT), and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton X-100-skinned single fibers from soleus, diaphragm, gastrocnemius, and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of the TnT and TnI isoforms to investigate their role in determining contractility. Types IIa, IIx, and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca(2+) sensitivity than that of the fast troponin fibers, whereas fibers containing fast troponin showed a higher cooperativity of Ca(2+) activation than that of the slow troponin fibers. These results demonstrate distinct but coordinated regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties of muscle.
An Old Problem: Aging and Skeletal-Muscle-Strain Injury.
Baker, Brent A
2017-04-01
Clinical Scenario: Even though chronological aging is an inevitable phenomenological consequence occurring in every living organism, it is biological aging that may be the most significant factor challenging our quality of life. Development of functional limitations, resulting from improper maintenance and restoration of various organ systems, ultimately leads to reduced health and independence. Skeletal muscle is an organ system that, when challenged, is often injured in response to varying stimuli. Overt muscle-strain injury can be traumatic, clinically diagnosable, properly managed, and a remarkably common event, yet our contemporary understanding of how age and environmental stressors affect the initial and subsequent induction of injury and how the biological processes resulting from this event are modifiable and, eventually, lead to functional restoration and healing of skeletal muscle and adjacent tissues is presently unclear. Even though the secondary injury response to and recovery from "contraction-induced" skeletal-muscle injury are impaired with aging, there is no scientific consensus as to the exact mechanism responsible for this event. Given the multitude of investigative approaches, particular consideration given to the appropriateness of the muscle-injury model, or research paradigm, is critical so that outcomes may be physiologically relevant and translational. In this case, methods implementing stretch-shortening contractions, the most common form of muscle movements used by all mammals during physical movement, work, and activity, are highlighted. Understanding the fundamental evidence regarding how aging influences the responsivity of skeletal muscle to strain injury is vital for informing how clinicians approach and implement preventive strategies, as well as therapeutic interventions. From a practical perspective, maintaining or improving the overall health and tissue quality of skeletal muscle as one ages will positively affect skeletal muscle's safety threshold and responsivity, which may reduce incidence of injury, improve recovery time, and lessen overall fiscal burdens.
Caudal, Dorian; Guinobert, Isabelle; Lafoux, Aude; Bardot, Valérie; Cotte, César; Ripoche, Isabelle; Chalard, Pierre; Huchet, Corinne
2018-04-01
Valeriana officinalis L. root extracts are traditionally taken for their sedative and anxiolytic properties and are also used for muscle relaxation. Relaxant effects were clearly observed on smooth muscle whereas data on effects on skeletal muscle are scarce and inconsistent. The aim of this study was to assess whether a standardized extract (SE) of V. officinalis had myorelaxant effects by decreasing skeletal muscle strength and/or neuromuscular tone in mice. Mice received an acute dose of V. officinalis SE (2 or 5 g/kg per os) or tetrazepam (10 mg/kg ip), a standard myorelaxant drug. Thirty minutes later, the maximal muscle strength was measured using a grip test, while global skeletal muscle function (endurance and neuromuscular tone) was assessed in a wire hanging test. Compared to tetrazepam, both doses of V. officinalis SE induced a pronounced decrease in skeletal muscle strength without any significant effects on endurance and neuromuscular tone. This study provides clear evidence that the extract of V. officinalis tested has a relaxant effect on skeletal muscle. By decreasing skeletal muscle strength without impacting endurance and neuromuscular tone, V. officinalis SE could induce less undesirable side effects than standard myorelaxant agents, and be particularly useful for avoiding falls in the elderly.
Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy.
Zhang, Qia; Joshi, Sunil K; Lovett, David H; Zhang, Bryon; Bodine, Sue; Kim, Hubert T; Liu, Xuhui
2014-01-01
extracellular matrix (ECM) components are instrumental in maintaining homeostasis and muscle fiber functional integrity. Skeletal muscle hypertrophy is associated with ECM remodeling. Specifically, recent studies have reported the involvement of matrix metalloproteinases (MMPs) in muscle ECM remodeling. However, the functional role of MMPs in muscle hypertrophy remains largely unknown. in this study, we examined the role of MMP-2 in skeletal muscle hypertrophy using a previously validated method where the plantaris muscle of mice were subjected to mechanical overload due to the surgical removal of synergist muscles (gastrocnemius and soleus). following two weeks of overload, we observed a significant increase in MMP-2 activity and up-regulation of ECM components and remodeling enzymes in the plantaris muscles of wild-type mice. However, MMP-2 knockout mice developed significantly less hypertrophy and ECM remodeling in response to overload compared to their wild-type littermates. Investigation of protein synthesis rate and Akt/mTOR signaling revealed no difference between wild-type and MMP-2 knockout mice, suggesting that a difference in hypertrophy was independent of protein synthesis. taken together, our results suggest that MMP-2 is a key mediator of ECM remodeling in the setting of skeletal muscle hypertrophy.
Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy.
Zhang, Qia; Joshi, Sunil K; Lovett, David H; Zhang, Bryon; Bodine, Sue; Kim, Hubert; Liu, Xuhui
2014-07-01
extracellular matrix (ECM) components are instrumental in maintaining homeostasis and muscle fiber functional integrity. Skeletal muscle hypertrophy is associated with ECM remodeling. Specifically, recent studies have reported the involvement of matrix metalloproteinases (MMPs) in muscle ECM remodeling. However, the functional role of MMPs in muscle hypertrophy remains largely unknown. in this study, we examined the role of MMP-2 in skeletal muscle hypertrophy using a previously validated method where the plantaris muscle of mice were subjected to mechanical overload due to the surgical removal of synergist muscles (gastrocnemius and soleus). following two weeks of overload, we observed a significant increase in MMP-2 activity and up-regulation of ECM components and remodeling enzymes in the plantaris muscles of wild-type mice. However, MMP-2 knockout mice developed significantly less hypertrophy and ECM remodeling in response to overload compared to their wild-type littermates. Investigation of protein synthesis rate and Akt/mTOR signaling revealed no difference between wild-type and MMP-2 knockout mice, suggesting that a difference in hypertrophy was independent of protein synthesis. taken together, our results suggest that MMP-2 is a key mediator of ECM remodeling in the setting of skeletal muscle hypertrophy.
Abo, Tokuhisa; Iida, Ryo-Hei; Kaneko, Syuhei; Suga, Takeo; Yamada, Hiroyuki; Hamada, Yoshiki; Yamane, Akira
2012-12-01
Clenbuterol, a β₂-adrenergic agonist, increases the hypertrophy of skeletal muscle. Insulin-like growth factor (IGF) is reported to work as a potent positive regulator in the clenbuterol-induced hypertrophy of skeletal muscles. However, the precise regulatory mechanism for the hypertrophy of skeletal muscle induced by clenbuterol is unknown. Myostatin, a member of the TGFβ super family, is a negative regulator of muscle growth. The aim of the present study is to elucidate the function of myostatin and IGF in the hypertrophy of rat masseter muscle induced by clenbuterol. To investigate the function of myostatin and IGF in regulatory mechanism for the clenbuterol-induced hypertrophy of skeletal muscles, we analysed the expression of myostatin and phosphorylation levels of myostatin and IGF signaling components in the masseter muscle of rat to which clenbuterol was orally administered for 21 days. Hypertrophy of the rat masseter muscle was induced between 3 and 14 days of oral administration of clenbuterol and was terminated at 21 days. The expression of myostatin and the phosphorylation of smad2/3 were elevated at 21 days. The phosphorylation of IGF receptor 1 (IGFR1) and akt1 was elevated at 3 and 7 days. These results suggest that myostatin functions as a negative regulator in the later stages in the hypertrophy of rat masseter muscle induced by clenbuterol, whereas IGF works as a positive regulator in the earlier stages. Copyright © 2012 John Wiley & Sons, Ltd.
MST1, a key player, in enhancing fast skeletal muscle atrophy
2013-01-01
Background Skeletal muscle undergoes rapid atrophy upon denervation and the underlying mechanisms are complicated. FOXO3a has been implicated as a major mediator of muscle atrophy, but how its subcellular location and activity is controlled during the pathogenesis of muscle atrophy remains largely unknown. MST1 (Mammalian Sterile 20-like kinase 1) is identified as a central component of the Hippo signaling pathway. MST1 has been shown to mediate phosphorylation of FOXO3a at Ser207. Whether this MST1-FOXO signaling cascade exerts any functional consequence on cellular homeostasis remains to be investigated. Result We identified that MST1 kinase was expressed widely in skeletal muscles and was dramatically up-regulated in fast- but not slow-dominant skeletal muscles immediately following denervation. The results of our histological and biochemical studies demonstrated that deletion of MST1 significantly attenuated denervation-induced skeletal muscle wasting and decreased expression of Atrogin-1 and LC3 genes in fast-dominant skeletal muscles from three- to five-month-old adult mice. Further studies indicated that MST1, but not MST2, remarkably increased FOXO3a phosphorylation level at Ser207 and promoted its nuclear translocation in atrophic fast-dominant muscles. Conclusions We have established that MST1 kinase plays an important role in regulating denervation-induced skeletal muscle atrophy. During the early stage of muscle atrophy, the up-regulated MST1 kinase promoted progression of neurogenic atrophy in fast-dominant skeletal muscles through activation of FOXO3a transcription factors. PMID:23374633
Polesskaya, Anna; Cuvellier, Sylvain; Naguibneva, Irina; Duquet, Arnaud; Moss, Eric G; Harel-Bellan, Annick
2007-05-01
Lin-28 is a highly conserved, RNA-binding, microRNA-regulated protein that is involved in regulation of developmental timing in Caenorhabditis elegans. In mammals, Lin-28 is stage-specifically expressed in embryonic muscle, neurons, and epithelia, as well as in embryonic carcinoma cells, but is suppressed in most adult tissues, with the notable exception of skeletal and cardiac muscle. The specific function and mechanism of action of Lin-28 are not well understood. Here we used loss-of-function and gain-of-function assays in cultured myoblasts to show that expression of Lin-28 is essential for skeletal muscle differentiation in mice. In order to elucidate the specific function of Lin-28, we used a combination of biochemical and functional assays, which revealed that, in differentiating myoblasts, Lin-28 binds to the polysomes and increases the efficiency of protein synthesis. An important target of Lin-28 is IGF-2, a crucial growth and differentiation factor for muscle tissue. Interaction of Lin-28 with translation initiation complexes in skeletal myoblasts and in the embryonic carcinoma cell line P19 was confirmed by localization of Lin-28 to the stress granules, temporary structures that contain stalled mRNA-protein translation complexes. Our results unravel novel mechanisms of translational regulation in skeletal muscle and suggest that Lin-28 performs the role of "translational enhancer" in embryonic and adult cells and tissues.
Iwata, Akira; Fuchioka, Satoshi; Hiraoka, Koichi; Masuhara, Mitsuhiko; Kami, Katsuya
2010-05-01
Although numerous studies have aimed to elucidate the mechanisms used to repair the structure and function of injured skeletal muscles, it remains unclear how and when movement recovers following damage. We performed a temporal analysis to characterize the changes in movement, muscle function, and muscle structure after muscle injury induced by the drop-mass technique. At each time-point, movement recovery was determined by ankle kinematic analysis of locomotion, and functional recovery was represented by isometric force. As a histological analysis, the cross-sectional area of myotubes was measured to examine structural regeneration. The dorsiflexion angle of the ankle, as assessed by kinematic analysis of locomotion, increased after injury and then returned to control levels by day 14 post-injury. The isometric force returned to normal levels by day 21 post-injury. However, the size of the myotubes did not reach normal levels, even at day 21 post-injury. These results indicate that recovery of locomotion occurs prior to recovery of isometric force and that functional recovery occurs earlier than structural regeneration. Thus, it is suggested that recovery of the movement and function of injured skeletal muscles might be insufficient as markers for estimating the degree of neuromuscular system reconstitution.
Malm, Christer; Nyberg, Pernilla; Engström, Marianne; Sjödin, Bertil; Lenkei, Rodica; Ekblom, Björn; Lundberg, Ingrid
2000-01-01
A role of the immune system in muscular adaptation to physical exercise has been suggested but data from controlled human studies are scarce. The present study investigated immunological events in human blood and skeletal muscle by immunohistochemistry and flow cytometry after eccentric cycling exercise and multiple biopsies. Immunohistochemical detection of neutrophil- (CD11b, CD15), macrophage- (CD163), satellite cell- (CD56) and IL-1β-specific antigens increased similarly in human skeletal muscle after eccentric cycling exercise together with multiple muscle biopsies, or multiple biopsies only. Changes in immunological variables in blood and muscle were related, and monocytes and natural killer (NK) cells appeared to have governing functions over immunological events in human skeletal muscle. Delayed onset muscle soreness, serum creatine kinase activity and C-reactive protein concentration were not related to leukocyte infiltration in human skeletal muscle. Eccentric cycling and/or muscle biopsies did not result in T cell infiltration in human skeletal muscle. Modes of stress other than eccentric cycling should therefore be evaluated as a myositis model in human. Based on results from the present study, and in the light of previously published data, it appears plausible that muscular adaptation to physical exercise occurs without preceding muscle inflammation. Nevertheless, leukocytes seem important for repair, regeneration and adaptation of human skeletal muscle. PMID:11080266
Joanisse, Sophie; Nederveen, Joshua P; Snijders, Tim; McKay, Bryon R; Parise, Gianni
2017-01-01
Sarcopenia is the age-related loss of skeletal muscle mass and strength. Ultimately, sarcopenia results in the loss of independence, which imposes a large financial burden on healthcare systems worldwide. A critical facet of sarcopenia is the diminished ability for aged muscle to regenerate, repair and remodel. Over the years, research has focused on elucidating underlying mechanisms of sarcopenia and the impaired ability of muscle to respond to stimuli with aging. Muscle-specific stem cells, termed satellite cells (SC), play an important role in maintaining muscle health throughout the lifespan. It is well established that SC are essential in skeletal muscle regeneration, and it has been hypothesized that a reduction and/or dysregulation of the SC pool, may contribute to accelerated loss of skeletal muscle mass that is observed with advancing age. The preservation of skeletal muscle tissue and its ability to respond to stimuli may be impacted by reduced SC content and impaired function observed with aging. Aging is also associated with a reduction in capillarization of skeletal muscle. We have recently demonstrated that the distance between type II fibre-associated SC and capillaries is greater in older compared to younger adults. The greater distance between SC and capillaries in older adults may contribute to the dysregulation in SC activation ultimately impairing muscle's ability to remodel and, in extreme circumstances, regenerate. This viewpoint will highlight the importance of optimal SC activation in addition to skeletal muscle capillarization to maximize the regenerative potential of skeletal muscle in older adults. © 2016 S. Karger AG, Basel.
Duffy, Rebecca M; Feinberg, Adam W
2014-01-01
Skeletal muscle is a scalable actuator system used throughout nature from the millimeter to meter length scales and over a wide range of frequencies and force regimes. This adaptability has spurred interest in using engineered skeletal muscle to power soft robotics devices and in biotechnology and medical applications. However, the challenges to doing this are similar to those facing the tissue engineering and regenerative medicine fields; specifically, how do we translate our understanding of myogenesis in vivo to the engineering of muscle constructs in vitro to achieve functional integration with devices. To do this researchers are developing a number of ways to engineer the cellular microenvironment to guide skeletal muscle tissue formation. This includes understanding the role of substrate stiffness and the mechanical environment, engineering the spatial organization of biochemical and physical cues to guide muscle alignment, and developing bioreactors for mechanical and electrical conditioning. Examples of engineered skeletal muscle that can potentially be used in soft robotics include 2D cantilever-based skeletal muscle actuators and 3D skeletal muscle tissues engineered using scaffolds or directed self-organization. Integration into devices has led to basic muscle-powered devices such as grippers and pumps as well as more sophisticated muscle-powered soft robots that walk and swim. Looking forward, current, and future challenges include identifying the best source of muscle precursor cells to expand and differentiate into myotubes, replacing cardiomyocytes with skeletal muscle tissue as the bio-actuator of choice for soft robots, and vascularization and innervation to enable control and nourishment of larger muscle tissue constructs. © 2013 Wiley Periodicals, Inc.
Barber, Laura; Scicchitano, Bianca Maria; Musaro, Antonio
2015-08-24
The prolongation of skeletal muscle strength in aging and neuromuscular disease has been the objective of numerous studies employing a variety of approaches. It is generally accepted that cumulative failure to repair damage related to an overall decrease in anabolic processes is a primary cause of functional impairment in muscle. The functional performance of skeletal muscle tissues declines during post- natal life and it is compromised in different diseases, due to an alteration in muscle fiber composition and an overall decrease in muscle integrity as fibrotic invasions replace functional contractile tissue. Characteristics of skeletal muscle aging and diseases include a conspicuous reduction in myofiber plasticity (due to the progressive loss of muscle mass and in particular of the most powerful fast fibers), alteration in muscle-specific transcriptional mechanisms, and muscle atrophy. An early decrease in protein synthetic rates is followed by a later increase in protein degradation, to affect biochemical, physiological, and morphological parameters of muscle fibers during the aging process. Alterations in regenerative pathways also compromise the functionality of muscle tissues. In this review we will give an overview of the work on molecular and cellular mechanisms of aging and sarcopenia and the effects of electrical stimulation in seniors..
Skeletal Muscle Hypertrophy and Cardiometabolic Benefits after Spinal Cord Injury
2016-10-01
including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...COMPOSITION AND METABOLISM, FUNCTIONAL ELECTERICAL STIMULATION , IMMUNIOCHEMISTRY, SKELETAL MUSCLES, INFLAMMATORY BIOMARKERS, DUAL ENERGEY X-RAY...1. INTRODUCTION: Forty eight participants will be randomly assigned into neuromuscular electrical stimulation + functional electrical
Spurney, Christopher F.; Sali, Arpana; Guerron, Alfredo D.; Iantorno, Micaela; Yu, Qing; Gordish-Dressman, Heather; Rayavarapu, Sree; van der Meulen, Jack; Hoffman, Eric P.; Nagaraju, Kanneboyina
2014-01-01
Recent studies showed that chronic administration of losartan, an angiotensin II type I receptor antagonist, improved skeletal muscle function in dystrophin-deficient mdx mice. In this study, C57BL/10ScSn-Dmdmdx/J female mice were either untreated or treated with losartan (n = 15) in the drinking water at a dose of 600 mg/L over a 6-month period. Cardiac function was assessed via in vivo high frequency echocardiography and skeletal muscle function was assessed using grip strength testing, Digiscan monitoring, Rotarod timing, and in vitro force testing. Fibrosis was assessed using picrosirius red staining and Image J analysis. Gene expression was evaluated using real-time polymerized chain reaction (RT-PCR). Percentage shortening fraction was significantly decreased in untreated (26.9% ± 3.5%) mice compared to losartan-treated (32.2% ± 4.2%; P < .01) mice. Systolic blood pressure was significantly reduced in losartan-treated mice (56 ± 6 vs 69 ± 7 mm Hg; P < .0005). Percentage cardiac fibrosis was significantly reduced in losartan-treated hearts (P < .05) along with diaphragm (P < .01), extensor digitorum longus (P < .05), and gastrocnemius (P < .05) muscles compared to untreated mdx mice. There were no significant differences in skeletal muscle function between treated and untreated groups. Chronic treatment with losartan decreases cardiac and skeletal muscle fibrosis and improves cardiac systolic function in dystrophin-deficient mdx mice. PMID:21304057
Biological organization of the extraocular muscles.
Spencer, Robert F; Porter, John D
2006-01-01
Extraocular muscle is fundamentally distinct from other skeletal muscles. Here, we review the biological organization of the extraocular muscles with the intent of understanding this novel muscle group in the context of oculomotor system function. The specific objectives of this review are threefold. The first objective is to understand the anatomic arrangement of the extraocular muscles and their compartmental or layered organization in the context of a new concept of orbital mechanics, the active pulley hypothesis. The second objective is to present an integrated view of the morphologic, cellular, and molecular differences between extraocular and the more traditional skeletal muscles. The third objective is to relate recent data from functional and molecular biology studies to the established extraocular muscle fiber types. Developmental mechanisms that may be responsible for the divergence of the eye muscles from a skeletal muscle prototype also are considered. Taken together, a multidisciplinary understanding of extraocular muscle biology in health and disease provides insights into oculomotor system function and malfunction. Moreover, because the eye muscles are selectively involved or spared in a variety of neuromuscular diseases, knowledge of their biology may improve current pathogenic models of and treatments for devastating systemic diseases.
Moon, Younghye; Cao, Yenong; Zhu, Jingjing; Xu, Yuanyuan; Balkan, Wayne; Buys, Emmanuel S.; Diaz, Francisca; Kerrick, W. Glenn; Hare, Joshua M.
2017-01-01
Abstract Aim: Nitric oxide (NO) plays important, but incompletely defined roles in skeletal muscle. NO exerts its regulatory effects partly though S-nitrosylation, which is balanced by denitrosylation by enzymes such as S-nitrosoglutathione reductase (GSNOR), whose functions in skeletal muscle remain to be fully deciphered. Results: GSNOR null (GSNOR−/−) tibialis anterior (TA) muscles showed normal growth and were stronger and more fatigue resistant than controls in situ. However, GSNOR−/− lumbrical muscles showed normal contractility and Ca2+ handling in vitro, suggesting important differences in GSNOR function between muscles or between in vitro and in situ environments. GSNOR−/− TA muscles exhibited normal mitochondrial content, and capillary densities, but reduced type IIA fiber content. GSNOR inhibition did not impact mitochondrial respiratory complex I, III, or IV activities. These findings argue that enhanced GSNOR−/− TA contractility is not driven by changes in mitochondrial content or activity, fiber type, or blood vessel density. However, loss of GSNOR led to RyR1 hypernitrosylation, which is believed to increase muscle force output under physiological conditions. cGMP synthesis by soluble guanylate cyclase (sGC) was decreased in resting GSNOR−/− muscle and was more responsive to agonist (DETANO, BAY 41, and BAY 58) stimulation, suggesting that GSNOR modulates cGMP production in skeletal muscle. Innovation: GSNOR may act as a “brake” on skeletal muscle contractile performance under physiological conditions by modulating nitrosylation/denitrosylation balance. Conclusions: GSNOR may play important roles in skeletal muscle contractility, RyR1 S-nitrosylation, fiber type specification, and sGC activity. Antioxid. Redox Signal. 26, 165–181. PMID:27412893
A Physiologically Based, Multi-Scale Model of Skeletal Muscle Structure and Function
Röhrle, O.; Davidson, J. B.; Pullan, A. J.
2012-01-01
Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle’s response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modeling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle’s response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modeling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibers and their grouping. Together with a well-established model of motor-unit recruitment, the electro-physiological behavior of single muscle fibers within motor units is computed and linked to a continuum-mechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenization. The effect of homogenization has been investigated by varying the number of embedded skeletal muscle fibers and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the tibialis anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modeling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behavior ranging from motor-unit recruitment to force generation and fatigue. PMID:22993509
[Metabolic processes in rat skeletal muscle after a flight on the Kosmos-936 biosatellite].
Nosova, E A; Veresotskaia, N A; Kolchina, E V; Kurkina, L M; Belitskaia, R A
1981-01-01
The study of skeletal muscles of rats flown on Cosmos-936 demonstrated different metabolic reactions in muscle fibers of different function and type to weightlessness and Earth gravity. The data obtained gave evidence that artificial gravity may considerably prevent metabolic changes in muscles developing in response to specific effects of weightlessness.
Yang, Yalan; Sun, Wei; Wang, Ruiqi; Lei, Chuzhao; Zhou, Rong; Tang, Zhonglin; Li, Kui
2015-03-08
The Wnt signaling pathway is involved in the control of cell proliferation and differentiation during skeletal muscle development. Secreted frizzled-related proteins (SFRPs), such as SFRP1, function as inhibitors of Wnt signaling. MicroRNA-1/206(miRNA-1/206) is specifically expressed in skeletal muscle and play a critical role in myogenesis. The miRNA-mRNA profiles and bioinformatics study suggested that the SFRP1 gene was potentially regulated by miRNA-1/206 during porcine skeletal muscle development. To understand the function of SFRP1 and miRNA-1/206 in swine myogenesis, we first predicted the targets of miRNA-1/206 with the TargetScan and PicTar programs, and analyzed the molecular characterization of the porcine SFRP1 gene. We performed a temporal-spatial expression analysis of SFRP1 mRNA and miRNA-206 in Tongcheng pigs (a Chinese indigenous breed) by quantitative real-time polymerase chain reaction, and conducted the co-expression analyses of SFRP1 and miRNA-1/206. Subsequently, the interaction between SFRP1 and miRNA-1/206 was validated via dual luciferase and Western blot assays. The bioinformatics analysis predicted SFRP1 to be a target of miRNA-1/206. The expression level of the SFRP1 was highly varied across numerous pig tissues and it was down-regulated during porcine skeletal muscle development. The expression level of the SFRP1 was significantly higher in the embryonic skeletal compared with postnatal skeletal muscle, whereas miR-206 showed the inverse pattern of expression. A significant negative correlation was observed between the expression of miR-1/206 and SFRP1 during porcine skeletal muscle development (p <0.05). Dual luciferase assay and Western-blot results demonstrated that SFRP1 was a target of miR-1/206 in porcine iliac endothelial cells. Our results indicate that the SFRP1 gene is regulated by miR-1/206 and potentially affects skeletal muscle development. These findings increase understanding of the biological functions and the regulation of the SFRP1 gene in mammals.
Dufresne, Sébastien S; Dumont, Nicolas A; Boulanger-Piette, Antoine; Fajardo, Val A; Gamu, Daniel; Kake-Guena, Sandrine-Aurélie; David, Rares Ovidiu; Bouchard, Patrice; Lavergne, Éliane; Penninger, Josef M; Pape, Paul C; Tupling, A Russell; Frenette, Jérôme
2016-04-15
Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 content, a Ca(2+)sensor, and altered activity of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) modulating Ca(2+)storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus muscles. These data identify a novel role for RANK as a key regulator of Ca(2+)storage and SERCA activity, ultimately affecting denervated skeletal muscle function. Copyright © 2016 the American Physiological Society.
Dufresne, Sébastien S.; Dumont, Nicolas A.; Boulanger-Piette, Antoine; Fajardo, Val A.; Gamu, Daniel; Kake-Guena, Sandrine-Aurélie; David, Rares Ovidiu; Bouchard, Patrice; Lavergne, Éliane; Penninger, Josef M.; Pape, Paul C.; Tupling, A. Russell
2016-01-01
Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 content, a Ca2+ sensor, and altered activity of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) modulating Ca2+ storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus muscles. These data identify a novel role for RANK as a key regulator of Ca2+ storage and SERCA activity, ultimately affecting denervated skeletal muscle function. PMID:26825123
Tsui, Jonathan H; Janebodin, Kajohnkiart; Ieronimakis, Nicholas; Yama, David M P; Yang, Hee Seok; Chavanachat, Rakchanok; Hays, Aislinn L; Lee, Haeshin; Reyes, Morayma; Kim, Deok-Ho
2017-12-26
Despite possessing substantial regenerative capacity, skeletal muscle can suffer from loss of function due to catastrophic traumatic injury or degenerative disease. In such cases, engineered tissue grafts hold the potential to restore function and improve patient quality of life. Requirements for successful integration of engineered tissue grafts with the host musculature include cell alignment that mimics host tissue architecture and directional functionality, as well as vascularization to ensure tissue survival. Here, we have developed biomimetic nanopatterned poly(lactic-co-glycolic acid) substrates conjugated with sphingosine-1-phosphate (S1P), a potent angiogenic and myogenic factor, to enhance myoblast and endothelial maturation. Primary muscle cells cultured on these functionalized S1P nanopatterned substrates developed a highly aligned and elongated morphology and exhibited higher expression levels of myosin heavy chain, in addition to genes characteristic of mature skeletal muscle. We also found that S1P enhanced angiogenic potential in these cultures, as evidenced by elevated expression of endothelial-related genes. Computational analyses of live-cell videos showed a significantly improved functionality of tissues cultured on S1P-functionalized nanopatterns as indicated by greater myotube contraction displacements and velocities. In summary, our study demonstrates that biomimetic nanotopography and S1P can be combined to synergistically regulate the maturation and vascularization of engineered skeletal muscles.
Rondanelli, M.; Miccono, A.; Peroni, G.; Guerriero, F.; Morazzoni, P.; Riva, A.; Guido, D.
2016-01-01
We performed a systematic review to evaluate the evidence-based medicine regarding the main botanical extracts and their nutraceutical compounds correlated to skeletal muscle health in order to identify novel strategies that effectively attenuate skeletal muscle loss and enhance muscle function and to improve the quality of life of older subjects. This review contains all eligible studies from 2010 to 2015 and included 57 publications. We focused our attention on effects of botanical extracts on growth and health of muscle and divided these effects into five categories: anti-inflammation, muscle damage prevention, antifatigue, muscle atrophy prevention, and muscle regeneration and differentiation. PMID:27051451
Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?
Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Trinity, Joel D; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S
2014-08-01
Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s(-1)·mg(-1), P < 0.05, respectively). Citrate synthase (CS) activity, an index of mitochondrial density, also fell progressively from cardiac to skeletal to smooth muscles (222 ± 13, 115 ± 2, and 48 ± 2 μmol·g(-1)·min(-1), P < 0.05, respectively). Thus, when respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s(-1)·mg(-1), P < 0.05, respectively). Thus, although oxidative phosphorylation capacity per mitochondrial content in cardiac, skeletal, and smooth muscles suggest all mitochondria are created equal, the contrasting respiratory control ratio and nonphosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.
Skeletal muscle mechanics, energetics and plasticity.
Lieber, Richard L; Roberts, Thomas J; Blemker, Silvia S; Lee, Sabrina S M; Herzog, Walter
2017-10-23
The following papers by Richard Lieber (Skeletal Muscle as an Actuator), Thomas Roberts (Elastic Mechanisms and Muscle Function), Silvia Blemker (Skeletal Muscle has a Mind of its Own: a Computational Framework to Model the Complex Process of Muscle Adaptation) and Sabrina Lee (Muscle Properties of Spastic Muscle (Stroke and CP) are summaries of their representative contributions for the session on skeletal muscle mechanics, energetics and plasticity at the 2016 Biomechanics and Neural Control of Movement Conference (BANCOM 2016). Dr. Lieber revisits the topic of sarcomere length as a fundamental property of skeletal muscle contraction. Specifically, problems associated with sarcomere length non-uniformity and the role of sarcomerogenesis in diseases such as cerebral palsy are critically discussed. Dr. Roberts then makes us aware of the (often neglected) role of the passive tissues in muscles and discusses the properties of parallel elasticity and series elasticity, and their role in muscle function. Specifically, he identifies the merits of analyzing muscle deformations in three dimensions (rather than just two), because of the potential decoupling of the parallel elastic element length from the contractile element length, and reviews the associated implications for the architectural gear ratio of skeletal muscle contraction. Dr. Blemker then tackles muscle adaptation using a novel way of looking at adaptive processes and what might drive adaptation. She argues that cells do not have pre-programmed behaviors that are controlled by the nervous system. Rather, the adaptive responses of muscle fibers are determined by sub-cellular signaling pathways that are affected by mechanical and biochemical stimuli; an exciting framework with lots of potential. Finally, Dr. Lee takes on the challenging task of determining human muscle properties in vivo. She identifies the dilemma of how we can demonstrate the effectiveness of a treatment, specifically in cases of muscle spasticity following stroke or in children with cerebral palsy. She then discusses the merits of ultrasound based elastography, and the clinical possibilities this technique might hold. Overall, we are treated to a vast array of basic and clinical problems in skeletal muscle mechanics and physiology, with some solutions, and many suggestions for future research.
von Herrath, M; Holzer, H
1988-05-01
As a prerequisite for future studies on the possible effect of sulphite, an anti-microbial agent, on gluconeogenesis in yeast, a comparative study of fructose-1,6-bisphosphatase (FBPase), a key enzyme of gluconeogenesis, from yeast, liver and skeletal muscle is reported. In contrast to FBPase from yeast or liver, FBPase from skeletal muscle is approximately 1000-fold more sensitive to inhibition by 5' adenosine monophosphate and 30 to 250-fold less sensitive to inhibition by fructose-2,6-bisphosphate. The kinetic properties of the FBPases, determined by the ratios R(Mg2+/Mn2+) and R (pH 7/9) of the enzyme activities, measured at 10 mM Mg2+ and 2 mM Mn2+ and at pH 7.0 and 9.0, respectively, show a drastic difference between the skeletal muscle and the yeast or liver enzymes. The data support the idea that the enzymes from yeast and liver function in gluconeogenesis, whereas the enzyme from skeletal muscle is involved in other biological functions.
Shimizu, Akio; Maeda, Keisuke; Tanaka, Kei; Ogawa, Mei; Kayashita, Jun
2018-05-01
Texture-modified diets (TMD) have significantly lower energy and protein content than normal diets. Therefore, TMD can cause malnutrition and loss of muscle mass. However, few studies have reported the relationship between TMD and decreased skeletal muscle mass. The aim of the present study was to clarify the association between TMD and decreased skeletal muscle mass. We reviewed data of 188 older adult patients who were admitted to a rehabilitation hospital. TMD were defined based on the Japanese Dysphagia Diet Criteria 2013 proposed by the Japanese Society of Dysphagia Rehabilitation. The Mini Nutritional Assessment-Short Form was used to assess nutritional status; dual-energy X-ray absorptiometry was used to measure the skeletal muscle mass index, and the cut-off values for decreased skeletal muscle mass index were based on the Asian Working Group for Sarcopenia; the Functional Independence Measure was used to evaluate activities of daily living. The patients' mean age was 80.6 ± 7.5 years, and 62% were women. A total of 22 patients (11.7%) consumed TMD. A total of 104 patients (55.3%) had decreased skeletal muscle mass, and approximately 90% of them consumed TMD. Decreased skeletal muscle mass index (odds ratio 7.199, 95% confidence interval 1.489-34.805, P ≤ 0.01) and Functional Independence Measure scores (odds ratio 0.972, 95% confidence interval 0.952-0.992, P ≤ 0.01) were independently related to TMD in the multivariate analysis. The TMD group was associated with decreased skeletal muscle mass. Future, prospective studies are necessary to investigate causality. Geriatr Gerontol Int 2018; 18: 698-704. © 2017 Japan Geriatrics Society.
BROTTO, MARCO A.; BIESIADECKI, BRANDON J.; BROTTO, LETICIA S.; NOSEK, THOMAS M; JIN, J.-P.
2005-01-01
(Summary) Brotto, Marco A., Brandon J. Biesiadecki, Leticia S. Brotto, Thomas M. Nosek, and J.-P. Jin. Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca2+ via the troponin complex. Slow and fast twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin and troponin T (TnT) and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton skinned single fibers from soleus, diaphragm, gastrocnemius and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of TnT and TnI isoform to investigate their role in determining contractility. Type IIa, IIx and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca2+ sensitivity than that of the fast troponin fibers, while fibers containing fast troponin showed a higher cooperativity of Ca2+ activation than that of the slow troponin fibers. The results demonstrate distinctive, but coordinated, regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties. PMID:16192301
Skeletal Muscle Ultrasound in Critical Care: A Tool in Need of Translation.
Mourtzakis, Marina; Parry, Selina; Connolly, Bronwen; Puthucheary, Zudin
2017-10-01
With the emerging interest in documenting and understanding muscle atrophy and function in critically ill patients and survivors, ultrasonography has transformational potential for measurement of muscle quantity and quality. We discuss the importance of quantifying skeletal muscle in the intensive care unit setting. We also identify the merits and limitations of various modalities that are capable of accurately and precisely measuring muscularity. Ultrasound is emerging as a potentially powerful tool for skeletal muscle quantification; however, there are key challenges that need to be addressed in future work to ensure useful interpretation and comparability of results across diverse observational and interventional studies. Ultrasound presents several methodological challenges, and ultimately muscle quantification combined with metabolic, nutritional, and functional markers will allow optimal patient assessment and prognosis. Moving forward, we recommend that publications include greater detail on landmarking, repeated measures, identification of muscle that was not assessable, and reproducible protocols to more effectively compare results across different studies.
The emerging role of skeletal muscle extracellular matrix remodelling in obesity and exercise.
Martinez-Huenchullan, S; McLennan, S V; Verhoeven, A; Twigg, S M; Tam, C S
2017-07-01
Skeletal muscle extracellular matrix remodelling has been proposed as a new feature associated with obesity and metabolic dysfunction. Exercise training improves muscle function in obesity, which may be mediated by regulatory effects on the muscle extracellular matrix. This review examined available literature on skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise. A non-systematic literature review was performed on PubMed of publications from 1970 to 2015. A total of 37 studies from humans and animals were retained. Studies reported overall increases in gene and protein expression of different types of collagen, growth factors and enzymatic regulators of the skeletal muscle extracellular matrix in obesity. Only two studies investigated the effects of exercise on skeletal muscle extracellular matrix during obesity, with both suggesting a regulatory effect of exercise. The effects of exercise on muscle extracellular matrix seem to be influenced by the duration and type of exercise training with variable effects from a single session compared with a longer duration of exercise. More studies are needed to elucidate the mechanisms behind skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise. © 2017 World Obesity Federation.
Fletcher, Rachel S; Ratajczak, Joanna; Doig, Craig L; Oakey, Lucy A; Callingham, Rebecca; Da Silva Xavier, Gabriella; Garten, Antje; Elhassan, Yasir S; Redpath, Philip; Migaud, Marie E; Philp, Andrew; Brenner, Charles; Canto, Carles; Lavery, Gareth G
2017-08-01
Augmenting nicotinamide adenine dinucleotide (NAD + ) availability may protect skeletal muscle from age-related metabolic decline. Dietary supplementation of NAD + precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) appear efficacious in elevating muscle NAD + . Here we sought to identify the pathways skeletal muscle cells utilize to synthesize NAD + from NMN and NR and provide insight into mechanisms of muscle metabolic homeostasis. We exploited expression profiling of muscle NAD + biosynthetic pathways, single and double nicotinamide riboside kinase 1/2 (NRK1/2) loss-of-function mice, and pharmacological inhibition of muscle NAD + recycling to evaluate NMN and NR utilization. Skeletal muscle cells primarily rely on nicotinamide phosphoribosyltransferase (NAMPT), NRK1, and NRK2 for salvage biosynthesis of NAD + . NAMPT inhibition depletes muscle NAD + availability and can be rescued by NR and NMN as the preferred precursors for elevating muscle cell NAD + in a pathway that depends on NRK1 and NRK2. Nrk2 knockout mice develop normally and show subtle alterations to their NAD+ metabolome and expression of related genes. NRK1, NRK2, and double KO myotubes revealed redundancy in the NRK dependent metabolism of NR to NAD + . Significantly, these models revealed that NMN supplementation is also dependent upon NRK activity to enhance NAD + availability. These results identify skeletal muscle cells as requiring NAMPT to maintain NAD + availability and reveal that NRK1 and 2 display overlapping function in salvage of exogenous NR and NMN to augment intracellular NAD + availability.
Early Exercise Rehabilitation of Muscle Weakness in Acute Respiratory Failure Patients
Berry, Michael J.; Morris, Peter E.
2013-01-01
Acute Respiratory Failure patients experience significant muscle weakness which contributes to prolonged hospitalization and functional impairments post-hospital discharge. Based on our previous work, we hypothesize that an exercise intervention initiated early in the intensive care unit aimed at improving skeletal muscle strength could decrease hospital stay and attenuate the deconditioning and skeletal muscle weakness experienced by these patients. Summary Early exercise has the potential to decrease hospital length of stay and improve function in Acute Respiratory Failure patients. PMID:23873130
Histone deacetylase degradation andMEF2 activation promote the formation of slow-twitch myofibers
Potthoff, Matthew J.; Wu, Hai; Arnold, Michael A.; Shelton, John M.; Backs, Johannes; McAnally, John; Richardson, James A.; Bassel-Duby, Rhonda; Olson, Eric N.
2007-01-01
Skeletal muscle is composed of heterogeneous myofibers with distinctive rates of contraction, metabolic properties, and susceptibility to fatigue. We show that class II histone deacetylase (HDAC) proteins, which function as transcriptional repressors of the myocyte enhancer factor 2 (MEF2) transcription factor, fail to accumulate in the soleus, a slow muscle, compared with fast muscles (e.g., white vastus lateralis). Accordingly, pharmacological blockade of proteasome function specifically increases expression of class II HDAC proteins in the soleus in vivo. Using gain- and loss-of-function approaches in mice, we discovered that class II HDAC proteins suppress the formation of slow twitch, oxidative myofibers through the repression of MEF2 activity. Conversely, expression of a hyperactive form of MEF2 in skeletal muscle of transgenic mice promotes the formation of slow fibers and enhances running endurance, enabling mice to run almost twice the distance of WT littermates. Thus, the selective degradation of class II HDACs in slow skeletal muscle provides a mechanism for enhancing physical performance and resistance to fatigue by augmenting the transcriptional activity of MEF2. These findings provide what we believe are new insights into the molecular basis of skeletal muscle function and have important implications for possible therapeutic interventions into muscular diseases. PMID:17786239
Cammarato, Anthony; Dambacher, Corey M.; Knowles, Aileen F.; Kronert, William A.; Bodmer, Rolf
2008-01-01
Striated muscle myosin is a multidomain ATP-dependent molecular motor. Alterations to various domains affect the chemomechanical properties of the motor, and they are associated with skeletal and cardiac myopathies. The myosin transducer domain is located near the nucleotide-binding site. Here, we helped define the role of the transducer by using an integrative approach to study how Drosophila melanogaster transducer mutations D45 and Mhc5 affect myosin function and skeletal and cardiac muscle structure and performance. We found D45 (A261T) myosin has depressed ATPase activity and in vitro actin motility, whereas Mhc5 (G200D) myosin has these properties enhanced. Depressed D45 myosin activity protects against age-associated dysfunction in metabolically demanding skeletal muscles. In contrast, enhanced Mhc5 myosin function allows normal skeletal myofibril assembly, but it induces degradation of the myofibrillar apparatus, probably as a result of contractile disinhibition. Analysis of beating hearts demonstrates depressed motor function evokes a dilatory response, similar to that seen with vertebrate dilated cardiomyopathy myosin mutations, and it disrupts contractile rhythmicity. Enhanced myosin performance generates a phenotype apparently analogous to that of human restrictive cardiomyopathy, possibly indicating myosin-based origins for the disease. The D45 and Mhc5 mutations illustrate the transducer's role in influencing the chemomechanical properties of myosin and produce unique pathologies in distinct muscles. Our data suggest Drosophila is a valuable system for identifying and modeling mutations analogous to those associated with specific human muscle disorders. PMID:18045988
Corbin, Deborah R.; Rehg, Jerold E.; Shepherd, Danielle L.; Stoilov, Peter; Percifield, Ryan J.; Horner, Linda; Frase, Sharon; Zhang, Yong-Mei; Rock, Charles O.; Hollander, John M.; Jackowski, Suzanne; Leonardi, Roberta
2017-01-01
Coenzyme A (CoA) is a cofactor that is central to energy metabolism and CoA synthesis is controlled by the enzyme pantothenate kinase (PanK). A transgenic mouse strain expressing human PANK2 was derived to determine the physiological impact of PANK overexpression and elevated CoA levels. The Tg(PANK2) mice expressed high levels of the transgene in skeletal muscle and heart; however, CoA was substantially elevated only in skeletal muscle, possibly associated with the comparatively low endogenous levels of acetyl-CoA, a potent feedback inhibitor of PANK2. Tg(PANK2) mice were smaller, had less skeletal muscle mass and displayed significantly impaired exercise tolerance and grip strength. Skeletal myofibers were characterized by centralized nuclei and aberrant mitochondria. Both the content of fully assembled complex I of the electron transport chain and ATP levels were reduced, while markers of oxidative stress were elevated in Tg(PANK2) skeletal muscle. These abnormalities were not detected in the Tg(PANK2) heart muscle, with the exception of spotty loss of cristae organization in the mitochondria. The data demonstrate that excessively high CoA may be detrimental to skeletal muscle function. PMID:28189602
NASA Astrophysics Data System (ADS)
Boppart, Stephen
2006-02-01
Skeletal muscle fibers are a known source of form birefringence in biological tissue. The birefringence present in skeletal muscle is associated with the ultrastructure of individual sarcomeres, specifically the arrangement of A-bands corresponding to the thick myosin filaments. Certain structural proteins that prevent damage and maintain the structural and functional health of the muscle fiber preserve the organization of the Abands in skeletal muscle. Therefore, the level of birefringence detected can estimate the health of the muscle as well as the damage incurred during exercise. Murine skeletal muscle from both genetically-altered (mdx) and normal (wild-type) specimens were imaged in vivo with a fiber-based PSOCT imaging system to quantitatively determine the level of birefringence present in the tissue before and after exercise. The mdx muscle lacks dystrophin, a structural protein that is mutated in Duchenne muscular dystrophy in humans. Muscle from these mdx mice exhibited a marked decrease in birefringence after exercise, whereas the wild-type muscle was highly birefringent before and after exercise. The quantitative results from this tissue optics study suggest for the first time that there is a distinct relationship between the degree of birefringence detected using PS-OCT and the sarcomeric ultrastructure present within skeletal muscle.
Stiber, Jonathan; Hawkins, April; Zhang, Zhu-Shan; Wang, Sunny; Burch, Jarrett; Graham, Victoria; Ward, Cary C.; Seth, Malini; Finch, Elizabeth; Malouf, Nadia; Williams, R. Sanders; Eu, Jerry P.; Rosenberg, Paul
2009-01-01
It is now well established that stromal interaction molecule 1 (STIM1) is the calcium sensor of endoplasmic reticulum (ER) stores required to activate store-operated calcium entry (SOC) channels at the surface of non-excitable cells. Yet little is known about STIM1 in excitable cells such as striated muscle where the complement of calcium regulatory molecules is rather disparate from that of non-excitable cells. Here, we show that STIM1 is expressed in both myotubes and adult skeletal muscle. Myotubes lacking functional STIM1 fail to exhibit SOC and fatigue rapidly. Moreover, mice lacking functional STIM1 die perinatally from a skeletal myopathy. In addition, STIM1 haploinsufficiency confers a contractile defect only under conditions where rapid refilling of stores would be needed. These findings provide novel insight to the role of STIM1 in skeletal muscle and suggest that STIM1 has a universal role as an ER/SR calcium sensor in both excitable and non-excitable cells. PMID:18488020
Chatel, Benjamin; Bendahan, David; Hourdé, Christophe; Pellerin, Luc; Lengacher, Sylvain; Magistretti, Pierre; Le Fur, Yann; Vilmen, Christophe; Bernard, Monique; Messonnier, Laurent A
2017-06-01
The purpose of this study was to investigate the effects of a partial suppression of monocarboxylate transporter (MCT)-1 on skeletal muscle pH, energetics, and function (MCT1 +/- mice). Twenty-four MCT1 +/- and 13 wild-type (WT) mice were subjected to a rest-exercise-recovery protocol, allowing assessment of muscle energetics (by magnetic resonance spectroscopy) and function. The study included analysis of enzyme activities and content of protein involved in pH regulation. Skeletal muscle of MCT1 +/- mice had lower MCT1 (-61%; P < 0.05) and carbonic anhydrase (CA)-II (-54%; P < 0.05) contents. Although intramuscular pH was higher in MCT1 +/- mice at rest ( P < 0.001), the mice showed higher acidosis during the first minute of exercise ( P < 0.01). Then, the pH time course was similar among groups until exercise completion. MCT1 +/- mice had higher specific peak ( P < 0.05) and maximum tetanic ( P < 0.01) forces and lower fatigability ( P < 0.001) when compared to WT mice. We conclude that both MCT1 and CAII are involved in the homeostatic control of pH in skeletal muscle, both at rest and at the onset of exercise. The improved muscle function and resistance to fatigue in MCT1 +/- mice remain unexplained.-Chatel, B., Bendahan, D., Hourdé, C., Pellerin, L., Lengacher, S., Magistretti, P., Fur, Y. L., Vilmen, C., Bernard, M., Messonnier, L. A. Role of MCT1 and CAII in skeletal muscle pH homeostasis, energetics, and function: in vivo insights from MCT1 haploinsufficient mice. © FASEB.
SMASH - semi-automatic muscle analysis using segmentation of histology: a MATLAB application.
Smith, Lucas R; Barton, Elisabeth R
2014-01-01
Histological assessment of skeletal muscle tissue is commonly applied to many areas of skeletal muscle physiological research. Histological parameters including fiber distribution, fiber type, centrally nucleated fibers, and capillary density are all frequently quantified measures of skeletal muscle. These parameters reflect functional properties of muscle and undergo adaptation in many muscle diseases and injuries. While standard operating procedures have been developed to guide analysis of many of these parameters, the software to freely, efficiently, and consistently analyze them is not readily available. In order to provide this service to the muscle research community we developed an open source MATLAB script to analyze immunofluorescent muscle sections incorporating user controls for muscle histological analysis. The software consists of multiple functions designed to provide tools for the analysis selected. Initial segmentation and fiber filter functions segment the image and remove non-fiber elements based on user-defined parameters to create a fiber mask. Establishing parameters set by the user, the software outputs data on fiber size and type, centrally nucleated fibers, and other structures. These functions were evaluated on stained soleus muscle sections from 1-year-old wild-type and mdx mice, a model of Duchenne muscular dystrophy. In accordance with previously published data, fiber size was not different between groups, but mdx muscles had much higher fiber size variability. The mdx muscle had a significantly greater proportion of type I fibers, but type I fibers did not change in size relative to type II fibers. Centrally nucleated fibers were highly prevalent in mdx muscle and were significantly larger than peripherally nucleated fibers. The MATLAB code described and provided along with this manuscript is designed for image processing of skeletal muscle immunofluorescent histological sections. The program allows for semi-automated fiber detection along with user correction. The output of the code provides data in accordance with established standards of practice. The results of the program have been validated using a small set of wild-type and mdx muscle sections. This program is the first freely available and open source image processing program designed to automate analysis of skeletal muscle histological sections.
Skeletal muscle design to meet functional demands
Lieber, Richard L.; Ward, Samuel R.
2011-01-01
Skeletal muscles are length- and velocity-sensitive force producers, constructed of a vast array of sarcomeres. Muscles come in a variety of sizes and shapes to accomplish a wide variety of tasks. How does muscle design match task performance? In this review, we outline muscle's basic properties and strategies that are used to produce movement. Several examples are provided, primarily for human muscles, in which skeletal muscle architecture and moment arms are tailored to a particular performance requirement. In addition, the concept that muscles may have a preferred sarcomere length operating range is also introduced. Taken together, the case is made that muscles can be fine-tuned to perform specific tasks that require actuators with a wide range of properties. PMID:21502118
Hernández-Ochoa, Erick O.; Schneider, Martin F.
2012-01-01
Skeletal muscle excitation-contraction (E-C)1 coupling is a process composed of multiple sequential stages, by which an action potential triggers sarcoplasmic reticulum (SR)2 Ca2+ release and subsequent contractile activation. The various steps in the E-C coupling process in skeletal muscle can be studied using different techniques. The simultaneous recordings of sarcolemmal electrical signals and the accompanying elevation in myoplasmic Ca2+, due to depolarization-initiated SR Ca2+ release in skeletal muscle fibres, have been useful to obtain a better understanding of muscle function. In studying the origin and mechanism of voltage dependency of E-C coupling a variety of different techniques have been used to control the voltage in adult skeletal fibres. Pioneering work in muscles isolated from amphibians or crustaceans used microelectrodes or ‘high resistance gap’ techniques to manipulate the voltage in the muscle fibres. The development of the patch clamp technique and its variant, the whole-cell clamp configuration that facilitates the manipulation of the intracellular environment, allowed the use of the voltage clamp techniques in different cell types, including skeletal muscle fibres. The aim of this article is to present an historical perspective of the voltage clamp methods used to study skeletal muscle E-C coupling as well as to describe the current status of using the whole-cell patch clamp technique in studies in which the electrical and Ca2+ signalling properties of mouse skeletal muscle membranes are being investigated. PMID:22306655
Correa-de-Araujo, Rosaly; Harris-Love, Michael O; Miljkovic, Iva; Fragala, Maren S; Anthony, Brian W; Manini, Todd M
2017-01-01
A growing body of scientific literature suggests that not only changes in skeletal muscle mass, but also other factors underpinning muscle quality, play a role in the decline in skeletal muscle function and impaired mobility associated with aging. A symposium on muscle quality and the need for standardized assessment was held on April 28, 2016 at the International Conference on Frailty and Sarcopenia Research in Philadelphia, Pennsylvania. The purpose of this symposium was to provide a venue for basic science and clinical researchers and expert clinicians to discuss muscle quality in the context of skeletal muscle function deficit and other aging-related muscle dysfunctions. The present article provides an expanded introduction concerning the emerging definitions of muscle quality and a potential framework for scientific inquiry within the field. Changes in muscle tissue composition, based on excessive levels of inter- and intra-muscular adipose tissue and intramyocellular lipids, have been found to adversely impact metabolism and peak force generation. However, methods to easily and rapidly assess muscle tissue composition in multiple clinical settings and with minimal patient burden are needed. Diagnostic ultrasound and other assessment methods continue to be developed for characterizing muscle pathology, and enhanced sonography using sensors to provide user feedback and improve reliability is currently the subject of ongoing investigation and development. In addition, measures of relative muscle force such as specific force or grip strength adjusted for body size have been proposed as methods to assess changes in muscle quality. Furthermore, performance-based assessments of muscle power via timed tests of function and body size estimates, are associated with lower extremity muscle strength may be responsive to age-related changes in muscle quality. Future aims include reaching consensus on the definition and standardized assessments of muscle quality, and providing recommendations to address critical clinical and technology research gaps within the field.
Intraperitoneal AAV9-shRNA inhibits target expression in neonatal skeletal and cardiac muscles.
Mayra, Azat; Tomimitsu, Hiroyuki; Kubodera, Takayuki; Kobayashi, Masaki; Piao, Wenying; Sunaga, Fumiko; Hirai, Yukihiko; Shimada, Takashi; Mizusawa, Hidehiro; Yokota, Takanori
2011-02-11
Systemic injections of AAV vectors generally transduce to the liver more effectively than to cardiac and skeletal muscles. The short hairpin RNA (shRNA)-expressing AAV9 (shRNA-AAV9) can also reduce target gene expression in the liver, but not enough in cardiac or skeletal muscles. Higher doses of shRNA-AAV9 required for inhibiting target genes in cardiac and skeletal muscles often results in shRNA-related toxicity including microRNA oversaturation that can induce fetal liver failure. In this study, we injected high-dose shRNA-AAV9 to neonates and efficiently silenced genes in cardiac and skeletal muscles without inducing liver toxicity. This is because AAV is most likely diluted or degraded in the liver than in cardiac or skeletal muscle during cell division after birth. We report that this systemically injected shRNA-AAV method does not induce any major side effects, such as liver dysfunction, and the dose of shRNA-AAV is sufficient for gene silencing in skeletal and cardiac muscle tissues. This novel method may be useful for generating gene knockdown in skeletal and cardiac mouse tissues, thus providing mouse models useful for analyzing diseases caused by loss-of-function of target genes. Copyright © 2011 Elsevier Inc. All rights reserved.
Sinha, Akash; Hollingsworth, Kieren G; Ball, Steve; Cheetham, Tim
2014-01-01
Growth hormone-deficient (GHD) adults often report impaired quality of life (QoL) - with fatigue, a key element. This deficit can improve following GH replacement. The basis of this response is unclear. Perturbations in skeletal muscle metabolism have been demonstrated in several conditions in which fatigue is a prominent symptom. We wished to define the role of skeletal muscle metabolism in the impaired QoL observed in patients with GHD. To compare in vivo skeletal muscle mitochondrial oxidative phosphorylation using phosphorus-31 magnetic resonance spectroscopy in matched untreated GHD adults, treated GHD adults and healthy volunteers. Twenty-two untreated GHD adults, 23 treated GHD adults and 20 healthy volunteers were recruited at a regional centre. All patients underwent assessment of muscle mitochondrial function (τ₁/₂ PCr) and proton handling using spectroscopy. Fasting biochemical analyses and anthropometric measurement were obtained. All patients completed the QoL-AGHDA and physical activity assessment (IPAQ) questionnaires. Untreated and treated GHD adults complained of significantly increased fatigue and an impaired QoL (P = 0·002) when compared to healthy controls. There was no difference in maximal mitochondrial function (P = 0·53) nor pH recovery (P = 0·38) of skeletal muscle between the three groups. Untreated GHD patients had significantly lower IGF-1 than both treated GHD and healthy volunteers (P < 0·001), but there was no association between τ₁/₂ PCr and serum IGF-1 (r = -0·13, P = 0·32). The impaired QoL seen in GHD adults is not associated with the skeletal muscle spectroscopic 'footprint' of altered mitochondrial oxidative function, anaerobic glycolysis or proton clearance that are a feature of several conditions in which fatigue is a prominent feature. These data suggest that the pathophysiology of fatigue and impaired QoL in GHD may have a significant central rather than peripheral (skeletal muscle) component. © 2013 John Wiley & Sons Ltd.
Skeletal muscle is a biological example of a linear electroactive actuator
NASA Astrophysics Data System (ADS)
Lieber, Richard L.
1999-05-01
Skeletal muscle represents a classic biological example of a structure-function relationship. This paper reviews basic muscle anatomy and demonstrates how molecular motion on the order of nm distances is converted into the macroscopic movements that are possible with skeletal muscle. Muscle anatomy provides a structural basis for understanding the basic mechanical properties of skeletal muscle -- namely, the length-tension relationship and the force-velocity relationships. The length-tension relationship illustrates that muscle force generation is extremely length dependent due to the interdigitation of the contractile filaments. The force-velocity relationship is characterized by a rapid force drop in muscle with increasing shortening velocity and a rapid rise in force when muscles are forced to lengthen. Finally, muscle architecture -- the number and arrangement of muscle fibers -- has a profound effect on the magnitude of muscle force generated and the magnitude of muscle excursion. These concepts demonstrate the elegant manner in which muscle acts as a biologically regenerating linear motor. These concepts can be used in developing artificial muscles as well as in performing surgical reconstructive procedures with various donor muscles.
Effects of aging on mitochondrial function in skeletal muscle of American Quarter Horses
Li, Chengcheng; White, Sarah H.; Warren, Lori K.
2016-01-01
Skeletal muscle function, aerobic capacity, and mitochondrial (Mt) function have been found to decline with age in humans and rodents. However, not much is known about age-related changes in Mt function in equine skeletal muscle. Here, we compared fiber-type composition and Mt function in gluteus medius and triceps brachii muscle between young (age 1.8 ± 0.1 yr, n = 24) and aged (age 17-25 yr, n = 10) American Quarter Horses. The percentage of myosin heavy chain (MHC) IIX was lower in aged compared with young muscles (gluteus, P = 0.092; triceps, P = 0.012), while the percentages of MHC I (gluteus; P < 0.001) and MHC IIA (triceps; P = 0.023) were increased. Mass-specific Mt density, indicated by citrate synthase activity, was unaffected by age in gluteus, but decreased in aged triceps (P = 0.023). Cytochrome-c oxidase (COX) activity per milligram tissue and per Mt unit decreased with age in gluteus (P < 0.001 for both) and triceps (P < 0.001 and P = 0.003, respectively). Activity of 3-hydroxyacyl-CoA dehydrogenase per milligram tissue was unaffected by age, but increased per Mt unit in aged gluteus and triceps (P = 0.023 and P < 0.001, respectively). Mt respiration of permeabilized muscle fibers per milligram tissue was unaffected by age in both muscles. Main effects of age appeared when respiration was normalized to Mt content, with increases in LEAK, oxidative phosphorylation capacity, and electron transport system capacity (P = 0.038, P = 0.045, and P = 0.007, respectively), independent of muscle. In conclusion, equine skeletal muscle aging was accompanied by a shift in fiber-type composition, decrease in Mt density and COX activity, but preserved Mt respiratory function. PMID:27283918
Tasseva, Guergana; van der Veen, Jelske N; Lingrell, Susanne; Jacobs, René L; Vance, Dennis E; Vance, Jean E
2016-02-01
Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in the liver. Mice lacking PEMT are protected from high-fat diet-induced obesity and insulin resistance, and exhibit increased whole-body energy expenditure and oxygen consumption. Since skeletal muscle is a major site of fatty acid oxidation and energy utilization, we determined if rates of fatty acid oxidation/oxygen consumption in muscle are higher in Pemt(-/-) mice than in Pemt(+/+) mice. Although PEMT is abundant in the liver, PEMT protein and activity were undetectable in four types of skeletal muscle. Moreover, amounts of PC and PE in the skeletal muscle were not altered by PEMT deficiency. Thus, we concluded that any influence of PEMT deficiency on skeletal muscle would be an indirect consequence of lack of PEMT in liver. Neither the in vivo rate of fatty acid uptake by muscle nor the rate of fatty acid oxidation in muscle explants and cultured myocytes depended upon Pemt genotype. Nor did PEMT deficiency increase oxygen consumption or respiratory function in skeletal muscle mitochondria. Thus, the increased whole body oxygen consumption in Pemt(-/-) mice, and resistance of these mice to diet-induced weight gain, are not primarily due to increased capacity of skeletal muscle for utilization of fatty acids as an energy source. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
SKELETAL MUSCLE ULTRASTRUCTURE AND FUNCTION IN STATIN-TOLERANT INDIVIDUALS
Rengo, Jason L.; Callahan, Damien M.; Savage, Patrick D.; Ades, Philip A.; Toth, Michael J.
2015-01-01
Skeletal Muscle Ultrastructure and Function in Statin-Tolerant Individuals: Introduction Statins have well-known benefits on cardiovascular mortality, though up to 15% of patients experience side effects. With guidelines from the American Heart Association, American College of Cardiology, and American Diabetics Association expected to double the number of statin users, the overall incidence of myalgia and myopathy will increase. Methods We evaluated skeletal muscle structure and contractile function at the molecular, cellular, and whole tissue levels in 12 statin tolerant and 12 control subjects. Results Myosin isoform expression, fiber type distributions, single fiber maximal Ca2+-activated tension, and whole muscle contractile force were similar between groups. No differences were observed in myosin-actin cross-bridge kinetics in myosin heavy chain (MHC) I or IIA fibers. Discussion We found no evidence for statin-induced changes in muscle morphology at the molecular, cellular, or whole tissue levels. Collectively, our data show that chronic statin therapy in healthy asymptomatic individuals does not promote deleterious myofilament structural or functional adaptations. PMID:26059690
saline, tourniquet-induced IR+lipo-Dex, and tourniquet-induced IR+Dex groups. These experiments tested the protective effects of lipo-Dex and Dex on...skeletal muscle morphology and function in mice with tourniquet-induced IR. Lipo-Dex is liposome-encapsulated Dex. Our study found that lipo-Dex was
Skeletal Muscle Fascicle Arrangements Can Be Reconstructed Using a Laplacian Vector Field Simulation
Choi, Hon Fai; Blemker, Silvia S.
2013-01-01
Skeletal muscles are characterized by a large diversity in anatomical architecture and function. Muscle force and contraction are generated by contractile fiber cells grouped in fascicle bundles, which transmit the mechanical action between origin and insertion attachments of the muscle. Therefore, an adequate representation of fascicle arrangements in computational models of skeletal muscles is important, especially when investigating three-dimensional muscle deformations in finite element models. However, obtaining high resolution in vivo measurements of fascicle arrangements in skeletal muscles is currently still challenging. This motivated the development of methods in previous studies to generate numerical representations of fascicle trajectories using interpolation templates. Here, we present an alternative approach based on the hypothesis of a rotation and divergence free (Laplacian) vector field behavior which reflects observed physical characteristics of fascicle trajectories. To obtain this representation, the Laplace equation was solved in anatomical reconstructions of skeletal muscle shapes based on medical images using a uniform flux boundary condition on the attachment areas. Fascicle tracts were generated through a robust flux based tracing algorithm. The concept of this approach was demonstrated in two-dimensional synthetic examples of typical skeletal muscle architectures. A detailed evaluation was performed in an example of the anatomical human tibialis anterior muscle which showed an overall agreement with measurements from the literature. The utility and capability of the proposed method was further demonstrated in other anatomical examples of human skeletal muscles with a wide range of muscle shapes and attachment morphologies. PMID:24204878
Nagata, Kazuya; Itaka, Keiji; Baba, Miyuki; Uchida, Satoshi; Ishii, Takehiko; Kataoka, Kazunori
2014-06-10
The recovery of neurologic function after peripheral nerve injury often remains incomplete because of the prolonged reinnervation process, which leads to skeletal muscle atrophy and articular contracture from disuse over time. To rescue the skeletal muscle and promote functional recovery, insulin-like growth factor-1 (IGF-1), a potent myogenic factor, was introduced into the muscle by hydrodynamic injection of IGF-1-expressing plasmid DNA using a biocompatible nonviral gene carrier, a polyplex nanomicelle. In a mouse model of sciatic nerve injury, the introduction of IGF-1 into the skeletal muscle of the paralyzed limb effectively alleviated a decrease in muscle weight compared with that in untreated control mice. Histologic analysis of the muscle revealed the IGF-1-expressing plasmid DNA (pDNA) to have a myogenic effect, inducing muscle hypertrophy with the upregulation of the myogenic regulatory factors, myogenin and MyoD. The evaluation of motor function by walking track analysis revealed that the group that received the hydrodynamic injection of IGF-1-expressing pDNA using the polyplex nanomicelle had significantly early recovery of motor function compared with groups receiving negative control pDNA and untreated controls. Early recovery of sensation in the distal area of sciatic nerve injury was also induced by the introduction of IGF-1-expressing pDNA, presumably because of the effect of secreted IGF-1 protein in the vicinity of the injured sciatic nerve exerting a synergistic effect with muscle hypertrophy, inducing a more favorable prognosis. This approach of introducing IGF-1 into skeletal muscle is promising for the treatment of peripheral nerve injury by promoting early motor function recovery. Copyright © 2014 Elsevier B.V. All rights reserved.
Xia, Z Y; Zhai, X D; Liu, B B; Zheng, Z; Zhao, L L; Mo, Y N
2017-02-01
To analyze the relationship among electrical conductivity (EC), total volatile basic nitrogen (TVB-N), which is an index of decomposition rate for meat production, and postmortem interval (PMI). To explore the feasibility of EC as an index of cadaveric skeletal muscle decomposition rate and lay the foundation for PMI estimation. Healthy Sprague-Dawley rats were sacrificed by cervical vertebrae dislocation and kept at 28 ℃. Muscle of rear limbs was removed at different PMI, homogenized in deionized water and then skeletal extraction liquid of mass concentration 0.1 g/mL was prepared. EC and TVB-N of extraction liquid were separately determined. The correlation between EC ( x ₁) and TVB-N ( x ₂) was analyzed, and their regression function was established. The relationship between PMI ( y ) and these two parameters were studied, and their regression functions were separately established. The change trends of EC and TVB-N of skeletal extraction liquid at different PMI were almost the same, and there was a linear positive correlation between them. The regression equation was x ₂=0.14 x ₁-164.91( R ²=0.982). EC and TVB-N of skeletal muscle changed significantly with PMI, and the regression functions were y =19.38 x ₁³-370.68 x ₁²+2 526.03 x ₁-717.06( R ²=0.994), and y =2.56 x ₂³-48.39 x ₂²+330.60 x ₂-255.04( R ²=0.997), respectively. EC and TVB-N of rat postmortem skeletal muscle show similar change trends, which can be used as an index for decomposition rate of cadaveric skeletal muscle and provide a method for further study of late PMI estimation. Copyright© by the Editorial Department of Journal of Forensic Medicine
Skeletal muscle contraction in protecting joints and bones by absorbing mechanical impacts
NASA Astrophysics Data System (ADS)
Rudenko, O. V.; Tsyuryupa, S.; Sarvazyan, A.
2016-09-01
We have previously hypothesized that the dissipation of mechanical energy of external impact is a fundamental function of skeletal muscle in addition to its primary function to convert chemical energy into mechanical energy. In this paper, a mathematical justification of this hypothesis is presented. First, a simple mechanical model, in which the muscle is considered as a simple Hookean spring, is considered. This analysis serves as an introduction to the consideration of a biomechanical model taking into account the molecular mechanism of muscle contraction, kinetics of myosin bridges, sarcomere dynamics, and tension of muscle fibers. It is shown that a muscle behaves like a nonlinear and adaptive spring tempering the force of impact and increasing the duration of the collision. The temporal profiles of muscle reaction to the impact as functions of the levels of muscle contraction, durations of the impact front, and the time constants of myosin bridges closing, are obtained. The absorption of mechanical shock energy is achieved due to the increased viscoelasticity of the contracting skeletal muscle. Controlling the contraction level allows for the optimization of the stiffness and viscosity of the muscle necessary for the protection of the joints and bones.
Exercise and nutritional interventions for improving aging muscle health.
Forbes, Scott C; Little, Jonathan P; Candow, Darren G
2012-08-01
Skeletal muscle mass declines with age (i.e., sarcopenia) resulting in muscle weakness and functional limitations. Sarcopenia has been associated with physiological changes in muscle morphology, protein and hormonal kinetics, insulin resistance, inflammation, and oxidative stress. The purpose of this review is to highlight how exercise and nutritional intervention strategies may benefit aging muscle. It is well known that resistance exercise training increases muscle strength and size and evidence also suggests that resistance training can increase mitochondrial content and decrease oxidative stress in older adults. Recent findings suggest that fast-velocity resistance exercise may be an effective intervention for older adults to enhance muscle power and functional capacity. Aerobic exercise training may also benefit aging skeletal muscle by enhancing mitochondrial bioenergetics, improving insulin sensitivity, and/or decreasing oxidative stress. In addition to exercise, creatine monohydrate, milk-based proteins, and essential fatty acids all have biological effects which could enhance some of the physiological adaptations from exercise training in older adults. Additional research is needed to determine whether skeletal muscle adaptations to increased activity in older adults are further enhanced with effective nutritional interventions and whether this is due to enhanced muscle protein synthesis, improved mitochondrial function, and/or a reduced inflammatory response.
Coley, William; Rayavarapu, Sree; van der Meulen, Jack H.; Duba, Ayyappa S.; Nagaraju, Kanneboyina
2013-01-01
Background Current treatments for idiopathic inflammatory myopathies (collectively called myositis) focus on the suppression of an autoimmune inflammatory response within the skeletal muscle. However, it has been observed that there is a poor correlation between the successful suppression of muscle inflammation and an improvement in muscle function. Some evidence in the literature suggests that metabolic abnormalities in the skeletal muscle underlie the weakness that continues despite successful immunosuppression. We have previously shown that decreased expression of a purine nucleotide cycle enzyme, adenosine monophosphate deaminase (AMPD1), leads to muscle weakness in a mouse model of myositis and may provide a mechanistic basis for muscle weakness. One of the downstream metabolites of this pathway, D-ribose, has been reported to alleviate symptoms of myalgia in patients with a congenital loss of AMPD1. Therefore, we hypothesized that supplementing exogenous D-ribose would improve muscle function in the mouse model of myositis. We treated normal and myositis mice with daily doses of D-ribose (4 mg/kg) over a 6-week time period and assessed its effects using a battery of behavioral, functional, histological and molecular measures. Results Treatment with D-ribose was found to have no statistically significant effects on body weight, grip strength, open field behavioral activity, maximal and specific forces of EDL, soleus muscles, or histological features. Histological and gene expression analysis indicated that muscle tissues remained inflamed despite treatment. Gene expression analysis also suggested that low levels of the ribokinase enzyme in the skeletal muscle might prevent skeletal muscle tissue from effectively utilizing D-ribose. Conclusions Treatment with daily oral doses of D-ribose showed no significant effect on either disease progression or muscle function in the mouse model of myositis. PMID:23785461
Coley, William; Rayavarapu, Sree; van der Meulen, Jack H; Duba, Ayyappa S; Nagaraju, Kanneboyina
2013-01-01
Current treatments for idiopathic inflammatory myopathies (collectively called myositis) focus on the suppression of an autoimmune inflammatory response within the skeletal muscle. However, it has been observed that there is a poor correlation between the successful suppression of muscle inflammation and an improvement in muscle function. Some evidence in the literature suggests that metabolic abnormalities in the skeletal muscle underlie the weakness that continues despite successful immunosuppression. We have previously shown that decreased expression of a purine nucleotide cycle enzyme, adenosine monophosphate deaminase (AMPD1), leads to muscle weakness in a mouse model of myositis and may provide a mechanistic basis for muscle weakness. One of the downstream metabolites of this pathway, D-ribose, has been reported to alleviate symptoms of myalgia in patients with a congenital loss of AMPD1. Therefore, we hypothesized that supplementing exogenous D-ribose would improve muscle function in the mouse model of myositis. We treated normal and myositis mice with daily doses of D-ribose (4 mg/kg) over a 6-week time period and assessed its effects using a battery of behavioral, functional, histological and molecular measures. Treatment with D-ribose was found to have no statistically significant effects on body weight, grip strength, open field behavioral activity, maximal and specific forces of EDL, soleus muscles, or histological features. Histological and gene expression analysis indicated that muscle tissues remained inflamed despite treatment. Gene expression analysis also suggested that low levels of the ribokinase enzyme in the skeletal muscle might prevent skeletal muscle tissue from effectively utilizing D-ribose. Treatment with daily oral doses of D-ribose showed no significant effect on either disease progression or muscle function in the mouse model of myositis.
Studies of hypokinesia in animals to solve urgent problems of space biology and medicine
NASA Technical Reports Server (NTRS)
Baranski, S.; Bodya, K.; Reklevska, V.; Tomashevska, L.; Gayevskaya, M. S.; Ilina-Kakuyeva, Y. I.; Katsyuba-Ustiko, G.; Kovalenko, Y. A.; Kurkina, L. M.; Mailyan, E. S.
1974-01-01
The effects of hypokinesia on animals were studied by observing: (1) hormonal and mediator balance of the body; (2) gas exchange and tissue respiration; (3) protein content in skeletal muscles; (4) structure of skeletal muscles; and (5) function of skeletal muscles. Sharp limitation of motor activity causes interconnected processes of a dystropic and pathological character expressed as a reduction in the force of various muscle group with disturbance of velocity properties and motor coordination due to disturbances in the control link of the neuromuscular system.
ALDH2 restores exhaustive exercise-induced mitochondrial dysfunction in skeletal muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qiuping; Zheng, Jianheng; Qiu, Jun
Background: Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is highly expressed in heart and skeletal muscles, and is the major enzyme that metabolizes acetaldehyde and toxic aldehydes. The cardioprotective effects of ALDH2 during cardiac ischemia/reperfusion injury have been recognized. However, less is known about the function of ALDH2 in skeletal muscle. This study was designed to evaluate the effect of ALDH2 on exhaustive exercise-induced skeletal muscle injury. Methods: We created transgenic mice expressing ALDH2 in skeletal muscles. Male wild-type C57/BL6 (WT) and ALDH2 transgenic mice (ALDH2-Tg), 8-weeks old, were challenged with exhaustive exercise for 1 week to induce skeletal muscle injury. Animalsmore » were sacrificed 24 h post-exercise and muscle tissue was excised. Results: ALDH2-Tg mice displayed significantly increased treadmill exercise capacity compared to WT mice. Exhaustive exercise caused an increase in mRNA levels of the muscle atrophy markers, Atrogin-1 and MuRF1, and reduced mitochondrial biogenesis and fusion in WT skeletal muscles; these effects were attenuated in ALDH2-Tg mice. Exhaustive exercise also enhanced mitochondrial autophagy pathway activity, including increased conversion of LC3-I to LC3-II and greater expression of Beclin1 and Bnip3; the effects of which were mitigated by ALDH2 overexpression. In addition, ALDH2-Tg reversed the increase of an oxidative stress biomarker (4-hydroxynonenal) and decreased levels of mitochondrial antioxidant proteins, including manganese superoxide dismutase and NAD(P)H:quinone oxidoreductase 1, in skeletal muscle induced by exhaustive exercise. Conclusion: ALDH2 may reverse skeletal muscle mitochondrial dysfunction due to exhaustive exercise by regulating mitochondria dynamic remodeling and enhancing the quality of mitochondria. - Highlights: • Skeletal muscle ALDH2 expression and activity declines during exhaustive exercise. • ALDH2 overexpression enhances physical performance and restores muscle atrophy. • ALDH2 overexpression attenuates exercise-induced mitochondrial oxidative stress.« less
Quantitative Biology of Exercise-Induced Signal Transduction Pathways.
Liu, Timon Cheng-Yi; Liu, Gang; Hu, Shao-Juan; Zhu, Ling; Yang, Xiang-Bo; Zhang, Quan-Guang
2017-01-01
Exercise is essential in regulating energy metabolism. Exercise activates cellular, molecular, and biochemical pathways with regulatory roles in training response adaptation. Among them, endurance/strength training of an individual has been shown to activate its respective signal transduction pathways in skeletal muscle. This was further studied from the viewpoint of quantitative difference (QD). For the mean values, [Formula: see text], of two sets of data, their QD is defined as [Formula: see text] ([Formula: see text]). The function-specific homeostasis (FSH) of a function of a biosystem is a negative-feedback response of the biosystem to maintain the function-specific conditions inside the biosystem so that the function is perfectly performed. A function in/far from its FSH is called a normal/dysfunctional function. A cellular normal function can resist the activation of other signal transduction pathways so that there are normal function-specific signal transduction pathways which full activation maintains the normal function. An acute endurance/strength training may be dysfunctional, but its regular training may be normal. The normal endurance/strength training of an individual may resist the activation of other signal transduction pathways in skeletal muscle so that there may be normal endurance/strength training-specific signal transduction pathways (NEPs/NSPs) in skeletal muscle. The endurance/strength training may activate NSPs/NEPs, but the QD from the control is smaller than 0.80. The simultaneous activation of both NSPs and NEPs may enhance their respective activation, and the QD from the control is larger than 0.80. The low level laser irradiation pretreatment of rats may promote the activation of NSPs in endurance training skeletal muscle. There may be NEPs/NSPs in skeletal muscle trained by normal endurance/strength training.
Zizola, Cynthia; Kennel, Peter J.; Akashi, Hirokazu; Ji, Ruiping; Castillero, Estibaliz; George, Isaac; Homma, Shunichi
2015-01-01
Exercise intolerance in heart failure has been linked to impaired skeletal muscle oxidative capacity. Oxidative metabolism and exercise capacity are regulated by PPARδ signaling. We hypothesized that PPARδ stimulation reverts skeletal muscle oxidative dysfunction. Myocardial infarction (MI) was induced in C57BL/6 mice and the development of ventricular dysfunction was monitored over 8 wk. Mice were randomized to the PPARδ agonist GW501516 (5 mg/kg body wt per day for 4 wk) or placebo 8 wk post-MI. Muscle function was assessed through running tests and grip strength measurements. In muscle, we analyzed muscle fiber cross-sectional area and fiber types, metabolic gene expression, fatty acid (FA) oxidation and ATP content. Signaling pathways were studied in C2C12 myotubes. FA oxidation and ATP levels decreased in muscle from MI mice compared with sham- operated mice. GW501516 administration increased oleic acid oxidation levels in skeletal muscle of the treated MI group compared with placebo treatment. This was accompanied by transcriptional changes including increased CPT1 expression. Further, the PPARδ-agonist improved running endurance compared with placebo. Cell culture experiments revealed protective effects of GW501516 against the cytokine-induced decrease of FA oxidation and changes in metabolic gene expression. Skeletal muscle dysfunction in HF is associated with impaired PPARδ signaling and treatment with the PPARδ agonist GW501516 corrects oxidative capacity and FA metabolism and improves exercise capacity in mice with LV dysfunction. Pharmacological activation of PPARδ signaling could be an attractive therapeutic intervention to counteract the progressive skeletal muscle dysfunction in HF. PMID:25713305
Zizola, Cynthia; Kennel, Peter J; Akashi, Hirokazu; Ji, Ruiping; Castillero, Estibaliz; George, Isaac; Homma, Shunichi; Schulze, P Christian
2015-05-01
Exercise intolerance in heart failure has been linked to impaired skeletal muscle oxidative capacity. Oxidative metabolism and exercise capacity are regulated by PPARδ signaling. We hypothesized that PPARδ stimulation reverts skeletal muscle oxidative dysfunction. Myocardial infarction (MI) was induced in C57BL/6 mice and the development of ventricular dysfunction was monitored over 8 wk. Mice were randomized to the PPARδ agonist GW501516 (5 mg/kg body wt per day for 4 wk) or placebo 8 wk post-MI. Muscle function was assessed through running tests and grip strength measurements. In muscle, we analyzed muscle fiber cross-sectional area and fiber types, metabolic gene expression, fatty acid (FA) oxidation and ATP content. Signaling pathways were studied in C2C12 myotubes. FA oxidation and ATP levels decreased in muscle from MI mice compared with sham- operated mice. GW501516 administration increased oleic acid oxidation levels in skeletal muscle of the treated MI group compared with placebo treatment. This was accompanied by transcriptional changes including increased CPT1 expression. Further, the PPARδ-agonist improved running endurance compared with placebo. Cell culture experiments revealed protective effects of GW501516 against the cytokine-induced decrease of FA oxidation and changes in metabolic gene expression. Skeletal muscle dysfunction in HF is associated with impaired PPARδ signaling and treatment with the PPARδ agonist GW501516 corrects oxidative capacity and FA metabolism and improves exercise capacity in mice with LV dysfunction. Pharmacological activation of PPARδ signaling could be an attractive therapeutic intervention to counteract the progressive skeletal muscle dysfunction in HF. Copyright © 2015 the American Physiological Society.
Martin, Neil R W; Turner, Mark C; Farrington, Robert; Player, Darren J; Lewis, Mark P
2017-10-01
The amino acid leucine is thought to be important for skeletal muscle growth by virtue of its ability to acutely activate mTORC1 and enhance muscle protein synthesis, yet little data exist regarding its impact on skeletal muscle size and its ability to produce force. We utilized a tissue engineering approach in order to test whether supplementing culture medium with leucine could enhance mTORC1 signaling, myotube growth, and muscle function. Phosphorylation of the mTORC1 target proteins 4EBP-1 and rpS6 and myotube hypertrophy appeared to occur in a dose dependent manner, with 5 and 20 mM of leucine inducing similar effects, which were greater than those seen with 1 mM. Maximal contractile force was also elevated with leucine supplementation; however, although this did not appear to be enhanced with increasing leucine doses, this effect was completely ablated by co-incubation with the mTOR inhibitor rapamycin, showing that the augmented force production in the presence of leucine was mTOR sensitive. Finally, by using electrical stimulation to induce chronic (24 hr) contraction of engineered skeletal muscle constructs, we were able to show that the effects of leucine and muscle contraction are additive, since the two stimuli had cumulative effects on maximal contractile force production. These results extend our current knowledge of the efficacy of leucine as an anabolic nutritional aid showing for the first time that leucine supplementation may augment skeletal muscle functional capacity, and furthermore validates the use of engineered skeletal muscle for highly-controlled investigations into nutritional regulation of muscle physiology. © 2017 The Authors. Journal of Cellular Physiology Published by wiley periodicals, Inc.
Martin, Neil R.W.; Turner, Mark C.; Farrington, Robert; Player, Darren J.
2017-01-01
The amino acid leucine is thought to be important for skeletal muscle growth by virtue of its ability to acutely activate mTORC1 and enhance muscle protein synthesis, yet little data exist regarding its impact on skeletal muscle size and its ability to produce force. We utilized a tissue engineering approach in order to test whether supplementing culture medium with leucine could enhance mTORC1 signaling, myotube growth, and muscle function. Phosphorylation of the mTORC1 target proteins 4EBP‐1 and rpS6 and myotube hypertrophy appeared to occur in a dose dependent manner, with 5 and 20 mM of leucine inducing similar effects, which were greater than those seen with 1 mM. Maximal contractile force was also elevated with leucine supplementation; however, although this did not appear to be enhanced with increasing leucine doses, this effect was completely ablated by co‐incubation with the mTOR inhibitor rapamycin, showing that the augmented force production in the presence of leucine was mTOR sensitive. Finally, by using electrical stimulation to induce chronic (24 hr) contraction of engineered skeletal muscle constructs, we were able to show that the effects of leucine and muscle contraction are additive, since the two stimuli had cumulative effects on maximal contractile force production. These results extend our current knowledge of the efficacy of leucine as an anabolic nutritional aid showing for the first time that leucine supplementation may augment skeletal muscle functional capacity, and furthermore validates the use of engineered skeletal muscle for highly‐controlled investigations into nutritional regulation of muscle physiology. PMID:28409828
Reilly, Beau D; Hickey, Anthony J R; Cramp, Rebecca L; Franklin, Craig E
2014-04-01
Suppression of disuse-induced muscle atrophy has been associated with altered mitochondrial reactive oxygen species (ROS) production in mammals. However, despite extended hindlimb immobility, aestivating animals exhibit little skeletal muscle atrophy compared with artificially immobilised mammalian models. Therefore, we studied mitochondrial respiration and ROS (H2O2) production in permeabilised muscle fibres of the green-striped burrowing frog, Cyclorana alboguttata. Mitochondrial respiration within saponin-permeabilised skeletal and cardiac muscle fibres was measured concurrently with ROS production using high-resolution respirometry coupled to custom-made fluorometers. After 4 months of aestivation, C. alboguttata had significantly depressed whole-body metabolism by ~70% relative to control (active) frogs, and mitochondrial respiration in saponin-permeabilised skeletal muscle fibres decreased by almost 50% both in the absence of ADP and during oxidative phosphorylation. Mitochondrial ROS production showed up to an 88% depression in aestivating skeletal muscle when malate, succinate and pyruvate were present at concentrations likely to reflect those in vivo. The percentage ROS released per O2 molecule consumed was also ~94% less at these concentrations, indicating an intrinsic difference in ROS production capacities during aestivation. We also examined mitochondrial respiration and ROS production in permeabilised cardiac muscle fibres and found that aestivating frogs maintained respiratory flux and ROS production at control levels. These results show that aestivating C. alboguttata has the capacity to independently regulate mitochondrial function in skeletal and cardiac muscles. Furthermore, this work indicates that ROS production can be suppressed in the disused skeletal muscle of aestivating frogs, which may in turn protect against potential oxidative damage and preserve skeletal muscle structure during aestivation and following arousal.
Vlahovich, Nicole; Kee, Anthony J; Van der Poel, Chris; Kettle, Emma; Hernandez-Deviez, Delia; Lucas, Christine; Lynch, Gordon S; Parton, Robert G; Gunning, Peter W; Hardeman, Edna C
2009-01-01
The functional diversity of the actin microfilaments relies in part on the actin binding protein tropomyosin (Tm). The muscle-specific Tms regulate actin-myosin interactions and hence contraction. However, there is less known about the roles of the numerous cytoskeletal isoforms. We have shown previously that a cytoskeletal Tm, Tm5NM1, defines a Z-line adjacent cytoskeleton in skeletal muscle. Recently, we identified a second cytoskeletal Tm in this region, Tm4. Here we show that Tm4 and Tm5NM1 define separate actin filaments; the former associated with the terminal sarcoplasmic reticulum (SR) and other tubulovesicular structures. In skeletal muscles of Tm5NM1 knockout (KO) mice, Tm4 localization was unchanged, demonstrating the specificity of the membrane association. Tm5NM1 KO muscles exhibit potentiation of T-system depolarization and decreased force rundown with repeated T-tubule depolarizations consistent with altered T-tubule function. These results indicate that a Tm5NM1-defined actin cytoskeleton is required for the normal excitation-contraction coupling in skeletal muscle.
Vlahovich, Nicole; Kee, Anthony J.; Van der Poel, Chris; Kettle, Emma; Hernandez-Deviez, Delia; Lucas, Christine; Lynch, Gordon S.; Parton, Robert G.; Gunning, Peter W.
2009-01-01
The functional diversity of the actin microfilaments relies in part on the actin binding protein tropomyosin (Tm). The muscle-specific Tms regulate actin-myosin interactions and hence contraction. However, there is less known about the roles of the numerous cytoskeletal isoforms. We have shown previously that a cytoskeletal Tm, Tm5NM1, defines a Z-line adjacent cytoskeleton in skeletal muscle. Recently, we identified a second cytoskeletal Tm in this region, Tm4. Here we show that Tm4 and Tm5NM1 define separate actin filaments; the former associated with the terminal sarcoplasmic reticulum (SR) and other tubulovesicular structures. In skeletal muscles of Tm5NM1 knockout (KO) mice, Tm4 localization was unchanged, demonstrating the specificity of the membrane association. Tm5NM1 KO muscles exhibit potentiation of T-system depolarization and decreased force rundown with repeated T-tubule depolarizations consistent with altered T-tubule function. These results indicate that a Tm5NM1-defined actin cytoskeleton is required for the normal excitation–contraction coupling in skeletal muscle. PMID:19005216
An Accurate and Dynamic Computer Graphics Muscle Model
NASA Technical Reports Server (NTRS)
Levine, David Asher
1997-01-01
A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.
Juhas, Mark; Engelmayr, George C.; Fontanella, Andrew N.; Palmer, Gregory M.; Bursac, Nenad
2014-01-01
Tissue-engineered skeletal muscle can serve as a physiological model of natural muscle and a potential therapeutic vehicle for rapid repair of severe muscle loss and injury. Here, we describe a platform for engineering and testing highly functional biomimetic muscle tissues with a resident satellite cell niche and capacity for robust myogenesis and self-regeneration in vitro. Using a mouse dorsal window implantation model and transduction with fluorescent intracellular calcium indicator, GCaMP3, we nondestructively monitored, in real time, vascular integration and the functional state of engineered muscle in vivo. During a 2-wk period, implanted engineered muscle exhibited a steady ingrowth of blood-perfused microvasculature along with an increase in amplitude of calcium transients and force of contraction. We also demonstrated superior structural organization, vascularization, and contractile function of fully differentiated vs. undifferentiated engineered muscle implants. The described in vitro and in vivo models of biomimetic engineered muscle represent enabling technology for novel studies of skeletal muscle function and regeneration. PMID:24706792
Differential acute and chronic effects of burn trauma on murine skeletal muscle bioenergetics
Porter, Craig; Herndon, David N.; Bhattarai, Nisha; Ogunbileje, John O.; Szczesny, Bartosz; Szabo, Csaba; Toliver-Kinsky, Tracy; Sidossis, Labros S.
2015-01-01
Altered skeletal muscle mitochondrial function contributes to the pathophysiological stress response to burns. However, the acute and chronic impact of burn trauma on skeletal muscle bioenergetics remains poorly understood. Here, we determined the temporal relationship between burn trauma and mitochondrial function in murine skeletal muscle local to and distal from burn wounds. Male BALB/c mice (8–10 weeks old) were burned by submersion of the dorsum in water (~95°C) to create a full thickness burn on ~30% of the body. Skeletal muscle was harvested from spinotrapezius underneath burn wounds (local) and the quadriceps (distal) of sham and burn treated mice at 3h, 24h, 4d and 10d post-injury. Mitochondrial respiration was determined in permeabilized myofiber bundles by high-resolution respirometry. Caspase 9 and caspase 3 protein concentration were determined by western blot. In muscle local to burn wounds, respiration coupled to ATP production was significantly diminished at 3h and 24h post-injury (P<0.001), as was mitochondrial coupling control (P<0.001). There was a 5- (P<0.05) and 8-fold (P<0.001) increase in respiration in response to cytochrome at 3h and 24h post burn, indicating damage to the outer mitochondrial membranes. Moreover, we also observed greater active caspase 9 and caspase 3 in muscle local to burn wounds, indicating the induction of apoptosis. Distal muscle mitochondrial function was unaltered by burn trauma until 10d post burn, where both respiratory capacity (P<0.05) and coupling control (P<0.05) was significantly lower than sham. These data highlight a differential response in muscle mitochondrial function to burn trauma, where the timing, degree and mode of dysfunction are dependent on whether the muscle is local or distal to the burn wound. PMID:26615714
Osaki, Yoshinori; Nakagawa, Yoshimi; Miyahara, Shoko; Iwasaki, Hitoshi; Ishii, Akiko; Matsuzaka, Takashi; Kobayashi, Kazuto; Yatoh, Shigeru; Takahashi, Akimitsu; Yahagi, Naoya; Suzuki, Hiroaki; Sone, Hirohito; Ohashi, Ken; Ishibashi, Shun; Yamada, Nobuhiro; Shimano, Hitoshi
2015-10-23
HMG-CoA reductase (HMGCR) catalyzes the conversion of HMG-CoA to mevalonic acid (MVA); this is the rate-limiting enzyme of the mevalonate pathway that synthesizes cholesterol. Statins, HMGCR inhibitors, are widely used as cholesterol-reducing drugs. However, statin-induced myopathy is the most adverse side effect of statins. To eludicate the mechanisms underlying statin the myotoxicity and HMGCR function in the skeletal muscle, we developed the skeletal muscle-specific HMGCR knockout mice. Knockout mice exhibited postnatal myopathy with elevated serum creatine kinase levels and necrosis. Myopathy in knockout mice was completely rescued by the oral administration of MVA. These results suggest that skeletal muscle toxicity caused by statins is dependent on the deficiencies of HMGCR enzyme activity and downstream metabolites of the mevalonate pathway in skeletal muscles rather than the liver or other organs. Copyright © 2015 Elsevier Inc. All rights reserved.
Skeletal muscle performance and ageing
Trouwborst, Inez; Clark, Brian C.
2017-01-01
Abstract The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co‐morbidity, and premature death. An important cause of physical limitations is the age‐related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation–contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing. PMID:29151281
Egawa, Tatsuro; Tsuda, Satoshi; Goto, Ayumi; Ohno, Yoshitaka; Yokoyama, Shingo; Goto, Katsumasa; Hayashi, Tatsuya
2017-01-01
Diets enriched with advanced glycation end products (AGE) have recently been related to muscle dysfunction processes. However, it remains unclear whether long-term exposure to an AGE-enriched diet impacts physiological characteristics of skeletal muscles. Therefore, we explored the differences in skeletal muscle mass, contractile function and molecular responses between mice receiving a diet high in AGE (H-AGE) and low in AGE (L-AGE) for 16 weeks. There were no significant differences between L-AGE and H-AGE mice with regard to body weight, food intake or epididymal fat pad weight. However, extensor digitorum longus (EDL) and plantaris (PLA) muscle weights in H-AGE mice were lower compared with L-AGE mice. Higher levels of N ε -(carboxymethyl)-l-lysine, a marker for AGE, in EDL muscles of H-AGE mice were observed compared with L-AGE mice. H-AGE mice showed lower muscle strength and endurance in vivo and lower muscle force production of PLA muscle in vitro. mRNA expression levels of myogenic factors including myogenic factor 5 and myogenic differentiation in EDL muscle were lower in H-AGE mice compared with L-AGE mice. The phosphorylation status of 70-kDa ribosomal protein S6 kinase Thr389, an indicator of protein synthesis signalling, was lower in EDL muscle of H-AGE mice than that of L-AGE mice. These findings suggest that long-term exposure to an AGE-enriched diet impairs skeletal muscle growth and muscle contractile function, and that these muscle dysfunctions may be attributed to the inhibition of myogenic potential and protein synthesis.
Functional polymorphisms associated with human muscle size and strength.
Thompson, Paul D; Moyna, Niall; Seip, Richard; Price, Thomas; Clarkson, Priscilla; Angelopoulos, Theodore; Gordon, Paul; Pescatello, Linda; Visich, Paul; Zoeller, Robert; Devaney, Joseph M; Gordish, Heather; Bilbie, Stephen; Hoffman, Eric P
2004-07-01
Skeletal muscle is critically important to human performance and health, but little is known of the genetic factors influencing muscle size, strength, and its response to exercise training. The Functional single nucleotide polymorphisms (SNP) Associated with Muscle Size and Strength, or FAMuSS, Study is a multicenter, NIH-funded program to examine the influence of gene polymorphisms on skeletal muscle size and strength before and after resistance exercise training. One thousand men and women, age 18 - 40 yr, will train their nondominant arm for 12 wk. Skeletal muscle size (magnetic resonance imaging) and isometric and dynamic strength will be measured before and after training. Individuals whose baseline values or response to training deviate > or = 1.5 SD will be defined as outliers and examined for genetic variants. Initially candidate genes previously associated with muscle performance will be examined, but the study will ultimately attempt to identify genes associated with muscle performance. FAMuSS should help identify genetic factors associated with muscle performance and the response to exercise training. Such insight should contribute to our ability to predict the individual response to exercise training but may also contribute to understanding better muscle physiology, to identifying individuals who are susceptible to muscle loss with environmental challenge, and to developing pharmacologic agents capable of preserving muscle size and function.
Atrogin-1 Deficiency Leads to Myopathy and Heart Failure in Zebrafish.
Bühler, Anja; Kustermann, Monika; Bummer, Tiziana; Rottbauer, Wolfgang; Sandri, Marco; Just, Steffen
2016-01-30
Orchestrated protein synthesis and degradation is fundamental for proper cell function. In muscle, impairment of proteostasis often leads to severe cellular defects finally interfering with contractile function. Here, we analyze for the first time the role of Atrogin-1, a muscle-specific E3 ubiquitin ligase known to be involved in the regulation of protein degradation via the ubiquitin proteasome and the autophagy/lysosome systems, in the in vivo model system zebrafish (Danio rerio). We found that targeted inactivation of zebrafish Atrogin-1 leads to progressive impairment of heart and skeletal muscle function and disruption of muscle structure without affecting early cardiogenesis and skeletal muscle development. Autophagy is severely impaired in Atrogin-1-deficient zebrafish embryos resulting in the disturbance of the cytoarchitecture of cardiomyocytes and skeletal muscle cells. These observations are consistent with molecular and ultrastructural findings in an Atrogin-1 knockout mouse and demonstrate that the zebrafish is a suitable vertebrate model to study the molecular mechanisms of Atrogin-1-mediated autophagic muscle pathologies and to screen for novel therapeutically active substances in high-throughput in vivo small compound screens (SCS).
Zebedin, Eva; Sandtner, Walter; Galler, Stefan; Szendroedi, Julia; Just, Herwig; Todt, Hannes; Hilber, Karlheinz
2004-08-01
Each skeletal muscle of the body contains a unique composition of "fast" and "slow" muscle fibers, each of which is specialized for certain challenges. This composition is not static, and the muscle fibers are capable of adapting their molecular composition by altered gene expression (i.e., fiber type conversion). Whereas changes in the expression of contractile proteins and metabolic enzymes in the course of fiber type conversion are well described, little is known about possible adaptations in the electrophysiological properties of skeletal muscle cells. Such adaptations may involve changes in the expression and/or function of ion channels. In this study, we investigated the effects of fast-to-slow fiber type conversion on currents via voltage-gated Na+ channels in the C(2)C(12) murine skeletal muscle cell line. Prolonged treatment of cells with 25 nM of the Ca2+ ionophore A-23187 caused a significant shift in myosin heavy chain isoform expression from the fast toward the slow isoform, indicating fast-to-slow fiber type conversion. Moreover, Na+ current inactivation was significantly altered. Slow inactivation less strongly inhibited the Na+ currents of fast-to-slow fiber type-converted cells. Compared with control cells, the Na+ currents of converted cells were more resistant to block by tetrodotoxin, suggesting enhanced relative expression of the cardiac Na+ channel isoform Na(v)1.5 compared with the skeletal muscle isoform Na(v)1.4. These results imply that fast-to-slow fiber type conversion of skeletal muscle cells involves functional adaptation of their electrophysiological properties.
Xu, Hongyang; Frankenberg, Noni T; Lamb, Graham D; Gooley, Paul R; Stapleton, David I; Murphy, Robyn M
2016-07-01
The 5'-AMP-activated protein kinase (AMPK), a heterotrimeric complex that functions as an intracellular fuel sensor that affects metabolism, is activated in skeletal muscle in response to exercise and utilization of stored energy. The diffusibility properties of α- and β-AMPK were examined in isolated skeletal muscle fiber segments dissected from rat fast-twitch extensor digitorum longus and oxidative soleus muscles from which the surface membranes were removed by mechanical dissection. After the muscle segments were washed for 1 and 10 min, ∼60% and 75%, respectively, of the total AMPK pools were found in the diffusible fraction. After in vitro stimulation of the muscle, which resulted in an ∼80% decline in maximal force, 20% of the diffusible pool became bound in the fiber. This bound pool was not associated with glycogen, as determined by addition of a wash step containing amylase. Stimulation of extensor digitorum longus muscles resulted in 28% glycogen utilization and a 40% increase in phosphorylation of the downstream AMPK target acetyl carboxylase-CoA. This, however, had no effect on the proportion of total β2-AMPK that was phosphorylated in whole muscle homogenates measured by immunoprecipitation. These findings suggest that, in rat skeletal muscle, β2-AMPK is not associated with glycogen and that activation of AMPK by muscle contraction does not dephosphorylate β2-AMPK. These findings question the physiological relevance of the carbohydrate-binding function of β2-AMPK in skeletal muscle. Copyright © 2016 the American Physiological Society.
NASA Technical Reports Server (NTRS)
Delp, M. D.; Colleran, P. N.; Wilkerson, M. K.; McCurdy, M. R.; Muller-Delp, J.
2000-01-01
Hindlimb unloading of rats results in a diminished ability of skeletal muscle arterioles to constrict in vitro and elevate vascular resistance in vivo. The purpose of the present study was to determine whether alterations in the mechanical environment (i.e., reduced fluid pressure and blood flow) of the vasculature in hindlimb skeletal muscles from 2-wk hindlimb-unloaded (HU) rats induces a structural remodeling of arterial microvessels that may account for these observations. Transverse cross sections were used to determine media cross-sectional area (CSA), wall thickness, outer perimeter, number of media nuclei, and vessel luminal diameter of feed arteries and first-order (1A) arterioles from soleus and the superficial portion of gastrocnemius muscles. Endothelium-dependent dilation (ACh) was also determined. Media CSA of resistance arteries was diminished by hindlimb unloading as a result of decreased media thickness (gastrocnemius muscle) or reduced vessel diameter (soleus muscle). ACh-induced dilation was diminished by 2 wk of hindlimb unloading in soleus 1A arterioles, but not in gastrocnemius 1A arterioles. These results indicate that structural remodeling and functional adaptations of the arterial microvasculature occur in skeletal muscles of the HU rat; the data suggest that these alterations may be induced by reductions in transmural pressure (gastrocnemius muscle) and wall shear stress (soleus muscle).
Zou, Cheng; Li, Jingxuan; Luo, Wenzhe; Li, Long; Hu, An; Fu, Yuhua; Hou, Ye; Li, Changchun
2017-08-18
Long intergenic non-coding RNAs (lincRNAs) play essential roles in numerous biological processes and are widely studied. The skeletal muscle is an important tissue that plays an essential role in individual movement ability. However, lincRNAs in pig skeletal muscles are largely undiscovered and their biological functions remain elusive. In this study, we assembled transcriptomes using RNA-seq data published in previous studies of our laboratory group and identified 323 lincRNAs in porcine leg muscle. We found that these lincRNAs have shorter transcript length, fewer exons and lower expression level than protein-coding genes. Gene ontology and pathway analyses indicated that many potential target genes (PTGs) of lincRNAs were involved in skeletal-muscle-related processes, such as muscle contraction and muscle system process. Combined our previous studies, we found a potential regulatory mechanism in which the promoter methylation of lincRNAs can negatively regulate lincRNA expression and then positively regulate PTG expression, which can finally result in abnormal phenotypes of cloned piglets through a certain unknown pathway. This work detailed a number of lincRNAs and their target genes involved in skeletal muscle growth and development and can facilitate future studies on their roles in skeletal muscle growth and development.
Skeletal muscle performance and ageing.
Tieland, Michael; Trouwborst, Inez; Clark, Brian C
2018-02-01
The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co-morbidity, and premature death. An important cause of physical limitations is the age-related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation-contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.
Wallace, Marita A; Della Gatta, Paul A; Ahmad Mir, Bilal; Kowalski, Greg M; Kloehn, Joachim; McConville, Malcom J; Russell, Aaron P; Lamon, Séverine
2016-01-01
Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. These findings position STARS as an important regulator of skeletal muscle growth and regeneration.
Tissue-specific stem cells: Lessons from the skeletal muscle satellite cell
Brack, Andrew S.; Rando, Thomas A.
2012-01-01
In 1961, the satellite cell was first identified when electron microscopic examination of skeletal muscle demonstrated a cell wedged between the plasma membrane of the muscle fiber and the basement membrane. In recent years it has been conclusively demonstrated that the satellite cell is the primary cellular source for muscle regeneration and is equipped with the potential to self renew, thus functioning as a bone fide skeletal muscle stem cell (MuSC). As we move past the 50th anniversary of the satellite cell, we take this opportunity to discuss the current state of the art and dissect the unknowns in the MuSC field. PMID:22560074
Hatazawa, Yukino; Minami, Kimiko; Yoshimura, Ryoji; Onishi, Takumi; Manio, Mark Christian; Inoue, Kazuo; Sawada, Naoki; Suzuki, Osamu; Miura, Shinji; Kamei, Yasutomi
2016-12-09
The expression of the transcriptional coactivator PGC1α is increased in skeletal muscles during exercise. Previously, we showed that increased PGC1α leads to prolonged exercise performance (the duration for which running can be continued) and, at the same time, increases the expression of branched-chain amino acid (BCAA) metabolism-related enzymes and genes that are involved in supplying substrates for the TCA cycle. We recently created mice with PGC1α knockout specifically in the skeletal muscles (PGC1α KO mice), which show decreased mitochondrial content. In this study, global gene expression (microarray) analysis was performed in the skeletal muscles of PGC1α KO mice compared with that of wild-type control mice. As a result, decreased expression of genes involved in the TCA cycle, oxidative phosphorylation, and BCAA metabolism were observed. Compared with previously obtained microarray data on PGC1α-overexpressing transgenic mice, each gene showed the completely opposite direction of expression change. Bioinformatic analysis of the promoter region of genes with decreased expression in PGC1α KO mice predicted the involvement of several transcription factors, including a nuclear receptor, ERR, in their regulation. As PGC1α KO microarray data in this study show opposing findings to the PGC1α transgenic data, a loss-of-function experiment, as well as a gain-of-function experiment, revealed PGC1α's function in the oxidative energy metabolism of skeletal muscles. Copyright © 2016 Elsevier Inc. All rights reserved.
The effects of age and muscle contraction on AMPK activity and heterotrimer composition.
Hardman, Shalene E; Hall, Derrick E; Cabrera, Alyssa J; Hancock, Chad R; Thomson, David M
2014-07-01
Sarcopenia is characterized by increased skeletal muscle atrophy due in part to alterations in muscle metabolism. AMP-activated protein kinase (AMPK) is a master regulator of skeletal muscle metabolic pathways which regulate many cellular processes that are disrupted in old-age. Functional AMPK is a heterotrimer composed of α, β and γ subunits, and each subunit can be represented in the heterotrimer by one of two (α1/α2, β1/β2) or three (γ1/γ2/γ3) isoforms. Altered isoform composition affects AMPK localization and function. Previous work has shown that overall AMPK activation with endurance-type exercise is blunted in old vs. young skeletal muscle. However, details regarding the activation of the specific isoforms of AMPK, as well as the heterotrimeric composition of AMPK in old skeletal muscle, are unknown. Our purpose here, therefore, was to determine the effect of old-age on 1) the activation of the α1 and α2 catalytic subunits of AMPK in skeletal muscle by a continuous contraction bout, and 2) the heterotrimeric composition of skeletal muscle AMPK. We studied gastrocnemius (GAST) and tibialis anterior (TA) muscles from young adult (YA; 8months old) and old (O; 30months old) male Fischer344×Brown Norway F1 hybrid rats after an in situ bout of endurance-type contractions produced via electrical stimulation of the sciatic nerve (STIM). AMPKα phosphorylation and AMPKα1 and α2 activities were unaffected by age at rest. However, AMPKα phosphorylation and AMPKα2 protein content and activity were lower in O vs. YA after STIM. Conversely, AMPKα1 content was greater in O vs. YA muscle, and α1 activity increased with STIM in O but not YA muscles. AMPKγ3 overall concentration and its association with AMPKα1 and α2 were lower in O vs. YA GAST. We conclude that activation of AMPKα1 is enhanced, while activation of α2 is suppressed immediately after repeated skeletal muscle contractions in O vs. YA skeletal muscle. These changes are associated with changes in the AMPK heterotrimer composition. Given the known roles of AMPK α1, α2 and γ3, this may contribute to sarcopenia and associated muscle metabolic dysfunction. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatazawa, Yukino; Research Fellow of Japan Society for the Promotion of Science, Tokyo; Minami, Kimiko
The expression of the transcriptional coactivator PGC1α is increased in skeletal muscles during exercise. Previously, we showed that increased PGC1α leads to prolonged exercise performance (the duration for which running can be continued) and, at the same time, increases the expression of branched-chain amino acid (BCAA) metabolism-related enzymes and genes that are involved in supplying substrates for the TCA cycle. We recently created mice with PGC1α knockout specifically in the skeletal muscles (PGC1α KO mice), which show decreased mitochondrial content. In this study, global gene expression (microarray) analysis was performed in the skeletal muscles of PGC1α KO mice compared withmore » that of wild-type control mice. As a result, decreased expression of genes involved in the TCA cycle, oxidative phosphorylation, and BCAA metabolism were observed. Compared with previously obtained microarray data on PGC1α-overexpressing transgenic mice, each gene showed the completely opposite direction of expression change. Bioinformatic analysis of the promoter region of genes with decreased expression in PGC1α KO mice predicted the involvement of several transcription factors, including a nuclear receptor, ERR, in their regulation. As PGC1α KO microarray data in this study show opposing findings to the PGC1α transgenic data, a loss-of-function experiment, as well as a gain-of-function experiment, revealed PGC1α’s function in the oxidative energy metabolism of skeletal muscles. - Highlights: • Microarray analysis was performed in the skeletal muscle of PGC1α KO mice. • Expression of genes in the oxidative energy metabolism was decreased. • Bioinformatic analysis of promoter region of the genes predicted involvement of ERR. • PGC1α KO microarray data in this study show the mirror image of transgenic data.« less
Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L
2017-03-01
The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.
Tran, Thanh; Guardigni, Viola; Pencina, Karol M; Amato, Anthony A; Floyd, Michael; Brawley, Brooke; Mozeleski, Brian; McKinnon, Jennifer; Woodbury, Erin; Heckel, Emily; Li, Zhuoying; Storer, Tom; Sax, Paul E; Montano, Monty
2018-06-01
Human immunodeficiency virus (HIV)-infected individuals are at increased risk of age-associated functional impairment, even with effective antiretroviral therapy (ART). A concurrent characterization of skeletal muscle, physical function, and immune phenotype in aviremic middle-aged HIV-infected adults represents a knowledge gap in prognostic biomarker discovery. We undertook a prospective observational study of 170 middle-aged, HIV-infected ambulatory men and women with CD4+ T-cell counts of at least 350/µL and undetectable plasma viremia while on effective ART, and uninfected control participants. We measured biomarkers for inflammation and immune activation, fatigue, the Veterans Aging Cohort Study mortality index, and physical function. A subset also received a skeletal muscle biopsy and computed tomography scan. Compared to the uninfected participants, HIV-infected participants displayed increased immune activation (P < .001), inflammation (P = .001), and fatigue (P = .010), and in a regression model adjusting for age and sex displayed deficits in stair-climb power (P < .001), gait speed (P = .036), and predicted metabolic equivalents (P = .019). Skeletal muscle displayed reduced nuclear peroxisome proliferator-activated receptor-γ coactivator 1α-positive myonuclei (P = .006), and increased internalized myonuclei (P < .001) that correlated with immune activation (P = .003) and leukocyte infiltration (P < .001). Internalized myonuclei improved a model for HIV discrimination, increasing the C-statistic from 0.84 to 0.90. Asymptomatic HIV-infected middle-aged adults display atypical skeletal muscle profiles, subclinical deficits in physical function, and persistent inflammation and immune activation. Identifying biomarker profiles for muscle dysregulation and risk for future functional decline in the HIV-infected population will be key to developing and monitoring preventive interventions. NCT03011957.
NASA Technical Reports Server (NTRS)
Mathur, A. B.; Collinsworth, A. M.; Reichert, W. M.; Kraus, W. E.; Truskey, G. A.
2001-01-01
This study evaluated the hypothesis that, due to functional and structural differences, the apparent elastic modulus and viscous behavior of cardiac and skeletal muscle and vascular endothelium would differ. To accurately determine the elastic modulus, the contribution of probe velocity, indentation depth, and the assumed shape of the probe were examined. Hysteresis was observed at high indentation velocities arising from viscous effects. Irreversible deformation was not observed for endothelial cells and hysteresis was negligible below 1 microm/s. For skeletal muscle and cardiac muscle cells, hysteresis was negligible below 0.25 microm/s. Viscous dissipation for endothelial and cardiac muscle cells was higher than for skeletal muscle cells. The calculated elastic modulus was most sensitive to the assumed probe geometry for the first 60 nm of indentation for the three cell types. Modeling the probe as a blunt cone-spherical cap resulted in variation in elastic modulus with indentation depth that was less than that calculated by treating the probe as a conical tip. Substrate contributions were negligible since the elastic modulus reached a steady value for indentations above 60 nm and the probe never indented more than 10% of the cell thickness. Cardiac cells were the stiffest (100.3+/-10.7 kPa), the skeletal muscle cells were intermediate (24.7+/-3.5 kPa), and the endothelial cells were the softest with a range of elastic moduli (1.4+/-0.1 to 6.8+/-0.4 kPa) depending on the location of the cell surface tested. Cardiac and skeletal muscle exhibited nonlinear elastic behavior. These passive mechanical properties are generally consistent with the function of these different cell types.
Non-pathogenic protein aggregates in skeletal muscle in MLF1 transgenic mice.
Li, Zhi-Fang; Wu, Xiaohua; Jiang, Yun; Liu, Jianxiang; Wu, Chun; Inagaki, Masaki; Izawa, Ichiro; Mizisin, Andrew P; Engvall, Eva; Shelton, G Diane
2008-01-15
Protein aggregate formation in muscle is thought to be pathogenic and associated with clinical weakness. Over-expression of either wild type or a mutant form of myeloid leukemia factor 1 (MLF1) in transgenic mouse skeletal muscle and in cultured cells resulted in aggregate formation. Aggregates were detected in MLF1 transgenic mice at 6 weeks of age, and increased in size with age. However, histological examination of skeletal muscles of MLF1 transgenic mice revealed no pathological changes other than the aggregates, and RotaRod testing did not detect functional deficits. MLF1 has recently been identified as a protein that could neutralize the toxicity of intracellular protein aggregates in a Drosophila model of Huntington's disease (HD). We also demonstrate that MLF1 interacts with MRJ, a heat shock protein, which can independently neutralize the toxicity of intracellular protein aggregates in the Drosophila HD model. Our data suggest that over-expression of MLF1 has no significant impact on skeletal muscle function in mice; that progressive formation of protein aggregates in muscle are not necessarily pathogenic; and that MLF1 and MRJ may function together to ameliorate the toxic effects of polyglutamine or mutant proteins in myodegenerative diseases such as inclusion body myositis and oculopharyngeal muscular dystrophy, as well as neurodegenerative disease.
Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?
Park, Song-Young; Gifford, Jayson R.; Andtbacka, Robert H. I.; Trinity, Joel D.; Hyngstrom, John R.; Garten, Ryan S.; Diakos, Nikolaos A.; Ives, Stephen J.; Dela, Flemming; Larsen, Steen; Drakos, Stavros
2014-01-01
Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s−1·mg−1, P < 0.05, respectively). Citrate synthase (CS) activity, an index of mitochondrial density, also fell progressively from cardiac to skeletal to smooth muscles (222 ± 13, 115 ± 2, and 48 ± 2 μmol·g−1·min−1, P < 0.05, respectively). Thus, when respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s−1·mg−1, P < 0.05, respectively). Thus, although oxidative phosphorylation capacity per mitochondrial content in cardiac, skeletal, and smooth muscles suggest all mitochondria are created equal, the contrasting respiratory control ratio and nonphosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production. PMID:24906913
USDA-ARS?s Scientific Manuscript database
The loss of skeletal muscle mass is observed in many pathophysiological conditions including, aging and obesity. The loss of muscle mass and function with aging is defined as sarcopenia and characterized by a mismatch between skeletal muscle protein synthesis (MPS) and breakdown. Characteristic meta...
Skeletal muscle proteins: a new approach to delimitate the time since death.
Foditsch, Elena Esra; Saenger, Alexandra Maria; Monticelli, Fabio Carlo
2016-03-01
Skeletal muscle tissue is proposed as a forensic model tissue with strong potential, as it is easily accessible and its true-to-life state structure and function is well known. Despite this strong potential, skeletal muscle degradation studies are rare. The aim of this study was to test if a skeletal muscle-based protein analysis is applicable to delimitate the time since death. Under standard conditions, two pigs were stored either at 22 °C for 5 days or 4 °C for 21 days. Their Mm. biceps femori were sampled periodically for analyses of ten skeletal muscle proteins postmortem. All analyzed proteins can serve as markers for a delimitation of the time since death. Desmin, nebulin, titin, and SERCA 1 displayed distinct protein patterns at certain points of time. The other five proteins, α-actinin, calsequestrin-1, laminin, troponin T-C, and SERCA 2, showed no degradation patterns within the analyzed postmortem time frame. Referring to specific skeletal muscle proteins, results showed short-term stabilities for just a minority of analyzed proteins, while the majority of investigated proteins displayed characteristics as long-term markers. Due to specific patterns and the possibility to determine definite constraints of the presence, absence, or pattern alterations of single proteins, the feasibility of porcine skeletal muscle as forensic model tissue is outlined and the potential of skeletal muscle as forensic model tissue is underlined, especially with respect to later postmortem phases, which so far lack feasible methods to delimitate the time since death.
Naturally derived and synthetic scaffolds for skeletal muscle reconstruction☆
Wolf, Matthew T.; Dearth, Christopher L.; Sonnenberg, Sonya B.; Loboa, Elizabeth G.; Badylak, Stephen F.
2017-01-01
Skeletal muscle tissue has an inherent capacity for regeneration following injury. However, severe trauma, such as volumetric muscle loss, overwhelms these natural muscle repair mechanisms prompting the search for a tissue engineering/regenerative medicine approach to promote functional skeletal muscle restoration. A desirable approach involves a bioscaffold that simultaneously acts as an inductive microenvironment and as a cell/drug delivery vehicle to encourage muscle ingrowth. Both biologically active, naturally derived materials (such as extracellular matrix) and carefully engineered synthetic polymers have been developed to provide such a muscle regenerative environment. Next generation naturally derived/synthetic “hybrid materials” would combine the advantageous properties of these materials to create an optimal platform for cell/drug delivery and possess inherent bioactive properties. Advances in scaffolds using muscle tissue engineering are reviewed herein. PMID:25174309
Current Methods for Skeletal Muscle Tissue Repair and Regeneration
Liu, Juan; Saul, Dominik; Böker, Kai Oliver; Ernst, Jennifer; Lehman, Wolfgang
2018-01-01
Skeletal muscle has the capacity of regeneration after injury. However, for large volumes of muscle loss, this regeneration needs interventional support. Consequently, muscle injury provides an ongoing reconstructive and regenerative challenge in clinical work. To promote muscle repair and regeneration, different strategies have been developed within the last century and especially during the last few decades, including surgical techniques, physical therapy, biomaterials, and muscular tissue engineering as well as cell therapy. Still, there is a great need to develop new methods and materials, which promote skeletal muscle repair and functional regeneration. In this review, we give a comprehensive overview over the epidemiology of muscle tissue loss, highlight current strategies in clinical treatment, and discuss novel methods for muscle regeneration and challenges for their future clinical translation. PMID:29850487
Skeletal muscle pathology in endurance athletes with acquired training intolerance
Grobler, L; Collins, M; Lambert, M; Sinclair-Smith, C; Derman, W; St, C; Noakes, T
2004-01-01
Background: It is well established that prolonged, exhaustive endurance exercise is capable of inducing skeletal muscle damage and temporary impairment of muscle function. Although skeletal muscle has a remarkable capacity for repair and adaptation, this may be limited, ultimately resulting in an accumulation of chronic skeletal muscle pathology. Case studies have alluded to an association between long term, high volume endurance training and racing, acquired training intolerance, and chronic skeletal muscle pathology. Objective: To systematically compare the skeletal muscle structural and ultrastructural status of endurance athletes with acquired training intolerance (ATI group) with asymptomatic endurance athletes matched for age and years of endurance training (CON group). Methods: Histological and electron microscopic analyses were carried out on a biopsy sample of the vastus lateralis from 18 ATI and 17 CON endurance athletes. The presence of structural and ultrastructural disruptions was compared between the two groups of athletes. Results: Significantly more athletes in the ATI group than in the CON group presented with fibre size variation (15 v 6; p = 0.006), internal nuclei (9 v 2; p = 0.03), and z disc streaming (6 v 0; p = 0.02). Conclusions: There is an association between increased skeletal muscle disruptions and acquired training intolerance in endurance athletes. Further studies are required to determine the nature of this association and the possible mechanisms involved. PMID:15562162
Moon, Younghye; Balke, Jordan E; Madorma, Derik; Siegel, Michael P; Knowels, Gary; Brouckaert, Peter; Buys, Emmanuel S; Marcinek, David J; Percival, Justin M
2017-06-10
Skeletal muscle nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathways are impaired in Duchenne and Becker muscular dystrophy partly because of reduced nNOSμ and soluble guanylate cyclase (GC) activity. However, GC function and the consequences of reduced GC activity in skeletal muscle are unknown. In this study, we explore the functions of GC and NO-cGMP signaling in skeletal muscle. GC1, but not GC2, expression was higher in oxidative than glycolytic muscles. GC1 was found in a complex with nNOSμ and targeted to nNOS compartments at the Golgi complex and neuromuscular junction. Baseline GC activity and GC agonist responsiveness was reduced in the absence of nNOS. Structural analyses revealed aberrant microtubule directionality in GC1 -/- muscle. Functional analyses of GC1 -/- muscles revealed reduced fatigue resistance and postexercise force recovery that were not due to shifts in type IIA-IIX fiber balance. Force deficits in GC1 -/- muscles were also not driven by defects in resting mitochondrial adenosine triphosphate (ATP) synthesis. However, increasing muscle cGMP with sildenafil decreased ATP synthesis efficiency and capacity, without impacting mitochondrial content or ultrastructure. GC may represent a new target for alleviating muscle fatigue and that NO-cGMP signaling may play important roles in muscle structure, contractility, and bioenergetics. These findings suggest that GC activity is nNOS dependent and that muscle-specific control of GC expression and differential GC targeting may facilitate NO-cGMP signaling diversity. They suggest that nNOS regulates muscle fiber type, microtubule organization, fatigability, and postexercise force recovery partly through GC1 and suggest that NO-cGMP pathways may modulate mitochondrial ATP synthesis efficiency. Antioxid. Redox Signal. 26, 966-985.
High resolution three-dimensional reconstruction of fibrotic skeletal muscle extracellular matrix.
Gillies, Allison R; Chapman, Mark A; Bushong, Eric A; Deerinck, Thomas J; Ellisman, Mark H; Lieber, Richard L
2017-02-15
Fibrosis occurs secondary to many skeletal muscle diseases and injuries, and can alter muscle function. It is unknown how collagen, the most abundant extracellular structural protein, alters its organization during fibrosis. Quantitative and qualitative high-magnification electron microscopy shows that collagen is organized into perimysial cables which increase in number in a model of fibrosis, and cables have unique interactions with collagen-producing cells. Fibrotic muscles are stiffer and have a higher concentration of collagen-producing cells. These results improve our understanding of the organization of fibrotic skeletal muscle extracellular matrix and identify novel structures that might be targeted by antifibrotic therapy. Skeletal muscle extracellular matrix (ECM) structure and organization are not well understood, yet the ECM plays an important role in normal tissue homeostasis and disease processes. Fibrosis is common to many muscle diseases and is typically quantified based on an increase in ECM collagen. Through the use of multiple imaging modalities and quantitative stereology, we describe the structure and composition of wild-type and fibrotic ECM, we show that collagen in the ECM is organized into large bundles of fibrils, or collagen cables, and the number of these cables (but not their size) increases in desmin knockout muscle (a fibrosis model). The increase in cable number is accompanied by increased muscle stiffness and an increase in the number of collagen producing cells. Unique interactions between ECM cells and collagen cables were also observed and reconstructed by serial block face scanning electron microscopy. These results demonstrate that the muscle ECM is more highly organized than previously reported. Therapeutic strategies for skeletal muscle fibrosis should consider the organization of the ECM to target the structures and cells contributing to fibrotic muscle function. © 2016 Rehabilitation Institute of Chicago. The Journal of Physiology © 2016 The Physiological Society.
High resolution three‐dimensional reconstruction of fibrotic skeletal muscle extracellular matrix
Gillies, Allison R.; Chapman, Mark A.; Bushong, Eric A.; Deerinck, Thomas J.; Ellisman, Mark H.
2016-01-01
Key points Fibrosis occurs secondary to many skeletal muscle diseases and injuries, and can alter muscle function.It is unknown how collagen, the most abundant extracellular structural protein, alters its organization during fibrosis.Quantitative and qualitative high‐magnification electron microscopy shows that collagen is organized into perimysial cables which increase in number in a model of fibrosis, and cables have unique interactions with collagen‐producing cells.Fibrotic muscles are stiffer and have a higher concentration of collagen‐producing cells.These results improve our understanding of the organization of fibrotic skeletal muscle extracellular matrix and identify novel structures that might be targeted by antifibrotic therapy. Abstract Skeletal muscle extracellular matrix (ECM) structure and organization are not well understood, yet the ECM plays an important role in normal tissue homeostasis and disease processes. Fibrosis is common to many muscle diseases and is typically quantified based on an increase in ECM collagen. Through the use of multiple imaging modalities and quantitative stereology, we describe the structure and composition of wild‐type and fibrotic ECM, we show that collagen in the ECM is organized into large bundles of fibrils, or collagen cables, and the number of these cables (but not their size) increases in desmin knockout muscle (a fibrosis model). The increase in cable number is accompanied by increased muscle stiffness and an increase in the number of collagen producing cells. Unique interactions between ECM cells and collagen cables were also observed and reconstructed by serial block face scanning electron microscopy. These results demonstrate that the muscle ECM is more highly organized than previously reported. Therapeutic strategies for skeletal muscle fibrosis should consider the organization of the ECM to target the structures and cells contributing to fibrotic muscle function. PMID:27859324
Venturelli, M; Saggin, P; Muti, E; Naro, F; Cancellara, L; Toniolo, L; Tarperi, C; Calabria, E; Richardson, R S; Reggiani, C; Schena, F
2015-09-01
To parse out the impact of advanced ageing and disuse on skeletal muscle function, we utilized both in vivo and in vitro techniques to comprehensively assess upper- and lower-limb muscle contractile properties in 8 young (YG; 25 ± 6 years) and 8 oldest-old mobile (OM; 87 ± 5 years) and 8 immobile (OI; 88 ± 4 years) women. In vivo, maximal voluntary contraction (MVC), electrically evoked resting twitch force (RT), and physiological cross-sectional area (PCSA) of the quadriceps and elbow flexors were assessed. Muscle biopsies of the vastus lateralis and biceps brachii facilitated the in vitro assessment of single fibre-specific tension (Po). In vivo, compared to the young, both the OM and OI exhibited a more pronounced loss of MVC in the lower limb [OM (-60%) and OI (-75%)] than the upper limb (OM = -51%; OI = -47%). Taking into account the reduction in muscle PCSA (OM = -10%; OI = -18%), only evident in the lower limb, by calculating voluntary muscle-specific force, the lower limb of the OI (-40%) was more compromised than the OM (-13%). However, in vivo, RT in both upper and lower limbs (approx. 9.8 N m cm(-2) ) and Po (approx. 123 mN mm(-2) ), assessed in vitro, implies preserved intrinsic contractile function in all muscles of the oldest-old and were well correlated (r = 0.81). These findings suggest that in the oldest-old, neither advanced ageing nor disuse, per se, impacts intrinsic skeletal muscle function, as assessed in vitro. However, in vivo, muscle function is attenuated by age and exacerbated by disuse, implicating factors other than skeletal muscle, such as neuromuscular control, in this diminution of function. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Satellite cells in human skeletal muscle plasticity
Snijders, Tim; Nederveen, Joshua P.; McKay, Bryon R.; Joanisse, Sophie; Verdijk, Lex B.; van Loon, Luc J. C.; Parise, Gianni
2015-01-01
Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models. PMID:26557092
Miura, Pedro; Chakkalakal, Joe V; Boudreault, Louise; Bélanger, Guy; Hébert, Richard L; Renaud, Jean-Marc; Jasmin, Bernard J
2009-12-01
A therapeutic strategy to treat Duchenne muscular dystrophy (DMD) involves identifying compounds that can elevate utrophin A expression in muscle fibers of affected patients. The dystrophin homologue utrophin A can functionally substitute for dystrophin when its levels are enhanced in the mdx mouse model of DMD. Utrophin A expression in skeletal muscle is regulated by mechanisms that promote the slow myofiber program. Since activation of peroxisome proliferator-activated receptor (PPAR) beta/delta promotes the slow oxidative phenotype in skeletal muscle, we initiated studies to determine whether pharmacological activation of PPARbeta/delta provides functional benefits to the mdx mouse. GW501516, a PPARbeta/delta agonist, was found to stimulate utrophin A mRNA levels in C2C12 muscle cells through an element in the utrophin A promoter. Expression of PPARbeta/delta was greater in skeletal muscles of mdx versus wild-type mice. We treated 5-7-week-old mdx mice with GW501516 for 4 weeks. This treatment increased the percentage of muscle fibers expressing slower myosin heavy chain isoforms and stimulated utrophin A mRNA levels leading to its increased expression at the sarcolemma. Expression of alpha1-syntrophin and beta-dystroglycan was restored to the sarcolemma. Improvement of mdx sarcolemmal integrity was evidenced by decreased intracellular IgM staining and decreased in vivo Evans blue dye (EBD) uptake. GW501516 treatment also conferred protection against eccentric contraction (ECC)-induced damage of mdx skeletal muscles, as shown by a decreased contraction-induced force drop and reduction of dye uptake during ECC. These results demonstrate that pharmacological activation of PPARbeta/delta might provide functional benefits to DMD patients through enhancement of utrophin A expression.
Skeletal muscle mitochondrial health and spinal cord injury.
O'Brien, Laura C; Gorgey, Ashraf S
2016-10-18
Mitochondria are the main source of cellular energy production and are dynamic organelles that undergo biogenesis, remodeling, and degradation. Mitochondrial dysfunction is observed in a number of disease states including acute and chronic central or peripheral nervous system injury by traumatic brain injury, spinal cord injury (SCI), and neurodegenerative disease as well as in metabolic disturbances such as insulin resistance, type II diabetes and obesity. Mitochondrial dysfunction is most commonly observed in high energy requiring tissues like the brain and skeletal muscle. In persons with chronic SCI, changes to skeletal muscle may include remarkable atrophy and conversion of muscle fiber type from oxidative to fast glycolytic, combined with increased infiltration of intramuscular adipose tissue. These changes contribute to a proinflammatory environment, glucose intolerance and insulin resistance. The loss of metabolically active muscle combined with inactivity predisposes individuals with SCI to type II diabetes and obesity. The contribution of skeletal muscle mitochondrial density and electron transport chain activity to the development of the aforementioned comorbidities following SCI is unclear. A better understanding of the mechanisms involved in skeletal muscle mitochondrial dynamics is imperative to designing and testing effective treatments for this growing population. The current editorial will review ways to study mitochondrial function and the importance of improving skeletal muscle mitochondrial health in clinical populations with a special focus on chronic SCI.
Directed Energy Non-lethal Weapons
2010-06-16
technologies that alter skeletal muscle contraction and/or neural functioning (i.e., neurosecretion) via radiofrequency (RF)/microwave (MW...chromaffin cells and 2) completion of studies on the effect of 0.75 to 1 GHz RF fields on skeletal muscle contraction , using in each study fixed
Lanfranconi, F; Ferri, A; Corna, G; Bonazzi, R; Lunetta, C; Silani, V; Riva, N; Rigamonti, A; Maggiani, A; Ferrarese, C; Tremolizzo, L
2017-06-07
This study aimed to evaluate muscle oxidative function during exercise in amyotrophic lateral sclerosis patients (pALS) with non-invasive methods in order to assess if determinants of reduced exercise tolerance might match ALS clinical heterogeneity. 17 pALS, who were followed for 4 months, were compared with 13 healthy controls (CTRL). Exercise tolerance was assessed by an incremental exercise test on cycle ergometer measuring peak O 2 uptake ([Formula: see text]O 2peak ), vastus lateralis oxidative function by near infrared spectroscopy (NIRS) and breathing pattern ([Formula: see text]E peak ). pALS displayed: (1) 44% lower [Formula: see text]O 2peak vs. CTRL (p < 0.0001), paralleled by a 43% decreased peak skeletal muscle oxidative function (p < 0.01), with a linear regression between these two variables (r 2 = 0.64, p < 0.0001); (2) 46% reduced [Formula: see text]E peak vs. CTRL (p < 0.0001), achieved by using an inefficient breathing pattern (increasing respiratory frequency) from the onset until the end of exercise. Inefficient skeletal muscle O 2 function, when flanking the impaired motor units recruitment, is a major determinant of pALS clinical heterogeneity and working capacity exercise tolerance. CPET and NIRS are useful tools for detecting early stages of oxidative deficiency in skeletal muscles, disclosing individual impairments in the O 2 transport and utilization chain.
Zeng, Ping; Han, Wanhong; Li, Changyin; Li, Hu; Zhu, Dahai; Zhang, Yong; Liu, Xiaohong
2016-09-01
Skeletal muscle mass and homeostasis during postnatal muscle development and regeneration largely depend on adult muscle stem cells (satellite cells). We recently showed that global overexpression of miR-378 significantly reduced skeletal muscle mass in mice. In the current study, we used miR-378 transgenic (Tg) mice to assess the in vivo functional effects of miR-378 on skeletal muscle growth and regeneration. Cross-sectional analysis of skeletal muscle tissues showed that the number and size of myofibers were significantly lower in miR-378 Tg mice than in wild-type mice. Attenuated cardiotoxin-induced muscle regeneration in miR-378 Tg mice was found to be associated with delayed satellite cell activation and differentiation. Mechanistically, miR-378 was found to directly target Igf1r in muscle cells both in vitro and in vivo These miR-378 Tg mice may provide a model for investigating the physiological and pathological roles of skeletal muscle in muscle-associated diseases in humans, particularly in sarcopenia. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Myostatin deficiency is associated with lipidomic abnormalities in skeletal muscles.
Baati, Narjes; Feillet-Coudray, Christine; Fouret, Gilles; Vernus, Barbara; Goustard, Bénédicte; Coudray, Charles; Lecomte, Jérome; Blanquet, Véronique; Magnol, Laetitia; Bonnieu, Anne; Koechlin-Ramonatxo, Christelle
2017-10-01
Myostatin (Mstn) deficiency leads to skeletal muscle overgrowth and Mstn inhibition is considered as a promising treatment for muscle-wasting disorders. Mstn gene deletion in mice also causes metabolic changes with decreased mitochondria content, disturbance in mitochondrial respiratory function and increased muscle fatigability. However the impact of MSTN deficiency on these metabolic changes is not fully elucidated. Here, we hypothesized that lack of MSTN will alter skeletal muscle membrane lipid composition in relation with pronounced alterations in muscle function and metabolism. Indeed, phospholipids and in particular cardiolipin mostly present in the inner mitochondrial membrane, play a crucial role in mitochondria function and oxidative phosphorylation process. We observed that Mstn KO muscle had reduced fat membrane transporter levels (FAT/CD36, FABP3, FATP1 and FATP4) associated with decreased lipid oxidative pathway (citrate synthase and β-HAD activities) and impaired lipogenesis (decreased triglyceride and free fatty acid content), indicating a role of mstn in muscle lipid metabolism. We further analyzed phospholipid classes and fatty acid composition by chromatographic methods in muscle and mitochondrial membranes. Mstn KO mice showed increased levels of saturated and polyunsaturated fatty acids at the expense of monounsaturated fatty acids. We also demonstrated, in this phenotype, a reduction in cardiolipin proportion in mitochondrial membrane versus the proportion of others phospholipids, in relation with a decrease in the expression of phosphatidylglycerolphosphate synthase and cardiolipin synthase, enzymes involved in cardiolipin synthesis. These data illustrate the importance of lipids as a link by which MSTN deficiency can impact mitochondrial bioenergetics in skeletal muscle. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Lin; Shansky, Janet; Vandenburgh, Herman
2013-12-01
Dysfunction of the neuromuscular junction is involved in a wide range of muscular diseases. The development of neuromuscular junction through which skeletal muscle is innervated requires the functional modulation of acetylcholine receptor (AchR) clustering on myofibers. However, studies on AchR clustering in vitro are mostly done on monolayer muscle cell culture, which lacks a three-dimensional (3D) structure, a prominent limitation of the two-dimensional (2D) system. To enable a better understanding on the structure-function correlation underlying skeletal muscle innervation, a muscle system with a well-defined geometry mimicking the in vivo muscular setting is needed. Here, we report a 3D bio-artificial muscle (BAM) bioengineered from green fluorescent protein-transduced C3H murine myoblasts as a novel in vitro tissue-based model for muscle innervation studies. Our cell biological and molecular analysis showed that this BAM is structurally similar to in vivo muscle tissue and can reach the perinatal differentiation stage, higher than does 2D culture. Effective clustering and morphological maturation of AchRs on BAMs induced by agrin and laminin indicate the functional activity and plasticity of this BAM system toward innervation. Taken together, our results show that the BAM provides a favorable 3D environment that at least partially recapitulates real physiological skeletal muscle with regard to innervation. With a convenience of fabrication and manipulation, this 3D in vitro system offers a novel model for studying mechanisms underlying skeletal muscle innervation and testing therapeutic strategies for relevant nervous and muscular diseases.
ERIC Educational Resources Information Center
Goodman, Barbara E.
2008-01-01
Ion channels are essential for the basic physiological function of excitable cells such as nerve, skeletal, cardiac, and smooth muscle cells. Mutations in genes that encode ion channels have been identified to cause various diseases and disorders known as channelopathies. An understanding of how individual ion channels are involved in the…
Dressel, Uwe; Allen, Tamara L; Pippal, Jyotsna B; Rohde, Paul R; Lau, Patrick; Muscat, George E O
2003-12-01
Lipid homeostasis is controlled by the peroxisome proliferator-activated receptors (PPARalpha, -beta/delta, and -gamma) that function as fatty acid-dependent DNA-binding proteins that regulate lipid metabolism. In vitro and in vivo genetic and pharmacological studies have demonstrated PPARalpha regulates lipid catabolism. In contrast, PPARgamma regulates the conflicting process of lipid storage. However, relatively little is known about PPARbeta/delta in the context of target tissues, target genes, lipid homeostasis, and functional overlap with PPARalpha and -gamma. PPARbeta/delta, a very low-density lipoprotein sensor, is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for approximately 40% of total body weight. Skeletal muscle is a metabolically active tissue, and a primary site of glucose metabolism, fatty acid oxidation, and cholesterol efflux. Consequently, it has a significant role in insulin sensitivity, the blood-lipid profile, and lipid homeostasis. Surprisingly, the role of PPARbeta/delta in skeletal muscle has not been investigated. We utilize selective PPARalpha, -beta/delta, -gamma, and liver X receptor agonists in skeletal muscle cells to understand the functional role of PPARbeta/delta, and the complementary and/or contrasting roles of PPARs in this major mass peripheral tissue. Activation of PPARbeta/delta by GW501516 in skeletal muscle cells induces the expression of genes involved in preferential lipid utilization, beta-oxidation, cholesterol efflux, and energy uncoupling. Furthermore, we show that treatment of muscle cells with GW501516 increases apolipoprotein-A1 specific efflux of intracellular cholesterol, thus identifying this tissue as an important target of PPARbeta/delta agonists. Interestingly, fenofibrate induces genes involved in fructose uptake, and glycogen formation. In contrast, rosiglitazone-mediated activation of PPARgamma induces gene expression associated with glucose uptake, fatty acid synthesis, and lipid storage. Furthermore, we show that the PPAR-dependent reporter in the muscle carnitine palmitoyl-transferase-1 promoter is directly regulated by PPARbeta/delta, and not PPARalpha in skeletal muscle cells in a PPARgamma coactivator-1-dependent manner. This study demonstrates that PPARs have distinct roles in skeletal muscle cells with respect to the regulation of lipid, carbohydrate, and energy homeostasis. Moreover, we surmise that PPARbeta/delta agonists would increase fatty acid catabolism, cholesterol efflux, and energy expenditure in muscle, and speculate selective activators of PPARbeta/delta may have therapeutic utility in the treatment of hyperlipidemia, atherosclerosis, and obesity.
Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells.
García-Prat, Laura; Sousa-Victor, Pedro; Muñoz-Cánoves, Pura
2013-09-01
Aging of an organism is associated with the functional decline of tissues and organs, as well as a sharp decline in the regenerative capacity of stem cells. A prevailing view holds that the aging rate of an individual depends on the ratio of tissue attrition to tissue regeneration. Therefore, manipulations that favor the balance towards regeneration may prevent or delay aging. Skeletal muscle is a specialized tissue composed of postmitotic myofibers that contract to generate force. Satellite cells are the adult stem cells responsible for skeletal muscle regeneration. Recent studies on the biology of skeletal muscle and satellite cells in aging have uncovered the critical impact of systemic and niche factors on stem cell functionality and demonstrated the capacity of aged satellite cells to rejuvenate and increase their regenerative potential when exposed to a youthful environment. Here we review the current literature on the coordinated relationship between cell extrinsic and intrinsic factors that regulate the function of satellite cells, and ultimately determine tissue homeostasis and repair during aging, and which encourage the search for new anti-aging strategies. © 2013 The Authors Journal compilation © 2013 FEBS.
MiR-27b Promotes Muscle Development by Inhibiting MDFI Expression.
Hou, Lianjie; Xu, Jian; Jiao, Yiren; Li, Huaqin; Pan, Zhicheng; Duan, Junli; Gu, Ting; Hu, Chingyuan; Wang, Chong
2018-01-01
Skeletal muscle plays an essential role in the body movement. However, injuries to the skeletal muscle are common. Lifelong maintenance of skeletal muscle function largely depends on preserving the regenerative capacity of muscle. Muscle satellite cells proliferation, differentiation, and myoblast fusion play an important role in muscle regeneration after injury. Therefore, understanding of the mechanisms associated with muscle development during muscle regeneration is essential for devising the alternative treatments for muscle injury in the future. Edu staining, qRT-PCR and western blot were used to evaluate the miR-27b effects on pig muscle satellite cells (PSCs) proliferation and differentiation in vitro. Then, we used bioinformatics analysis and dual-luciferase reporter assay to predict and confirm the miR-27b target gene. Finally, we elucidate the target gene function on muscle development in vitro and in vivo through Edu staining, qRT-PCR, western blot, H&E staining and morphological observation. miR-27b inhibits PSCs proliferation and promotes PSCs differentiation. And the miR-27b target gene, MDFI, promotes PSCs proliferation and inhibits PSCs differentiation in vitro. Furthermore, interfering MDFI expression promotes mice muscle regeneration after injury. our results conclude that miR-27b promotes PSCs myogenesis by targeting MDFI. These results expand our understanding of muscle development mechanism in which miRNAs and genes work collaboratively in regulating skeletal muscle development. Furthermore, this finding has implications for obtaining the alternative treatments for patients with the muscle injury. © 2018 The Author(s). Published by S. Karger AG, Basel.
Bouitbir, Jamal; Charles, Anne-Laure; Echaniz-Laguna, Andoni; Kindo, Michel; Daussin, Frédéric; Auwerx, Johan; Piquard, François; Geny, Bernard; Zoll, Joffrey
2012-01-01
Aims Statins protect against cardiovascular-related mortality but induce skeletal muscle toxicity. To investigate mechanisms of statins, we tested the hypothesis that statins optimized cardiac mitochondrial function but impaired vulnerable skeletal muscle by inducing different level of reactive oxygen species (ROS). Methods and results In atrium of patients treated with statins, ROS production was decreased and oxidative capacities were enhanced together with an extensive augmentation of mRNAs expression of peroxisome proliferator-activated receptor gamma co-activator (PGC-1) family. However, in deltoid biopsies from patients with statin-induced muscular myopathy, oxidative capacities were decreased together with ROS increase and a collapse of PGC-1 mRNA expression. Several animal and cell culture experiments were conducted and showed by using ROS scavengers that ROS production was the triggering factor responsible of atorvastatin-induced activation of mitochondrial biogenesis pathway and improvement of antioxidant capacities in heart. Conversely, in skeletal muscle, the large augmentation of ROS production following treatment induced mitochondrial impairments, and reduced mitochondrial biogenesis mechanisms. Quercetin, an antioxidant molecule, was able to counteract skeletal muscle deleterious effects of atorvastatin in rat. Conclusion Our findings identify statins as a new activating factor of cardiac mitochondrial biogenesis and antioxidant capacities, and suggest the importance of ROS/PGC-1 signalling pathway as a key element in regulation of mitochondrial function in cardiac as well as skeletal muscles. PMID:21775390
Parvalbumin Gene Transfer Impairs Skeletal Muscle Contractility in Old Mice
Murphy, Kate T.; Ham, Daniel J.; Church, Jarrod E.; Naim, Timur; Trieu, Jennifer; Williams, David A.
2012-01-01
Abstract Sarcopenia is the progressive age-related loss of skeletal muscle mass associated with functional impairments that reduce mobility and quality of life. Overt muscle wasting with sarcopenia is usually preceded by a slowing of the rate of relaxation and a reduction in maximum force production. Parvalbumin (PV) is a cytosolic Ca2+ buffer thought to facilitate relaxation in muscle. We tested the hypothesis that restoration of PV levels in muscles of old mice would increase the magnitude and hasten relaxation of submaximal and maximal force responses. The tibialis anterior (TA) muscles of young (6 month), adult (13 month), and old (26 month) C57BL/6 mice received electroporation-assisted gene transfer of plasmid encoding PV or empty plasmid (pcDNA3.1). Contractile properties of TA muscles were assessed in situ 14 days after transfer. In old mice, muscles with increased PV expression had a 40% slower rate of tetanic force development (p<0.01), and maximum twitch and tetanic force were 22% and 16% lower than control values, respectively (p<0.05). Muscles with increased PV expression from old mice had an 18% lower maximum specific (normalized) force than controls, and absolute force was ∼26% lower at higher stimulation frequencies (150–300 Hz, p<0.05). In contrast, there was no effect of increased PV expression on TA muscle contractile properties in young and adult mice. The impairments in skeletal muscle function in old mice argue against PV overexpression as a therapeutic strategy for ameliorating aspects of contractile dysfunction with sarcopenia and help clarify directions for therapeutic interventions for age-related changes in skeletal muscle structure and function. PMID:22455364
Palisade endings and proprioception in extraocular muscles: a comparison with skeletal muscles.
Lienbacher, Karoline; Horn, Anja K E
2012-12-01
This article describes current views on motor and sensory control of extraocular muscles (EOMs) based on anatomical data. The special morphology of EOMs, including their motor innervation, is described in comparison to classical skeletal limb and trunk muscles. The presence of proprioceptive organs is reviewed with emphasis on the palisade endings (PEs), which are unique to EOMs, but the function of which is still debated. In consideration of the current new anatomical data about the location of cell bodies of PEs, a hypothesis on the function of PEs in EOMs and the multiply innervated muscle fibres they are attached to is put forward.
M-cadherin and its sisters in development of striated muscle.
Kaufmann, U; Martin, B; Link, D; Witt, K; Zeitler, R; Reinhard, S; Starzinski-Powitz, A
1999-04-01
Cadherins are calcium-dependent, transmembrane intercellular adhesion proteins with morphoregulatory functions in the development and maintenance of tissues. In the development of striated muscle, the expression and function of mainly M-, N-, and R-cadherin has been studied so far. While these three cadherins are expressed in skeletal muscle cells, of these only N-cadherin is expressed in cardiac muscle. In this review, M-, N-, and R-cadherin are discussed as important players in the terminal differentiation and possibly also in the commitment of skeletal muscle cells. Furthermore, reports are described which evaluate the essential role of N-cadherin in the formation of heart tissue.
STIM1 as a key regulator for Ca2+ homeostasis in skeletal-muscle development and function
2011-01-01
Stromal interaction molecules (STIM) were identified as the endoplasmic-reticulum (ER) Ca2+ sensor controlling store-operated Ca2+ entry (SOCE) and Ca2+-release-activated Ca2+ (CRAC) channels in non-excitable cells. STIM proteins target Orai1-3, tetrameric Ca2+-permeable channels in the plasma membrane. Structure-function analysis revealed the molecular determinants and the key steps in the activation process of Orai by STIM. Recently, STIM1 was found to be expressed at high levels in skeletal muscle controlling muscle function and properties. Novel STIM targets besides Orai channels are emerging. Here, we will focus on the role of STIM1 in skeletal-muscle structure, development and function. The molecular mechanism underpinning skeletal-muscle physiology points toward an essential role for STIM1-controlled SOCE to drive Ca2+/calcineurin/nuclear factor of activated T cells (NFAT)-dependent morphogenetic remodeling programs and to support adequate sarcoplasmic-reticulum (SR) Ca2+-store filling. Also in our hands, STIM1 is transiently up-regulated during the initial phase of in vitro myogenesis of C2C12 cells. The molecular targets of STIM1 in these cells likely involve Orai channels and canonical transient receptor potential (TRPC) channels TRPC1 and TRPC3. The fast kinetics of SOCE activation in skeletal muscle seem to depend on the triad-junction formation, favoring a pre-localization and/or pre-formation of STIM1-protein complexes with the plasma-membrane Ca2+-influx channels. Moreover, Orai1-mediated Ca2+ influx seems to be essential for controlling the resting Ca2+ concentration and for proper SR Ca2+ filling. Hence, Ca2+ influx through STIM1-dependent activation of SOCE from the T-tubule system may recycle extracellular Ca2+ losses during muscle stimulation, thereby maintaining proper filling of the SR Ca2+ stores and muscle function. Importantly, mouse models for dystrophic pathologies, like Duchenne muscular dystrophy, point towards an enhanced Ca2+ influx through Orai1 and/or TRPC channels, leading to Ca2+-dependent apoptosis and muscle degeneration. In addition, human myopathies have been associated with dysfunctional SOCE. Immunodeficient patients harboring loss-of-function Orai1 mutations develop myopathies, while patients suffering from Duchenne muscular dystrophy display alterations in their Ca2+-handling proteins, including STIM proteins. In any case, the molecular determinants responsible for SOCE in human skeletal muscle and for dysregulated SOCE in patients of muscular dystrophy require further examination. PMID:21798093
Testing of therapies in a novel nebulin nemaline myopathy model demonstrate a lack of efficacy.
Sztal, Tamar E; McKaige, Emily A; Williams, Caitlin; Oorschot, Viola; Ramm, Georg; Bryson-Richardson, Robert J
2018-05-30
Nemaline myopathies are heterogeneous congenital muscle disorders causing skeletal muscle weakness and, in some cases, death soon after birth. Mutations in nebulin, encoding a large sarcomeric protein required for thin filament function, are responsible for approximately 50% of nemaline myopathy cases. Despite the severity of the disease there is no effective treatment for nemaline myopathy with limited research to develop potential therapies. Several supplements, including L-tyrosine, have been suggested to be beneficial and consequently self-administered by nemaline myopathy patients without any knowledge of their efficacy. We have characterized a zebrafish model for nemaline myopathy caused by a mutation in nebulin. These fish form electron-dense nemaline bodies and display reduced muscle function akin to the phenotypes observed in nemaline myopathy patients. We have utilized our zebrafish model to test and evaluate four treatments currently self-administered by nemaline myopathy patients to determine their ability to increase skeletal muscle function. Analysis of muscle pathology and locomotion following treatment with L-tyrosine, L-carnitine, taurine, or creatine revealed no significant improvement in skeletal muscle function emphasizing the urgency to develop effective therapies for nemaline myopathy.
Pick, Justin M; Ellis, Zachary D; Alejos, Juan C; Chang, Anthony C
2017-11-01
Fukuyama congenital muscular dystrophy weakens both skeletal and cardiac muscles, but the rate of cardiomyopathic progression can accelerate faster than that of skeletal muscles. A 14-year-old boy with Fukuyama congenital muscular dystrophy presented with mild skeletal myopathy but severe cardiomyopathy requiring heart transplantation within 1 year of declining heart function. These patients need frequent screening regardless of musculoskeletal symptoms.
Prior, Steven J; Ryan, Alice S; Blumenthal, Jacob B; Watson, Jonathan M; Katzel, Leslie I; Goldberg, Andrew P
2016-08-01
Skeletal muscle capillary rarefaction limits the transcapillary transport of nutrients and oxygen to muscle and may contribute to sarcopenia and functional impairment in older adults. We tested the hypothesis that skeletal muscle capillarization and exercise capacity (VO2max) are lower in sarcopenic than in nonsarcopenic older adults and that the degree of sarcopenia is related to lower skeletal muscle capillarization. Body composition, VO2max, and vastus lateralis capillarization were determined in 76 middle-aged and older men and women (age = 61±1 years, body mass index [BMI] = 30.7±0.5kg/m(2) [mean ± SEM]). Participants were classified as sarcopenic if appendicular lean mass divided by BMI (ALMBMI) was less than 0.789 for men or less than 0.512 for women. Sarcopenic subjects (ALMBMI = 0.65±0.04, n = 16) had 20% lower capillary-to-fiber ratio, as well as 13% and 15% lower VO2max expressed as mL/kg/min or L/min, respectively, compared with sex-, race-, and age-matched participants without sarcopenia (ALMBMI = 0.81±0.05, n = 16; p < .05). In all 76 subjects, ALMBMI, thigh muscle cross-sectional area, and VO2max correlated directly with capillarization (r = .30-.37, p ≤ .05), after accounting for age, sex, and race. These findings suggest that low skeletal muscle capillarization is one factor that may contribute to sarcopenia and reduced exercise capacity in older adults by limiting diffusion of substrates, oxygen, hormones, and nutrients. Strategies to prevent the aging-related decline in skeletal muscle capillarization may help to prevent or slow the progression of sarcopenia and its associated functional declines in generally healthy older adults. Published by Oxford University Press on behalf of the Gerontological Society of America 2016.
2010-01-01
Background Regulatory elements that control expression of specific genes during development have been shown in many cases to contain functionally-conserved modules that can be transferred between species and direct gene expression in a comparable developmental pattern. An example of such a module has been identified at the rat myosin light chain (MLC) 1/3 locus, which has been well characterised in transgenic mouse studies. This locus contains two promoters encoding two alternatively spliced isoforms of alkali myosin light chain. These promoters are differentially regulated during development through the activity of two enhancer elements. The MLC3 promoter alone has been shown to confer expression of a reporter gene in skeletal and cardiac muscle in transgenic mice and the addition of the downstream MLC enhancer increased expression levels in skeletal muscle. We asked whether this regulatory module, sufficient for striated muscle gene expression in the mouse, would drive expression in similar domains in the chicken. Results We have observed that a conserved downstream MLC enhancer is present in the chicken MLC locus. We found that the rat MLC1/3 regulatory elements were transcriptionally active in chick skeletal muscle primary cultures. We observed that a single copy lentiviral insert containing this regulatory cassette was able to drive expression of a lacZ reporter gene in the fast-fibres of skeletal muscle in chicken in three independent transgenic chicken lines in a pattern similar to the endogenous MLC locus. Reporter gene expression in cardiac muscle tissues was not observed for any of these lines. Conclusions From these results we conclude that skeletal expression from this regulatory module is conserved in a genomic context between rodents and chickens. This transgenic module will be useful in future investigations of muscle development in avian species. PMID:20184756
Circadian Rhythms, the Molecular Clock, and Skeletal Muscle
Lefta, Mellani; Wolff, Gretchen; Esser, Karyn A.
2015-01-01
Almost all organisms ranging from single cell bacteria to humans exhibit a variety of behavioral, physiological, and biochemical rhythms. In mammals, circadian rhythms control the timing of many physiological processes over a 24-h period, including sleep-wake cycles, body temperature, feeding, and hormone production. This body of research has led to defined characteristics of circadian rhythms based on period length, phase, and amplitude. Underlying circadian behaviors is a molecular clock mechanism found in most, if not all, cell types including skeletal muscle. The mammalian molecular clock is a complex of multiple oscillating networks that are regulated through transcriptional mechanisms, timed protein turnover, and input from small molecules. At this time, very little is known about circadian aspects of skeletal muscle function/metabolism but some progress has been made on understanding the molecular clock in skeletal muscle. The goal of this chapter is to provide the basic terminology and concepts of circadian rhythms with a more detailed review of the current state of knowledge of the molecular clock, with reference to what is known in skeletal muscle. Research has demonstrated that the molecular clock is active in skeletal muscles and that the muscle-specific transcription factor, MyoD, is a direct target of the molecular clock. Skeletal muscle of clock-compromised mice, Bmal1−/− and ClockΔ19 mice, are weak and exhibit significant disruptions in expression of many genes required for adult muscle structure and metabolism. We suggest that the interaction between the molecular clock, MyoD, and metabolic factors, such as PGC-1, provide a potential system of feedback loops that may be critical for both maintenance and adaptation of skeletal muscle. PMID:21621073
Salanova, Michele; Schiffl, Gudrun; Gutsmann, Martina; Felsenberg, Dieter; Furlan, Sandra; Volpe, Pompeo; Clarke, Andrew; Blottner, Dieter
2013-01-01
Activity-induced nitric oxide (NO) imbalance and "nitrosative stress" are proposed mechanisms of disrupted Ca(2+) homeostasis in atrophic skeletal muscle. We thus mapped S-nitrosylated (SNO) functional muscle proteins in healthy male subjects in a long-term bed rest study (BBR2-2 Study) without and with exercise as countermeasure in order to assess (i) the negative effects of chronic muscle disuse by nitrosative stress, (ii) to test for possible attenuation by exercise countermeasure in bed rest and (iii) to identify new NO target proteins. Muscle biopsies from calf soleus and hip vastus lateralis were harvested at start (Pre) and at end (End) from a bed rest disuse control group (CTR, n=9) and two bed rest resistive exercise groups either without (RE, n=7) or with superimposed vibration stimuli (RVE, n=7). At subcellular compartments, strong anti-SNO-Cys immunofluorescence patterns in control muscle fibers after bed rest returned to baseline following vibration exercise. Total SNO-protein levels, Nrf-2 gene expression and nucleocytoplasmic shuttling were changed to varying degrees in all groups. Excess SNO-protein levels of specific calcium release/uptake proteins (SNO-RyR1, -SERCA1 and -PMCA) and of contractile myosin heavy chains seen in biopsy samples of chronically disused skeletal muscle were largely reduced by vibration exercise. We also identified NOS1 as a novel NO target in human skeletal muscle controlled by activity driven auto-nitrosylation mechanisms. Our findings suggest that aberrant levels of functional SNO-proteins represent signatures of uncontrolled nitrosative stress management in disused human skeletal muscle that can be offset by exercise as countermeasure.
AHNAK1 and AHNAK2 are costameric proteins: AHNAK1 affects transverse skeletal muscle fiber stiffness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marg, Andreas, E-mail: andreas.marg@mdc-berlin.de; Haase, Hannelore; Neumann, Tanja
2010-10-08
Research highlights: {yields} AHNAK1 and AHNAK2 are costameric proteins. {yields} Intact membrane repair in AHNAK1-deficient mice. {yields} AHNAK1{sup -/-} single fibers have a higher transverse stiffness. -- Abstract: The AHNAK scaffold PDZ-protein family is implicated in various cellular processes including membrane repair; however, AHNAK function and subcellular localization in skeletal muscle are unclear. We used specific AHNAK1 and AHNAK2 antibodies to analyzed the detailed localization of both proteins in mouse skeletal muscle. Co-localization of AHNAK1 and AHNAK2 with vinculin clearly demonstrates that both proteins are components of the costameric network. In contrast, no AHNAK expression was detected in the T-tubulemore » system. A laser wounding assay with AHNAK1-deficient fibers suggests that AHNAK1 is not involved in membrane repair. Using atomic force microscopy (AFM), we observed a significantly higher transverse stiffness of AHNAK1{sup -/-} fibers. These findings suggest novel functions of AHNAK proteins in skeletal muscle.« less
Physiologic and biochemical aspects of skeletal muscle denervation and reinnervation
NASA Technical Reports Server (NTRS)
Max, S. R.; Mayer, R. F.
1984-01-01
Some of the physiologic and biochemical changes that occur in mammalian skeletal muscle following denervation and reinnervation are considered and some comparisons are made with changes observed following altered motor function. The nature of the trophic influence by which nerves control muscle properties are discussed, including the effects of choline acetyltransferase and acetylcholinesterase and the role of the acetylcholine receptor.
Cardiac consequences to skeletal muscle-centric therapeutics for Duchenne muscular dystrophy.
Townsend, DeWayne; Yasuda, Soichiro; Chamberlain, Jeffrey; Metzger, Joseph M
2009-02-01
Duchenne muscular dystrophy (DMD) is a fatal disease of muscle deterioration. Duchenne muscular dystrophy affects all striated muscles in the body, including the heart. Recent advances in palliative care, largely directed at improving respiratory function, have extended life but paradoxically further unmasked emergent heart disease in DMD patients. New experimental strategies have shown promise in restoring dystrophin in the skeletal muscles of dystrophin- deficient animals. These strategies often have little or no capacity for restitution of dystrophin in the hearts of these animals. This article draws on both clinical data and recent experimental data to posit that effective skeletal muscle restricted therapies for DMD will paradoxically heighten cardiomyopathy and heart failure in these patients.
Weigert, Cora; Lehmann, Rainer; Hartwig, Sonja; Lehr, Stefan
2014-02-01
Recent years have provided clear evidence for the skeletal muscle as an endocrine organ. Muscle contraction during physical activity has emerged as an important activator of the release of the proteins and peptides called "myokines." Diverse proteomic profiling approaches were applied to rodent and human skeletal muscle cells to characterize the complete secretome, to study the regulation of the secretome during cell differentiation or the release of myokines upon contractile activity of myotubes. Several of the exercise-regulated factors have the potency to mediate an interorgan crosstalk. The paracrine function of the secreted peptides and proteins to regulate muscle regeneration, tissue remodeling, and trainability can have direct effects on whole-body glucose disposal and oxygen consumption. The overall composition and dynamic of the myokinome are still incompletely characterized. Recent advantages in metabolomics and lipidomics will add metabolites and lipids with autocrine, paracrine, or endocrine function to the contraction-induced secretome of the skeletal muscle. The identification of these metabolites will lead to a more comprehensive view described by a new myo(metabo)kinome consisting of peptides, proteins, and metabolites. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish
Berberoglu, Michael A.; Gallagher, Thomas L.; Morrow, Zachary T.; Talbot, Jared C.; Hromowyk, Kimberly J.; Tenente, Inês M.; Langenau, David M.; Amacher, Sharon L.
2017-01-01
Satellite cells, also known as muscle stem cells, are responsible for skeletal muscle growth and repair in mammals. Pax7 and Pax3 transcription factors are established satellite cell markers required for muscle development and regeneration, and there is great interest in identifying additional factors that regulate satellite cell proliferation, differentiation, and/or skeletal muscle regeneration. Due to the powerful regenerative capacity of many zebrafish tissues, even in adults, we are exploring the regenerative potential of adult zebrafish skeletal muscle. Here, we show that adult zebrafish skeletal muscle contains cells similar to mammalian satellite cells. Adult zebrafish satellite-like cells have dense heterochromatin, express Pax7 and Pax3, proliferate in response to injury, and show peak myogenic responses 4–5 days post-injury (dpi). Furthermore, using a pax7a-driven GFP reporter, we present evidence implicating satellite-like cells as a possible source of new muscle. In lieu of central nucleation, which distinguishes regenerating myofibers in mammals, we describe several characteristics that robustly identify newly-forming myofibers from surrounding fibers in injured adult zebrafish muscle. These characteristics include partially overlapping expression in satellite cells and regenerating myofibers of two RNA-binding proteins Rbfox2 and Rbfoxl1, known to regulate embryonic muscle development and function. Finally, by analyzing pax7a; pax7b double mutant zebrafish, we show that Pax7 is required for adult skeletal muscle repair, as it is in the mouse. PMID:28279710
2011-01-01
Background Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. Understanding these developmental changes in agriculturally important species is essential to the production of high quality meat products. For example, consumer demand for lean, inexpensive meat products has driven the turkey industry to unprecedented production through intensive genetic selection. However, achievements of increased body weight and muscle mass have been countered by an increased incidence of myopathies and meat quality defects. In a previous study, we developed and validated a turkey skeletal muscle-specific microarray as a tool for functional genomics studies. The goals of the current study were to utilize this microarray to elucidate functional pathways of genes responsible for key events in turkey skeletal muscle development and to compare differences in gene expression between two genetic lines of turkeys. To achieve these goals, skeletal muscle samples were collected at three critical stages in muscle development: 18d embryo (hyperplasia), 1d post-hatch (shift from myoblast-mediated growth to satellite cell-modulated growth by hypertrophy), and 16wk (market age) from two genetic lines: a randombred control line (RBC2) maintained without selection pressure, and a line (F) selected from the RBC2 line for increased 16wk body weight. Array hybridizations were performed in two experiments: Experiment 1 directly compared the developmental stages within genetic line, while Experiment 2 directly compared the two lines within each developmental stage. Results A total of 3474 genes were differentially expressed (false discovery rate; FDR < 0.001) by overall effect of development, while 16 genes were differentially expressed (FDR < 0.10) by overall effect of genetic line. Ingenuity Pathways Analysis was used to group annotated genes into networks, functions, and canonical pathways. The expression of 28 genes involved in extracellular matrix regulation, cell death/apoptosis, and calcium signaling/muscle function, as well as genes with miscellaneous function was confirmed by qPCR. Conclusions The current study identified gene pathways and uncovered novel genes important in turkey muscle growth and development. Future experiments will focus further on several of these candidate genes and the expression and mechanism of action of their protein products. PMID:21385442
Bioenergetic Impairment in Congenital Muscular Dystrophy Type 1A and Leigh Syndrome Muscle Cells
Fontes-Oliveira, Cibely C.; Steinz, Maarten; Schneiderat, Peter; Mulder, Hindrik; Durbeej, Madeleine
2017-01-01
Skeletal muscle has high energy requirement and alterations in metabolism are associated with pathological conditions causing muscle wasting and impaired regeneration. Congenital muscular dystrophy type 1A (MDC1A) is a severe muscle disorder caused by mutations in the LAMA2 gene. Leigh syndrome (LS) is a neurometabolic disease caused by mutations in genes related to mitochondrial function. Skeletal muscle is severely affected in both diseases and a common feature is muscle weakness that leads to hypotonia and respiratory problems. Here, we have investigated the bioenergetic profile in myogenic cells from MDC1A and LS patients. We found dysregulated expression of genes related to energy production, apoptosis and proteasome in myoblasts and myotubes. Moreover, impaired mitochondrial function and a compensatory upregulation of glycolysis were observed when monitored in real-time. Also, alterations in cell cycle populations in myoblasts and enhanced caspase-3 activity in myotubes were observed. Thus, we have for the first time demonstrated an impairment of the bioenergetic status in human MDC1A and LS muscle cells, which could contribute to cell cycle disturbance and increased apoptosis. Our findings suggest that skeletal muscle metabolism might be a promising pharmacological target in order to improve muscle function, energy efficiency and tissue maintenance of MDC1A and LS patients. PMID:28367954
Myozenin: An α-actinin- and γ-filamin-binding protein of skeletal muscle Z lines
Takada, Fumio; Woude, Douglas L. Vander; Tong, Hui-Qi; Thompson, Terri G.; Watkins, Simon C.; Kunkel, Louis M.; Beggs, Alan H.
2001-01-01
To better understand the structure and function of Z lines, we used sarcomeric isoforms of α-actinin and γ-filamin to screen a human skeletal muscle cDNA library for interacting proteins by using the yeast two-hybrid system. Here we describe myozenin (MYOZ), an α-actinin- and γ-filamin-binding Z line protein expressed predominantly in skeletal muscle. Myozenin is predicted to be a 32-kDa, globular protein with a central glycine-rich domain flanked by α-helical regions with no strong homologies to any known genes. The MYOZ gene has six exons and maps to human chromosome 10q22.1-q22.2. Northern blot analysis demonstrated that this transcript is expressed primarily in skeletal muscle with significantly lower levels of expression in several other tissues. Antimyozenin antisera stain skeletal muscle in a sarcomeric pattern indistinguishable from that seen by using antibodies for α-actinin, and immunogold electron microscopy confirms localization specifically to Z lines. Thus, myozenin is a skeletal muscle Z line protein that may be a good candidate gene for limb-girdle muscular dystrophy or other neuromuscular disorders. PMID:11171996
Denervation and reinnervation of skeletal muscle
NASA Technical Reports Server (NTRS)
Mayer, R. F.; Max, S. R.
1983-01-01
A review is presented of the physiological and biochemical changes that occur in mammalian skeletal muscle after denervation and reinnervation. These changes are compared with those observed after altered motor function. Also considered is the nature of the trophic influence by which nerves control muscle properties. Topics examined include the membrane and contractile properties of denervated and reinnervated muscle; the cholinergic proteins, such as choline acetyltransferase, acetylcholinesterase, and the acetylcholine receptor; and glucose-6-phosphate dehydrogenase.
Combination of small RNAs for skeletal muscle regeneration.
Kim, NaJung; Yoo, James J; Atala, Anthony; Lee, Sang Jin
2016-03-01
Selectively controlling the expression of the target genes through RNA interference (RNAi) has significant therapeutic potential for injuries or diseases of tissues. We used this strategy to accelerate and enhance skeletal muscle regeneration for the treatment of muscular atrophy. In this study, we used myostatin small interfering (si)RNA (siGDF-8), a major inhibitory factor in the development and postnatal regeneration of skeletal muscle and muscle-specific microRNAs (miR-1 and -206) to further accelerate muscle regeneration. This combination of 3 small RNAs significantly improved the gene expression of myogenic regulatory factors in vitro, suggesting myogenic activation. Moreover, cell proliferation and myotube formation improved without compromising each other, which indicates the myogenic potential of this combination of small RNAs. The recovery of chemically injured tibialis anterior muscles in rats was significantly accelerated, both functionally and structurally. This novel combination of siRNA and miRNAs has promising therapeutic potential to improve in situ skeletal muscle regeneration. © FASEB.
Secreted Protein Acidic and Rich in Cysteine (SPARC) in Human Skeletal Muscle
Jørgensen, Louise H.; Petersson, Stine J.; Sellathurai, Jeeva; Andersen, Ditte C.; Thayssen, Susanne; Sant, Dorte J.; Jensen, Charlotte H.; Schrøder, Henrik D.
2009-01-01
Secreted protein acidic and rich in cysteine (SPARC)/osteonectin is expressed in different tissues during remodeling and repair, suggesting a function in regeneration. Several gene expression studies indicated that SPARC was expressed in response to muscle damage. Studies on myoblasts further indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis, and polymyositis patients to analyze SPARC expression in a selected range of inherited and idiopathic muscle wasting diseases. SPARC-positive cells were observed both in fetal and neonatal muscle, and in addition, fetal myofibers were observed to express SPARC at the age of 15–16 weeks. SPARC protein was detected in the majority of analyzed muscle biopsies (23 of 24), mainly in mononuclear cells of which few were pax7 positive. Myotubes and regenerating myofibers also expressed SPARC. The expression-degree seemed to reflect the severity of the lesion. In accordance with these in vivo findings, primary human-derived satellite cells were found to express SPARC both during proliferation and differentiation in vitro. In conclusion, this study shows SPARC expression both during muscle development and in regenerating muscle. The expression is detected both in satellite cells/myoblasts and in myotubes and muscle fibers, indicating a role for SPARC in the skeletal muscle compartment. (J Histochem Cytochem 57:29–39, 2009) PMID:18796407
Barbé, Caroline; Bray, Fabrice; Gueugneau, Marine; Devassine, Stéphanie; Lause, Pascale; Tokarski, Caroline; Rolando, Christian; Thissen, Jean-Paul
2017-10-06
Skeletal muscle, the most abundant body tissue, plays vital roles in locomotion and metabolism. Myostatin is a negative regulator of skeletal muscle mass. In addition to increasing muscle mass, Myostatin inhibition impacts muscle contractility and energy metabolism. To decipher the mechanisms of action of the Myostatin inhibitors, we used proteomic and transcriptomic approaches to investigate the changes induced in skeletal muscles of transgenic mice overexpressing Follistatin, a physiological Myostatin inhibitor. Our proteomic workflow included a fractionation step to identify weakly expressed proteins and a comparison of fast versus slow muscles. Functional annotation of altered proteins supports the phenotypic changes induced by Myostatin inhibition, including modifications in energy metabolism, fiber type, insulin and calcium signaling, as well as membrane repair and regeneration. Less than 10% of the differentially expressed proteins were found to be also regulated at the mRNA level but the Biological Process annotation, and the KEGG pathways analysis of transcriptomic results shows a great concordance with the proteomic data. Thus this study describes the most extensive omics analysis of muscle overexpressing Follistatin, providing molecular-level insights to explain the observed muscle phenotypic changes.
Klein, Oliver; Strohschein, Kristin; Nebrich, Grit; Oetjen, Janina; Trede, Dennis; Thiele, Herbert; Alexandrov, Theodore; Giavalisco, Patrick; Duda, Georg N; von Roth, Philipp; Geissler, Sven; Klose, Joachim; Winkler, Tobias
2014-10-01
Due to formation of fibrosis and the loss of contractile muscle tissue, severe muscle injuries often result in insufficient healing marked by a significant reduction of muscle force and motor activity. Our previous studies demonstrated that the local transplantation of mesenchymal stromal cells into an injured skeletal muscle of the rat improves the functional outcome of the healing process. Since, due to the lack of sufficient markers, the accurate discrimination of pathophysiological regions in injured skeletal muscle is inadequate, underlying mechanisms of the beneficial effects of mesenchymal stromal cell transplantation on primary trauma and trauma adjacent muscle area remain elusive. For discrimination of these pathophysiological regions, formalin-fixed injured skeletal muscle tissue was analyzed by MALDI imaging MS. By using two computational evaluation strategies, a supervised approach (ClinProTools) and unsupervised segmentation (SCiLS Lab), characteristic m/z species could be assigned to primary trauma and trauma adjacent muscle regions. Using "bottom-up" MS for protein identification and validation of results by immunohistochemistry, we could identify two proteins, skeletal muscle alpha actin and carbonic anhydrase III, which discriminate between the secondary damage on adjacent tissue and the primary traumatized muscle area. Our results underscore the high potential of MALDI imaging MS to describe the spatial characteristics of pathophysiological changes in muscle. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
USDA-ARS?s Scientific Manuscript database
Menopause, the age-related loss of ovarian hormone production, promotes increased adiposity and associated metabolic pathology, but molecular mechanisms remain unclear. We previously reported that estrogen increases skeletal muscle PPARDelta expression in vivo, and transgenic mice overexpressing mus...
Ochala, Julien
2010-02-01
Ca(2+) ions are key regulators of skeletal muscle contraction. By binding to contractile proteins, they initiate a cascade of molecular events leading to cross-bridge formation and ultimately, muscle shortening and force production. The ability of contractile proteins to respond to Ca(2+) attachment, also known as Ca(2+) sensitivity, is often compromised in acquired and congenital skeletal muscle disorders. It constitutes, undoubtedly, a major physiological cause of weakness for patients. In this review, we discuss recent studies giving strong molecular and cellular evidence that pharmacological modulators of some of the contractile proteins, also termed Ca(2+) sensitizers, are efficient agents to improve Ca(2+) sensitivity and function in diseased skeletal muscle cells. In fact, they compensate for the impaired contractile proteins response to Ca(2+) binding. Currently, such Ca(2+) sensitizing compounds are successfully used for reducing problems in cardiac disorders. Therefore, in the future, under certain conditions, these agents may represent an emerging class of agents to enhance the quality of life of patients suffering from skeletal muscle weakness. Copyright 2009 Elsevier B.V. All rights reserved.
Chapter 2. Calcineurin signaling and the slow oxidative skeletal muscle fiber type.
Mallinson, Joanne; Meissner, Joachim; Chang, Kin-Chow
2009-01-01
Calcineurin, also known as protein phosphatase 2B (PP2B), is a calcium-calmodulin-dependent phosphatase. It couples intracellular calcium to dephosphorylate selected substrates resulting in diverse biological consequences depending on cell type. In mammals, calcineurin's functions include neuronal growth, development of cardiac valves and hypertrophy, activation of lymphocytes, and the regulation of ion channels and enzymes. This chapter focuses on the key roles of calcineurin in skeletal muscle differentiation, regeneration, and fiber type conversion to an oxidative state, all of which are crucial to muscle development, metabolism, and functional adaptations. It seeks to integrate the current knowledge of calcineurin signaling in skeletal muscle and its interactions with other prominent regulatory pathways and their signaling intermediates to form a molecular overview that could provide directions for possible future exploitations in human metabolic health.
Corona, Benjamin T; Rathbone, Christopher R
2014-05-01
Relatively little information exists regarding the usefulness of bone marrow-derived cells for skeletal muscle ischemia-reperfusion injury (I/R), especially when compared with I/R that occurs in other tissues. The objectives of this study were to evaluate the ability of freshly isolated bone marrow cells to home to injured skeletal muscle and to determine their effects on muscle regeneration. Freshly isolated lineage-depleted bone marrow cells (Lin(-) BMCs) were injected intravenously 2 d after I/R. Bioluminescent imaging was used to evaluate cell localization for up to 28 d after injury. Muscle function, the percentage of fibers with centrally located nuclei, and the capillary-to-fiber ratio were evaluated 14 d after delivery of either saline (Saline) or saline containing Lin(-) BMCs (Lin(-) BMCs). Bioluminescence was higher in the injured leg than the contralateral control leg for up to 7 d after injection (P < 0.05) suggestive of cell homing to the injured skeletal muscle. Fourteen days after injury, there was a significant improvement in maximal tetanic torque (40% versus 22% deficit; P < 0.05), a faster rate of force production (+dP/dt) (123.6 versus 94.5 Nmm/S; P < 0.05), and a reduction in the percentage of fibers containing centrally located nuclei (40 versus 17%; P < 0.05), but no change in the capillary-to-fiber ratio in the Lin(-) BMC as compared with the Saline group. The homing of freshly isolated BMCs to injured skeletal muscle after I/R is associated with an increase in functional outcomes. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Grill, Mischala A.; Bales, Mark A.; Fought, Amber N.; Rosburg, Kristopher C.; Munger, Stephanie J.; Antin, Parker B.
2003-01-01
Tightly regulated control of over-expression is often necessary to study one aspect or time point of gene function and, in transgenesis, may help to avoid lethal effects and complications caused by ubiquitous over-expression. We have utilized the benefits of an optimized tet-on system and a modified muscle creatine kinase (MCK) promoter to generate a skeletal muscle-specific, doxycycline (Dox) controlled over-expression system in transgenic mice. A DNA construct was generated in which the codon optimized reverse tetracycline transactivator (rtTA) was placed under control of a skeletal muscle-specific version of the mouse MCK promoter. Transgenic mice containing this construct expressed rtTA almost exclusively in skeletal muscles. These mice were crossed to a second transgenic line containing a bi-directional promoter centered on a tet responder element driving both a luciferase reporter gene and a tagged gene of interest; in this case the calpain inhibitor calpastatin. Compound hemizygous mice showed high level, Dox dependent muscle-specific luciferase activity often exceeding 10,000-fold over non-muscle tissues of the same mouse. Western and immunocytochemical analysis demonstrated similar Dox dependent muscle-specific induction of the tagged calpastatin protein. These findings demonstrate the effectiveness and flexibility of the tet-on system to provide a tightly regulated over-expression system in adult skeletal muscle. The MCKrtTA transgenic lines can be combined with other transgenic responder lines for skeletal muscle-specific over-expression of any target gene of interest.
Ahituv, Nadav; Chaudhry, Shehla N.; Schackwitz, Wendy S.; Dent, Robert; Pennacchio, Len A.
2007-01-01
Background AMP-activated protein kinase (AMPK) is a heterotrimeric enzyme that is evolutionarily conserved from yeast to mammals and functions to maintain cellular and whole body energy homeostasis. Studies in experimental animals demonstrate that activation of AMPK in skeletal muscle protects against insulin resistance, type 2 diabetes and obesity. The regulatory γ3 subunit of AMPK is expressed exclusively in skeletal muscle; however, its importance in controlling overall AMPK activity is unknown. While evidence is emerging that gamma subunit mutations interfere specifically with AMP activation, there remains some controversy regarding the impact of gamma subunit mutations [1]–[3]. Here we report the first gain-of-function mutation in the muscle-specific regulatory γ3 subunit in humans. Methods and Findings We sequenced the exons and splice junctions of the AMPK γ3 gene (PRKAG3) in 761 obese and 759 lean individuals, identifying 87 sequence variants including a novel R225W mutation in subjects from two unrelated families. The γ3 R225W mutation is homologous in location to the γ2R302Q mutation in patients with Wolf-Parkinson-White syndrome and to the γ3R225Q mutation originally linked to an increase in muscle glycogen content in purebred Hampshire Rendement Napole (RN-) pigs. We demonstrate in differentiated muscle satellite cells obtained from the vastus lateralis of R225W carriers that the mutation is associated with an approximate doubling of both basal and AMP-activated AMPK activities. Moreover, subjects bearing the R225W mutation exhibit a ∼90% increase of skeletal muscle glycogen content and a ∼30% decrease in intramuscular triglyceride (IMTG). Conclusions We have identified for the first time a mutation in the skeletal muscle-specific regulatory γ3 subunit of AMPK in humans. The γ3R225W mutation has significant functional effects as demonstrated by increases in basal and AMP-activated AMPK activities, increased muscle glycogen and decreased IMTG. Overall, these findings are consistent with an important regulatory role for AMPK γ3 in human muscle energy metabolism. PMID:17878938
Redox responses are preserved across muscle fibres with differential susceptibility to aging.
Smith, Neil T; Soriano-Arroquia, Ana; Goljanek-Whysall, Katarzyna; Jackson, Malcolm J; McDonagh, Brian
2018-04-15
Age-related loss of muscle mass and function is associated with increased frailty and loss of independence. The mechanisms underlying the susceptibility of different muscle types to age-related atrophy are not fully understood. Reactive oxygen species (ROS) are recognised as important signalling molecules in healthy muscle and redox sensitive proteins can respond to intracellular changes in ROS concentrations modifying reactive thiol groups on Cysteine (Cys) residues. Conserved Cys residues tend to occur in functionally important locations and can have a direct impact on protein function through modifications at the active site or determining protein conformation. The aim of this work was to determine age-related changes in the redox proteome of two metabolically distinct murine skeletal muscles, the quadriceps a predominantly glycolytic muscle and the soleus which contains a higher proportion of mitochondria. To examine the effects of aging on the global proteome and the oxidation state of individual redox sensitive Cys residues, we employed a label free proteomics approach including a differential labelling of reduced and reversibly oxidised Cys residues. Our results indicate the proteomic response to aging is dependent on muscle type but redox changes that occur primarily in metabolic and cytoskeletal proteins are generally preserved between metabolically distinct tissues. Skeletal muscle containing fast twitch glycolytic fibres are more susceptible to age related atrophy compared to muscles with higher proportions of oxidative slow twitch fibres. Contracting skeletal muscle generates reactive oxygen species that are required for correct signalling and adaptation to exercise and it is also known that the intracellular redox environment changes with age. To identify potential mechanisms for the distinct response to age, this article combines a global proteomic approach and a differential labelling of reduced and reversibly oxidised Cysteine residues in two metabolically distinct skeletal muscles, quadriceps and soleus, from adult and old mice. Our results indicate that the global proteomic changes with age in skeletal muscles are dependent on fibre type. However, redox specific changes are preserved across muscle types and accompanied with a reduction in the number of redox sensitive Cysteine residues. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Majzoub, Ramsey K; Bardoel, Janou W J M; Maldonado, Claudio; Barker, John H; Stadelmann, Wayne K
2003-01-01
Dynamic skeletal muscle flaps are designed to perform a specific functional task through contraction and relaxation of their muscle fibers. The most commonly used dynamic skeletal flaps today are for cardiomyoplasty and anal or urinary myoplasty. Low-frequency chronic stimulation of these flaps enables them to use their intrinsic energy stores in a more efficient manner through aerobic metabolic pathways for increased endurance and improved work capacity. The purpose of this study was to (1) determine whether fiber type transformation from fatigue-prone (type II) muscle fibers to fatigue-resistant (type I) muscle fibers could be demonstrated in the authors' chronic canine stomal sphincter model where the rectus abdominis muscle was used to create a functional stomal sphincter, (2) assess whether there is any correlation between the degree of muscle fiber type transformation and the continence times, and (3) examine the long-term effects of the training regimens on the skeletal muscle fibers through histologic and volumetric analysis. Eight dynamic island-flap sphincters were created from a part of the rectus abdominis muscle in mongrel dogs by preserving the deep inferior epigastric vascular pedicle and the most caudal investing intercostal nerve. The muscular sphincters were wrapped around a blind loop of distal ileum and trained with pacing electrodes. Two different training protocols were used. In group A (n = 4), a preexisting anal dynamic graciloplasty training protocol was used. A revised protocol was used in group B (n = 4). Muscle biopsy specimens were obtained before and after training from the rectus abdominis muscle sphincter. Fiber type transformation was assessed using a monoclonal antibody directed against the fatigue-prone type II fibers. Pretraining and posttraining skeletal muscle specimens were examined histologically. A significant fiber type conversion was achieved in both group A and group B animals, with each group achieving greater than 50 percent conversion from fatigue-prone (type II) muscle fibers to fatigue-resistant (type I) muscle fibers. The continence time was different for both groups. Biopsy specimens 1 cm from the electrodes revealed that fiber type transformation was uniform throughout this region of the sphincters. Skeletal muscle fibers within both groups demonstrated a reduction in their fiber diameter and volume. Fiber type transformation is possible in this unique canine island-flap rectus abdominis sphincter model. The relative design of the flap with preservation of the skeletal muscle resting length and neuronal and vascular supply are important characteristics when designing a functional dynamic flap for stomal continence.
Gerlinger-Romero, Frederico; Guimarães-Ferreira, Lucas; Yonamine, Caio Yogi; Salgueiro, Rafael Barrera; Nunes, Maria Tereza
2018-03-01
Beta-hydroxy-beta-methylbutyrate (HMB), a leucine metabolite, enhances the gain of skeletal muscle mass by increasing protein synthesis or attenuating protein degradation or both. The aims of this study were to investigate the effect of HMB on molecular factors controlling skeletal muscle protein synthesis and degradation, as well as muscle contractile function, in fed and fasted conditions. Wistar rats were supplied daily with HMB (320 mg/kg body weight diluted in NaCl-0.9%) or vehicle only (control) by gavage for 28 days. After this period, some of the animals were subjected to a 24-h fasting, while others remained in the fed condition. The EDL muscle was then removed, weighed and used to evaluate the genes and proteins involved in protein synthesis (AKT/4E-BP1/S6) and degradation (Fbxo32 and Trim63). A sub-set of rats were used to measure in vivo muscle contractile function. HMB supplementation increased AKT phosphorylation during fasting (three-fold). In the fed condition, no differences were detected in atrogenes expression between control and HMB supplemented group; however, HMB supplementation did attenuate the fasting-induced increase in their expression levels. Fasting animals receiving HMB showed improved sustained tetanic contraction times (one-fold) and an increased muscle to tibia length ratio (1.3-fold), without any cross-sectional area changes. These results suggest that HMB supplementation under fasting conditions increases AKT phosphorylation and attenuates the increased of atrogenes expression, followed by a functional improvement and gain of skeletal muscle weight, suggesting that HMB protects skeletal muscle against the deleterious effects of fasting.
Validation of Shear Wave Elastography in Skeletal Muscle
Eby, Sarah F.; Song, Pengfei; Chen, Shigao; Chen, Qingshan; Greenleaf, James F.; An, Kai-Nan
2013-01-01
Skeletal muscle is a very dynamic tissue, thus accurate quantification of skeletal muscle stiffness throughout its functional range is crucial to improve the physical functioning and independence following pathology. Shear wave elastography (SWE) is an ultrasound-based technique that characterizes tissue mechanical properties based on the propagation of remotely induced shear waves. The objective of this study is to validate SWE throughout the functional range of motion of skeletal muscle for three ultrasound transducer orientations. We hypothesized that combining traditional materials testing (MTS) techniques with SWE measurements will show increased stiffness measures with increasing tensile load, and will correlate well with each other for trials in which the transducer is parallel to underlying muscle fibers. To evaluate this hypothesis, we monitored the deformation throughout tensile loading of four porcine brachialis whole-muscle tissue specimens, while simultaneously making SWE measurements of the same specimen. We used regression to examine the correlation between Young's modulus from MTS and shear modulus from SWE for each of the transducer orientations. We applied a generalized linear model to account for repeated testing. Model parameters were estimated via generalized estimating equations. The regression coefficient was 0.1944, with a 95% confidence interval of (0.1463 – 0.2425) for parallel transducer trials. Shear waves did not propagate well for both the 45° and perpendicular transducer orientations. Both parallel SWE and MTS showed increased stiffness with increasing tensile load. This study provides the necessary first step for additional studies that can evaluate the distribution of stiffness throughout muscle. PMID:23953670
Bajpeyi, Sudip; Pasarica, Magdalena; Conley, Kevin E; Newcomer, Bradley R; Jubrias, Sharon A; Gamboa, Cecilia; Murray, Kori; Sereda, Olga; Sparks, Lauren M; Smith, Steven R
2017-04-01
Pioglitazone (Pio) is known to improve insulin sensitivity in skeletal muscle. However, the role of Pio in skeletal muscle lipid metabolism and skeletal muscle oxidative capacity is not clear. The aim of this study was to determine the effects of chronic Pio treatment on skeletal muscle mitochondrial activity in individuals with type 2 diabetes (T2D). Twenty-four participants with T2D (13M/11F 53.38±2.1years; BMI 36.47±1.1kg/m 2 ) were randomized to either a placebo (CON, n=8) or a pioglitazone (PIO, n=16) group. Following 12weeks of treatment, we measured insulin sensitivity by hyperinsulinemic-euglycemic clamp (clamp), metabolic flexibility by calculating the change in respiratory quotient (ΔRQ) during the steady state of the clamp, intra- and extra-myocellular lipid content (IMCL and EMCL, respectively) by 1 H magnetic resonance spectroscopy ( 1 H-MRS) and muscle maximal ATP synthetic capacity (ATPmax) by 31 P-MRS. Following 12weeks of PIO treatment, insulin sensitivity (p<0.0005 vs. baseline) and metabolic flexibility (p<0.05 vs. CON) significantly increased. PIO treatment significantly decreased IMCL content and increased EMCL content in gastrocnemius, soleus and tibialis anterior muscles. ATPmax was unaffected by PIO treatment. These results suggest that 12weeks of pioglitazone treatment improves insulin sensitivity, metabolic flexibility and myocellular lipid distribution without any effect on maximal ATP synthetic capacity in skeletal muscle. Consequently, pioglitazone-induced enhancements in insulin responsiveness and fuel utilization are independent of mitochondrial function. Copyright © 2016 Elsevier Inc. All rights reserved.
Chadwick, Jessica A; Bhattacharya, Sayak; Lowe, Jeovanna; Weisleder, Noah; Rafael-Fortney, Jill A
2017-02-01
Angiotensin-converting enzyme inhibitors (ACEi) and mineralocorticoid receptor (MR) antagonists are FDA-approved drugs that inhibit the renin-angiotensin-aldosterone system (RAAS) and are used to treat heart failure. Combined treatment with the ACEi lisinopril and the nonspecific MR antagonist spironolactone surprisingly improves skeletal muscle, in addition to heart function and pathology in a Duchenne muscular dystrophy (DMD) mouse model. We recently demonstrated that MR is present in all limb and respiratory muscles and functions as a steroid hormone receptor in differentiated normal human skeletal muscle fibers. The goals of the current study were to begin to define cellular and molecular mechanisms mediating the skeletal muscle efficacy of RAAS inhibitor treatment. We also compared molecular changes resulting from RAAS inhibition with those resulting from the current DMD standard-of-care glucocorticoid treatment. Direct assessment of muscle membrane integrity demonstrated improvement in dystrophic mice treated with lisinopril and spironolactone compared with untreated mice. Short-term treatments of dystrophic mice with specific and nonspecific MR antagonists combined with lisinopril led to overlapping gene-expression profiles with beneficial regulation of metabolic processes and decreased inflammatory gene expression. Glucocorticoids increased apoptotic, proteolytic, and chemokine gene expression that was not changed by RAAS inhibitors in dystrophic mice. Microarray data identified potential genes that may underlie RAAS inhibitor treatment efficacy and the side effects of glucocorticoids. Direct effects of RAAS inhibitors on membrane integrity also contribute to improved pathology of dystrophic muscles. Together, these data will inform clinical development of MR antagonists for treating skeletal muscles in DMD. Copyright © 2017 the American Physiological Society.
Ballard, Kevin D; Parker, Beth A; Capizzi, Jeffrey A; Grimaldi, Adam S; Clarkson, Priscilla M; Cole, Stephanie M; Keadle, Justin; Chipkin, Stuart; Pescatello, Linda S; Simpson, Kathleen; White, C Michael; Thompson, Paul D
2013-09-01
The present study examined if increases in creatine kinase (CK) levels during high-dose atorvastatin treatment are associated with changes in skeletal muscle function and symptoms. The Effect of Statins on Muscle Performance study (STOMP) investigated the effects of atorvastatin 80 mg daily for 6 months on muscle performance, exercise capacity, and the incidence of statin-associated muscle complaints in healthy adults. CK levels increased with atorvastatin (n = 202) from 132.3 ± 120.9 U/L (mean ± SD) at baseline to 159.7 ± 170.4 and 153.1 ± 139.4 U/L at 3 and 6 months, respectively (P ≤ 0.002 for both). Changes in CK with atorvastatin treatment were not associated with changes in muscle function or the incidence of myalgia. More subjects on atorvastatin (n = 24) compared to placebo (n = 12 of 217) doubled their CK level at 6 months (P = 0.02). No differences in muscle function or physical activity were observed between atorvastatin-treated subjects who did or did not double their CK. Results of the present investigation extend the findings of STOMP by demonstrating that greater increases in CK levels with high-dose atorvastatin treatment did not deleteriously impact skeletal muscle function or predict skeletal muscle complaints. This study was registered at ClinicalTrials.gov (NCT00609063). © 2013 Elsevier Ireland Ltd. All rights reserved.
Lynch, G S; Cuffe, S A; Plant, D R; Gregorevic, P
2001-04-01
Although insulin-like growth factor-I (IGF-I) has been proposed for use by patients suffering from muscle wasting conditions, few studies have investigated the functional properties of dystrophic skeletal muscle following IGF-I treatment. 129P1 ReJ-Lama2(dy) (129 ReJ dy/dy) dystrophic mice suffer from a deficiency in the structural protein, laminin, and exhibit severe muscle wasting and weakness. We tested the hypothesis that 4 weeks of IGF-I treatment ( approximately 2 mg/kg body mass, 50 g/h via mini-osmotic pump, subcutaneously) would increase the mass and force producing capacity of skeletal muscles from dystrophic mice. IGF-I treatment increased the mass of the extensor digitorum longus (EDL) and soleus muscles of dystrophic mice by 20 and 29%, respectively, compared with untreated dystrophic mice (administered saline-vehicle only). Absolute maximum force (P(o)) of the EDL and soleus muscle was increased by 40 and 32%, respectively, following IGF-I treatment. Specific P(o) (sP(o)) was increased by 23% in the EDL muscles of treated compared with untreated mice, but in the soleus muscle sP(o) was unchanged. IGF-I treatment increased the proportion of type IIB and type IIA fibres and decreased the proportion of type I fibres in the EDL muscles of dystrophic mice. In the soleus muscles of dystrophic mice, IGF-I treatment increased the proportion of type IIA fibres and decreased the proportion of type I fibres. Average fibre cross-sectional area was increased in the EDL and soleus muscles of treated compared with untreated mice. We conclude that IGF-I treatment ameliorates muscle wasting and improves the functional properties of skeletal muscles of dystrophic mice. The findings have important implications for the role of IGF-I in ameliorating muscle wasting associated with the muscular dystrophies.
Luo, Wen; Lin, Shumao; Li, Guihuan; Nie, Qinghua; Zhang, Xiquan
2016-01-01
The sex-linked dwarf (SLD) chicken is an ideal model system for understanding growth hormone (GH)-action and growth hormone receptor (GHR) function because of its recessive mutation in the GHR gene. Skeletal muscle mass is reduced in the SLD chicken with a smaller muscle fiber diameter. Our previous study has presented the mRNA and miRNA expression profiles of the SLD chicken and normal chicken between embryo day 14 and seven weeks of age. However, the molecular mechanism of GHR-deficient induced muscle mass loss is still unclear, and the key molecules and pathways underlying the GHR-deficient induced muscle mass loss also remain to be illustrated. Here, by functional network analysis of the differentially expressed miRNAs and mRNAs between the SLD and normal chickens, we revealed that let-7b, miR-128 and the MAPK pathway might play key roles in the GHR-deficient induced muscle mass loss, and that the reduced cell division and growth are potential cellular processes during the SLD chicken skeletal muscle development. Additionally, we also found some genes and miRNAs involved in chicken skeletal muscle development, through the MAPK, PI3K-Akt, Wnt and Insulin signaling pathways. This study provides new insights into the molecular mechanism underlying muscle mass loss in the SLD chickens, and some regulatory networks that are crucial for chicken skeletal muscle development. PMID:26927061
Maricelli, Joseph W; Bishaw, Yemeserach M; Wang, Bo; Du, Min; Rodgers, Buel D
2018-03-01
Striated muscle wasting occurs with a variety of disease indications, contributing to mortality and compromising life quality. Recent studies indicate that the recombinant adeno-associated virus (serotype 6) Smad7 gene therapeutic, AVGN7, enhances skeletal and cardiac muscle mass and prevents cancer-induced wasting of both tissues. This is accomplished by attenuating ActRIIb intracellular signaling and, as a result, the physiological actions of myostatin and other ActRIIb ligands. AVGN7 also enhances isolated skeletal muscle twitch force, but is unknown to improve systemic muscle function similarly, especially exercise capacity. A 2-month-long dose-escalation study was therefore conducted using 5 × 10 11 , 1 × 10 12 , and 5 × 10 12 vg/mouse and different tests of systemic muscle function. Body mass, skeletal muscle mass, heart mass, and forelimb grip strength were all increased in a dose-dependent manner, as was the fiber cross-sectional area of tibialis anterior muscles. Maximal oxygen consumption (VO 2 max), a measure of metabolic rate, was similarly enhanced during forced treadmill running, and although the total distance traveled was only elevated by the highest dose, all doses reduced the energy expenditure rate compared to control mice injected with an empty vector. Such improvements in VO 2 max are consistent with physiological cardiac hypertrophy, which is highly beneficial and a normal adaptive response to exercise. This was particularly evident at the lowest dose tested, which had minimal significant effects on skeletal muscle mass and/or function, but increased heart weight and exercise capacity. These results together suggest that AVGN7 enhances striated muscle mass and systemic muscle function. They also define minimally effective and optimal doses for future preclinical trials and toxicology studies and in turn will aid in establishing dose ranges for clinical trials.
Tomoda, Koichi; Kubo, Kaoru; Hino, Kazuo; Kondoh, Yasunori; Nishii, Yasue; Koyama, Noriko; Yamamoto, Yoshifumi; Yoshikawa, Masanori; Kimura, Hiroshi
2014-04-01
Cigarette smoke induces skeletal muscle wasting by a mechanism not yet fully elucidated. Branched-chain amino acids (BCAA) in the skeletal muscles are useful energy sources during exercise or systemic stresses. We investigated the relationship between skeletal muscle wasting caused by cigarette smoke and changes in BCAA levels in the plasma and skeletal muscles of rats. Furthermore, the effects of BCAA-rich diet on muscle wasting caused by cigarette smoke were also investigated. Wistar Kyoto (WKY) rats that were fed with a control or a BCAA-rich diet were exposed to cigarette smoke for four weeks. After the exposure, the skeletal muscle weight and BCAA levels in plasma and the skeletal muscles were measured. Cigarette smoke significantly decreased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles, while a BCAA-rich diet increased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles that had decreased by cigarette smoke exposure. In conclusion, skeletal muscle wasting caused by cigarette smoke was related to the decrease of BCAA levels in the skeletal muscles, while a BCAA-rich diet may improve cases of cigarette smoke-induced skeletal muscle wasting.
Copp, Steven W.; Inagaki, Tadakatsu; White, Michael J.; Hirai, Daniel M.; Ferguson, Scott K.; Holdsworth, Clark T.; Sims, Gabrielle E.; Poole, David C.
2013-01-01
Consumption of the dietary flavanol (−)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O2 uptake (V̇o2 peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O2 pressure (Po2mv) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓∼5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, V̇o2 peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min−1·100 g−1, P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min−1·100 g−1·mmHg−1, P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓∼16%) but did not impact resting Po2mv or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg−1·day−1) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats. PMID:23144313
Copp, Steven W; Inagaki, Tadakatsu; White, Michael J; Hirai, Daniel M; Ferguson, Scott K; Holdsworth, Clark T; Sims, Gabrielle E; Poole, David C; Musch, Timothy I
2013-01-15
Consumption of the dietary flavanol (-)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O(2) uptake (Vo(2) peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O(2) pressure (Po(2mv)) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓~5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, Vo(2) peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min(-1)·100 g(-1), P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min(-1)·100 g(-1)·mmHg(-1), P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓~16%) but did not impact resting Po(2mv) or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg(-1)·day(-1)) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats.
NASA Technical Reports Server (NTRS)
Yeagle, S. P.; Mayer, R. F.; Max, S. R.
1983-01-01
The peroneal nerve of subject rats were crushed 1 cm from the muscle in order to examine the isometric contractile properties of skeletal muscle in the recovery sequency during reinnervation of normal, castrated, and testosterone-treated rats. The particular muscle studied was the extensor digitorum longus, with functional reinnervation first observed 8-9 days after nerve crush. No evidence was found that either castration or testosterone injections altered the process of reinnervation after the nerve crush, with the conclusion being valid at the 0.05 p level. The most reliable index of reinnervation was found to be the twitch:tetanus ratio, a factor of use in future studies of the reinnervation of skeletal muscle.
Lowe, Jeovanna; Floyd, Kyle T; Rastogi, Neha; Schultz, Eric J; Chadwick, Jessica A; Swager, Sarah A; Zins, Jonathan G; Kadakia, Feni K; Smart, Suzanne; Gomez-Sanchez, Elise P; Gomez-Sanchez, Celso E; Raman, Subha V; Janssen, Paul M L; Rafael-Fortney, Jill A
2016-01-01
Combined treatment with an angiotensin-converting enzyme inhibitor and a mineralocorticoid receptor (MR) antagonist improved cardiac and skeletal muscle function and pathology in a mouse model of Duchenne muscular dystrophy. MR is present in limb and respiratory skeletal muscles and functions as a steroid hormone receptor. The goals of the current study were to compare the efficacy of the specific MR antagonist eplerenone with the non-specific MR antagonist spironolactone, both in combination with the angiotensin-converting enzyme inhibitor lisinopril. Three groups of n=18 dystrophin-deficient, utrophin-haploinsufficient male mice were given chow containing: lisinopril plus spironolactone, lisinopril plus eplerenone, or no drug, from four to 20 weeks-of-age. Eighteen C57BL/10 male mice were used as wild-type controls. In vivo measurements included cardiac magnetic resonance imaging, conscious electrocardiography, and grip strength. From each mouse in the study, diaphragm, extensor digitorum longus , and cardiac papillary muscle force was measured ex vivo , followed by histological quantification of muscle damage in heart, diaphragm, quadriceps, and abdominal muscles. MR protein levels were also verified in treated muscles. Treatment with specific and non-specific MR antagonists did not result in any adverse effects to dystrophic skeletal muscles or heart. Both treatments resulted in similar functional and pathological improvements across a wide array of parameters. MR protein levels were not reduced by treatment. These data suggest that spironolactone and eplerenone show similar effects in dystrophic mice and support the clinical development of MR antagonists for treating skeletal muscles in Duchenne muscular dystrophy.
Sweeney, H Lee; Hammers, David W
2018-02-01
SUMMARYMuscle cells are designed to generate force and movement. There are three types of mammalian muscles-skeletal, cardiac, and smooth. Skeletal muscles are attached to bones and move them relative to each other. Cardiac muscle comprises the heart, which pumps blood through the vasculature. Skeletal and cardiac muscles are known as striated muscles, because the filaments of actin and myosin that power their contraction are organized into repeating arrays, called sarcomeres, that have a striated microscopic appearance. Smooth muscle does not contain sarcomeres but uses the contraction of filaments of actin and myosin to constrict blood vessels and move the contents of hollow organs in the body. Here, we review the principal molecular organization of the three types of muscle and their contractile regulation through signaling mechanisms and discuss their major structural and functional similarities that hint at the possible evolutionary relationships between the cell types. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.
Roshanravan, Baback; Gamboa, Jorge; Wilund, Kenneth
2017-06-01
Patients with chronic kidney disease experience substantial loss of muscle mass, weakness, and poor physical performance. As kidney disease progresses, skeletal muscle dysfunction forms a common pathway for mobility limitation, loss of functional independence, and vulnerability to disease complications. Screening for those at high risk for mobility disability by self-reported and objective measures of function is an essential first step in developing an interdisciplinary approach to treatment that includes rehabilitative therapies and counseling on physical activity. Exercise has beneficial effects on systemic inflammation, muscle, and physical performance in chronic kidney disease. Kidney health providers need to identify patient and care delivery barriers to exercise in order to effectively counsel patients on physical activity. A thorough medical evaluation and assessment of baseline function using self-reported and objective function assessment is essential to guide an effective individualized exercise prescription to prevent function decline in persons with kidney disease. This review focuses on the impact of kidney disease on skeletal muscle dysfunction in the context of the disablement process and reviews screening and treatment strategies that kidney health professionals can use in clinical practice to prevent functional decline and disability. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
The Human Skeletal Muscle Proteome Project: a reappraisal of the current literature
Gonzalez‐Freire, Marta; Semba, Richard D.; Ubaida‐Mohien, Ceereena; Fabbri, Elisa; Scalzo, Paul; Højlund, Kurt; Dufresne, Craig; Lyashkov, Alexey
2016-01-01
Abstract Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of ‘sarcopenia’, a condition that impairs mobility, challenges autonomy, and is a risk factor for mortality. The mechanisms leading to sarcopenia as well as myopathies are still little understood. The Human Skeletal Muscle Proteome Project was initiated with the aim to characterize muscle proteins and how they change with ageing and disease. We conducted an extensive review of the literature and analysed publically available protein databases. A systematic search of peer‐reviewed studies was performed using PubMed. Search terms included ‘human’, ‘skeletal muscle’, ‘proteome’, ‘proteomic(s)’, and ‘mass spectrometry’, ‘liquid chromatography‐mass spectrometry (LC‐MS/MS)’. A catalogue of 5431 non‐redundant muscle proteins identified by mass spectrometry‐based proteomics from 38 peer‐reviewed scientific publications from 2002 to November 2015 was created. We also developed a nosology system for the classification of muscle proteins based on localization and function. Such inventory of proteins should serve as a useful background reference for future research on changes in muscle proteome assessed by quantitative mass spectrometry‐based proteomic approaches that occur with ageing and diseases. This classification and compilation of the human skeletal muscle proteome can be used for the identification and quantification of proteins in skeletal muscle to discover new mechanisms for sarcopenia and specific muscle diseases that can be targeted for the prevention and treatment. PMID:27897395
Yu, Zhi-Bin; Gao, Fang; Feng, Han-Zhong; Jin, J-P
2006-01-01
Weight-bearing skeletal muscles change phenotype rapidly in response to unloading. Using the hind limb-suspension rat model, we investigated the regulation of myofilament protein isoforms in correlation to contractility. Four weeks of continuous hind limb unloading produced progressive atrophy and contractility changes in soleus but not extensor digitorum longus (EDL) muscle. The unloaded soleus muscle also had decreased fatigue resistance. Together with the decrease of myosin heavy chain (MHC) isoform I and IIa and increase of MHC IIb and IIx, coordinated regulation of thin filament regulatory protein isoforms were observed: γ- and β-tropomyosin decreased and α-tropomyosin increased, resulting in an α/β ratio similar to that in normal fast twitch skeletal muscle; troponin I and troponin T (TnT) both showed decrease in the slow isoform and increases in the fast isoform. The TnT isoform switching began after 7 days of unloading and TnI isoform showed detectable changes at 14 days while other protein isoform changes were not significant until 28 days of treatment. Correlating to the early changes in contractility, especially the resistance to fatigue, the early response of TnT isoform regulation may play a unique role in the adaptation of skeletal muscle to unloading. When the fast TnT gene expression was up-regulated in the unloaded soleus muscle, alternative RNA splicing switched to produce more high molecular weight acidic isoforms, reflecting a potential compensation for the decrease of slow TnT that is critical to skeletal muscle function. The results demonstrate that differential regulation of TnT isoforms is a sensitive mechanism in muscle adaptation to functional demands. PMID:17108008
Osteogenesis Imperfecta: Muscle-Bone Interactions when Bi-directionally Compromised.
Phillips, Charlotte L; Jeong, Youngjae
2018-06-16
Osteogenesis imperfecta (OI) is a hereditary connective tissue disorder of skeletal fragility and more recently muscle weakness. This review highlights our current knowledge of the impact of compromised OI muscle function on muscle-bone interactions and skeletal strength in OI. The ramifications of inherent muscle weakness in OI muscle-bone interactions are just beginning to be elucidated. Studies in patients and in OI mouse models implicate altered mechanosensing, energy metabolism, mitochondrial dysfunction, and paracrine/endocrine crosstalk in the pathogenesis of OI. Compromised muscle-bone unit impacts mechanosensing and the ability of OI muscle and bone to respond to physiotherapeutic and pharmacologic treatment strategies. Muscle and bone are both compromised in OI, making it essential to understand the mechanisms responsible for both impaired muscle and bone functions and their interdependence, as this will expand and drive new physiotherapeutic and pharmacological approaches to treat OI and other musculoskeletal disorders.
Mao, Xiangbing; Zeng, Xiangfang; Huang, Zhimin; Wang, Junjun; Qiao, Shiyan
2013-07-28
Leucine and leptin play important roles in regulating protein synthesis and degradation in skeletal muscles in vitro and in vivo. However, the objective of the present study was to determine whether leptin and leucine function synergistically in regulating protein metabolism of skeletal muscles. In the in vitro experiment, C2C12 myotubes were cultured for 2 h in the presence of 5 mm-leucine and/or 50 ng/ml of leptin. In the in vivo experiment, C57BL/6 and ob/ob mice were randomly assigned to be fed a non-purified diet supplemented with 3 % L-leucine or 2·04 % L-alanine (isonitrogenous control) for 14 d. Ob/ob mice were injected intraperitoneally with sterile PBS or recombinant mouse leptin (0·1 μg/g body weight) for 14 d. In C57BL/6 mice, dietary leucine supplementation increased (P< 0·05) plasma leptin, leptin receptor expression and protein synthesis in skeletal muscles, but reduced (P< 0·05) plasma urea and protein degradation in skeletal muscles. Dietary leucine supplementation and leptin injection increased the relative weight of the gastrocnemius and soleus muscles in ob/ob mice. Moreover, leucine and leptin treatments stimulated (P< 0·05) protein synthesis and inhibited (P< 0·05) protein degradation in C2C12 myotubes and skeletal muscles of ob/ob mice. There were interactions (P< 0·05) between the leucine and leptin treatments with regard to protein metabolism in C2C12 myotubes and soleus muscles of ob/ob mice but not in the gastrocnemius muscles of ob/ob mice. Collectively, these results suggest that leptin and leucine synergistically regulate protein metabolism in skeletal muscles both in vitro and in vivo.
Photothermal imaging of skeletal muscle mitochondria.
Tomimatsu, Toru; Miyazaki, Jun; Kano, Yutaka; Kobayashi, Takayoshi
2017-06-01
The morphology and topology of mitochondria provide useful information about the physiological function of skeletal muscle. Previous studies of skeletal muscle mitochondria are based on observation with transmission, scanning electron microscopy or fluorescence microscopy. In contrast, photothermal (PT) microscopy has advantages over the above commonly used microscopic techniques because of no requirement for complex sample preparation by fixation or fluorescent-dye staining. Here, we employed the PT technique using a simple diode laser to visualize skeletal muscle mitochondria in unstained and stained tissues. The fine mitochondrial network structures in muscle fibers could be imaged with the PT imaging system, even in unstained tissues. PT imaging of tissues stained with toluidine blue revealed the structures of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria and the swelling behavior of mitochondria in damaged muscle fibers with sufficient image quality. PT image analyses based on fast Fourier transform (FFT) and Grey-level co-occurrence matrix (GLCM) were performed to derive the characteristic size of mitochondria and to discriminate the image patterns of normal and damaged fibers.
Sex Differences in Muscle Wasting.
Anderson, Lindsey J; Liu, Haiming; Garcia, Jose M
2017-01-01
With aging and other muscle wasting diseases, men and women undergo similar pathological changes in skeletal muscle: increased inflammation, enhanced oxidative stress, mitochondrial dysfunction, satellite cell senescence, elevated apoptosis and proteasome activity, and suppressed protein synthesis and myocyte regeneration. Decreased food intake and physical activity also indirectly contribute to muscle wasting. Sex hormones also play important roles in maintaining skeletal muscle homeostasis. Testosterone is a potent anabolic factor promoting muscle protein synthesis and muscular regeneration. Estrogens have a protective effect on skeletal muscle by attenuating inflammation; however, the mechanisms of estrogen action in skeletal muscle are less well characterized than those of testosterone. Age- and/or disease-induced alterations in sex hormones are major contributors to muscle wasting. Hence, men and women may respond differently to catabolic conditions because of their hormonal profiles. Here we review the similarities and differences between men and women with common wasting conditions including sarcopenia and cachexia due to cancer, end-stage renal disease/chronic kidney disease, liver disease, chronic heart failure, and chronic obstructive pulmonary disease based on the literature in clinical studies. In addition, the responses in men and women to the commonly used therapeutic agents and their efficacy to improve muscle mass and function are also reviewed.
E2F function in muscle growth is necessary and sufficient for viability in Drosophila
Zappia, Maria Paula; Frolov, Maxim V.
2016-01-01
The E2F transcription factor is a key cell cycle regulator. However, the inactivation of the entire E2F family in Drosophila is permissive throughout most of animal development until pupation when lethality occurs. Here we show that E2F function in the adult skeletal muscle is essential for animal viability since providing E2F function in muscles rescues the lethality of the whole-body E2F-deficient animals. Muscle-specific loss of E2F results in a significant reduction in muscle mass and thinner myofibrils. We demonstrate that E2F is dispensable for proliferation of muscle progenitor cells, but is required during late myogenesis to directly control the expression of a set of muscle-specific genes. Interestingly, E2f1 provides a major contribution to the regulation of myogenic function, while E2f2 appears to be less important. These findings identify a key function of E2F in skeletal muscle required for animal viability, and illustrate how the cell cycle regulator is repurposed in post-mitotic cells. PMID:26823289
Autophagy is altered in skeletal and cardiac muscle of spontaneously hypertensive rats.
Bloemberg, D; McDonald, E; Dulay, D; Quadrilatero, J
2014-02-01
Autophagy is a subcellular degradation mechanism important for muscle maintenance. Hypertension induces well-characterized pathological changes to the heart and is associated with impaired function and increased apoptotic signalling in skeletal muscle. We examined whether essential hypertension affects several autophagy markers in skeletal and cardiac muscle. Immunoblotting and qRT-PCR were used to measure autophagy-related proteins/mRNA in multiple skeletal muscles as well as left ventricle (LV) of spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). Skeletal muscles of hypertensive rats had decreased (P < 0.01) cross-sectional area of type I fibres (e.g. soleus WKY: 2952.9 ± 64.4 μm(2) vs. SHR: 2579.9 ± 85.8 μm(2)) and a fibre redistribution towards a 'fast' phenotype. Immunoblot analysis revealed that some SHR skeletal muscles displayed a decreased LC3II/I ratio (P < 0.05), but none showed differences in p62 protein. LC3 and LAMP2 mRNA levels were increased approx. 2-3-fold in all skeletal muscles (P < 0.05), while cathepsin activity, cathepsin L mRNA and Atg7 protein were increased 16-17% (P < 0.01), 2-3-fold (P < 0.05) and 29-49% (P < 0.01), respectively, in fast muscles of hypertensive animals. Finally, protein levels of BAG3, a marker of chaperone-assisted selective autophagy, were 18-25% lower (P < 0.05) in SHR skeletal muscles. In the LV of SHR, LC3I and p62 protein were elevated 34% (P < 0.05) and 47% (P < 0.01), respectively. Furthermore, p62 mRNA was 68% higher (P < 0.05), while LAMP2 mRNA was 45% lower (P < 0.05), in SHR cardiac muscle. There was no difference in Beclin1, Atg7, Bnip3 or BAG3 protein in the LV between strains. These results suggest that autophagy is altered in skeletal and cardiac muscle during hypertension. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Xu, Rui; Singhal, Neha; Serinagaoglu, Yelda; Chandrasekharan, Kumaran; Joshi, Mandar; Bauer, John A.; Janssen, Paulus M.L.; Martin, Paul T.
2016-01-01
Transgenic overexpression of Galgt2 (official name B4Galnt2) in skeletal muscle stimulates the glycosylation of α dystroglycan (αDG) and the up-regulation of laminin α2 and dystrophin surrogates known to inhibit muscle pathology in mouse models of congenital muscular dystrophy 1A and Duchenne muscular dystrophy. Skeletal muscle Galgt2 gene expression is also normally increased in the mdx mouse model of Duchenne muscular dystrophy compared with the wild-type mice. To assess whether this increased endogenous Galgt2 expression could affect disease, we quantified muscular dystrophy measures in mdx mice deleted for Galgt2 (Galgt2−/−mdx). Galgt2−/− mdx mice had increased heart and skeletal muscle pathology and inflammation, and also worsened cardiac function, relative to age-matched mdx mice. Deletion of Galgt2 in wild-type mice also slowed skeletal muscle growth in response to acute muscle injury. In each instance where Galgt2 expression was elevated (developing muscle, regenerating muscle, and dystrophic muscle), Galgt2-dependent glycosylation of αDG was also increased. Overexpression of Galgt2 failed to inhibit skeletal muscle pathology in dystroglycan-deficient muscles, in contrast to previous studies in dystrophin-deficient mdx muscles. This study demonstrates that Galgt2 gene expression and glycosylation of αDG are dynamically regulated in muscle and that endogenous Galgt2 gene expression can ameliorate the extent of muscle pathology, inflammation, and dysfunction in mdx mice. PMID:26435413
Thyroid hormones and skeletal muscle — new insights and potential implications
Salvatore, Domenico; Simonides, Warner S.; Dentice, Monica; Zavacki, Ann Marie; Larsen, P. Reed
2014-01-01
Thyroid hormone signalling regulates crucial biological functions, including energy expenditure, thermogenesis, development and growth. The skeletal muscle is a major target of thyroid hormone signalling. The type two (DIO2) and three (DIO3) iodothyronine deiodinases have been identified in skeletal muscle. DIO2 expression is tightly regulated and catalyzes outer ring monodeiodination of the secreted prohormone tetraiodothyronine (T4) to generate the active hormone triiodothyronine (T3). T3 may remain in the myocyte to signal through nuclear receptors or exit the cell to mix with the extracellular pool. By contrast, DIO3 inactivates T3 through removal of an inner ring iodine. Regulation of the expression and activity of deiodinases constitutes a cell-autonomous, pre-receptor mechanism for controlling the intracellular concentration of T3. This local control of T3 activity is crucial during the various phases of myogenesis. Here, we review the roles of T3 in skeletal muscle development and homeostasis, with a focus on the emerging local deiodinase-mediated control of T3 signalling. Moreover, we discuss these novel findings in the context of both muscle homeostasis and pathology, and examine how they can be therapeutically harnessed to improve satellite cell-mediated muscle repair in patients with skeletal muscle disorders, muscle atrophy or injury. PMID:24322650
Diabetes and Stem Cell Function
Fujimaki, Shin; Wakabayashi, Tamami; Takemasa, Tohru; Asashima, Makoto; Kuwabara, Tomoko
2015-01-01
Diabetes mellitus is one of the most common serious metabolic diseases that results in hyperglycemia due to defects of insulin secretion or insulin action or both. The present review focuses on the alterations to the diabetic neuronal tissues and skeletal muscle, including stem cells in both tissues, and the preventive effects of physical activity on diabetes. Diabetes is associated with various nervous disorders, such as cognitive deficits, depression, and Alzheimer's disease, and that may be caused by neural stem cell dysfunction. Additionally, diabetes induces skeletal muscle atrophy, the impairment of energy metabolism, and muscle weakness. Similar to neural stem cells, the proliferation and differentiation are attenuated in skeletal muscle stem cells, termed satellite cells. However, physical activity is very useful for preventing the diabetic alteration to the neuronal tissues and skeletal muscle. Physical activity improves neurogenic capacity of neural stem cells and the proliferative and differentiative abilities of satellite cells. The present review proposes physical activity as a useful measure for the patients in diabetes to improve the physiological functions and to maintain their quality of life. It further discusses the use of stem cell-based approaches in the context of diabetes treatment. PMID:26075247
Sato, Keisaku; Pollock, Neil; Stowell, Kathryn M
2010-06-01
Malignant hyperthermia is associated with mutations within the gene encoding the skeletal muscle ryanodine receptor, the calcium channel that releases Ca from sarcoplasmic reticulum stores triggering muscle contraction, and other metabolic activities. More than 200 variants have been identified in the ryanodine receptor, but only some of these have been shown to functionally affect the calcium channel. To implement genetic testing for malignant hyperthermia, variants must be shown to alter the function of the channel. A number of different ex vivo methods can be used to demonstrate functionality, as long as cells from human patients can be obtained and cultured from at least two unrelated families. Because malignant hyperthermia is an uncommon disorder and many variants seem to be private, including the newly identified H4833Y mutation, these approaches are limited. The authors cloned the human skeletal muscle ryanodine receptor complementary DNA and expressed both normal and mutated forms in HEK-293 cells and carried out functional analysis using ryanodine binding assays in the presence of a specific agonist, 4-chloro-m-cresol, and the antagonist Mg. Transiently expressed human ryanodine receptor proteins colocalized with an endoplasmic reticulum marker in HEK-293 cells. Ryanodine binding assays confirmed that mutations causing malignant hyperthermia resulted in a hypersensitive channel, while those causing central core disease resulted in a hyposensitive channel. The functional assays validate recombinant human skeletal muscle ryanodine receptor for analysis of variants and add an additional mutation (H4833Y) to the repertoire of mutations that can be used for the genetic diagnosis of malignant hyperthermia.
How does tissue preparation affect skeletal muscle transverse isotropy?
Wheatley, Benjamin B.; Odegard, Gregory M.; Kaufman, Kenton R.; Haut Donahue, Tammy L.
2016-01-01
The passive tensile properties of skeletal muscle play a key role in its physiological function. Previous research has identified conflicting reports of muscle transverse isotropy, with some data suggesting the longitudinal direction is stiffest, while others show the transverse direction is stiffest. Accurate constitutive models of skeletal muscle must be employed to provide correct recommendations for and observations of clinical methods. The goal of this work was to identify transversely isotropic tensile muscle properties as a function of post mortem handling. Six pairs of tibialis anterior muscles were harvested from Giant Flemish rabbits and split into two groups: fresh testing (within four hours post mortem), and non-fresh testing (subject to delayed testing and a freeze/thaw cycle). Longitudinal and transverse samples were removed from each muscle and tested to identify tensile modulus and relaxation behavior. Longitudinal non-fresh samples exhibited a higher initial modulus value and faster relaxation than longitudinal fresh, transverse fresh, and transverse rigor samples (p<0.05), while longitudinal fresh samples were less stiff at lower strain levels than longitudinal non-fresh, transverse fresh, and transverse non-fresh samples (p<0.05), but exhibited more nonlinear behavior. While fresh skeletal muscle exhibits a higher transverse modulus than longitudinal modulus, discrepancies in previously published data may be the result of a number of differences in experimental protocol. Constitutive modeling of fresh muscle should reflect these data by identifying the material as truly transversely isotropic and not as an isotropic matrix reinforced with fibers. PMID:27425557
Parvatiyar, Michelle S; Marshall, Jamie L; Nguyen, Reginald T; Jordan, Maria C; Richardson, Vanitra A; Roos, Kenneth P; Crosbie-Watson, Rachelle H
2015-12-23
Duchenne muscular dystrophy is a fatal cardiac and skeletal muscle disease resulting from mutations in the dystrophin gene. We have previously demonstrated that a dystrophin-associated protein, sarcospan (SSPN), ameliorated Duchenne muscular dystrophy skeletal muscle degeneration by activating compensatory pathways that regulate muscle cell adhesion (laminin-binding) to the extracellular matrix. Conversely, loss of SSPN destabilized skeletal muscle adhesion, hampered muscle regeneration, and reduced force properties. Given the importance of SSPN to skeletal muscle, we investigated the consequences of SSPN ablation in cardiac muscle and determined whether overexpression of SSPN into mdx mice ameliorates cardiac disease symptoms associated with Duchenne muscular dystrophy cardiomyopathy. SSPN-null mice exhibited cardiac enlargement, exacerbated cardiomyocyte hypertrophy, and increased fibrosis in response to β-adrenergic challenge (isoproterenol; 0.8 mg/day per 2 weeks). Biochemical analysis of SSPN-null cardiac muscle revealed reduced sarcolemma localization of many proteins with a known role in cardiomyopathy pathogenesis: dystrophin, the sarcoglycans (α-, δ-, and γ-subunits), and β1D integrin. Transgenic overexpression of SSPN in Duchenne muscular dystrophy mice (mdx(TG)) improved cardiomyofiber cell adhesion, sarcolemma integrity, cardiac functional parameters, as well as increased expression of compensatory transmembrane proteins that mediate attachment to the extracellular matrix. SSPN regulates sarcolemmal expression of laminin-binding complexes that are critical to cardiac muscle function and protects against transient and chronic injury, including inherited cardiomyopathy. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
McMahon, C D; Chai, R; Radley-Crabb, H G; Watson, T; Matthews, K G; Sheard, P W; Soffe, Z; Grounds, M D; Shavlakadze, T
2014-12-01
The age-related loss of skeletal muscle mass and function is termed sarcopenia and has been attributed to a decline in concentrations of insulin-like growth factor-1 (IGF-1). We hypothesized that constitutively expressed IGF-1 within skeletal muscles with or without exercise would prevent sarcopenia. Male transgenic mice that overexpress IGF-1 Ea in skeletal muscles were compared with wild-type littermates. Four-month-old mice were assigned to be sedentary, or had access to free-running wheels, until 18 or 28 months of age. In wild-type mice, the mass of the quadriceps muscles was reduced at 28 months and exercise prevented such loss, without affecting the diameter of myofibers. Conversely, increased IGF-1 alone was ineffective, whereas the combination of exercise and IGF-1 was additive in maintaining the diameter of myofibers in the quadriceps muscles. For other muscles, the combination of IGF-1 and exercise was variable and either increased or decreased the mass at 18 months of age, but was ineffective thereafter. Despite an increase in the diameter of myofibers, grip strength was not improved. In conclusion, our data show that exercise and IGF-1 have a modest effect on reducing aged-related wasting of skeletal muscle, but that there is no improvement in muscle function when assessed by grip strength. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Thompson, Paul D.; Parker, Beth A.; Clarkson, Priscilla M.; Pescatello, Linda S.; White, C. Michael; Grimaldi, Adam S.; Levine, Benjamin D.; Haller, Ronald G.; Hoffman, Eric P.
2014-01-01
Hydroxymethylglutaryl-coenzyme A reductase inhibitors or statins are the most effective medications for reducing elevated concentrations of low-density lipoprotein cholesterol (LDL-C). Statins reduce cardiac events in patients with coronary artery disease and previously healthy persons. Current recommendations for LDL-C treatment goals indicate that more patients will be treated with higher doses of these medications. Statins have been extremely well-tolerated in controlled clinical trials but are increasingly recognized to produce skeletal muscle myalgia, cramps, and weakness. The reported frequency of such mild symptoms is not clear, and muscle performance has not been examined with these medications. Accordingly, the present investigation, the Effect of Statins on Skeletal Muscle Function and Performance (STOMP) study, will recruit approximately 440 healthy persons. Participants will be randomly assigned to treatment with atorvastatin 80 mg/d or placebo. Handgrip, elbow and knee isometric and isokinetic strength, knee extensor endurance, and maximal aerobic exercise performance will be determined at baseline. Participants will undergo repeat testing after 6 months of treatment or after meeting the study definition of statin myalgia. This study will determine the effect of statins on skeletal muscle strength, endurance, and aerobic exercise performance and may ultimately help clinicians better evaluate statin-related muscle and exercise complaints. PMID:20626664
Fan, Jingjing; Yang, Xiaoqi; Li, Jie; Shu, Ziyang; Dai, Jun; Liu, Xingran; Li, Biao; Jia, Shaohui; Kou, Xianjuan; Yang, Yi; Chen, Ning
2017-01-01
The quality control of skeletal muscle is a continuous requirement throughout the lifetime, although its functions and quality present as a declining trend during aging process. Dysfunctional or deficient autophagy and excessive apoptosis may contribute to the atrophy of senescent skeletal muscle. Spermidine, as a natural polyamine, can be involved in important cellular functions for lifespan extension and stress resistance in several model organisms through activating autophagy. Similarly, cellular autophagic responses to exercise have also been extensively investigated. In the present study, in order to confirm the mitigation or amelioration of skeletal muscle atrophy in aging rats through spermidine coupled with exercise intervention and explore corresponding mechanisms, the rat model with aging-related atrophy of skeletal muscle was established by intraperitoneal injection of D-galactose (D-gal) (200 mg/kgd), and model rats were subjected to the intervention with spermidine (5 mg/kgd) or swimming (60 min/d, 5 d/wk) or combination for 42 days. Spermidine coupled with exercise could attenuate D-gal-induced aging-related atrophy of skeletal muscle through induced autophagy and reduced apoptosis with characteristics of more autophagosomes, activated mitophagy, enhanced mitochondrial quality, alleviated cell shrinkage, and less swollen mitochondria under transmission scanning microscopic observation. Meanwhile, spermidine coupled with exercise could induce autophagy through activating AMPK-FOXO3a signal pathway with characterization of increased Beclin1 and LC3-II/LC3-I ratio, up-regulated anti-apoptotic Bcl-2, down-regulated pro-apoptotic Bax and caspase-3, as well as activated AMPK and FOXO3a. Therefore, spermidine combined with exercise can execute the prevention or treatment of D-gal-induced aging-related skeletal muscle atrophy through enhanced autophagy and reduced apoptosis mediated by AMPK-FOXO3a signal pathway. PMID:28407698
Di Rocco, Giuliana; Tritarelli, Alessandra; Toietta, Gabriele; Gatto, Ilaria; Iachininoto, Maria Grazia; Pagani, Francesca; Mangoni, Antonella; Straino, Stefania; Capogrossi, Maurizio C
2008-02-01
At the embryonic or fetal stages, autonomously myogenic cells (AMCs), i.e., cells able to spontaneously differentiate into skeletal myotubes, have been identified from several different sites other than skeletal muscle, including the vascular compartment. However, in the adult animal, AMCs from skeletal muscle-devoid tissues have been described in only two cases. One is represented by thymic myoid cells, a restricted population of committed myogenic progenitors of unknown derivation present in the thymic medulla; the other is represented by a small subset of adipose tissue-associated cells, which we recently identified. In the present study we report, for the first time, the presence of spontaneously differentiating myogenic precursors in the pancreas and in other skeletal muscle-devoid organs such as spleen and stomach, as well as in the periaortic tissue of adult mice. Immunomagnetic selection procedures indicate that AMCs derive from Flk-1(+) progenitors. Individual clones of myogenic cells from nonmuscle organs are morphologically and functionally indistinguishable from skeletal muscle-derived primary myoblasts. Moreover, they can be induced to proliferate in vitro and are able to participate in muscle regeneration in vivo. Thus, we provide evidence that fully competent myogenic progenitors can be derived from the Flk-1(+) compartment of several adult tissues that are embryologically unrelated to skeletal muscle.
Tjondrokoesoemo, Andoria; Li, Na; Lin, Pei-Hui; Pan, Zui; Ferrante, Christopher J.; Shirokova, Natalia; Brotto, Marco; Weisleder, Noah; Ma, Jianjie
2013-01-01
Functional coupling between inositol (1,4,5)-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) represents a critical component of intracellular Ca2+ signaling in many excitable cells; however, the role of this mechanism in skeletal muscle remains elusive. In skeletal muscle, RyR-mediated Ca2+ sparks are suppressed in resting conditions, whereas application of transient osmotic stress can trigger activation of Ca2+ sparks that are restricted to the periphery of the fiber. Here we show that onset of these spatially confined Ca2+ sparks involves interaction between activation of IP3R and RyR near the sarcolemmal membrane. Pharmacological prevention of IP3 production or inhibition of IP3R channel activity abolishes stress-induced Ca2+ sparks in skeletal muscle. Although genetic ablation of the type 2 IP3R does not appear to affect Ca2+ sparks in skeletal muscle, specific silencing of the type 1 IP3R leads to ablation of stress-induced Ca2+ sparks. Our data indicate that membrane-delimited signaling involving cross-talk between IP3R1 and RyR1 contributes to Ca2+ spark activation in skeletal muscle. PMID:23223241
Conti, Antonio; Riva, Nilo; Pesca, Mariasabina; Iannaccone, Sandro; Cannistraci, Carlo V; Corbo, Massimo; Previtali, Stefano C; Quattrini, Angelo; Alessio, Massimo
2014-01-01
Amyotrophic lateral sclerosis (ALS) is a severe and fatal neurodegenerative disease of still unknown pathogenesis. Recent findings suggest that the skeletal muscle may play an active pathogenetic role. To investigate ALS's pathogenesis and to seek diagnostic markers, we analyzed skeletal muscle biopsies with the differential expression proteomic approach. We studied skeletal muscle biopsies from healthy controls (CN), sporadic ALS (sALS), motor neuropathies (MN) and myopathies (M). Pre-eminently among several differentially expressed proteins, Myosin binding protein H (MyBP-H) expression in ALS samples was anomalously high. MyBP-H is a component of the thick filaments of the skeletal muscle and has strong affinity for myosin, but its function is still unclear. High MyBP-H expression level was associated with abnormal expression of Rho kinase 2 (ROCK2), LIM domain kinase 1 (LIMK1) and cofilin2, that might affect the actin-myosin interaction. We propose that MyBP-H expression level serves, as a putative biomarker in the skeletal muscle, to discriminate ALS from motor neuropathies, and that it signals the onset of dysregulation in actin-myosin interaction; this in turn might contribute to the pathogenesis of ALS. © 2013 Elsevier B.V. All rights reserved.
Gadd45a Protein Promotes Skeletal Muscle Atrophy by Forming a Complex with the Protein Kinase MEKK4.
Bullard, Steven A; Seo, Seongjin; Schilling, Birgit; Dyle, Michael C; Dierdorff, Jason M; Ebert, Scott M; DeLau, Austin D; Gibson, Bradford W; Adams, Christopher M
2016-08-19
Skeletal muscle atrophy is a serious and highly prevalent condition that remains poorly understood at the molecular level. Previous work found that skeletal muscle atrophy involves an increase in skeletal muscle Gadd45a expression, which is necessary and sufficient for skeletal muscle fiber atrophy. However, the direct mechanism by which Gadd45a promotes skeletal muscle atrophy was unknown. To address this question, we biochemically isolated skeletal muscle proteins that associate with Gadd45a as it induces atrophy in mouse skeletal muscle fibers in vivo We found that Gadd45a interacts with multiple proteins in skeletal muscle fibers, including, most prominently, MEKK4, a mitogen-activated protein kinase kinase kinase that was not previously known to play a role in skeletal muscle atrophy. Furthermore, we found that, by forming a complex with MEKK4 in skeletal muscle fibers, Gadd45a increases MEKK4 protein kinase activity, which is both sufficient to induce skeletal muscle fiber atrophy and required for Gadd45a-mediated skeletal muscle fiber atrophy. Together, these results identify a direct biochemical mechanism by which Gadd45a induces skeletal muscle atrophy and provide new insight into the way that skeletal muscle atrophy occurs at the molecular level. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
High skeletal muscle adenylate cyclase in malignant hyperthermia.
Willner, J H; Cerri, C G; Wood, D S
1981-01-01
Malignant hyperthermia occurs in humans with several congenital myopathies, usually in response to general anesthesia. Commonly, individuals who develop this syndrome lack symptoms of muscle disease, and their muscle lacks specific pathological changes. A biochemical marker for this myopathy has not previously been available; we found activity of adenylate cyclase and content of cyclic AMP to be abnormally high in skeletal muscle. Secondary modification of protein phosphorylation could explain observed abnormalities of phosphorylase activation and sarcoplasmic reticulum function. PMID:6271806
Ferguson, Scott K.; Holdsworth, Clark T.; Colburn, Trenton D.; Wright, Jennifer L.; Craig, Jesse C.; Fees, Alex; Jones, Andrew M.; Allen, Jason D.; Musch, Timothy I.
2016-01-01
Chronic heart failure (CHF) results in central and peripheral derangements that ultimately reduce skeletal muscle O2 delivery and impair exercise tolerance. Dietary nitrate (NO3−) supplementation improves skeletal muscle vascular function and tolerance to exercise. We tested the hypothesis that NO3− supplementation would elevate exercising skeletal muscle blood flow (BF) and vascular conductance (VC) in CHF rats. Myocardial infarction (MI) was induced (coronary artery ligation) in young adult male rats. After 21 days of recovery, rats randomly received 5 days of NO3−-rich beetroot juice (CHF + BR, n = 10) or a placebo (CHF, n = 10). Mean arterial pressure (carotid artery catheter) and skeletal muscle BF (radiolabeled microspheres) were measured during treadmill exercise (20 m/min, 5% grade). CHF-induced dysfunction, as determined by myocardial infarction size (29 ± 3% and 33 ± 4% in CHF and CHF + BR, respectively) and left ventricular end-diastolic pressure (18 ± 2 and 18 ± 2 mmHg in CHF and CHF + BR, respectively), and exercising mean arterial pressure (131 ± 3 and 128 ± 4 mmHg in CHF and CHF + BR, respectively) were not different (P > 0.05) between groups. Total exercising hindlimb skeletal muscle BF (95 ± 5 and 116 ± 9 ml·min−1·100 g−1 in CHF and CHF + BR, respectively) and VC (0.75 ± 0.05 and 0.90 ± 0.05 ml·min−1·100 g−1·mmHg−1 in CHF and CHF + BR, respectively) were 22% and 20% greater in BR-supplemented rats, respectively (P < 0.05). During exercise, BF in 9 and VC in 10 hindlimb muscles and muscle portions were significantly greater in the CHF + BR group. These results provide strong evidence that dietary NO3− supplementation improves skeletal muscle vascular function during exercise in rats with CHF and, thus, support the use of BR as a novel therapeutic modality for the treatment of CHF. PMID:27445296
Ferguson, Scott K; Holdsworth, Clark T; Colburn, Trenton D; Wright, Jennifer L; Craig, Jesse C; Fees, Alex; Jones, Andrew M; Allen, Jason D; Musch, Timothy I; Poole, David C
2016-09-01
Chronic heart failure (CHF) results in central and peripheral derangements that ultimately reduce skeletal muscle O2 delivery and impair exercise tolerance. Dietary nitrate (NO3 (-)) supplementation improves skeletal muscle vascular function and tolerance to exercise. We tested the hypothesis that NO3 (-) supplementation would elevate exercising skeletal muscle blood flow (BF) and vascular conductance (VC) in CHF rats. Myocardial infarction (MI) was induced (coronary artery ligation) in young adult male rats. After 21 days of recovery, rats randomly received 5 days of NO3 (-)-rich beetroot juice (CHF + BR, n = 10) or a placebo (CHF, n = 10). Mean arterial pressure (carotid artery catheter) and skeletal muscle BF (radiolabeled microspheres) were measured during treadmill exercise (20 m/min, 5% grade). CHF-induced dysfunction, as determined by myocardial infarction size (29 ± 3% and 33 ± 4% in CHF and CHF + BR, respectively) and left ventricular end-diastolic pressure (18 ± 2 and 18 ± 2 mmHg in CHF and CHF + BR, respectively), and exercising mean arterial pressure (131 ± 3 and 128 ± 4 mmHg in CHF and CHF + BR, respectively) were not different (P > 0.05) between groups. Total exercising hindlimb skeletal muscle BF (95 ± 5 and 116 ± 9 ml·min(-1)·100 g(-1) in CHF and CHF + BR, respectively) and VC (0.75 ± 0.05 and 0.90 ± 0.05 ml·min(-1)·100 g(-1)·mmHg(-1) in CHF and CHF + BR, respectively) were 22% and 20% greater in BR-supplemented rats, respectively (P < 0.05). During exercise, BF in 9 and VC in 10 hindlimb muscles and muscle portions were significantly greater in the CHF + BR group. These results provide strong evidence that dietary NO3 (-) supplementation improves skeletal muscle vascular function during exercise in rats with CHF and, thus, support the use of BR as a novel therapeutic modality for the treatment of CHF. Copyright © 2016 the American Physiological Society.
Functional electrical stimulation exercise increases GLUT-1 and GLUT-4 in paralyzed skeletal muscle.
Chilibeck, P D; Bell, G; Jeon, J; Weiss, C B; Murdoch, G; MacLean, I; Ryan, E; Burnham, R
1999-11-01
The study purpose was to determine the effect of functional electrical stimulation (FES)-leg cycle ergometer training (30 minutes on 3 d/wk for 8 weeks) on the GLUT-1 and GLUT-4 content of paralyzed skeletal muscle. Biopsy samples of vastus lateralis muscle were obtained pre- and post-training from five individuals with motor-complete spinal cord injury ([SCI] four men and one woman aged 31 to 50 years, 3 to 25 years postinjury involving C5-T8). Western blot analysis indicated that GLUT-1 increased by 52% and GLUT-4 increased by 72% with training (P < .05). This coincided with an increase in the muscle oxidative capacity as indicated by a 56% increase in citrate synthase (CS) activity (P < .05) and an improvement in the insulin sensitivity index as determined from oral glucose tolerance tests (P < .05). It is concluded that FES endurance training is effective to increase glucose transporter protein levels in paralyzed skeletal muscle of individuals with SCI.
Teng, Allen C T; Adamo, Kristi; Tesson, Frédérique; Stewart, Alexandre F R
2009-06-01
Diet-induced weight loss is affected by a wide range of factors, including genetic variation. Identifying functional polymorphisms will help to elucidate mechanisms that account for variation in dietary metabolism. Previously, we reported a strong association between a common single nucleotide polymorphism (SNP) rs2419621 (C>T) in the promoter of acyl-CoA synthetase long chain 5 (ACSL5), rapid weight loss in obese Caucasian females, and elevated ACSL5 mRNA levels in skeletal muscle biopsies. Here, we showed by electrophoretic mobility shift assay (EMSA) that the T allele creates a functional cis-regulatory E-box element (CANNTG) that is recognized by the myogenic regulatory factor MyoD. The T allele promoted MyoD-dependent activation of a 1089-base pair ACSL5 promoter fragment in nonmuscle CV1 cells. Differentiation of skeletal myoblasts significantly elevated expression of the ACSL5 promoter. The T allele sustained promoter activity 48 h after differentiation, whereas the C allele showed a significant decline. These results reveal a mechanism for elevated transcription of ACSL5 in skeletal muscle of carriers of the rs2419621(T) allele, associated with more rapid diet-induced weight loss. Natural selection favoring promoter polymorphisms that reduced expression of catabolic genes in skeletal muscle likely accounts for the resistance of obese individuals to dietary intervention.
Engineering functional and histological regeneration of vascularized skeletal muscle.
Gilbert-Honick, Jordana; Iyer, Shama R; Somers, Sarah M; Lovering, Richard M; Wagner, Kathryn; Mao, Hai-Quan; Grayson, Warren L
2018-05-01
Tissue engineering strategies to treat patients with volumetric muscle loss (VML) aim to recover the structure and contractile function of lost muscle tissue. Here, we assessed the capacity of novel electrospun fibrin hydrogel scaffolds seeded with murine myoblasts to regenerate the structure and function of damaged muscle within VML defects to the mouse tibialis anterior muscle. The electrospun fibrin scaffolds provide pro-myogenic alignment and stiffness cues, myomimetic hierarchical structure, suturability, and scale-up capabilities. Myoblast-seeded scaffolds enabled remarkable muscle regeneration with high myofiber and vascular densities after 2 and 4 weeks, mimicking that of native skeletal muscle, while acellular scaffolds lacked muscle regeneration. Both myoblast-seeded and acellular scaffolds fully recovered muscle contractile function to uninjured values after 2 and 4 weeks. Electrospun scaffolds pre-vascularized with co-cultured human endothelial cells and human adipose-derived stem cells implanted into VML defects for 2 weeks anastomosed with host vasculature and were perfused with host red blood cells. These data demonstrate the significant potential of electrospun fibrin scaffolds seeded with myoblasts to fully regenerate the structure and function of volumetric muscle defects and these scaffolds offer a promising treatment option for patients with VML. Copyright © 2018 Elsevier Ltd. All rights reserved.
Boncompagni, Simona; Arthurton, Lewis; Akujuru, Eugene; Pearson, Timothy; Steverding, Dietmar; Protasi, Feliciano; Mutungi, Gabriel
2015-01-01
A number of studies have previously proposed the existence of glucocorticoid receptors on the plasma membrane of many cell types, including skeletal muscle fibres. However, their exact localisation and the cellular signalling pathway(s) they utilise to communicate with the rest of the cell are still poorly understood. In this study, we investigated the localisation and the mechanism(s) underlying the non-genomic physiological functions of these receptors in mouse skeletal muscle cells. The results show that the receptors were localised in the cytoplasm in myoblasts, in the nucleus in myotubes, in the extracellular matrix, in satellite cells and in the proximity of mitochondria in adult muscle fibres. Also, they bound laminin in a glucocorticoid-dependent manner. Treating small skeletal muscle fibre bundles with the synthetic glucocorticoid beclomethasone dipropionate increased the phosphorylation (= activation) of extracellular signal-regulated kinases 1 and 2, c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. This occurred within 5 min and depended on the fibre type and the duration of the treatment. It was also abolished by the glucocorticoid receptor inhibitor, mifepristone, and a monoclonal antibody against the receptor. From these results we conclude that the non-genomic/non-canonical physiological functions of glucocorticoids, in adult skeletal muscle fibres, are mediated by a glucocorticoid receptor localised in the extracellular matrix, in satellite cells and close to mitochondria, and involve activation of the mitogen-activated protein kinase pathway. PMID:25846902
Prmt7 Deficiency Causes Reduced Skeletal Muscle Oxidative Metabolism and Age-Related Obesity.
Jeong, Hyeon-Ju; Lee, Hye-Jin; Vuong, Tuan Anh; Choi, Kyu-Sil; Choi, Dahee; Koo, Sung-Hoi; Cho, Sung Chun; Cho, Hana; Kang, Jong-Sun
2016-07-01
Maintenance of skeletal muscle function is critical for metabolic health and the disruption of which exacerbates many chronic diseases such as obesity and diabetes. Skeletal muscle responds to exercise or metabolic demands by a fiber-type switch regulated by signaling-transcription networks that remains to be fully defined. Here, we report that protein arginine methyltransferase 7 (Prmt7) is a key regulator for skeletal muscle oxidative metabolism. Prmt7 is expressed at the highest levels in skeletal muscle and decreased in skeletal muscles with age or obesity. Prmt7(-/-) muscles exhibit decreased oxidative metabolism with decreased expression of genes involved in muscle oxidative metabolism, including PGC-1α. Consistently, Prmt7(-/-) mice exhibited significantly reduced endurance exercise capacities. Furthermore, Prmt7(-/-) mice exhibit decreased energy expenditure, which might contribute to the exacerbated age-related obesity of Prmt7(-/-) mice. Similarly to Prmt7(-/-) muscles, Prmt7 depletion in myoblasts also reduces PGC-1α expression and PGC-1α-promoter driven reporter activities. Prmt7 regulates PGC-1α expression through interaction with and activation of p38 mitogen-activated protein kinase (p38MAPK), which in turn activates ATF2, an upstream transcriptional activator for PGC-1α. Taken together, Prmt7 is a novel regulator for muscle oxidative metabolism via activation of p38MAPK/ATF2/PGC-1α. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Role of Protein Carbonylation in Skeletal Muscle Mass Loss Associated with Chronic Conditions
Barreiro, Esther
2016-01-01
Muscle dysfunction, characterized by a reductive remodeling of muscle fibers, is a common systemic manifestation in highly prevalent conditions such as chronic heart failure (CHF), chronic obstructive pulmonary disease (COPD), cancer cachexia, and critically ill patients. Skeletal muscle dysfunction and impaired muscle mass may predict morbidity and mortality in patients with chronic diseases, regardless of the underlying condition. High levels of oxidants may alter function and structure of key cellular molecules such as proteins, DNA, and lipids, leading to cellular injury and death. Protein oxidation including protein carbonylation was demonstrated to modify enzyme activity and DNA binding of transcription factors, while also rendering proteins more prone to proteolytic degradation. Given the relevance of protein oxidation in the pathophysiology of many chronic conditions and their comorbidities, the current review focuses on the analysis of different studies in which the biological and clinical significance of the modifications induced by reactive carbonyls on proteins have been explored so far in skeletal muscles of patients and animal models of chronic conditions such as COPD, disuse muscle atrophy, cancer cachexia, sepsis, and physiological aging. Future research will elucidate the specific impact and sites of reactive carbonyls on muscle protein content and function in human conditions. PMID:28248228
Giovannelli, Gaia; Giacomazzi, Giorgia; Grosemans, Hanne; Sampaolesi, Maurilio
2018-02-24
Limb-girdle muscular dystrophy type 2E (LGMD2E) is caused by mutations in the β-sarcoglycan gene, which is expressed in skeletal, cardiac, and smooth muscles. β-Sarcoglycan-deficient (Sgcb-null) mice develop severe muscular dystrophy and cardiomyopathy with focal areas of necrosis. In this study we performed morphological (histological and cellular characterization) and functional (isometric tetanic force and fatigue) analyses in dystrophic mice. Comparison studies were carried out in 1-month-old (clinical onset of the disease) and 7-month-old control mice (C57Bl/6J, Rag2/γc-null) and immunocompetent and immunodeficient dystrophic mice (Sgcb-null and Sgcb/Rag2/γc-null, respectively). We found that the lack of an immunological system resulted in an increase of calcification in striated muscles without impairing extensor digitorum longus muscle performance. Sgcb/Rag2/γc-null muscles showed a significant reduction of alkaline phosphate-positive mesoangioblasts. The immunological system counteracts skeletal muscle degeneration in the murine model of LGMD2E. Muscle Nerve, 2018. © 2018 The Authors. Muscle & Nerve Published by Wiley Periodicals, Inc.
Vitamin D receptor protein is associated with interleukin-6 in human skeletal muscle
USDA-ARS?s Scientific Manuscript database
Vitamin D is associated with skeletal muscle physiology and function and may play a role in intramuscular inflammation, possibly via the vitamin D receptor (VDR). We conducted two studies to examine (1) whether serum 25-hydroxyvitamin D (25OHD) and/or intramuscular VDR protein concentrations are ass...
Histone Deacetylase 6 Is a FoxO Transcription Factor-dependent Effector in Skeletal Muscle Atrophy*
Ratti, Francesca; Ramond, Francis; Moncollin, Vincent; Simonet, Thomas; Milan, Giulia; Méjat, Alexandre; Thomas, Jean-Luc; Streichenberger, Nathalie; Gilquin, Benoit; Matthias, Patrick; Khochbin, Saadi; Sandri, Marco; Schaeffer, Laurent
2015-01-01
Skeletal muscle atrophy is a severe condition of muscle mass loss. Muscle atrophy is caused by a down-regulation of protein synthesis and by an increase of protein breakdown due to the ubiquitin-proteasome system and autophagy activation. Up-regulation of specific genes, such as the muscle-specific E3 ubiquitin ligase MAFbx, by FoxO transcription factors is essential to initiate muscle protein ubiquitination and degradation during atrophy. HDAC6 is a particular HDAC, which is functionally related to the ubiquitin proteasome system via its ubiquitin binding domain. We show that HDAC6 is up-regulated during muscle atrophy. HDAC6 activation is dependent on the transcription factor FoxO3a, and the inactivation of HDAC6 in mice protects against muscle wasting. HDAC6 is able to interact with MAFbx, a key ubiquitin ligase involved in muscle atrophy. Our findings demonstrate the implication of HDAC6 in skeletal muscle wasting and identify HDAC6 as a new downstream target of FoxO3a in stress response. This work provides new insights in skeletal muscle atrophy development and opens interesting perspectives on HDAC6 as a valuable marker of muscle atrophy and a potential target for pharmacological treatments. PMID:25516595
Callahan, Damien M; Bedrin, Nicholas G; Subramanian, Meenakumari; Berking, James; Ades, Philip A; Toth, Michael J; Miller, Mark S
2014-06-15
Age-related loss of skeletal muscle mass and function is implicated in the development of disease and physical disability. However, little is known about how age affects skeletal muscle structure at the cellular and ultrastructural levels or how such alterations impact function. Thus we examined skeletal muscle structure at the tissue, cellular, and myofibrillar levels in young (21-35 yr) and older (65-75 yr) male and female volunteers, matched for habitual physical activity level. Older adults had smaller whole muscle tissue cross-sectional areas (CSAs) and mass. At the cellular level, older adults had reduced CSAs in myosin heavy chain II (MHC II) fibers, with no differences in MHC I fibers. In MHC II fibers, older men tended to have fewer fibers with large CSAs, while older women showed reduced fiber size across the CSA range. Older adults showed a decrease in intermyofibrillar mitochondrial size; however, the age effect was driven primarily by women (i.e., age by sex interaction effect). Mitochondrial size was inversely and directly related to isometric tension and myosin-actin cross-bridge kinetics, respectively. Notably, there were no intermyofibrillar or subsarcolemmal mitochondrial fractional content or myofilament ultrastructural differences in the activity-matched young and older adults. Collectively, our results indicate age-related reductions in whole muscle size do not vary by sex. However, age-related structural alterations at the cellular and subcellular levels are different between the sexes and may contribute to different functional phenotypes in ways that modulate sex-specific reductions in physical capacity with age. Copyright © 2014 the American Physiological Society.
Newsom, Sean A; Brozinick, Joseph T; Kiseljak-Vassiliades, Katja; Strauss, Allison N; Bacon, Samantha D; Kerege, Anna A; Bui, Hai Hoang; Sanders, Phil; Siddall, Parker; Wei, Tao; Thomas, Melissa; Kuo, Ming Shang; Nemkov, Travis; D'Alessandro, Angelo; Hansen, Kirk C; Perreault, Leigh; Bergman, Bryan C
2016-06-01
Several recent reports indicate that the balance of skeletal muscle phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is a key determinant of muscle contractile function and metabolism. The purpose of this study was to determine relationships between skeletal muscle PC, PE and insulin sensitivity, and whether PC and PE are dynamically regulated in response to acute exercise in humans. Insulin sensitivity was measured via intravenous glucose tolerance in sedentary obese adults (OB; n = 14), individuals with type 2 diabetes (T2D; n = 15), and endurance-trained athletes (ATH; n = 15). Vastus lateralis muscle biopsies were obtained at rest, immediately after 90 min of cycle ergometry at 50% maximal oxygen consumption (V̇o2 max), and 2-h postexercise (recovery). Skeletal muscle PC and PE were measured via infusion-based mass spectrometry/mass spectrometry analysis. ATH had greater levels of muscle PC and PE compared with OB and T2D (P < 0.05), with total PC and PE positively relating to insulin sensitivity (both P < 0.05). Skeletal muscle PC:PE ratio was elevated in T2D compared with OB and ATH (P < 0.05), tended to be elevated in OB vs. ATH (P = 0.07), and was inversely related to insulin sensitivity among the entire cohort (r = -0.43, P = 0.01). Muscle PC and PE were altered by exercise, particularly after 2 h of recovery, in a highly group-specific manner. However, muscle PC:PE ratio remained unchanged in all groups. In summary, total muscle PC and PE are positively related to insulin sensitivity while PC:PE ratio is inversely related to insulin sensitivity in humans. A single session of exercise significantly alters skeletal muscle PC and PE levels, but not PC:PE ratio. Copyright © 2016 the American Physiological Society.
Newsom, Sean A.; Brozinick, Joseph T.; Kiseljak-Vassiliades, Katja; Strauss, Allison N.; Bacon, Samantha D.; Kerege, Anna A.; Bui, Hai Hoang; Sanders, Phil; Siddall, Parker; Wei, Tao; Thomas, Melissa; Kuo, Ming Shang; Nemkov, Travis; D'Alessandro, Angelo; Hansen, Kirk C.; Perreault, Leigh
2016-01-01
Several recent reports indicate that the balance of skeletal muscle phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is a key determinant of muscle contractile function and metabolism. The purpose of this study was to determine relationships between skeletal muscle PC, PE and insulin sensitivity, and whether PC and PE are dynamically regulated in response to acute exercise in humans. Insulin sensitivity was measured via intravenous glucose tolerance in sedentary obese adults (OB; n = 14), individuals with type 2 diabetes (T2D; n = 15), and endurance-trained athletes (ATH; n = 15). Vastus lateralis muscle biopsies were obtained at rest, immediately after 90 min of cycle ergometry at 50% maximal oxygen consumption (V̇o2 max), and 2-h postexercise (recovery). Skeletal muscle PC and PE were measured via infusion-based mass spectrometry/mass spectrometry analysis. ATH had greater levels of muscle PC and PE compared with OB and T2D (P < 0.05), with total PC and PE positively relating to insulin sensitivity (both P < 0.05). Skeletal muscle PC:PE ratio was elevated in T2D compared with OB and ATH (P < 0.05), tended to be elevated in OB vs. ATH (P = 0.07), and was inversely related to insulin sensitivity among the entire cohort (r = −0.43, P = 0.01). Muscle PC and PE were altered by exercise, particularly after 2 h of recovery, in a highly group-specific manner. However, muscle PC:PE ratio remained unchanged in all groups. In summary, total muscle PC and PE are positively related to insulin sensitivity while PC:PE ratio is inversely related to insulin sensitivity in humans. A single session of exercise significantly alters skeletal muscle PC and PE levels, but not PC:PE ratio. PMID:27032901
Resistance Training Increases Skeletal Muscle Capillarization in Healthy Older Men.
Verdijk, Lex B; Snijders, Tim; Holloway, Tanya M; VAN Kranenburg, Janneau; VAN Loon, Luc J C
2016-11-01
Skeletal muscle capillarization plays a key role in oxygen and nutrient delivery to muscle. The loss of muscle mass with aging and the concept of anabolic resistance have been, at least partly, attributed to changes in skeletal muscle capillary structure and function. We aimed to compare skeletal muscle capillarization between young and older men and evaluate whether resistance-type exercise training increases muscle capillarization in older men. Muscle biopsies were obtained from the vastus lateralis of healthy young (n = 14, 26 ± 2 yr) and older (n = 16, 72 ± 1 yr) adult men, with biopsies before and after 12 wk of resistance-type exercise training in the older subjects. Immunohistochemistry was used to assess skeletal muscle fiber size, capillary contacts (CC) per muscle fiber, and the capillary-to-fiber perimeter exchange (CFPE) index in type I and II muscle fibers. Type II muscle fibers were smaller in old versus young (4507 ± 268 vs 6084 ± 497 μm, respectively, P = 0.007). Type I and type II muscle fiber CC and CFPE index were smaller in old compared with young muscle (CC type I: 3.8 ± 0.2 vs 5.0 ± 0.3; CC type II: 3.2 ± 0.2 vs 4.2 ± 0.2, respectively; both P < 0.001). Resistance-type exercise training increased type II muscle fiber size only. In addition, CC and CFPE index increased in both the type I (26% ± 9% and 27% ± 8%) and type II muscle fibers (33% ± 7% and 24% ± 6%, respectively; all P ≤ 0.001) after 12 wk resistance training in older men. We conclude that resistance-type exercise training can effectively augment skeletal muscle fiber capillarization in older men. The greater capillary supply may be an important prerequisite to reverse anabolic resistance and support muscle hypertrophy during lifestyle interventions aiming to support healthy aging.
Carrell, Samuel T.; Carrell, Ellie M.; Auerbach, David; Pandey, Sanjay K.; Bennett, C. Frank; Dirksen, Robert T.; Thornton, Charles A.
2016-01-01
Myotonic dystrophy type 1 (DM1) is a genetic disorder in which dominant-active DM protein kinase (DMPK) transcripts accumulate in nuclear foci, leading to abnormal regulation of RNA processing. A leading approach to treat DM1 uses DMPK-targeting antisense oligonucleotides (ASOs) to reduce levels of toxic RNA. However, basal levels of DMPK protein are reduced by half in DM1 patients. This raises concern that intolerance for further DMPK loss may limit ASO therapy, especially since mice with Dmpk gene deletion reportedly show cardiac defects and skeletal myopathy. We re-examined cardiac and muscle function in mice with Dmpk gene deletion, and studied post-maturity knockdown using Dmpk-targeting ASOs in mice with heterozygous deletion. Contrary to previous reports, we found no effect of Dmpk gene deletion on cardiac or muscle function, when studied on two genetic backgrounds. In heterozygous knockouts, the administration of ASOs reduced Dmpk expression in cardiac and skeletal muscle by > 90%, yet survival, electrocardiogram intervals, cardiac ejection fraction and muscle strength remained normal. The imposition of cardiac stress by pressure overload, or muscle stress by myotonia, did not unmask a requirement for DMPK. Our results support the feasibility and safety of using ASOs for post-transcriptional silencing of DMPK in muscle and heart. PMID:27522499
Effects of hypothyroidism on the skeletal muscle blood flow response to contractions.
Bausch, L; McAllister, R M
2003-04-01
Hypothyroidism is associated with impaired blood flow to skeletal muscle under whole body exercise conditions. It is unclear whether poor cardiac and/or vascular function account for blunted muscle blood flow. Our experiment isolated a small group of hindlimb muscles and simulated exercise via tetanic contractions. We hypothesized that muscle blood flow would be attenuated in hypothyroid rats (HYPO) compared with euthyroid rats (EUT). Rats were made hypothyroid by mixing propylthiouracil in their drinking water (2.35 x 10-3 mol/l). Treatment efficacy was evidenced by lower serum T3 concentrations and resting heart rates in HYPO (both P<0.05). In the experimental preparation, isometric contractions of the lower right hindlimb muscles at a rate of 30 tetani/min were induced via sciatic nerve stimulation. Regional blood flows were determined by the radiolabelled microsphere method at three time points: rest, 2 min of contractions and 10 min of contractions. Muscle blood flow generally increased from rest ( approximately 5-10 ml/min per 100 g) through contractions for both groups. Further, blood flow during contractions did not differ between groups for any muscle (eg. red section of gastrocnemius muscle; EUT, 59.9 +/- 14.1; HYPO, 61.1 +/- 15.0; NS between groups). These findings indicate that hypothyroidism does not significantly impair skeletal muscle blood flow when only a small muscle mass is contracting. Our findings suggest that impaired blood flow under whole body exercise is accounted for by inadequate cardiac function rather than abnormal vascular function.
Desmin Cytoskeleton Linked to Muscle Mitochondrial Distribution and Respiratory Function
Milner, Derek J.; Mavroidis, Manolis; Weisleder, Noah; Capetanaki, Yassemi
2000-01-01
Ultrastructural studies have previously suggested potential association of intermediate filaments (IFs) with mitochondria. Thus, we have investigated mitochondrial distribution and function in muscle lacking the IF protein desmin. Immunostaining of skeletal muscle tissue sections, as well as histochemical staining for the mitochondrial marker enzymes cytochrome C oxidase and succinate dehydrogenase, demonstrate abnormal accumulation of subsarcolemmal clumps of mitochondria in predominantly slow twitch skeletal muscle of desmin-null mice. Ultrastructural observation of desmin-null cardiac muscle demonstrates in addition to clumping, extensive mitochondrial proliferation in a significant fraction of the myocytes, particularly after work overload. These alterations are frequently associated with swelling and degeneration of the mitochondrial matrix. Mitochondrial abnormalities can be detected very early, before other structural defects become obvious. To investigate related changes in mitochondrial function, we have analyzed ADP-stimulated respiration of isolated muscle mitochondria, and ADP-stimulated mitochondrial respiration in situ using saponin skinned muscle fibers. The in vitro maximal rates of respiration in isolated cardiac mitochondria from desmin-null and wild-type mice were similar. However, mitochondrial respiration in situ is significantly altered in desmin-null muscle. Both the maximal rate of ADP-stimulated oxygen consumption and the dissociation constant (K m) for ADP are significantly reduced in desmin-null cardiac and soleus muscle compared with controls. Respiratory parameters for desmin-null fast twitch gastrocnemius muscle were unaffected. Additionally, respiratory measurements in the presence of creatine indicate that coupling of creatine kinase and the adenine translocator is lost in desmin-null soleus muscle. This coupling is unaffected in cardiac muscle from desmin-null animals. All of these studies indicate that desmin IFs play a significant role in mitochondrial positioning and respiratory function in cardiac and skeletal muscle. PMID:10995435
Impact of placental insufficiency on fetal skeletal muscle growth
Hay, William W.
2016-01-01
Intrauterine growth restriction (IUGR) caused by placental insufficiency is one of the most common and complex problems in perinatology, with no known cure. In pregnancies affected by placental insufficiency, a poorly functioning placenta restricts nutrient supply to the fetus and prevents normal fetal growth. Among other significant deficits in organ development, the IUGR fetus characteristically has less lean body and skeletal muscle mass than their appropriately-grown counterparts. Reduced skeletal muscle growth is not fully compensated after birth, as individuals who were born small for gestational age (SGA) from IUGR have persistent reductions in muscle mass and strength into adulthood. The consequences of restricted muscle growth and accelerated postnatal “catch-up” growth in the form of adiposity may contribute to the increased later life risk for visceral adiposity, peripheral insulin resistance, diabetes, and cardiovascular disease in individuals who were formerly IUGR. This review will discuss how an insufficient placenta results in impaired fetal skeletal muscle growth and how lifelong reductions in muscle mass might contribute to increased metabolic disease risk in this vulnerable population. PMID:26994511
Stouth, Derek W.; vanLieshout, Tiffany L.; Shen, Nicole Y.; Ljubicic, Vladimir
2017-01-01
Protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the methylation of arginine residues on target proteins, thereby mediating a diverse set of intracellular functions that are indispensable for survival. Indeed, full-body knockouts of specific PRMTs are lethal and PRMT dysregulation has been implicated in the most prevalent chronic disorders, such as cancers and cardiovascular disease (CVD). PRMTs are now emerging as important mediators of skeletal muscle phenotype and plasticity. Since their first description in muscle in 2002, a number of studies employing wide varieties of experimental models support the hypothesis that PRMTs regulate multiple aspects of skeletal muscle biology, including development and regeneration, glucose metabolism, as well as oxidative metabolism. Furthermore, investigations in non-muscle cell types strongly suggest that proteins, such as peroxisome proliferator-activated receptor-γ coactivator-1α, E2F transcription factor 1, receptor interacting protein 140, and the tumor suppressor protein p53, are putative downstream targets of PRMTs that regulate muscle phenotype determination and remodeling. Recent studies demonstrating that PRMT function is dysregulated in Duchenne muscular dystrophy (DMD), spinal muscular atrophy (SMA), and amyotrophic lateral sclerosis (ALS) suggests that altering PRMT expression and/or activity may have therapeutic value for neuromuscular disorders (NMDs). This review summarizes our understanding of PRMT biology in skeletal muscle, and identifies uncharted areas that warrant further investigation in this rapidly expanding field of research. PMID:29163212
Fish skeletal muscle tissue is an important focus of immune reactions during pathogen infection.
Valenzuela, Cristián A; Zuloaga, Rodrigo; Poblete-Morales, Matías; Vera-Tobar, Tamara; Mercado, Luis; Avendaño-Herrera, Ruben; Valdés, Juan Antonio; Molina, Alfredo
2017-08-01
Skeletal muscle in mammals can express and secrete immune-related molecules during pathogen infection. Despite in fish is known that classical immune tissues participate in innate immunity, the role of skeletal muscle in this function is poorly understood. To determine the immunocompetence of fish skeletal muscle, juvenile fine flounder (Paralichthys adpersus) were challenged with Vibrio ordalii. Different Toll-like receptors, pro-inflammatory cytokines (TNFα, Il-1β, and IL-8), and immune-effector molecules (NKEF and the antimicrobial peptides hepcidin and LEAP-2) were analyzed. Infection initially triggered IL-1β upregulation and P38-MAPK/AP-1 pathway activation. Next, the NFĸB pathway was activated, together with an upregulation of intracellular Toll-like receptor expressions (tlr3, tlr8a tlr9, and tlr21), TNFα production, and leap-2 expression. Finally, transcriptions of il-1β, il-8, tnfα, nkef-a, and hepcidin were also upregulated. These results suggest that fish skeletal muscle is an immunologically active organ that could play an important role against pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.
Baldelli, Sara; Ciriolo, Maria Rosa
2016-12-20
p53 transcriptional activity has been proposed to regulate both homeostasis and sarcopenia of skeletal muscle during aging. However, the exact molecular function of p53 remains to be clearly defined. We demonstrated a requirement of nuclear p53 S-nitrosylation in inducing a nitric oxide/PGC-1α-mediated antioxidant pathway in skeletal muscle. Importantly, mutant form of p53-DNA binding domain (C124S) did not undergo nuclear S-nitrosylation and failed in inducing the expression of antioxidant genes (i.e. SOD2 and GCLC). Moreover, we found that during aging the nuclear S-nitrosylation of p53 significantly declines in gastrocnemius/soleus leading to an impairment of redox homeostasis of skeletal muscle. We suggested that decreased level of nuclear neuronal nitric oxide synthase (nNOS)/Syntrophin complex, which we observed during aging, could be responsible for impaired nuclear S-nitrosylation. Taken together, our data indicate that altered S-nitrosylation of p53 during aging could be a contributing factor of sarcopenia condition and of other skeletal muscle pathologies associated with oxidative/nitrosative stress.
Baldelli, Sara; Ciriolo, Maria Rosa
2016-01-01
p53 transcriptional activity has been proposed to regulate both homeostasis and sarcopenia of skeletal muscle during aging. However, the exact molecular function of p53 remains to be clearly defined. We demonstrated a requirement of nuclear p53 S-nitrosylation in inducing a nitric oxide/PGC-1α-mediated antioxidant pathway in skeletal muscle. Importantly, mutant form of p53-DNA binding domain (C124S) did not undergo nuclear S-nitrosylation and failed in inducing the expression of antioxidant genes (i.e. SOD2 and GCLC). Moreover, we found that during aging the nuclear S-nitrosylation of p53 significantly declines in gastrocnemius/soleus leading to an impairment of redox homeostasis of skeletal muscle. We suggested that decreased level of nuclear neuronal nitric oxide synthase (nNOS)/Syntrophin complex, which we observed during aging, could be responsible for impaired nuclear S-nitrosylation. Taken together, our data indicate that altered S-nitrosylation of p53 during aging could be a contributing factor of sarcopenia condition and of other skeletal muscle pathologies associated with oxidative/nitrosative stress. PMID:28025407
Evaluation of Skeletal Muscle Function in Lung Transplant Candidates.
Rozenberg, Dmitry; Singer, Lianne G; Herridge, Margaret; Goldstein, Roger; Wickerson, Lisa; Chowdhury, Noori A; Mathur, Sunita
2017-09-01
Lung transplantation (LTx) is offered to older and more complex patients who may be at higher risk of skeletal muscle dysfunction, but the clinical implications of this remain uncertain. The study aims were to characterize deficits in skeletal muscle mass, strength and physical performance, and examine the associations of these deficits with clinical outcomes. Fifty LTx candidates (58% men; age, 59 ± 9 years) were prospectively evaluated for skeletal muscle deficits: muscle mass using bioelectrical impedance, quadriceps, respiratory muscle and handgrip strength, and physical performance with the Short Physical Performance Battery. Comparisons between number of muscle deficits (low muscle mass, quadriceps strength and physical performance) and 6-minute walk distance (6MWD), London Chest Activity of Daily Living Questionnaire, and quality of life were assessed using one-way analysis of variance. Associations with pretransplant and posttransplant delisting/mortality, hospital duration, and 3-month posttransplant 6MWD were evaluated using Fisher exact test and Spearman correlation. Deficits in quadriceps strength (n = 27) and physical performance (n = 24) were more common than muscle mass (n = 8). LTx candidates with 2 or 3 muscle deficits (42%) compared with those without any deficits (26%) had worse 6MWD = -109 m (95% confidence interval [CI], -175 to -43), London Chest Activity of Daily Living Questionnaire = 18 (95% CI, 7-30), and St. George's Activity Domain = 12 (95% CI, 2-21). Number of muscle deficits was associated with posttransplant hospital stay (r = 0.34, P = 0.04), but not with delisting/mortality or posttransplant 6MWD. Deficits in quadriceps muscle strength and physical performance are common in LTx candidates and further research is needed to assess whether modifying muscle function pretransplant can lead to improved clinical outcomes.
Long-echo time MR spectroscopy for skeletal muscle acetylcarnitine detection.
Lindeboom, Lucas; Nabuurs, Christine I; Hoeks, Joris; Brouwers, Bram; Phielix, Esther; Kooi, M Eline; Hesselink, Matthijs K C; Wildberger, Joachim E; Stevens, Robert D; Koves, Timothy; Muoio, Deborah M; Schrauwen, Patrick; Schrauwen-Hinderling, Vera B
2014-11-01
Animal models suggest that acetylcarnitine production is essential for maintaining metabolic flexibility and insulin sensitivity. Because current methods to detect acetylcarnitine involve biopsy of the tissue of interest, noninvasive alternatives to measure acetylcarnitine concentrations could facilitate our understanding of its physiological relevance in humans. Here, we investigated the use of long-echo time (TE) proton magnetic resonance spectroscopy (1H-MRS) to measure skeletal muscle acetylcarnitine concentrations on a clinical 3T scanner. We applied long-TE 1H-MRS to measure acetylcarnitine in endurance-trained athletes, lean and obese sedentary subjects, and type 2 diabetes mellitus (T2DM) patients to cover a wide spectrum in insulin sensitivity. A long-TE 1H-MRS protocol was implemented for successful detection of skeletal muscle acetylcarnitine in these individuals. There were pronounced differences in insulin sensitivity, as measured by hyperinsulinemic-euglycemic clamp, and skeletal muscle mitochondrial function, as measured by phosphorus-MRS (31P-MRS), across groups. Insulin sensitivity and mitochondrial function were highest in trained athletes and lowest in T2DM patients. Skeletal muscle acetylcarnitine concentration showed a reciprocal distribution, with mean acetylcarnitine concentration correlating with mean insulin sensitivity in each group. These results demonstrate that measuring acetylcarnitine concentrations with 1H-MRS is feasible on clinical MR scanners and support the hypothesis that T2DM patients are characterized by a decreased formation of acetylcarnitine, possibly underlying decreased insulin sensitivity.
Long–echo time MR spectroscopy for skeletal muscle acetylcarnitine detection
Lindeboom, Lucas; Nabuurs, Christine I.; Hoeks, Joris; Brouwers, Bram; Phielix, Esther; Kooi, M. Eline; Hesselink, Matthijs K.C.; Wildberger, Joachim E.; Stevens, Robert D.; Koves, Timothy; Muoio, Deborah M.; Schrauwen, Patrick; Schrauwen-Hinderling, Vera B.
2014-01-01
Animal models suggest that acetylcarnitine production is essential for maintaining metabolic flexibility and insulin sensitivity. Because current methods to detect acetylcarnitine involve biopsy of the tissue of interest, noninvasive alternatives to measure acetylcarnitine concentrations could facilitate our understanding of its physiological relevance in humans. Here, we investigated the use of long–echo time (TE) proton magnetic resonance spectroscopy (1H-MRS) to measure skeletal muscle acetylcarnitine concentrations on a clinical 3T scanner. We applied long-TE 1H-MRS to measure acetylcarnitine in endurance-trained athletes, lean and obese sedentary subjects, and type 2 diabetes mellitus (T2DM) patients to cover a wide spectrum in insulin sensitivity. A long-TE 1H-MRS protocol was implemented for successful detection of skeletal muscle acetylcarnitine in these individuals. There were pronounced differences in insulin sensitivity, as measured by hyperinsulinemic-euglycemic clamp, and skeletal muscle mitochondrial function, as measured by phosphorus-MRS (31P-MRS), across groups. Insulin sensitivity and mitochondrial function were highest in trained athletes and lowest in T2DM patients. Skeletal muscle acetylcarnitine concentration showed a reciprocal distribution, with mean acetylcarnitine concentration correlating with mean insulin sensitivity in each group. These results demonstrate that measuring acetylcarnitine concentrations with 1H-MRS is feasible on clinical MR scanners and support the hypothesis that T2DM patients are characterized by a decreased formation of acetylcarnitine, possibly underlying decreased insulin sensitivity. PMID:25271624
Proserpio, Valentina; Fittipaldi, Raffaella; Ryall, James G.; Sartorelli, Vittorio; Caretti, Giuseppina
2013-01-01
Elucidating the epigenetic mechanisms underlying muscle mass determination and skeletal muscle wasting holds the potential of identifying molecular pathways that constitute possible drug targets. Here, we report that the methyltransferase SMYD3 modulates myostatin and c-Met transcription in primary skeletal muscle cells and C2C12 myogenic cells. SMYD3 targets the myostatin and c-Met genes and participates in the recruitment of the bromodomain protein BRD4 to their regulatory regions through protein–protein interaction. By recruiting BRD4, SMYD3 favors chromatin engagement of the pause–release factor p-TEFb (positive transcription elongation factor) and elongation of Ser2-phosphorylated RNA polymerase II (PolIISer2P). Reducing SMYD3 decreases myostatin and c-Met transcription, thus protecting from glucocorticoid-induced myotube atrophy. Supporting functional relevance of the SMYD3/BRD4 interaction, BRD4 pharmacological blockade by the small molecule JQ1 prevents dexamethasone-induced myostatin and atrogene up-regulation and spares myotube atrophy. Importantly, in a mouse model of dexamethasone-induced skeletal muscle atrophy, SMYD3 depletion prevents muscle loss and fiber size decrease. These findings reveal a mechanistic link between SMYD3/BRD4-dependent transcriptional regulation, muscle mass determination, and skeletal muscle atrophy and further encourage testing of small molecules targeting specific epigenetic regulators in animal models of muscle wasting. PMID:23752591
Pérez-Schindler, Joaquín; Summermatter, Serge; Salatino, Silvia; Zorzato, Francesco; Beer, Markus; Balwierz, Piotr J.; van Nimwegen, Erik; Feige, Jérôme N.; Auwerx, Johan
2012-01-01
Skeletal muscle exhibits a high plasticity and accordingly can quickly adapt to different physiological and pathological stimuli by changing its phenotype largely through diverse epigenetic mechanisms. The nuclear receptor corepressor 1 (NCoR1) has the ability to mediate gene repression; however, its role in regulating biological programs in skeletal muscle is still poorly understood. We therefore studied the mechanistic and functional aspects of NCoR1 function in this tissue. NCoR1 muscle-specific knockout mice exhibited a 7.2% higher peak oxygen consumption (VO2peak), a 11% reduction in maximal isometric force, and increased ex vivo fatigue resistance during maximal stimulation. Interestingly, global gene expression analysis revealed a high overlap between the effects of NCoR1 deletion and peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC-1α) overexpression on oxidative metabolism in muscle. Importantly, PPARβ/δ and estrogen-related receptor α (ERRα) were identified as common targets of NCoR1 and PGC-1α with opposing effects on the transcriptional activity of these nuclear receptors. In fact, the repressive effect of NCoR1 on oxidative phosphorylation gene expression specifically antagonizes PGC-1α-mediated coactivation of ERRα. We therefore delineated the molecular mechanism by which a transcriptional network controlled by corepressor and coactivator proteins determines the metabolic properties of skeletal muscle, thus representing a potential therapeutic target for metabolic diseases. PMID:23028049
Bosurgi, Lidia; Manfredi, Angelo A; Rovere-Querini, Patrizia
2011-01-01
Macrophages are present in regenerating skeletal muscles and participate in the repair process. This is due to a unique feature of macrophages, i.e., their ability to perceive signals heralding ongoing tissue injury and to broadcast the news to cells suited at regenerating the tissue such as stem and progenitor cells. Macrophages play a complex role in the skeletal muscle, probably conveying information on the pattern of healing which is appropriate to ensure an effective healing of the tissue, yielding novel functional fibers. Conversely, they are likely to be involved in limiting the efficacy of regeneration, with formation of fibrotic scars and fat replacement of the tissue when the original insult persists. In this review we consider the beneficial versus the detrimental actions of macrophages during the response to muscle injury, with attention to the available information on the molecular code macrophages rely on to guide, throughout the various phases of muscle healing, the function of conventional and unconventional stem cells. Decrypting this code would represent a major step forward toward the establishment of novel targeted therapies for muscle diseases.
Creatinine and myoglobin are poor predictors of anaerobic threshold in colorectal cancer and health
Nyasavajjala, Sitaramachandra M; Phillips, Beth E; Lund, Jon N; Williams, John P
2015-01-01
Aims Myoglobin is a haem protein produced in skeletal muscles. Serum concentrations of myoglobin have been proposed as a surrogate marker of muscle mass and function in both cachectic cancer patients and healthy non-cancer individuals. Creatinine, a metabolite of creatine phosphate, an energy store found in skeletal muscle, is produced at a constant rate from skeletal muscle. Urinary and plasma creatinine have been used in clinical practice as indicators of skeletal muscle mass in health and disease. Our study aimed to test the hypothesis that plasma myoglobin and creatinine concentration could accurately predict skeletal muscle mass and aerobic capacity in colorectal cancer (CRC) patients and matched healthy controls and thereby an indicative of aerobic performance. Methods We recruited 47 patients with CRC and matching number of healthy volunteers for this study. All participants had their body composition measured by dual-energy X-ray absorptiometry scan, aerobic capacity measured to anaerobic threshold (AT) by cardiopulmonary exercise testing and filled in objective questionnaires to assess the qualitative functions. This study was carried out in accordance with the Declaration of Helsinki, after approval by the local National Health Service (NHS) Research Ethics Committee. Results Age-matched groups had similar serum myoglobin and creatinine concentrations in spite of differences in their aerobic capacity. AT was significantly lower in the CRC group compared with matched controls (1.18 ± 0.44 vs. 1.41 ± 0.71 L/min; P < 0.01). AT had significant correlation with lean muscle mass (LMM) among these groups, but myoglobin and creatinine had poor correlation with LMM and AT. Conclusions Serum myoglobin is a poor predictor of muscle mass, and serum myoglobin and creatinine concentrations do not predict aerobic performance in CRC patients or healthy matched controls. PMID:26136188
Vitamin K2 improves proliferation and migration of bovine skeletal muscle cells in vitro.
Rønning, Sissel Beate; Pedersen, Mona Elisabeth; Berg, Ragnhild Stenberg; Kirkhus, Bente; Rødbotten, Rune
2018-01-01
Skeletal muscle function is highly dependent on the ability to regenerate, however, during ageing or disease, the proliferative capacity is reduced, leading to loss of muscle function. We have previously demonstrated the presence of vitamin K2 in bovine skeletal muscles, but whether vitamin K has a role in muscle regulation and function is unknown. In this study, we used primary bovine skeletal muscle cells, cultured in monolayers in vitro, to assess a potential effect of vitamin K2 (MK-4) during myogenesis of muscle cells. Cell viability experiments demonstrate that the amount of ATP produced by the cells was unchanged when MK-4 was added, indicating viable cells. Cytotoxicity analysis show that MK-4 reduced the lactate dehydrogenase (LDH) released into the media, suggesting that MK-4 was beneficial to the muscle cells. Cell migration, proliferation and differentiation was characterised after MK-4 incubation using wound scratch analysis, immunocytochemistry and real-time PCR analysis. Adding MK-4 to the cells led to an increased muscle proliferation, increased gene expression of the myogenic transcription factor myod as well as increased cell migration. In addition, we observed a reduction in the fusion index and relative gene expression of muscle differentiation markers, with fewer complex myotubes formed in MK-4 stimulated cells compared to control cells, indicating that the MK-4 plays a significant role during the early phases of muscle proliferation. Likewise, we see the same pattern for the relative gene expression of collagen 1A, showing increased gene expression in proliferating cells, and reduced expression in differentiating cells. Our results also suggest that MK-4 incubation affect low density lipoprotein receptor-related protein 1 (LRP1) and the low-density lipoprotein receptor (LDLR) with a peak in gene expression after 45 min of MK-4 incubation. Altogether, our experiments show that MK-4 has a positive effect on muscle cell migration and proliferation, which are two important steps during early myogenesis.
O'Connell, Grant; Guo, Ge; Stricker, Janelle; Quinn, LeBris S; Ma, Averil; Pistilli, Emidio E
2015-02-15
Interleukin-15 (IL-15) is a putative myokine hypothesized to induce an oxidative skeletal muscle phenotype. The specific IL-15 receptor alpha subunit (IL-15Rα) has also been implicated in specifying this contractile phenotype. The purposes of this study were to determine the muscle-specific effects of IL-15Rα functional deficiency on skeletal muscle isometric contractile properties, fatigue characteristics, spontaneous cage activity, and circulating IL-15 levels in male and female mice. Muscle creatine kinase (MCK)-driven IL-15Rα knockout mice (mIl15ra(fl/fl)/Cre(+)) were generated using the Cre-loxP system. We tested the hypothesis that IL-15Rα functional deficiency in skeletal muscle would increase resistance to contraction-induced fatigue, cage activity, and circulating IL-15 levels. There was a significant effect of genotype on the fatigue curves obtained in extensor digitorum longus (EDL) muscles from female mIl15ra(fl/fl)/Cre(+) mice, such that force output was greater during the repeated contraction protocol compared with mIl15ra(fl/fl)/Cre(-) control mice. Muscles from female mIl15ra(fl/fl)/Cre(+) mice also had a twofold greater amount of the mitochondrial genome-specific COXII gene compared with muscles from mIl15ra(fl/fl)/Cre(-) control mice, indicating a greater mitochondrial density in these skeletal muscles. There was a significant effect of genotype on the twitch:tetanus ratio in EDL and soleus muscles from mIl15ra(fl/fl)/Cre(+) mice, such that the ratio was lower in these muscles compared with mIl15ra(fl/fl)/Cre(-) control mice, indicating a pro-oxidative shift in muscle phenotype. However, spontaneous cage activity was not different and IL-15 protein levels were lower in male and female mIl15ra(fl/fl)/Cre(+) mice compared with control. Collectively, these data support a direct effect of muscle IL-15Rα deficiency in altering contractile properties and fatigue characteristics in skeletal muscles.
Silvestri, Elena; Glinni, Daniela; Cioffi, Federica; Moreno, Maria; Lombardi, Assunta; de Lange, Pieter; Senese, Rosalba; Ceccarelli, Michele; Salzano, Anna Maria; Scaloni, Andrea; Lanni, Antonia; Goglia, Fernando
2012-07-06
A novel functional iodothyronine analogue, TRC150094, which has a much lower potency toward thyroid hormone receptor (α1/β1) activation than triiodothyronine, has been shown to be effective at reducing adiposity in rats simultaneously receiving a high-fat diet (HFD). Here, by combining metabolic, functional and proteomic analysis, we studied how the hepatic and skeletal muscle phenotypes might respond to TRC150094 treatment in HFD-fed overweight rats. Drug treatment increased both the liver and skeletal muscle mitochondrial oxidative capacities without altering mitochondrial efficiency. Coherently, in terms of individual respiratory in-gel activity, blue-native analysis revealed an increased activity of complex V in the liver and of complexes II and V in tibialis muscle in TCR150094-treated animals. Subsequently, the identification of differentially expressed proteins and the analysis of their interrelations gave an integrated view of the phenotypic/metabolic adaptations occurring in the liver and muscle proteomes during drug treatment. TRC150094 significantly altered the expression of several proteins involved in key liver metabolic pathways, including amino acid and nitrogen metabolism, and fructose and mannose metabolism. The canonical pathways most strongly influenced by TRC150094 in tibialis muscle included glycolysis and gluconeogenesis, amino acid, fructose and mannose metabolism, and cell signaling. The phenotypic/metabolic influence of TRC150094 on the liver and skeletal muscle of HFD-fed overweight rats suggests the potential clinical application of this iodothyronine analogue in ameliorating metabolic risk parameters altered by diet regimens.
SIRT1 may play a crucial role in overload-induced hypertrophy of skeletal muscle.
Koltai, Erika; Bori, Zoltán; Chabert, Clovis; Dubouchaud, Hervé; Naito, Hisashi; Machida, Shuichi; Davies, Kelvin Ja; Murlasits, Zsolt; Fry, Andrew C; Boldogh, Istvan; Radak, Zsolt
2017-06-01
Silent mating type information regulation 2 homologue 1 (SIRT1) activity and content increased significantly in overload-induced hypertrophy. SIRT1-mediated signalling through Akt, the endothelial nitric oxide synthase mediated pathway, regulates anabolic process in the hypertrophy of skeletal muscle. The regulation of catabolic signalling via forkhead box O 1 and protein ubiquitination is SIRT1 dependent. Overload-induced changes in microRNA levels regulate SIRT1 and insulin-like growth factor 1 signalling. Significant skeletal muscle mass guarantees functional wellbeing and is important for high level performance in many sports. Although the molecular mechanism for skeletal muscle hypertrophy has been well studied, it still is not completely understood. In the present study, we used a functional overload model to induce plantaris muscle hypertrophy by surgically removing the soleus and gastrocnemius muscles in rats. Two weeks of muscle ablation resulted in a 40% increase in muscle mass, which was associated with a significant increase in silent mating type information regulation 2 homologue 1 (SIRT1) content and activity (P < 0.001). SIRT1-regulated Akt, endothelial nitric oxide synthase and GLUT4 levels were also induced in hypertrophied muscles, and SIRT1 levels correlated with muscle mass, paired box protein 7 (Pax7), proliferating cell nuclear antigen (PCNA) and nicotinamide phosphoribosyltransferase (Nampt) levels. Alternatively, decreased forkhead box O 1 (FOXO1) and increased K48 polyubiquitination also suggest that SIRT1 could be involved in the catabolic process of hypertrophy. Furthermore, increased levels of K63 and muscle RING finger 2 (MuRF2) protein could also be important enhancers of muscle mass. We report here that the levels of miR1 and miR133a decrease in hypertrophy and negatively correlate with muscle mass, SIRT1 and Nampt levels. Our results reveal a strong correlation between SIRT1 levels and activity, SIRT1-regulated pathways and overload-induced hypertrophy. These findings, along with the well-known regulatory roles that SIRT1 plays in modulating both anabolic and catabolic pathways, allow us to propose the hypothesis that SIRT1 may actually play a crucial causal role in overload-induced hypertrophy of skeletal muscle. This hypothesis will now require rigorous direct and functional testing. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
SIRT1 may play a crucial role in overload‐induced hypertrophy of skeletal muscle
Koltai, Erika; Bori, Zoltán; Chabert, Clovis; Dubouchaud, Hervé; Naito, Hisashi; Machida, Shuichi; Davies, Kelvin JA; Murlasits, Zsolt; Fry, Andrew C; Boldogh, Istvan
2017-01-01
Key points Silent mating type information regulation 2 homologue 1 (SIRT1) activity and content increased significantly in overload‐induced hypertrophy.SIRT1‐mediated signalling through Akt, the endothelial nitric oxide synthase mediated pathway, regulates anabolic process in the hypertrophy of skeletal muscle.The regulation of catabolic signalling via forkhead box O 1 and protein ubiquitination is SIRT1 dependent.Overload‐induced changes in microRNA levels regulate SIRT1 and insulin‐like growth factor 1 signalling. Abstract Significant skeletal muscle mass guarantees functional wellbeing and is important for high level performance in many sports. Although the molecular mechanism for skeletal muscle hypertrophy has been well studied, it still is not completely understood. In the present study, we used a functional overload model to induce plantaris muscle hypertrophy by surgically removing the soleus and gastrocnemius muscles in rats. Two weeks of muscle ablation resulted in a 40% increase in muscle mass, which was associated with a significant increase in silent mating type information regulation 2 homologue 1 (SIRT1) content and activity (P < 0.001). SIRT1‐regulated Akt, endothelial nitric oxide synthase and GLUT4 levels were also induced in hypertrophied muscles, and SIRT1 levels correlated with muscle mass, paired box protein 7 (Pax7), proliferating cell nuclear antigen (PCNA) and nicotinamide phosphoribosyltransferase (Nampt) levels. Alternatively, decreased forkhead box O 1 (FOXO1) and increased K48 polyubiquitination also suggest that SIRT1 could be involved in the catabolic process of hypertrophy. Furthermore, increased levels of K63 and muscle RING finger 2 (MuRF2) protein could also be important enhancers of muscle mass. We report here that the levels of miR1 and miR133a decrease in hypertrophy and negatively correlate with muscle mass, SIRT1 and Nampt levels. Our results reveal a strong correlation between SIRT1 levels and activity, SIRT1‐regulated pathways and overload‐induced hypertrophy. These findings, along with the well‐known regulatory roles that SIRT1 plays in modulating both anabolic and catabolic pathways, allow us to propose the hypothesis that SIRT1 may actually play a crucial causal role in overload‐induced hypertrophy of skeletal muscle. This hypothesis will now require rigorous direct and functional testing. PMID:28251652
Okutsu, Mitsuharu; Call, Jarrod A.; Lira, Vitor A.; Zhang, Mei; Donet, Jean A.; French, Brent A.; Martin, Kyle S.; Peirce-Cottler, Shayn M.; Rembold, Christopher M.; Annex, Brian H.; Yan, Zhen
2014-01-01
Background Congestive heart failure (CHF) is a leading cause of morbidity and mortality, and oxidative stress has been implicated in the pathogenesis of cachexia (muscle wasting) and the hallmark symptom, exercise intolerance. We have previously shown that a nitric oxide (NO)-dependent antioxidant defense renders oxidative skeletal muscle resistant to catabolic wasting. Here, we aimed to identify and determine the functional role of the NO-inducible antioxidant enzyme(s) in protection against cardiac cachexia and exercise intolerance in CHF. Methods and Results We demonstrated that systemic administration of endogenous nitric oxide donor S-Nitrosoglutathione in mice blocked the reduction of extracellular superoxide dismutase (EcSOD) protein expression, the induction of MAFbx/Atrogin-1 mRNA expression and muscle atrophy induced by glucocorticoid. We further showed that endogenous EcSOD, expressed primarily by type IId/x and IIa myofibers and enriched at endothelial cells, is induced by exercise training. Muscle-specific overexpression of EcSOD by somatic gene transfer or transgenesis [muscle creatine kinase (MCK)-EcSOD] in mice significantly attenuated muscle atrophy. Importantly, when crossbred into a mouse genetic model of CHF [α-myosin heavy chain (MHC)-calsequestrin] MCK-EcSOD transgenic mice had significant attenuation of cachexia with preserved whole body muscle strength and endurance capacity in the absence of reduced heart failure. Enhanced EcSOD expression significantly ameliorated CHF-induced oxidative stress, MAFbx/Atrogin-1 mRNA expression, loss of mitochondria and vascular rarefaction in skeletal muscle. Conclusions EcSOD plays an important antioxidant defense function in skeletal muscle against cardiac cachexia and exercise intolerance in CHF. PMID:24523418
Isolation, characterization, and molecular regulation of muscle stem cells
Fukada, So-ichiro; Ma, Yuran; Ohtani, Takuji; Watanabe, Yoko; Murakami, Satoshi; Yamaguchi, Masahiko
2013-01-01
Skeletal muscle has great regenerative capacity which is dependent on muscle stem cells, also known as satellite cells. A loss of satellite cells and/or their function impairs skeletal muscle regeneration and leads to a loss of skeletal muscle power; therefore, the molecular mechanisms for maintaining satellite cells in a quiescent and undifferentiated state are of great interest in skeletal muscle biology. Many studies have demonstrated proteins expressed by satellite cells, including Pax7, M-cadherin, Cxcr4, syndecan3/4, and c-met. To further characterize satellite cells, we established a method to directly isolate satellite cells using a monoclonal antibody, SM/C-2.6. Using SM/C-2.6 and microarrays, we measured the genes expressed in quiescent satellite cells and demonstrated that Hesr3 may complement Hesr1 in generating quiescent satellite cells. Although Hesr1- or Hesr3-single knockout mice show a normal skeletal muscle phenotype, including satellite cells, Hesr1/Hesr3-double knockout mice show a gradual decrease in the number of satellite cells and increase in regenerative defects dependent on satellite cell numbers. We also observed that a mouse's genetic background affects the regenerative capacity of its skeletal muscle and have established a line of DBA/2-background mdx mice that has a much more severe phenotype than the frequently used C57BL/10-mdx mice. The phenotype of DBA/2-mdx mice also seems to depend on the function of satellite cells. In this review, we summarize the methodology of direct isolation, characterization, and molecular regulation of satellite cells based on our results. The relationship between the regenerative capacity of satellite cells and progression of muscular disorders is also summarized. In the last part, we discuss application of the accumulating scientific information on satellite cells to treatment of patients with muscular disorders. PMID:24273513
Beitzel, Felice; Gregorevic, Paul; Ryall, James G; Plant, David R; Sillence, Martin N; Lynch, Gordon S
2004-04-01
Beta(2)-adrenoceptor agonists such as fenoterol are anabolic in skeletal muscle, and because they promote hypertrophy and improve force-producing capacity, they have potential application for enhancing muscle repair after injury. No previous studies have measured the beta(2)-adrenoceptor population in regenerating skeletal muscle or determined whether fenoterol can improve functional recovery in regenerating muscle after myotoxic injury. In the present study, the extensor digitorum longus (EDL) muscle of the right hindlimb of deeply anesthetized rats was injected with bupivacaine hydrochloride, which caused complete degeneration of all muscle fibers. The EDL muscle of the left hindlimb served as the uninjured control. Rats received either fenoterol (1.4 mg x kg(-1) x day(-1)) or an equal volume of saline for 2, 7, 14, or 21 days. Radioligand binding assays identified a approximately 3.5-fold increase in beta(2)-adrenoceptor density in regenerating muscle at 2 days postinjury. Isometric contractile properties of rat EDL muscles were measured in vitro. At 14 and 21 days postinjury, maximum force production (P(o)) of injured muscles from fenoterol-treated rats was 19 and 18% greater than from saline-treated rats, respectively, indicating more rapid restoration of function after injury. The increase in P(o) in fenoterol-treated rats was due to increases in muscle mass, fiber cross-sectional area, and protein content. These findings suggest a physiological role for beta(2)-adrenoceptor-mediated mechanisms in muscle regeneration and show clearly that fenoterol hastens recovery after injury, indicating its potential therapeutic application.
Jeong, Youngjae; Carleton, Stephanie M; Gentry, Bettina A; Yao, Xiaomei; Ferreira, J Andries; Salamango, Daniel J; Weis, MaryAnn; Oestreich, Arin K; Williams, Ashlee M; McCray, Marcus G; Eyre, David R; Brown, Marybeth; Wang, Yong; Phillips, Charlotte L
2015-10-01
Osteogenesis imperfecta (OI) is a heterogeneous heritable connective tissue disorder associated with reduced bone mineral density and skeletal fragility. Bone is inherently mechanosensitive, with bone strength being proportional to muscle mass and strength. Physically active healthy children accrue more bone than inactive children. Children with type I OI exhibit decreased exercise capacity and muscle strength compared with healthy peers. It is unknown whether this muscle weakness reflects decreased physical activity or a muscle pathology. In this study, we used heterozygous G610C OI model mice (+/G610C), which model both the genotype and phenotype of a large Amish OI kindred, to evaluate hindlimb muscle function and physical activity levels before evaluating the ability of +/G610C mice to undergo a treadmill exercise regimen. We found +/G610C mice hindlimb muscles do not exhibit compromised muscle function, and their activity levels were not reduced relative to wild-type mice. The +/G610C mice were also able to complete an 8-week treadmill regimen. Biomechanical integrity of control and exercised wild-type and +/G610C femora were analyzed by torsional loading to failure. The greatest skeletal gains in response to exercise were observed in stiffness and the shear modulus of elasticity with alterations in collagen content. Analysis of tibial cortical bone by Raman spectroscopy demonstrated similar crystallinity and mineral/matrix ratios regardless of sex, exercise, and genotype. Together, these findings demonstrate +/G610C OI mice have equivalent muscle function, activity levels, and ability to complete a weight-bearing exercise regimen as wild-type mice. The +/G610C mice exhibited increased femoral stiffness and decreased hydroxyproline with exercise, whereas other biomechanical parameters remain unaffected, suggesting a more rigorous exercise regimen or another exercise modality may be required to improve bone quality of OI mice. © 2015 American Society for Bone and Mineral Research.
Lindholm, Maléne E; Giacomello, Stefania; Werne Solnestam, Beata; Kjellqvist, Sanela
2016-01-01
Regularly performed endurance training has many beneficial effects on health and skeletal muscle function, and can be used to prevent and treat common diseases e.g. cardiovascular disease, type II diabetes and obesity. The molecular adaptation mechanisms regulating these effects are incompletely understood. To date, global transcriptome changes in skeletal muscles have been studied at the gene level only. Therefore, global isoform expression changes following exercise training in humans are unknown. Also, the effects of repeated interventions on transcriptional memory or training response have not been studied before. In this study, 23 individuals trained one leg for three months. Nine months later, 12 of the same subjects trained both legs in a second training period. Skeletal muscle biopsies were obtained from both legs before and after both training periods. RNA sequencing analysis of all 119 skeletal muscle biopsies showed that training altered the expression of 3,404 gene isoforms, mainly associated with oxidative ATP production. Fifty-four genes had isoforms that changed in opposite directions. Training altered expression of 34 novel transcripts, all with protein-coding potential. After nine months of detraining, no training-induced transcriptome differences were detected between the previously trained and untrained legs. Although there were several differences in the physiological and transcriptional responses to repeated training, no coherent evidence of an endurance training induced transcriptional skeletal muscle memory was found. This human lifestyle intervention induced differential expression of thousands of isoforms and several transcripts from unannotated regions of the genome. It is likely that the observed isoform expression changes reflect adaptational mechanisms and processes that provide the functional and health benefits of regular physical activity. PMID:27657503
Isaac, Stephanie T; Tan, Timothy C; Polly, Patsie
2016-01-01
Cancer cachexia is a debilitating paraneoplastic wasting syndrome characterized by skeletal muscle depletion and unintentional weight loss. It affects up to 50-80% of patients with cancer and directly accounts for one-quarter of cancer-related deaths due to cardio-respiratory failure. Muscle weakness, one of the hallmarks of this syndrome, has been postulated to be due to a combination of muscle breakdown, dysfunction and decrease in the ability to repair, with effective treatment strategies presently limited. Excessive inflammatory cytokine levels due to the host-tumor interaction, such as Interleukin (IL)-6 and Tumor Necrosis Factor (TNF)-α, are hypothesised to drive this pathological process but the specific mechanisms by which these cytokines produce skeletal muscle dysfunction in cancer cachexia remain undefined. Endoplasmic Reticulum (ER) stress and the associated disruptions in calcium signaling have been implicated in cytokine-mediated disruptions in skeletal muscle and function. Disrupted ER stress-related processes such as the Unfolded Protein Response (UPR), calcium homeostasis and altered muscle protein synthesis have been reported in clinical and experimental cachexia and other inflammation-driven muscle diseases such as myositis, potentially suggesting a link between increased IL-6 and TNF-α and ER stress in skeletal muscle cells. As the concept of upregulated ER stress in skeletal muscle cells due to elevated cytokines is novel and potentially very relevant to our understanding of cancer cachexia, this review aims to examine the potential relationship between inflammatory cytokine mediated muscle breakdown and ER stress, in the context of cancer cachexia, and to discuss the molecular signaling pathways underpinning this pathology.
Novakova, Katerina; Kummer, Oliver; Bouitbir, Jamal; Stoffel, Sonja D; Hoerler-Koerner, Ulrike; Bodmer, Michael; Roberts, Paul; Urwyler, Albert; Ehrsam, Rolf; Krähenbühl, Stephan
2016-02-01
More than 95% of the body carnitine is located in skeletal muscle, where it is essential for energy metabolism. Vegetarians ingest less carnitine and carnitine precursors and have lower plasma carnitine concentrations than omnivores. Principle aims of the current study were to assess the plasma and skeletal muscle carnitine content and physical performance of male vegetarians and matched omnivores under basal conditions and after L-carnitine supplementation. Sixteen vegetarians and eight omnivores participated in this interventional study with oral supplementation of 2 g L-carnitine for 12 weeks. Before carnitine supplementation, vegetarians had a 10% lower plasma carnitine concentration, but maintained skeletal muscle carnitine stores compared to omnivores. Skeletal muscle phosphocreatine, ATP, glycogen and lactate contents were also not different from omnivores. Maximal oxygen uptake (VO2max) and workload (P max) per bodyweight (bicycle spiroergometry) were not significantly different between vegetarians and omnivores. Sub-maximal exercise (75% VO2max for 1 h) revealed no significant differences between vegetarians and omnivores (respiratory exchange ratio, blood lactate and muscle metabolites). Supplementation with L-carnitine significantly increased the total plasma carnitine concentration (24% in omnivores, 31% in vegetarians) and the muscle carnitine content in vegetarians (13%). Despite this increase, P max and VO2max as well as muscle phosphocreatine, lactate and glycogen were not significantly affected by carnitine administration. Vegetarians have lower plasma carnitine concentrations, but maintained muscle carnitine stores compared to omnivores. Oral L-carnitine supplementation normalizes the plasma carnitine stores and slightly increases the skeletal muscle carnitine content in vegetarians, but without affecting muscle function and energy metabolism.
Synergizing Engineering and Biology to Treat and Model Skeletal Muscle Injury and Disease
Bursac, Nenad; Juhas, Mark; Rando, Thomas A.
2016-01-01
Although skeletal muscle is one of the most regenerative organs in our body, various genetic defects, alterations in extrinsic signaling, or substantial tissue damage can impair muscle function and the capacity for self-repair. The diversity and complexity of muscle disorders have attracted much interest from both cell biologists and, more recently, bioengineers, leading to concentrated efforts to better understand muscle pathology and develop more efficient therapies. This review describes the biological underpinnings of muscle development, repair, and disease, and discusses recent bioengineering efforts to design and control myomimetic environments, both to study muscle biology and function and to aid in the development of new drug, cell, and gene therapies for muscle disorders. The synergy between engineering-aided biological discovery and biology-inspired engineering solutions will be the path forward for translating laboratory results into clinical practice. PMID:26643021
Embryonic stem cells improve skeletal muscle recovery after extreme atrophy in mice.
Artioli, Guilherme Giannini; De Oliveira Silvestre, João Guilherme; Guilherme, João Paulo Limongi França; Baptista, Igor Luchini; Ramos, Gracielle Vieira; Da Silva, Willian José; Miyabara, Elen Haruka; Moriscot, Anselmo Sigari
2015-03-01
We injected embryonic stem cells into mouse tibialis anterior muscles subjected to botulinum toxin injections as a model for reversible neurogenic atrophy. Muscles were exposed to botulinum toxin for 4 weeks and allowed to recover for up to 6 weeks. At the onset of recovery, a single muscle injection of embryonic stem cells was administered. The myofiber cross-sectional area, single twitch force, peak tetanic force, time-to-peak force, and half-relaxation time were determined. Although the stem cell injection did not affect the myofiber cross-sectional area gain in recovering muscles, most functional parameters improved significantly compared with those of recovering muscles that did not receive the stem cell injection. Muscle function recovery was accelerated by embryonic stem cell delivery in this durable neurogenic atrophy model. We conclude that stem cells should be considered a potential therapeutic tool for recovery after extreme skeletal muscle atrophy. © 2014 Wiley Periodicals, Inc.
Scheid, Lisa-Mareike; Weber, Cornelia; Bopp, Nasrin; Mosqueira, Matias; Fink, Rainer H. A.
2017-01-01
The in vitro motility assay (IVMA) is a technique that enables the measurement of the interaction between actin and myosin providing a relatively simple model to understand the mechanical muscle function. For actin-myosin IVMA, myosin is immobilized in a measurement chamber, where it converts chemical energy provided by ATP hydrolysis into mechanical energy. The result is the movement of fluorescently labeled actin filaments that can be recorded microscopically and analyzed quantitatively. Resulting sliding speeds and patterns help to characterize the underlying actin-myosin interaction that can be affected by different factors such as mutations or active compounds. Additionally, modulatory actions of the regulatory proteins tropomyosin and troponin in the presence of calcium on actin-myosin interaction can be studied with the IVMA. Zebrafish is considered a suitable model organism for cardiovascular and skeletal muscle research. In this context, straightforward protocols for the isolation and use of zebrafish muscle proteins in the IVMA would provide a useful tool in molecular studies. Currently, there are no protocols available for the mentioned purpose. Therefore, we developed fast and easy protocols for characterization of zebrafish proteins in the IVMA. Our protocols enable the interested researcher to (i) isolate actin from zebrafish skeletal muscle and (ii) extract functionally intact myosin from cardiac and skeletal muscle of individual adult zebrafish. Zebrafish tail muscle actin is isolated after acetone powder preparation, polymerized, and labeled with Rhodamine-Phalloidin. Myosin from ventricles of adult zebrafish is extracted directly into IVMA flow-cells. The same extraction protocol is applicable for comparably small tissue pieces as from zebrafish tail, mouse and frog muscle. After addition of the fluorescently labeled F-actin from zebrafish—or other origin—and ATP, sliding movement can be visualized using a fluorescence microscope and an intensified CCD camera. Taken together, we introduce a method for functional analysis in zebrafish cardiac and skeletal muscle research to study mutations at the molecular level of thick or thin filament proteins. Additionally, preliminary data indicate the usefulness of the presented method to perform the IVMA with myosin extracted from muscles of other animal models. PMID:28620318
Dick, Taylor J M; Wakeling, James M
2017-12-01
When muscles contract, they bulge in thickness or in width to maintain a (nearly) constant volume. These dynamic shape changes are tightly linked to the internal constraints placed on individual muscle fibers and play a key functional role in modulating the mechanical performance of skeletal muscle by increasing its range of operating velocities. Yet to date we have a limited understanding of the nature and functional implications of in vivo dynamic muscle shape change under submaximal conditions. This study determined how the in vivo changes in medial gastrocnemius (MG) fascicle velocity, pennation angle, muscle thickness, and subsequent muscle gearing varied as a function of force and velocity. To do this, we obtained recordings of MG tendon length, fascicle length, pennation angle, and thickness using B-mode ultrasound and muscle activation using surface electromyography during cycling at a range of cadences and loads. We found that that increases in contractile force were accompanied by reduced bulging in muscle thickness, reduced increases in pennation angle, and faster fascicle shortening. Although the force and velocity of a muscle contraction are inversely related due to the force-velocity effect, this study has shown how dynamic muscle shape changes are influenced by force and not influenced by velocity. NEW & NOTEWORTHY During movement, skeletal muscles contract and bulge in thickness or width. These shape changes play a key role in modulating the performance of skeletal muscle by increasing its range of operating velocities. Yet to date the underlying mechanisms associated with muscle shape change remain largely unexplored. This study identified muscle force, and not velocity, as the mechanistic driving factor to allow for muscle gearing to vary depending on the contractile conditions during human cycling. Copyright © 2017 the American Physiological Society.
A review on the non-invasive evaluation of skeletal muscle oxygenation
NASA Astrophysics Data System (ADS)
Halim, A. A. A.; Laili, M. H.; Aziz, N. A.; Laili, A. R.; Salikin, M. S.; Rusop, M.
2016-07-01
The aim of this review is to conduct a feasibility study of non-invasive evaluation in skeletal muscle oxygenation. This non-invasive evaluation could extract many information using a safe non-invasive method regarding to the oxygenation and microcirculation status in human blood muscle. This brief review highlights the progress of the application of NIRS to evaluate skeletal muscle oxygenation in various activity of human nature from the historical point of view to the present advancement. Since the discovery of non-invasive optical method during 1992, there are many non-invasive techniques uses optical properties on human subject such as near infrared spectroscopy NIRS, optical topography, functional near infrared spectroscopy fNIRS and imaging fNIRI. Furthermore, in this paper we discuss the light absorption potential (LAP) towards chromophores content inside human muscle. Modified beer lambert law was studied in order to build a better understanding toward LAP between chromophores under tissue multilayers in human muscle. This paper will describe the NIRS principle and the basis for its proposed used in skeletal muscle oxygenation. This will cover the advantages and limitation of such application. Thus, these non-invasive techniques could open other possibilities to study muscle performance diagnosis.
Mintz, Ellen L.; Passipieri, Juliana A.; Lovell, Daniel Y.; Christ, George J.
2016-01-01
Despite the regenerative capacity of skeletal muscle, permanent functional and/or cosmetic deficits (e.g., volumetric muscle loss (VML) resulting from traumatic injury, disease and various congenital, genetic and acquired conditions are quite common. Tissue engineering and regenerative medicine technologies have enormous potential to provide a therapeutic solution. However, utilization of biologically relevant animal models in combination with longitudinal assessments of pertinent functional measures are critical to the development of improved regenerative therapeutics for treatment of VML-like injuries. In that regard, a commercial muscle lever system can be used to measure length, tension, force and velocity parameters in skeletal muscle. We used this system, in conjunction with a high power, bi-phase stimulator, to measure in vivo force production in response to activation of the anterior crural compartment of the rat hindlimb. We have previously used this equipment to assess the functional impact of VML injury on the tibialis anterior (TA) muscle, as well as the extent of functional recovery following treatment of the injured TA muscle with our tissue engineered muscle repair (TEMR) technology. For such studies, the left foot of an anaesthetized rat is securely anchored to a footplate linked to a servomotor, and the common peroneal nerve is stimulated by two percutaneous needle electrodes to elicit muscle contraction and dorsiflexion of the foot. The peroneal nerve stimulation-induced muscle contraction is measured over a range of stimulation frequencies (1-200 Hz), to ensure an eventual plateau in force production that allows for an accurate determination of peak tetanic force. In addition to evaluation of the extent of VML injury as well as the degree of functional recovery following treatment, this methodology can be easily applied to study diverse aspects of muscle physiology and pathophysiology. Such an approach should assist with the more rational development of improved therapeutics for muscle repair and regeneration. PMID:27768064
Mintz, Ellen L; Passipieri, Juliana A; Lovell, Daniel Y; Christ, George J
2016-10-07
Despite the regenerative capacity of skeletal muscle, permanent functional and/or cosmetic deficits (e.g., volumetric muscle loss (VML) resulting from traumatic injury, disease and various congenital, genetic and acquired conditions are quite common. Tissue engineering and regenerative medicine technologies have enormous potential to provide a therapeutic solution. However, utilization of biologically relevant animal models in combination with longitudinal assessments of pertinent functional measures are critical to the development of improved regenerative therapeutics for treatment of VML-like injuries. In that regard, a commercial muscle lever system can be used to measure length, tension, force and velocity parameters in skeletal muscle. We used this system, in conjunction with a high power, bi-phase stimulator, to measure in vivo force production in response to activation of the anterior crural compartment of the rat hindlimb. We have previously used this equipment to assess the functional impact of VML injury on the tibialis anterior (TA) muscle, as well as the extent of functional recovery following treatment of the injured TA muscle with our tissue engineered muscle repair (TEMR) technology. For such studies, the left foot of an anaesthetized rat is securely anchored to a footplate linked to a servomotor, and the common peroneal nerve is stimulated by two percutaneous needle electrodes to elicit muscle contraction and dorsiflexion of the foot. The peroneal nerve stimulation-induced muscle contraction is measured over a range of stimulation frequencies (1-200 Hz), to ensure an eventual plateau in force production that allows for an accurate determination of peak tetanic force. In addition to evaluation of the extent of VML injury as well as the degree of functional recovery following treatment, this methodology can be easily applied to study diverse aspects of muscle physiology and pathophysiology. Such an approach should assist with the more rational development of improved therapeutics for muscle repair and regeneration.
Human skeletal muscle responses to spaceflight and possible countermeasures
NASA Technical Reports Server (NTRS)
Gollnick, Philip D.; Edgerton, V. Reggie; Saltin, Bengt
1990-01-01
The current status of knowledge concerning the effects of unweighting skeletal muscle is summarized. The results of both ground-based and space-based animal studies are reviewed which show that there is rapid loss in muscle mass, primarily in slow-twitch muscle, of the rat during unweighting of muscle. There is also a shift in the myosin isoforms with muscles such that slow-twitch muscles take on many of the characteristics of fast-twitch muscles. Ground-based studies in human suggest that programs of electrical stimulation can be developed to simulate normal muscular contractions. Attempts to develop countermeasures to the adverse effects of space travel on muscular functions in humans have not been successful to date.
Fusion of spectral models for dynamic modeling of sEMG and skeletal muscle force.
Potluri, Chandrasekhar; Anugolu, Madhavi; Chiu, Steve; Urfer, Alex; Schoen, Marco P; Naidu, D Subbaram
2012-01-01
In this paper, we present a method of combining spectral models using a Kullback Information Criterion (KIC) data fusion algorithm. Surface Electromyographic (sEMG) signals and their corresponding skeletal muscle force signals are acquired from three sensors and pre-processed using a Half-Gaussian filter and a Chebyshev Type- II filter, respectively. Spectral models - Spectral Analysis (SPA), Empirical Transfer Function Estimate (ETFE), Spectral Analysis with Frequency Dependent Resolution (SPFRD) - are extracted from sEMG signals as input and skeletal muscle force as output signal. These signals are then employed in a System Identification (SI) routine to establish the dynamic models relating the input and output. After the individual models are extracted, the models are fused by a probability based KIC fusion algorithm. The results show that the SPFRD spectral models perform better than SPA and ETFE models in modeling the frequency content of the sEMG/skeletal muscle force data.
Gundry, Stacey R.; Chan, Aye T.; Widrick, Jeffrey; Draper, Isabelle; Chakraborty, Anirban; Zhou, Yi; Zon, Leonard I.; Gleizes, Pierre-Emmanuel
2018-01-01
Gene expression in a tissue-specific context depends on the combined efforts of epigenetic, transcriptional and post-transcriptional processes that lead to the production of specific proteins that are important determinants of cellular identity. Ribosomes are a central component of the protein biosynthesis machinery in cells; however, their regulatory roles in the translational control of gene expression in skeletal muscle remain to be defined. In a genetic screen to identify critical regulators of myogenesis, we identified a DEAD-Box RNA helicase, DDX27, that is required for skeletal muscle growth and regeneration. We demonstrate that DDX27 regulates ribosomal RNA (rRNA) maturation, and thereby the ribosome biogenesis and the translation of specific transcripts during myogenesis. These findings provide insight into the translational regulation of gene expression in myogenesis and suggest novel functions for ribosomes in regulating gene expression in skeletal muscles. PMID:29518074
Alameddine, Hala S.; Morgan, Jennifer E.
2016-01-01
In skeletal muscles, levels and activity of Matrix MetalloProteinases (MMPs) and Tissue Inhibitors of MetalloProteinases (TIMPs) have been involved in myoblast migration, fusion and various physiological and pathological remodeling situations including neuromuscular diseases. This has opened perspectives for the use of MMPs’ overexpression to improve the efficiency of cell therapy in muscular dystrophies and resolve fibrosis. Alternatively, inhibition of individual MMPs in animal models of muscular dystrophies has provided evidence of beneficial, dual or adverse effects on muscle morphology or function. We review here the role played by MMPs/TIMPs in skeletal muscle inflammation and fibrosis, two major hurdles that limit the success of cell and gene therapy. We report and analyze the consequences of genetic or pharmacological modulation of MMP levels on the inflammation of skeletal muscles and their repair in light of experimental findings. We further discuss how the interplay between MMPs/TIMPs levels, cytokines/chemokines, growth factors and permanent low-grade inflammation favor cellular and molecular modifications resulting in fibrosis. PMID:27911334
Sweeney, Lauren J; Brodfuehrer, Peter D; Raughley, Beth L
2004-12-01
One important goal of introductory biology laboratory experiences is to engage students directly in all steps in the process of scientific discovery. Even when laboratory experiences are built on principles discussed in the classroom, students often do not adequately apply this background to interpretation of results they obtain in lab. This disconnect has been described at the level of medical education (4), so it should not be surprising that educators have struggled with this same phenomenon at the undergraduate level. We describe a new introductory biology lab that challenges students to make these connections. The lab utilizes enzyme histochemistry and morphological observations to draw conclusions about the composition of functionally different types of muscle fibers present in skeletal muscle. We report that students were not only successful at making these observations on a specific skeletal muscle, the gastrocnemius of the frog Rana pipiens, but that they were able to connect their results to the principles of fiber type differences that exist in skeletal muscles in all vertebrates.
Cheng, Arthur J.; Hartman, James J.; Hinken, Aaron C.; Lee, Ken; Durham, Nickie; Russell, Alan J.; Malik, Fady I.; Westerblad, Håkan; Jasper, Jeffrey R.
2017-01-01
Key points We report that the small molecule CK‐2066260 selectively slows the off‐rate of Ca2 + from fast skeletal muscle troponin, leading to increased myofibrillar Ca2 + sensitivity in fast skeletal muscle.Rodents dosed with CK‐2066260 show increased hindlimb muscle force and power in response to submaximal rates of nerve stimulation in situ.CK‐2066260 has no effect on free cytosolic [Ca2 +] during contractions of isolated muscle fibres.We conclude that fast skeletal muscle troponin sensitizers constitute a potential therapy to address an unmet need of improving muscle function in conditions of weakness and premature muscle fatigue. Abstract Skeletal muscle dysfunction occurs in many diseases and can lead to muscle weakness and premature muscle fatigue. Here we show that the fast skeletal troponin activator, CK‐2066260, counteracts muscle weakness by increasing troponin Ca2+ affinity, thereby increasing myofibrillar Ca2+ sensitivity. Exposure to CK‐2066260 resulted in a concentration‐dependent increase in the Ca2+ sensitivity of ATPase activity in isolated myofibrils and reconstituted hybrid sarcomeres containing fast skeletal muscle troponin C. Stopped‐flow experiments revealed a ∼2.7‐fold decrease in the Ca2+ off‐rate of isolated troponin complexes in the presence of CK‐2066260 (6 vs. 17 s−1 under control conditions). Isolated mouse flexor digitorum brevis fibres showed a rapidly developing, reversible and concentration‐dependent force increase at submaximal stimulation frequencies. This force increase was not accompanied by any changes in the free cytosolic [Ca2+] or its kinetics. CK‐2066260 induced a slowing of relaxation, which was markedly larger at 26°C than at 31°C and could be linked to the decreased Ca2+ off‐rate of troponin C. Rats dosed with CK‐2066260 showed increased hindlimb isometric and isokinetic force in response to submaximal rates of nerve stimulation in situ producing significantly higher absolute forces at low isokinetic velocities, whereas there was no difference in force at the highest velocities. Overall muscle power was increased and the findings are consistent with a lack of effect on crossbridge kinetics. In conclusion, CK‐2066260 acts as a fast skeletal troponin activator that may be used to increase muscle force and power in conditions of muscle weakness. PMID:27869319
Wüst, Stas; Dröse, Stefan; Heidler, Juliana; Wittig, Ilka; Klockner, Ina; Franko, Andras; Bonke, Erik; Günther, Stefan; Gärtner, Ulrich; Boettger, Thomas; Braun, Thomas
2018-05-01
Muscle stem cells undergo a dramatic metabolic switch to oxidative phosphorylation during differentiation, which is achieved by massively increased mitochondrial activity. Since expression of the muscle-specific miR-1/133a gene cluster correlates with increased mitochondrial activity during muscle stem cell (MuSC) differentiation, we examined the potential role of miR-1/133a in metabolic maturation of skeletal muscles in mice. We found that miR-1/133a downregulate Mef2A in differentiated myocytes, thereby suppressing the Dlk1-Dio3 gene cluster, which encodes multiple microRNAs inhibiting expression of mitochondrial genes. Loss of miR-1/133a in skeletal muscles or increased Mef2A expression causes continuous high-level expression of the Dlk1-Dio3 gene cluster, compromising mitochondrial function. Failure to terminate the stem cell-like metabolic program characterized by high-level Dlk1-Dio3 gene cluster expression initiates profound changes in muscle physiology, essentially abrogating endurance running. Our results suggest a major role of miR-1/133a in metabolic maturation of skeletal muscles but exclude major functions in muscle development and MuSC maintenance. Copyright © 2018 Elsevier Inc. All rights reserved.
Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways.
Rodriguez, J; Vernus, B; Chelh, I; Cassar-Malek, I; Gabillard, J C; Hadj Sassi, A; Seiliez, I; Picard, B; Bonnieu, A
2014-11-01
Myostatin, a member of the transforming growth factor-β superfamily, is a potent negative regulator of skeletal muscle growth and is conserved in many species, from rodents to humans. Myostatin inactivation can induce skeletal muscle hypertrophy, while its overexpression or systemic administration causes muscle atrophy. As it represents a potential target for stimulating muscle growth and/or preventing muscle wasting, myostatin regulation and functions in the control of muscle mass have been extensively studied. A wealth of data strongly suggests that alterations in skeletal muscle mass are associated with dysregulation in myostatin expression. Moreover, myostatin plays a central role in integrating/mediating anabolic and catabolic responses. Myostatin negatively regulates the activity of the Akt pathway, which promotes protein synthesis, and increases the activity of the ubiquitin-proteasome system to induce atrophy. Several new studies have brought new information on how myostatin may affect both ribosomal biogenesis and translation efficiency of specific mRNA subclasses. In addition, although myostatin has been identified as a modulator of the major catabolic pathways, including the ubiquitin-proteasome and the autophagy-lysosome systems, the underlying mechanisms are only partially understood. The goal of this review is to highlight outstanding questions about myostatin-mediated regulation of the anabolic and catabolic signaling pathways in skeletal muscle. Particular emphasis has been placed on (1) the cross-regulation between myostatin, the growth-promoting pathways and the proteolytic systems; (2) how myostatin inhibition leads to muscle hypertrophy; and (3) the regulation of translation by myostatin.
Vitamin D and muscle function in the elderly: the elixir of youth?
Girgis, Christian M
2014-11-01
Circumstantial evidence suggests that vitamin D deficiency may contribute to age-related changes in skeletal muscle. This review discusses recent clinical trials examining effects of vitamin D on muscle function in the elderly, and poses the important question: can vitamin D reverse muscle ageing? Observational studies report an association between vitamin D and muscle atrophy/weakness in elderly subjects. Interventional studies suggest that frail, elderly subjects may benefit from vitamin D supplementation by displaying reduced falls, improved muscle function and increased muscle fibre size. However, meta-analyses do not report convincing effects of vitamin D in the elderly. This may be because of multiple factors including lack of standardized endpoints for muscle function, variable study design and different doses of vitamin D supplementation amongst these studies. The evidence base is therefore inconsistent. Vitamin D deficiency may exacerbate ageing of skeletal muscle. However, current evidence that vitamin D supplementation reverses age-related muscle dysfunction is equivocal and does not justify stringent vitamin D targets in the elderly. Until these issues are clarified, the safest option is to aim for conservative vitamin D targets that are sufficient for normal calcium homeostasis.
Co-expression in CHO cells of two muscle proteins involved in excitation-contraction coupling.
Takekura, H; Takeshima, H; Nishimura, S; Takahashi, M; Tanabe, T; Flockerzi, V; Hofmann, F; Franzini-Armstrong, C
1995-10-01
Ryanodine receptors and dihydropyridine receptors are located opposite each other at the junctions between sarcoplasmic reticulum and either the surface membrane or the transverse tubules in skeletal muscle. Ryanodine receptors are the calcium release channels of the sarcoplasmic reticulum and their cytoplasmic domains form the feet, connecting sarcoplasmic reticulum to transverse tubules. Dihydropyridine receptors are L-type calcium channels that act as the voltage sensors of excitation-contraction coupling: they sense surface membrane and transverse tubule depolarization and induce opening of the sarcoplasmic reticulum release channels. In skeletal muscle, ryanodine receptors are arranged in extensive arrays and dihydropyridine receptors are grouped into tetrads, which in turn are associated with the four subunits of ryanodine receptors. The disposition allows for a direct interaction between the two sets of molecules. CHO cells were stably transformed with plasmids for skeletal muscle ryanodine receptors and either the skeletal dihydropyridine receptor, or a skeletal-cardiac dihydropyridine receptor chimera (CSk3) which can functionally substitute for the skeletal dihydropyridine receptor, in addition to plasmids for the alpha 2, beta and gamma subunits. RNA blot hybridization gave positive results for all components. Immunoblots, ryanodine binding, electron microscopy and exposure to caffeine show that the expressed ryanodine receptors forms functional tetrameric channels, which are correctly inserted into the endoplasmic reticulum membrane, and form extensive arrays with the same spacings as in skeletal muscle. Since formation of arrays does not require coexpression of dihydropyridine receptors, we conclude that self-aggregation is an independent property of ryanodine receptors. All dihydropyridine receptor-expressing clones show high affinity binding for dihydropyridine and immunolabelling with antibodies against dihydropyridine receptor. The presence of calcium currents with fast kinetics and immunolabelling for dihydropyridine receptors in the surface membrane of CSk3 clones indicate that CSk3-dihydropyridine receptors are appropriately targeted to the cell's plasmalemma. The expressed skeletal-type dihydropyridine receptors, however, remain mostly located within perinuclear membranes. In cells coexpressing functional dihydropyridine receptors and ryanodine receptors, no junctions between feet-bearing endoplasmic reticulum elements and surface membrane are formed, and dihydropyridine receptors do not assemble into tetrads. A separation between dihydropyridine receptors and ryanodine receptors is not unique to CHO cells, but is found also in cardiac muscle, in muscles of invertebrates and, under certain conditions, in skeletal muscle. We suggest that failure to form junctions in co-transfected CHO cell may be due to lack of an essential protein necessary either for the initial docking of the endoplasmic reticulum to the surface membrane or for maintaining the interaction between dihydropyridine receptors and ryanodine receptors. We also conclude that formation of tetrads requires a close interaction between dihydropyridine receptors and ryanodine receptors.
Guo, Xiufang; Gonzalez, Mercedes; Stancescu, Maria; Vandenburgh, Herman; Hickman, James
2011-01-01
Functional in vitro models composed of human cells will constitute an important platform in the next generation of system biology and drug discovery. This study reports a novel human-based in vitro Neuromuscular Junction (NMJ) system developed in a defined serum-free medium and on a patternable non-biological surface. The motoneurons and skeletal muscles were derived from fetal spinal stem cells and skeletal muscle stem cells. The motoneurons and skeletal myotubes were completely differentiated in the co-culture based on morphological analysis and electrophysiology. NMJ formation was demonstrated by phase contrast microscopy, immunocytochemistry and the observation of motoneuron-induced muscle contractions utilizing time lapse recordings and their subsequent quenching by D-Tubocurarine. Generally, functional human based systems would eliminate the issue of species variability during the drug development process and its derivation from stem cells bypasses the restrictions inherent with utilization of primary human tissue. This defined human-based NMJ system is one of the first steps in creating functional in vitro systems and will play an important role in understanding NMJ development, in developing high information content drug screens and as test beds in preclinical studies for spinal or muscular diseases/injuries such as muscular dystrophy, Amyotrophic lateral sclerosis and spinal cord repair. PMID:21944471
Guo, Xiufang; Gonzalez, Mercedes; Stancescu, Maria; Vandenburgh, Herman H; Hickman, James J
2011-12-01
Functional in vitro models composed of human cells will constitute an important platform in the next generation of system biology and drug discovery. This study reports a novel human-based in vitro Neuromuscular Junction (NMJ) system developed in a defined serum-free medium and on a patternable non-biological surface. The motoneurons and skeletal muscles were derived from fetal spinal stem cells and skeletal muscle stem cells. The motoneurons and skeletal myotubes were completely differentiated in the co-culture based on morphological analysis and electrophysiology. NMJ formation was demonstrated by phase contrast microscopy, immunocytochemistry and the observation of motoneuron-induced muscle contractions utilizing time-lapse recordings and their subsequent quenching by d-Tubocurarine. Generally, functional human based systems would eliminate the issue of species variability during the drug development process and its derivation from stem cells bypasses the restrictions inherent with utilization of primary human tissue. This defined human-based NMJ system is one of the first steps in creating functional in vitro systems and will play an important role in understanding NMJ development, in developing high information content drug screens and as test beds in preclinical studies for spinal or muscular diseases/injuries such as muscular dystrophy, Amyotrophic lateral sclerosis and spinal cord repair. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mijwel, Sara; Cardinale, Daniele A; Norrbom, Jessica; Chapman, Mark; Ivarsson, Niklas; Wengström, Yvonne; Sundberg, Carl Johan; Rundqvist, Helene
2018-05-11
Exercise has been suggested to ameliorate the detrimental effects of chemotherapy on skeletal muscle. The aim of this study was to compare the effects of different exercise regimens with usual care on skeletal muscle morphology and mitochondrial markers in patients being treated with chemotherapy for breast cancer. Specifically, we compared moderate-intensity aerobic training combined with high-intensity interval training (AT-HIIT) and resistance training combined with high-intensity interval training (RT-HIIT) with usual care (UC). Resting skeletal muscle biopsies were obtained pre- and postintervention from 23 randomly selected women from the OptiTrain breast cancer trial who underwent RT-HIIT, AT-HIIT, or UC for 16 wk. Over the intervention, citrate synthase activity, muscle fiber cross-sectional area, capillaries per fiber, and myosin heavy chain isoform type I were reduced in UC, whereas RT-HIIT and AT-HIIT were able to counteract these declines. AT-HIIT promoted up-regulation of the electron transport chain protein levels vs. UC. RT-HIIT favored satellite cell count vs. UC and AT-HIIT. There was a significant association between change in citrate synthase activity and self-reported fatigue. AT-HIIT and RT-HIIT maintained or improved markers of skeletal muscle function compared with the declines found in the UC group, indicating a sustained trainability in addition to the preservation of skeletal muscle structural and metabolic characteristics during chemotherapy. These findings highlight the importance of supervised exercise programs for patients with breast cancer during chemotherapy.-Mijwel, S., Cardinale, D. A., Norrbom, J., Chapman, M., Ivarsson, N., Wengström, Y., Sundberg, C. J., Rundqvist, H. Exercise training during chemotherapy preserves skeletal muscle fiber area, capillarization, and mitochondrial content in patients with breast cancer.
Exercise training increases protein O-GlcNAcylation in rat skeletal muscle.
Hortemo, Kristin Halvorsen; Lunde, Per Kristian; Anonsen, Jan Haug; Kvaløy, Heidi; Munkvik, Morten; Rehn, Tommy Aune; Sjaastad, Ivar; Lunde, Ida Gjervold; Aronsen, Jan Magnus; Sejersted, Ole M
2016-09-01
Protein O-GlcNAcylation has emerged as an important intracellular signaling system with both physiological and pathophysiological functions, but the role of protein O-GlcNAcylation in skeletal muscle remains elusive. In this study, we tested the hypothesis that protein O-GlcNAcylation is a dynamic signaling system in skeletal muscle in exercise and disease. Immunoblotting showed different protein O-GlcNAcylation pattern in the prototypical slow twitch soleus muscle compared to fast twitch EDL from rats, with greater O-GlcNAcylation level in soleus associated with higher expression of the modulating enzymes O-GlcNAc transferase (OGT), O-GlcNAcase (OGA), and glutamine fructose-6-phosphate amidotransferase isoforms 1 and 2 (GFAT1, GFAT2). Six weeks of exercise training by treadmill running, but not an acute exercise bout, increased protein O-GlcNAcylation in rat soleus and EDL There was a striking increase in O-GlcNAcylation of cytoplasmic proteins ~50 kDa in size that judged from mass spectrometry analysis could represent O-GlcNAcylation of one or more key metabolic enzymes. This suggests that cytoplasmic O-GlcNAc signaling is part of the training response. In contrast to exercise training, postinfarction heart failure (HF) in rats and humans did not affect skeletal muscle O-GlcNAcylation level, indicating that aberrant O-GlcNAcylation cannot explain the skeletal muscle dysfunction in HF Human skeletal muscle displayed extensive protein O-GlcNAcylation that by large mirrored the fiber-type-related O-GlcNAcylation pattern in rats, suggesting O-GlcNAcylation as an important signaling system also in human skeletal muscle. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Effective fiber hypertrophy in satellite cell-depleted skeletal muscle
McCarthy, John J.; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B.; Srikuea, Ratchakrit; Lawson, Benjamin A.; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S.; Esser, Karyn A.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.
2011-01-01
An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca2+ sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells. PMID:21828094
The Muscle Metabolome Differs between Healthy and Frail Older Adults.
Fazelzadeh, Parastoo; Hangelbroek, Roland W J; Tieland, Michael; de Groot, Lisette C P G M; Verdijk, Lex B; van Loon, Luc J C; Smilde, Age K; Alves, Rodrigo D A M; Vervoort, Jacques; Müller, Michael; van Duynhoven, John P M; Boekschoten, Mark V
2016-02-05
Populations around the world are aging rapidly. Age-related loss of physiological functions negatively affects quality of life. A major contributor to the frailty syndrome of aging is loss of skeletal muscle. In this study we assessed the skeletal muscle biopsy metabolome of healthy young, healthy older and frail older subjects to determine the effect of age and frailty on the metabolic signature of skeletal muscle tissue. In addition, the effects of prolonged whole-body resistance-type exercise training on the muscle metabolome of older subjects were examined. The baseline metabolome was measured in muscle biopsies collected from 30 young, 66 healthy older subjects, and 43 frail older subjects. Follow-up samples from frail older (24 samples) and healthy older subjects (38 samples) were collected after 6 months of prolonged resistance-type exercise training. Young subjects were included as a reference group. Primary differences in skeletal muscle metabolite levels between young and healthy older subjects were related to mitochondrial function, muscle fiber type, and tissue turnover. Similar differences were observed when comparing frail older subjects with healthy older subjects at baseline. Prolonged resistance-type exercise training resulted in an adaptive response of amino acid metabolism, especially reflected in branched chain amino acids and genes related to tissue remodeling. The effect of exercise training on branched-chain amino acid-derived acylcarnitines in older subjects points to a downward shift in branched-chain amino acid catabolism upon training. We observed only modest correlations between muscle and plasma metabolite levels, which pleads against the use of plasma metabolites as a direct read-out of muscle metabolism and stresses the need for direct assessment of metabolites in muscle tissue biopsies.
Blockade of Metallothioneins 1 and 2 Increases Skeletal Muscle Mass and Strength
Summermatter, Serge; Bouzan, Anais; Pierrel, Eliane; Melly, Stefan; Stauffer, Daniela; Gutzwiller, Sabine; Nolin, Erin; Dornelas, Christina; Fryer, Christy; Leighton-Davies, Juliet; Glass, David J.
2016-01-01
ABSTRACT Metallothioneins are proteins that are involved in intracellular zinc storage and transport. Their expression levels have been reported to be elevated in several settings of skeletal muscle atrophy. We therefore investigated the effect of metallothionein blockade on skeletal muscle anabolism in vitro and in vivo. We found that concomitant abrogation of metallothioneins 1 and 2 results in activation of the Akt pathway and increases in myotube size, in type IIb fiber hypertrophy, and ultimately in muscle strength. Importantly, the beneficial effects of metallothionein blockade on muscle mass and function was also observed in the setting of glucocorticoid addition, which is a strong atrophy-inducing stimulus. Given the blockade of atrophy and the preservation of strength in atrophy-inducing settings, these results suggest that blockade of metallothioneins 1 and 2 constitutes a promising approach for the treatment of conditions which result in muscle atrophy. PMID:27956698
Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia.
Ábrigo, Johanna; Elorza, Alvaro A; Riedel, Claudia A; Vilos, Cristian; Simon, Felipe; Cabrera, Daniel; Estrada, Lisbell; Cabello-Verrugio, Claudio
2018-01-01
Skeletal muscle atrophy is a pathological condition mainly characterized by a loss of muscular mass and the contractile capacity of the skeletal muscle as a consequence of muscular weakness and decreased force generation. Cachexia is defined as a pathological condition secondary to illness characterized by the progressive loss of muscle mass with or without loss of fat mass and with concomitant diminution of muscle strength. The molecular mechanisms involved in cachexia include oxidative stress, protein synthesis/degradation imbalance, autophagy deregulation, increased myonuclear apoptosis, and mitochondrial dysfunction. Oxidative stress is one of the most common mechanisms of cachexia caused by different factors. It results in increased ROS levels, increased oxidation-dependent protein modification, and decreased antioxidant system functions. In this review, we will describe the importance of oxidative stress in skeletal muscles, its sources, and how it can regulate protein synthesis/degradation imbalance, autophagy deregulation, increased myonuclear apoptosis, and mitochondrial dysfunction involved in cachexia.
Macrophage Plasticity and the Role of Inflammation in Skeletal Muscle Repair
Kharraz, Yacine; Guerra, Joana; Mann, Christopher J.; Serrano, Antonio L.; Muñoz-Cánoves, Pura
2013-01-01
Effective repair of damaged tissues and organs requires the coordinated action of several cell types, including infiltrating inflammatory cells and resident cells. Recent findings have uncovered a central role for macrophages in the repair of skeletal muscle after acute damage. If damage persists, as in skeletal muscle pathologies such as Duchenne muscular dystrophy (DMD), macrophage infiltration perpetuates and leads to progressive fibrosis, thus exacerbating disease severity. Here we discuss how dynamic changes in macrophage populations and activation states in the damaged muscle tissue contribute to its efficient regeneration. We describe how ordered changes in macrophage polarization, from M1 to M2 subtypes, can differently affect muscle stem cell (satellite cell) functions. Finally, we also highlight some of the new mechanisms underlying macrophage plasticity and briefly discuss the emerging implications of lymphocytes and other inflammatory cell types in normal versus pathological muscle repair. PMID:23509419
Metabolic inflexibility in skeletal muscle: a prelude to the cardiometabolic syndrome?
Thyfault, John P; Rector, R Scott; Noland, Robert C
2006-01-01
Peripheral insulin resistance, which is largely dependent on skeletal muscle, is closely linked to the development of the cardiometabolic syndrome. Metabolic flexibility is the capacity for skeletal muscle to acutely shift its reliance between lipids or glucose during fasting or postprandial conditions. Obese and insulin-resistant individuals display elevated intramuscular lipids, impaired vasculature function, decreased fatty add oxidation during fasting, and reduced postprandial glucose metabolism. Impairments in metabolic flexibility are linked to physical inactivity, excess energy intake and obesity, and genetic predisposition. Each of these factors precludes the development of insulin resistance and the cardiometabolic syndrome by mechanistic links that are not fully understood.
Myogenic Maturation by Optical-Training in Cultured Skeletal Muscle Cells.
Asano, Toshifumi; Ishizuka, Toru; Yawo, Hiromu
2017-01-01
Optogenetic techniques are powerful tools for manipulating biological processes in identified cells using light under high temporal and spatial resolutions. Here, we describe an optogenetic training strategy to promote morphological maturation and functional development of skeletal muscle cells in vitro. Optical stimulation with a rhythmical frequency facilitates specific structural alignment of sarcomeric proteins. Optical stimulation also depolarizes the membrane potential, and induces contractile responses in synchrony with the given pattern of light pulses. These results suggest that optogenetic techniques can be employed to manipulate activity-dependent processes during myogenic development and control contraction of photosensitive skeletal muscle cells with high temporal and special precision.
Myosin Light Chain Kinase and the Role of Myosin Light Chain Phosphorylation in Skeletal Muscle
Stull, James T.; Kamm, Kristine E.; Vandenboom, Rene
2011-01-01
Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine-threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometic binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca2+ results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca2+/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca2+-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue. PMID:21284933
Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1
Tanner, Colby B.; Madsen, Steven R.; Hallowell, David M.; Goring, Darren M. J.; Moore, Timothy M.; Hardman, Shalene E.; Heninger, Megan R.; Atwood, Daniel R.
2013-01-01
LKB1 and its downstream targets of the AMP-activated protein kinase family are important regulators of many aspects of skeletal muscle cell function, including control of mitochondrial content and capillarity. LKB1 deficiency in skeletal and cardiac muscle (mLKB1-KO) greatly impairs exercise capacity. However, cardiac dysfunction in that genetic model prevents a clear assessment of the role of skeletal muscle LKB1 in the observed effects. Our purposes here were to determine whether skeletal muscle-specific knockout of LKB1 (skmLKB1-KO) decreases exercise capacity and mitochondrial protein content, impairs accretion of mitochondrial proteins after exercise training, and attenuates improvement in running performance after exercise training. We found that treadmill and voluntary wheel running capacity was reduced in skmLKB1-KO vs. control (CON) mice. Citrate synthase activity, succinate dehydrogenase activity, and pyruvate dehydrogenase kinase content were lower in KO vs. CON muscles. Three weeks of treadmill training resulted in significantly increased treadmill running performance in both CON and skmLKB1-KO mice. Citrate synthase activity increased significantly with training in both genotypes, but protein content and activity for components of the mitochondrial electron transport chain increased only in CON mice. Capillarity and VEGF protein was lower in skmLKB1-KO vs. CON muscles, but VEGF increased with training only in skmLKB1-KO. Three hours after an acute bout of muscle contractions, PGC-1α, cytochrome c, and VEGF gene expression all increased in CON but not skmLKB1-KO muscles. Our findings indicate that skeletal muscle LKB1 is required for accretion of some mitochondrial proteins but not for early exercise capacity improvements with exercise training. PMID:23982155
Veltri, Tiago; Landim-Vieira, Maicon; Parvatiyar, Michelle S.; Gonzalez-Martinez, David; Dieseldorff Jones, Karissa M.; Michell, Clara A.; Dweck, David; Landstrom, Andrew P.; Chase, P. Bryant; Pinto, Jose R.
2017-01-01
Mutations in TNNC1—the gene encoding cardiac troponin C (cTnC)—that have been associated with hypertrophic cardiomyopathy (HCM) and cardiac dysfunction may also affect Ca2+-regulation and function of slow skeletal muscle since the same gene is expressed in both cardiac and slow skeletal muscle. Therefore, we reconstituted rabbit soleus fibers and bovine masseter myofibrils with mutant cTnCs (A8V, C84Y, E134D, and D145E) associated with HCM to investigate their effects on contractile force and ATPase rates, respectively. Previously, we showed that these HCM cTnC mutants, except for E134D, increased the Ca2+ sensitivity of force development in cardiac preparations. In the current study, an increase in Ca2+ sensitivity of isometric force was only observed for the C84Y mutant when reconstituted in soleus fibers. Incorporation of cTnC C84Y in bovine masseter myofibrils reduced the ATPase activity at saturating [Ca2+], whereas, incorporation of cTnC D145E increased the ATPase activity at inhibiting and saturating [Ca2+]. We also tested whether reconstitution of cardiac fibers with troponin complexes containing the cTnC mutants and slow skeletal troponin I (ssTnI) could emulate the slow skeletal functional phenotype. Reconstitution of cardiac fibers with troponin complexes containing ssTnI attenuated the Ca2+ sensitization of isometric force when cTnC A8V and D145E were present; however, it was enhanced for C84Y. In summary, although the A8V and D145E mutants are present in both muscle types, their functional phenotype is more prominent in cardiac muscle than in slow skeletal muscle, which has implications for the protein-protein interactions within the troponin complex. The C84Y mutant warrants further investigation since it drastically alters the properties of both muscle types and may account for the earlier clinical onset in the proband. PMID:28473771
An eye on the head: the development and evolution of craniofacial muscles.
Sambasivan, Ramkumar; Kuratani, Shigeru; Tajbakhsh, Shahragim
2011-06-01
Skeletal muscles exert diverse functions, enabling both crushing with great force and movement with exquisite precision. A remarkably distinct repertoire of genes and ontological features characterise this tissue, and recent evidence has shown that skeletal muscles of the head, the craniofacial muscles, are evolutionarily, morphologically and molecularly distinct from those of the trunk. Here, we review the molecular basis of craniofacial muscle development and discuss how this process is different to trunk and limb muscle development. Through evolutionary comparisons of primitive chordates (such as amphioxus) and jawless vertebrates (such as lampreys) with jawed vertebrates, we also provide some clues as to how this dichotomy arose.
Garg, Koyal; Boppart, Marni D
2016-11-01
Skeletal muscle is endowed with a remarkable capacity for regeneration, primarily due to the reserve pool of muscle resident satellite cells. The satellite cell is the physiologically quiescent muscle stem cell that resides beneath the basal lamina and adjacent to the sarcolemma. The anatomic location of satellite cells is in close proximity to vasculature where they interact with other muscle resident stem/stromal cells (e.g., mesenchymal stem cells and pericytes) through paracrine mechanisms. This mini-review describes the components of the muscle stem cell niche, as well as the influence of exercise and aging on the muscle stem cell niche. Although exercise promotes ECM reorganization and stem cell accumulation, aging is associated with dense ECM deposition and loss of stem cell function resulting in reduced regenerative capacity and strength. An improved understanding of the niche elements will be valuable to inform the development of therapeutic interventions aimed at improving skeletal muscle regeneration and adaptation over the life span. Copyright © 2016 the American Physiological Society.
Barrientos, Genaro; Llanos, Paola; Hidalgo, Jorge; Bolaños, Pura; Caputo, Carlo; Riquelme, Alexander; Sánchez, Gina; Quest, Andrew F. G.; Hidalgo, Cecilia
2015-01-01
Cholesterol and caveolin are integral membrane components that modulate the function/location of many cellular proteins. Skeletal muscle fibers, which have unusually high cholesterol levels in transverse tubules, express the caveolin-3 isoform but its association with transverse tubules remains contentious. Cholesterol removal impairs excitation–contraction (E–C) coupling in amphibian and mammalian fetal skeletal muscle fibers. Here, we show that treating single muscle fibers from adult mice with the cholesterol removing agent methyl-β-cyclodextrin decreased fiber cholesterol by 26%, altered the location pattern of caveolin-3 and of the voltage dependent calcium channel Cav1.1, and suppressed or reduced electrically evoked Ca2+ transients without affecting membrane integrity or causing sarcoplasmic reticulum (SR) calcium depletion. We found that transverse tubules from adult muscle and triad fractions that contain ~10% attached transverse tubules, but not SR membranes, contained caveolin-3 and Cav1.1; both proteins partitioned into detergent-resistant membrane fractions highly enriched in cholesterol. Aging entails significant deterioration of skeletal muscle function. We found that triad fractions from aged rats had similar cholesterol and RyR1 protein levels compared to triads from young rats, but had lower caveolin-3 and glyceraldehyde 3-phosphate dehydrogenase and increased Na+/K+-ATPase protein levels. Both triad fractions had comparable NADPH oxidase (NOX) activity and protein content of NOX2 subunits (p47phox and gp91phox), implying that NOX activity does not increase during aging. These findings show that partial cholesterol removal impairs E–C coupling and alters caveolin-3 and Cav1.1 location pattern, and that aging reduces caveolin-3 protein content and modifies the expression of other triadic proteins. We discuss the possible implications of these findings for skeletal muscle function in young and aged animals. PMID:25914646
Sena, Sandra; Sloan, Crystal; Tebbi, Ali; Han, Yong Hwan; O'Neill, Brian T.; Cooksey, Robert C.; Jones, Deborah; Holland, William L.; McClain, Donald A.; Abel, E. Dale
2012-01-01
This study sought to elucidate the relationship between skeletal muscle mitochondrial dysfunction, oxidative stress, and insulin resistance in two mouse models with differential susceptibility to diet-induced obesity. We examined the time course of mitochondrial dysfunction and insulin resistance in obesity-prone C57B and obesity-resistant FVB mouse strains in response to high-fat feeding. After 5 wk, impaired insulin-mediated glucose uptake in skeletal muscle developed in both strains in the absence of any impairment in proximal insulin signaling. Impaired mitochondrial oxidative capacity preceded the development of insulin resistant glucose uptake in C57B mice in concert with increased oxidative stress in skeletal muscle. By contrast, mitochondrial uncoupling in FVB mice, which prevented oxidative stress and increased energy expenditure, did not prevent insulin resistant glucose uptake in skeletal muscle. Preventing oxidative stress in C57B mice treated systemically with an antioxidant normalized skeletal muscle mitochondrial function but failed to normalize glucose tolerance and insulin sensitivity. Furthermore, high fat-fed uncoupling protein 3 knockout mice developed increased oxidative stress that did not worsen glucose tolerance. In the evolution of diet-induced obesity and insulin resistance, initial but divergent strain-dependent mitochondrial adaptations modulate oxidative stress and energy expenditure without influencing the onset of impaired insulin-mediated glucose uptake. PMID:22510273
Newcomer, S.C.; Taylor, J.C.; McAllister, R.M.; Laughlin, M.H.
2012-01-01
The purpose of this investigation was to test the hypothesis that chronic L-NAME treatment produces differential effects on conduit artery and resistance arteriole relaxation responses to endothelium-dependent and –independent vasodilators in arteries that perfuse skeletal muscle of swine. To test this hypothesis conduit skeletal muscle arteries and second order skeletal muscle arterioles were harvested from 14 Yucatan swine that were chronically administered L-NAME and 16 controls. In vitro assessments of vasorelaxation to increasing doses of acetylcholine (ACH), bradykinin (BK), and sodium nitroprusside (SNP) were performed in both conduit and 2A arterioles. L-NAME treatment produced a significant reduction in both BK and ACH relaxation responses in the conduit arteries. In contrast, the relaxation response and/or sensitivity to SNP were significantly greater in the intact, but not denuded, conduit arterial rings from chronically L-NAME treated swine. There were no significant effects of chronic L-NAME treatment on vasodilation of skeletal muscle arterioles. These findings suggest: (1) that unlike arterioles, skeletal muscle conduit arteries do not functionally compensate for a lack of NO through the upregulation of alternative vasodilator pathways. (2) that the greater relaxation response in conduit arteries of chronically L-NAME treated swine to SNP can be explained by alterations to the endothelium. PMID:18568942
Functional heterogeneity of side population cells in skeletal muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uezumi, Akiyoshi; Ojima, Koichi; Fukada, So-ichiro
2006-03-17
Skeletal muscle regeneration has been exclusively attributed to myogenic precursors, satellite cells. A stem cell-rich fraction referred to as side population (SP) cells also resides in skeletal muscle, but its roles in muscle regeneration remain unclear. We found that muscle SP cells could be subdivided into three sub-fractions using CD31 and CD45 markers. The majority of SP cells in normal non-regenerating muscle expressed CD31 and had endothelial characteristics. However, CD31{sup -}CD45{sup -} SP cells, which are a minor subpopulation in normal muscle, actively proliferated upon muscle injury and expressed not only several regulatory genes for muscle regeneration but also somemore » mesenchymal lineage markers. CD31{sup -}CD45{sup -} SP cells showed the greatest myogenic potential among three SP sub-fractions, but indeed revealed mesenchymal potentials in vitro. These SP cells preferentially differentiated into myofibers after intramuscular transplantation in vivo. Our results revealed the heterogeneity of muscle SP cells and suggest that CD31{sup -}CD45{sup -} SP cells participate in muscle regeneration.« less
Shi, Lei; Zhou, Bo; Li, Pinghua; Schinckel, Allan P; Liang, Tingting; Wang, Han; Li, Huizhi; Fu, Lingling; Chu, Qingpo; Huang, Ruihua
2015-09-01
MicroRNAs (miRNAs or miRs) play a critical role in skeletal muscle development. In a previous study we observed that miR-128 was highly expressed in skeletal muscle. However, its function in regulating skeletal muscle development is not clear. Our hypothesis was that miR-128 is involved in the regulation of the proliferation and differentiation of skeletal myoblasts. In this study, through bioinformatics analyses, we demonstrate that miR-128 specifically targeted mRNA of myostatin (MSTN), a critical inhibitor of skeletal myogenesis, at coding domain sequence (CDS) region, resulting in down-regulating of myostatin post-transcription. Overexpression of miR-128 inhibited proliferation of mouse C2C12 myoblast cells but promoted myotube formation; whereas knockdown of miR-128 had completely opposite effects. In addition, ectopic miR-128 regulated the expression of myogenic factor 5 (Myf5), myogenin (MyoG), paired box (Pax) 3 and 7. Furthermore, an inverse relationship was found between the expression of miR-128 and MSTN protein expression in vivo and in vitro. Taken together, these results reveal that there is a novel pathway in skeletal muscle development in which miR-128 regulates myostatin at CDS region to inhibit proliferation but promote differentiation of myoblast cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Paredes, João A; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna
2013-01-01
Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.
Paredes, João A.; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna
2013-01-01
Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue. PMID:23341978
The central role of muscle stem cells in regenerative failure with aging
Blau, Helen M; Cosgrove, Benjamin D; Ho, Andrew T V
2016-01-01
Skeletal muscle mass, function, and repair capacity all progressively decline with aging, restricting mobility, voluntary function, and quality of life. Skeletal muscle repair is facilitated by a population of dedicated muscle stem cells (MuSCs), also known as satellite cells, that reside in anatomically defined niches within muscle tissues. In adult tissues, MuSCs are retained in a quiescent state until they are primed to regenerate damaged muscle through cycles of self-renewal divisions. With aging, muscle tissue homeostasis is progressively disrupted and the ability of MuSCs to repair injured muscle markedly declines. Until recently, this decline has been largely attributed to extrinsic age-related alterations in the microenvironment to which MuSCs are exposed. However, as highlighted in this Perspective, recent reports show that MuSCs also progressively undergo cell-intrinsic alterations that profoundly affect stem cell regenerative function with aging. A more comprehensive understanding of the interplay of stem cell–intrinsic and extrinsic factors will set the stage for improving cell therapies capable of restoring tissue homeostasis and enhancing muscle repair in the aged. PMID:26248268
Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F.
2015-01-01
Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies. PMID:26460719
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sassoli, Chiara; Nosi, Daniele; Tani, Alessia
Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the singlemore » muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7{sup +} satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration.« less
Sánchez-Duarte, E; Trujillo, X; Cortés-Rojo, C; Saavedra-Molina, A; Camargo, G; Hernández, L; Huerta, M; Montoya-Pérez, R
2017-04-01
Fatigue is a phenomenon in which force reduction has been linked to impairment of several biochemical processes. In skeletal muscle, the ATP-sensitive potassium channels (K ATP ) are actively involved in myoprotection against metabolic stress. They are present in sarcolemma and mitochondria (mitoK ATP channels). K + channel openers like nicorandil has been recognized for their ability to protect skeletal muscle from ischemia-reperfusion injury, however, the effects of nicorandil on fatigue in slow skeletal muscle fibers has not been explored, being the aim of this study. Nicorandil (10 μM), improved the muscle function reversing fatigue as increased post-fatigue tension in the peak and total tension significantly with respect to the fatigued condition. However, this beneficial effect was prevented by the mitoK ATP channel blocker 5-hydroxydecanoate (5-HD, 500 μM) and by the free radical scavenger N-2-mercaptopropionyl glycine (MPG, 1 mM), but not by the nitric oxide (NO) synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, 100 μM). Nicorandil also decreased lipid peroxidation and maintained both reduced glutathione (GSH) levels and an elevated GSH/GSSG ratio, whereas total glutathione (TGSH) remained unaltered during post-fatigue tension. In addition, NO production, measured through nitrite concentrations was significantly increased with nicorandil during post-fatigue tension; this increase remained unaltered in the presence of nicorandil plus L-NAME, nonetheless, this effect was reversed with nicorandil plus MPG. Hence, these results suggest that nicorandil improves the muscle function reversing fatigue in slow skeletal muscle fibers of chicken through its effects not only as a mitoK ATP channel opener but also as NO donor and as an antioxidant.
NASA Astrophysics Data System (ADS)
Nozdrenko, D. M.; Zavodovskyi, D. O.; Matvienko, T. Yu.; Zay, S. Yu.; Bogutska, K. I.; Prylutskyy, Yu. I.; Ritter, U.; Scharff, P.
2017-02-01
The therapeutic effect of pristine C60 fullerene aqueous colloid solution (C60FAS) on the functioning of the rat soleus muscle at ischemic injury depending on the time of the general pathogenesis of muscular system and method of administration C60FAS in vivo was investigated. It was found that intravenous administration of C60FAS is the optimal for correction of speed macroparameters of contraction for ischemic muscle damage. At the same time, intramuscular administration of C60FAS shows pronounced protective effect in movements associated with the generation of maximum force responses or prolonged contractions, which increase the muscle fatigue level. Analysis of content concentration of creatine phosphokinase and lactate dehydrogenase enzymes in the blood of experimental animals indicates directly that C60FAS may be a promising therapeutic agent for the prevention and correction of ischemic-damaged skeletal muscle function.
Francois, Monique E; Gilbertson, Nicole M; Eichner, Natalie Z M; Heiston, Emily M; Fabris, Chiara; Breton, Marc; Mehaffey, J Hunter; Hassinger, Taryn; Hallowell, Peter T; Malin, Steven K
2018-06-03
Although low-calorie diets (LCD) improve glucose regulation, it is unclear if interval exercise (INT) is additive. We examined the impact of an LCD versus LCD + INT training on ß-cell function in relation to glucose tolerance in obese adults. Twenty-six adults (Age: 46 ± 12 year; BMI 38 ± 6 kg/m²) were randomized to 2-week of LCD (~1200 kcal/day) or energy-matched LCD + INT (60 min/day alternating 3 min at 90 and 50% HRpeak). A 2 h 75 g oral glucose tolerance test (OGTT) was performed. Insulin secretion rates (ISR) were determined by deconvolution modeling to assess glucose-stimulated insulin secretion ([GSIS: ISR/glucose total area under the curve (tAUC)]) and ß-cell function (Disposition Index [DI: GSIS/IR]) relative to skeletal muscle (Matsuda Index), hepatic (HOMA-IR) and adipose (Adipose-IR fasting ) insulin resistance (IR). LCD + INT, but not LCD alone, reduced glucose and total-phase ISR tAUC (Interactions: p = 0.04 and p = 0.05, respectively). Both interventions improved skeletal muscle IR by 16% ( p = 0.04) and skeletal muscle and hepatic DI (Time: p < 0.05). Improved skeletal muscle DI was associated with lower glucose tAUC ( r = -0.57, p < 0.01). Thus, LCD + INT improved glucose tolerance more than LCD in obese adults, and these findings relate to ß-cell function. These data support LCD + INT for preserving pancreatic function for type 2 diabetes prevention.
Lee, Heow Won; Ahmad, Monir; Wang, Hong-Wei; Leenen, Frans H H
2017-03-01
What is the central question of this study? Exercise training increases brain-derived neurotrophic factor (BDNF) in the hippocampus, which depends on a myokine, fibronectin type III domain-containing protein 5 (FNDC5). Whether exercise training after myocardial infarction induces parallel increases in FNDC5 and BDNF expression in skeletal muscle and the heart has not yet been studied. What is the main finding and its importance? Exercise training after myocardial infarction increases BDNF protein in skeletal muscle and the non-infarct area of the LV without changes in FNDC5 protein, suggesting that BDNF is not regulated by FNDC5 in skeletal muscle and heart. An increase in cardiac BDNF may contribute to the improvement of cardiac function by exercise training. Exercise training after myocardial infarction (MI) attenuates progressive left ventricular (LV) remodelling and dysfunction, but the peripheral stimuli induced by exercise that trigger these beneficial effects are still unclear. We investigated as possible mediators fibronectin type III domain-containing protein 5 (FNDC5) and brain-derived neurotrophic factor (BDNF) in the skeletal muscle and heart. Male Wistar rats underwent either sham surgery or ligation of the left descending coronary artery, and surviving MI rats were allocated to either a sedentary (Sed-MI) or an exercise group (ExT-MI). Exercise training was done for 4 weeks on a motor-driven treadmill. At the end, LV function was evaluated, and FNDC5 and BDNF mRNA and protein were assessed in soleus muscle, quadriceps and non-, peri- and infarct areas of the LV. At 5 weeks post MI, FNDC5 mRNA was decreased in soleus muscle and all areas of the LV, but FNDC5 protein was increased in the soleus muscle and the infarct area. Mature BDNF (mBDNF) protein was decreased in the infarct area without a change in mRNA. Exercise training attenuated the decrease in ejection fraction and the increase in LV end-diastolic pressure post MI. Exercise training had no effect on FNDC5 mRNA and protein, but increased mBDNF protein in soleus muscle, quadriceps and the non-infarct area of the LV. The mBDNF protein in the non-infarct area correlated positively with ejection fraction and inversely with LV end-diastolic pressure. In conclusion, mBDNF is induced by exercise training in skeletal muscle and the non-infarct area of the LV, which may contribute to improvement of muscle dysfunction and cardiac function post MI. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Mapping Interactions between Myosin Relay and Converter Domains That Power Muscle Function*
Kronert, William A.; Melkani, Girish C.; Melkani, Anju; Bernstein, Sanford I.
2014-01-01
Intramolecular communication within myosin is essential for its function as motor, but the specific amino acid residue interactions required are unexplored within muscle cells. Using Drosophila melanogaster skeletal muscle myosin, we performed a novel in vivo molecular suppression analysis to define the importance of three relay loop amino acid residues (Ile508, Asn509, and Asp511) in communicating with converter domain residue Arg759. We found that the N509K relay mutation suppressed defects in myosin ATPase, in vitro motility, myofibril stability, and muscle function associated with the R759E converter mutation. Through molecular modeling, we define a mechanism for this interaction and suggest why the I508K and D511K relay mutations fail to suppress R759E. Interestingly, I508K disabled motor function and myofibril assembly, suggesting that productive relay-converter interaction is essential for both processes. We conclude that the putative relay-converter interaction mediated by myosin residues 509 and 759 is critical for the biochemical and biophysical function of skeletal muscle myosin and the normal ultrastructural and mechanical properties of muscle. PMID:24627474
Li, H; Chen, J; Chen, S; Zhang, Q; Chen, S
2011-10-01
Muscle injuries are common musculoskeletal problems encountered in sports medicine clinics. In this study, we examined the effect of lentivirus-mediated small interfering RNA (siRNA) targeting Smad4 on the suppression of the fibrosis in injured skeletal muscles. We found that Smad4-siRNA could efficiently knock down the expression of Smad4 in the C2C12 myoblast cells and in the contunded mice gastrocnemius muscle. The expression of mRNA level of Smad4 decreased to 11% and 49% compared to the control group, respectively, and the expression of protein level decreased to 13% and 57% respectively. Moreover, the lentivirus-mediated siRNA was stably transfected only into the skeletal muscle and not into the liver of the animals. In contunded mice gastrocnemius, the collagenous and vimentin-positive area in the Smad4 siRNA group reduced to 36% and 37% compared to the control group, respectively. Furthermore, compared to the scrambled Smad4 siRNA-injected mice and PBS control-injected mice, the muscle function of the mice injected with lentivirus-mediated Smad4 siRNA improved in terms of both fast-twitch and tetanic strength (P<0.05). The results suggest that the gene therapy of inhibiting Smad4 by lentivirus-mediated siRNA could be a useful approach to prevent scar tissue formation and improve the function of injured skeletal muscle. © Georg Thieme Verlag KG Stuttgart · New York.
The mechanistic and ergogenic effects of phosphatidic acid in skeletal muscle.
Shad, Brandon James; Smeuninx, Benoit; Atherton, Philip James; Breen, Leigh
2015-12-01
Skeletal muscle mass plays a vital role in locomotion, whole-body metabolic health, and is a positive predictor of longevity. It is well established the mammalian target of rapamycin (mTOR) is a central regulator of skeletal muscle protein turnover. The pursuit to find novel nutrient compounds or functional food sources that possess the ability to activate mTOR and promote skeletal muscle protein accretion has been on going. Over the last decade, a key role has been proposed for the phospholipid phosphatidic acid (PA) in mTOR activation. Mechanical load-induced (i.e., resistance exercise) intramuscular PA can directly bind to and activate mTOR. In addition, PA provided exogenously in cell culture heightens mTOR activity, albeit indirectly. Thus, endogenously generated PA and exogenous provision of PA appear to act through distinct mechanisms that converge on mTOR and, potentially, may amplify muscle protein synthesis. In support of this notion, limited evidence from humans suggests that resistance exercise training combined with oral supplemental PA enhances strength gains and muscle hypertrophy. However, the precise mechanisms underpinning the augmented muscle remodelling response with supplemental PA remain elusive. In this review, we will critically examine available evidence from cell cultures and animal and human experimental models to provide an overview of the mechanisms through which endogenous and exogenous PA may act to promote muscle anabolism, and discuss the potential for PA as a therapeutic tool to maintain or restore skeletal muscle mass in the context of ageing and disease.
Restricting calcium currents is required for correct fiber type specification in skeletal muscle
Sultana, Nasreen; Dienes, Beatrix; Benedetti, Ariane; Tuluc, Petronel; Szentesi, Peter; Sztretye, Monika; Rainer, Johannes; Hess, Michael W.; Schwarzer, Christoph; Obermair, Gerald J.; Csernoch, Laszlo
2016-01-01
ABSTRACT Skeletal muscle excitation-contraction (EC) coupling is independent of calcium influx. In fact, alternative splicing of the voltage-gated calcium channel CaV1.1 actively suppresses calcium currents in mature muscle. Whether this is necessary for normal development and function of muscle is not known. However, splicing defects that cause aberrant expression of the calcium-conducting developmental CaV1.1e splice variant correlate with muscle weakness in myotonic dystrophy. Here, we deleted CaV1.1 (Cacna1s) exon 29 in mice. These mice displayed normal overall motor performance, although grip force and voluntary running were reduced. Continued expression of the developmental CaV1.1e splice variant in adult mice caused increased calcium influx during EC coupling, altered calcium homeostasis, and spontaneous calcium sparklets in isolated muscle fibers. Contractile force was reduced and endurance enhanced. Key regulators of fiber type specification were dysregulated and the fiber type composition was shifted toward slower fibers. However, oxidative enzyme activity and mitochondrial content declined. These findings indicate that limiting calcium influx during skeletal muscle EC coupling is important for the secondary function of the calcium signal in the activity-dependent regulation of fiber type composition and to prevent muscle disease. PMID:26965373
Henagan, Tara M; Stewart, Laura K; Forney, Laura A; Sparks, Lauren M; Johannsen, Neil; Church, Timothy S
2014-01-01
PGC1α, a transcriptional coactivator, interacts with PPARs and others to regulate skeletal muscle metabolism. PGC1α undergoes splicing to produce several mRNA variants, with the NTPGC1α variant having a similar biological function to the full length PGC1α (FLPGC1α). CVD is associated with obesity and T2D and a lower percentage of type 1 oxidative fibers and impaired mitochondrial function in skeletal muscle, characteristics determined by PGC1α expression. PGC1α expression is epigenetically regulated in skeletal muscle to determine mitochondrial adaptations, and epigenetic modifications may regulate mRNA splicing. We report in this paper that skeletal muscle PGC1α -1 nucleosome (-1N) position is associated with splice variant NTPGC1α but not FLPGC1α expression. Division of participants based on the -1N position revealed that those individuals with a -1N phased further upstream from the transcriptional start site (UP) expressed lower levels of NTPGC1α than those with the -1N more proximal to TSS (DN). UP showed an increase in body fat percentage and serum total and LDL cholesterol. These findings suggest that the -1N may be a potential epigenetic regulator of NTPGC1α splice variant expression, and -1N position and NTPGC1α variant expression in skeletal muscle are linked to CVD risk. This trial is registered with clinicaltrials.gov, identifier NCT00458133.
Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Countermeasures
Gao, Yunfang; Arfat, Yasir; Wang, Huiping; Goswami, Nandu
2018-01-01
Prolonged periods of skeletal muscle inactivity or mechanical unloading (bed rest, hindlimb unloading, immobilization, spaceflight and reduced step) can result in a significant loss of musculoskeletal mass, size and strength which ultimately lead to muscle atrophy. With advancement in understanding of the molecular and cellular mechanisms involved in disuse skeletal muscle atrophy, several different signaling pathways have been studied to understand their regulatory role in this process. However, substantial gaps exist in our understanding of the regulatory mechanisms involved, as well as their functional significance. This review aims to update the current state of knowledge and the underlying cellular mechanisms related to skeletal muscle loss during a variety of unloading conditions, both in humans and animals. Recent advancements in understanding of cellular and molecular mechanisms, including IGF1-Akt-mTOR, MuRF1/MAFbx, FOXO, and potential triggers of disuse atrophy, such as calcium overload and ROS overproduction, as well as their role in skeletal muscle protein adaptation to disuse is emphasized. We have also elaborated potential therapeutic countermeasures that have shown promising results in preventing and restoring disuse-induced muscle loss. Finally, identified are the key challenges in this field as well as some future prospectives. PMID:29615929
MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration
Mokalled, Mayssa H.; Johnson, Aaron N.; Creemers, Esther E.; Olson, Eric N.
2012-01-01
In response to skeletal muscle injury, satellite cells, which function as a myogenic stem cell population, become activated, expand through proliferation, and ultimately fuse with each other and with damaged myofibers to promote muscle regeneration. Here, we show that members of the Myocardin family of transcriptional coactivators, MASTR and MRTF-A, are up-regulated in satellite cells in response to skeletal muscle injury and muscular dystrophy. Global and satellite cell-specific deletion of MASTR in mice impairs skeletal muscle regeneration. This impairment is substantially greater when MRTF-A is also deleted and is due to aberrant differentiation and excessive proliferation of satellite cells. These abnormalities mimic those associated with genetic deletion of MyoD, a master regulator of myogenesis, which is down-regulated in the absence of MASTR and MRTF-A. Consistent with an essential role of MASTR in transcriptional regulation of MyoD expression, MASTR activates a muscle-specific postnatal MyoD enhancer through associations with MEF2 and members of the Myocardin family. Our results provide new insights into the genetic circuitry of muscle regeneration and identify MASTR as a central regulator of this process. PMID:22279050
Sicari, Brian M; Dearth, Christopher L; Badylak, Stephen F
2014-01-01
The well-recognized ability of skeletal muscle for functional and structural regeneration following injury is severely compromised in degenerative diseases and in volumetric muscle loss. Tissue engineering and regenerative medicine strategies to support muscle reconstruction have typically been cell-centric with approaches that involve the exogenous delivery of cells with myogenic potential. These strategies have been limited by poor cell viability and engraftment into host tissue. Alternative approaches have involved the use of biomaterial scaffolds as substrates or delivery vehicles for exogenous myogenic progenitor cells. Acellular biomaterial scaffolds composed of mammalian extracellular matrix (ECM) have also been used as an inductive niche to promote the recruitment and differentiation of endogenous myogenic progenitor cells. An acellular approach, which activates or utilizes endogenous cell sources, obviates the need for exogenous cell administration and provides an advantage for clinical translation. The present review examines the state of tissue engineering and regenerative medicine therapies directed at augmenting the skeletal muscle response to injury and presents the pros and cons of each with respect to clinical translation. Copyright © 2013 Wiley Periodicals, Inc.
Comprehensive analysis of titin protein isoform and alternative splicing in normal and mutant rats.
Li, Shijun; Guo, Wei; Schmitt, Benjamin M; Greaser, Marion L
2012-04-01
Titin is a giant protein with multiple functions in cardiac and skeletal muscles. Rat cardiac titin undergoes developmental isoform transition from the neonatal 3.7 MDa N2BA isoform to primarily the adult 2.97 MDa N2B isoform. An autosomal dominant mutation dramatically altered this transformation. Titins from eight skeletal muscles: Tibialis Anterior (TA), Longissimus Dorsi (LD) and Gastrocnemius (GA), Extensor Digitorum Longus (ED), Soleus (SO), Psoas (PS), Extensor Oblique (EO), and Diaphram (DI) were characterized in wild type and in homozygous mutant (Hm) rats with a titin splicing defect. Results showed that the developmental reduction in titin size is eliminated in the mutant rat so that the titins in all investigated skeletal muscles remain large in the adult. The alternative splicing of titin mRNA was found repressed by this mutation, a result consistent with the large titin isoform in the mutant. The developmental pattern of titin mRNA alternative splicing differs between heart and skeletal muscles. The retention of intron 49 reveals a possible mechanism for the absence of the N2B unique region in the expressed titin protein of skeletal muscle. © 2011 Wiley Periodicals, Inc.
Bonfim, Mariana Rotta; Oliveira, Acary Souza Bulle; do Amaral, Sandra Lia; Monteiro, Henrique Luiz
2015-04-01
Statin treatment in association with physical exercise practice can substantially reduce cardiovascular mortality risk of dyslipidemic individuals, but this practice is associated with myopathic event exacerbation. This study aimed to present the most recent results of specific literature about the effects of statins and its association with physical exercise on skeletal musculature. Thus, a literature review was performed using PubMed and SciELO databases, through the combination of the keywords "statin" AND "exercise" AND "muscle", restricting the selection to original studies published between January 1990 and November 2013. Sixteen studies evaluating the effects of statins in association with acute or chronic exercises on skeletal muscle were analyzed. Study results indicate that athletes using statins can experience deleterious effects on skeletal muscle, as the exacerbation of skeletal muscle injuries are more frequent with intense training or acute eccentric and strenuous exercises. Moderate physical training, in turn, when associated to statins does not increase creatine kinase levels or pain reports, but improves muscle and metabolic functions as a consequence of training. Therefore, it is suggested that dyslipidemic patients undergoing statin treatment should be exposed to moderate aerobic training in combination to resistance exercises three times a week, and the provision of physical training prior to drug administration is desirable, whenever possible.
Yates, D. T.; Macko, A. R.; Nearing, M.; Chen, X.; Rhoads, R. P.; Limesand, S. W.
2012-01-01
Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR), skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation in fibers, are compromised. Fetal hypoglycemia and hypoxemia are complications that result from placental insufficiency. Hypoxemia elevates circulating catecholamines, and chronic hypercatecholaminemia has been shown to reduce fetal muscle development and growth. We have found evidence for adaptations in adrenergic receptor expression profiles in myoblasts and skeletal muscle of IUGR sheep fetuses with placental insufficiency. The relationship of β-adrenergic receptors shifts in IUGR fetuses because Adrβ2 expression levels decline and Adrβ1 expression levels are unaffected in myofibers and increased in myoblasts. This adaptive response would suppress insulin signaling, myoblast incorporation, fiber hypertrophy, and glucose oxidation. Furthermore, this β-adrenergic receptor expression profile persists for at least the first month in IUGR lambs and lowers their fatty acid mobilization. Developmental programming of skeletal muscle adrenergic receptors partially explains metabolic and endocrine differences in IUGR offspring, and the impact on metabolism may result in differential nutrient utilization. PMID:22900186
Nohara, Kazunari; Chen, Zheng; Yoo, Seung-Hee
2017-07-06
Chromatin immunoprecipitation (ChIP) is a powerful method to determine protein binding to chromatin DNA. Fiber-rich skeletal muscle, however, has been a challenge for ChIP due to technical difficulty in isolation of high-quality nuclei with minimal contamination of myofibrils. Previous protocols have attempted to purify nuclei before cross-linking, which incurs the risk of altered DNA-protein interaction during the prolonged nuclei preparation process. In the current protocol, we first cross-linked the skeletal muscle tissue collected from mice, and the tissues were minced and sonicated. Since we found that ultracentrifugation was not able to separate nuclei from myofibrils using cross-linked muscle tissue, we devised a sequential filtration procedure to obtain high-quality nuclei devoid of significant myofibril contamination. We subsequently prepared chromatin by using an ultrasonicator, and ChIP assays with anti-BMAL1 antibody revealed robust circadian binding pattern of BMAL1 to target gene promoters. This filtration protocol constitutes an easily applicable method to isolate high-quality nuclei from cross-linked skeletal muscle tissue, allowing consistent sample processing for circadian and other time-sensitive studies. In combination with next-generation sequencing (NGS), our method can be deployed for various mechanistic and genomic studies focusing on skeletal muscle function.
Hawke, Thomas J; Atkinson, Daniel J; Kanatous, Shane B; Van der Ven, Peter F M; Goetsch, Sean C; Garry, Daniel J
2007-11-01
Xin is a muscle-specific actin binding protein of which its role and regulation within skeletal muscle is not well understood. Here we demonstrate that Xin mRNA is robustly upregulated (>16-fold) within 12 h of skeletal muscle injury and is localized to the muscle satellite cell population. RT-PCR confirmed the expression pattern of Xin during regeneration, as well as within primary muscle myoblast cultures, but not other known stem cell populations. Immunohistochemical staining of single myofibers demonstrate Xin expression colocalized with the satellite cell marker Syndecan-4 further supporting the mRNA expression of Xin in satellite cells. In situ hybridization of regenerating muscle 5-7 days postinjury illustrates Xin expression within newly regenerated myofibers. Promoter-reporter assays demonstrate that known myogenic transcription factors [myocyte enhancer factor-2 (MEF2), myogenic differentiation-1 (MyoD), and myogenic factor-5 (Myf-5)] transactivate Xin promoter constructs supporting the muscle-specific expression of Xin. To determine the role of Xin within muscle precursor cells, proliferation, migration, and differentiation analysis using Xin, short hairpin RNA (shRNA) were undertaken in C2C12 myoblasts. Reducing endogenous Xin expression resulted in a 26% increase (P < 0.05) in cell proliferation and a 20% increase (P < 0.05) in myoblast migratory capacity. Skeletal muscle myosin heavy chain protein levels were increased (P < 0.05) with Xin shRNA administration; however, this was not accompanied by changes in myoglobin protein (another marker of differentiation) nor overt morphological differences relative to differentiating control cells. Taken together, the present findings support the hypothesis that Xin is expressed within muscle satellite cells during skeletal muscle regeneration and is involved in the regulation of myoblast function.
Histone H3.3 sub-variant H3mm7 is required for normal skeletal muscle regeneration.
Harada, Akihito; Maehara, Kazumitsu; Ono, Yusuke; Taguchi, Hiroyuki; Yoshioka, Kiyoshi; Kitajima, Yasuo; Xie, Yan; Sato, Yuko; Iwasaki, Takeshi; Nogami, Jumpei; Okada, Seiji; Komatsu, Tetsuro; Semba, Yuichiro; Takemoto, Tatsuya; Kimura, Hiroshi; Kurumizaka, Hitoshi; Ohkawa, Yasuyuki
2018-04-11
Regulation of gene expression requires selective incorporation of histone H3 variant H3.3 into chromatin. Histone H3.3 has several subsidiary variants but their functions are unclear. Here we characterize the function of histone H3.3 sub-variant, H3mm7, which is expressed in skeletal muscle satellite cells. H3mm7 knockout mice demonstrate an essential role of H3mm7 in skeletal muscle regeneration. Chromatin analysis reveals that H3mm7 facilitates transcription by forming an open chromatin structure around promoter regions including those of myogenic genes. The crystal structure of the nucleosome containing H3mm7 reveals that, unlike the S57 residue of other H3 proteins, the H3mm7-specific A57 residue cannot form a hydrogen bond with the R40 residue of the cognate H4 molecule. Consequently, the H3mm7 nucleosome is unstable in vitro and exhibited higher mobility in vivo compared with the H3.3 nucleosome. We conclude that the unstable H3mm7 nucleosome may be required for proper skeletal muscle differentiation.
Creatinine and myoglobin are poor predictors of anaerobic threshold in colorectal cancer and health.
Nyasavajjala, Sitaramachandra M; Phillips, Beth E; Lund, Jon N; Williams, John P
2015-06-01
Myoglobin is a haem protein produced in skeletal muscles. Serum concentrations of myoglobin have been proposed as a surrogate marker of muscle mass and function in both cachectic cancer patients and healthy non-cancer individuals. Creatinine, a metabolite of creatine phosphate, an energy store found in skeletal muscle, is produced at a constant rate from skeletal muscle. Urinary and plasma creatinine have been used in clinical practice as indicators of skeletal muscle mass in health and disease. Our study aimed to test the hypothesis that plasma myoglobin and creatinine concentration could accurately predict skeletal muscle mass and aerobic capacity in colorectal cancer (CRC) patients and matched healthy controls and thereby an indicative of aerobic performance. We recruited 47 patients with CRC and matching number of healthy volunteers for this study. All participants had their body composition measured by dual-energy X-ray absorptiometry scan, aerobic capacity measured to anaerobic threshold (AT) by cardiopulmonary exercise testing and filled in objective questionnaires to assess the qualitative functions. This study was carried out in accordance with the Declaration of Helsinki, after approval by the local National Health Service (NHS) Research Ethics Committee. Age-matched groups had similar serum myoglobin and creatinine concentrations in spite of differences in their aerobic capacity. AT was significantly lower in the CRC group compared with matched controls (1.18 ± 0.44 vs. 1.41 ± 0.71 L/min; P < 0.01). AT had significant correlation with lean muscle mass (LMM) among these groups, but myoglobin and creatinine had poor correlation with LMM and AT. Serum myoglobin is a poor predictor of muscle mass, and serum myoglobin and creatinine concentrations do not predict aerobic performance in CRC patients or healthy matched controls. © 2015 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of Society on Sarcopenia, Cachexia and Wasting Disorders.
Xu, Ran; Andres-Mateos, Eva; Mejias, Rebeca; MacDonald, Elizabeth M.; Leinwand, Leslie A.; Merriman, Dana K.; Fink, Rainer H. A.; Cohn, Ronald D.
2013-01-01
Skeletal muscle atrophy is a very common clinical challenge in many disuse conditions. Maintenance of muscle mass is crucial to combat debilitating functional consequences evoked from these clinical conditions. In contrast, hibernation represents a physiological state in which there is natural protection against disuse atrophy despite prolonged periods of immobilization and lack of nutrient intake. Even though peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1-α (PGC-1α) is a central mediator in muscle remodeling pathways, its role in the preservation of skeletal muscle mass during hibernation remains unclear. Since PGC-1α regulates muscle fiber type formation and mitochondrial biogenesis, we analyzed muscles of 13-lined ground squirrels. We find that animals in torpor exhibit a shift to slow-twitch Type I muscle fibers. This switch is accompanied by activation of the PGC-1α-mediated endurance exercise pathway. In addition, we observe increased antioxidant capacity without evidence of oxidative stress, a marked decline in apoptotic susceptibility, and enhanced mitochondrial abundance and metabolism. These results show that activation of the endurance exercise pathway can be achieved in vivo despite prolonged periods of immobilization, and therefore might be an important mechanism for skeletal muscle preservation during hibernation. This PGC-1α regulated pathway may be a potential therapeutic target promoting skeletal muscle homeostasis and oxidative balance to prevent muscle loss in a variety of inherited and acquired neuromuscular disease conditions. PMID:23333568
Boyer, Justin G.; Ferrier, Andrew; Kothary, Rashmi
2013-01-01
Spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), and spinal-bulbar muscular atrophy (SBMA) are devastating diseases characterized by the degeneration of motor neurons. Although the molecular causes underlying these diseases differ, recent findings have highlighted the contribution of intrinsic skeletal muscle defects in motor neuron diseases. The use of cell culture and animal models has led to the important finding that muscle defects occur prior to and independently of motor neuron degeneration in motor neuron diseases. In SMA for instance, the muscle specific requirements of the SMA disease-causing gene have been demonstrated by a series of genetic rescue experiments in SMA models. Conditional ALS mouse models expressing a muscle specific mutant SOD1 gene develop atrophy and muscle degeneration in the absence of motor neuron pathology. Treating SBMA mice by over-expressing IGF-1 in a skeletal muscle-specific manner attenuates disease severity and improves motor neuron pathology. In the present review, we provide an in depth description of muscle intrinsic defects, and discuss how they impact muscle function in these diseases. Furthermore, we discuss muscle-specific therapeutic strategies used to treat animal models of SMA, ALS, and SBMA. The study of intrinsic skeletal muscle defects is crucial for the understanding of the pathophysiology of these diseases and will open new therapeutic options for the treatment of motor neuron diseases. PMID:24391590
Bevilacqua, Lisa; Seifert, Erin L; Estey, Carmen; Gerrits, Martin F; Harper, Mary-Ellen
2010-08-01
Calorie restriction (CR), without malnutrition, consistently increases lifespan in all species tested, and reduces age-associated pathologies in mammals. Alterations in mitochondrial content and function are thought to underlie some of the effects of CR. Previously, we reported that rats subjected to variable durations of 40% CR demonstrated a rapid and sustained decrease in maximal leak-dependent respiration in skeletal muscle mitochondria. This was accompanied by decreased mitochondrial reactive oxygen species generation and increased uncoupling protein-3 protein (UCP3) expression. The aim of the present study was to determine the contribution of UCP3, as well as the adenine nucleotide translocase to these functional changes in skeletal muscle mitochondria. Consistent with previous findings in rats, short-term CR (2 weeks) in wild-type (Wt) mice resulted in a lowering of the maximal leak-dependent respiration in skeletal muscle mitochondria, without any change in proton conductance. In contrast, skeletal muscle mitochondria from Ucp3-knockout (KO) mice similarly subjected to short-term CR showed no change in maximal leak-dependent respiration, but displayed an increased proton conductance. Determination of ANT activity (by measurement of inhibitor-sensitive leak) and protein expression revealed that the increased proton conductance in mitochondria from CR Ucp3-KO mice could be entirely attributed to a greater acute activation of ANT. These observations implicate UCP3 in CR-induced mitochondrial remodeling. Specifically, they imply the potential for an interaction, or some degree of functional redundancy, between UCP3 and ANT, and also suggest that UCP3 can minimize the induction of the ANT-mediated 'energy-wasting' process during CR. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Zhang, Deying; Zhang, Yong; Zhang, Yuanyuan; Yi, Hualin; Wang, Zhan; Wu, Rongpei; He, Dawei; Wei, Guanghui; Wei, Shicheng; Hu, Yun; Deng, Junhong; Criswell, Tracy; Yoo, James; Zhou, Yu; Atala, Anthony
2017-08-01
Skeletal muscle precursor cells (MPCs) are considered a key candidate for cell therapy in the treatment of skeletal muscle dysfunction due to injury, disease, or age. However, expansion of a sufficient number of functional skeletal muscle cells in vitro from a small tissue biopsy has been challenging due to changes in phenotypic expression of these cells under traditional culture conditions. Thus, the aim of the study was to develop a better culture system for the expansion and myo-differentiation of MPCs that could further be used for therapy. For this purpose, we developed an ideal method of tissue decellularization and compared the ability of different matrices to support MPC growth and differentiation. Porcine-derived skeletal muscle and liver and kidney extracellular matrix (ECM) were generated by decellularization methods consisting of distilled water, 0.2 mg/mL DNase, or 5% fetal bovine serum. Acellular matrices were further homogenized, dissolved, and combined with a hyaluronic acid-based hydrogel decorated with heparin (ECM-HA-HP). The cell proliferation and myogenic differentiation capacity of human MPCs were assessed when grown on gel alone, ECM, or each ECM-HA-HP substrate. Human MPC proliferation was significantly enhanced when cultured on the ECM-HA-HP substrates compared to the other substrates tested, with the greatest proliferation on the muscle ECM-HA-HP (mECM-HA-HP) substrate. The number of differentiated myotubes was significantly increased on the mECM-HA-HP substrate compared to the other gel-ECM substrates, as well as the numbers of MPCs expressing specific myogenic cell markers (i.e., myosin, desmin, myoD, and myf5). In conclusion, skeletal mECM-HA-HP as a culture substrate provided an optimal culture microenvironment potentially due to its similarity to the in vivo environment. These data suggest a potential use of skeletal muscle-derived ECM gel for the expansion and differentiation of human MPCs for cell-based therapy for skeletal muscle dysfunction.
NASA Astrophysics Data System (ADS)
Hanson, Andrea Marie
Humans are an integral part of the engineered systems that will enable return to the Moon and eventually travel to Mars. Major advancements in countermeasure development addressing deleterious effects of microgravity and reduced gravity on the musculoskeletal system need to be made to ensure mission safety and success. The primary objectives of this dissertation are to advance the knowledge and understanding of skeletal muscle atrophy, and support development of novel countermeasures for disuse atrophy to enable healthy long-duration human spaceflight. Models simulating microgravity and actual spaceflight were used to examine the musculoskeletal adaptations during periods of unloading. Myostatin inhibition, a novel anti-atrophy drug therapy, and exercise were examined as a means of preventing and recovering from disuse atrophy. A combination of assays was used to quantify adaptation responses to unloading and examine efficacy of the countermeasures. Body and muscle masses were collected to analyze systemic changes due to treatments. Hindlimb strength and individual muscle forces were measured to demonstrate functional adaptations to treatments. Muscle fiber morphology and myosin heavy chain (MHC) expression was examined to identify adaptations at the cellular level. Protein synthesis signals insulin-like growth factor-1 (IGF-1), Akt, and p70s6 kinase; and the degradation signals Atrogin-1 and MuRF-1 were examined to identify adaptations at the molecular level that ultimately lead to muscle hypertrophy and atrophy. A time course study provided a thorough characterization of the adaptation of skeletal muscle during unloading in C57BL/6 mice, and baseline data for comparison to and evaluation of subsequent studies. Time points defining the on-set and endpoints of disuse muscle atrophy were identified to enable characterization of rapid vs. long-term responses of skeletal muscle to hindlimb suspension. Unloading-induced atrophy primarily resulted from increased protein degradation at early time points that predominantly affected slow-twitch muscle fibers. A second study examined the use of exercise as a means of recovery from disuse atrophy. Contrary to previous reports, a short duration of exercise following disuse provided a functional benefit to contractile mechanisms and increased resistance to fatigue---possibly due to increased expression of fast-twitch fibers. Two additional studies examined the efficacy of a myostatin inhibitor in combination with hindlimb unloading and in spaceflight. Myostatin inhibition increased expression of markers within the muscle synthesis pathway in both models. The myostatin inhibitors were potent enough for the skeletal muscles to overcome the atrophying effects of musculoskeletal unloading as demonstrated by increased mass and strength. Myostatin inhibition is demonstrated to be a very promising and effective treatment for disuse muscle atrophy that may benefit astronauts and patients with muscle wasting diseases. This dissertation provides the first analyses of an unloading model in combination with a myostatin inhibitor as a countermeasure for skeletal muscle disuse atrophy while exploring the specific roles of muscle function, morphology, and translational signaling pathways.
Hotta, Kazuki; Behnke, Bradley J; Arjmandi, Bahram; Ghosh, Payal; Chen, Bei; Brooks, Rachael; Maraj, Joshua J; Elam, Marcus L; Maher, Patrick; Kurien, Daniel; Churchill, Alexandra; Sepulveda, Jaime L; Kabolowsky, Max B; Christou, Demetra D; Muller-Delp, Judy M
2018-05-15
In aged rats, daily muscle stretching increases blood flow to skeletal muscle during exercise. Daily muscle stretching enhanced endothelium-dependent vasodilatation of skeletal muscle resistance arterioles of aged rats. Angiogenic markers and capillarity increased in response to daily stretching in muscles of aged rats. Muscle stretching performed with a splint could provide a feasible means of improving muscle blood flow and function in elderly patients who cannot perform regular aerobic exercise. Mechanical stretch stimuli alter the morphology and function of cultured endothelial cells; however, little is known about the effects of daily muscle stretching on adaptations of endothelial function and muscle blood flow. The present study aimed to determine the effects of daily muscle stretching on endothelium-dependent vasodilatation and muscle blood flow in aged rats. The lower hindlimb muscles of aged Fischer rats were passively stretched by placing an ankle dorsiflexion splint for 30 min day -1 , 5 days week -1 , for 4 weeks. Blood flow to the stretched limb and the non-stretched contralateral limb was determined at rest and during treadmill exercise. Endothelium-dependent/independent vasodilatation was evaluated in soleus muscle arterioles. Levels of hypoxia-induced factor-1α, vascular endothelial growth factor A and neuronal nitric oxide synthase were determined in soleus muscle fibres. Levels of endothelial nitric oxide synthase and superoxide dismutase were determined in soleus muscle arterioles, and microvascular volume and capillarity were evaluated by microcomputed tomography and lectin staining, respectively. During exercise, blood flow to plantar flexor muscles was significantly higher in the stretched limb. Endothelium-dependent vasodilatation was enhanced in arterioles from the soleus muscle from the stretched limb. Microvascular volume, number of capillaries per muscle fibre, and levels of hypoxia-induced factor-1α, vascular endothelial growth factor and endothelial nitric oxide synthase were significantly higher in the stretched limb. These results indicate that daily passive stretching of muscle enhances endothelium-dependent vasodilatation and induces angiogenesis. These microvascular adaptations may contribute to increased muscle blood flow during exercise in muscles that have undergone daily passive stretch. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Overview of the Muscle Cytoskeleton
Henderson, Christine A.; Gomez, Christopher G.; Novak, Stefanie M.; Mi-Mi, Lei; Gregorio, Carol C.
2018-01-01
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. PMID:28640448
Zhou, Jin; Chong, Shu Yun; Lim, Andrea; Singh, Brijesh K; Sinha, Rohit A; Salmon, Adam B; Yen, Paul M
2017-02-26
Aging causes a general decline in cellular metabolic activity, and function in different tissues and whole body homeostasis. However, the understanding about the metabolomic and autophagy changes in skeletal muscle and heart during aging is still limited. We thus examined markers for macroautophagy, chaperone-mediated autophagy (CMA), mitochondrial quality control, as well as cellular metabolites in skeletal and cardiac muscle from young (5 months old) and aged (27 months old) mice. We found decreased autophagic degradation of p62 and increased ubiquitinated proteins in both tissues from aged mice, suggesting a decline in macroautophagy during aging. In skeletal muscle from aged mice, there also was a decline in LC3B-I conjugation to phosphatidylethanolamine (PE) possibly due to decreased protein levels of ATG3 and ATG12-ATG5. The CMA markers, LAMP-2A and Hsc70, and mitochondrial turnover markers, Drp1, PINK1 and PGC1α also were decreased. Metabolomics analysis showed impaired β-oxidation in heart of aged mice, whereas increased branched-chain amino acids (BCAAs) and ceramide levels were found in skeletal muscle of aged mice that in turn, may contribute to insulin resistance in muscle. Taken together, our studies showed similar declines in macroautophagy but distinct effects on CMA, mitochondrial turnover, and metabolic dysfunction in muscle vs. heart during aging.
Zhou, Jin; Yun Chong, Shu; Lim, Andrea; Singh, Brijesh K.; Sinha, Rohit A.; Salmon, Adam B.; Yen, Paul M.
2017-01-01
Aging causes a general decline in cellular metabolic activity, and function in different tissues and whole body homeostasis. However, the understanding about the metabolomic and autophagy changes in skeletal muscle and heart during aging is still limited. We thus examined markers for macroautophagy, chaperone-mediated autophagy (CMA), mitochondrial quality control, as well as cellular metabolites in skeletal and cardiac muscle from young (5 months old) and aged (27 months old) mice. We found decreased autophagic degradation of p62 and increased ubiquitinated proteins in both tissues from aged mice, suggesting a decline in macroautophagy during aging. In skeletal muscle from aged mice, there also was a decline in LC3B-I conjugation to phosphatidylethanolamine (PE) possibly due to decreased protein levels of ATG3 and ATG12-ATG5. The CMA markers, LAMP-2A and Hsc70, and mitochondrial turnover markers, Drp1, PINK1 and PGC1α also were decreased. Metabolomics analysis showed impaired β-oxidation in heart of aged mice, whereas increased branched-chain amino acids (BCAAs) and ceramide levels were found in skeletal muscle of aged mice that in turn, may contribute to insulin resistance in muscle. Taken together, our studies showed similar declines in macroautophagy but distinct effects on CMA, mitochondrial turnover, and metabolic dysfunction in muscle vs. heart during aging. PMID:28238968
Giudice, Jimena; Loehr, James A; Rodney, George G; Cooper, Thomas A
2016-11-15
During development, transcriptional and post-transcriptional networks are coordinately regulated to drive organ maturation. Alternative splicing contributes by producing temporal-specific protein isoforms. We previously found that genes undergoing splicing transitions during mouse postnatal heart development are enriched for vesicular trafficking and membrane dynamics functions. Here, we show that adult trafficking isoforms are also expressed in adult skeletal muscle and hypothesize that striated muscle utilizes alternative splicing to generate specific isoforms required for function of adult tissue. We deliver morpholinos into flexor digitorum brevis muscles in adult mice to redirect splicing of four trafficking genes to the fetal isoforms. The splicing switch results in multiple structural and functional defects, including transverse tubule (T-tubule) disruption and dihydropyridine receptor alpha (DHPR) and Ryr1 mislocalization, impairing excitation-contraction coupling, calcium handling, and force generation. The results demonstrate a previously unrecognized role for trafficking functions in adult muscle tissue homeostasis and a specific requirement for the adult splice variants. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
A Zebrafish Embryo Culture System Defines Factors that Promote Vertebrate Myogenesis across Species
Ciarlo, Christie; Liu, Jingxia; Castiglioni, Alessandra; Price, Emily; Liu, Min; Barton, Elisabeth R.; Kahn, C. Ronald; Wagers, Amy J.; Zon, Leonard I.
2013-01-01
SUMMARY Ex vivo expansion of satellite cells and directed differentiation of pluripotent cells to mature skeletal muscle have proved difficult challenges for regenerative biology. Using a zebrafish embryo culture system with reporters of early and late skeletal muscle differentiation, we examined the influence of 2,400 chemicals on myogenesis and identified six that expanded muscle progenitors, including three GSK3β inhibitors, two calpain inhibitors and one adenylyl cyclase activator, forskolin. Forskolin also enhanced proliferation of mouse satellite cells in culture and maintained their ability to engraft muscle in vivo. A combination of bFGF, forskolin and the GSK3β inhibitor BIO induced skeletal muscle differentiation in human induced pluripotent stem cells (iPSCs) and produced engraftable myogenic progenitors that contributed to muscle repair in vivo. In summary, these studies reveal functionally conserved pathways regulating myogenesis across species and identify chemical compounds that expand mouse satellite cells and differentiate human iPSCs into engraftable muscle. PMID:24209627
Regeneration of injured skeletal muscle after the injury
Järvinen, Tero AH; Järvinen, Markku; Kalimo, Hannu
2013-01-01
Summary Muscle injuries are one of the most common traumas occurring in sports. Despite their clinical importance, few clinical studies exist on the treatment of these traumas. Thus, the current treatment recommendations for muscle injuries have either been derived from experimental studies or been tested only empirically. Although non operative treatment should almost always be the 1st choice as it results in good functional outcomes in the majority of athletes with muscle injuries, the consequences of failed treatment can be very dramatic, possibly postponing an athlete’s return to sports for weeks or even months. Moreover, the recognition of some basic principles of skeletal muscle regeneration and healing processes can considerably help in both avoiding the imminent dangers and accelerating the return to competition. Accordingly, in this review, the authors have summarized the prevailing understanding on the biology of muscle regeneration in hopes of extending these findings to clinical practice in an attempt to propose an evidence-based approach for the diagnosis and optimal treatment of skeletal muscle injuries. PMID:24596699
Perice, Leland; Barzilai, Nir; Verghese, Joe; Weiss, Erica F; Holtzer, Roee; Cohen, Pinchas; Milman, Sofiya
2016-10-14
Mutations that reduce somatotropic signaling result in improved lifespan and health-span in model organisms and humans. However, whether reduced circulating insulin-like growth factor-I (IGF-I) level is detrimental to cognitive and muscle function in older adults remains understudied. A cross-sectional analysis was performed in Ashkenazi Jews with exceptional longevity (age ≥95 years). Cognition was assessed using the Mini-Mental State Examination and muscle function with the chair rise test, grip-strength, and gait speed. Muscle mass was estimated using the skeletal muscle index. Serum IGF-I was measured with liquid chromatography mass spectrometry. In gender stratified age-adjusted logistic regression analysis, females with IGF-I levels in the first tertile had lower odds of being cognitively impaired compared to females with IGF-I levels within the upper two tertiles, OR (95% CI) 0.39 (0.19-0.82). The result remained significant after adjustment for multiple parameters. No significant association was identified in males between IGF-I and cognition. No relationship was found between IGF-I tertiles and muscle function and muscle mass in females or males. Lower circulating IGF-I is associated with better cognitive function in females with exceptional longevity, with no detriment to skeletal muscle mass and function.
Bosurgi, Lidia; Manfredi, Angelo A.; Rovere-Querini, Patrizia
2011-01-01
Macrophages are present in regenerating skeletal muscles and participate in the repair process. This is due to a unique feature of macrophages, i.e., their ability to perceive signals heralding ongoing tissue injury and to broadcast the news to cells suited at regenerating the tissue such as stem and progenitor cells. Macrophages play a complex role in the skeletal muscle, probably conveying information on the pattern of healing which is appropriate to ensure an effective healing of the tissue, yielding novel functional fibers. Conversely, they are likely to be involved in limiting the efficacy of regeneration, with formation of fibrotic scars and fat replacement of the tissue when the original insult persists. In this review we consider the beneficial versus the detrimental actions of macrophages during the response to muscle injury, with attention to the available information on the molecular code macrophages rely on to guide, throughout the various phases of muscle healing, the function of conventional and unconventional stem cells. Decrypting this code would represent a major step forward toward the establishment of novel targeted therapies for muscle diseases. PMID:22566851
Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle.
Frederick, David W; Loro, Emanuele; Liu, Ling; Davila, Antonio; Chellappa, Karthikeyani; Silverman, Ian M; Quinn, William J; Gosai, Sager J; Tichy, Elisia D; Davis, James G; Mourkioti, Foteini; Gregory, Brian D; Dellinger, Ryan W; Redpath, Philip; Migaud, Marie E; Nakamaru-Ogiso, Eiko; Rabinowitz, Joshua D; Khurana, Tejvir S; Baur, Joseph A
2016-08-09
NAD is an obligate co-factor for the catabolism of metabolic fuels in all cell types. However, the availability of NAD in several tissues can become limited during genotoxic stress and the course of natural aging. The point at which NAD restriction imposes functional limitations on tissue physiology remains unknown. We examined this question in murine skeletal muscle by specifically depleting Nampt, an essential enzyme in the NAD salvage pathway. Knockout mice exhibited a dramatic 85% decline in intramuscular NAD content, accompanied by fiber degeneration and progressive loss of both muscle strength and treadmill endurance. Administration of the NAD precursor nicotinamide riboside rapidly ameliorated functional deficits and restored muscle mass despite having only a modest effect on the intramuscular NAD pool. Additionally, lifelong overexpression of Nampt preserved muscle NAD levels and exercise capacity in aged mice, supporting a critical role for tissue-autonomous NAD homeostasis in maintaining muscle mass and function. Copyright © 2016 Elsevier Inc. All rights reserved.
Sumoylated α-skeletal muscle actin in the skeletal muscle of adult rats.
Uda, Munehiro; Kawasaki, Hiroaki; Iizumi, Kyoichi; Shigenaga, Ayako; Baba, Takeshi; Naito, Hisashi; Yoshioka, Toshitada; Yamakura, Fumiyuki
2015-11-01
Skeletal muscles are composed of two major muscle fiber types: slow-twitch oxidative fibers and fast-twitch glycolytic fibers. The proteins in these muscle fibers are known to differ in their expression, relative abundance, and post-translational modifications. In this study, we report a previously unreported post-translational modification of α-skeletal muscle actin in the skeletal muscles of adult male F344 rats in vivo. Using two-dimensional electrophoresis (2D-PAGE), we first examined the differences in the protein expression profiles between the soleus and plantaris muscles. We found higher intensity protein spots at approximately 60 kDa and pH 9 on 2D-PAGE for the soleus muscle compared with the plantaris muscle. These spots were identified as α-skeletal muscle actin by liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry and western blot analyses. In addition, we found that the 60 kDa α-skeletal muscle actin is modified by small ubiquitin-like modifier (SUMO) 1, using 2D-PAGE and western blot analyses. Furthermore, we found that α-skeletal muscle actin with larger molecular weight was localized in the nuclear and cytosol of the skeletal muscle, but not in the myofibrillar fraction by the combination of subcellular fractionation and western blot analyses. These results suggest that α-skeletal muscle actin is modified by SUMO-1 in the skeletal muscles, localized in nuclear and cytosolic fractions, and the extent of this modification is much higher in the slow muscles than in the fast muscles. This is the first study to show the presence of SUMOylated actin in animal tissues.
Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity.
van Moorsel, Dirk; Hansen, Jan; Havekes, Bas; Scheer, Frank A J L; Jörgensen, Johanna A; Hoeks, Joris; Schrauwen-Hinderling, Vera B; Duez, Helene; Lefebvre, Philippe; Schaper, Nicolaas C; Hesselink, Matthijs K C; Staels, Bart; Schrauwen, Patrick
2016-08-01
A disturbed day-night rhythm is associated with metabolic perturbations that can lead to obesity and type 2 diabetes mellitus (T2DM). In skeletal muscle, a reduced oxidative capacity is also associated with the development of T2DM. However, whether oxidative capacity in skeletal muscle displays a day-night rhythm in humans has so far not been investigated. Lean, healthy subjects were enrolled in a standardized living protocol with regular meals, physical activity and sleep to reflect our everyday lifestyle. Mitochondrial oxidative capacity was examined in skeletal muscle biopsies taken at five time points within a 24-hour period. Core-body temperature was lower during the early night, confirming a normal day-night rhythm. Skeletal muscle oxidative capacity demonstrated a robust day-night rhythm, with a significant time effect in ADP-stimulated respiration (state 3 MO, state 3 MOG and state 3 MOGS, p < 0.05). Respiration was lowest at 1 PM and highest at 11 PM (state 3 MOGS: 80.6 ± 4.0 vs. 95.8 ± 4.7 pmol/mg/s). Interestingly, the fluctuation in mitochondrial function was also observed in whole-body energy expenditure, with peak energy expenditure at 11 PM and lowest energy expenditure at 4 AM (p < 0.001). In addition, we demonstrate rhythmicity in mRNA expression of molecular clock genes in human skeletal muscle. Our results suggest that the biological clock drives robust rhythms in human skeletal muscle oxidative metabolism. It is tempting to speculate that disruption of these rhythms contribute to the deterioration of metabolic health associated with circadian misalignment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Yan; Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guang Zhou; Li, Yuan
2011-04-15
Human skeletal muscle contains an accessible adult stem-cell compartment in which differentiated myofibers are maintained and replaced by a self-renewing stem cell pool. Previously, studies using mouse models have established a critical role for resident stem cells in skeletal muscle, but little is known about this paradigm in human muscle. Here, we report the reproducible isolation of a population of cells from human skeletal muscle that is able to proliferate for extended periods of time as floating clusters of rounded cells, termed 'myospheres' or myosphere-derived progenitor cells (MDPCs). The phenotypic characteristics and functional properties of these cells were determined usingmore » reverse transcription-polymerase chain reaction (RT-PCR), flow cytometry and immunocytochemistry. Our results showed that these cells are clonogenic, express skeletal progenitor cell markers Pax7, ALDH1, Myod, and Desmin and the stem cell markers Nanog, Sox2, and Oct3/4 significantly elevated over controls. They could be maintained proliferatively active in vitro for more than 20 weeks and passaged at least 18 times, despite an average donor-age of 63 years. Individual clones (4.2%) derived from single cells were successfully expanded showing clonogenic potential and sustained proliferation of a subpopulation in the myospheres. Myosphere-derived cells were capable of spontaneous differentiation into myotubes in differentiation media and into other mesodermal cell lineages in induction media. We demonstrate here that direct culture and expansion of stem cells from human skeletal muscle is straightforward and reproducible with the appropriate technique. These cells may provide a viable resource of adult stem cells for future therapies of disease affecting skeletal muscle or mesenchymal lineage derived cell types.« less
Excess TGF-β mediates muscle weakness associated with bone metastases in mice
Reiken, Steven; Xie, Wenjun; Andersson, Daniel C.; John, Sutha; Chiechi, Antonella; Wright, Laura E.; Umanskaya, Alisa; Niewolna, Maria; Trivedi, Trupti; Charkhzarrin, Sahba; Khatiwada, Pooja; Wronska, Anetta; Haynes, Ashley; Benassi, Maria Serena; Witzmann, Frank A.; Zhen, Gehua; Wang, Xiao; Cao, Xu; Roodman, G. David; Marks, Andrew R.; Guise, Theresa A.
2015-01-01
Cancer-associated muscle weakness is poorly understood and there is no effective treatment. Here, we find that seven different mouse models of human osteolytic bone metastases, representing breast, lung and prostate cancers, as well as multiple myeloma exhibited impaired muscle function, implicating a role for the tumor-bone microenvironment in cancer-associated muscle weakness. We found that TGF-β, released from the bone surface as a result of metastasis-induced bone destruction upregulated NADPH oxidase 4 (Nox4), resulting in elevated oxidization of skeletal muscle proteins, including the ryanodine receptor/calcium (Ca2+) release channel (RyR1). The oxidized RyR1 channels leaked Ca2+, resulting in lower intracellular signaling required for proper muscle contraction. We found that inhibiting RyR1 leak, TGF-β signaling, TGF-β release from bone or Nox4 all improved muscle function in mice with MDA-MB-231 bone metastases. Humans with breast cancer- or lung cancer-associated bone metastases also had oxidized skeletal muscle RyR1 that is not seen in normal muscle. Similarly, skeletal muscle weakness, higher levels of Nox4 protein and Nox4 binding to RyR1, and oxidation of RyR1 were present in a mouse model of Camurati-Engelmann disease, a non-malignant metabolic bone disorder associated with increased TGF-β activity. Thus, metastasis-induced TGF-β release from bone contributes to muscle weakness by decreasing Ca2+-induced muscle force production. PMID:26457758
Brooks, Naomi E.; Myburgh, Kathryn H.
2014-01-01
Maintenance of skeletal muscle is essential for health and survival. There are marked losses of skeletal muscle mass as well as strength and physiological function under conditions of low mechanical load, such as space flight, as well as ground based models such as bed rest, immobilization, disuse, and various animal models. Disuse atrophy is caused by mechanical unloading of muscle and this leads to reduced muscle mass without fiber attrition. Skeletal muscle stem cells (satellite cells) and myonuclei are integrally involved in skeletal muscle responses to environmental changes that induce atrophy. Myonuclear domain size is influenced differently in fast and slow twitch muscle, but also by different models of muscle wasting, a factor that is not yet understood. Although the myonuclear domain is 3-dimensional this is rarely considered. Apoptosis as a mechanism for myonuclear loss with atrophy is controversial, whereas cell death of satellite cells has not been considered. Molecular signals such as myostatin/SMAD pathway, MAFbx, and MuRF1 E3 ligases of the ubiquitin proteasome pathway and IGF1-AKT-mTOR pathway are 3 distinctly different contributors to skeletal muscle protein adaptation to disuse. Molecular signaling pathways activated in muscle fibers by disuse are rarely considered within satellite cells themselves despite similar exposure to unloading or low mechanical load. These molecular pathways interact with each other during atrophy and also when various interventions are applied that could alleviate atrophy. Re-applying mechanical load is an obvious method to restore muscle mass, however how nutrient supplementation (e.g., amino acids) may further enhance recovery (or reduce atrophy despite unloading or ageing) is currently of great interest. Satellite cells are particularly responsive to myostatin and to growth factors. Recently, the hibernating squirrel has been identified as an innovative model to study resistance to atrophy. PMID:24672488
Associations of serum adiponectin with skeletal muscle morphology and insulin sensitivity.
Ingelsson, Erik; Arnlöv, Johan; Zethelius, Björn; Vasan, Ramachandran S; Flyvbjerg, Allan; Frystyk, Jan; Berne, Christian; Hänni, Arvo; Lind, Lars; Sundström, Johan
2009-03-01
Skeletal muscle morphology and function are strongly associated with insulin sensitivity. The objective of the study was to test the hypothesis that circulating adiponectin is associated with skeletal muscle morphology and that adiponectin mediates the relation of muscle morphology to insulin sensitivity. This was a cross-sectional investigation of 461 men aged 71 yr, participants of the community-based Uppsala Longitudinal Study of Adult Men study. Measures included serum adiponectin, insulin sensitivity measured with euglycemic insulin clamp technique, and capillary density and muscle fiber composition determined from vastus lateralis muscle biopsies. In multivariable linear regression models (adjusting for age, physical activity, fasting glucose, and pharmacological treatment for diabetes), serum adiponectin levels rose with increasing capillary density (beta, 0.30 per 50 capillaries per square millimeter increase; P = 0.041) and higher proportion of type I muscle fibers (beta, 0.27 per 10% increase; P = 0.036) but declined with a higher proportion of type IIb fibers (beta, -0.39 per 10% increase; P = 0.014). Using bootstrap methods to examine the potential role of adiponectin in associations between muscle morphology and insulin sensitivity and the associations of capillary density (beta difference, 0.041; 95% confidence interval 0.001, 0.085) and proportion of type IIb muscle fibers (beta difference, -0.053; 95% confidence interval -0.107, -0.002) with insulin sensitivity were significantly attenuated when adiponectin was included in the models. Circulating adiponectin concentrations were higher with increasing skeletal muscle capillary density and in individuals with higher proportion of slow oxidative muscle fibers. Furthermore, our results indicate that adiponectin could be a partial mediator of the relations between skeletal muscle morphology and insulin sensitivity.
Salvadego, Desy; Lazzer, Stefano; Marzorati, Mauro; Porcelli, Simone; Rejc, Enrico; Simunic, Bostjan; Pisot, Rado; di Prampero, Pietro Enrico; Grassi, Bruno
2011-12-01
A functional evaluation of skeletal muscle oxidative metabolism during dynamic knee extension (KE) incremental exercises was carried out following a 35-day bed rest (BR) (Valdoltra 2008 BR campaign). Nine young male volunteers (age: 23.5 ± 2.2 yr; mean ± SD) were evaluated. Pulmonary gas exchange, heart rate and cardiac output (by impedance cardiography), skeletal muscle (vastus lateralis) fractional O(2) extraction, and brain (frontal cortex) oxygenation (by near-infrared spectroscopy) were determined during incremental KE. Values at exhaustion were considered "peak". Peak heart rate (147 ± 18 beats/min before vs. 146 ± 17 beats/min after BR) and peak cardiac output (17.8 ± 3.3 l/min before vs. 16.1 ± 1.8 l/min after BR) were unaffected by BR. As expected, brain oxygenation did not decrease during KE. Peak O(2) uptake was lower after vs. before BR, both when expressed as liters per minute (0.99 ± 0.17 vs. 1.26 ± 0.27) and when normalized per unit of quadriceps muscle mass (46.5 ± 6.4 vs. 56.9 ± 11.0 ml·min(-1)·100 g(-1)). Skeletal muscle peak fractional O(2) extraction, expressed as a percentage of the maximal values obtained during a transient limb ischemia, was lower after (46.3 ± 12.1%) vs. before BR (66.5 ± 11.2%). After elimination, by the adopted exercise protocol, of constraints related to cardiovascular O(2) delivery, a decrease in peak O(2) uptake and muscle peak capacity of fractional O(2) extraction was found after 35 days of BR. These findings suggest a substantial impairment of oxidative function at the muscle level, "downstream" with respect to bulk blood flow to the exercising muscles, that is possibly at the level of blood flow distribution/O(2) utilization inside the muscle, peripheral O(2) diffusion, and intracellular oxidative metabolism.
Functional nonequality of the cardiac and skeletal ryanodine receptors.
Nakai, J; Ogura, T; Protasi, F; Franzini-Armstrong, C; Allen, P D; Beam, K G
1997-02-04
Dihydropyridine receptors (DHPRs), which are voltage-gated Ca2+ channels, and ryanodine receptors (RyRs), which are intracellular Ca2+ release channels, are expressed in diverse cell types, including skeletal and cardiac muscle. In skeletal muscle, there appears to be reciprocal signaling between the skeletal isoforms of both the DHPR and the RyR (RyR-1), such that Ca2+ release activity of RyR-1 is controlled by the DHPR and Ca2+ channel activity of the DHPR is controlled by RyR-1. Dyspedic skeletal muscle cells, which do not express RyR-1, lack excitation-contraction coupling and have an approximately 30-fold reduction in L-type Ca2+ current density. Here we have examined the ability of the predominant cardiac and brain RyR isoform, RyR-2, to substitute for RyR-1 in interacting with the skeletal DHPR. When RyR-2 is expressed in dyspedic muscle cells, it gives rise to spontaneous intracellular Ca2+ oscillations and supports Ca2+ entry-induced Ca2+ release. However, unlike RyR-1, the expressed RyR-2 does not increase the Ca2+ channel activity of the DHPR, nor is the gating of RyR-2 controlled by the skeletal DHPR. Thus, the ability to participate in skeletal-type reciprocal signaling appears to be a unique feature of RyR-1.
NASA Astrophysics Data System (ADS)
Gao, Fang; Yu, Zhi-Bin
2005-08-01
The weightlessness-induced muscle atrophy is associated with a reduced force and power and with an increased fatigability [1]. In prolonged manned space missions, these alterations in skeletal muscles could limit the crew's ability to work in space and to rapidly egress in an emergency on return to Earth. In order to elucidate the underlying mechanisms of the increased fatigability in the atrophic skeletal muscle, we isolated the typically fast and slow muscle, extensor digitorum longus (EDL) and soleus (SOL), to observe the changes in maximal contraction tension, optimal stimulating frequency, and recovery features after fatigue in the intermittent tetanic contraction.
Wacker, Michael J; Touchberry, Chad D; Silswal, Neerupma; Brotto, Leticia; Elmore, Chris J; Bonewald, Lynda F; Andresen, Jon; Brotto, Marco
2016-01-01
Autosomal recessive hypophosphatemic rickets (ARHR) is a heritable disorder characterized by hypophosphatemia, osteomalacia, and poor bone development. ARHR results from inactivating mutations in the DMP1 gene with the human phenotype being recapitulated in the Dmp1 null mouse model which displays elevated plasma fibroblast growth factor 23. While the bone phenotype has been well-characterized, it is not known what effects ARHR may also have on skeletal, cardiac, or vascular smooth muscle function, which is critical to understand in order to treat patients suffering from this condition. In this study, the extensor digitorum longus (EDL-fast-twitch muscle), soleus (SOL-slow-twitch muscle), heart, and aorta were removed from Dmp1 null mice and ex-vivo functional tests were simultaneously performed in collaboration by three different laboratories. Dmp1 null EDL and SOL muscles produced less force than wildtype muscles after normalization for physiological cross sectional area of the muscles. Both EDL and SOL muscles from Dmp1 null mice also produced less force after the addition of caffeine (which releases calcium from the sarcoplasmic reticulum) which may indicate problems in excitation contraction coupling in these mice. While the body weights of the Dmp1 null were smaller than wildtype, the heart weight to body weight ratio was higher. However, there were no differences in pathological hypertrophic gene expression compared to wildtype and maximal force of contraction was not different indicating that there may not be cardiac pathology under the tested conditions. We did observe a decrease in the rate of force development generated by cardiac muscle in the Dmp1 null which may be related to some of the deficits observed in skeletal muscle. There were no differences observed in aortic contractions induced by PGF2α or 5-HT or in endothelium-mediated acetylcholine-induced relaxations or endothelium-independent sodium nitroprusside-induced relaxations. In summary, these results indicate that there are deficiencies in both fast twitch and slow twitch muscle fiber type contractions in this model of ARHR, while there was less of a phenotype observed in cardiac muscle, and no differences observed in aortic function. These results may help explain skeletal muscle weakness reported by some patients with osteomalacia and need to be further investigated.
Wacker, Michael J.; Touchberry, Chad D.; Silswal, Neerupma; Brotto, Leticia; Elmore, Chris J.; Bonewald, Lynda F.; Andresen, Jon; Brotto, Marco
2016-01-01
Autosomal recessive hypophosphatemic rickets (ARHR) is a heritable disorder characterized by hypophosphatemia, osteomalacia, and poor bone development. ARHR results from inactivating mutations in the DMP1 gene with the human phenotype being recapitulated in the Dmp1 null mouse model which displays elevated plasma fibroblast growth factor 23. While the bone phenotype has been well-characterized, it is not known what effects ARHR may also have on skeletal, cardiac, or vascular smooth muscle function, which is critical to understand in order to treat patients suffering from this condition. In this study, the extensor digitorum longus (EDL-fast-twitch muscle), soleus (SOL–slow-twitch muscle), heart, and aorta were removed from Dmp1 null mice and ex-vivo functional tests were simultaneously performed in collaboration by three different laboratories. Dmp1 null EDL and SOL muscles produced less force than wildtype muscles after normalization for physiological cross sectional area of the muscles. Both EDL and SOL muscles from Dmp1 null mice also produced less force after the addition of caffeine (which releases calcium from the sarcoplasmic reticulum) which may indicate problems in excitation contraction coupling in these mice. While the body weights of the Dmp1 null were smaller than wildtype, the heart weight to body weight ratio was higher. However, there were no differences in pathological hypertrophic gene expression compared to wildtype and maximal force of contraction was not different indicating that there may not be cardiac pathology under the tested conditions. We did observe a decrease in the rate of force development generated by cardiac muscle in the Dmp1 null which may be related to some of the deficits observed in skeletal muscle. There were no differences observed in aortic contractions induced by PGF2α or 5-HT or in endothelium-mediated acetylcholine-induced relaxations or endothelium-independent sodium nitroprusside-induced relaxations. In summary, these results indicate that there are deficiencies in both fast twitch and slow twitch muscle fiber type contractions in this model of ARHR, while there was less of a phenotype observed in cardiac muscle, and no differences observed in aortic function. These results may help explain skeletal muscle weakness reported by some patients with osteomalacia and need to be further investigated. PMID:27242547
Skeletal muscle myoblasts possess a stretch-responsive local angiotensin signalling system.
Johnston, Adam P W; Baker, Jeff; De Lisio, Michael; Parise, Gianni
2011-06-01
A paucity of information exists regarding the presence of local renin-angiotensin systems (RASs) in skeletal muscle and associated muscle stem cells. Skeletal muscle and muscle stem cells were isolated from C57BL/6 mice and examined for the presence of a local RAS using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), Western blotting and liquid chromatography-mass spectrometry (LC-MS). Furthermore, the effect of mechanical stimulation on RAS member gene expression was analysed. Whole skeletal muscle, primary myoblasts and C2C12 derived myoblasts and myotubes differentially expressed members of the RAS including angiotensinogen, angiotensin-converting enzyme (ACE), angiotensin II (Ang II) type 1 (AT(1)) and type 2 (AT(2)). Renin transcripts were never detected, however, mRNA for the 'renin-like' enzyme cathepsin D was observed and Ang I and Ang II were identified in cell culture supernatants from proliferating myoblasts. AT(1) appeared to co-localise with polymerised actin filaments in proliferating myoblasts and was primarily found in the nucleus of terminally differentiated myotubes. Furthermore, mechanical stretch of proliferating and differentiating C2C12 cells differentially induced mRNA expression of angiotensinogen, AT(1) and AT(2). Proliferating and differentiated muscle stem cells possess a local stress-responsive RAS in vitro. The precise function of a local RAS in myoblasts remains unknown. However, evidence presented here suggests that Ang II may be a regulator of skeletal muscle myoblasts.
Muscle Stem Cells: A Model System for Adult Stem Cell Biology.
Cornelison, Ddw; Perdiguero, Eusebio
2017-01-01
Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.
Gene polymorphisms and fiber-type composition of human skeletal muscle.
Ahmetov, Ildus I; Vinogradova, Olga L; Williams, Alun G
2012-08-01
The ability to perform aerobic or anaerobic exercise varies widely among individuals, partially depending on their muscle-fiber composition. Variability in the proportion of skeletal-muscle fiber types may also explain marked differences in aspects of certain chronic disease states including obesity, insulin resistance, and hypertension. In untrained individuals, the proportion of slow-twitch (Type I) fibers in the vastus lateralis muscle is typically around 50% (range 5-90%), and it is unusual for them to undergo conversion to fast-twitch fibers. It has been suggested that the genetic component for the observed variability in the proportion of Type I fibers in human muscles is on the order of 40-50%, indicating that muscle fiber-type composition is determined by both genotype and environment. This article briefly reviews current progress in the understanding of genetic determinism of fiber-type proportion in human skeletal muscle. Several polymorphisms of genes involved in the calcineurin-NFAT pathway, mitochondrial biogenesis, glucose and lipid metabolism, cytoskeletal function, hypoxia and angiogenesis, and circulatory homeostasis have been associated with fiber-type composition. As muscle is a major contributor to metabolism and physical strength and can readily adapt, it is not surprising that many of these gene variants have been associated with physical performance and athlete status, as well as metabolic and cardiovascular diseases. Genetic variants associated with fiber-type proportions have important implications for our understanding of muscle function in both health and disease.
Aging alters contractile properties and fiber morphology in pigeon skeletal muscle.
Pistilli, Emidio E; Alway, Stephen E; Hollander, John M; Wimsatt, Jeffrey H
2014-12-01
In this study, we tested the hypothesis that skeletal muscle from pigeons would display age-related alterations in isometric force and contractile parameters as well as a shift of the single muscle fiber cross-sectional area (CSA) distribution toward smaller fiber sizes. Maximal force output, twitch contraction durations and the force-frequency relationship were determined in tensor propatagialis pars biceps muscle from young 3-year-old pigeons, middle-aged 18-year-old pigeons, and aged 30-year-old pigeons. The fiber CSA distribution was determined by planimetry from muscle sections stained with hematoxylin and eosin. Maximal force output of twitch and tetanic contractions was greatest in muscles from young pigeons, while the time to peak force of twitch contractions was longest in muscles from aged pigeons. There were no changes in the force-frequency relationship between the age groups. Interestingly, the fiber CSA distribution in aged muscles revealed a greater number of larger sized muscle fibers, which was verified visually in histological images. Middle-aged and aged muscles also displayed a greater amount of slow myosin containing muscle fibers. These data demonstrate that muscles from middle-aged and aged pigeons are susceptible to alterations in contractile properties that are consistent with aging, including lower force production and longer contraction durations. These functional changes were supported by the appearance of slow myosin containing muscle fibers in muscles from middle-aged and aged pigeons. Therefore, the pigeon may represent an appropriate animal model for the study of aging-related alterations in skeletal muscle function and structure.
Espinosa, Alejandra; Henríquez-Olguín, Carlos; Jaimovich, Enrique
2016-09-01
Reactive Oxygen Species (ROS) have been profusely studied as agents of potential damage to living cells and they have been related to a number of pathological processes. Increasing evidence points to a more positive role of ROS in cell signaling and the detailed mechanism that regulates the precise amount of ROS needed for cell functioning without the deleterious effects of excess ROS still needs to be resolved in detail. In skeletal muscle the main source of ROS during normal functioning appears to be NADPH oxidase 2 (NOX2), which is activated by electrical stimuli (or exercise) through a cascade of events that include ATP release through pannexin1 channels. NOX2 is a protein complex that assembles in the T-tubule membrane before activation and ROS production by NOX2 appears to be important for muscle adaptation through gene expression and mitochondrial biogenesis as well as for improving glucose transport after insulin action. Excess ROS production (or diminished antioxidant defenses) plays a role in a number of pathological processes in skeletal muscle. Together with increased reactive nitrogen species, an increase in ROS appears to have a deleterious role in a model of Duchenne muscular dystrophy as well as muscle wasting in other diseases such as aging sarcopenia and cancer cachexia. In addition, ROS is involved in obesity and muscle insulin resistance, both of which are causally related to type 2 diabetes. A detailed description of the fine-tuning of ROS (including all sources of ROS) in skeletal muscle in health and disease will significantly contribute to our knowledge of both muscle adaptation and muscle related pathologies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biomaterial-based delivery for skeletal muscle repair
Cezar, Christine A.; Mooney, David J.
2015-01-01
Skeletal muscle possesses a remarkable capacity for regeneration in response to minor damage, but severe injury resulting in a volumetric muscle loss can lead to extensive and irreversible fibrosis, scarring, and loss of muscle function. In early clinical trials, the intramuscular injection of cultured myoblasts was proven to be a safe but ineffective cell therapy, likely due to rapid death, poor migration, and immune rejection of the injected cells. In recent years, appropriate therapeutic cell types and culturing techniques have improved progenitor cell engraftment upon transplantation. Importantly, the identification of several key biophysical and biochemical cues that synergistically regulate satellite cell fate has paved the way for the development of cell-instructive biomaterials that serve as delivery vehicles for cells to promote in vivo regeneration. Material carriers designed to spatially and temporally mimic the satellite cell niche may be of particular importance for the complete regeneration of severely damaged skeletal muscle. PMID:25271446
Alterations in Skeletal Muscle Microcirculation of Head-Down Tilted Rats
NASA Technical Reports Server (NTRS)
Musacchia, X. J.; Stepke, Bernhard; Fleming, John T.; Joshua, Irving G.
1992-01-01
In this study we assessed the function of microscopic blood vessels in skeletal muscle (cremaster muscle) for alterations which may contribute to the observed elevation of blood pressure associated with head-down tilted whole body suspension (HDT/WBS), a model of weightlessness. Arteriolar baseline diameters, vasoconstrictor responses to norepinephrine (NE) and vasodilation to nitroprusside (NP) were assessed in control rats, rats suspended for 7 or 14 day HDT/WBS rats, and rats allowed to recover for 1 day after 7 days HDT/WBS. Neither baseline diameters nor ability to dilate were influenced by HDT/WBS. Maximum vasoconstriction to norepinephrine was significantly greater in arterioles of hypertensive 14 day HDT/WBS rats. This first study of the intact microvasculature in skeletal muscle indicates that an elevated contractility of arterioles to norepinephrine in suspended rats, and suggests an elevated peripheral resistance in striated muscle may contribute to the increase in blood pressures among animals subjected to HDT/WBS.
Verbrugge, Sander A J; Schönfelder, Martin; Becker, Lore; Yaghoob Nezhad, Fakhreddin; Hrabě de Angelis, Martin; Wackerhage, Henning
2018-01-01
Skeletal muscle mass differs greatly in mice and humans and this is partially inherited. To identify muscle hypertrophy candidate genes we conducted a systematic review to identify genes whose experimental loss or gain-of-function results in significant skeletal muscle hypertrophy in mice. We found 47 genes that meet our search criteria and cause muscle hypertrophy after gene manipulation. They are from high to small effect size: Ski, Fst, Acvr2b, Akt1, Mstn, Klf10, Rheb, Igf1, Pappa, Ppard, Ikbkb, Fstl3, Atgr1a, Ucn3, Mcu, Junb, Ncor1, Gprasp1, Grb10, Mmp9, Dgkz, Ppargc1a (specifically the Ppargc1a4 isoform), Smad4, Ltbp4, Bmpr1a, Crtc2, Xiap, Dgat1, Thra, Adrb2, Asb15, Cast, Eif2b5, Bdkrb2, Tpt1, Nr3c1, Nr4a1, Gnas, Pld1, Crym, Camkk1, Yap1, Inhba, Tp53inp2, Inhbb, Nol3, Esr1 . Knock out, knock down, overexpression or a higher activity of these genes causes overall muscle hypertrophy as measured by an increased muscle weight or cross sectional area. The mean effect sizes range from 5 to 345% depending on the manipulated gene as well as the muscle size variable and muscle investigated. Bioinformatical analyses reveal that Asb15, Klf10, Tpt1 are most highly expressed hypertrophy genes in human skeletal muscle when compared to other tissues. Many of the muscle hypertrophy-regulating genes are involved in transcription and ubiquitination. Especially genes belonging to three signaling pathways are able to induce hypertrophy: (a) Igf1-Akt-mTOR pathway, (b) myostatin-Smad signaling, and (c) the angiotensin-bradykinin signaling pathway. The expression of several muscle hypertrophy-inducing genes and the phosphorylation of their protein products changes after human resistance and high intensity exercise, in maximally stimulated mouse muscle or in overloaded mouse plantaris.
Weinberg, Marc S; Shachar, Shlomit S; Muss, Hyman B; Deal, Allison M; Popuri, Karteek; Yu, Hyeon; Nyrop, Kirsten A; Alston, Shani M; Williams, Grant R
2018-05-01
Skeletal muscle loss, commonly known as sarcopenia, is highly prevalent and prognostic of adverse outcomes in oncology. However, there is limited information on adults with early breast cancer and examination of other skeletal muscle indices, despite the potential prognostic importance. This study characterizes and examines age-related changes in body composition of adults with early breast cancer and describes the creation of a novel integrated muscle measure. Female patients diagnosed with stage I-III breast cancer with abdominal computerized tomography (CT) scans within 12 weeks from diagnosis were identified from local tumor registry (N = 241). Skeletal muscle index (muscle area per height [cm 2 /m 2 ]), skeletal muscle density, and subcutaneous and visceral adipose tissue areas, were determined from CT L3 lumbar segments. We calculated a novel integrated skeletal measure, skeletal muscle gauge, which combines skeletal muscle index and density (SMI × SMD). 241 patients were identified with available CT imaging. Median age 52 years and range of 23-87. Skeletal muscle index and density significantly decreased with age. Using literature based cut-points, older adults (≥65 years) had significantly higher proportions of sarcopenia (63 vs 28%) and myosteatosis (90 vs 11%) compared to younger adults (<50 years). Body mass index was positively correlated with skeletal muscle index and negatively correlated with muscle density. Skeletal muscle gauge correlated better with increasing age (ρ = 0.52) than with either skeletal muscle index (ρ = 0.20) or density (ρ = 0.46). Wide variations and age-related changes in body composition metrics were found using routinely obtained abdominal CT imaging. Skeletal muscle index and density provide independent, complementary information, and the product of the two metrics, skeletal muscle gauge, requires further research to explore its impact on outcomes in women with curable breast cancer. © 2017 Wiley Periodicals, Inc.
Brinegar, Amy E; Xia, Zheng; Loehr, James Anthony; Li, Wei; Rodney, George Gerald
2017-01-01
Postnatal development of skeletal muscle is a highly dynamic period of tissue remodeling. Here, we used RNA-seq to identify transcriptome changes from late embryonic to adult mouse muscle and demonstrate that alternative splicing developmental transitions impact muscle physiology. The first 2 weeks after birth are particularly dynamic for differential gene expression and alternative splicing transitions, and calcium-handling functions are significantly enriched among genes that undergo alternative splicing. We focused on the postnatal splicing transitions of the three calcineurin A genes, calcium-dependent phosphatases that regulate multiple aspects of muscle biology. Redirected splicing of calcineurin A to the fetal isoforms in adult muscle and in differentiated C2C12 slows the timing of muscle relaxation, promotes nuclear localization of calcineurin target Nfatc3, and/or affects expression of Nfatc transcription targets. The results demonstrate a previously unknown specificity of calcineurin isoforms as well as the broader impact of alternative splicing during muscle postnatal development. PMID:28826478
Bhattacharya, Arunabh; Lustgarten, Michael; Shi, Yun; Liu, Yuhong; Jang, Youngmok C; Pulliam, Daniel; Jernigan, Amanda L; Van Remmen, Holly
2013-01-01
Previous studies have shown that muscle atrophy is associated with mitochondrial dysfunction and an increased rate of mitochondrial reactive oxygen species production. We recently demonstrated that fatty acid hydroperoxides (FA-OOH) are significantly elevated in mitochondria isolated from atrophied muscles. The purpose of the current study is to determine whether FA-OOH can alter skeletal muscle mitochondrial function. We found that FA-OOH (at low micromolar concentrations) induces mitochondrial dysfunction assessed by decrease in the rate of ATP production, oxygen consumption and activity of respiratory chain complexes I and III. Using methods to distinguish superoxide release towards the matrix and inter-membrane space, we demonstrate that FA-OOH significantly elevates oxidative stress in the mitochondrial matrix (and not the inter-membrane space) with complex I as the major site of superoxide production (most likely from a site upstream of the ubiquinone binding site but downstream from the flavin binding site-the iron sulfur clusters). Our results are the first to indicate that FA-OOH’s are important modulators of mitochondrial function and oxidative stress in skeletal muscle mitochondria and may play an important role in muscle atrophies that are associated with increased generation of FA-OOH’s, e.g., denervation-induced muscle atrophy. PMID:21172427
Rader, Erik P; Turk, Rolf; Willer, Tobias; Beltrán, Daniel; Inamori, Kei-Ichiro; Peterson, Taylor A; Engle, Jeffrey; Prouty, Sally; Matsumura, Kiichiro; Saito, Fumiaki; Anderson, Mary E; Campbell, Kevin P
2016-09-27
Dystroglycan (DG) is a highly expressed extracellular matrix receptor that is linked to the cytoskeleton in skeletal muscle. DG is critical for the function of skeletal muscle, and muscle with primary defects in the expression and/or function of DG throughout development has many pathological features and a severe muscular dystrophy phenotype. In addition, reduction in DG at the sarcolemma is a common feature in muscle biopsies from patients with various types of muscular dystrophy. However, the consequence of disrupting DG in mature muscle is not known. Here, we investigated muscles of transgenic mice several months after genetic knockdown of DG at maturity. In our study, an increase in susceptibility to contraction-induced injury was the first pathological feature observed after the levels of DG at the sarcolemma were reduced. The contraction-induced injury was not accompanied by increased necrosis, excitation-contraction uncoupling, or fragility of the sarcolemma. Rather, disruption of the sarcomeric cytoskeleton was evident as reduced passive tension and decreased titin immunostaining. These results reveal a role for DG in maintaining the stability of the sarcomeric cytoskeleton during contraction and provide mechanistic insight into the cause of the reduction in strength that occurs in muscular dystrophy after lengthening contractions.
Cannone, Maria; Liantonio, Antonella; De Bellis, Michela; Digennaro, Claudio; Gramegna, Gianluca; De Luca, Annamaria; Germinario, Elena; Danieli-Betto, Daniela; Betto, Romeo; Dobrowolny, Gabriella; Rizzuto, Emanuele; Musarò, Antonio; Desaphy, Jean-François; Camerino, Diana Conte
2013-01-01
Slow-twitch muscles, devoted to postural maintenance, experience atrophy and weakness during muscle disuse due to bed-rest, aging or spaceflight. These conditions impair motion activities and can have survival implications. Human and animal studies demonstrate the anabolic role of IGF-1 on skeletal muscle suggesting its interest as a muscle disuse countermeasure. Thus, we tested the role of IGF-1 overexpression on skeletal muscle alteration due to hindlimb unloading (HU) by using MLC/mIgf-1 transgenic mice expressing IGF-1 under the transcriptional control of MLC promoter, selectively activated in skeletal muscle. HU produced atrophy in soleus muscle, in terms of muscle weight and fiber cross-sectional area (CSA) reduction, and up-regulation of atrophy gene MuRF1. In parallel, the disuse-induced slow-to-fast fiber transition was confirmed by an increase of the fast-type of the Myosin Heavy Chain (MHC), a decrease of PGC-1α expression and an increase of histone deacetylase-5 (HDAC5). Consistently, functional parameters such as the resting chloride conductance (gCl) together with ClC-1 chloride channel expression were increased and the contractile parameters were modified in soleus muscle of HU mice. Surprisingly, IGF-1 overexpression in HU mice was unable to counteract the loss of muscle weight and the decrease of fiber CSA. However, the expression of MuRF1 was recovered, suggesting early effects on muscle atrophy. Although the expression of PGC-1α and MHC were not improved in IGF-1-HU mice, the expression of HDAC5 was recovered. Importantly, the HU-induced increase of gCl was fully contrasted in IGF-1 transgenic mice, as well as the changes in contractile parameters. These results indicate that, even if local expression does not seem to attenuate HU-induced atrophy and slow-to-fast phenotype transition, it exerts early molecular effects on gene expression which can counteract the HU-induced modification of electrical and contractile properties. MuRF1 and HDAC5 can be attractive therapeutic targets for pharmacological countermeasures and then deserve further investigations. PMID:23755187
Resolvin E1 (Rv E1 ) attenuates LPS induced inflammation and subsequent atrophy in C2C12 myotubes.
Baker, Luke A; Martin, Neil R W; Kimber, Marc C; Pritchard, Gareth J; Lindley, Martin R; Lewis, Mark P
2018-03-25
Resolution of inflammation is now known to be an active process which in part is instigated and controlled by specialized pro-resolving lipid mediators (SPM's) derived from dietary omega-3 fatty acids. Resolvin E1 (R v E 1 ) is one of these SPM's derived from the omega-3 fatty acid eicosapentaenoic acid. Using both molecular and phenotypic functional measures we report that in a model of Lipopolysaccharide (LPS) induced inflammation, R v E 1 attenuated mRNA levels of both interlukin-6 and monocyte chemoattractant protein-1 whilst having no effect on tumor necrosis factor-α or interlukin-1β in C2C12 skeletal muscle myotubes. Findings at the molecular level were transferred into similar changes in extracellular protein levels of the corresponding genes with the greatest attenuation being noted in IL-6 protein concentrations. R v E 1 instigated beneficial morphological changes through the prevention of LPS induced skeletal muscle atrophy, in tandem with attenuation of the LPS induced reduction in contractile force in tissue engineered skeletal muscle. These findings demonstrate, in our model of endotoxin induced inflammation in skeletal muscle, that R v E 1 has pro-resolving properties in this cell type. Our data provides rationale for further investigation into the mechanistic action of R v E 1 in skeletal muscle, with the vision of having potential benefits for the prevention/resolution of in-vivo skeletal muscle atrophy. © 2018 Wiley Periodicals, Inc.
Imaging 2D optical diffuse reflectance in skeletal muscle
NASA Astrophysics Data System (ADS)
Ranasinghesagara, Janaka; Yao, Gang
2007-04-01
We discovered a unique pattern of optical reflectance from fresh prerigor skeletal muscles, which can not be described using existing theories. A numerical fitting function was developed to quantify the equiintensity contours of acquired reflectance images. Using this model, we studied the changes of reflectance profile during stretching and rigor process. We found that the prominent anisotropic features diminished after rigor completion. These results suggested that muscle sarcomere structures played important roles in modulating light propagation in whole muscle. When incorporating the sarcomere diffraction in a Monte Carlo model, we showed that the resulting reflectance profiles quantitatively resembled the experimental observation.
Ieronimakis, Nicholas; Balasundaram, Gayathri; Reyes, Morayma
2008-01-01
Background Although diseases associated with microvascular endothelial dysfunction are among the most prevalent illnesses to date, currently no method exists to isolate pure endothelial cells (EC) from skeletal muscle for in vivo or in vitro study. Methodology By utilizing multicolor fluorescent-activated cell sorting (FACS), we have isolated a distinct population of Sca-1+, CD31+, CD34dim and CD45− cells from skeletal muscles of C57BL6 mice. Characterization of this population revealed these cells are functional EC that can be expanded several times in culture without losing their phenotype or capabilities to uptake acetylated low-density lipoprotein (ac-LDL), produce nitric oxide (NO) and form vascular tubes. When transplanted subcutaneously or intramuscularly into the tibialis anterior muscle, EC formed microvessels and integrated with existing vasculature. Conclusion This method, which is highly reproducible, can be used to study the biology and role of EC in diseases such as peripheral vascular disease. In addition this method allows us to isolate large quantities of skeletal muscle derived EC with potential for therapeutic angiogenic applications. PMID:18335025
Heat Shock Proteins Are Important Mediators of Skeletal Muscle Insulin Sensitivity
Geiger, Paige C.; Gupte, Anisha A.
2013-01-01
Endogenous heat shock proteins (HSP) are decreased in disease states associated with insulin resistance and aging. Induction of HSPs has been shown to decrease oxidative stress, inhibit inflammatory pathways, and enhance metabolic characteristics in skeletal muscle. As such, HSPs have the potential to function as an important defense system against the development of insulin resistance and type 2 diabetes. PMID:21088604
Non-Lethal Weapons The Use Radiofrequency/Microwave Energy for Stunning/Immobilization
2008-11-26
0.75 to 1 GHz RF fields on skeletal muscle contraction using fixed frequencies and just recently implementing frequency sweep paradigms; 4) initiation...This basic research initiative is geared ultimately toward developing effective and safe non-lethal technologies that alter skeletal muscle ... contraction and/or neural functioning via radiofrequency (RF)/microwave (MW) electromagnetic radiation. Major accomplishments included 1) near completion of
Non-Lethal Weapons for Use Rediofrequency/Microwave Energy for Stunning/Immobilization
2008-11-14
of 0.75 to 1 GHz RF fields on skeletal muscle contraction using fixed frequencies and just recently implementing frequency sweep paradigms; (4...This basic research initiative is geared ultimately toward developing effective and safe non-lethal technologies that alter skeletal muscle ... contraction and/or neural functioning via radiofrequency (RF)/microwave (MW) electromagnetic radiation. Major accomplishments included: (1) near completion of
Rancourt, Ann; Dufresne, Sébastien S; St-Pierre, Guillaume; Lévesque, Julie-Christine; Nakamura, Haruka; Kikuchi, Yodai; Satoh, Masahiko S; Frenette, Jérôme; Sato, Sachiko
2018-06-12
The muscle membrane, sarcolemma, must be firmly attached to the basal lamina. The failure of proper attachment results in muscle injury, which is the underlying cause of Duchenne muscular dystrophy (DMD), in which mutations in the dystrophin gene disrupts the firm adhesion. In patients with DMD, even moderate contraction causes damage, leading to progressive muscle degeneration. The damaged muscles are repaired through myogenesis. Consequently, myogenesis is highly active in patients with DMD, and the repeated activation of myogenesis leads to the exhaustion of the myogenic stem cells. Therefore, approaches to reducing the risk of the exhaustion are to develop a treatment that strengthens the interaction between the sarcolemma and the basal lamina and increases the efficiency of the myogenesis. Galectin-3 is an oligosaccharide-binding protein and is known to be involved in cell-cell interactions and cell-matrix interactions. Galectin-3 is expressed in myoblasts and skeletal muscle, although its function in muscle remains elusive. In this study, we found evidence that galectin-3 and the monosaccharide N-acetylglucosamine, which increases the synthesis of binding partners (oligosaccharides) of galectin-3, promote myogenesis in vitro. Moreover, in the mdx mouse model of DMD, treatment with N-acetylglucosamine increased muscle-force production. The results suggest that treatment with N-acetylglucosamine might mitigate the burden of DMD.-Rancourt, A., Dufresne, S. S., St-Pierre, G., Lévesque, J.-C., Nakamura, H., Kikuchi, Y., Satoh, M. S., Frenette, J., Sato, S. Galectin-3 and N-acetylglucosamine promote myogenesis and improve skeletal muscle function in the mdx model of Duchenne muscular dystrophy.
Guo, Dunwei; Wang, Chaoyi; Wang, Qiang; Qiao, Zhongpeng; Tang, Hua
2017-01-01
Objective Cancer cachexia is often present in patients with advanced malignant tumors, and the subsequent body weight reduction results in poor quality of life. However, there has been no progress in developing effective clinical therapeutic strategies for skeletal muscle wasting in cancer cachexia. Herein, we explored the functions of pantoprazole on cancer cachexia skeletal muscle wasting. Methods The mouse colon adenocarcinoma cell line C26 was inoculated in the right forelimb of male BALB/C mice to establish a cancer cachexia model. The animals were treated with or without different concentrations of pantoprazole orally, and the body weight, tumor growth, spontaneous activity, and muscle functions were determined at various time points. Two weeks later, the levels of serum IL-6 and TNF-α, the mRNA levels of gastrocnemius JAK2 and STAT3, and the expression levels of p-JAK2, p-STAT3, Fbx32, and MuRF1 were examined with ELISA assay, qRT-PCR assay, and Western blotting, respectively. Further studies were performed to assess the levels of Fbx32 and MuRF1 expression and morphological changes. Results Pantoprazole can alleviate cancer cachexia-induced body weight reduction and inhibit skeletal muscle wasting in a dose-dependent manner. Our results indicated that pantoprazole treatment can decrease the levels of serum IL-6 and TNF-α (56.3% and 67.6%, respectively), and inhibit the activation of the JAK2/STAT3 signaling pathway. Moreover, the expression levels of MuRF1 and Fbx32 were also suppressed after pantoprazole treatment. Conclusion Our findings suggested that pantoprazole can alleviate cancer cachexia skeletal muscle wasting by inhibiting the inflammatory response and blocking the JAK2/STAT3 or ubiquitin proteasome pathway. PMID:28489606
Guo, Dunwei; Wang, Chaoyi; Wang, Qiang; Qiao, Zhongpeng; Tang, Hua
2017-06-13
Cancer cachexia is often present in patients with advanced malignant tumors, and the subsequent body weight reduction results in poor quality of life. However, there has been no progress in developing effective clinical therapeutic strategies for skeletal muscle wasting in cancer cachexia. Herein, we explored the functions of pantoprazole on cancer cachexia skeletal muscle wasting. The mouse colon adenocarcinoma cell line C26 was inoculated in the right forelimb of male BALB/C mice to establish a cancer cachexia model. The animals were treated with or without different concentrations of pantoprazole orally, and the body weight, tumor growth, spontaneous activity, and muscle functions were determined at various time points. Two weeks later, the levels of serum IL-6 and TNF-α, the mRNA levels of gastrocnemius JAK2 and STAT3, and the expression levels of p-JAK2, p-STAT3, Fbx32, and MuRF1 were examined with ELISA assay, qRT-PCR assay, and Western blotting, respectively. Further studies were performed to assess the levels of Fbx32 and MuRF1 expression and morphological changes. Pantoprazole can alleviate cancer cachexia-induced body weight reduction and inhibit skeletal muscle wasting in a dose-dependent manner. Our results indicated that pantoprazole treatment can decrease the levels of serum IL-6 and TNF-α (56.3% and 67.6%, respectively), and inhibit the activation of the JAK2/STAT3 signaling pathway. Moreover, the expression levels of MuRF1 and Fbx32 were also suppressed after pantoprazole treatment. Our findings suggested that pantoprazole can alleviate cancer cachexia skeletal muscle wasting by inhibiting the inflammatory response and blocking the JAK2/STAT3 or ubiquitin proteasome pathway.
Resveratrol improves exercise performance and skeletal muscle oxidative capacity in heart failure.
Sung, Miranda M; Byrne, Nikole J; Robertson, Ian M; Kim, Ty T; Samokhvalov, Victor; Levasseur, Jody; Soltys, Carrie-Lynn; Fung, David; Tyreman, Neil; Denou, Emmanuel; Jones, Kelvin E; Seubert, John M; Schertzer, Jonathan D; Dyck, Jason R B
2017-04-01
We investigated whether treatment of mice with established pressure overload-induced heart failure (HF) with the naturally occurring polyphenol resveratrol could improve functional symptoms of clinical HF such as fatigue and exercise intolerance. C57Bl/6N mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Three weeks postsurgery, a cohort of mice with established HF (%ejection fraction <45) was administered resveratrol (~450 mg·kg -1 ·day -1 ) or vehicle for 2 wk. Although the percent ejection fraction was similar between both groups of HF mice, those mice treated with resveratrol had increased total physical activity levels and exercise capacity. Resveratrol treatment was associated with altered gut microbiota composition, increased skeletal muscle insulin sensitivity, a switch toward greater whole body glucose utilization, and increased basal metabolic rates. Although muscle mass and strength were not different between groups, mice with HF had significant declines in basal and ADP-stimulated O 2 consumption in isolated skeletal muscle fibers compared with sham mice, which was completely normalized by resveratrol treatment. Overall, resveratrol treatment of mice with established HF enhances exercise performance, which is associated with alterations in whole body and skeletal muscle energy metabolism. Thus, our preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in HF patients. NEW & NOTEWORTHY Resveratrol treatment of mice with heart failure leads to enhanced exercise performance that is associated with altered gut microbiota composition, increased whole body glucose utilization, and enhanced skeletal muscle metabolism and function. Together, these preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in heart failure via these mechanisms. Copyright © 2017 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Droguett, Rebeca; Cabello-Verrugio, Claudio; Santander, Cristian
2010-09-10
Skeletal muscle differentiation is strongly inhibited by transforming growth factor type {beta} (TGF-{beta}), although muscle formation as well as regeneration normally occurs in an environment rich in this growth factor. In this study, we evaluated the role of intracellular regulatory Smads proteins as well as TGF-{beta}-receptors (TGF-{beta}-Rs) during skeletal muscle differentiation. We found a decrease of TGF-{beta} signaling during differentiation. This phenomenon is explained by a decline in the levels of the regulatory proteins Smad-2, -3, and -4, a decrease in the phosphorylation of Smad-2 and lost of nuclear translocation of Smad-3 and -4 in response to TGF-{beta}. No changemore » in the levels and inhibitory function of Smad-7 was observed. In contrast, we found that TGF-{beta}-R type I (TGF-{beta}-RI) and type II (TGF-{beta}-RII) increased on the cell surface during skeletal muscle differentiation. To analyze the direct role of the serine/threonine kinase activities of TGF-{beta}-Rs, we used the specific inhibitor SB 431542 and the dominant-negative form of TGF-{beta}-RII lacking the cytoplasmic domain. The TGF-{beta}-Rs were important for successful muscle formation, determined by the induction of myogenin, creatine kinase activity, and myosin. Silencing of Smad-2/3 expression by specific siRNA treatments accelerated myogenin, myosin expression, and myotube formation; although when SB 431542 was present inhibition in myosin induction and myotube formation was observed, suggesting that these last steps of skeletal muscle differentiation require active TGF-{beta}-Rs. These results suggest that both down-regulation of Smad regulatory proteins and cell signaling through the TGF-{beta} receptors independent of Smad proteins are essential for skeletal muscle differentiation.« less
Zhang, Weiya; Xu, Yueyuan; Zhang, Lu; Wang, Sheng; Yin, Binxu; Zhao, Shuhong; Li, Xinyun
2018-06-04
Satellite cells play a key role in the aging, generation, and damage repair of skeletal muscle. The molecular mechanism of satellite cells in these processes remains largely unknown. This study systematically investigated for the first time the characteristics of mouse satellite cells at ten different ages. Results indicated that the number and differentiation capacity of satellite cells decreased with age during skeletal muscle development. Transcriptome analysis revealed that 2,907 genes were differentially expressed at six time points at postnatal stage. WGCNA and GO analysis indicated that 1,739 of the 2,907 DEGs were mainly involved in skeletal muscle development processes. Moreover, the results of WGCNA and protein interaction analysis demonstrated that Tgfβ2, Wnt9a, and Fgfr4 were the key genes responsible for the differentiation of satellite cells. Functional analysis showed that TGFβ2 and WNT9a inhibited, whereas FGFR4 promoted the differentiation of satellite cells. Furthermore, each two of them had a regulatory relationship at the protein level. In vivo study also confirmed that TGFβ2 could regulate the regeneration of skeletal muscle, as well as the expression of WNT9a and FGFR4. Therefore, we concluded that the synergistic effects of TGFβ2, WNT9a, and FGFR4 were responsible for attenuating of the differentiation of aging satellite cells during skeletal muscle development. This study provided new insights into the molecular mechanism of satellite cell development. The target genes and signaling pathways investigated in this study would be useful for improving the muscle growth of livestock or treating muscle diseases in clinical settings. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Neutral sphingomyelinase-3 mediates TNF-stimulated oxidant activity in skeletal muscle.
Moylan, Jennifer S; Smith, Jeffrey D; Wolf Horrell, Erin M; McLean, Julie B; Deevska, Gergana M; Bonnell, Mark R; Nikolova-Karakashian, Mariana N; Reid, Michael B
2014-01-01
Sphingolipid and oxidant signaling affect glucose uptake, atrophy, and force production of skeletal muscle similarly and both are stimulated by tumor necrosis factor (TNF), suggesting a connection between systems. Sphingolipid signaling is initiated by neutral sphingomyelinase (nSMase), a family of agonist-activated effector enzymes. Northern blot analyses suggest that nSMase3 may be a striated muscle-specific nSMase. The present study tested the hypothesis that nSMase3 protein is expressed in skeletal muscle and functions to regulate TNF-stimulated oxidant production. We demonstrate constitutive nSMase activity in skeletal muscles of healthy mice and humans and in differentiated C2C12 myotubes. nSMase3 (Smpd4 gene) mRNA is highly expressed in muscle. An nSMase3 protein doublet (88 and 85 kD) is derived from alternative mRNA splicing of exon 11. The proteins partition differently. The full-length 88 kD isoform (nSMase3a) fractionates with membrane proteins that are resistant to detergent extraction; the 85 kD isoform lacking exon 11 (nSMase3b) is more readily extracted and fractionates with detergent soluble membrane proteins; neither variant is detected in the cytosol. By immunofluorescence microscopy, nSMase3 resides in both internal and sarcolemmal membranes. Finally, myotube nSMase activity and cytosolic oxidant activity are stimulated by TNF. Both if these responses are inhibited by nSMase3 knockdown. These findings identify nSMase3 as an intermediate that links TNF receptor activation, sphingolipid signaling, and skeletal muscle oxidant production. Our data show that nSMase3 acts as a signaling nSMase in skeletal muscle that is essential for TNF-stimulated oxidant activity.
Nyberg, Michael; Piil, Peter; Egelund, Jon; Sprague, Randy S; Mortensen, Stefan P; Hellsten, Ylva
2015-01-01
Aging is associated with progressive loss of cardiovascular and skeletal muscle function. The impairment in physical capacity with advancing age could be related to an insufficient peripheral O2 delivery to the exercising muscles. Furthermore, the mechanisms underlying an impaired blood flow regulation remain unresolved. Cyclic guanosine monophosphate (cGMP) is one of the main second messengers that mediate smooth muscle vasodilation and alterations in cGMP signaling could, therefore, be one mechanism by which skeletal muscle perfusion is impaired with advancing age. The current study aimed to evaluate the effect of inhibiting the main enzyme involved in cGMP degradation, phosphodiesterase 5 (PDE5), on blood flow and O2 delivery in contracting skeletal muscle of young and older humans. A group of young (23 ± 1 years) and a group of older (72 ± 2 years) male human subjects performed submaximal knee-extensor exercise in a control setting and following intake of the highly selective PDE5 inhibitor sildenafil. Sildenafil increased leg O2 delivery (6–9%) and leg O2 uptake (10–12%) at all three exercise intensities in older but not young subjects. The increase in leg O2 delivery with sildenafil in the older subjects correlated with the increase in leg O2 uptake (r2 = 0.843). These findings suggest an insufficient O2 delivery to the contracting skeletal muscle of aged individuals and that reduced cGMP availability is a novel mechanism underlying impaired skeletal muscle perfusion with advancing age. PMID:26272735