Science.gov

Sample records for skeletal muscle stimulates

  1. Regulation of exercise-stimulated glucose uptake in skeletal muscle

    PubMed Central

    2016-01-01

    AMP-activated protein kinase (AMPK) is a Ser/Thr kinase that has been thought to be an important mediator for exercise-stimulated glucose uptake in skeletal muscle. Liver kinase B1 (LKB1) is an upstream kinase for AMPK and AMPK-related protein kinases, of which the function in skeletal muscle has not been well documented. Our group and others have generated mice lacking AMPK activity in skeletal muscle, as well as muscle-specific LKB1 knockout mice. In this review, we discuss the potential role of AMPK and LKB1 in regulating exercise-stimulated glucose uptake in skeletal muscle. We also discuss our recent study, demonstrating the molecular mechanism of obesity-induced development of skeletal muscle insulin resistance. PMID:27462580

  2. Neuromuscular Electrical Stimulation for Skeletal Muscle Function

    PubMed Central

    Doucet, Barbara M.; Lam, Amy; Griffin, Lisa

    2012-01-01

    Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES). This review covers the aspects of electrical stimulation used for rehabilitation and functional purposes. Discussed are the various parameters of electrical stimulation, including frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, and muscle group activated, and how they affect fatigue in the stimulated muscle. PMID:22737049

  3. Mechanical stimulation improves tissue-engineered human skeletal muscle

    NASA Technical Reports Server (NTRS)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  4. Skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  5. External physical and biochemical stimulation to enhance skeletal muscle bioengineering

    PubMed Central

    Plock, Jan; Eberli, Daniel

    2015-01-01

    Purpose of review Cell based muscle tissue engineering carries the potential to revert the functional loss of muscle tissue caused by disease and trauma. Although muscle tissue can be bioengineered using various precursor cells, major limitations still remain. Recent findings In the last decades several cellular pathways playing a crucial role in muscle tissue regeneration have been described. These pathways can be influenced by external stimuli and they not only orchestrate the regenerative process after physiologic wear and muscle trauma, but they also play an important part in aging and maintaining the stem cell niche, which is required to maintain long-term muscle function. Summary In this review article we will highlight possible new avenues using external physical and biochemical stimulation in order to optimize muscle bioengineering. PMID:25453267

  6. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM--mechanism of growth hormone stimulation of skeletal muscle growth in cattle.

    PubMed

    Jiang, H; Ge, X

    2014-01-01

    Growth hormone, also called somatotropin (ST), is a polypeptide hormone produced by the anterior pituitary. The major functions of GH include stimulating bone and skeletal muscle growth, lipolysis, milk production, and expression of the IGF-I gene in the liver. Based on these functions, recombinant bovine ST (bST) and recombinant porcine ST (pST) have been used to improve milk production in dairy cows and lean tissue growth in pigs, respectively. However, despite these applications, the mechanisms of action of GH are not fully understood. Indeed, there has been a lot of controversy over the role of liver-derived circulating IGF-I and locally produced IGF-I in mediating the growth-stimulatory effect of GH during the last 15 yr. It is in this context that we have conducted studies to further understand how GH stimulates skeletal muscle growth in cattle. Our results do not support a role of skeletal muscle-derived IGF-I in GH-stimulated skeletal muscle growth in cattle. Our results indicate that GH stimulates skeletal muscle growth in cattle, in part, by stimulating protein synthesis in muscle through a GH receptor-mediated, IGF-I-independent mechanism. In this review, besides discussing these results, we also argue that liver-derived circulating IGF-I should be still considered as the major mechanism that mediates the growth-stimulatory effect of GH on skeletal muscle in cattle and other domestic animals.

  7. Neuronal nitric oxide synthase is phosphorylated in response to insulin stimulation in skeletal muscle

    PubMed Central

    Hinchee-Rodriguez, Kathryn; Garg, Neha; Venkatakrishnan, Priya; Roman, Madeline G.; Adamo, Martin L.; Masters, Bettie Sue; Roman, Linda J.

    2013-01-01

    Type 2 Diabetes (T2DM) is the seventh leading cause of death in the United States, and is quickly becoming a global pandemic. T2DM results from reduced insulin sensitivity coupled with a relative failure of insulin secretion. Reduced insulin sensitivity has been associated with reduced nitric oxide synthase (NOS) activity and impaired glucose uptake in T2DM skeletal muscle. Upon insulin stimulation, NO synthesis increases in normal adult skeletal muscle, whereas no such increase is observed in T2DM adults. Endothelial NOS is activated by phosphorylation in the C-terminal tail in response to insulin. Neuronal NOS (nNOS), the primary NOS isoform in skeletal muscle, contains a homologous phosphorylation site, raising the possibility that nNOS, too, may undergo an activating phosphorylation event upon insulin treatment. Yet it remains unknown if or how nNOS is regulated by insulin in skeletal muscle. Data shown herein indicate that nNOS is phosphorylated in response to insulin in skeletal muscle and that this phosphorylation event occurs rapidly in C2C12 myotubes, resulting in increased NO production. In vivo phosphorylation of nNOS was also observed in response to insulin in mouse skeletal muscle. These results indicate, for the first time, that nNOS is phosphorylated in skeletal muscle in response to insulin and in association with increased NO production. PMID:23680665

  8. Neuronal nitric oxide synthase is phosphorylated in response to insulin stimulation in skeletal muscle.

    PubMed

    Hinchee-Rodriguez, Kathryn; Garg, Neha; Venkatakrishnan, Priya; Roman, Madeline G; Adamo, Martin L; Masters, Bettie Sue; Roman, Linda J

    2013-06-01

    Type 2 Diabetes (T2DM) is the seventh leading cause of death in the United States, and is quickly becoming a global pandemic. T2DM results from reduced insulin sensitivity coupled with a relative failure of insulin secretion. Reduced insulin sensitivity has been associated with reduced nitric oxide synthase (NOS) activity and impaired glucose uptake in T2DM skeletal muscle. Upon insulin stimulation, NO synthesis increases in normal adult skeletal muscle, whereas no such increase is observed in T2DM adults. Endothelial NOS is activated by phosphorylation in the C-terminal tail in response to insulin. Neuronal NOS (nNOS), the primary NOS isoform in skeletal muscle, contains a homologous phosphorylation site, raising the possibility that nNOS, too, may undergo an activating phosphorylation event upon insulin treatment. Yet it remains unknown if or how nNOS is regulated by insulin in skeletal muscle. Data shown herein indicate that nNOS is phosphorylated in response to insulin in skeletal muscle and that this phosphorylation event occurs rapidly in C2C12 myotubes, resulting in increased NO production. In vivo phosphorylation of nNOS was also observed in response to insulin in mouse skeletal muscle. These results indicate, for the first time, that nNOS is phosphorylated in skeletal muscle in response to insulin and in association with increased NO production. PMID:23680665

  9. A novel bioreactor for stimulating skeletal muscle in vitro.

    PubMed

    Donnelly, Kenneth; Khodabukus, Alastair; Philp, Andrew; Deldicque, Louise; Dennis, Robert G; Baar, Keith

    2010-08-01

    For over 300 years, scientists have understood that stimulation, in the form of an electrical impulse, is required for normal muscle function. More recently, the role of specific parameters of the electrical impulse (i.e., the pulse amplitude, pulse width, and work-to-rest ratio) has become better appreciated. However, most existing bioreactor systems do not permit sufficient control over these parameters. Therefore, the aim of the current study was to engineer an inexpensive muscle electrical stimulation bioreactor to apply physiologically relevant electrical stimulation patterns to tissue-engineered muscles and monolayers in culture. A low-powered microcontroller and a DC-DC converter were used to power a pulse circuit that converted a 4.5 V input to outputs of up to 50 V, with pulse widths from 0.05 to 4 ms, and frequencies up to 100 Hz (with certain operational limitations). When two-dimensional cultures were stimulated at high frequencies (100 Hz), this resulted in an increase in the rate of protein synthesis (at 12 h, control [CTL] = 5.0 + or - 0.16; 10 Hz = 5.0 + or - 0.07; and 100 Hz = 5.5 + or - 0.13 fmol/min/mg) showing that this was an anabolic signal. When three-dimensional engineered muscles were stimulated at 0.1 ms and one or two times rheobase, stimulation improved force production (CTL = 0.07 + or - 0.009; 1.25 V/mm = 0.10 + or - 0.011; 2.5 V/mm = 0.14146 + or - 0.012; and 5 V/mm = 0.03756 + or - 0.008 kN/mm(2)) and excitability (CTL = 0.53 + or - 0.022; 1.25 V/mm = 0.44 + or - 0.025; 2.5 V/mm = 0.41 + or - 0.012; and 5 V/mm = 0.60 + or - 0.021 V/mm), suggesting enhanced maturation. Together, these data show that the physiology and function of muscles can be improved in vitro using a bioreactor that allows the control of pulse amplitude, pulse width, pulse frequency, and work-to-rest ratio.

  10. Rac1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle.

    PubMed

    Sylow, Lykke; Jensen, Thomas E; Kleinert, Maximilian; Mouatt, Joshua R; Maarbjerg, Stine J; Jeppesen, Jacob; Prats, Clara; Chiu, Tim T; Boguslavsky, Shlomit; Klip, Amira; Schjerling, Peter; Richter, Erik A

    2013-04-01

    In skeletal muscle, the actin cytoskeleton-regulating GTPase, Rac1, is necessary for insulin-dependent GLUT4 translocation. Muscle contraction increases glucose transport and represents an alternative signaling pathway to insulin. Whether Rac1 is activated by muscle contraction and regulates contraction-induced glucose uptake is unknown. Therefore, we studied the effects of in vivo exercise and ex vivo muscle contractions on Rac1 signaling and its regulatory role in glucose uptake in mice and humans. Muscle Rac1-GTP binding was increased after exercise in mice (~60-100%) and humans (~40%), and this activation was AMP-activated protein kinase independent. Rac1 inhibition reduced contraction-stimulated glucose uptake in mouse muscle by 55% in soleus and by 20-58% in extensor digitorum longus (EDL; P < 0.01). In agreement, the contraction-stimulated increment in glucose uptake was decreased by 27% (P = 0.1) and 40% (P < 0.05) in soleus and EDL muscles, respectively, of muscle-specific inducible Rac1 knockout mice. Furthermore, depolymerization of the actin cytoskeleton decreased contraction-stimulated glucose uptake by 100% and 62% (P < 0.01) in soleus and EDL muscles, respectively. These are the first data to show that Rac1 is activated during muscle contraction in murine and human skeletal muscle and suggest that Rac1 and possibly the actin cytoskeleton are novel regulators of contraction-stimulated glucose uptake.

  11. Neuromuscular electrical stimulation attenuates thigh skeletal muscles atrophy but not trunk muscles after spinal cord injury.

    PubMed

    Gorgey, Ashraf S; Dolbow, David R; Cifu, David X; Gater, David R

    2013-08-01

    The current study examined the effects of 12weeks of surface neuromuscular electrical stimulation (NMES) and ankle weights on the cross-sectional areas (CSAs) of three thigh [Gracilis (Gra), Sartorious (Sar) and Adductor (Add)] as well as two trunk [hip flexor (HF) and back extensor (BE)] muscle groups in men with spinal cord injury (SCI). Seven individuals with chronic motor complete SCI were randomly assigned into a resistance training +diet (RT+diet; n=4) or diet control (n=3) groups. The RT+diet group underwent twice weekly training with surface NMES and ankle weights for 12weeks. Training composed of four sets of 10 repetitions of leg extension exercise while sitting in their wheelchairs. Both groups were asked to monitor their dietary intake. Magnetic resonance images were captured before and after 12weeks of interventions. Gra muscle CSA showed no change before and after interventions. A significant interaction (P=0.001) was noted between both groups as result of 9% increase and 10% decrease in the Gra muscle CSA of the RT+diet and diet groups, respectively. Sar muscle CSA increased [1.7±0.4-2.5±0.5cm(2); P=0.029] in the RT+diet group with no change [2.9±1.4-2.6±1.3cm(2)] in the diet group; with interaction noted between both groups (P=0.002). Analysis of covariance indicated that Add muscle CSA was 38% greater in the RT+diet compared to the diet group (P=0.025) after 12weeks; a trend of interaction was also noted between both groups (P=0.06). HF and BE muscle groups showed no apparent changes in CSA in both groups. The results suggested that surface NMES can delay the process of progressive skeletal muscle atrophy after chronic SCI. However, the effects are localized to the trained thigh muscles and do not extend to the proximal trunk muscles.

  12. Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle.

    PubMed

    Lesmana, Ronny; Sinha, Rohit A; Singh, Brijesh K; Zhou, Jin; Ohba, Kenji; Wu, Yajun; Yau, Winifred W Y; Bay, Boon-Huat; Yen, Paul M

    2016-01-01

    Thyroid hormone (TH) and autophagy share similar functions in regulating skeletal muscle growth, regeneration, and differentiation. Although TH recently has been shown to increase autophagy in liver, the regulation and role of autophagy by this hormone in skeletal muscle is not known. Here, using both in vitro and in vivo models, we demonstrated that TH induces autophagy in a dose- and time-dependent manner in skeletal muscle. TH induction of autophagy involved reactive oxygen species (ROS) stimulation of 5'adenosine monophosphate-activated protein kinase (AMPK)-Mammalian target of rapamycin (mTOR)-Unc-51-like kinase 1 (Ulk1) signaling. TH also increased mRNA and protein expression of key autophagy genes, microtubule-associated protein light chain 3 (LC3), Sequestosome 1 (p62), and Ulk1, as well as genes that modulated autophagy and Forkhead box O (FOXO) 1/3a. TH increased mitochondrial protein synthesis and number as well as basal mitochondrial O2 consumption, ATP turnover, and maximal respiratory capacity. Surprisingly, mitochondrial activity and biogenesis were blunted when autophagy was blocked in muscle cells by Autophagy-related gene (Atg)5 short hairpin RNA (shRNA). Induction of ROS and 5'adenosine monophosphate-activated protein kinase (AMPK) by TH played a significant role in the up-regulation of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A), the key regulator of mitochondrial synthesis. In summary, our findings showed that TH-mediated autophagy was essential for stimulation of mitochondrial biogenesis and activity in skeletal muscle. Moreover, autophagy and mitochondrial biogenesis were coupled in skeletal muscle via TH induction of mitochondrial activity and ROS generation. PMID:26562261

  13. Contraction and AICAR Stimulate IL-6 Vesicle Depletion From Skeletal Muscle Fibers In Vivo

    PubMed Central

    Lauritzen, Hans P.M.M.; Brandauer, Josef; Schjerling, Peter; Koh, Ho-Jin; Treebak, Jonas T.; Hirshman, Michael F.; Galbo, Henrik; Goodyear, Laurie J.

    2013-01-01

    Recent studies suggest that interleukin 6 (IL-6) is released from contracting skeletal muscles; however, the cellular origin, secretion kinetics, and signaling mechanisms regulating IL-6 secretion are unknown. To address these questions, we developed imaging methodology to study IL-6 in fixed mouse muscle fibers and in live animals in vivo. Using confocal imaging to visualize endogenous IL-6 protein in fixed muscle fibers, we found IL-6 in small vesicle structures distributed throughout the fibers under basal (resting) conditions. To determine the kinetics of IL-6 secretion, intact quadriceps muscles were transfected with enhanced green fluorescent protein (EGFP)-tagged IL-6 (IL-6-EGFP), and 5 days later anesthetized mice were imaged before and after muscle contractions in situ. Contractions decreased IL-6-EGFP–containing vesicles and protein by 62% (P < 0.05), occurring rapidly and progressively over 25 min of contraction. However, contraction-mediated IL-6-EGFP reduction was normal in muscle-specific AMP-activated protein kinase (AMPK) α2-inactive transgenic mice. In contrast, the AMPK activator AICAR decreased IL-6-EGFP vesicles, an effect that was inhibited in the transgenic mice. In conclusion, resting skeletal muscles contain IL-6–positive vesicles that are expressed throughout myofibers. Contractions stimulate the rapid reduction of IL-6 in myofibers, occurring through an AMPKα2-independent mechanism. This novel imaging methodology clearly establishes IL-6 as a contraction-stimulated myokine and can be used to characterize the secretion kinetics of other putative myokines. PMID:23761105

  14. Role of skeletal muscle mitochondrial density on exercise-stimulated lipid oxidation.

    PubMed

    Galgani, Jose E; Johannsen, Neil M; Bajpeyi, Sudip; Costford, Sheila R; Zhang, Zhengyu; Gupta, Alok K; Ravussin, Eric

    2012-07-01

    Reduced skeletal muscle mitochondrial density is proposed to lead to impaired muscle lipid oxidation and increased lipid accumulation in sedentary individuals. We assessed exercise-stimulated lipid oxidation by imposing a prolonged moderate-intensity exercise in men with variable skeletal muscle mitochondrial density as measured by citrate synthase (CS) activity. After a 2-day isoenergetic high-fat diet, lipid oxidation was measured before and during exercise (650 kcal at 50% VO(2)max) in 20 healthy men with either high (HI-CS = 24 ± 1; mean ± s.e.) or low (LO-CS = 17 ± 1 nmol/min/mg protein) muscle CS activity. Vastus lateralis muscle biopsies were obtained before and immediately after exercise. Respiratory exchange data and blood samples were collected at rest and throughout the exercise. HI-CS subjects had higher VO(2)max (50 ± 1 vs. 44 ± 2 ml/kg fat free mass/min; P = 0.01), lower fasting respiratory quotient (RQ) (0.81 ± 0.01 vs. 0.85 ± 0.01; P = 0.04) and higher ex vivo muscle palmitate oxidation (866 ± 168 vs. 482 ± 78 nmol/h/mg muscle; P = 0.05) compared to LO-CS individuals. However, whole-body exercise-stimulated lipid oxidation (20 ± 2 g vs. 19 ± 1 g; P = 0.65) and plasma glucose, lactate, insulin, and catecholamine responses were similar between the two groups. In conclusion, in response to the same energy demand during a moderate prolonged exercise bout, reliance on lipid oxidation was similar in individuals with high and low skeletal muscle mitochondrial density. This data suggests that decreased muscle mitochondrial density may not necessarily impair reliance on lipid oxidation over the course of the day since it was normal under a high-lipid oxidative demand condition. Twenty-four-hour lipid oxidation and its relationship with mitochondrial density need to be assessed. PMID:21681225

  15. Lesions of rat skeletal muscle after local block of acetylcholinesterase and neuromuscular stimulation.

    PubMed

    Mense, S; Simons, D G; Hoheisel, U; Quenzer, B

    2003-06-01

    In skeletal muscle, a local increase of acetylcholine (ACh) in a few end plates has been hypothesized to cause the formation of contraction knots that can be found in myofascial trigger points. To test this hypothesis in rats, small amounts of an acetylcholinesterase inhibitor [diisopropylfluorophosphate (DFP)] were injected into the proximal half of the gastrocnemius muscle, and the muscle nerve was electrically stimulated for 30-60 min for induction of muscle twitches. The distal half of the muscle, which performed the same contractions, served as a control to assess the effects of the twitches without DFP. Sections of the muscle were evaluated for morphological changes in relation to the location of blocked end plates. Compared with the distal half of the muscle, the DFP-injected proximal half exhibited significantly higher numbers of abnormally contracted fibers (local contractures), torn fibers, and longitudinal stripes. DFP-injected animals in which the muscle nerve was not stimulated and that were allowed to survive for 24 h exhibited the same lesions but in smaller numbers. The data indicate that an increased concentration of ACh in a few end plates causes damage to muscle fibers. The results support the assumption that a dysfunctional end plate exhibiting increased release of ACh may be the starting point for regional abnormal contractions, which are thought to be essential for the formation of myofascial trigger points.

  16. Different alterations in the insulin-stimulated glucose uptake in the athlete's heart and skeletal muscle.

    PubMed Central

    Nuutila, P; Knuuti, M J; Heinonen, O J; Ruotsalainen, U; Teräs, M; Bergman, J; Solin, O; Yki-Järvinen, H; Voipio-Pulkki, L M; Wegelius, U

    1994-01-01

    Physical training increases skeletal muscle insulin sensitivity. Since training also causes functional and structural changes in the myocardium, we compared glucose uptake rates in the heart and skeletal muscles of trained and untrained individuals. Seven male endurance athletes (VO2max 72 +/- 2 ml/kg/min) and seven sedentary subjects matched for characteristics other than VO2max (43 +/- 2 ml/kg/min) were studied. Whole body glucose uptake was determined with a 2-h euglycemic hyperinsulinemic clamp, and regional glucose uptake in femoral and arm muscles, and myocardium using 18F-fluoro-2-deoxy-D-glucose and positron emission tomography. Glucose uptake in the athletes was increased by 68% in whole body (P < 0.0001), by 99% in the femoral muscles (P < 0.01), and by 62% in arm muscles (P = 0.06), but it was decreased by 33% in the heart muscle (P < 0.05) as compared with the sedentary subjects. The total glucose uptake rate in the heart was similar in the athletes and control subjects. Left ventricular mass in the athletes was 79% greater (P < 0.001) and the meridional wall stress smaller (P < 0.001) as estimated by echocardiography. VO2max correlated directly with left ventricular mass (r = 0.87, P < 0.001) and inversely with left ventricular wall stress (r = -0.86, P < 0.001). Myocardial glucose uptake correlated directly with the rate-pressure product (r = 0.75, P < 0.02) and inversely with left ventricular mass (r = -0.60, P < 0.05) or with the whole body glucose disposal (r = -0.68, P < 0.01). Thus, in athletes, (a) insulin-stimulated glucose uptake is enhanced in the whole body and skeletal muscles, (b) whereas myocardial glucose uptake per muscle mass is reduced possibly due to decreased wall stress and energy requirements or the use of alternative fuels, or both. Images PMID:8182160

  17. Energy metabolism of skeletal muscle biopsies stimulated anaerobically without load in vitro.

    PubMed

    Young, D A; Chi, M M; Lowry, O H

    1986-06-01

    This study was made to test the validity of a simple biopsy technique for assessing the metabolic capacity of skeletal muscle. The biopsy is stimulated under mineral oil without attachment, i.e., without load or tension, then freeze-clamped and assayed for ATP, phosphocreatine, glucose 6-phosphate, and lactate. The mineral oil creates a closed anaerobic system. Background studies demonstrated in the absence of a load, metabolic changes with stimulation were little affected by cutting the fibers to obtain the biopsy; and high-energy phosphate (approximately P) consumption during a brief tetanus was not much lower than that for an isometric tetanus. Individual fast-twitch oxidative-glycolytic (IIA) and fast-twitch glycolytic (IIB) fibers obtained from the freeze-clamped biopsy showed distinct differences in approximately P consumption and metabolic changes. The results indicate that this technique could be useful for studies of normal and pathological human muscle.

  18. Mechanical stimulation of skeletal muscle mitigates glucocorticoid induced decreases in prostaglandin synthesis

    NASA Technical Reports Server (NTRS)

    Chromiak, Joseph A.; Vandenburgh, Herman H.

    1993-01-01

    The glucocorticoid dexamethasone (Dex) induces a decline in protein synthesis and protein content of tissue cultured, avian skeletal muscle cells, and this atrophy is attenuated by repetitive mechanical stretch. Since the prostaglandin synthesis inhibitor indomethacin mitigated this stretch attenuation of muscle atrophy, the role of prostaglandins as growth modulators in these processes was examined. Dex at 10(exp -8) M reduced PGF(sub 2(alpha)) production 55 percent - 65 percent and PGE(sub 2) production 84 - 90 percent after 24 - 72 h of incubation in static cultures. Repetitive 10 percent stretch-relaxations of the non-Dex treated cultures increased PGF(sub 2(alpha)) efflux 41 percent at 24 h and 276 percent at 72 h and increased PGE(sub 2) production 51 percent at 24 h and 236 percent at 72 h. Mechanical stimulation of Dex treated cultures increased PGF(sub 2(alpha)) production 162 percent after 24 h, thus returning PGF(sub 2(alpha)) efflux to the level of non-Dex treated cultures. At 72 h, stretch increased PGF(sub 2(alpha)) efflux 65 percent in Dex treated cultures, but PGF(sub 2(alpha)) production was 45-84 percent less than non-Dex treated cultures. Mechanical stimulation of Dex treated cultures increased PGE(sub 2) production at 24 h, but not at 72 h. Dex reduced prostaglandin H synthase (PGHS) activity in the muscle cultures by 70 percent after 8 - 24 h of incubation, and mechanical stimulation increased PGHS activity of the Dex treated cultures by 98 percent. It is concluded that repetitive mechanical stimulation attenuates the catabolic effects of Dex on cultured skeletal muscle cells in part by reversing the Dex-induced declines in PGHS activity and prostaglandin production.

  19. Inhibitory Effect of Epinephrine on Insulin-stimulated Glucose Uptake by Rat Skeletal Muscle

    PubMed Central

    Chiasson, Jean-Louis; Shikama, Hisataka; Chu, David T. W.; Exton, John H.

    1981-01-01

    The effect of epinephrine on basal and insulin-stimulated glucose uptake in perfused hindlimbs of fed rats was studied. Insulin increased glucose uptake in a dose-dependent manner from a basal value of 1.5±0.3 up to a maximum value of 5.3±0.9 μmol/min per 100 g with 6 nM (1 m U/ml). Epinephrine at 10 nM and 0.1 μM also increased glucose uptake to 2.6±0.1 and 3.1±0.1 μmol/min per 100 g, respectively. These same concentrations of epinephrine, however, suppressed the insulin-stimulated glucose uptake to 3.2±0.3 μmol/min per 100 g. Both the stimulatory and inhibitory effects of epinephrine on glucose uptake were completely reversed by propranolol, but were not significantly altered by phentolamine. Uptake of 3-O-methylglucose and 2-deoxyglucose into thigh muscles of the perfused hindlimbs was stimulated fivefold by insulin, but was unaffected by epinephrine. Epinephrine also did not inhibit the stimulation of uptake by insulin. Epinephrine decreased the phosphorylation of 2-deoxyglucose, however, and caused the intracellular accumulation of free glucose. These last two effects were more prominent in the presence of insulin. Whereas epinephrine caused large rises in glucose-6-P and fructose-6-P, insulin did not alter the concentration of these metabolites either in the absence or presence of epinephrine. These data indicate that: (a) epinephrine has a stimulatory effect on glucose uptake by perfused rat hindlimbs that does not appear to be exerted on skeletal muscle; (b) epinephrine does not affect hexose transport in skeletal muscle; (c) epinephrine inhibits insulin-stimulated glucose uptake in skeletal muscle by inhibiting glucose phosphorylation. It is hypothesized that the inhibition of glucose phosphorylation is due to the stimulation of glycogenolysis, which leads to the accumulation of hexose phosphates, which inhibit hexokinase. PMID:6115864

  20. Feeding Aspergillus awamori reduces skeletal muscle protein breakdown and stimulates growth in broilers.

    PubMed

    Saleh, Ahmed A; Eid, Yahya Z; Ebeid, Tarek A; Ohtsuka, Akira; Yamamoto, Masahiro; Hayashi, Kunioki

    2012-08-01

    This study was conducted to show that dietary supplementation of a fungus, Aspergillus awamori called Koji in Japan, reduces skeletal muscle protein breakdown and stimulates growth in broiler chickens. A total of 30 chicks at 15 days of age was divided into control and two treatment groups (10 birds per treatment). Control group was fed basal diet and treatment groups were fed the basal diets supplemented with A. awamori at levels of 0.05% and 0.2%. The birds were raised for 12 days from 15 to 27 days of age and then the effect on growth, organ weights and plasma 3-methylhistidine concentration and digestibilities of protein and energy was evaluated. The messenger RNAs (mRNAs) of atrogin-1, ubiquitin, proteasome, m-calpain, µ-calpain, β-actin, myosin and pax-7 in the breast muscle were also measured. Body weight gain and breast muscle weight were increased, although feed intake was decreased by the fungus and thus feed efficiency was increased. Protein and energy digestibilities were increased. Furthermore, plasma 3-methylhistidine concentration was decreased by the fungus. The mRNAs of atrogin-1, ubiquitin, proteasome, m-calpain and µ-calpain were all decreased. The mRNA of β-actin but not myosin and pax-7 was slightly increased by the fungus. In conclusion, feeding A. awamori improves growth performance because skeletal muscle proteolytic activity is reduced and digestibilities of energy and protein are increased.

  1. Alpha-galactosidase stimulates acetylcholine receptor aggregation in skeletal muscle cells via PNA-binding carbohydrates.

    PubMed

    Parkhomovskiy, N; Martin, P T

    2000-04-21

    Aggregation of nicotinic acetylcholine receptors (AChRs) in skeletal muscle is an essential step in the formation of the mammalian neuromuscular junction. While proteins that bind to myotube receptors such as agrin and laminin can stimulate AChR aggregation in cultured myotubes, removal of cell surface sialic acids stimulates aggregation in a ligand-independent manner. Here, we show that removal of cell surface alpha-galactosides also stimulates AChR aggregation in the absence of added laminin or agrin. AChR aggregation stimulated by alpha-galactosidase was blocked by peanut agglutinin (PNA), which binds to lactosamine-containing disaccharides, but not by the GalNAc-binding lectin Vicia villosa agglutinin (VVA-B4). AChR aggregation stimulated by alpha-galactosidase potentiated AChR clustering induced by either neural agrin or laminin-1 and could be inhibited by muscle agrin. These data suggest that capping of cell surface lactosamines or N-acetyllactosamines with alpha-galactose affects AChR aggregation much as capping with sialic acids does.

  2. Effects of acetylcholine and electrical stimulation on glial cell line-derived neurotrophic factor production in skeletal muscle cells.

    PubMed

    Vianney, John-Mary; Miller, Damon A; Spitsbergen, John M

    2014-11-01

    Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor required for survival of neurons in the central and peripheral nervous system. Specifically, GDNF has been characterized as a survival factor for spinal motor neurons. GDNF is synthesized and secreted by neuronal target tissues, including skeletal muscle in the peripheral nervous system; however, the mechanisms by which GDNF is synthesized and released by skeletal muscle are not fully understood. Previous results suggested that cholinergic neurons regulate secretion of GDNF by skeletal muscle. In the current study, GDNF production by skeletal muscle myotubes following treatment with acetylcholine was examined. Acetylcholine receptors on myotubes were identified with labeled alpha-bungarotoxin and were blocked using unlabeled alpha-bungarotoxin. The question of whether electrical stimulation has a similar effect to that of acetylcholine was also investigated. Cells were stimulated with voltage pulses; at 1 and 5 Hz frequencies for times ranging from 30 min to 48 h. GDNF content in myotubes and GDNF in conditioned culture medium were quantified by enzyme-linked immunosorbant assay. Results suggest that acetylcholine and short-term electrical stimulation reduce GDNF secretion, while treatment with carbachol or long-term electrical stimulation enhances GDNF production by skeletal muscle.

  3. Mechanical stimulation of skeletal muscle generates lipid-related second messengers by phospholipase activation

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.; Shansky, J.; Karlisch, P.; Solerssi, R. L.

    1993-01-01

    Repetitive mechanical stimulation of cultured avian skeletal muscle increases the synthesis of prostaglandins (PG) E2 and F2 alpha which regulate protein turnover rates and muscle cell growth. These stretch-induced PG increases are reduced in low extracellular calcium medium and by specific phospholipase inhibitors. Mechanical stimulation increases the breakdown rate of 3H-arachidonic acid labelled phospholipids, releasing free 3H-arachidonic acid, the rate-limiting precursor of PG synthesis. Mechanical stimulation also increases 3H-arachidonic acid labelled diacylglycerol formation and intracellular levels of inositol phosphates from myo-[2-3H]inositol labelled phospholipids. Phospholipase A2 (PLA2), phosphatidylinositol-specific phospholipase C (PLC), and phospholipase D (PLD) are all activated by stretch. The stretch-induced increases in PG production, 3H-arachidonic acid labelled phospholipid breakdown, and 3H-arachidonic acid labelled diacylglycerol formation occur independently of cellular electrical activity (tetrodotoxin insensitive) whereas the formation of inositol phosphates from myo-[2-3H]inositol labelled phospholipids is dependent on cellular electrical activity. These results indicate that mechanical stimulation increases the lipid-related second messengers arachidonic acid, diacylglycerol, and PG through activation of specific phospholipases such as PLA2 and PLD, but not by activation of phosphatidylinositol-specific PLC.

  4. Mechanical stimulation of skeletal muscle generates lipid-related second messengers by phospholipase activation

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Shansky, Janet; Karlisch, Patricia; Solerssi, Rosa Lopez

    1991-01-01

    Repetitive mechanical stimulation of cultured avian skeletal muscle increases the synthesis of prostaglandins E2 and F2(alpha) which regulate protein turnover rates and muscle cell growth. Mechnical stimulation significantly increases the breakdown rate of (3)H-arachidonic acid labelled phospholipids, releasing free (3)H-arachidonic acid, and the rate-limiting precursor of prostaglandin synthesis. Mechanical stimulation also significantly increases (3)H-arachidonic acid labelled diacylglycerol formation and intracellular levels of inositol phosphates from myo-2-(3)H inositol labelled phospholipids. Phospholipase A2, phosphatidylinositol-specific phospholipase C (PLC), and phospholipase D (PLD) are activated by stretch. The lipase inhibitors bromophenacylbromide and RHC80267 together reduce stretch-induced prostaglandin production by 73-83 percent. The stretch-induced increases in prostaglandin production, (3)H-arachidonic acid labelled phospholipid breakdown, and (3)H-arachidonic acid labelled diacylglycerol formation occur independently of cellular electrical activity (tetrodotoxin insensitive) whereas the formation of inositol phosphates from myo-2-(3)H inositol labelled phospholipids are dependent on cellular electrical activity. These results indicate that mechanical stimulation increases the lipid-related second messengers arachidonic acid, diacylglycerol, and prostaglandins through activation of specific phospholipases such as PLA2 and PLD, but not by activation of phosphatidylinositol-specific PLC.

  5. The interrelation between aPKC and glucose uptake in the skeletal muscle during contraction and insulin stimulation.

    PubMed

    Santos, J M; Benite-Ribeiro, S A; Queiroz, G; Duarte, J A

    2014-12-01

    Contraction and insulin increase glucose uptake in skeletal muscle. While the insulin pathway, better characterized, requires activation of phosphoinositide 3-kinase (PI3K) and atypical protein kinase (aPKC), muscle contraction seems to share insulin-activated components to increase glucose uptake. This study aimed to investigate the interrelation between the pathway involved in glucose uptake evoked by insulin and muscle contraction. Isolated muscle of rats was treated with solvent (control), insulin, wortmannin (PI3K inhibitor) and the combination of insulin plus wortmannin. After treatment, muscles were electrically stimulated (contracted) or remained at rest. Glucose transporter 4 (GLUT4) localization, glucose uptake and phospho-aPKC (aPKC activated form) were assessed. Muscle contraction and insulin increased glucose uptake in all conditions when compared with controls not stimulating an effect that was accompanied by an increase in GLUT4 and of phospho-aPKC at the muscle membrane. Contracted muscles treated with insulin did not show additive effects on glucose uptake or aPKC activity compared with the response when these stimuli were applied alone. Inhibition of PI3K blocked insulin effect on glucose uptake and aPKC but not in the contractile response. Thus, muscle contraction seems to stimulate aPKC and glucose uptake independently of PI3K. Therefore, aPKC may be a convergence point and a rate limit step in the pathway by which, insulin and contraction, increase glucose uptake in skeletal muscle.

  6. Beta-adrenergic stimulation of skeletal muscle HSL can be overridden by AMPK signaling.

    PubMed

    Watt, Matthew J; Steinberg, Gregory R; Chan, Stanley; Garnham, Andrew; Kemp, Bruce E; Febbraio, Mark A

    2004-09-01

    Hormone-sensitive lipase (HSL), an important regulatory enzyme for triacylglycerol hydrolysis within skeletal muscle, is controlled by beta-adrenergic signaling as well as intrinsic factors related to contraction and energy turnover. In the current study, we tested the capacity of 5'AMP-activated protein kinase (AMPK) to suppress beta-adrenergic stimulation of HSL activity. Eight male subjects completed 60 min of cycle exercise at 70% VO2 peak on two occasions: either with normal (CON) or low (LG) pre-exercise muscle glycogen content, which is known to enhance exercise-induced AMPK activity. Muscle samples were obtained before and immediately after exercise. Pre-exercise glycogen averaged 375 +/- 35 and 163 +/- 27 mmol x kg(-1) dm for CON and LG, respectively. AMPK alpha-2 was not different between trials at rest and was increased (3.7-fold, P<0.05) by exercise during LG only. HSL activity did not differ between trials at rest and increased (0 min: 1.67 +/- 0.13; 60 min: 2.60 +/- 0.26 mmol x min(-1) x kg(-1) dm) in CON. The exercise-induced increase in HSL activity was attenuated by AMPK alpha-2 activation in LG. The attenuated HSL activity during LG occurred despite higher plasma epinephrine levels (60 min: CON, 1.96 +/- 0.29 vs LG, 4.25 +/- 0.60 nM, P<0.05) compared with CON. Despite the attenuated HSL activity in LG, IMTG was decreased by exercise (0 min: 27.1 +/- 2.0; 60 min: 22.5 +/- 2.0 mmol x kg(-1) dm, P<0.05), whereas no net reduction occurred in CON. To confirm the apparent effect of AMPK on HSL activity, we performed experiments in muscle cell culture. The epineprine-induced increase in HSL activity was totally attenuated (P<0.05) by AICAR administration in L6 myotubes. These data provide new evidence indicating that AMPK is a major regulator of skeletal muscle HSL activity that can override beta-adrenergic stimulation. However, the increased IMTG degradation in LG suggests factors other than HSL activity are important for IMTG degradation.

  7. Leucine and alpha-Ketoisocaproic acid, but not norleucine, stimulate skeletal muscle protein synthesis in neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The branched-chain amino acid, leucine, acts as a nutrient signal to stimulate protein synthesis in skeletal muscle of young pigs. However, the chemical structure responsible for this effect has not been identified. We have shown that the other branched-chain amino acids, isoleucine and valine, are ...

  8. Hypothalamic orexin stimulates feeding-associated glucose utilization in skeletal muscle via sympathetic nervous system.

    PubMed

    Shiuchi, Tetsuya; Haque, Mohammad Shahidul; Okamoto, Shiki; Inoue, Tsuyoshi; Kageyama, Haruaki; Lee, Suni; Toda, Chitoku; Suzuki, Atsushi; Bachman, Eric S; Kim, Young-Bum; Sakurai, Takashi; Yanagisawa, Masashi; Shioda, Seiji; Imoto, Keiji; Minokoshi, Yasuhiko

    2009-12-01

    Hypothalamic neurons containing orexin (hypocretin) are activated during motivated behaviors and active waking. We show that injection of orexin-A into the ventromedial hypothalamus (VMH) of mice or rats increased glucose uptake and promoted insulin-induced glucose uptake and glycogen synthesis in skeletal muscle, but not in white adipose tissue, by activating the sympathetic nervous system. These effects of orexin were blunted in mice lacking beta-adrenergic receptors but were restored by forced expression of the beta(2)-adrenergic receptor in both myocytes and nonmyocyte cells of skeletal muscle. Orexin neurons are activated by conditioned sweet tasting and directly excite VMH neurons, thereby increasing muscle glucose metabolism and its insulin sensitivity. Orexin and its receptor in VMH thus play a key role in the regulation of muscle glucose metabolism associated with highly motivated behavior by activating muscle sympathetic nerves and beta(2)-adrenergic signaling.

  9. Ovine somatomedin, multiplication-stimulating activity, and insulin promote skeletal muscle satellite cell proliferation in vitro.

    PubMed

    Dodson, M V; Allen, R E; Hossner, K L

    1985-12-01

    Primary cultures of skeletal muscle satellite cells, the postnatal myogenic precursor cells, were induced to proliferate by exposure to physiological levels of somatomedins (Sms)/insulin-like growth factors (IGFs) and pharmacological levels of insulin. These polypeptides were included in medium containing horse serum as well as serum-free defined medium. Dexamethasone inclusion in the serum-containing medium facilitated the ovine Sm (oSm; P less than 0.05) and the multiplication-stimulating activity/rat IGF-II (MSA/rIGF-II; P less than 0.25) responses, but not the insulin proliferative response. In addition, data from defined medium studies indicate that satellite cells are more sensitive to both IGF moieties than insulin and that the proliferations induced by half-maximal concentrations of oSm and insulin were similar (P less than 0.05), but both were different from the proliferation induced by MSA/rIGF-II (P less than 0.05). In the presence of insulin concentrations that promote maximum proliferation, the addition of oSm did not produce an additive effect, whereas the addition of MSA/rIGF-II did produce a significant increase in satellite cell proliferation above that induced by insulin. MSA/rIGF-II may, therefore, be stimulating proliferation of satellite cells through a receptor system different from that serving insulin and oSm. Collectively, these data support the hypothesis that Sms/IGFs play an important role in the control of postnatal muscle growth by providing a link between these hormones and one of the significant target cells involved in this process.

  10. Mechanotransduction in skeletal muscle

    PubMed Central

    Burkholder, Thomas J.

    2007-01-01

    Mechanical signals are critical to the development and maintenance of skeletal muscle, but the mechanisms that convert these shape changes to biochemical signals is not known. When a deformation is imposed on a muscle, changes in cellular and molecular conformations link the mechanical forces with biochemical signals, and the close integration of mechanical signals with electrical, metabolic, and hormonal signaling may disguise the aspect of the response that is specific to the mechanical forces. The mechanically induced conformational change may directly activate downstream signaling and may trigger messenger systems to activate signaling indirectly. Major effectors of mechanotransduction include the ubiquitous mitogen activated protein kinase (MAP) and phosphatidylinositol-3’ kinase (PI-3K), which have well described receptor dependent cascades, but the chain of events leading from mechanical stimulation to biochemical cascade is not clear. This review will discuss the mechanics of biological deformation, loading of cellular and molecular structures, and some of the principal signaling mechanisms associated with mechanotransduction. PMID:17127292

  11. Effect of electrical stimulation-induced resistance exercise on mitochondrial fission and fusion proteins in rat skeletal muscle.

    PubMed

    Kitaoka, Yu; Ogasawara, Riki; Tamura, Yuki; Fujita, Satoshi; Hatta, Hideo

    2015-11-01

    It is well known that resistance exercise increases muscle protein synthesis and muscle strength. However, little is known about the effect of resistance exercise on mitochondrial dynamics, which is coupled with mitochondrial function. In skeletal muscle, mitochondria exist as dynamic networks that are continuously remodeling through fusion and fission. The purpose of this study was to investigate the effect of acute and chronic resistance exercise, which induces muscle hypertrophy, on the expression of proteins related to mitochondrial dynamics in rat skeletal muscle. Resistance exercise consisted of maximum isometric contraction, which was induced by percutaneous electrical stimulation of the gastrocnemius muscle. Our results revealed no change in levels of proteins that regulate mitochondrial fission (Fis1 and Drp1) or fusion (Opa1, Mfn1, and Mfn2) over the 24-h period following acute resistance exercise. Phosphorylation of Drp1 at Ser616 was increased immediately after exercise (P < 0.01). Four weeks of resistance training (3 times/week) increased Mfn1 (P < 0.01), Mfn2 (P < 0.05), and Opa1 (P < 0.01) protein levels without altering mitochondrial oxidative phosphorylation proteins. These observations suggest that resistance exercise has little effect on mitochondrial biogenesis but alters the expression of proteins involved in mitochondrial fusion and fission, which may contribute to mitochondrial quality control and improved mitochondrial function.

  12. Effect of electrical stimulation on beta-adrenergic receptor population and cyclic amp production in chicken and rat skeletal muscle cell cultures

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Strietzel, C. J.

    2000-01-01

    Expression of the beta-adrenergic receptor (betaAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the betaAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the betaAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the betaAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.

  13. Effect of Electrical Stimulation on Beta-Adrenergic Receptor Population and Cyclic AMP Production in Chicken and Rat Skeletal Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, Kristin Y.; Strietzel, Catherine J.

    2000-01-01

    Expression of the beta-adrenergic receptor (PAR) and its coupling to Adenosine 3'5' Cyclic Monophosphate (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the PAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture, were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the PAR population was not significantly affected by electrical stimulation; however, the ability, of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the PAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.

  14. BQ123 Stimulates Skeletal Muscle Antioxidant Defense via Nrf2 Activation in LPS-Treated Rats

    PubMed Central

    Jeleń, Agnieszka; Żebrowska, Marta; Balcerczak, Ewa; Gorąca, Anna

    2016-01-01

    Little is understood of skeletal muscle tissue in terms of oxidative stress and inflammation. Endothelin-1 is an endogenous, vasoconstrictive peptide which can induce overproduction of reactive oxygen species and proinflammatory cytokines. The aim of this study was to evaluate whether BQ123, an endothelin-A receptor antagonist, influences the level of TNF-α, IL-6, SOD-1, HO-1, Nrf2 mRNA, and NF-κB subunit RelA/p65 mRNA in the femoral muscle obtained from endotoxemic rats. Male Wistar rats were divided into 4 groups (n = 6) and received iv (1) saline (control), (2) LPS (15 mg/kg), (3) BQ123 (1 mg/kg), (4) BQ123 (1 mg/kg), and LPS (15 mg/kg, resp.) 30 min later. Injection of LPS led to significant increase in levels of RelA/p65 mRNA, TNF-α, and IL-6, while content of SOD-1, HO-1, and Nrf2 mRNA was unchanged. Administration of BQ123 prior to LPS challenge resulted in a significant reduction in RelA/p65 mRNA, TNF-α, and IL-6 levels, as well as markedly elevated concentrations of SOD-1, HO-1, and Nrf2 mRNA. BQ123 appears to enhance antioxidant defense and prevent production of TNF-α and IL-6 in skeletal muscle of LPS-treated rat. In conclusion, endothelin-A receptor antagonism exerts significant impact on the skeletal muscle favouring anti-inflammatory effects and protection against oxidative stress. PMID:26823945

  15. Fiber type effects on contraction-stimulated glucose uptake and GLUT4 abundance in single fibers from rat skeletal muscle

    PubMed Central

    Castorena, Carlos M.; Arias, Edward B.; Sharma, Naveen; Bogan, Jonathan S.

    2014-01-01

    To fully understand skeletal muscle at the cellular level, it is essential to evaluate single muscle fibers. Accordingly, the major goals of this study were to determine if there are fiber type-related differences in single fibers from rat skeletal muscle for: 1) contraction-stimulated glucose uptake and/or 2) the abundance of GLUT4 and other metabolically relevant proteins. Paired epitrochlearis muscles isolated from Wistar rats were either electrically stimulated to contract (E-Stim) or remained resting (No E-Stim). Single fibers isolated from muscles incubated with 2-deoxy-d-[3H]glucose (2-DG) were used to determine fiber type [myosin heavy chain (MHC) isoform protein expression], 2-DG uptake, and abundance of metabolically relevant proteins, including the GLUT4 glucose transporter. E-Stim, relative to No E-Stim, fibers had greater (P < 0.05) 2-DG uptake for each of the isolated fiber types (MHC-IIa, MHC-IIax, MHC-IIx, MHC-IIxb, and MHC-IIb). However, 2-DG uptake for E-Stim fibers was not significantly different among these five fiber types. GLUT4, tethering protein containing a UBX domain for GLUT4 (TUG), cytochrome c oxidase IV (COX IV), and filamin C protein levels were significantly greater (P < 0.05) in MHC-IIa vs. MHC-IIx, MHC-IIxb, or MHC-IIb fibers. TUG and COX IV in either MHC-IIax or MHC-IIx fibers exceeded values for MHC-IIxb or MHC-IIb fibers. GLUT4 levels for MHC-IIax fibers exceeded MHC-IIxb fibers. GLUT4, COX IV, filamin C, and TUG abundance in single fibers was significantly (P < 0.05) correlated with each other. Differences in GLUT4 abundance among the fiber types were not accompanied by significant differences in contraction-stimulated glucose uptake. PMID:25491725

  16. Mechanical stimulation of skeletal muscle cells mitigates glucocorticoid-induced decreases in prostaglandin production and prostaglandin synthase activity

    NASA Technical Reports Server (NTRS)

    Chromiak, J. A.; Vandenburgh, H. H.

    1994-01-01

    The glucocorticoid dexamethasone (Dex) induces a decline in protein synthesis and protein content in tissue cultured, avian skeletal muscle cells, and this atrophy is attenuated by repetitive mechanical stretch. Since the prostaglandin synthesis inhibitor indomethacin mitigated this stretch attenuation of muscle atrophy, the effects of Dex and mechanical stretch on prostaglandin production and prostaglandin H synthase (PGHS) activity were examined. In static cultures, 10(-8) M Dex reduced PGF2 alpha production 55-65% and PGE2 production 84-90% after 24-72 h of incubation. Repetitive 10% stretch-relaxations of non-Dex-treated cultures increased PGF2 alpha efflux 41% at 24 h and 276% at 72 h, and increased PGE2 production 51% at 24 h and 236% at 72 h. Mechanical stimulation of Dex-treated cultures increased PGF2 alpha production 162% after 24 h, returning PGF2 alpha efflux to the level of non-Dex-treated cultures. At 72 h, stretch increased PGF2 alpha efflux 65% in Dex-treated cultures. Mechanical stimulation of Dex-treated cultures also increased PGE2 production at 24 h, but not at 72 h. Dex reduced PGHS activity in the muscle cultures by 70% after 8-24 h of incubation, and mechanical stimulation of the Dex-treated cultures increased PGHS activity by 98% after 24 h. Repetitive mechanical stimulation attenuates the catabolic effects of Dex on cultured skeletal muscle cells in part by mitigating the Dex-induced declines in PGHS activity and prostaglandin production.

  17. Glucocorticoid-induced skeletal muscle atrophy in vitro is attenuated by mechanical stimulation

    NASA Technical Reports Server (NTRS)

    Chromiak, J. A.; Vandenburgh, H. H.

    1992-01-01

    Glucocorticoids induce rapid atrophy of fast skeletal myofibers in vivo, and either weight lifting or endurance exercise reduces this atrophy by unknown mechanisms. We examined the effects of the synthetic glucocorticoid dexamethasone (Dex) on protein turnover in tissue-cultured avian fast skeletal myofibers and determined whether repetitive mechanical stretch altered the myofiber response to Dex. In static cultures after 3-5 days, 10(-8) M Dex decreased total protein content 42-74%, total protein synthesis rates 38-56%, mean myofiber diameter 35%, myosin heavy chain (MHC) content 86%, MHC synthesis rate 44%, and fibronectin synthesis rate 29%. Repetitive 10% stretch-relaxations of the cultured myofibers for 60 s every 5 min for 3-4 days prevented 52% of the Dex-induced decrease in protein content, 42% of the decrease in total protein synthesis rate, 77% of the decrease in MHC content, 42% of the decrease in MHC synthesis rate, and 67% of the decrease in fibronectin synthesis rate. This in vitro model system will complement in vivo studies in understanding the mechanism by which mechanical activity and glucocorticoids interact to regulate skeletal muscle growth.

  18. Structure of Skeletal Muscle

    MedlinePlus

    ... Cells, Tissues, & Membranes Cell Structure & Function Cell Structure Cell Function Body Tissues Epithelial Tissue Connective Tissue Muscle Tissue ... nerves. This is directly related to the primary function of skeletal muscle, ... an impulse from a nerve cell. Generally, an artery and at least one vein ...

  19. Electrical stimulation induces calcium-dependent up-regulation of neuregulin-1β in dystrophic skeletal muscle cell lines.

    PubMed

    Juretić, Nevenka; Jorquera, Gonzalo; Caviedes, Pablo; Jaimovich, Enrique; Riveros, Nora

    2012-01-01

    Duchenne muscular dystrophy (DMD) is a neuromuscular disease originated by reduced or no expression of dystrophin, a cytoskeletal protein that provides structural integrity to muscle fibres. A promising pharmacological treatment for DMD aims to increase the level of a structural dystrophin homolog called utrophin. Neuregulin-1 (NRG-1), a growth factor that potentiates myogenesis, induces utrophin expression in skeletal muscle cells. Microarray analysis of total gene expression allowed us to determine that neuregulin-1β (NRG-1β) is one of 150 differentially expressed genes in electrically stimulated (400 pulses, 1 ms, 45 Hz) dystrophic human skeletal muscle cells (RCDMD). We investigated the effect of depolarization, and the involvement of intracellular Ca(2+) and PKC isoforms on NRG-1β expression in dystrophic myotubes. Electrical stimulation of RCDMD increased NRG-1β mRNA and protein levels, and mRNA enhancement was abolished by actinomycin D. NRG-1β transcription was inhibited by BAPTA-AM, an intracellular Ca(2+) chelator, and by inhibitors of IP(3)-dependent slow Ca(2+) transients, like 2-APB, Ly 294002 and Xestospongin B. Ryanodine, a fast Ca(2+) signal inhibitor, had no effect on electrical stimulation-induced expression. BIM VI (general inhibitor of PKC isoforms) and Gö 6976 (specific inhibitor of Ca(2+)-dependent PKC isoforms) abolished NRG-1β mRNA induction. Our results suggest that depolarization induced slow Ca(2+) signals stimulate NRG-1β transcription in RCDMD cells, and that Ca(2+)-dependent PKC isoforms are involved in this process. Based on utrophin's ability to partially compensate dystrophin disfunction, knowledge on the mechanism involved on NRG-1 up-regulation could be important for new therapeutic strategies design. PMID:22613991

  20. Cachectic skeletal muscle response to a novel bout of low-frequency stimulation

    PubMed Central

    Puppa, Melissa J.; Murphy, E. Angela; Fayad, Raja; Hand, Gregory A.

    2014-01-01

    While exercise benefits have been well documented in patients with chronic diseases, the mechanistic understanding of cachectic muscle's response to contraction is essentially unknown. We previously demonstrated that treadmill exercise training attenuates the initiation of cancer cachexia and the development of metabolic syndrome symptoms (Puppa MJ, White JP, Velazquez KT, Baltgalvis KA, Sato S, Baynes JW, Carson JA. J Cachexia Sarcopenia Muscle 3: 117–137, 2012). However, cachectic muscle's metabolic signaling response to a novel, acute bout of low-frequency contraction has not been determined. The purpose of this study was to determine whether severe cancer cachexia disrupts the acute contraction-induced response to low-frequency muscle contraction [low-frequency stimulation (LoFS)]. Metabolic gene expression and signaling was examined 3 h after a novel 30-min bout of contraction (10 Hz) in cachectic ApcMin/+ (Min) and C57BL/6 (BL-6) mice. Pyrrolidine dithiocarbamate, a STAT/NF-κB inhibitor and free radical scavenger, was administered systemically to a subset of mice to determine whether this altered the muscle contraction response. Although glucose transporter-4 mRNA was decreased by cachexia, LoFS increased muscle glucose transporter-4 mRNA in both BL-6 and Min mice. LoFS also induced muscle peroxisome proliferator-activated receptor-γ and peroxisome proliferator-activated receptor-α coactivator-1 mRNA. However, in Min mice, LoFS was not able to induce muscle proliferator-activated receptor-α coactivator-1 targets nuclear respiratory factor-1 and mitochondrial transcription factor A mRNA. LoFS induced phosphorylated-S6 in BL-6 mice, but this induction was blocked by cachexia. Administration of pyrrolidine dithiocarbamate for 24 h rescued LoFS-induced phosphorylated-S6 in cachectic muscle. LoFS increased muscle phosphorylated-AMP-activated protein kinase and p38 in BL-6 and Min mice. These data demonstrate that cachexia alters the muscle metabolic response

  1. Glucocorticoids and Skeletal Muscle.

    PubMed

    Bodine, Sue C; Furlow, J David

    2015-01-01

    Glucocorticoids are known to regulate protein metabolism in skeletal muscle, producing a catabolic effect that is opposite that of insulin. In many catabolic diseases, such as sepsis, starvation, and cancer cachexia, endogenous glucocorticoids are elevated contributing to the loss of muscle mass and function. Further, exogenous glucocorticoids are often given acutely and chronically to treat inflammatory conditions such as asthma, chronic obstructive pulmonary disease, and rheumatoid arthritis, resulting in muscle atrophy. This chapter will detail the nature of glucocorticoid-induced muscle atrophy and discuss the mechanisms thought to be responsible for the catabolic effects of glucocorticoids on muscle. PMID:26215994

  2. Alcohol impairs skeletal muscle protein synthesis and mTOR signaling in a time-dependent manner following electrically stimulated muscle contraction.

    PubMed

    Steiner, Jennifer L; Lang, Charles H

    2014-11-15

    Alcohol (EtOH) decreases protein synthesis and mammalian target of rapamycin (mTOR)-mediated signaling and blunts the anabolic response to growth factors in skeletal muscle. The purpose of the current investigation was to determine whether acute EtOH intoxication antagonizes the contraction-induced increase in protein synthesis and mTOR signaling in skeletal muscle. Fasted male mice were injected intraperitoneally with 3 g/kg EtOH or saline (control), and the right hindlimb was electrically stimulated (10 sets of 6 contractions). The gastrocnemius muscle complex was collected 30 min, 4 h, or 12 h after stimulation. EtOH decreased in vivo basal protein synthesis (PS) in the nonstimulated muscle compared with time-matched Controls at 30 min, 4 h, and 12 h. In Control, but not EtOH, PS was decreased 15% after 30 min. In contrast, PS was increased in Control 4 h poststimulation but remained unchanged in EtOH. Last, stimulation increased PS 10% in Control and EtOH at 12 h, even though the absolute rate remained reduced by EtOH. The stimulation-induced increase in the phosphorylation of S6K1 Thr(421)/Ser(424) (20-52%), S6K1 Thr(389) (45-57%), and its substrate rpS6 Ser(240/244) (37-72%) was blunted by EtOH at 30 min, 4 h, and 12 h. Phosphorylation of 4E-BP1 Ser(65) was also attenuated by EtOH (61%) at 4 h. Conversely, phosphorylation of extracellular signal-regulated kinase Thr(202)/Tyr(204) was increased by stimulation in Control and EtOH mice at 30 min but only in Control at 4 h. Our data indicate that acute EtOH intoxication suppresses muscle protein synthesis for at least 12 h and greatly impairs contraction-induced changes in synthesis and mTOR signaling. PMID:25257868

  3. Mechanical stimulation of skeletal muscle increases prostaglandin F2(alpha) synthesis and cyclooxygenase activity by a pertussis toxin sensitive mechanism

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Shansky, Janet; Solerssi, Rosa; Chromiak, Joseph

    1992-01-01

    Repetitive mechanical stimulation of differentiated skeletal muscle in tissue culture increases the production of prostaglandin F(sub 2(alpha)), an anabolic stimulator of myofiber growth. Within 4 h of initiating mechanical activity, the activity of cyclooxygenase, a regulatory enzyme in prostaglandin synthesis, was increased 82% (P is less than .005), and this increase was maintained for at least 24 h. Kinetic analysis of the stretch-activated cyclooxygenase indicated a two to three-fold decrease in the enzyme's K(sub m) with no change in V(sub max). The stretch-induced increase in enzymatic activity was not inhibited by cycloheximide, was independent of cellular electrical activity (tetrodotoxin-insensitive), but was prevented by the G protein inhibitor pertussis toxin. Pertussis toxin also inhibited the stretch-induced increases in PGF(sub 2(alpha)) production, and cell growth. It is concluded that stretch of skeletal muscle increases the synthesis of the anabolic modulator PGF(sub 2(alpha)) by a G protein-dependent process which involves activation of cyclooxygenase by a posttranslational mechanism.

  4. Thyroid-stimulating hormone improves insulin sensitivity in skeletal muscle cells via cAMP/PKA/CREB pathway-dependent upregulation of insulin receptor substrate-1 expression.

    PubMed

    Moon, Min Kyong; Kang, Geun Hyung; Kim, Hwan Hee; Han, Sun Kyoung; Koo, Young Do; Cho, Sun Wook; Kim, Ye An; Oh, Byung-Chul; Park, Do Joon; Chung, Sung Soo; Park, Kyong Soo; Park, Young Joo

    2016-11-15

    Thyroid-stimulating hormone (TSH) receptor is expressed in extrathyroidal tissues such as hepatocytes, adipocytes, and skeletal muscle, which suggests a possible novel role of TSH in various metabolic processes in extrathyroidal tissues independent of thyroid hormones. We investigated whether TSH has any effects on glucose tolerance and insulin sensitivity in the skeletal muscle using diet-induced obesity (DIO) mouse models and rodent skeletal muscle cells. TSH improved glucose tolerance in DIO mice and this was associated with an improvement of skeletal muscle insulin sensitivity resulting from the increased expression of insulin receptor substrate (IRS)-1 protein and mRNA therein. TSH significantly increased both basal and insulin-stimulated glucose transport in rat L6 myotubes and increased the expression of IRS-1 protein and mRNA in these cells as well. TSH also stimulated Irs1 promoter activation; this stimulation was abolished by protein kinase A (PKA) inhibition using H89 or by mutation of the cAMP-response element site located at -1155 to -875 bp of the Irs1 promoter region, supporting a novel role of TSH activated-cAMP/PKA/CREB signaling in the regulation of Irs1 expression. In conclusion, TSH improves insulin sensitivity in skeletal muscle by increasing Irs1 gene expression. This regulatory effect is mediated by a PKA-CREB-dependent pathway.

  5. Effect of indomethacin on capillary growth and microvasculature in chronically stimulated rat skeletal muscles

    PubMed Central

    Pearce, Steven C; Hudlická, Olga; Brown, Margaret D

    2000-01-01

    Capillary proliferation and microvessel diameters were studied in rat ankle flexors subjected to chronic electrical stimulation by implanted electrodes (10 Hz, 0.3 ms pulse width, up to 6 V, 8 h day−1) for 2 or 7 days with or without concurrent indomethacin treatment (≈2 mg day−1 in drinking water) to study the role of prostaglandins in the microcirculation in relation to capillary growth.Diameters of terminal arterioles, capillaries and confluent venules were measured in epi-illuminated muscles, together with capillary red cell velocity, to evaluate whether changes in capillary pressure and/or shear stress participate in capillary growth via release of prostaglandins.Cell proliferation was detected following bromodeoxyuridine (BrdU) incorporation and immuno-staining of frozen sections. Labelling was assessed as the percentage of all interstitial nuclei (Haematoxylin-stained) that were BrdU positive. By comparison with serial sections stained for alkaline phosphatase, from which the capillary-to-fibre ratio (C:F) was obtained, labelling was derived for nuclei colocalised either to capillaries or to other non-capillary interstitial cells.C:F increased to 1.89 ± 0.06 from 1.47 ± 0.04 in controls only after 7 days stimulation; indomethacin reduced this to 1.55 ± 0.07. Capillary labelling increased from 2.9 ± 0.5 % in controls to 11.3 ± 2.2 % after 2 days stimulation and 10.6 ± 0.8 % after 7 days. The increase was attenuated by indomethacin at both time points (to 5.8 ± 1.6 % and 4.2 ± 0.5 %, respectively).Non-capillary interstitial labelling (2.0 ± 0.4 % in controls) increased to 9.5 ± 2.7 % after 2 days stimulation and was back to normal after 7 days (3.2 ± 0.7 %). Indomethacin depressed the increase at 2 days to 4.0 ± 1.3 % and had no effect at 7 days (2.9 ± 0.13 %). Labelling in sham-operated rats with or without indomethacin or in vehicle-treated animals was no different from controls.Arteriolar and venular diameters were increased by 2 days of

  6. Engineering Skeletal Muscle Tissues from Murine Myoblast Progenitor Cells and Application of Electrical Stimulation

    PubMed Central

    van der Schaft, Daisy W. J.; van Spreeuwel, Ariane C. C.; Boonen, Kristel J. M.; Langelaan, Marloes L. P.; Bouten, Carlijn V. C.; Baaijens, Frank P. T.

    2013-01-01

    Engineered muscle tissues can be used for several different purposes, which include the production of tissues for use as a disease model in vitro, e.g. to study pressure ulcers, for regenerative medicine and as a meat alternative 1. The first reported 3D muscle constructs have been made many years ago and pioneers in the field are Vandenburgh and colleagues 2,3. Advances made in muscle tissue engineering are not only the result from the vast gain in knowledge of biochemical factors, stem cells and progenitor cells, but are in particular based on insights gained by researchers that physical factors play essential roles in the control of cell behavior and tissue development. State-of-the-art engineered muscle constructs currently consist of cell-populated hydrogel constructs. In our lab these generally consist of murine myoblast progenitor cells, isolated from murine hind limb muscles or a murine myoblast cell line C2C12, mixed with a mixture of collagen/Matrigel and plated between two anchoring points, mimicking the muscle ligaments. Other cells may be considered as well, e.g. alternative cell lines such as L6 rat myoblasts 4, neonatal muscle derived progenitor cells 5, cells derived from adult muscle tissues from other species such as human 6 or even induced pluripotent stem cells (iPS cells) 7. Cell contractility causes alignment of the cells along the long axis of the construct 8,9 and differentiation of the muscle progenitor cells after approximately one week of culture. Moreover, the application of electrical stimulation can enhance the process of differentiation to some extent 8. Because of its limited size (8 x 2 x 0.5 mm) the complete tissue can be analyzed using confocal microscopy to monitor e.g. viability, differentiation and cell alignment. Depending on the specific application the requirements for the engineered muscle tissue will vary; e.g. use for regenerative medicine requires the up scaling of tissue size and vascularization, while to serve as a

  7. Engineering skeletal muscle tissues from murine myoblast progenitor cells and application of electrical stimulation.

    PubMed

    van der Schaft, Daisy W J; van Spreeuwel, Ariane C C; Boonen, Kristel J M; Langelaan, Marloes L P; Bouten, Carlijn V C; Baaijens, Frank P T

    2013-03-19

    Engineered muscle tissues can be used for several different purposes, which include the production of tissues for use as a disease model in vitro, e.g. to study pressure ulcers, for regenerative medicine and as a meat alternative (1). The first reported 3D muscle constructs have been made many years ago and pioneers in the field are Vandenburgh and colleagues (2,3). Advances made in muscle tissue engineering are not only the result from the vast gain in knowledge of biochemical factors, stem cells and progenitor cells, but are in particular based on insights gained by researchers that physical factors play essential roles in the control of cell behavior and tissue development. State-of-the-art engineered muscle constructs currently consist of cell-populated hydrogel constructs. In our lab these generally consist of murine myoblast progenitor cells, isolated from murine hind limb muscles or a murine myoblast cell line C2C12, mixed with a mixture of collagen/Matrigel and plated between two anchoring points, mimicking the muscle ligaments. Other cells may be considered as well, e.g. alternative cell lines such as L6 rat myoblasts (4), neonatal muscle derived progenitor cells (5), cells derived from adult muscle tissues from other species such as human (6) or even induced pluripotent stem cells (iPS cells) (7). Cell contractility causes alignment of the cells along the long axis of the construct (8,9) and differentiation of the muscle progenitor cells after approximately one week of culture. Moreover, the application of electrical stimulation can enhance the process of differentiation to some extent (8). Because of its limited size (8 x 2 x 0.5 mm) the complete tissue can be analyzed using confocal microscopy to monitor e.g. viability, differentiation and cell alignment. Depending on the specific application the requirements for the engineered muscle tissue will vary; e.g. use for regenerative medicine requires the up scaling of tissue size and vascularization, while

  8. Phospholemman is not required for the acute stimulation of Na⁺-K⁺-ATPase α₂-activity during skeletal muscle fatigue.

    PubMed

    Manoharan, Palanikumar; Radzyukevich, Tatiana L; Hakim Javadi, Hesamedin; Stiner, Cory A; Landero Figueroa, Julio A; Lingrel, Jerry B; Heiny, Judith A

    2015-12-15

    The Na(+)-K(+)-ATPase α2-isoform in skeletal muscle is rapidly stimulated during muscle use and plays a critical role in fatigue resistance. The acute mechanisms that stimulate α2-activity are not completely known. This study examines whether phosphorylation of phospholemman (PLM/FXYD1), a regulatory subunit of Na(+)-K(+)-ATPase, plays a role in the acute stimulation of α2 in working muscles. Mice lacking PLM (PLM KO) have a normal content of the α2-subunit and show normal exercise capacity, in contrast to the greatly reduced exercise capacity of mice that lack α2 in the skeletal muscles. Nerve-evoked contractions in vivo did not induce a change in total PLM or PLM phosphorylated at Ser63 or Ser68, in either WT or PLM KO. Isolated muscles of PLM KO mice maintain contraction and resist fatigue as well as wild type (WT). Rb(+) transport by the α2-Na(+)-K(+)-ATPase is stimulated to the same extent in contracting WT and contracting PLM KO muscles. Phosphorylation of sarcolemmal membranes prepared from WT but not PLM KO skeletal muscles stimulates the activity of both α1 and α2 in a PLM-dependent manner. The stimulation occurs by an increase in Na(+) affinity without significant change in Vmax and is more effective for α1 than α2. These results demonstrate that phosphorylation of PLM is capable of stimulating the activity of both isozymes in skeletal muscle; however, contractile activity alone is not sufficient to induce PLM phosphorylation. Importantly, acute stimulation of α2, sufficient to support exercise and oppose fatigue, does not require PLM or its phosphorylation.

  9. Signaling of the p21-activated kinase (PAK1) coordinates insulin-stimulated actin remodeling and glucose uptake in skeletal muscle cells.

    PubMed

    Tunduguru, Ragadeepthi; Chiu, Tim T; Ramalingam, Latha; Elmendorf, Jeffrey S; Klip, Amira; Thurmond, Debbie C

    2014-11-15

    Skeletal muscle accounts for ∼ 80% of postprandial glucose clearance, and skeletal muscle glucose clearance is crucial for maintaining insulin sensitivity and euglycemia. Insulin-stimulated glucose clearance/uptake entails recruitment of glucose transporter 4 (GLUT4) to the plasma membrane (PM) in a process that requires cortical F-actin remodeling; this process is dysregulated in Type 2 Diabetes. Recent studies have implicated PAK1 as a required element in GLUT4 recruitment in mouse skeletal muscle in vivo, although its underlying mechanism of action and requirement in glucose uptake remains undetermined. Toward this, we have employed the PAK1 inhibitor, IPA3, in studies using L6-GLUT4-myc muscle cells. IPA3 fully ablated insulin-stimulated GLUT4 translocation to the PM, corroborating the observation of ablated insulin-stimulated GLUT4 accumulation in the PM of skeletal muscle from PAK1(-/-) knockout mice. IPA3-treatment also abolished insulin-stimulated glucose uptake into skeletal myotubes. Mechanistically, live-cell imaging of myoblasts expressing the F-actin biosensor LifeAct-GFP treated with IPA3 showed blunting of the normal insulin-induced cortical actin remodeling. This blunting was underpinned by a loss of normal insulin-stimulated cofilin dephosphorylation in IPA3-treated myoblasts. These findings expand upon the existing model of actin remodeling in glucose uptake, by placing insulin-stimulated PAK1 signaling as a required upstream step to facilitate actin remodeling and subsequent cofilin dephosphorylation. Active, dephosphorylated cofilin then provides the G-actin substrate for continued F-actin remodeling to facilitate GLUT4 vesicle translocation for glucose uptake into the skeletal muscle cell.

  10. Exercise Intensity Modulates Glucose-Stimulated Insulin Secretion when Adjusted for Adipose, Liver and Skeletal Muscle Insulin Resistance

    PubMed Central

    Malin, Steven K.; Rynders, Corey A.; Weltman, Judy Y.; Barrett, Eugene J.; Weltman, Arthur

    2016-01-01

    Little is known about the effects of exercise intensity on compensatory changes in glucose-stimulated insulin secretion (GSIS) when adjusted for adipose, liver and skeletal muscle insulin resistance (IR). Fifteen participants (8F, Age: 49.9±3.6yr; BMI: 31.0±1.5kg/m2; VO2peak: 23.2±1.2mg/kg/min) with prediabetes (ADA criteria, 75g OGTT and/or HbA1c) underwent a time-course matched Control, and isocaloric (200kcal) exercise at moderate (MIE; at lactate threshold (LT)), and high-intensity (HIE; 75% of difference between LT and VO2peak). A 75g OGTT was conducted 1 hour post-exercise/Control, and plasma glucose, insulin, C-peptide and free fatty acids were determined for calculations of skeletal muscle (1/Oral Minimal Model; SMIR), hepatic (HOMAIR), and adipose (ADIPOSEIR) IR. Insulin secretion rates were determined by deconvolution modeling for GSIS, and disposition index (DI; GSIS/IR; DISMIR, DIHOMAIR, DIADIPOSEIR) calculations. Compared to Control, exercise lowered SMIR independent of intensity (P<0.05), with HIE raising HOMAIR and ADIPOSEIR compared with Control (P<0.05). GSIS was not reduced following exercise, but DIHOMAIR and DIADIPOSEIR were lowered more following HIE compared with Control (P<0.05). However, DISMIR increased in an intensity based manner relative to Control (P<0.05), which corresponded with lower post-prandial blood glucose levels. Taken together, pancreatic insulin secretion adjusts in an exercise intensity dependent manner to match the level of insulin resistance in skeletal muscle, liver and adipose tissue. Further work is warranted to understand the mechanism by which exercise influences the cross-talk between tissues that regulate blood glucose in people with prediabetes. PMID:27111219

  11. Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle.

    PubMed Central

    Biolo, G; Declan Fleming, R Y; Wolfe, R R

    1995-01-01

    We have investigated the mechanisms of the anabolic effect of insulin on muscle protein metabolism in healthy volunteers, using stable isotopic tracers of amino acids. Calculations of muscle protein synthesis, breakdown, and amino acid transport were based on data obtained with the leg arteriovenous catheterization and muscle biopsy. Insulin was infused (0.15 mU/min per 100 ml leg) into the femoral artery to increase femoral venous insulin concentration (from 10 +/- 2 to 77 +/- 9 microU/ml) with minimal systemic perturbations. Tissue concentrations of free essential amino acids decreased (P < 0.05) after insulin. The fractional synthesis rate of muscle protein (precursor-product approach) increased (P < 0.01) after insulin from 0.0401 +/- 0.0072 to 0.0677 +/- 0.0101%/h. Consistent with this observation, rates of utilization for protein synthesis of intracellular phenylalanine and lysine (arteriovenous balance approach) also increased from 40 +/- 8 to 59 +/- 8 (P < 0.05) and from 219 +/- 21 to 298 +/- 37 (P < 0.08) nmol/min per 100 ml leg, respectively. Release from protein breakdown of phenylalanine, leucine, and lysine was not significantly modified by insulin. Local hyperinsulinemia increased (P < 0.05) the rates of inward transport of leucine, lysine, and alanine, from 164 +/- 22 to 200 +/- 25, from 126 +/- 11 to 221 +/- 30, and from 403 +/- 64 to 595 +/- 106 nmol/min per 100 ml leg, respectively. Transport of phenylalanine did not change significantly. We conclude that insulin promoted muscle anabolism, primarily by stimulating protein synthesis independently of any effect on transmembrane transport. Images PMID:7860765

  12. Glucose transport in human skeletal muscle cells in culture. Stimulation by insulin and metformin.

    PubMed Central

    Sarabia, V; Lam, L; Burdett, E; Leiter, L A; Klip, A

    1992-01-01

    Primary human muscle cell cultures were established and the regulation of glucose transport was investigated. Primary cultures were allowed to proceed to the stage of myotubes through fusion of myoblasts or were used for clonal selection based on fusion potential. In clonally selected cultures, hexose (2-deoxy-glucose) uptake into myotubes was linear within the time of study and inhibitable by cytochalasin B (IC50 = 400 nM). Cytochalasin B photolabeled a protein(s) of 45,000-50,000 D in a D-glucose-protectable manner, suggesting identity with the glucose transporters. In the myotube stage, the cells expressed both the GLUT1 and GLUT4 glucose transporter protein isoforms at an average molar ratio of 7:1. Preincubation in media of increasing glucose concentrations (range 5-25 mM) progressively decreased the rate of 2-deoxyglucose uptake. Insulin elevated 2-deoxyglucose uptake in a dose-dependent manner, with half maximal stimulation achieved at 3.5 nM. Insulin also stimulated the transport of the nonmetabolizable hexose 3-O-methylglucose, as well as the activity of glycogen synthase, responsible for nonoxidative glucose metabolism. The oral antihyperglycemic drug metformin stimulated the cytochalasin B-sensitive component of both 2-deoxyglucose and 3-O-methylglucose uptake. Maximal stimulation was observed at 8 h of exposure to 50 microM metformin, and this effect was not prevented by incubation with the protein-synthesis inhibitor cycloheximide. The relative effect of metformin was higher in cells incubated in 25 mM glucose than in 5 mM glucose, consistent with its selective action in hyperglycemic conditions in vivo. Metformin (50 microM for 24 h) was more effective than insulin (1 microM for 1 h) in stimulating hexose uptake and the hormone was effective on top of the stimulation caused by the biguanide, suggesting independent mechanisms of action. Images PMID:1401073

  13. Hypoxia stimulates via separate pathways ERK phosphorylation and NF-kappaB activation in skeletal muscle cells in primary culture.

    PubMed

    Osorio-Fuentealba, César; Valdés, Juan Antonio; Riquelme, Denise; Hidalgo, Jorge; Hidalgo, Cecilia; Carrasco, María Angélica

    2009-04-01

    Mammalian cells sense oxygen levels and respond to hypoxic conditions through the regulation of multiple signaling pathways and transcription factors. Here, we investigated the effects of hypoxia on the activity of two transcriptional regulators, ERK1/2 and NF-kappaB, in skeletal muscle cells in primary culture. We found that hypoxia significantly enhanced ERK1/2 phosphorylation and that it stimulated NF-kappaB-dependent gene transcription as well as nuclear translocation of a green fluorescent protein-labeled p65 NF-kappaB isoform. Phosphorylation of ERK1/2- and NF-kappaB-dependent transcription by hypoxia required calcium entry through L-type calcium channels. Calcium release from ryanodine-sensitive stores was also necessary for ERK1/2 activation but not for NF-kappaB-dependent-transcription. N-acetylcysteine, a general scavenger of reactive oxygen species, blocked hypoxia-induced ROS generation but did not affect the stimulation of ERK1/2 phosphorylation induced by hypoxia. In contrast, NF-kappaB activation was significantly inhibited by N-acetylcysteine and did not depend on ERK1/2 stimulation, as shown by the lack of effect of the upstream ERK inhibitor U-0126. These separate pathways of activation of ERK1/2 and NF-kappaB by hypoxia may contribute to muscle adaptation in response to hypoxic conditions. PMID:19179647

  14. Congenic strains reveal the effect of the renin gene on skeletal muscle angiogenesis induced by electrical stimulation.

    PubMed

    de Resende, Micheline M; Amaral, Sandra L; Moreno, Carol; Greene, Andrew S

    2008-03-14

    Previous studies have indicated the importance of angiotensin II (ANG II) in skeletal muscle angiogenesis. The present study explored the effect of regulation of the renin gene on angiogenesis induced by electrical stimulation with the use of physiological, pharmacological, and genetic manipulations of the renin-angiotensin system (RAS). Transfer of the entire chromosome 13, containing the physiologically regulated renin gene, from the normotensive inbred Brown Norway (BN) rat into the background of an inbred substrain of the Dahl salt-sensitive (SS/Mcwi) rat restored renin levels and the angiogenic response after electrical stimulation. This restored response was significantly attenuated when SS-13(BN)/Mcwi consomic rats were treated with lisinopril or high-salt diet. The role of ANG II on this effect was confirmed by the complete restoration of skeletal muscle angiogenesis in SS/Mcwi rats infused with subpressor doses of ANG II. Congenic strains derived from the SS-13(BN)/Mcwi consomic were used to further verify the role of the renin gene in this response. Microvessel density was markedly increased after stimulation in congenic strains that contained the renin gene from the BN rat (congenic lines A and D). This angiogenic response was suppressed in control strains that carried regions of the BN genome just above (congenic line C) or just below (congenic line B) the renin gene. The present study emphasizes the importance of maintaining normal renin regulation as well as ANG II levels during the angiogenesis process with a combination of physiological, genetic, and pharmacological manipulation of the RAS. PMID:18198281

  15. Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle

    PubMed Central

    Cartee, Gregory D.

    2014-01-01

    This review focuses on two paralogue Rab GTPase activating proteins known as TBC1D1 Tre-2/BUB2/cdc 1 domain family (TBC1D) 1 and TBC1D4 (also called Akt Substrate of 160 kDa, AS160) and their roles in controlling skeletal muscle glucose transport in response to the independent and combined effects of insulin and exercise. Convincing evidence implicates Akt2-dependent TBC1D4 phosphorylation on T642 as a key part of the mechanism for insulin-stimulated glucose uptake by skeletal muscle. TBC1D1 phosphorylation on several insulin-responsive sites (including T596, a site corresponding to T642 in TBC1D4) does not appear to be essential for in vivo insulin-stimulated glucose uptake by skeletal muscle. In vivo exercise or ex vivo contraction of muscle result in greater TBC1D1 phosphorylation on S237 that is likely to be secondary to increased AMP-activated protein kinase activity and potentially important for contraction-stimulated glucose uptake. Several studies that evaluated both normal and insulin-resistant skeletal muscle stimulated with a physiological insulin concentration after a single exercise session found that greater post-exercise insulin-stimulated glucose uptake was accompanied by greater TBC1D4 phosphorylation on several sites. In contrast, enhanced post-exercise insulin sensitivity was not accompanied by greater insulin-stimulated TBC1D1 phosphorylation. The mechanism for greater TBC1D4 phosphorylation in insulin-stimulated muscles after acute exercise is uncertain, and a causal link between enhanced TBC1D4 phosphorylation and increased post-exercise insulin sensitivity has yet to be established. In summary, TBC1D1 and TBC1D4 have important, but distinct roles in regulating muscle glucose transport in response to insulin and exercise. PMID:25280670

  16. Rapid biphasic arteriolar dilations induced by skeletal muscle contraction are dependent on stimulation characteristics.

    PubMed

    Mihok, Marika L; Murrant, Coral L

    2004-04-01

    To test the hypothesis that measurable changes in microvasculature dilation occur in response to a single short-duration tetanic contraction, we contracted three to five skeletal muscle fibres of the hamster cremaster muscle microvascular preparation (in situ) and evaluated the response of an arteriole overlapping the active muscle fibres. Arteriolar diameter (baseline diameter = 16.4 +/- 0.9 micro m, maximum diameter = 34.7 +/- 1.2 micro m) was measured before and after a single contraction resulting from a range of stimulus frequencies (4, 10, 20, 30, 40, 60, and 80 Hz) within a 250- or 500-ms train. Four and 10 Hz produced a significant dilation at 2.9 +/- 0.4 and 6.5 +/- 2.8 s, respectively, within a 250-ms train and 3.0 +/- 0.2 and 6.1 +/- 1.3 s, respectively, within a 500-ms train. Biphasic dilations were observed within a 250-ms train at 20 Hz (at 3.9 +/- 0.9 and 22.1 +/- 4.3 s), 30 Hz (at 2.7 +/- 0.3 and 17.5 +/- 2.9 s), and 40 Hz (at 3.8 +/- 0.4 and 23.2 +/- 2.6 s) and within a 500-ms train at 20 Hz (at 4.8 +/- 0.4 and 31.9 +/- 3.8 s) and 30 Hz (at 3.4 +/- 0.3 and 27.6 +/- 3.0 s). A single dilation was observed within a 250-ms train at 60 Hz (at 5.1 +/- 0.7 s) and 80 Hz (at 14.2 +/- 3.3 s) and within a 500-ms train at 40 Hz (at 9.9 +/- 3.2 s), 60 Hz (at 7.9 +/- 2.1 s), and 80 Hz (at 13.4 +/- 4.0 s). We have shown that a single contraction ranging from a single twitch (4 Hz, 250 ms) to fused tetanic contractions produces significant arteriolar dilations and that the pattern of dilation is dependent on the stimulus frequency and train duration.

  17. Electrical stimulation of skeletal muscles. An alternative to aerobic exercise training in patients with chronic heart failure?

    PubMed

    Dobsák, Petr; Nováková, Marie; Fiser, Bohumil; Siegelová, Jarmila; Balcárková, Pavla; Spinarová, Lenka; Vítovec, Jirí; Minami, Naoyoshi; Nagasaka, Makoto; Kohzuki, Masahiro; Yambe, Tomoyuki; Imachi, Kou; Nitta, Shin-ichi; Eicher, Jean-Christophe; Wolf, Jean-Eric

    2006-05-01

    The aim of this study was to investigate whether electrical stimulation of skeletal muscles could represent a rehabilitation alternative for patients with chronic heart failure (CHF). Thirty patients with CHF and NYHA class II-III were randomly assigned to a rehabilitation program using either electrical stimulation of skeletal muscles or bicycle training. Patients in the first group (n = 15) had 8 weeks of home-based low-frequency electrical stimulation (LFES) applied simultaneously to the quadriceps and calf muscles of both legs (1 h/day for 7 days/week); patients in the second group (n = 15) underwent 8 weeks of 40 minute aerobic exercise (3 times a week). After the 8-week period significant increases in several functional parameters were observed in both groups: maximal VO2 uptake (LFES group: from 17.5 +/- 4.4 mL/kg/min to 18.3 +/- 4.2 mL/kg/min, P < 0.05; bicycle group: from 18.1 +/- 3.9 mL/kg/min to 19.3 +/- 4.1 mL/kg/min, P < 0.01), maximal workload (LFES group: from 84.3 +/- 15.2 W to 95.9 +/- 9.8 W, P < 0.05; bicycle group: from 91.2 +/- 13.4 W to 112.9 +/- 10.8 W, P < 0.01), distance walked in 6 minutes (LFES group: from 398 +/- 105 m to 435 +/- 112 m, P < 0.05; bicycle group: from 425 +/- 118 m to 483 +/- 120 m, P < 0.03), and exercise duration (LFES group: from 488 +/- 45 seconds to 568 +/- 120 seconds, P < 0.05; bicycle group: from 510 +/- 90 seconds to 611 +/- 112 seconds, P < 0.03). These results demonstrate that an improvement of exercise capacities can be achieved either by classical exercise training or by home-based electrical stimulation. LFES should be considered as a valuable alternative to classical exercise training in patients with CHF.

  18. Irisin, a unique non-inflammatory myokine in stimulating skeletal muscle metabolism.

    PubMed

    Vaughan, Roger A; Gannon, Nicholas P; Mermier, Christine M; Conn, Carole A

    2015-12-01

    Exercise offers several benefits for health, including increased lean body mass and heightened energy expenditure, which may be partially attributable to secretory factors known as myokines. Irisin, a recently identified myokine, was shown to increase metabolic rate and mitochondrial content in both myocytes and adipocytes; however, the mechanism(s) of action still remain largely unexplained. This work investigated if irisin functions by acting as an inflammatory myokine leading to cellular stress and energy expenditure. C2C12 myotubes were treated with various concentrations of irisin, TNFα, or IL6 for various durations. Glycolytic and oxidative metabolism, as well as mitochondrial uncoupling, were quantified by measurement of acidification and oxygen consumption, respectively. Metabolic gene and protein expression were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and immunoblotting, respectively. Mitochondrial content was assessed by fluorescent imaging. NFκB activity was assessed using an NFκB GFP-linked reporter system. Consistent with previous findings, irisin significantly increased expression of several genes including peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) leading to increased mitochondrial content and oxygen consumption. Despite some similarities between TNFα and irisin treatment, irisin failed to activate the NFκB pathway like TNFα, suggesting that irisin may not act as an inflammatory signal. Irisin has several effects on myotube metabolism which appear to be dependent on substrate availability; however, the precise mechanism(s) by which irisin functions in skeletal muscle remain unclear. Our observations support the hypothesis that irisin does not function through inflammatory NFκB activation like other myokines (such as TNFα). PMID:26399516

  19. Skeletal muscle electrical stimulation improves baroreflex sensitivity and heart rate variability in heart failure rats.

    PubMed

    Lazzarotto Rucatti, Ananda; Jaenisch, Rodrigo Boemo; Rossato, Douglas Dalcin; Bonetto, Jéssica Hellen Poletto; Ferreira, Janaína; Xavier, Leder Leal; Sonza, Anelise; Dal Lago, Pedro

    2015-12-01

    The goal of the current study was to evaluate the effects of electrical stimulation (ES) on the arterial baroreflex sensitivity (BRS) and cardiovascular autonomic control in rats with chronic heart failure (CHF). Male Wistar rats were designated to one of four groups: placebo sham (P-Sham, n=9), ES sham (ES-Sham, n=9), placebo CHF (P-CHF, n=9) or ES CHF (ES-CHF, n=9). The ES was adjusted at a low frequency (30 Hz), duration of 250 μs, with hold and rest time of 8s (4 weeks, 30 min/day, 5 times/week). It was applied on the gastrocnemius muscle with intensity to produce a visible muscle contraction. The rats assigned to the placebo groups performed the same procedures with the equipment turned off. The two-way ANOVA and the post hoc Student-Newman-Keuls tests (P<0.05) were used to data comparison. The BRS was higher in ES-Sham group compared to the P-Sham group and the ES-CHF group compared to the P-CHF group. ES was able to decrease heart rate sympatho-vagal modulation and peripheral sympathetic modulation in ES-CHF compared to P-CHF group. Interestingly, heart rate sympatho-vagal modulation was similar between ES-CHF and P-Sham groups. Thus, ES enhances heart rate parasympathetic modulation on heart failure (ES-CHF) compared to placebo (P-CHF), with consequent decrease of sympatho-vagal balance in the ES-CHF group compared to the P-CHF. The results show that a 4 week ES protocol in CHF rats enhances arterial BRS and cardiovascular autonomic control.

  20. Na,K-ATPase α2 activity in mammalian skeletal muscle T-tubules is acutely stimulated by extracellular K+

    PubMed Central

    Hakimjavadi, Hesamedin; Lingrel, Jerry B.

    2015-01-01

    The Na,K-ATPase α2 isoform is the predominant Na,K-ATPase in adult skeletal muscle and the sole Na,K-ATPase in the transverse tubules (T-tubules). In quiescent muscles, the α2 isozyme operates substantially below its maximal transport capacity. Unlike the α1 isoform, the α2 isoform is not required for maintaining resting ion gradients or the resting membrane potential, canonical roles of the Na,K-ATPase in most other cells. However, α2 activity is stimulated immediately upon the start of contraction and, in working muscles, its contribution is crucial to maintaining excitation and resisting fatigue. Here, we show that α2 activity is determined in part by the K+ concentration in the T-tubules, through its K+ substrate affinity. Apparent K+ affinity was determined from measurements of the K1/2 for K+ activation of pump current in intact, voltage-clamped mouse flexor digitorum brevis muscle fibers. Pump current generated by the α2 Na,K-ATPase, Ip, was identified as the outward current activated by K+ and inhibited by micromolar ouabain. Ip was outward at all potentials studied (−90 to −30 mV) and increased with depolarization in the subthreshold range, −90 to −50 mV. The Q10 was 2.1 over the range of 22–37°C. The K1/2,K of Ip was 4.3 ± 0.3 mM at −90 mV and was relatively voltage independent. This K+ affinity is lower than that reported for other cell types but closely matches the dynamic range of extracellular K+ concentrations in the T-tubules. During muscle contraction, T-tubule luminal K+ increases in proportion to the frequency and duration of action potential firing. This K1/2,K predicts a low fractional occupancy of K+ substrate sites at the resting extracellular K+ concentration, with occupancy increasing in proportion to the frequency of membrane excitation. The stimulation of preexisting pumps by greater K+ site occupancy thus provides a rapid mechanism for increasing α2 activity in working muscles. PMID:26371210

  1. Hypotonic stimulation of the Na+ active transport in frog skeletal muscle: role of the cytoskeleton

    PubMed Central

    Venosa, R A

    2003-01-01

    Hypotonicity produces a marked activation of the Na+ pump in frog sartorius muscle. The increase in net Na+ efflux under hypotonic conditions occurs despite the reductions in [Na+]i that are due to fibre swelling and Na+ loss. The pump density (ouabain binding) increases not only upon reduction of the medium osmotic pressure (π) from its normal value (π= 1) to one-half (π= 0.5), but also in muscles that are returned to π= 1 after equilibration in π= 2 medium. The equilibration in π= 2 medium does not affect pump density. Ouabain-binding increments cannot be ascribed to a rise in the Na+–K+ exchange rate of a fixed number of pumps: they also occurred in the continued presence of a saturating concentration of ouabain (50 μm). Under those conditions, the π= 1 →π= 0.5 transfer produced a 43 % increase in pump sites, while the π= 2 →π= 1 transfer induced a rise of 46 %. Actinomycin D did not alter the stimulation of Na+ extrusion elicited by hypotonicity, suggesting that de novo synthesis of pumps was not involved in the increase of the apparent number of pump sites. Disruption of microtubules by colchicine (100 μm) and intermediate filaments by acrylamide (4 mm) did not alter the hypotonic effect. Likewise, genistein (100 μm), a specific inhibitor of tyrosine kinase, did not affect significantly the hypotonic response. Microfilament-disrupting agents like cytochalasin B (5 μm) and latrunculin B (10 μm) reduced the increase in Na+ efflux induced by π= 1 →π= 0.5 transfer by about 35 % and 72 %, respectively. Latrunculin B reduced the increases in pump density generated by π= 1 →π= 0.5 and π= 2 →π= 1 transfers by about 79 % and 91 %, respectively. The results suggest that the membrane stretch due to hypotonic fibre volume increase would promote a microfilament-mediated insertion of submembranous spare Na+ pumps in the sarcolemma and, consequently, the rise in active Na+ transport. PMID:12598593

  2. Location of U.V.-absorbing substance in isolated skeletal muscle fibres: the effect of stimulation (frog, snake)

    PubMed Central

    Lännergren, J.

    1977-01-01

    1. In an attempt to study the intracellular location of ATP in skeletal muscle the distribution of substances which absorb light at 260 nm wave-length has been studied in isolated muscle fibres with the aid of a modified U.V.-microscope. 2. U.V.-absorption in resting frog fibres was found to be higher in the I band than in the A band which confirms earlier findings. In stretched fibres (sarcomere length 2·9-3·6 μm) an absorbing substance could be seen to be concentrated in a pair of narrow lines, centred at the Z-line. The separation of the lines increased with increasing sarcomere length. 3. Snake fibres, with sparse triads located at the A-I junction, displayed an absorption pattern very similar to that of frog fibres. It is concluded that it is unlikely that the absorbing substance is associated with the sarcotubular system. 4. The absorption pattern of frog fibres remained unchanged during a tetanus. No clear changes could be detected after a period of stimulation, neither after single twitches nor after repeated tetani. 5. In further attempts to cause exhaustion, metabolically poisoned fibres were stimulated repetitively until they went into rigor. The absorption pattern was essentially unchanged also when rigor tension started to develop. 6. The characteristic absorption pattern was observed also in glycerol-extracted fibres. It was confirmed by spectrophotometry that glycerol-extraction led to the disappearance of a large amount of a substance with the spectral characteristics of ATP. 7. The higher U.V.-absorption in the I band does not prove that the major part of the ATP in the fibre is concentrated here; the absorption could either be due to a minor fraction of the ATP or to RNA. ImagesPlate 1Plate 2Plate 3Plate 4 PMID:302860

  3. Caffeine and contraction synergistically stimulate 5'-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle.

    PubMed

    Tsuda, Satoshi; Egawa, Tatsuro; Kitani, Kazuto; Oshima, Rieko; Ma, Xiao; Hayashi, Tatsuya

    2015-10-01

    5'-Adenosine monophosphate-activated protein kinase (AMPK) has been identified as a key mediator of contraction-stimulated insulin-independent glucose transport in skeletal muscle. Caffeine acutely stimulates AMPK in resting skeletal muscle, but it is unknown whether caffeine affects AMPK in contracting muscle. Isolated rat epitrochlearis muscle was preincubated and then incubated in the absence or presence of 3 mmol/L caffeine for 30 or 120 min. Electrical stimulation (ES) was used to evoke tetanic contractions during the last 10 min of the incubation period. The combination of caffeine plus contraction had additive effects on AMPKα Thr(172) phosphorylation, α-isoform-specific AMPK activity, and 3-O-methylglucose (3MG) transport. In contrast, caffeine inhibited basal and contraction-stimulated Akt Ser(473) phosphorylation. Caffeine significantly delayed muscle fatigue during contraction, and the combination of caffeine and contraction additively decreased ATP and phosphocreatine contents. Caffeine did not affect resting tension. Next, rats were given an intraperitoneal injection of caffeine (60 mg/kg body weight) or saline, and the extensor digitorum longus muscle was dissected 15 min later. ES of the sciatic nerve was performed to evoke tetanic contractions for 5 min before dissection. Similar to the findings from isolated muscles incubated in vitro, the combination of caffeine plus contraction in vivo had additive effects on AMPK phosphorylation, AMPK activity, and 3MG transport. Caffeine also inhibited basal and contraction-stimulated Akt phosphorylation in vivo. These findings suggest that caffeine and contraction synergistically stimulate AMPK activity and insulin-independent glucose transport, at least in part by decreasing muscle fatigue and thereby promoting energy consumption during contraction.

  4. Caffeine and contraction synergistically stimulate 5′-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle

    PubMed Central

    Tsuda, Satoshi; Egawa, Tatsuro; Kitani, Kazuto; Oshima, Rieko; Ma, Xiao; Hayashi, Tatsuya

    2015-01-01

    5′-Adenosine monophosphate-activated protein kinase (AMPK) has been identified as a key mediator of contraction-stimulated insulin-independent glucose transport in skeletal muscle. Caffeine acutely stimulates AMPK in resting skeletal muscle, but it is unknown whether caffeine affects AMPK in contracting muscle. Isolated rat epitrochlearis muscle was preincubated and then incubated in the absence or presence of 3 mmol/L caffeine for 30 or 120 min. Electrical stimulation (ES) was used to evoke tetanic contractions during the last 10 min of the incubation period. The combination of caffeine plus contraction had additive effects on AMPKα Thr172 phosphorylation, α-isoform-specific AMPK activity, and 3-O-methylglucose (3MG) transport. In contrast, caffeine inhibited basal and contraction-stimulated Akt Ser473 phosphorylation. Caffeine significantly delayed muscle fatigue during contraction, and the combination of caffeine and contraction additively decreased ATP and phosphocreatine contents. Caffeine did not affect resting tension. Next, rats were given an intraperitoneal injection of caffeine (60 mg/kg body weight) or saline, and the extensor digitorum longus muscle was dissected 15 min later. ES of the sciatic nerve was performed to evoke tetanic contractions for 5 min before dissection. Similar to the findings from isolated muscles incubated in vitro, the combination of caffeine plus contraction in vivo had additive effects on AMPK phosphorylation, AMPK activity, and 3MG transport. Caffeine also inhibited basal and contraction-stimulated Akt phosphorylation in vivo. These findings suggest that caffeine and contraction synergistically stimulate AMPK activity and insulin-independent glucose transport, at least in part by decreasing muscle fatigue and thereby promoting energy consumption during contraction. PMID:26471759

  5. Caffeine and contraction synergistically stimulate 5'-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle.

    PubMed

    Tsuda, Satoshi; Egawa, Tatsuro; Kitani, Kazuto; Oshima, Rieko; Ma, Xiao; Hayashi, Tatsuya

    2015-10-01

    5'-Adenosine monophosphate-activated protein kinase (AMPK) has been identified as a key mediator of contraction-stimulated insulin-independent glucose transport in skeletal muscle. Caffeine acutely stimulates AMPK in resting skeletal muscle, but it is unknown whether caffeine affects AMPK in contracting muscle. Isolated rat epitrochlearis muscle was preincubated and then incubated in the absence or presence of 3 mmol/L caffeine for 30 or 120 min. Electrical stimulation (ES) was used to evoke tetanic contractions during the last 10 min of the incubation period. The combination of caffeine plus contraction had additive effects on AMPKα Thr(172) phosphorylation, α-isoform-specific AMPK activity, and 3-O-methylglucose (3MG) transport. In contrast, caffeine inhibited basal and contraction-stimulated Akt Ser(473) phosphorylation. Caffeine significantly delayed muscle fatigue during contraction, and the combination of caffeine and contraction additively decreased ATP and phosphocreatine contents. Caffeine did not affect resting tension. Next, rats were given an intraperitoneal injection of caffeine (60 mg/kg body weight) or saline, and the extensor digitorum longus muscle was dissected 15 min later. ES of the sciatic nerve was performed to evoke tetanic contractions for 5 min before dissection. Similar to the findings from isolated muscles incubated in vitro, the combination of caffeine plus contraction in vivo had additive effects on AMPK phosphorylation, AMPK activity, and 3MG transport. Caffeine also inhibited basal and contraction-stimulated Akt phosphorylation in vivo. These findings suggest that caffeine and contraction synergistically stimulate AMPK activity and insulin-independent glucose transport, at least in part by decreasing muscle fatigue and thereby promoting energy consumption during contraction. PMID:26471759

  6. Pigment epithelium-derived factor stimulates skeletal muscle glycolytic activity through NADPH oxidase-dependent reactive oxygen species production.

    PubMed

    Carnagarin, Revathy; Carlessi, Rodrigo; Newsholme, Philip; Dharmarajan, Arun M; Dass, Crispin R

    2016-09-01

    Pigment epithelium-derived factor is a multifunctional serpin implicated in insulin resistance in metabolic disorders. Recent evidence suggests that exposure of peripheral tissues such as skeletal muscle to PEDF has profound metabolic consequences with predisposition towards chronic conditions such as obesity, type 2 diabetes, metabolic syndrome and polycystic ovarian syndrome. Chronic inflammation shifts muscle metabolism towards increased glycolysis and decreased oxidative metabolism. In the present study, we demonstrate a novel effect of PEDF on cellular metabolism in mouse cell line (C2C12) and human primary skeletal muscle cells. PEDF addition to skeletal muscle cells induced enhanced phospholipase A2 activity. This was accompanied with increased production of reactive oxygen species in a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent manner that triggered a shift towards a more glycolytic phenotype. Extracellular flux analysis and glucose consumption assays demonstrated that PEDF treatment resulted in enhanced glycolysis but did not change mitochondrial respiration. Our results demonstrate that skeletal muscle cells express a PEDF-inducible oxidant generating system that enhances glycolysis but is sensitive to antioxidants and NADPH oxidase inhibition. PMID:27343430

  7. Space travel directly induces skeletal muscle atrophy

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H.; Chromiak, J.; Shansky, J.; Del Tatto, M.; Lemaire, J.

    1999-01-01

    Space travel causes rapid and pronounced skeletal muscle wasting in humans that reduces their long-term flight capabilities. To develop effective countermeasures, the basis of this atrophy needs to be better understood. Space travel may cause muscle atrophy indirectly by altering circulating levels of factors such as growth hormone, glucocorticoids, and anabolic steroids and/or by a direct effect on the muscle fibers themselves. To determine whether skeletal muscle cells are directly affected by space travel, tissue-cultured avian skeletal muscle cells were tissue engineered into bioartificial muscles and flown in perfusion bioreactors for 9 to 10 days aboard the Space Transportation System (STS, i.e., Space Shuttle). Significant muscle fiber atrophy occurred due to a decrease in protein synthesis rates without alterations in protein degradation. Return of the muscle cells to Earth stimulated protein synthesis rates of both muscle-specific and extracellular matrix proteins relative to ground controls. These results show for the first time that skeletal muscle fibers are directly responsive to space travel and should be a target for countermeasure development.

  8. Space travel directly induces skeletal muscle atrophy.

    PubMed

    Vandenburgh, H; Chromiak, J; Shansky, J; Del Tatto, M; Lemaire, J

    1999-06-01

    Space travel causes rapid and pronounced skeletal muscle wasting in humans that reduces their long-term flight capabilities. To develop effective countermeasures, the basis of this atrophy needs to be better understood. Space travel may cause muscle atrophy indirectly by altering circulating levels of factors such as growth hormone, glucocorticoids, and anabolic steroids and/or by a direct effect on the muscle fibers themselves. To determine whether skeletal muscle cells are directly affected by space travel, tissue-cultured avian skeletal muscle cells were tissue engineered into bioartificial muscles and flown in perfusion bioreactors for 9 to 10 days aboard the Space Transportation System (STS, i.e., Space Shuttle). Significant muscle fiber atrophy occurred due to a decrease in protein synthesis rates without alterations in protein degradation. Return of the muscle cells to Earth stimulated protein synthesis rates of both muscle-specific and extracellular matrix proteins relative to ground controls. These results show for the first time that skeletal muscle fibers are directly responsive to space travel and should be a target for countermeasure development.

  9. Relaxation, [Ca2+]i and [Mg2+]i during prolonged tetanic stimulation of intact, single fibres from mouse skeletal muscle.

    PubMed Central

    Westerblad, H; Allen, D G

    1994-01-01

    1. In skeletal muscle there is generally a slowing of relaxation with increasing tetanus duration and it has been suggested that this is due to Ca2+ loading of parvalbumin (PA). To study this we have produced prolonged tetani in intact, single fibres from a mouse foot muscle which contain a high concentration of PA. We measured the rate of tension relaxation and also various aspects of Ca2+ handling. 2. During 'interrupted' tetani (15 repeated cycles of 100 ms with stimulation and 50 ms without) we observed a marked slowing of the relaxation both under control conditions and in acidosis (obtained by increasing the bath CO2 content). This slowing was not accompanied by any reduction of the initial rate of decline of the free myoplasmic Ca2+ concentration ([Ca2+]i), which was measured with indo-1. 3. The functioning of the sarcoplasmic reticulum (SR) pump after tetani of various durations was analysed by plotting d[Ca2+]i/dt vs. [Ca2+]i during the final slow decline of [Ca2+]i after tetani. This analysis showed that the rate of SR Ca2+ pumping after a 1 s tetanus is less than half of that after a 100 ms tetanus. 4. The amplitude of the tail of [Ca2+]i 250 ms into relaxation was measured after tetani of various durations. This amplitude increased with tetanus duration and could be fitted to the sum of one exponential and one linear function. The exponential component increased with a time constant of 0.17 s and probably reflects Ca2+ loading of PA. 5. Ca2+ binding to PA will displace Mg2+ and hence the free myoplasmic concentration of Mg2+ ([Mg2+]i) will increase. To study this we used the fluorescent Mg2+ indicator furaptra. The results showed an increase of [Mg2+]i during prolonged tetani which, after removing the Ca2+ component of the fluorescent signal, amounted to about 0.5 mM. 6. A model of Ca2+ movements and tension production in skeletal muscle was used. The model showed that the increase of the amplitude of [Ca2+]i tails after tetani of various durations can

  10. Ketoisocaproic acid, a metabolite of leucine, suppresses insulin-stimulated glucose transport in skeletal muscle cells in a BCAT2-dependent manner.

    PubMed

    Moghei, Mahshid; Tavajohi-Fini, Pegah; Beatty, Brendan; Adegoke, Olasunkanmi A J

    2016-09-01

    Although leucine has many positive effects on metabolism in multiple tissues, elevated levels of this amino acid and the other branched-chain amino acids (BCAAs) and their metabolites are implicated in obesity and insulin resistance. While some controversies exist about the direct effect of leucine on insulin action in skeletal muscle, little is known about the direct effect of BCAA metabolites. Here, we first showed that the inhibitory effect of leucine on insulin-stimulated glucose transport in L6 myotubes was dampened when other amino acids were present, due in part to a 140% stimulation of basal glucose transport (P < 0.05). Importantly, we also showed that α-ketoisocaproic acid (KIC), an obligatory metabolite of leucine, stimulated mTORC1 signaling but suppressed insulin-stimulated glucose transport (-34%, P < 0.05) in an mTORC1-dependent manner. The effect of KIC on insulin-stimulated glucose transport was abrogated in cells depleted of branched-chain aminotransferase 2 (BCAT2), the enzyme that catalyzes the reversible transamination of KIC to leucine. We conclude that although KIC can modulate muscle glucose metabolism, this effect is likely a result of its transamination back to leucine. Therefore, limiting the availability of leucine, rather than those of its metabolites, to skeletal muscle may be more critical in the management of insulin resistance and its sequelae. PMID:27488662

  11. The benefits of coffee on skeletal muscle.

    PubMed

    Dirks-Naylor, Amie J

    2015-12-15

    Coffee is consumed worldwide with greater than a billion cups of coffee ingested every day. Epidemiological studies have revealed an association of coffee consumption with reduced incidence of a variety of chronic diseases as well as all-cause mortality. Current research has primarily focused on the effects of coffee or its components on various organ systems such as the cardiovascular system, with relatively little attention on skeletal muscle. Summary of current literature suggests that coffee has beneficial effects on skeletal muscle. Coffee has been shown to induce autophagy, improve insulin sensitivity, stimulate glucose uptake, slow the progression of sarcopenia, and promote the regeneration of injured muscle. Much more research is needed to reveal the full scope of benefits that coffee consumption may exert on skeletal muscle structure and function.

  12. Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca(2+) signals and an IL-6 autocrine loop.

    PubMed

    Bustamante, Mario; Fernández-Verdejo, Rodrigo; Jaimovich, Enrique; Buvinic, Sonja

    2014-04-15

    Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop.

  13. Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca2+ signals and an IL-6 autocrine loop

    PubMed Central

    Bustamante, Mario; Fernández-Verdejo, Rodrigo; Jaimovich, Enrique

    2014-01-01

    Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop. PMID:24518675

  14. Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca(2+) signals and an IL-6 autocrine loop.

    PubMed

    Bustamante, Mario; Fernández-Verdejo, Rodrigo; Jaimovich, Enrique; Buvinic, Sonja

    2014-04-15

    Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop. PMID:24518675

  15. ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells.

    PubMed

    Díaz-Vegas, Alexis; Campos, Cristian A; Contreras-Ferrat, Ariel; Casas, Mariana; Buvinic, Sonja; Jaimovich, Enrique; Espinosa, Alejandra

    2015-01-01

    During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC.

  16. ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells

    PubMed Central

    Díaz-Vegas, Alexis; Campos, Cristian A.; Contreras-Ferrat, Ariel; Casas, Mariana; Buvinic, Sonja; Jaimovich, Enrique; Espinosa, Alejandra

    2015-01-01

    During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC. PMID:26053483

  17. ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells.

    PubMed

    Díaz-Vegas, Alexis; Campos, Cristian A; Contreras-Ferrat, Ariel; Casas, Mariana; Buvinic, Sonja; Jaimovich, Enrique; Espinosa, Alejandra

    2015-01-01

    During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC. PMID:26053483

  18. Regulation of Granulocyte Colony-Stimulating Factor and Its Receptor in Skeletal Muscle is Dependent Upon the Type of Inflammatory Stimulus.

    PubMed

    Wright, Craig Robert; Brown, Erin Louise; Della Gatta, Paul A; Fatouros, Ioannis G; Karagounis, Leonidas G; Terzis, Gerasimos; Mastorakos, Georgios; Michailidis, Yannis; Mandalidis, Dimitris; Spengos, Kontantinos; Chatzinikolaou, Athanasios; Methenitis, Spiros; Draganidis, Dimitrios; Jamurtas, Athanasios Z; Russell, Aaron Paul

    2015-09-01

    The cytokine granulocyte colony-stimulating factor (G-CSF) binds to its receptor (G-CSFR) to stimulate hematopoietic stem cell mobilization, myelopoiesis, and the production and activation of neutrophils. In response to exercise-induced muscle damage, G-CSF is increased in circulation and G-CSFR has recently been identified in skeletal muscle cells. While G-CSF/G-CSFR activation mediates pro- and anti-inflammatory responses, our understanding of the role and regulation in the muscle is limited. The aim of this study was to investigate, in vitro and in vivo, the role and regulation of G-CSF and G-CSFR in skeletal muscle under conditions of muscle inflammation and damage. First, C2C12 myotubes were treated with lipopolysaccharide (LPS) with and without G-CSF to determine if G-CSF modulates the inflammatory response. Second, the regulation of G-CSF and its receptor was measured following eccentric exercise-induced muscle damage and the expression levels we investigated for redox sensitivity by administering the antioxidant N-acetylcysteine (NAC). LPS stimulation of C2C12 myotubes resulted in increases in G-CSF, interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-α (TNFα) messenger RNA (mRNA) and an increase in G-CSF, IL-6, and MCP-1 release from C2C12 myotubes. The addition of G-CSF following LPS stimulation of C2C12 myotubes increased IL-6 mRNA and cytokine release into the media, however it did not affect MCP-1 or TNFα. Following eccentric exercise-induced muscle damage in humans, G-CSF levels were either marginally increased in circulation or remain unaltered in skeletal muscle. Similarly, G-CSFR levels remained unchanged in response to damaging exercise and G-CSF/G-CSFR did not change in response to NAC. Collectively, these findings suggest that G-CSF may cooperate with IL-6 and potentially promote muscle regeneration in vitro, whereas in vivo aseptic inflammation induced by exercise did not change G-CSF and G

  19. A diacylglycerol kinase inhibitor, R59022, stimulates glucose transport through a MKK3/6-p38 signaling pathway in skeletal muscle cells.

    PubMed

    Takahashi, Nobuhiko; Nagamine, Miho; Tanno, Satoshi; Motomura, Wataru; Kohgo, Yutaka; Okumura, Toshikatsu

    2007-08-17

    Diacylglycerol kinase (DGK) is one of lipid-regulating enzymes, catalyzes phosphorylation of diacylglycerol to phosphatidic acid. Because skeletal muscle, a major insulin-target organ for glucose disposal, expresses DGK, we investigated in the present study a role of DGK on glucose transport in skeletal muscle cells. PCR study showed that C2C12 myotubes expressed DGKalpha, delta, epsilon, zeta, or theta isoform mRNA. R59022, a specific inhibitor of DGK, significantly increased glucose transport, p38 and MKK3/6 activation in C2C12 myotubes. The R59022-induced glucose transport was blocked by SB203580, a specific p38 inhibitor. In contrast, R59022 failed to stimulate both possible known mechanisms to enhance glucose transport, an IRS1-PI3K-Akt pathway, muscle contraction signaling or GLUT1 and 4 expression. All these results suggest that DGK may play a role in glucose transport in the skeletal muscle cells through modulating a MKK3/6-p38 signaling pathway. PMID:17588539

  20. A diacylglycerol kinase inhibitor, R59022, stimulates glucose transport through a MKK3/6-p38 signaling pathway in skeletal muscle cells.

    PubMed

    Takahashi, Nobuhiko; Nagamine, Miho; Tanno, Satoshi; Motomura, Wataru; Kohgo, Yutaka; Okumura, Toshikatsu

    2007-08-17

    Diacylglycerol kinase (DGK) is one of lipid-regulating enzymes, catalyzes phosphorylation of diacylglycerol to phosphatidic acid. Because skeletal muscle, a major insulin-target organ for glucose disposal, expresses DGK, we investigated in the present study a role of DGK on glucose transport in skeletal muscle cells. PCR study showed that C2C12 myotubes expressed DGKalpha, delta, epsilon, zeta, or theta isoform mRNA. R59022, a specific inhibitor of DGK, significantly increased glucose transport, p38 and MKK3/6 activation in C2C12 myotubes. The R59022-induced glucose transport was blocked by SB203580, a specific p38 inhibitor. In contrast, R59022 failed to stimulate both possible known mechanisms to enhance glucose transport, an IRS1-PI3K-Akt pathway, muscle contraction signaling or GLUT1 and 4 expression. All these results suggest that DGK may play a role in glucose transport in the skeletal muscle cells through modulating a MKK3/6-p38 signaling pathway.

  1. Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes

    NASA Technical Reports Server (NTRS)

    Li, Yi-Ping; Chen, Yuling; Li, Andrew S.; Reid, Michael B.

    2003-01-01

    Reactive oxygen species (ROS) are thought to promote muscle atrophy in chronic wasting diseases, but the underlying mechanism has not been determined. Here we show that H2O2 stimulates ubiquitin conjugation to muscle proteins through transcriptional regulation of the enzymes (E2 and E3 proteins) that conjugate ubiquitin to muscle proteins. Incubation of C2C12 myotubes with 100 microM H2O2 increased the rate of 125I-labeled ubiquitin conjugation to muscle proteins in whole cell extracts. This response required at least 4-h exposure to H2O2 and persisted for at least 24 h. Preincubating myotubes with cycloheximide or actinomycin D blocked H2O2 stimulation of ubiquitin-conjugating activity, suggesting that gene transcription is required. Northern blot analyses revealed that H2O2 upregulates expression of specific E3 and E2 proteins that are thought to regulate muscle catabolism, including atrogin1/MAFbx, MuRF1, and E214k. These results suggest that ROS stimulate protein catabolism in skeletal muscle by upregulating the ubiquitin conjugation system.

  2. Diastereomeric mixture of calophyllic acid and isocalophyllic acid stimulates glucose uptake in skeletal muscle cells: involvement of PI-3-kinase- and ERK1/2-dependent pathways.

    PubMed

    Prasad, Janki; Maurya, Chandan Kumar; Pandey, Jyotsana; Jaiswal, Natasha; Madhur, Gaurav; Srivastava, Arvind Kumar; Narender, Tadigoppula; Tamrakar, Akhilesh Kumar

    2013-05-01

    The diastereomeric mixture of calophyllic acid and isocalophyllic acid (F015) isolated from the leaves of Calophyllum inophyllum was investigated for the metabolic effect on glucose transport in skeletal muscle cells. In L6 myotubes, F015 dose-dependently stimulated glucose uptake by increasing translocation of glucose transporter4 (GLUT4) to plasma membrane without affecting their gene expression. The effects on glucose uptake were additive to insulin. Inhibitors analyses revealed that F015-induced glucose uptake was dependent on the activation of phosphatidylinositol-3-kinase (PI-3-K) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), while independent to the activation of 5'AMP-activated kinase (AMPK). F015 significantly increased the phosphorylation of AKT, AS160 and ERK1/2, account for the augmented glucose transport capacity in L6 myotubes. Furthermore, F015 improved glucose tolerance and enhanced insulin sensitivity in skeletal muscle of dexamethasone-induced insulin resistant mice. Our findings demonstrate that F015 activates glucose uptake in skeletal muscle cells through PI-3-K- and EKR1/2-dependent mechanisms and can be a potential lead for the management of diabetes and obesity.

  3. Skeletal muscle oxidative metabolism in an animal model of pulmonary emphysema: formoterol and skeletal muscle dysfunction.

    PubMed

    Sullo, Nikol; Roviezzo, Fiorentina; Matteis, Maria; Spaziano, Giuseppe; Del Gaudio, Stefania; Lombardi, Assunta; Lucattelli, Monica; Polverino, Francesca; Lungarella, Giuseppe; Cirino, Giuseppe; Rossi, Francesco; D'Agostino, Bruno

    2013-02-01

    Skeletal muscle dysfunction is a significant contributor to exercise limitation in pulmonary emphysema. This study investigated skeletal muscle oxidative metabolism before and after aerosol exposure to a long-acting β-agonist (LABA), such as formoterol, in the pallid mouse (B6.Cg-Pldnpa/J), which has a deficiency in serum α(1)-antitrypsin (α(1)-PI) and develops spontaneous pulmonary emphysema. C57 BL/6J and its congener pallid mice of 8-12 and 16 months of age were treated with vehicle or formoterol aerosol challenge for 120 seconds. Morphological and morphometric studies and evaluations of mitochondrial adenosine diphosphate-stimulated respiration and of cytochrome oxidase activity on skeletal muscle were performed. Moreover, the mtDNA content in skeletal muscle and the mediators linked to muscle mitochondrial function and biogenesis, as well as TNF-α and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), were also evaluated. The lungs of pallid mice at 12 and 16 months of age showed patchy areas of airspace enlargements, with the destruction of alveolar septa. No significant differences were observed in basal values of mitochondrial skeletal muscle oxidative processes between C57 BL/6J and pallid mice. Exposure to LABA significantly improved mitochondrial skeletal muscle oxidative processes in emphysematous mice, where the mtDNA content was significantly higher with respect to 8-month-old pallid mice. This effect was compared with a significant increase of PGC-1α in skeletal muscles of 16-month-old pallid mice, with no significant changes in TNF-α concentrations. In conclusion, in emphysematous mice that showed an increased mtDNA content, exposure to inhaled LABA can improve mitochondrial skeletal muscle oxidative processes. PGC-1α may serve as a possible mediator of this effect.

  4. TNF-α-induced NF-κB activation stimulates skeletal muscle glycolytic metabolism through activation of HIF-1α.

    PubMed

    Remels, A H V; Gosker, H R; Verhees, K J P; Langen, R C J; Schols, A M W J

    2015-05-01

    A shift in quadriceps muscle metabolic profile toward decreased oxidative metabolism and increased glycolysis is a consistent finding in chronic obstructive pulmonary disease (COPD). Chronic inflammation has been proposed as a trigger of this pathological metabolic adaptation. Indeed, the proinflammatory cytokine TNF-α impairs muscle oxidative metabolism through activation of the nuclear factor-κB (NF-κB) pathway. Putative effects on muscle glycolysis, however, are unclear. We hypothesized that TNF-α-induced NF-κB signaling stimulates muscle glycolytic metabolism through activation of the glycolytic regulator hypoxia-inducible factor-1α (HIF-1α). Wild-type C2C12 and C2C12-IκBα-SR (blocked NF-κB signaling) myotubes were stimulated with TNF-α, and its effects on glycolytic metabolism and involvement of the HIF pathway herein were investigated. As proof of principle, expression of HIF signaling constituents was investigated in quadriceps muscle biopsies of a previously well-characterized cohort of clinically stable patients with severe COPD and healthy matched controls. TNF-α increased myotube glucose uptake and lactate production and enhanced the activity and expression levels of multiple effectors of muscle glycolytic metabolism in a NF-κB-dependent manner. In addition, TNF-α activated HIF signaling, which required classical NF-κB activation. Moreover, the knockdown of HIF-1α largely attenuated TNF-α-induced increases in glycolytic metabolism. Accordingly, the mRNA levels of HIF-1α and the HIF-1α target gene, vascular endothelial growth factor (VEGF), were increased in muscle biopsies of COPD patients compared with controls, which was most pronounced in the patients with high levels of muscle TNF-α. In conclusion, these data show that TNF-α-induced classical NF-κB activation enhances muscle glycolytic metabolism in a HIF-1α-dependent manner. PMID:25710281

  5. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  6. Pongamol from Pongamia pinnata stimulates glucose uptake by increasing surface GLUT4 level in skeletal muscle cells.

    PubMed

    Tamrakar, Akhilesh K; Jaiswal, Natasha; Yadav, Prem P; Maurya, Rakesh; Srivastava, Arvind K

    2011-06-01

    Skeletal muscle is the major site of postprandial glucose disposal and augmenting glucose uptake into this tissue may attenuate insulin resistance that precedes type 2 diabetes mellitus. Here, we investigated the effect of pongamol, an identified lead molecule from the fruits of Pongamia pinnata, on glucose uptake and GLUT4 translocation in skeletal muscle cells. In L6-GLUT4myc myotubes treatment with pongamol significantly promoted both glucose transport and GLUT4 translocation to the cell surface in a concentration-dependent manner, without changing the total amount of GLUT4 protein and GLUT4 mRNA, effects that were also additive with insulin. Cycloheximide treatment inhibited the effect of pongamol on GLUT4 translocation suggesting the requirement of new protein synthesis. The pongamol-induced increase in GLUT4 translocation was completely abolished by wortmannin, and pongamol significantly potentiated insulin-mediated phosphorylation of AKT (Ser-473). We conclude that pongamol-induced increase in glucose uptake in L6 myotubes is the result of an increased translocation of GLUT4 to plasma membrane, driven by a PI-3-K/AKT dependent mechanism. PMID:21497640

  7. Blockade of the Renin-Angiotensin system improves insulin receptor signaling and insulin-stimulated skeletal muscle glucose transport in burn injury.

    PubMed

    Kasper, Sherry O; Phillips, Erin E; Castle, Scott M; Daley, Brian J; Enderson, Blaine L; Karlstad, Michael D

    2011-01-01

    Burn injury is associated with a decline in glucose utilization and insulin sensitivity due to alterations in postreceptor insulin signaling pathways. We have reported that blockade of the renin-angiotensin system with losartan, an angiotensin II type 1 (AT1) receptor blocker, improves whole body insulin sensitivity and glucose metabolism after burn injury. This study examines whether losartan improves insulin signaling pathways and insulin-stimulated glucose transport in skeletal muscle in burn-injured rats. Rats were injured by a 30% full-skin-thickness scalding burn and treated with losartan or placebo for 3 days after burn. Insulin signaling pathways were investigated in rectus abdominus muscle taken before and 90 s after intraportal insulin injection (10 U·kg). Insulin-stimulated insulin receptor substrate 1-associated phosphatidylinositol 3-kinase and plasma membrane-associated GLUT4 transporter were substantially increased with losartan treatment in burn-injured animals (59% above sham). Serine phosphorylated AKT/PKB was decreased with burn injury, and this decrease was attenuated with losartan treatment. In a separate group of rats, the effect of insulin on 2-deoxyglucose transport was significantly impaired in burned as compared with sham soleus muscles, in vitro; however, treatment of burned rats with losartan completely abolished the reduction of insulin-stimulated 2-deoxyglucose transport. These findings demonstrate a cross talk between the AT1 and insulin receptor that negatively modulates insulin receptor signaling and suggest a potential role of renin-angiotensin system blockade as a therapeutic strategy for enhancing insulin sensitivity in skeletal muscle and improving whole-body glucose homeostasis in burn injury.

  8. A novel PKB/Akt inhibitor, MK-2206, effectively inhibits insulin-stimulated glucose metabolism and protein synthesis in isolated rat skeletal muscle.

    PubMed

    Lai, Yu-Chiang; Liu, Yang; Jacobs, Roxane; Rider, Mark H

    2012-10-01

    PKB (protein kinase B), also known as Akt, is a key component of insulin signalling. Defects in PKB activation lead to insulin resistance and metabolic disorders, whereas PKB overactivation has been linked to tumour growth. Small-molecule PKB inhibitors have thus been developed for cancer treatment, but also represent useful tools to probe the roles of PKB in insulin action. In the present study, we examined the acute effects of two allosteric PKB inhibitors, MK-2206 and Akti 1/2 (Akti) on PKB signalling in incubated rat soleus muscles. We also assessed the effects of the compounds on insulin-stimulated glucose uptake, glycogen and protein synthesis. MK-2206 dose-dependently inhibited insulin-stimulated PKB phosphorylation, PKBβ activity and phosphorylation of PKB downstream targets (including glycogen synthase kinase-3α/β, proline-rich Akt substrate of 40 kDa and Akt substrate of 160 kDa). Insulin-stimulated glucose uptake, glycogen synthesis and glycogen synthase activity were also decreased by MK-2206 in a dose-dependent manner. Incubation with high doses of MK-2206 (10 μM) inhibited insulin-induced p70 ribosomal protein S6 kinase and 4E-BP1 (eukaryotic initiation factor 4E-binding protein-1) phosphorylation associated with increased eEF2 (eukaryotic elongation factor 2) phosphorylation. In contrast, Akti only modestly inhibited insulin-induced PKB and mTOR (mammalian target of rapamycin) signalling, with little or no effect on glucose uptake and protein synthesis. MK-2206, rather than Akti, would thus be the tool of choice for studying the role of PKB in insulin action in skeletal muscle. The results point to a key role for PKB in mediating insulin-stimulated glucose uptake, glycogen synthesis and protein synthesis in skeletal muscle.

  9. Skeletal muscle involvement in cardiomyopathies.

    PubMed

    Limongelli, Giuseppe; D'Alessandro, Raffaella; Maddaloni, Valeria; Rea, Alessandra; Sarkozy, Anna; McKenna, William J

    2013-12-01

    The link between heart and skeletal muscle disorders is based on similar molecular, anatomical and clinical features, which are shared by the 'primary' cardiomyopathies and 'primary' neuromuscular disorders. There are, however, some peculiarities that are typical of cardiac and skeletal muscle disorders. Skeletal muscle weakness presenting at any age may indicate a primary neuromuscular disorder (associated with creatine kinase elevation as in dystrophinopathies), a mitochondrial disease (particularly if encephalopathy, ocular myopathy, retinitis, neurosensorineural deafness, lactic acidosis are present), a storage disorder (progressive exercise intolerance, cognitive impairment and retinitis pigmentosa, as in Danon disease), or metabolic disorders (hypoglycaemia, metabolic acidosis, hyperammonaemia or other specific biochemical abnormalities). In such patients, skeletal muscle weakness usually precedes the cardiomyopathy and dominates the clinical picture. Nevertheless, skeletal involvement may be subtle, and the first clinical manifestation of a neuromuscular disorder may be the occurrence of heart failure, conduction disorders or ventricular arrhythmias due to cardiomyopathy. ECG and echocardiogram, and eventually, a more detailed cardiovascular evaluation may be required to identify early cardiac involvement. Paediatric and adult cardiologists should be proactive in screening for neuromuscular and related disorders to enable diagnosis in probands and evaluation of families with a focus on the identification of those at risk of cardiac arrhythmia and emboli who may require specific prophylactic treatments, for example, pacemaker, implantable cardioverter-defibrillator and anticoagulation. PMID:24149064

  10. Skeletal muscle cramps during exercise.

    PubMed

    Schwellnus, M P

    1999-11-01

    Cramps are painful, involuntary contractions of skeletal muscle that occur during or immediately after exercise and are common in endurance athletes. Although cramps can occur in many rare medical conditions, most athletes who have exercise-associated muscle cramping do not have congenital or acquired medical disorders. The cause of cramping is not well understood but may have to do with abnormal spinal control of motor neuron activity, particularly when a muscle contracts in a shortened position. Important risk factors include muscle fatigue and poor stretching habits. Treatment consists mainly of passive stretching, with supportive measures as needed. Special diagnostic studies and conditioning programs may be necessary for recurrent episodes.

  11. Tissue engineering skeletal muscle for orthopaedic applications

    NASA Technical Reports Server (NTRS)

    Payumo, Francis C.; Kim, Hyun D.; Sherling, Michael A.; Smith, Lee P.; Powell, Courtney; Wang, Xiao; Keeping, Hugh S.; Valentini, Robert F.; Vandenburgh, Herman H.

    2002-01-01

    With current technology, tissue-engineered skeletal muscle analogues (bioartificial muscles) generate too little active force to be clinically useful in orthopaedic applications. They have been engineered genetically with numerous transgenes (growth hormone, insulinlike growth factor-1, erythropoietin, vascular endothelial growth factor), and have been shown to deliver these therapeutic proteins either locally or systemically for months in vivo. Bone morphogenetic proteins belonging to the transforming growth factor-beta superfamily are osteoinductive molecules that drive the differentiation pathway of mesenchymal cells toward the chondroblastic or osteoblastic lineage, and stimulate bone formation in vivo. To determine whether skeletal muscle cells endogenously expressing bone morphogenetic proteins might serve as a vehicle for systemic bone morphogenetic protein delivery in vivo, proliferating skeletal myoblasts (C2C12) were transduced with a replication defective retrovirus containing the gene for recombinant human bone morphogenetic protein-6 (C2BMP-6). The C2BMP-6 cells constitutively expressed recombinant human bone morphogenetic protein-6 and synthesized bioactive recombinant human bone morphogenetic protein-6, based on increased alkaline phosphatase activity in coincubated mesenchymal cells. C2BMP-6 cells did not secrete soluble, bioactive recombinant human bone morphogenetic protein-6, but retained the bioactivity in the cell layer. Therefore, genetically-engineered skeletal muscle cells might serve as a platform for long-term delivery of osteoinductive bone morphogenetic proteins locally.

  12. Protein kinase C activators selectively inhibit insulin-stimulated system A transport activity in skeletal muscle at a post-receptor level.

    PubMed Central

    Gumà, A; Camps, M; Palacín, M; Testar, X; Zorzano, A

    1990-01-01

    We have investigated the role of phorbol esters on different biological effects induced by insulin in muscle, such as activation of system A transport activity, glucose utilization and insulin receptor function. System A transport activity was measured by monitoring the uptake of the system A-specific analogue alpha-(methyl)aminoisobutyric acid (MeAIB), by intact rat extensor digitorum longus muscle. The addition of 12-O-tetradecanoylphorbol 13-acetate (TPA, 0.5 microM) for 60 or 180 min did not modify basal MeAIB uptake by muscle, suggesting that insulin signalling required to stimulate MeAIB transport does not involve protein kinase C activation. However, TPA added 30 min before insulin (100 nM) markedly inhibited insulin-stimulated MeAIB uptake. The addition of polymyxin B (0.1 mM) or H-7 (1 mM), protein kinase C inhibitors, alone or in combination with TPA leads to impairment of insulin-stimulated MeAIB uptake. This paradoxical pattern is incompatible with a unique action of Polymyxin B or H-7 on protein kinase C activity. Therefore these agents are not suitable tools with which to investigate whether a certain insulin effect is mediated by protein kinase C. TPA did not cause a generalized inhibition of insulin action. Thus both TPA and insulin increased 3-O-methylglucose uptake by muscle, and their effects were not additive. Furthermore, TPA did not modify insulin-stimulated lactate production by muscle. In keeping with this selective modification of insulin action, treatment of muscles with TPA did not modify insulin receptor binding or kinase activities. In conclusion, phorbol esters do not mimic insulin action on system A transport activity; however, they markedly inhibit insulin-stimulated amino acid transport, with no modification of insulin receptor function in rat skeletal muscle. It is suggested that protein kinase C activation causes a selective post-receptor modification on the biochemical pathway by which insulin activates system A amino acid

  13. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.

    1987-01-01

    Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.

  14. Dihydrotestosterone stimulates amino acid uptake and the expression of LAT2 in mouse skeletal muscle fibres through an ERK1/2-dependent mechanism.

    PubMed

    Hamdi, M M; Mutungi, G

    2011-07-15

    Dihydrotestosterone (DHT) has acute/non-genomic actions in adult mammalian skeletal muscles whose physiological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the acute/non-genomic effects of DHT on amino acid uptake as well as the cellular signal transduction events underlying these actions in mouse fast- and slow-twitch skeletal muscle fibre bundles. 14C-Labelled amino acids were used to investigate the effects of DHT and testosterone (T) on amino acid uptake and pharmacological interventions were used to determine the cellular signal transduction events mediating these actions. While T had no effect on the uptake of isoleucine (Ile) and α-methylaminoisobutyric acid (MeAIB) in both fibre types, DHT increased their uptake in the fast-twitch fibre bundles. This effect was reversed by inhibitors of protein translation, the epidermal growth factor receptor (EGFR), system A, system L, mTOR and MEK. However, it was relatively insensitive to inhibitors of transcription, androgen receptors and PI3K/Akt. Additionally, DHT treatment increased the expression of LAT2 and the phosphorylation of the EGFR in the fast-twitch fibre bundles and that of ERK1/2, RSK1/2 and ATF2 in both fibre types. Also, it decreased the phosphorylation of eEF2 and increased the incorporation of Ile into proteins in both fibre types. Most of these effects were reversed by EGFR and MEK inhibitors. From these findings we suggest that another physiological function of the acute/non-genomic actions of DHT in isolated mammalian skeletal muscle fibres is to stimulate amino acid uptake. This effect is mediated through the EGFR and involves the activation of the MAPK pathway and an increase in LAT2 expression.

  15. Systems-based discovery of tomatidine as a natural small molecule inhibitor of skeletal muscle atrophy.

    PubMed

    Dyle, Michael C; Ebert, Scott M; Cook, Daniel P; Kunkel, Steven D; Fox, Daniel K; Bongers, Kale S; Bullard, Steven A; Dierdorff, Jason M; Adams, Christopher M

    2014-05-23

    Skeletal muscle atrophy is a common and debilitating condition that lacks an effective therapy. To address this problem, we used a systems-based discovery strategy to search for a small molecule whose mRNA expression signature negatively correlates to mRNA expression signatures of human skeletal muscle atrophy. This strategy identified a natural small molecule from tomato plants, tomatidine. Using cultured skeletal myotubes from both humans and mice, we found that tomatidine stimulated mTORC1 signaling and anabolism, leading to accumulation of protein and mitochondria, and ultimately, cell growth. Furthermore, in mice, tomatidine increased skeletal muscle mTORC1 signaling, reduced skeletal muscle atrophy, enhanced recovery from skeletal muscle atrophy, stimulated skeletal muscle hypertrophy, and increased strength and exercise capacity. Collectively, these results identify tomatidine as a novel small molecule inhibitor of muscle atrophy. Tomatidine may have utility as a therapeutic agent or lead compound for skeletal muscle atrophy. PMID:24719321

  16. Skeletal muscle: an endocrine organ.

    PubMed

    Pratesi, Alessandra; Tarantini, Francesca; Di Bari, Mauro

    2013-01-01

    Tropism and efficiency of skeletal muscle depend on the complex balance between anabolic and catabolic factors. This balance gradually deteriorates with aging, leading to an age-related decline in muscle quantity and quality, called sarcopenia: this condition plays a central role in physical and functional impairment in late life. The knowledge of the mechanisms that induce sarcopenia and the ability to prevent or counteract them, therefore, can greatly contribute to the prevention of disability and probably also mortality in the elderly. It is well known that skeletal muscle is the target of numerous hormones, but only in recent years studies have shown a role of skeletal muscle as a secretory organ of cytokines and other peptides, denominated myokines (IL6, IL8, IL15, Brain-derived neurotrophic factor, and leukaemia inhibitory factor), which have autocrine, paracrine, or endocrine actions and are deeply involved in inflammatory processes. Physical inactivity promotes an unbalance between these substances towards a pro-inflammatory status, thus favoring the vicious circle of sarcopenia, accumulation of fat - especially visceral - and development of cardiovascular diseases, type 2 diabetes mellitus, cancer, dementia and depression, according to what has been called "the diseasome of physical inactivity". PMID:23858303

  17. Skeletal muscle satellite cells

    NASA Technical Reports Server (NTRS)

    Schultz, E.; McCormick, K. M.

    1994-01-01

    Evidence now suggests that satellite cells constitute a class of myogenic cells that differ distinctly from other embryonic myoblasts. Satellite cells arise from somites and first appear as a distinct myoblast type well before birth. Satellite cells from different muscles cannot be functionally distinguished from one another and are able to provide nuclei to all fibers without regard to phenotype. Thus, it is difficult to ascribe any significant function to establishing or stabilizing fiber type, even during regeneration. Within a muscle, satellite cells exhibit marked heterogeneity with respect to their proliferative behavior. The satellite cell population on a fiber can be partitioned into those that function as stem cells and those which are readily available for fusion. Recent studies have shown that the cells are not simply spindle shaped, but are very diverse in their morphology and have multiple branches emanating from the poles of the cells. This finding is consistent with other studies indicating that the cells have the capacity for extensive migration within, and perhaps between, muscles. Complexity of cell shape usually reflects increased cytoplasmic volume and organelles including a well developed Golgi, and is usually associated with growing postnatal muscle or muscles undergoing some form of induced adaptive change or repair. The appearance of activated satellite cells suggests some function of the cells in the adaptive process through elaboration and secretion of a product. Significant advances have been made in determining the potential secretion products that satellite cells make. The manner in which satellite cell proliferative and fusion behavior is controlled has also been studied. There seems to be little doubt that cellcell coupling is not how satellite cells and myofibers communicate. Rather satellite cell regulation is through a number of potential growth factors that arise from a number of sources. Critical to the understanding of this form

  18. Effects of thyroid hormone on Na sup + -K sup + transport in resting and stimulated rat skeletal muscle

    SciTech Connect

    Everts, M.E.; Clausen, T. )

    1988-11-01

    The effects of hypothyroidism and 3,5,3{prime}-triiodothyronine (T{sub 3}) treatment on passive Na{sup +}-K{sup +} fluxes and Na{sup +}-K{sup +} pump concentration were investigated in isolated rat muscle. Within 12 h after a single dose of T{sub 3} (20 {mu}g/100 g body wt), K{sup +} efflux had increased by 21% in soleus and by 20% in extensor digitorum longus muscle. In the presence of ouabain, even larger effects were observed. These changes were associated with a 12% rise in amiloride-suppressible Na{sup +} influx but no significant increase in ({sup 3}H)ouabain binding site concentration. After 3 days of T{sub 3} treatment, the stimulating effect on K{sup +} efflux and Na{sup +} influx in soleus reached a plateau {approximately}80 and 40% above control levels, respectively, whereas the maximum increase in ({sup 3}H)ouabain binding site concentration (103%) was only fully developed after 8 days. Hypothyroidism decreased {sup 86}Rb efflux by 30%. The efflux of K{sup +} and the influx of Na{sup +} per contraction (both {approximately}7 nmol/g wet wt) as well as the net loss of K{sup +} induced by electrical stimulation were unaffected by T{sub 3} treatment. The rise in resting K{sup +} efflux after 12-24 h of T{sub 3} treatment could be partly blocked by dantrolene or trifluoroperazine, indicating that an increase in the cytoplasmic Ca{sup 2+} concentration may contribute to the early rise in K{sup +} efflux. It is concluded that the early rise in the resting passive leaks of Na{sup +} and K{sup +} induced by T{sub 3} is a major driving force for Na{sup +}-K{sup +} pump synthesis.

  19. Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice.

    PubMed

    Porporato, Paolo E; Filigheddu, Nicoletta; Reano, Simone; Ferrara, Michele; Angelino, Elia; Gnocchi, Viola F; Prodam, Flavia; Ronchi, Giulia; Fagoonee, Sharmila; Fornaro, Michele; Chianale, Federica; Baldanzi, Gianluca; Surico, Nicola; Sinigaglia, Fabiola; Perroteau, Isabelle; Smith, Roy G; Sun, Yuxiang; Geuna, Stefano; Graziani, Andrea

    2013-02-01

    Cachexia is a wasting syndrome associated with cancer, AIDS, multiple sclerosis, and several other disease states. It is characterized by weight loss, fatigue, loss of appetite, and skeletal muscle atrophy and is associated with poor patient prognosis, making it an important treatment target. Ghrelin is a peptide hormone that stimulates growth hormone (GH) release and positive energy balance through binding to the receptor GHSR-1a. Only acylated ghrelin (AG), but not the unacylated form (UnAG), can bind GHSR-1a; however, UnAG and AG share several GHSR-1a-independent biological activities. Here we investigated whether UnAG and AG could protect against skeletal muscle atrophy in a GHSR-1a-independent manner. We found that both AG and UnAG inhibited dexamethasone-induced skeletal muscle atrophy and atrogene expression through PI3Kβ-, mTORC2-, and p38-mediated pathways in myotubes. Upregulation of circulating UnAG in mice impaired skeletal muscle atrophy induced by either fasting or denervation without stimulating muscle hypertrophy and GHSR-1a-mediated activation of the GH/IGF-1 axis. In Ghsr-deficient mice, both AG and UnAG induced phosphorylation of Akt in skeletal muscle and impaired fasting-induced atrophy. These results demonstrate that AG and UnAG act on a common, unidentified receptor to block skeletal muscle atrophy in a GH-independent manner.

  20. [Regeneration capacity of skeletal muscle].

    PubMed

    Wernig, A

    2003-07-01

    The organotypic stem cell of skeletal muscle has previously been known as satellite cell. They allow muscle fiber growth during ontogenesis, enable fiber hypertrophy and are responsible for the very efficient repair of muscle fibers. This efficient apparatus is to some degree counterbalanced by an enormous use of the satellite cell pool: fiber atrophy probably is accompanied by loss of myonuclei such that every reversal of atrophy is bound to use new myonuclei i.e. satellite cells. How often in life does this occur? Hard to say. Moreover, the potent repair capacity is challenged by an unexpected vulnerability of skeletal muscle fibers: Passive stretching of contracted muscles may cause multiple "microdamage," disruption of contractile elements or tiny areas of true necrosis (focal necrosis). How often does this happen? Well, for many of us at least once per year when we go up and down mountains during vacation time, followed by sour muscles. Others may decide to change his/her (locomotor) behaviour by severe onset of jogging; it may happen that they suffer kidney failure on Monday due to muscle microdamage and the transfer of myoproteins into the serum over weekend. Also 20 minutes of stepping up and down something like a chair will do: There is a remarkable increase in kreatin kinase and other muscle derived proteins which lasts for days and is bound to reflect some muscle damage. How about sportsmen and worker who repeatedly use their muscles in such a way? We don't have answers yet to most of these questions, but considerable amount of information has been collected over the last years both in animal and--less--in human. What is common in all cases of growth and repair is the proliferation of the satellite cells and their consequent incorporation and fusion with the parent fiber. This way focal damage is repaired often without visible reminders. We would run out of satellite cells were they not stem cells: After division one daughter remains a satellite cell

  1. Phosphorylation of human skeletal muscle myosin

    SciTech Connect

    Houston, M.E.; Lingley, M.D.; Stuart, D.S.; Hoffman-Goetz, L.

    1986-03-01

    Phosphorylation of the P-light chains (phosphorylatable light chains) in human skeletal muscle myosin was studied in vitro and in vivo under resting an d contracted conditions. biopsy samples from rested vastus lateralis muscle of male and female subjects were incubated in oxygenated physiological solution at 30/sup 0/C. Samples frozen following a quiescent period showed the presence of only unphosphorylated P-light chains designated LC2f (light chain two of fast myosin) CL2s and LC2s'(light chains two of slow myosin). Treatment with caffeine (10 mM) or direct electrical stimulation resulted in the appearance of three additional bands which were identified as the phosphorylated forms of the P-light chains i.e. LC2f-P, LC2s-P and LC2s'-P. The presence of phosphate was confirmed by prior incubation with (/sup 30/P) orthophosphate. Muscle samples rapidly frozen from resting vastus lateralis muscle revealed the presence of unphosphorylated and phosphorylated P-light chains in approximately equal ratios. Muscle samples rapidly frozen following a maximal 10 second isometric contraction showed virtually only phosphorylated fast and slow P-light chains. These results reveal that the P-light chains in human fast and slow myosin may be rapidly phosphorylated, but the basal level of phosphorylation in rested human muscle considerably exceeds that observed in animal muscles studied in vitro or in situ.

  2. Circulating protein synthesis rates reveal skeletal muscle proteome dynamics

    PubMed Central

    Shankaran, Mahalakshmi; King, Chelsea L.; Angel, Thomas E.; Holmes, William E.; Li, Kelvin W.; Colangelo, Marc; Price, John C.; Turner, Scott M.; Bell, Christopher; Hamilton, Karyn L.; Miller, Benjamin F.; Hellerstein, Marc K.

    2015-01-01

    Here, we have described and validated a strategy for monitoring skeletal muscle protein synthesis rates in rodents and humans over days or weeks from blood samples. We based this approach on label incorporation into proteins that are synthesized specifically in skeletal muscle and escape into the circulation. Heavy water labeling combined with sensitive tandem mass spectrometric analysis allowed integrated synthesis rates of proteins in muscle tissue across the proteome to be measured over several weeks. Fractional synthesis rate (FSR) of plasma creatine kinase M-type (CK-M) and carbonic anhydrase 3 (CA-3) in the blood, more than 90% of which is derived from skeletal muscle, correlated closely with FSR of CK-M, CA-3, and other proteins of various ontologies in skeletal muscle tissue in both rodents and humans. Protein synthesis rates across the muscle proteome generally changed in a coordinate manner in response to a sprint interval exercise training regimen in humans and to denervation or clenbuterol treatment in rodents. FSR of plasma CK-M and CA-3 revealed changes and interindividual differences in muscle tissue proteome dynamics. In human subjects, sprint interval training primarily stimulated synthesis of structural and glycolytic proteins. Together, our results indicate that this approach provides a virtual biopsy, sensitively revealing individualized changes in proteome-wide synthesis rates in skeletal muscle without a muscle biopsy. Accordingly, this approach has potential applications for the diagnosis, management, and treatment of muscle disorders. PMID:26657858

  3. Dietary L-Lysine Suppresses Autophagic Proteolysis and Stimulates Akt/mTOR Signaling in the Skeletal Muscle of Rats Fed a Low-Protein Diet.

    PubMed

    Sato, Tomonori; Ito, Yoshiaki; Nagasawa, Takashi

    2015-09-23

    Amino acids, especially L-leucine, regulate protein turnover in skeletal muscle and have attracted attention as a means of increasing muscle mass in people suffering from malnutrition, aging (sarcopenia), or a bedridden state. We previously showed that oral administration of L-lysine (Lys) by gavage suppressed proteolysis in skeletal muscles of fasted rats. However, the intake of Lys in the absence of other dietary components is unlikely in a non-experimental setting, and other dietary components may interfere with the suppressive effect of Lys on proteolysis. We supplemented Lys to a 10% casein diet and investigated the effect of Lys on proteolysis and autophagy, a major proteolytic system, in the skeletal muscle of rats. The rate of proteolysis was evaluated from 3-methylhisitidine (MeHis) released from isolated muscles, in plasma, and excreted in urine. Supplementing lysine with the 10% casein diet decreased the rate of proteolysis induced by intake of a low-protein diet. The upregulated autophagy activity [light chain 3 (LC3)-II/total LC3] caused by a low-protein diet was reduced, and the Akt/mTOR signaling pathway was activated by Lys. Importantly, continuous feeding of a Lys-rich 10% casein diet for 15 days increased the masses of the soleus and gastrocnemius muscles. Taken together, supplementation of Lys to a low-protein diet suppresses autophagic proteolysis through the Akt/mTOR signaling pathway, and continuous feeding of a Lys-rich diet may increase skeletal muscle mass.

  4. Osmoregulatory processes and skeletal muscle metabolism

    NASA Astrophysics Data System (ADS)

    Boschmann, Michael; Gottschalk, Simone; Adams, Frauke; Luft, Friedrich C.; Jordan, Jens

    Prolonged microgravity during space flight is associated with a decrease in blood and extracellular volume. These changes in water and electrolyte balance might activate catabolic processes which contribute finally to the loss of muscle and bone mass and strength. Recently, we found a prompt increase that energy expenditure by about 30% in both normal and overweight men and women after drinking 500 ml water. This effect is mediated by an increased sympathetic nervous system activity, obviously secondary to stimulation of osmosensitive afferent neurons in the liver, and skeletal muscle is possibly one effector organ. Therefore, we tested the hypothesis that this thermogenic response to water is accompanied by a stimulation of aerobic glucose metabolism in skeletal muscle. To this end, 16 young healthy volunteers (8 men) were studied. After an overnight fast (12h), a microdialysis probe was implanted into the right M. quadriceps femoris vastus lateralis and subsequently perfused with Ringer's solution (+50 mM ethanol). After 1h, volunteers were asked to drink 500 ml water (22° C) followed by continuing microdialysis for another 90 min. Dialysates (15 min fractions) were analyzed for [ethanol], [glucose], [lactate], [pyruvate], and [glycerol] in order to assess changes in muscle tissue perfusion (ethanol dilution technique), glycolysis and lipolysis. Blood samples were taken and heart rate (HR) and blood pressure (BP) were monitored. Neither HR and systolic and diastolic BP, nor plasma [glucose], [lactate], [insulin], and [C peptide] changed significantly after water drinking. Also, tissue perfusion and dialysate [glucose] did not change significantly. However, dialysate [lactate] increased by about 10 and 20% and dialysate [pyruvate] by about 100 and 200% in men and women, respectively. In contrast, dialysate [glycerol] decreased by about 30 and 20% in men and women, respectively. Therefore, drinking of 500 ml water stimulates aerobic glucose metabolism and inhibits

  5. Mechanically induced alterations in cultured skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.; Hatfaludy, S.; Karlisch, P.; Shansky, J.

    1991-01-01

    Model systems are available for mechanically stimulating cultured skeletal muscle cells by passive tensile forces which simulate those found in vivo. When applied to embryonic muscle cells in vitro these forces induce tissue organogenesis, metabolic adaptations, and muscle cell growth. The mechanical stimulation of muscle cell growth correlates with stretch-induced increases in the efflux of prostaglandins PGE2 and PGF2(alpha) in a time and frequency dependent manner. These prostaglandins act as mechanical 'second messengers' regulating skeletal muscle protein turnover rates. Since they also effect bone remodelling in response to tissue loading and unloading, secreted prostaglandins may serve as paracrine growth factors, coordinating the growth rates of muscle and bone in response to external mechanical forces. Cell culture model systems will supplement other models in understanding mechanical transduction processes at the molecular level.

  6. Type 2 diabetes mellitus and skeletal muscle metabolic function.

    PubMed

    Phielix, Esther; Mensink, Marco

    2008-05-23

    Type 2 diabetic patients are characterized by a decreased fat oxidative capacity and high levels of circulating free fatty acids (FFAs). The latter is known to cause insulin resistance, in particularly in skeletal muscle, by reducing insulin stimulated glucose uptake, most likely via accumulation of lipid inside the muscle cell. A reduced skeletal muscle oxidative capacity can exaggerate this. Furthermore, type 2 diabetes is associated with impaired metabolic flexibility, i.e. an impaired switching from fatty acid to glucose oxidation in response to insulin. Thus, a reduced fat oxidative capacity and metabolic inflexibility are important components of skeletal muscle insulin resistance. The cause of these derangements in skeletal muscle of type 2 diabetic patients remains to be elucidated. An impaired mitochondrial function is a likely candidate. Evidence from both in vivo and ex vivo studies supports the idea that an impaired skeletal muscle mitochondrial function is related to the development of insulin resistance and type 2 diabetes mellitus. A decreased mitochondrial oxidative capacity in skeletal muscle was revealed in diabetic patients, using in vivo 31-Phosphorus Magnetic Resonance Spectroscopy (31P-MRS). However, quantification of mitochondrial function using ex vivo high-resolution respirometry revealed opposite results. Future (human) studies should challenge this concept of impaired mitochondrial function underlying metabolic defects and prove if mitochondria are truly functional impaired in insulin resistance, or low in number, and whether it represents the primary starting point of pathogenesis of insulin resistance, or is just an other feature of the insulin resistant state. PMID:18342897

  7. Skeletal Muscle Abnormalities in Heart Failure.

    PubMed

    Kinugawa, Shintaro; Takada, Shingo; Matsushima, Shouji; Okita, Koichi; Tsutsui, Hiroyuki

    2015-01-01

    Exercise capacity is lowered in patients with heart failure, which limits their daily activities and also reduces their quality of life. Furthermore, lowered exercise capacity has been well demonstrated to be closely related to the severity and prognosis of heart failure. Skeletal muscle abnormalities including abnormal energy metabolism, transition of myofibers from type I to type II, mitochondrial dysfunction, reduction in muscular strength, and muscle atrophy have been shown to play a central role in lowered exercise capacity. The skeletal muscle abnormalities can be classified into the following main types: 1) low endurance due to mitochondrial dysfunction; and 2) low muscle mass and muscle strength due to imbalance of protein synthesis and degradation. The molecular mechanisms of these skeletal muscle abnormalities have been studied mainly using animal models. The current review including our recent study will focus upon the skeletal muscle abnormalities in heart failure. PMID:26346520

  8. Regulation of NADPH oxidases in skeletal muscle.

    PubMed

    Ferreira, Leonardo F; Laitano, Orlando

    2016-09-01

    The only known function of NAD(P)H oxidases is to produce reactive oxygen species (ROS). Skeletal muscles express three isoforms of NAD(P)H oxidases (Nox1, Nox2, and Nox4) that have been identified as critical modulators of redox homeostasis. Nox2 acts as the main source of skeletal muscle ROS during contractions, participates in insulin signaling and glucose transport, and mediates the myocyte response to osmotic stress. Nox2 and Nox4 contribute to skeletal muscle abnormalities elicited by angiotensin II, muscular dystrophy, heart failure, and high fat diet. Our review addresses the expression and regulation of NAD(P)H oxidases with emphasis on aspects that are relevant to skeletal muscle. We also summarize: i) the most widely used NAD(P)H oxidases activity assays and inhibitors, and ii) studies that have defined Nox enzymes as protagonists of skeletal muscle redox homeostasis in a variety of health and disease conditions. PMID:27184955

  9. Sepsis stimulates nonlysosomal, energy-dependent proteolysis and increases ubiquitin mRNA levels in rat skeletal muscle.

    PubMed Central

    Tiao, G; Fagan, J M; Samuels, N; James, J H; Hudson, K; Lieberman, M; Fischer, J E; Hasselgren, P O

    1994-01-01

    We tested the role of different intracellular proteolytic pathways in sepsis-induced muscle proteolysis. Sepsis was induced in rats by cecal ligation and puncture; controls were sham operated. Total and myofibrillar proteolysis was determined in incubated extensor digitorum longus muscles as release of tyrosine and 3-methylhistidine, respectively. Lysosomal proteolysis was assessed by using the lysosomotropic agents NH4Cl, chloroquine, leupeptin, and methylamine. Ca(2+)-dependent proteolysis was determined in the absence or presence of Ca2+ or by blocking the Ca(2+)-dependent proteases calpain I and II. Energy-dependent proteolysis was determined in muscles depleted of ATP by 2-deoxyglucose and 2.4-dinitrophenol. Muscle ubiquitin mRNA and the concentrations of free and conjugated ubiquitin were determined by Northern and Western blots, respectively, to assess the role of the ATP-ubiquitin-dependent proteolytic pathway. Total and myofibrillar protein breakdown was increased during sepsis by 50 and 440%, respectively. Lysosomal and Ca(2+)-dependent proteolysis was similar in control and septic rats. In contrast, energy-dependent total and myofibrillar protein breakdown was increased by 172% and more than fourfold, respectively, in septic muscle. Ubiquitin mRNA was increased severalfold in septic muscle. The results suggest that the increase in muscle proteolysis during sepsis is due to an increase in nonlysosomal energy-dependent protein breakdown, which may involve the ubiquitin system. Images PMID:7989581

  10. No-dependent signaling pathways in unloaded skeletal muscle

    PubMed Central

    Shenkman, Boris S.; Nemirovskaya, Tatiana L.; Lomonosova, Yulia N.

    2015-01-01

    The main focus of the current review is the nitric oxide (NO)-mediated signaling mechanism in unloaded skeletal. Review of the published data describing muscles during physical activity and inactivity demonstrates that NO is an essential trigger of signaling processes, which leads to structural and metabolic changes of the muscle fibers. The experiments with modulation of NO-synthase (NOS) activity during muscle unloading demonstrate the ability of an activated enzyme to stabilize degradation processes and prevent development of muscle atrophy. Various forms of muscle mechanical activity, i.e., plantar afferent stimulation, resistive exercise and passive chronic stretch increase the content of neural NOS (nNOS) and thus may facilitate an increase in NO production. Recent studies demonstrate that NO-synthase participates in the regulation of protein and energy metabolism in skeletal muscle by fine-tuning and stabilizing complex signaling systems which regulate protein synthesis and degradation in the fibers of inactive muscle. PMID:26582991

  11. Angiotensin II: role in skeletal muscle atrophy.

    PubMed

    Cabello-Verrugio, Claudio; Córdova, Gonzalo; Salas, José Diego

    2012-09-01

    Skeletal muscle, the main protein reservoir in the body, is a tissue that exhibits high plasticity when exposed to changes. Muscle proteins can be mobilized into free amino acids when skeletal muscle wasting occurs, a process called skeletal muscle atrophy. This wasting is an important systemic or local manifestation under disuse conditions (e.g., bed rest or immobilization), in starvation, in older adults, and in several diseases. The molecular mechanisms involved in muscle wasting imply the activation of specific signaling pathways which ultimately manage muscle responses to modulate biological events such as increases in protein catabolism, oxidative stress, and cell death by apoptosis. Many factors have been involved in the generation and maintenance of atrophy in skeletal muscle, among them angiotensin II (Ang-II), the main peptide of renin-angiotensin system (RAS). Together with Ang-II, the angiotensin-converting enzyme (ACE) and the Ang-II receptor type 1 (AT-1 receptor) are expressed in skeletal muscle, forming an important local axis that can regulate its function. In many of the conditions that lead to muscle wasting, there is an impairment of RAS in a global or local fashion. At this point, there are several pieces of evidence that suggest the participation of Ang-II, ACE, and AT-1 receptor in the generation of skeletal muscle atrophy. Interestingly, the Ang-II participation in muscle atrophy is strongly ligated to the regulation of hypertrophic activity of factors such as insulin-like growth factor 1 (IGF-1). In this article, we reviewed the current state of Ang-II and RAS function on skeletal muscle wasting and its possible use as a therapeutic target to improve skeletal muscle function under atrophic conditions.

  12. Channelopathies of skeletal muscle excitability

    PubMed Central

    Cannon, Stephen C.

    2016-01-01

    Familial disorders of skeletal muscle excitability were initially described early in the last century and are now known to be caused by mutations of voltage-gated ion channels. The clinical manifestations are often striking, with an inability to relax after voluntary contraction (myotonia) or transient attacks of severe weakness (periodic paralysis). An essential feature of these disorders is fluctuation of symptoms that are strongly impacted by environmental triggers such as exercise, temperature, or serum K+ levels. These phenomena have intrigued physiologists for decades, and in the past 25 years the molecular lesions underlying these disorders have been identified and mechanistic studies are providing insights for therapeutic strategies of disease modification. These familial disorders of muscle fiber excitability are “channelopathies” caused by mutations of a chloride channel (ClC-1), sodium channel (NaV1.4), calcium channel (CaV1.1) and several potassium channels (Kir2.1, Kir2.6, Kir3.4). This review provides a synthesis of the mechanistic connections between functional defects of mutant ion channels, their impact on muscle excitability, how these changes cause clinical phenotypes, and approaches toward therapeutics. PMID:25880512

  13. Redox control of skeletal muscle atrophy.

    PubMed

    Powers, Scott K; Morton, Aaron B; Ahn, Bumsoo; Smuder, Ashley J

    2016-09-01

    Skeletal muscles comprise the largest organ system in the body and play an essential role in body movement, breathing, and glucose homeostasis. Skeletal muscle is also an important endocrine organ that contributes to the health of numerous body organs. Therefore, maintaining healthy skeletal muscles is important to support overall health of the body. Prolonged periods of muscle inactivity (e.g., bed rest or limb immobilization) or chronic inflammatory diseases (i.e., cancer, kidney failure, etc.) result in skeletal muscle atrophy. An excessive loss of muscle mass is associated with a poor prognosis in several diseases and significant muscle weakness impairs the quality of life. The skeletal muscle atrophy that occurs in response to inflammatory diseases or prolonged inactivity is often associated with both oxidative and nitrosative stress. In this report, we critically review the experimental evidence that provides support for a causative link between oxidants and muscle atrophy. More specifically, this review will debate the sources of oxidant production in skeletal muscle undergoing atrophy as well as provide a detailed discussion on how reactive oxygen species and reactive nitrogen species modulate the signaling pathways that regulate both protein synthesis and protein breakdown.

  14. Altered ROS production, NF-κB activation and interleukin-6 gene expression induced by electrical stimulation in dystrophic mdx skeletal muscle cells.

    PubMed

    Henríquez-Olguín, Carlos; Altamirano, Francisco; Valladares, Denisse; López, José R; Allen, Paul D; Jaimovich, Enrique

    2015-07-01

    -κB activation and IL-6 expression. Exposure to lipopolysaccharide induced a dramatic increase in both NF-κB activation and IL-6 expression in both wt and mdx myotubes, suggesting that the altered IL-6 gene expression after electrical stimulation in mdx muscle cells is due to dysregulation of Ca2+ release and ROS production, both of which impinge on NF-κB signaling. IL-6 is a key metabolic modulator that is released by the skeletal muscle to coordinate a multi-systemic response (liver, muscle, and adipocytes) during physical exercise; the alteration of this response in dystrophic muscles may contribute to an abnormal response to contraction and exercise.

  15. Altered ROS production, NF-κB activation and interleukin-6 gene expression induced by electrical stimulation in dystrophic mdx skeletal muscle cells.

    PubMed

    Henríquez-Olguín, Carlos; Altamirano, Francisco; Valladares, Denisse; López, José R; Allen, Paul D; Jaimovich, Enrique

    2015-07-01

    -κB activation and IL-6 expression. Exposure to lipopolysaccharide induced a dramatic increase in both NF-κB activation and IL-6 expression in both wt and mdx myotubes, suggesting that the altered IL-6 gene expression after electrical stimulation in mdx muscle cells is due to dysregulation of Ca2+ release and ROS production, both of which impinge on NF-κB signaling. IL-6 is a key metabolic modulator that is released by the skeletal muscle to coordinate a multi-systemic response (liver, muscle, and adipocytes) during physical exercise; the alteration of this response in dystrophic muscles may contribute to an abnormal response to contraction and exercise. PMID:25857619

  16. Skeletal muscle is an endocrine organ.

    PubMed

    Iizuka, Kenji; Machida, Takuji; Hirafuji, Masahiko

    2014-01-01

    Skeletal muscle plays a key role in postural retention as well as locomotion for maintaining the physical activities of human life. Skeletal muscle has a second role as an elaborate energy production and consumption system that influences the whole body's energy metabolism. Skeletal muscle is a specific organ that engenders a physical force, and exercise training has been known to bring about multiple benefits for human health maintenance and/or improvement. The mechanisms underlying the improvement of the human physical condition have been revealed: skeletal muscle synthesizes and secretes multiple factors, and these muscle-derived factors, so-called as myokines, exert beneficial effects on peripheral and remote organs. In this short review, we focus on the third aspect of skeletal muscle function - namely, the release of multiple types of myokines, which constitute a broad network for regulating the function of remote organs as well as skeletal muscle itself. We conclusively show that skeletal muscle is one of the endocrine organs and that understanding the mechanisms of production and secretion of myokines may lead to a new pharmacological approach for treatment of clinical disorders.

  17. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy.

    PubMed

    Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F

    2015-10-13

    Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies.

  18. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy

    PubMed Central

    Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F.

    2015-01-01

    Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies. PMID:26460719

  19. Growth Factors and Tension-Induced Skeletal Muscle Growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  20. Muscle Stimulation Technology

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Goddard Space Flight Center contract, Electrologic of America was able to refine the process of densely packing circuitry on personal computer boards, providing significant contributions to the closed-loop systems for the Remote Manipulator System Simulator. The microcircuitry work was then applied to the StimMaster FES Ergometer, an exercise device used to stimulate muscles suffering from paralysis. The electrical stimulation equipment was developed exclusively for V-Care Health Systems, Inc. Product still commercially available as of March 2002.

  1. Satellite cells in human skeletal muscle plasticity.

    PubMed

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  2. Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans.

    PubMed

    Howarth, Krista R; Moreau, Natalie A; Phillips, Stuart M; Gibala, Martin J

    2009-04-01

    Coingestion of protein with carbohydrate (CHO) during recovery from exercise can affect muscle glycogen synthesis, particularly if CHO intake is suboptimal. Another potential benefit of protein feeding is an increased synthesis rate of muscle proteins, as is well documented after resistance exercise. In contrast, the effect of nutrient manipulation on muscle protein kinetics after aerobic exercise remains largely unexplored. We tested the hypothesis that ingesting protein with CHO after a standardized 2-h bout of cycle exercise would increase mixed muscle fractional synthetic rate (FSR) and whole body net protein balance (WBNB) vs. trials matched for total CHO or total energy intake. We also examined whether postexercise glycogen synthesis could be enhanced by adding protein or additional CHO to a feeding protocol that provided 1.2 g CHO x kg(-1) x h(-1), which is the rate generally recommended to maximize this process. Six active men ingested drinks during the first 3 h of recovery that provided either 1.2 g CHO.kg(-1).h(-1) (L-CHO), 1.2 g CHO + 0.4 g protein x kg(-1) x h(-1) (PRO-CHO), or 1.6 g CHO x kg(-1) x h(-1) (H-CHO) in random order. Based on a primed constant infusion of l-[ring-(2)H(5)]phenylalanine, analysis of biopsies (vastus lateralis) obtained at 0 and 4 h of recovery showed that muscle FSR was higher (P < 0.05) in PRO-CHO (0.09 +/- 0.01%/h) vs. both L-CHO (0.07 +/- 0.01%/h) and H-CHO (0.06 +/- 0.01%/h). WBNB assessed using [1-(13)C]leucine was positive only during PRO-CHO, and this was mainly attributable to a reduced rate of protein breakdown. Glycogen synthesis rate was not different between trials. We conclude that ingesting protein with CHO during recovery from aerobic exercise increased muscle FSR and improved WBNB, compared with feeding strategies that provided CHO only and were matched for total CHO or total energy intake. However, adding protein or additional CHO to a feeding strategy that provided 1.2 g CHO x kg(-1) x h(-1) did not further

  3. Inflammation induced loss of skeletal muscle.

    PubMed

    Londhe, Priya; Guttridge, Denis C

    2015-11-01

    Inflammation is an important contributor to the pathology of diseases implicated in skeletal muscle dysfunction. A number of diseases and disorders including inflammatory myopathies and Chronic Obstructive Pulmonary Disorder (COPD) are characterized by chronic inflammation or elevation of the inflammatory mediators. While these disease states exhibit different pathologies, all have in common the loss of skeletal muscle mass and a deregulated skeletal muscle physiology. Pro-inflammatory cytokines are key contributors to chronic inflammation found in many of these diseases. This section of the review focuses on some of the known inflammatory disorders like COPD, Rheumatoid Arthritis (RA) and inflammatory myopathies that display skeletal muscle atrophy and also provides the reader an overview of the mediators of inflammation, their signaling pathways, and mechanisms of action. This article is part of a Special Issue entitled "Muscle Bone Interactions".

  4. Redox Signaling in Skeletal Muscle: Role of Aging and Exercise

    ERIC Educational Resources Information Center

    Ji, Li Li

    2015-01-01

    Skeletal muscle contraction is associated with the production of ROS due to altered O[subscript 2] distribution and flux in the cell. Despite a highly efficient antioxidant defense, a small surplus of ROS, such as hydrogen peroxide and nitric oxide, may serve as signaling molecules to stimulate cellular adaptation to reach new homeostasis largely…

  5. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  6. Monitoring Murine Skeletal Muscle Function for Muscle Gene Therapy

    PubMed Central

    Hakim, Chady H.; Li, Dejia; Duan, Dongsheng

    2011-01-01

    The primary function of skeletal muscle is to generate force. Muscle force production is compromised in various forms of acquired and/or inherited muscle diseases. An important goal of muscle gene therapy is to recover muscle strength. Genetically engineered mice and spontaneous mouse mutants are readily available for preclinical muscle gene therapy studies. In this chapter, we outlined the methods commonly used for measuring murine skeletal muscle function. These include ex vivo and in situ analysis of the contractile profile of a single intact limb muscle (the extensor digitorium longus for ex vivo assay and the tibialis anterior muscle for in situ assay), grip force analysis, and downhill treadmill exercise. Force measurement in a single muscle is extremely useful for pilot testing of new gene therapy protocols by local gene transfer. Grip force and treadmill assessments offer body-wide evaluation following systemic muscle gene therapy. PMID:21194022

  7. Altered ROS production, NF-κB activation and Interleukin-6 gene expression induced by electrical stimulation of in dystrophic mdx skeletal muscle cells

    PubMed Central

    Henríquez-Olguín, Carlos; Altamirano, Francisco; Valladares, Denisse; López, José R.; Allen, Paul D.; Jaimovich, Enrique

    2015-01-01

    . Exposure to LPS induced a dramatic increase in both NF-κB and IL-6 expression in both wt and mdx myotubes, suggesting that the altered IL-6 gene expression after ES in mdx muscle cells is due to dysregulation of Ca2+ release and ROS production, both of which impinge on NF-κB signaling. IL-6 is a key metabolic modulator that is released by skeletal muscle to coordinate a multi-systemic response (liver, muscle, and adipocytes) during physical exercise; the alteration of this response in dystrophic muscles may contribute to an abnormal response to contraction and exercise. PMID:25857619

  8. Regulation of skeletal muscle perfusion during exercise

    NASA Technical Reports Server (NTRS)

    Delp, M. D.; Laughlin, M. H.

    1998-01-01

    For exercise to be sustained, it is essential that adequate blood flow be provided to skeletal muscle. The local vascular control mechanisms involved in regulating muscle perfusion during exercise include metabolic control, endothelium-mediated control, propagated responses, myogenic control, and the muscle pump. The primary determinant of muscle perfusion during sustained exercise is the metabolic rate of the muscle. Metabolites from contracting muscle diffuse to resistance arterioles and act directly to induce vasodilation, or indirectly to inhibit noradrenaline release from sympathetic nerve endings and oppose alpha-adrenoreceptor-mediated vasoconstriction. The vascular endothelium also releases vasodilator substances (e.g., prostacyclin and nitric oxide) that are prominent in establishing basal vascular tone, but these substances do not appear to contribute to the exercise hyperemia in muscle. Endothelial and smooth muscle cells may also be involved in propagating vasodilator signals along arterioles to parent and daughter vessels. Myogenic autoregulation does not appear to be involved in the exercise hyperemia in muscle, but the rhythmic propulsion of blood from skeletal muscle veins facilitates venous return to the heart and muscle perfusion. It appears that the primary determinants of sustained exercise hyperemia in skeletal muscle are metabolic vasodilation and increased vascular conductance via the muscle pump. Additionally, sympathetic neural control is important in regulating muscle blood flow during exercise.

  9. Myostatin in the Pathophysiology of Skeletal Muscle

    PubMed Central

    Carnac, Gilles; Vernus, Barbara; Bonnieu, Anne

    2007-01-01

    Myostatin is an endogenous, negative regulator of muscle growth determining both muscle fiber number and size. The myostatin pathway is conserved across diverse species ranging from zebrafish to humans. Experimental models of muscle growth and regeneration have implicated myostatin as an important mediator of catabolic pathways in muscle cells. Inhibition of this pathway has emerged as a promising therapy for muscle wasting. Here we discuss the recent developments and the controversies in myostatin research, focusing on the molecular and cellular mechanisms underlying the actions of myostatin on skeletal muscle and the potential therapeutic role of myostatin on muscle-related disorders. PMID:19412331

  10. Contraction stimulates muscle glucose uptake independent of atypical PKC.

    PubMed

    Yu, Haiyan; Fujii, Nobuharu L; Toyoda, Taro; An, Ding; Farese, Robert V; Leitges, Michael; Hirshman, Michael F; Mul, Joram D; Goodyear, Laurie J

    2015-11-01

    Exercise increases skeletal muscle glucose uptake, but the underlying mechanisms are only partially understood. The atypical protein kinase C (PKC) isoforms λ and ζ (PKC-λ/ζ) have been shown to be necessary for insulin-, AICAR-, and metformin-stimulated glucose uptake in skeletal muscle, but not for treadmill exercise-stimulated muscle glucose uptake. To investigate if PKC-λ/ζ activity is required for contraction-stimulated muscle glucose uptake, we used mice with tibialis anterior muscle-specific overexpression of an empty vector (WT), wild-type PKC-ζ (PKC-ζ(WT)), or an enzymatically inactive T410A-PKC-ζ mutant (PKC-ζ(T410A)). We also studied skeletal muscle-specific PKC-λ knockout (MλKO) mice. Basal glucose uptake was similar between WT, PKC-ζ(WT), and PKC-ζ(T410A) tibialis anterior muscles. In contrast, in situ contraction-stimulated glucose uptake was increased in PKC-ζ(T410A) tibialis anterior muscles compared to WT or PKC-ζ(WT) tibialis anterior muscles. Furthermore, in vitro contraction-stimulated glucose uptake was greater in soleus muscles of MλKO mice than WT controls. Thus, loss of PKC-λ/ζ activity increases contraction-stimulated muscle glucose uptake. These data clearly demonstrate that PKC-λζ activity is not necessary for contraction-stimulated glucose uptake.

  11. Cardiac assistance from skeletal muscle: a reappraisal.

    PubMed

    Salmons, Stanley

    2009-02-01

    Cardiac assistance from skeletal muscle offers an attractive surgical solution to the problem of end-stage heart failure, yet it is widely regarded as a failed approach. I argue here that this is an outdated assessment. Systematic progress has been made over the last 25 years in understanding the relevant basic science. In the light of these advances we should be reconsidering the place of skeletal muscle assist in the surgical armamentarium. PMID:18954996

  12. Aspects of skeletal muscle modelling.

    PubMed Central

    Epstein, Marcelo; Herzog, Walter

    2003-01-01

    The modelling of skeletal muscle raises a number of philosophical questions, particularly in the realm of the relationship between different possible levels of representation and explanation. After a brief incursion into this area, a list of desiderata is proposed as a guiding principle for the construction of a viable model, including: comprehensiveness, soundness, experimental consistency, predictive ability and refinability. Each of these principles is illustrated by means of simple examples. The presence of internal constraints, such as incompressibility, may lead to counterintuitive results. A one-panel example is exploited to advocate the use of the principle of virtual work as the ideal tool to deal with these situations. The question of stability in the descending limb of the force-length relation is addressed and a purely mechanical analogue is suggested. New experimental results confirm the assumption that fibre stiffness is positive even in the descending limb. The indeterminacy of the force-sharing problem is traditionally resolved by optimizing a, presumably, physically meaningful target function. After presenting some new results in this area, based on a separation theorem, it is suggested that a more fundamental approach to the problem is the abandoning of optimization criteria in favour of an explicit implementation of activation criteria. PMID:14561335

  13. Do inflammatory cells influence skeletal muscle hypertrophy?

    PubMed

    Koh, Timothy J; Pizza, Francis X

    2009-06-01

    Most research on muscle hypertrophy has focused on the responses of muscle cells to mechanical loading; however, a number of studies also suggest that inflammatory cells may influence muscle hypertrophy. Neutrophils and macrophages accumulate in skeletal muscle following increased mechanical loading, and we have demonstrated that macrophages are essential for hypertrophy following synergist ablation. Whether neutrophils are required remains to be determined. Non-steroidal anti-inflammatory drugs impair adaptive responses of skeletal muscle in both human and animal experiments suggesting that the routine use of such drugs could impair muscle performance. Much remains to be learned about the role of inflammatory cells in muscle hypertrophy, including the molecular signals involved in calling neutrophils and macrophages to skeletal muscle as well as those that regulate their function in muscle. In addition, although we have demonstrated that macrophages produce growth promoting factors during muscle hypertrophy, the full range of functional activities involved in muscle hypertrophy remains to be determined. Further investigation should provide insight into the intriguing hypothesis that inflammatory cells play integral roles in regulating muscle hypertrophy.

  14. Skeletal muscle weakness in osteogeneis imperfecta mice

    PubMed Central

    Gentry, Bettina A; Ferreira, J. Andries; McCambridge, Amanda J.; Brown, Marybeth; Phillips, Charlotte L.

    2010-01-01

    Exercise intolerance, muscle fatigue and weakness are often-reported, little-investigated concerns of patients with osteogenesis imperfecta (OI). OI is a heritable connective tissue disorder hallmarked by bone fragility resulting primarily from dominant mutations in the proα1(I) or proα2(I) collagen genes and the recently discovered recessive mutations in post-translational modifying proteins of type I collagen. In this study we examined the soleus (S), plantaris (P), gastrocnemius (G), tibialis anterior (TA) and quadriceps (Q) muscles of mice expressing mild (+/oim) and moderately severe (oim/oim) OI for evidence of inherent muscle pathology. In particular, muscle weight, fiber cross-sectional area (CSA), fiber type, fiber histomorphology, fibrillar collagen content, absolute, relative and specific peak tetanic force (Po, Po/mg and Po/CSA respectively) of individual muscles were evaluated. Oim/oim mouse muscles were generally smaller, contained less fibrillar collagen, had decreased Po and an inability to sustain Po for the 300 ms testing duration for specific muscles; +/oim mice had a similar but milder skeletal muscle phenotype. +/oim mice had mild weakness of specific muscles but were less affected than their oim/oim counterparts which demonstrated readily apparent skeletal muscle pathology. Therefore muscle weakness in oim mice reflects inherent skeletal muscle pathology. PMID:20619344

  15. How sex hormones promote skeletal muscle regeneration.

    PubMed

    Velders, Martina; Diel, Patrick

    2013-11-01

    Skeletal muscle regeneration efficiency declines with age for both men and women. This decline impacts on functional capabilities in the elderly and limits their ability to engage in regular physical activity and to maintain independence. Aging is associated with a decline in sex hormone production. Therefore, elucidating the effects of sex hormone substitution on skeletal muscle homeostasis and regeneration after injury or disuse is highly relevant for the aging population, where sarcopenia affects more than 30 % of individuals over 60 years of age. While the anabolic effects of androgens are well known, the effects of estrogens on skeletal muscle anabolism have only been uncovered in recent times. Hence, the purpose of this review is to provide a mechanistic insight into the regulation of skeletal muscle regenerative processes by both androgens and estrogens. Animal studies using estrogen receptor (ER) antagonists and receptor subtype selective agonists have revealed that estrogens act through both genomic and non-genomic pathways to reduce leukocyte invasion and increase satellite cell numbers in regenerating skeletal muscle tissue. Although animal studies have been more conclusive than human studies in establishing a role for sex hormones in the attenuation of muscle damage, data from a number of recent well controlled human studies is presented to support the notion that hormonal therapies and exercise induce added positive effects on functional measures and lean tissue mass. Based on the fact that aging human skeletal muscle retains the ability to adapt to exercise with enhanced satellite cell activation, combining sex hormone therapies with exercise may induce additive effects on satellite cell accretion. There is evidence to suggest that there is a 'window of opportunity' after the onset of a hypogonadal state such as menopause, to initiate a hormonal therapy in order to achieve maximal benefits for skeletal muscle health. Novel receptor subtype selective

  16. Redox proteins are constitutively secreted by skeletal muscle.

    PubMed

    Manabe, Yasuko; Takagi, Mayumi; Nakamura-Yamada, Mio; Goto-Inoue, Naoko; Taoka, Masato; Isobe, Toshiaki; Fujii, Nobuharu L

    2014-11-01

    Myokines are skeletal muscle-derived hormones. In this study, using a C2C12 myotube contraction system, we sought to determine whether the skeletal muscle secreted thioredoxin (TRX) and related redox proteins. Redox proteins such as TRXs, peroxiredoxins, and glutaredoxins were detected in the C2C12 myotube culture medium in the absence of any stimulation. The amounts of TRXs, peroxiredoxins, and glutaredoxins secreted by the C2C12 myotubes were not affected by the contraction, unless the myotubes were injured. Because TRX-1 was known to be a secreted protein that lacks a signal peptide, we examined whether this protein was secreted via exosome vesicles. The results indicated that TRX-1 was not secreted via exosome vesicles. We concluded that TRX-1 and related redox proteins are myokines that are constitutively secreted by the skeletal muscle cells. Although the mechanism of TRX-1 secretion remains unclear, our findings suggest that the skeletal muscle is an endocrine organ and the redox proteins that are constitutively secreted from the skeletal muscle may exert antioxidant and systemic health-promoting effects.

  17. Chronic low-frequency stimulation upregulates uncoupling protein-3 in transforming rat fast-twitch skeletal muscle.

    PubMed

    Putman, Charles T; Dixon, Walter T; Pearcey, Jean A; Maclean, Ian M; Jendral, Michelle J; Kiricsi, Mónika; Murdoch, Gordon K; Pette, Dirk

    2004-12-01

    The purpose of this investigation was to examine the temporal changes in uncoupling protein (UCP)-3 expression, as well as related adaptive changes in mitochondrial density and fast-to-slow fiber type transitions during chronically enhanced contractile activity. We examined the effects of 1-42 days of chronic low-frequency electrical stimulation (CLFS), applied to rat tibialis anterior (TA) for 10 h/day, on the expression of UCP-3 and concomitant changes in myosin heavy chain (MHC) protein expression and increases in oxidative capacity. UCP-3 protein content increased from 1 to 12 days, reaching 1.5-fold over control (P < 0.0005); it remained elevated for up to 42 days. In contrast, UCP-3 mRNA decreased in response to CLFS, reaching a level that was threefold lower than control (P < 0.0007). The activities of the mitochondrial reference enzymes citrate synthase (EC 4.1.3.7) and 3-hydroxyacyl-CoA-dehydrogenase (EC 1.1.1.35), which are known to increase in proportion to mitochondrial density, progressively increased up to an average of 2.3-fold (P < 0.00001). These changes were accompanied by fast-to-slow fiber type transitions, characterized by a shift in the pattern of MHC expression (P <0.0002): MHCI and MHCIIa expression increased by 1.7- and 4-fold, whereas MHCIIb displayed a 2.4-fold reduction. We conclude that absolute increases in UCP-3 protein content in the early adaptive phase were associated with the genesis of mitochondria containing a normal complement of UCP-3. However, during exposure to long-term CLFS, mitochondria were generated with a lower complement of UCP-3 and coincided with the emergence of a growing population of oxidative type IIA fibers. PMID:15308491

  18. Connexins in skeletal muscle development and disease.

    PubMed

    Merrifield, Peter A; Laird, Dale W

    2016-02-01

    Gap junctions consist of clusters of intercellular channels composed of connexins that connect adjacent cells and allow the exchange of small molecules. While the 21 member multi-gene family of connexins are ubiquitously found in humans, only Cx39, Cx40, Cx43 and Cx45 have been documented in developing myoblasts and injured adult skeletal muscle while healthy adult skeletal muscle is devoid of connexins. The use of gap junctional blockers and cultured myoblast cell lines have suggested that these connexins play a critical role in myotube formation and muscle regeneration. More recent genetically-modified mouse models where Cx43 function is greatly compromized or ablated have further supported a role for Cx43 in regulating skeletal muscle development. In the last decade, we have become aware of a cohort of patients that have a development disorder known as oculodentodigital dysplasia (ODDD). These patients harbor either gain or loss of Cx43 function gene mutations that result in many organ anomalies raising questions as to whether they suffer from defects in skeletal muscle formation or regeneration upon injury. Interesting, some ODDD patients report muscle weakness and loss of limb control but it is not clear if this is neurogenic or myogenic in origin. This review will focus on the role connexins play in muscle development and repair and discuss the impact of Cx43 mutants on muscle function. PMID:26688333

  19. Myoglobinuria and Skeletal Muscle Phosphorylase Deficiency

    PubMed Central

    Nixon, J. C.; Hobbs, W. K.; Greenblatt, J.

    1966-01-01

    Investigation of a patient complaining of exercise-induced dark urine, pain, stiffness and tenderness of skeletal muscle revealed findings characteristic of McArdle's disease. The dark urine was attributable to the excretion of myoglobin, and an ischemic exercise test failed to demonstrate the usual rise and fall in blood lactate and pyruvate. Enzyme assays of skeletal muscle showed an absence of phosphorylase, a slight increase in phosphorylase b kinase and a slight decrease in phosphoglucomutase. Chemical and histochemical analyses demonstrated an increase in the skeletal muscle glycogen content and an enlargement of the muscle cells. No abnormality of liver glycogen metabolism was found. In the absence of specific therapy, an effective and practical form of treatment is reduction of exercise below the threshold of symptoms. ImagesFig. 1Fig. 2Fig. 6Fig. 7Fig. 8 PMID:4952390

  20. Optimizing skeletal muscle reinnervation with nerve transfer.

    PubMed

    Lien, Samuel C; Cederna, Paul S; Kuzon, William M

    2008-11-01

    Denervation as a consequence of nerve injury causes profound structural and functional changes within skeletal muscle and can lead to a marked impairment in function of the affected limb. Prompt reinnervation of a muscle with a sufficient number of motion-specific motor axons generally results in good structural and functional recovery, whereas long-term denervation or insufficient or improper axonal recruitment uniformly results in poor functional recovery. Only nerve transfer has been highly efficacious in changing the clinical outcomes of patients with skeletal muscle denervation, especially in the case of proximal limb nerve injuries. Rapid reinnervation with an abundant number of motor axons remains the only clinically effective means to restore function to denervated skeletal muscles. PMID:18928892

  1. Epigenetic regulation of skeletal muscle metabolism.

    PubMed

    Howlett, Kirsten F; McGee, Sean L

    2016-07-01

    Normal skeletal muscle metabolism is essential for whole body metabolic homoeostasis and disruptions in muscle metabolism are associated with a number of chronic diseases. Transcriptional control of metabolic enzyme expression is a major regulatory mechanism for muscle metabolic processes. Substantial evidence is emerging that highlights the importance of epigenetic mechanisms in this process. This review will examine the importance of epigenetics in the regulation of muscle metabolism, with a particular emphasis on DNA methylation and histone acetylation as epigenetic control points. The emerging cross-talk between metabolism and epigenetics in the context of health and disease will also be examined. The concept of inheritance of skeletal muscle metabolic phenotypes will be discussed, in addition to emerging epigenetic therapies that could be used to alter muscle metabolism in chronic disease states. PMID:27215678

  2. Denervation and reinnervation of skeletal muscle

    NASA Technical Reports Server (NTRS)

    Mayer, R. F.; Max, S. R.

    1983-01-01

    A review is presented of the physiological and biochemical changes that occur in mammalian skeletal muscle after denervation and reinnervation. These changes are compared with those observed after altered motor function. Also considered is the nature of the trophic influence by which nerves control muscle properties. Topics examined include the membrane and contractile properties of denervated and reinnervated muscle; the cholinergic proteins, such as choline acetyltransferase, acetylcholinesterase, and the acetylcholine receptor; and glucose-6-phosphate dehydrogenase.

  3. Human Skeletal Muscle Health with Spaceflight

    NASA Astrophysics Data System (ADS)

    Trappe, Scott

    2012-07-01

    This lecture will overview the most recent aerobic and resistance exercise programs used by crewmembers while aboard the International Space Station (ISS) for six months and examine its effectiveness for protecting skeletal muscle health. Detailed information on the exercise prescription program, whole muscle size, whole muscle performance, and cellular data obtained from muscle biopsy samples will be presented. Historically, detailed information on the exercise program while in space has not been available. These most recent exercise and muscle physiology findings provide a critical foundation to guide the exercise countermeasure program forward for future long-duration space missions.

  4. Therapeutic Approaches to Skeletal Muscle Repair and Healing

    PubMed Central

    Danna, Natalie R.; Beutel, Bryan G.; Campbell, Kirk A.; Bosco, Joseph A.

    2014-01-01

    Context: Skeletal muscle is comprised of a highly organized network of cells, neurovascular structures, and connective tissue. Muscle injury is typically followed by a well-orchestrated healing response that consists of the following phases: inflammation, regeneration, and fibrosis. This review presents the mechanisms of action and evidence supporting the effectiveness of various traditional and novel therapies at each phase of the skeletal muscle healing process. Evidence Acquisition: Relevant published articles were identified using MEDLINE (1978-2013). Study Design: Clinical review. Level of Evidence: Level 3. Results: To facilitate muscle healing, surgical techniques involving direct suture repair, as well as the implantation of innovative biologic scaffolds, have been developed. Nonsteroidal anti-inflammatory drugs may be potentially supplanted by nitric oxide and curcumin in modulating the inflammatory pathway. Studies in muscle regeneration have identified stem cells, myogenic factors, and β-agonists capable of enhancing the regenerative capabilities of injured tissue. Furthermore, transforming growth factor-β1 (TGF-β1) and, more recently, myostatin and the rennin-angiotensin system have been implicated in fibrous tissue formation; several antifibrotic agents have demonstrated the ability to disrupt these systems. Conclusion: Effective repair of skeletal muscle after severe injury is unlikely to be achieved with a single intervention. For full functional recovery of muscle there is a need to control inflammation, stimulate regeneration, and limit fibrosis. Strength-of-Recommendation Taxonomy (SORT): B PMID:24982709

  5. Gene Regions Responding to Skeletal Muscle Atrophy

    NASA Technical Reports Server (NTRS)

    Booth, Frank W.

    1997-01-01

    Our stated specific aims for this project were: 1) Identify the region(s) of the mouse IIb myosin heavy chain (MHC) promoter necessary for in vivo expression in mouse fast-twitch muscle, and 2) Identify the region(s) of the mouse IIb MHC promoter responsive to immobilization in mouse slow-twitch muscle in vivo. We sought to address these specific aims by introducing various MHC IIb promoter/reporter gene constructs directly into the tibialis anterior and gastrocnemius muscles of living mice. Although the method of somatic gene transfer into skeletal muscle by direct injection has been successfully used in our laboratory to study the regulation of the skeletal alpha actin gene in chicken skeletal muscle, we had many difficulties utilizing this procedure in the mouse. Because of the small size of the mouse soleus and the difficulty in obtaining consistent results, we elected not to study this muscle as first proposed. Rather, our MHC IIb promoter deletion experiments were performed in the gastrocnemius. Further, we decided to use hindlimb unloading via tail suspension to induce an upregulation of the MHC IIb gene, rather than immobilization of the hindlimbs via plaster casts. This change was made because tail suspension more closely mimics spaceflight, and this procedure in our lab results in a smaller loss of overall body mass than the mouse hindlimb immobilization procedure. This suggests that the stress level during tail suspension is less than during immobilization. This research has provided an important beginning point towards understanding the molecular regulation of the MHC lIb gene in response to unweighting of skeletal muscle Future work will focus on the regulation of MHC IIb mRNA stability in response to altered loading of skeletal muscle

  6. Mechanical signal transduction in skeletal muscle growth and adaptation.

    PubMed

    Tidball, James G

    2005-05-01

    The adaptability of skeletal muscle to changes in the mechanical environment has been well characterized at the tissue and system levels, but the mechanisms through which mechanical signals are transduced to chemical signals that influence muscle growth and metabolism remain largely unidentified. However, several findings have suggested that mechanical signal transduction in muscle may occur through signaling pathways that are shared with insulin-like growth factor (IGF)-I. The involvement of IGF-I-mediated signaling for mechanical signal transduction in muscle was originally suggested by the observations that muscle releases IGF-I on mechanical stimulation, that IGF-I is a potent agent for promoting muscle growth and affecting phenotype, and that IGF-I can function as an autocrine hormone in muscle. Accumulating evidence shows that at least two signaling pathways downstream of IGF-I binding can influence muscle growth and adaptation. Signaling via the calcineurin/nuclear factor of activated T-cell pathway has been shown to have a powerful influence on promoting the slow/type I phenotype in muscle but can also increase muscle mass. Neural stimulation of muscle can activate this pathway, although whether neural activation of the pathway can occur independent of mechanical activation or independent of IGF-I-mediated signaling remains to be explored. Signaling via the Akt/mammalian target of rapamycin pathway can also increase muscle growth, and recent findings show that activation of this pathway can occur as a response to mechanical stimulation applied directly to muscle cells, independent of signals derived from other cells. In addition, mechanical activation of mammalian target of rapamycin, Akt, and other downstream signals is apparently independent of autocrine factors, which suggests that activation of the mechanical pathway occurs independent of muscle-mediated IGF-I release.

  7. Satellite cells in human skeletal muscle plasticity

    PubMed Central

    Snijders, Tim; Nederveen, Joshua P.; McKay, Bryon R.; Joanisse, Sophie; Verdijk, Lex B.; van Loon, Luc J. C.; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models. PMID:26557092

  8. Mechanotransduction pathways in skeletal muscle hypertrophy.

    PubMed

    Yamada, André Katayama; Verlengia, Rozangela; Bueno Junior, Carlos Roberto

    2012-02-01

    In the last decade, molecular biology has contributed to define some of the cellular events that trigger skeletal muscle hypertrophy. Recent evidence shows that insulin like growth factor 1/phosphatidyl inositol 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling is not the main pathway towards load-induced skeletal muscle hypertrophy. During load-induced skeletal muscle hypertrophy process, activation of mTORC1 does not require classical growth factor signaling. One potential mechanism that would activate mTORC1 is increased synthesis of phosphatidic acid (PA). Despite the huge progress in this field, it is still early to affirm which molecular event induces hypertrophy in response to mechanical overload. Until now, it seems that mTORC1 is the key regulator of load-induced skeletal muscle hypertrophy. On the other hand, how mTORC1 is activated by PA is unclear, and therefore these mechanisms have to be determined in the following years. The understanding of these molecular events may result in promising therapies for the treatment of muscle-wasting diseases. For now, the best approach is a good regime of resistance exercise training. The objective of this point-of-view paper is to highlight mechanotransduction events, with focus on the mechanisms of mTORC1 and PA activation, and the role of IGF-1 on hypertrophy process. PMID:22171534

  9. Mechanotransduction pathways in skeletal muscle hypertrophy.

    PubMed

    Yamada, André Katayama; Verlengia, Rozangela; Bueno Junior, Carlos Roberto

    2012-02-01

    In the last decade, molecular biology has contributed to define some of the cellular events that trigger skeletal muscle hypertrophy. Recent evidence shows that insulin like growth factor 1/phosphatidyl inositol 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling is not the main pathway towards load-induced skeletal muscle hypertrophy. During load-induced skeletal muscle hypertrophy process, activation of mTORC1 does not require classical growth factor signaling. One potential mechanism that would activate mTORC1 is increased synthesis of phosphatidic acid (PA). Despite the huge progress in this field, it is still early to affirm which molecular event induces hypertrophy in response to mechanical overload. Until now, it seems that mTORC1 is the key regulator of load-induced skeletal muscle hypertrophy. On the other hand, how mTORC1 is activated by PA is unclear, and therefore these mechanisms have to be determined in the following years. The understanding of these molecular events may result in promising therapies for the treatment of muscle-wasting diseases. For now, the best approach is a good regime of resistance exercise training. The objective of this point-of-view paper is to highlight mechanotransduction events, with focus on the mechanisms of mTORC1 and PA activation, and the role of IGF-1 on hypertrophy process.

  10. Excitation of skeletal muscle is a self-limiting process, due to run-down of Na+, K+ gradients, recoverable by stimulation of the Na+, K+ pumps

    PubMed Central

    Clausen, Torben

    2015-01-01

    The general working hypothesis of this study was that muscle fatigue and force recovery depend on passive and active fluxes of Na+ and K+. This is tested by examining the time-course of excitation-induced fluxes of Na+ and K+ during 5–300 sec of 10–60 Hz continuous electrical stimulation in rat extensor digitorum longus (EDL) muscles in vitro and in vivo using 22Na and flame photometric determination of Na+ and K+. 60 sec of 60 Hz stimulation rapidly increases 22Na influx, during the initial phase (0–15 sec) by 0.53 μmol(sec)−1(g wet wt.)−1, sixfold faster than in the later phase (15–60 sec). These values agree with flame photometric measurements of Na+ content. The progressive reduction in the rate of excitation-induced Na+ uptake is likely to reflect gradual loss of excitability due to accumulation of K+ in the extracellular space and t-tubules leading to depolarization. This is in keeping with the concomitant progressive loss of contractile force previously demonstrated. During electrical stimulation rat muscles rapidly reach high rates of active Na+, K+-transport (in EDL muscles a sevenfold increase and in soleus muscles a 22-fold increase), allowing efficient and selective compensation for the large excitation-induced passive Na+, K+-fluxes demonstrated over the latest decades. The excitation-induced changes in passive fluxes of Na+ and K+ are both clearly larger than previously observed. The excitation-induced reduction in [Na+]o contributes considerably to the inhibitory effect of elevated [K+]o. In conclusion, excitation-induced passive and active Na+ and K+ fluxes are important causes of muscle fatigue and force recovery, respectively. PMID:25862098

  11. Cytokine Signaling in Skeletal Muscle Wasting.

    PubMed

    Zhou, Jin; Liu, Bin; Liang, Chun; Li, Yangxin; Song, Yao-Hua

    2016-05-01

    Skeletal muscle wasting occurs in a variety of diseases including diabetes, cancer, Crohn's disease, chronic obstructive pulmonary disease (COPD), disuse, and denervation. Tumor necrosis factor α (TNF-α) is involved in mediating the wasting effect. To date, a causal relationship between TNF-α signaling and muscle wasting has been established in animal models. However, results from clinical trials are conflicting. This is partly due to the fact that other factors such as TNF-like weak inducer of apoptosis (TWEAK) and interleukin 6 (IL-6) are also involved in skeletal muscle wasting. Because muscle wasting is often associated with physical inactivity and reduced food intake, therapeutic interventions will be most effective when multiple approaches are used in conjunction with nutritional support and exercise. PMID:27025788

  12. Laminin-211 in skeletal muscle function

    PubMed Central

    Holmberg, Johan; Durbeej, Madeleine

    2013-01-01

    A chain is no stronger than its weakest link is an old idiom that holds true for muscle biology. As the name implies, skeletal muscle’s main function is to move the bones. However, for a muscle to transmit force and withstand the stress that contractions give rise to, it relies on a chain of proteins attaching the cytoskeleton of the muscle fiber to the surrounding extracellular matrix. The importance of this attachment is illustrated by a large number of muscular dystrophies caused by interruption of the cytoskeletal-extracellular matrix interaction. One of the major components of the extracellular matrix is laminin, a heterotrimeric glycoprotein and a major constituent of the basement membrane. It has become increasingly apparent that laminins are involved in a multitude of biological functions, including cell adhesion, differentiation, proliferation, migration and survival. This review will focus on the importance of laminin-211 for normal skeletal muscle function. PMID:23154401

  13. YAP-Mediated Mechanotransduction in Skeletal Muscle

    PubMed Central

    Fischer, Martina; Rikeit, Paul; Knaus, Petra; Coirault, Catherine

    2016-01-01

    Skeletal muscle is not only translating chemical energy into mechanical work, it is also a highly adaptive and regenerative tissue whose architecture and functionality is determined by its mechanical and physical environment. Processing intra- and extracellular mechanical signaling cues contributes to the regulation of cell growth, survival, migration and differentiation. Yes-associated Protein (YAP), a transcriptional coactivator downstream of the Hippo pathway and its paralog, the transcriptional co-activator with PDZ-binding motif (TAZ), were recently found to play a key role in mechanotransduction in various tissues including skeletal muscle. Furthermore, YAP/TAZ modulate myogenesis and muscle regeneration and abnormal YAP activity has been reported in muscular dystrophy and rhabdomyosarcoma. Here, we summarize the current knowledge of mechanosensing and -signaling in striated muscle. We highlight the role of YAP signaling and discuss the different routes and hypotheses of its regulation in the context of mechanotransduction. PMID:26909043

  14. Adipose tissue and skeletal muscle blood flow during mental stress

    SciTech Connect

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.

  15. Cardiovascular regulation by skeletal muscle reflexes in health and disease

    PubMed Central

    Murphy, Megan N.; Mizuno, Masaki; Mitchell, Jere H.

    2011-01-01

    Heart rate and blood pressure are elevated at the onset and throughout the duration of dynamic or static exercise. These neurally mediated cardiovascular adjustments to physical activity are regulated, in part, by a peripheral reflex originating in contracting skeletal muscle termed the exercise pressor reflex. Mechanically sensitive and metabolically sensitive receptors activating the exercise pressor reflex are located on the unencapsulated nerve terminals of group III and group IV afferent sensory neurons, respectively. Mechanoreceptors are stimulated by the physical distortion of their receptive fields during muscle contraction and can be sensitized by the production of metabolites generated by working skeletal myocytes. The chemical by-products of muscle contraction also stimulate metaboreceptors. Once activated, group III and IV sensory impulses are transmitted to cardiovascular control centers within the brain stem where they are integrated and processed. Activation of the reflex results in an increase in efferent sympathetic nerve activity and a withdrawal of parasympathetic nerve activity. These actions result in the precise alterations in cardiovascular hemodynamics requisite to meet the metabolic demands of working skeletal muscle. Coordinated activity by this reflex is altered after the development of cardiovascular disease, generating exaggerated increases in sympathetic nerve activity, blood pressure, heart rate, and vascular resistance. The basic components and operational characteristics of the reflex, the techniques used in human and animals to study the reflex, and the emerging evidence describing the dysfunction of the reflex with the advent of cardiovascular disease are highlighted in this review. PMID:21841019

  16. Isolation, Cryosection and Immunostaining of Skeletal Muscle.

    PubMed

    Ortuste Quiroga, Huascar P; Goto, Katsumasa; Zammit, Peter S

    2016-01-01

    Adult skeletal muscle is maintained and repaired by resident stem cells called satellite cells, located between the plasmalemma of a muscle fiber, and the surrounding basal lamina. When needed, satellite cells are activated to form proliferative myoblasts, that then differentiate and fuse to existing muscle fibers, or fuse together to form replacement myofibers. In parallel, a proportion of satellite cells self-renew, to maintain the stem cell pool. To date, Pax7 is the marker of choice for identifying quiescent satellite cells. Co-immunostaining of skeletal muscle with Pax7 and laminin allows both identification of satellite cells, and the myofiber that they are associated with. Furthermore, satellite cells can be followed through the early stages of the myogenic program by co-immunostaining with myogenic regulatory factors such as MyoD. To test genetically modified mice for satellite cell expression, co-immunostaining can be performed for Pax7 and reporter genes such as eGFP. Here, we describe a method for identification of satellite cells in skeletal muscle sections, including muscle isolation, cryosectioning and co-immunostaining for Pax7 and laminin. PMID:27492168

  17. Redox Characterization of Functioning Skeletal Muscle

    PubMed Central

    Zuo, Li; Pannell, Benjamin K.

    2015-01-01

    Skeletal muscle physiology is influenced by the presence of chemically reactive molecules such as reactive oxygen species (ROS). These molecules regulate multiple redox-sensitive signaling pathways that play a critical role in cellular processes including gene expression and protein modification. While ROS have gained much attention for their harmful effects in muscle fatigue and dysfunction, research has also shown ROS to facilitate muscle adaptation after stressors such as physical exercise. This manuscript aims to provide a comprehensive review of the current understanding of redox signaling in skeletal muscle. ROS-induced oxidative stress and its role in the aging process are discussed. Mitochondria have been shown to generate large amounts of ROS during muscular contractions, and thus are susceptible to oxidative stress. ROS can modify proteins located in the mitochondrial membrane leading to cell death and osmotic swelling. ROS also contribute to the necrosis and inflammation of muscle fibers that is associated with muscular diseases including Duchenne muscular dystrophy. It is imperative that future research continues to investigate the exact role of ROS in normal skeletal muscle function as well as muscular dysfunction and disease. PMID:26635624

  18. Human skeletal muscle biochemical diversity

    PubMed Central

    Tirrell, Timothy F.; Cook, Mark S.; Carr, J. Austin; Lin, Evie; Ward, Samuel R.; Lieber, Richard L.

    2012-01-01

    SUMMARY The molecular components largely responsible for muscle attributes such as passive tension development (titin and collagen), active tension development (myosin heavy chain, MHC) and mechanosensitive signaling (titin) have been well studied in animals but less is known about their roles in humans. The purpose of this study was to perform a comprehensive analysis of titin, collagen and MHC isoform distributions in a large number of human muscles, to search for common themes and trends in the muscular organization of the human body. In this study, 599 biopsies were obtained from six human cadaveric donors (mean age 83 years). Three assays were performed on each biopsy – titin molecular mass determination, hydroxyproline content (a surrogate for collagen content) and MHC isoform distribution. Titin molecular mass was increased in more distal muscles of the upper and lower limbs. This trend was also observed for collagen. Percentage MHC-1 data followed a pattern similar to collagen in muscles of the upper extremity but this trend was reversed in the lower extremity. Titin molecular mass was the best predictor of anatomical region and muscle functional group. On average, human muscles had more slow myosin than other mammals. Also, larger titins were generally associated with faster muscles. These trends suggest that distal muscles should have higher passive tension than proximal ones, and that titin size variability may potentially act to ‘tune’ the protein's mechanotransduction capability. PMID:22786631

  19. Optogenetic control of contractile function in skeletal muscle

    PubMed Central

    Bruegmann, Tobias; van Bremen, Tobias; Vogt, Christoph C.; Send, Thorsten; Fleischmann, Bernd K.; Sasse, Philipp

    2015-01-01

    Optogenetic stimulation allows activation of cells with high spatial and temporal precision. Here we show direct optogenetic stimulation of skeletal muscle from transgenic mice expressing the light-sensitive channel Channelrhodopsin-2 (ChR2). Largest tetanic contractions are observed with 5-ms light pulses at 30 Hz, resulting in 84% of the maximal force induced by electrical stimulation. We demonstrate the utility of this approach by selectively stimulating with a light guide individual intralaryngeal muscles in explanted larynges from ChR2-transgenic mice, which enables selective opening and closing of the vocal cords. Furthermore, systemic injection of adeno-associated virus into wild-type mice provides sufficient ChR2 expression for optogenetic opening of the vocal cords. Thus, direct optogenetic stimulation of skeletal muscle generates large force and provides the distinct advantage of localized and cell-type-specific activation. This technology could be useful for therapeutic purposes, such as restoring the mobility of the vocal cords in patients suffering from laryngeal paralysis. PMID:26035411

  20. Skeletal muscle fibre types in the dog.

    PubMed Central

    Latorre, R; Gil, F; Vázquez, J M; Moreno, F; Mascarello, F; Ramirez, G

    1993-01-01

    Using a variety of histochemical methods we have investigated the mATPase reaction of skeletal muscle fibres in the dog. Types I, IIA, IIDog (peculiar to the dog) and IIC fibres were identified. The results reveal that the interpretation of the fibre type composition depends on the methods used. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8226288

  1. Advances and challenges in skeletal muscle angiogenesis

    PubMed Central

    Baum, Oliver; Hellsten, Ylva; Egginton, Stuart

    2015-01-01

    The role of capillaries is to serve as the interface for delivery of oxygen and removal of metabolites to/from tissues. During the past decade there has been a proliferation of studies that have advanced our understanding of angiogenesis, demonstrating that tissue capillary supply is under strict control during health but poorly controlled in disease, resulting in either excessive capillary growth (pathological angiogenesis) or losses in capillarity (rarefaction). Given that skeletal muscle comprises nearly 40% of body mass in humans, skeletal muscle capillary density has a significant impact on metabolism, endocrine function, and locomotion and is tightly regulated at many different levels. Skeletal muscle is also high adaptable and thus one of the few organ systems that can be experimentally manipulated (e.g., by exercise) to study physiological regulation of angiogenesis. This review will focus on the methodological concerns that have arisen in determining skeletal muscle capillarity and highlight the concepts that are reshaping our understanding of the angio-adaptation process. We also summarize selected new findings (physical influences, molecular changes, and ultrastructural rearrangement of capillaries) that identify areas of future research with the greatest potential to expand our understanding of how angiogenesis is normally regulated, and that may also help to better understand conditions of uncontrolled (pathological) angiogenesis. PMID:26608338

  2. Development of Sensory Receptors in Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    DeSantis, Mark

    2000-01-01

    The two major goals for this project is to (1) examine the hindlimb walking pattern of offspring from the Flight dams as compared with offspring of the ground control groups from initiation of walking up to two months thereafter; and (2) examine skeletal muscle.

  3. Skeletal muscle metastasis from uterine leiomyosarcoma.

    PubMed

    O'Brien, J M; Brennan, D D; Taylor, D H; Holloway, D P; Hurson, B; O'Keane, J C; Eustace, S J

    2004-11-01

    A case of a 68-year-old woman who presented with a rapidly enlarging painful right thigh mass is presented. She had a known diagnosis of uterine leiomyosarcoma following a hysterectomy for dysfunctional uterine bleeding. She subsequently developed a single hepatic metastatic deposit that responded well to radiofrequency ablation. Whole-body MRI and MRA revealed a vascular mass in the sartorius muscle and a smaller adjacent mass in the gracilis muscle, proven to represent metastatic leiomyosarcoma of uterine origin. To our knowledge, metastatic uterine leiomyosarcoma to the skeletal muscle has not been described previously in the English medical literature.

  4. Insulin Increases Ceramide Synthesis in Skeletal Muscle

    PubMed Central

    Hansen, M. E.; Tippetts, T. S.; Anderson, M. C.; Holub, Z. E.; Moulton, E. R.; Swensen, A. C.; Prince, J. T.; Bikman, B. T.

    2014-01-01

    Aims. The purpose of this study was to determine the effect of insulin on ceramide metabolism in skeletal muscle. Methods. Skeletal muscle cells were treated with insulin with or without palmitate for various time periods. Lipids (ceramides and TAG) were isolated and gene expression of multiple biosynthetic enzymes were quantified. Additionally, adult male mice received daily insulin injections for 14 days, followed by muscle ceramide analysis. Results. In muscle cells, insulin elicited an increase in ceramides comparable to palmitate alone. This is likely partly due to an insulin-induced increase in expression of multiple enzymes, particularly SPT2, which, when knocked down, prevented the increase in ceramides. In mice, 14 days of insulin injection resulted in increased soleus ceramides, but not TAG. However, insulin injections did significantly increase hepatic TAG compared with vehicle-injected animals. Conclusions. This study suggests that insulin elicits an anabolic effect on sphingolipid metabolism in skeletal muscle, resulting in increased ceramide accumulation. These findings reveal a potential mechanism of the deleterious consequences of the hyperinsulinemia that accompanies insulin resistance and suggest a possible novel therapeutic target to mitigate its effects. PMID:24949486

  5. Cellular Players in Skeletal Muscle Regeneration

    PubMed Central

    Ceafalan, Laura Cristina; Popescu, Bogdan Ovidiu; Hinescu, Mihail Eugen

    2014-01-01

    Skeletal muscle, a tissue endowed with remarkable endogenous regeneration potential, is still under focused experimental investigation mainly due to treatment potential for muscle trauma and muscular dystrophies. Resident satellite cells with stem cell features were enthusiastically described quite a long time ago, but activation of these cells is not yet controlled by any medical interventions. However, after thorough reports of their existence, survival, activation, and differentiation there are still many questions to be answered regarding the intimate mechanism of tissue regeneration. This review delivers an up-to-date inventory of the main known key players in skeletal muscle repair, revealed by various models of tissue injuries in mechanical trauma, toxic lesions, and muscular dystrophy. A better understanding of the spatial and temporal relationships between various cell populations, with different physical or paracrine interactions and phenotype changes induced by local or systemic signalling, might lead to a more efficient approach for future therapies. PMID:24779022

  6. Effect of trifluoperazine on skeletal muscle mitochondrial respiration.

    PubMed

    Cheah, K S; Waring, J C

    1983-04-22

    The effect of trifluoperazine on the respiration of porcine liver and skeletal muscle mitochondria was investigated by polarographic and spectroscopic techniques. Low concentrations of trifluoperazine (88 nmol/mg protein) inhibited both the ADP- and Ca2+-stimulated oxidation of succinate, and reduced the values of the respiratory control index and the ADP/O and Ca2+/O ratio. High concentrations inhibited both succinate and ascorbate plus tetramethyl-p-phenylenediame (TMPD) oxidations, and uncoupler (carbonyl cyanide p-trifluromethoxyphenylhydrazone) and Ca2+-stimulated respiration. Porcine liver mitochondria were more sensitive to trifluoperazine than skeletal muscle mitochondria. Trifluoperazine inhibited the electron transport of succinate oxidation of skeletal muscle mitochondria within the cytochrome b-c1 and cytochrome c1-aa3 segments of the respiratory chain system. 233 nmol trifluoperazine/mg protein inhibited the aerobic steady-state reduction of cytochrome c1 by 92% with succinate as substrate, and of cytochrome c and cytochrome aa3 by 50-60% with ascorbate plus TMPD as electron donors. Trifluoperazine can thus inhibit calmodulin-independent reactions particularly when used at high concentrations.

  7. Reactive Oxygen Species in Skeletal Muscle Signaling

    PubMed Central

    Barbieri, Elena; Sestili, Piero

    2012-01-01

    Generation of reactive oxygen species (ROS) is a ubiquitous phenomenon in eukaryotic cells' life. Up to the 1990s of the past century, ROS have been solely considered as toxic species resulting in oxidative stress, pathogenesis and aging. However, there is now clear evidence that ROS are not merely toxic species but also—within certain concentrations—useful signaling molecules regulating physiological processes. During intense skeletal muscle contractile activity myotubes' mitochondria generate high ROS flows: this renders skeletal muscle a tissue where ROS hold a particular relevance. According to their hormetic nature, in muscles ROS may trigger different signaling pathways leading to diverging responses, from adaptation to cell death. Whether a “positive” or “negative” response will prevail depends on many variables such as, among others, the site of ROS production, the persistence of ROS flow or target cells' antioxidant status. In this light, a specific threshold of physiological ROS concentrations above which ROS exert negative, toxic effects is hard to determine, and the concept of “physiologically compatible” levels of ROS would better fit with such a dynamic scenario. In this review these concepts will be discussed along with the most relevant signaling pathways triggered and/or affected by ROS in skeletal muscle. PMID:22175016

  8. Stretch-induced prostaglandins and protein turnover in cultured skeletal muscle

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Hatfaludy, Sophia; Sohar, Istvan; Shansky, Janet

    1990-01-01

    The purpose of the study is to determine whether mechanical stimulation of cultured muscle cells influences prostaglandin efflux rates and whether they are related to stretch-induced alterations in protein turnover rates. The materials and methods of the experiment, including cell cultures, mechanical stimulation, protein synthesis, and degradation assays are outlined, and emphasis is placed on the effect of short-term mechanical stimulation in basal medium prostaglandin efflux from cultured skeletal muscle and stretch-induced alterations in prostaglandins efflux in complete medium. The major finding of the study is that mechanical stimulation of tissue-cultured skeletal-muscle cells under conditions inducing skeletal-muscle hypertropy increases the efflux of PGE(2) and PGE(2-alpha) but not 6-keto-PGF(1-alpha), the prostacyclin product.

  9. Wave biomechanics of the skeletal muscle

    NASA Astrophysics Data System (ADS)

    Rudenko, O. V.; Sarvazyan, A. P.

    2006-12-01

    Results of acoustic measurements in skeletal muscle are generalized. It is shown that assessment of the pathologies and functional condition of the muscular system is possible with the use of shear waves. The velocity of these waves in muscles is much smaller than the velocity of sound; therefore, a higher symmetry type is formed for them. In the presence of a preferential direction (along muscle fibers), it is characterized by only two rather than five (as in usual media with the same anisotropy) moduli of elasticity. A covariant form of the corresponding wave equation is presented. It is shown that dissipation properties of skeletal muscles can be controlled by contracting them isometrically. Pulsed loads (shocks) and vibrations are damped differently, depending on their frequency spectrum. Characteristic frequencies on the order of tens and hundreds of hertz are attenuated due to actin-myosin bridges association/dissociation dynamics in the contracted muscle. At higher (kilohertz) frequencies, when the muscle is tensed, viscosity of the tissue increases by a factor of several tens because of the increase in friction experienced by fibrillar structures as they move relative to the surrounding liquid; the tension of the fibers changes the hydrodynamic conditions of the flow around them. Finally, at higher frequencies, the attenuation is associated with the rheological properties of biological molecules, in particular, with their conformational dynamics in the wave field. Models that describe the controlled shock dissipation mechanisms are proposed. Corresponding solutions are found, including those that allow for nonlinear effects.

  10. Skeletal Muscle Tissue Engineering: Methods to Form Skeletal Myotubes and Their Applications

    PubMed Central

    Ostrovidov, Serge; Hosseini, Vahid; Ahadian, Samad; Fujie, Toshinori; Parthiban, Selvakumar Prakash; Ramalingam, Murugan; Bae, Hojae; Kaji, Hirokazu

    2014-01-01

    Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined. PMID:24320971

  11. Mitochondrial respiratory chain function in skeletal muscle of ALS patients.

    PubMed

    Echaniz-Laguna, Andoni; Zoll, Joffrey; Ribera, Florence; Tranchant, Christine; Warter, Jean-Marie; Lonsdorfer, Jean; Lampert, Eliane

    2002-11-01

    Evidence implicating mitochondrial dysfunction in the central nervous system of patients with sporadic amyotrophic lateral sclerosis (SALS) has recently been accumulating. In contrast, data on mitochondrial function in skeletal muscle in SALS are scarce and controversial. We investigated the in situ properties of muscle mitochondria in patients with early-stage SALS and sedentary (SED) controls using the skinned fiber technique to determine whether respiration of muscle tissue is altered in early-stage SALS in comparison with SED. Musculus vastus lateralis biopsies were obtained from 7 SED group members and 14 patients with early-stage SALS (mean disease duration, 9 months). Muscle fibers were permeabilized with saponine and then skinned and placed in an oxygraphic chamber to measure basal (V(0)) and maximal (V(max)) adenosine diphosphate-stimulated respiration rates and to assess mitochondrial regulation by adenosine diphosphate. Muscle oxidative capacity, evaluated with V(max), was identical in patients in the SALS and SED groups (V(0): SALS, 1.1 +/- 0.1; SED, 0.8 +/- 0.1, micromol 0(2). min(-1). gm(-1)dw and V(max): SALS, 3.1 +/- 0.3; SED, 2.5 +/- 0.3, micromol 0(2). min(-1). gm(-1)dw). This study shows an absence of large mitochondrial damage in skeletal muscle of patients with early-stage SALS, suggesting that mitochondrial dysfunction in the earlier stages of SALS is almost certainly not systemic. PMID:12402260

  12. PEDF-derived peptide promotes skeletal muscle regeneration through its mitogenic effect on muscle progenitor cells

    PubMed Central

    Ho, Tsung-Chuan; Chiang, Yi-Pin; Chuang, Chih-Kuang; Chen, Show-Li; Hsieh, Jui-Wen; Lan, Yu-Wen

    2015-01-01

    In response injury, intrinsic repair mechanisms are activated in skeletal muscle to replace the damaged muscle fibers with new muscle fibers. The regeneration process starts with the proliferation of satellite cells to give rise to myoblasts, which subsequently differentiate terminally into myofibers. Here, we investigated the promotion effect of pigment epithelial-derived factor (PEDF) on muscle regeneration. We report that PEDF and a synthetic PEDF-derived short peptide (PSP; residues Ser93-Leu112) induce satellite cell proliferation in vitro and promote muscle regeneration in vivo. Extensively, soleus muscle necrosis was induced in rats by bupivacaine, and an injectable alginate gel was used to release the PSP in the injured muscle. PSP delivery was found to stimulate satellite cell proliferation in damaged muscle and enhance the growth of regenerating myofibers, with complete regeneration of normal muscle mass by 2 wk. In cell culture, PEDF/PSP stimulated C2C12 myoblast proliferation, together with a rise in cyclin D1 expression. PEDF induced the phosphorylation of ERK1/2, Akt, and STAT3 in C2C12 myoblasts. Blocking the activity of ERK, Akt, or STAT3 with pharmacological inhibitors attenuated the effects of PEDF/PSP on the induction of C2C12 cell proliferation and cyclin D1 expression. Moreover, 5-bromo-2′-deoxyuridine pulse-labeling demonstrated that PEDF/PSP stimulated primary rat satellite cell proliferation in myofibers in vitro. In summary, we report for the first time that PSP is capable of promoting the regeneration of skeletal muscle. The signaling mechanism involves the ERK, AKT, and STAT3 pathways. These results show the potential utility of this PEDF peptide for muscle regeneration. PMID:26040897

  13. Skeletal muscle mitochondrial energetic efficiency and aging.

    PubMed

    Crescenzo, Raffaella; Bianco, Francesca; Mazzoli, Arianna; Giacco, Antonia; Liverini, Giovanna; Iossa, Susanna

    2015-01-01

    Aging is associated with a progressive loss of maximal cell functionality, and mitochondria are considered a key factor in aging process, since they determine the ATP availability in the cells. Mitochondrial performance during aging in skeletal muscle is reported to be either decreased or unchanged. This heterogeneity of results could partly be due to the method used to assess mitochondrial performance. In addition, in skeletal muscle the mitochondrial population is heterogeneous, composed of subsarcolemmal and intermyofibrillar mitochondria. Therefore, the purpose of the present review is to summarize the results obtained on the functionality of the above mitochondrial populations during aging, taking into account that the mitochondrial performance depends on organelle number, organelle activity, and energetic efficiency of the mitochondrial machinery in synthesizing ATP from the oxidation of fuels. PMID:25970752

  14. Dual Actions of Apolipoprotein A-I on Glucose-Stimulated Insulin Secretion and Insulin-Independent Peripheral Tissue Glucose Uptake Lead to Increased Heart and Skeletal Muscle Glucose Disposal.

    PubMed

    Domingo-Espín, Joan; Lindahl, Maria; Nilsson-Wolanin, Oktawia; Cushman, Samuel W; Stenkula, Karin G; Lagerstedt, Jens O

    2016-07-01

    Apolipoprotein A-I (apoA-I) of HDL is central to the transport of cholesterol in circulation. ApoA-I also provides glucose control with described in vitro effects of apoA-I on β-cell insulin secretion and muscle glucose uptake. In addition, apoA-I injections in insulin-resistant diet-induced obese (DIO) mice lead to increased glucose-stimulated insulin secretion (GSIS) and peripheral tissue glucose uptake. However, the relative contribution of apoA-I as an enhancer of GSIS in vivo and as a direct stimulator of insulin-independent glucose uptake is not known. Here, DIO mice with instant and transient blockade of insulin secretion were used in glucose tolerance tests and in positron emission tomography analyses. Data demonstrate that apoA-I to an equal extent enhances GSIS and acts as peripheral tissue activator of insulin-independent glucose uptake and verify skeletal muscle as an apoA-I target tissue. Intriguingly, our analyses also identify the heart as an important target tissue for the apoA-I-stimulated glucose uptake, with potential implications in diabetic cardiomyopathy. Explorations of apoA-I as a novel antidiabetic drug should extend to treatments of diabetic cardiomyopathy and other cardiovascular diseases in patients with diabetes. PMID:27207515

  15. Dual Actions of Apolipoprotein A-I on Glucose-Stimulated Insulin Secretion and Insulin-Independent Peripheral Tissue Glucose Uptake Lead to Increased Heart and Skeletal Muscle Glucose Disposal.

    PubMed

    Domingo-Espín, Joan; Lindahl, Maria; Nilsson-Wolanin, Oktawia; Cushman, Samuel W; Stenkula, Karin G; Lagerstedt, Jens O

    2016-07-01

    Apolipoprotein A-I (apoA-I) of HDL is central to the transport of cholesterol in circulation. ApoA-I also provides glucose control with described in vitro effects of apoA-I on β-cell insulin secretion and muscle glucose uptake. In addition, apoA-I injections in insulin-resistant diet-induced obese (DIO) mice lead to increased glucose-stimulated insulin secretion (GSIS) and peripheral tissue glucose uptake. However, the relative contribution of apoA-I as an enhancer of GSIS in vivo and as a direct stimulator of insulin-independent glucose uptake is not known. Here, DIO mice with instant and transient blockade of insulin secretion were used in glucose tolerance tests and in positron emission tomography analyses. Data demonstrate that apoA-I to an equal extent enhances GSIS and acts as peripheral tissue activator of insulin-independent glucose uptake and verify skeletal muscle as an apoA-I target tissue. Intriguingly, our analyses also identify the heart as an important target tissue for the apoA-I-stimulated glucose uptake, with potential implications in diabetic cardiomyopathy. Explorations of apoA-I as a novel antidiabetic drug should extend to treatments of diabetic cardiomyopathy and other cardiovascular diseases in patients with diabetes.

  16. Tissue Engineered Strategies for Skeletal Muscle Injury

    PubMed Central

    Longo, Umile Giuseppe; Loppini, Mattia; Berton, Alessandra; Spiezia, Filippo; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Skeletal muscle injuries are common in athletes, occurring with direct and indirect mechanisms and marked residual effects, such as severe long-term pain and physical disability. Current therapy consists of conservative management including RICE protocol (rest, ice, compression and elevation), nonsteroidal anti-inflammatory drugs, and intramuscular corticosteroids. However, current management of muscle injuries often does not provide optimal restoration to preinjury status. New biological therapies, such as injection of platelet-rich plasma and stem-cell-based therapy, are appealing. Although some studies support PRP application in muscle-injury management, reasons for concern persist, and further research is required for a standardized and safe use of PRP in clinical practice. The role of stem cells needs to be confirmed, as studies are still limited and inconsistent. Further research is needed to identify mechanisms involved in muscle regeneration and in survival, proliferation, and differentiation of stem cells. PMID:25098362

  17. Leptin receptors in human skeletal muscle.

    PubMed

    Guerra, Borja; Santana, Alfredo; Fuentes, Teresa; Delgado-Guerra, Safira; Cabrera-Socorro, Alfredo; Dorado, Cecilia; Calbet, Jose A L

    2007-05-01

    Human skeletal muscle expresses leptin receptor mRNA; however, it remains unknown whether leptin receptors (OB-R) are also expressed at the protein level. Fourteen healthy men (age = 33.1 +/- 2.0 yr, height = 175.9 +/- 1.7 cm, body mass = 81.2 +/- 3.8 kg, body fat = 22.5 +/- 1.9%; means +/- SE) participated in this investigation. The expression of OB-R protein was determined in skeletal muscle, subcutaneous adipose tissue, and hypothalamus using a polyclonal rabbit anti-human leptin receptor. Three bands with a molecular mass close to 170, 128, and 98 kDa were identified by Western blot with the anti-OB-R antibody. All three bands were identified in skeletal muscle: the 98-kDa and 170-kDa bands were detected in hypothalamus, and the 98-kDa and 128-kDa bands were detected in thigh subcutaneous adipose tissue. The 128-kDa isoform was not detected in four subjects, whereas in the rest its occurrence was fully explained by the presence of intermuscular adipose tissue, as demonstrated using an anti-perilipin A antibody. No relationship was observed between the basal concentration of leptin in serum and the 170-kDa band density. In conclusion, a long isoform of the leptin receptor with a molecular mass close to 170 kDa is expressed at the protein level in human skeletal muscle. The amount of 170-kDa protein appears to be independent of the basal concentration of leptin in serum.

  18. Phosphoproteomic analysis of aged skeletal muscle.

    PubMed

    Gannon, Joan; Staunton, Lisa; O'Connell, Kathleen; Doran, Philip; Ohlendieck, Kay

    2008-07-01

    One of the most important post-translational modifications is represented by phosphorylation on tyrosine, threonine and serine residues. Since abnormal phosphorylation is associated with various pathologies, it was of interest to perform a phosphoproteomic profiling of age-related skeletal muscle degeneration. We used the fluorescent phospho-specific Pro-Q Diamond dye to determine whether changes in the overall phosphorylation of the soluble skeletal muscle proteome differs significantly between young adult and senescent fibres. As an established model system of sarcopenia, we employed 30-month-old rat gastrocnemius fibres. Following the mass spectrometric identification of 59 major 2-D phosphoprotein landmark spots, the fluorescent dye staining survey revealed that 22 muscle proteins showed a differential expression pattern between 3-month- and 30-month-old muscle. Increased phosphorylation levels were shown for myosin light chain 2, tropomyosin alpha, lactate dehydrogenase, desmin, actin, albumin and aconitase. In contrast, decreased phospho-specific dye binding was observed for cytochrome c oxidase, creatine kinase and enolase. Thus, aging-induced alterations in phosphoproteins appear to involve the contractile machinery and the cytoskeleton, as well as the cytosolic and mitochondrial metabolism. This confirms that sarcopenia of old age is a complex neuromuscular pathology that is associated with drastic changes in the abundance and structure of key muscle proteins. PMID:18575773

  19. Development of Sensory Receptors in Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    DeSantis, Mark

    2000-01-01

    There were two major goals for my project. One was to examine the hindlimb walking pattern of offspring from the Flight dams as compared with offspring of the ground control groups from initiation of walking up to two months thereafter. This initial goal was subsequently modified so that additional developmental measures were taken (e.g. body weight, eye opening) as the progeny developed, and the study period was lengthened to eighty days. Also videotapes taken shortly after the pregnant Flight dams returned to Earth were scored for locomotor activity and compared to those for the Synchronous control dams at the same stage of pregnancy. The second goal was to examine skeletal muscle. Selected hindlimb skeletal muscles were to be identified, weighed, and examined for the presence and integrity of muscle receptors, (both muscle spindles and tendon organs), at the level of the light and electron microscope. Muscles were examined from rats that were at fetal (G20), newborn (postnatal day 1 or P1, where P1 = day of birth), and young adult (approx. P100) stages. At the present time data from only the last group of rats (i.e. P100) has been completely examined.

  20. Effect of limb immobilization on skeletal muscle

    NASA Technical Reports Server (NTRS)

    Booth, F. W.

    1982-01-01

    Current knowledge and questions remaining concerning the effects of limb immobilization on skeletal muscle is reviewed. The most dramatic of these effects is muscle atrophy, which has been noted in cases of muscles fixed at or below their resting length. Immobilization is also accompanied by a substantial decrease in motoneuronal discharges, which results in the conversion of slow-twitch muscle to muscle with fast-twitch characteristics. Sarcolemma effects include no change or a decrease in resting membrane potential, the appearance of extrajunctional acetylcholine receptors, and no change in acetylcholinesterase activity. Evidence of changes in motoneuron after hyperpolarization characteristics suggests that the muscle inactivity is responsible for neuronal changes, rather than vice versa. The rate of protein loss from atrophying muscles is determined solely by the first-order rate constant for degradation. Various other biochemical and functional changes have been noted, including decreased insulin responsiveness and protein synthesis. The model of limb immobilization may also be useful for related studies of muscle adaptation.

  1. Extrarenal potassium adaptation: role of skeletal muscle

    SciTech Connect

    Blachley, J.D.; Crider, B.P.; Johnson, J.H.

    1986-08-01

    Following the ingestion of a high-potassium-content diet for only a few days, the plasma potassium of rats rises only modestly in response to a previously lethal dose of potassium salts. This acquired tolerance, termed potassium adaptation, is principally the result of increased capacity to excrete potassium into the urine. However, a substantial portion of the acute potassium dose is not immediately excreted and is apparently translocated into cells. Previous studies have failed to show an increase in the content of potassium of a variety of tissues from such animals. Using /sup 86/Rb as a potassium analogue, we have shown that the skeletal muscle of potassium-adapted rats takes up significantly greater amounts of potassium in vivo in response to an acute challenge than does that of control animals. Furthermore, the same animals exhibit greater efflux of /sup 86/Rb following the termination of the acute infusion. We have also shown that the Na+-K+-ATPase activity and ouabain-binding capacity of skeletal muscle microsomes are increased by the process of potassium adaptation. We conclude that skeletal muscle is an important participant in potassium adaptation and acts to temporarily buffer acute increases in the extracellular concentration of potassium.

  2. Vasodilator interactions in skeletal muscle blood flow regulation

    PubMed Central

    Hellsten, Y; Nyberg, M; Jensen, L G; Mortensen, S P

    2012-01-01

    During exercise, oxygen delivery to skeletal muscle is elevated to meet the increased oxygen demand. The increase in blood flow to skeletal muscle is achieved by vasodilators formed locally in the muscle tissue, either on the intraluminal or on the extraluminal side of the blood vessels. A number of vasodilators have been shown to bring about this increase in blood flow and, importantly, interactions between these compounds seem to be essential for the precise regulation of blood flow. Two compounds stand out as central in these vasodilator interactions: nitric oxide (NO) and prostacyclin. These two vasodilators are both stimulated by several compounds, e.g. adenosine, ATP, acetylcholine and bradykinin, and are affected by mechanically induced signals, such as shear stress. NO and prostacyclin have also been shown to interact in a redundant manner where one system can take over when formation of the other is compromised. Although numerous studies have examined the role of single and multiple pharmacological inhibition of different vasodilator systems, and important vasodilators and interactions have been identified, a large part of the exercise hyperaemic response remains unexplained. It is plausible that this remaining hyperaemia may be explained by cAMP- and cGMP-independent smooth muscle relaxation, such as effects of endothelial derived hyperpolarization factors (EDHFs) or through metabolic modulation of sympathetic effects. The nature and role of EDHF as well as potential novel mechanisms in muscle blood flow regulation remain to be further explored to fully elucidate the regulation of exercise hyperaemia. PMID:22988140

  3. Satellite Cells and Skeletal Muscle Regeneration.

    PubMed

    Dumont, Nicolas A; Bentzinger, C Florian; Sincennes, Marie-Claude; Rudnicki, Michael A

    2015-07-01

    Skeletal muscles are essential for vital functions such as movement, postural support, breathing, and thermogenesis. Muscle tissue is largely composed of long, postmitotic multinucleated fibers. The life-long maintenance of muscle tissue is mediated by satellite cells, lying in close proximity to the muscle fibers. Muscle satellite cells are a heterogeneous population with a small subset of muscle stem cells, termed satellite stem cells. Under homeostatic conditions all satellite cells are poised for activation by stimuli such as physical trauma or growth signals. After activation, satellite stem cells undergo symmetric divisions to expand their number or asymmetric divisions to give rise to cohorts of committed satellite cells and thus progenitors. Myogenic progenitors proliferate, and eventually differentiate through fusion with each other or to damaged fibers to reconstitute fiber integrity and function. In the recent years, research has begun to unravel the intrinsic and extrinsic mechanisms controlling satellite cell behavior. Nonetheless, an understanding of the complex cellular and molecular interactions of satellite cells with their dynamic microenvironment remains a major challenge, especially in pathological conditions. The goal of this review is to comprehensively summarize the current knowledge on satellite cell characteristics, functions, and behavior in muscle regeneration and in pathological conditions.

  4. GLUT-3 expression in human skeletal muscle

    NASA Technical Reports Server (NTRS)

    Stuart, C. A.; Wen, G.; Peng, B. H.; Popov, V. L.; Hudnall, S. D.; Campbell, G. A.

    2000-01-01

    Muscle biopsy homogenates contain GLUT-3 mRNA and protein. Before these studies, it was unclear where GLUT-3 was located in muscle tissue. In situ hybridization using a midmolecule probe demonstrated GLUT-3 within all muscle fibers. Fluorescent-tagged antibody reacting with affinity-purified antibody directed at the carboxy-terminus demonstrated GLUT-3 protein in all fibers. Slow-twitch muscle fibers, identified by NADH-tetrazolium reductase staining, possessed more GLUT-3 protein than fast-twitch fibers. Electron microscopy using affinity-purified primary antibody and gold particle-tagged second antibody showed that the majority of GLUT-3 was in association with triads and transverse tubules inside the fiber. Strong GLUT-3 signals were seen in association with the few nerves that traversed muscle sections. Electron microscopic evaluation of human peripheral nerve demonstrated GLUT-3 within the axon, with many of the particles related to mitochondria. GLUT-3 protein was found in myelin but not in Schwann cells. GLUT-1 protein was not present in nerve cells, axons, myelin, or Schwann cells but was seen at the surface of the peripheral nerve in the perineurium. These studies demonstrated that GLUT-3 mRNA and protein are expressed throughout normal human skeletal muscle, but the protein is predominantly found in the triads of slow-twitch muscle fibers.

  5. A preliminary study of the effect of essential oils on skeletal and smooth muscle in vitro.

    PubMed

    Lis-Balchin, M; Hart, S

    1997-11-01

    The pharmacological activity of nine commercial essential oils was studied on the rat isolated phrenic nerve diaphragm preparation and compared with activity on field-stimulated guinea-pig ileum preparations. The essential oils at final bath concentrations of 2 x 10(-5) and 2 x 10(-4) g/ml produced four different effects on skeletal muscle, whilst only a contracture with or without a decrease in response to field stimulation in smooth muscle. The first type of effect on skeletal muscle involved a contracture and inhibition of the twitch response to nerve stimulation shown by a sample of clary sage, dill, fennel, frankincense and nutmeg; a second, shown by thyme produced a contracture without a change in the twitch response; a third, shown by lavender reduced the twitch response alone and the fourth, shown by camphor, increased the size of the twitch response. Angelica root oil at the highest concentration studied showed no response on skeletal muscle. PMID:9421254

  6. Signalling and the control of skeletal muscle size

    SciTech Connect

    Otto, Anthony; Patel, Ketan

    2010-11-01

    Skeletal muscle is highly adaptive to environmental stimuli and can alter its mass accordingly. This tissue is almost unique in that it can increase its size through two distinct mechanisms. It can grow through a cellular process mediated by cell fusion, or it can increase its size simply by increasing its protein content. Understanding how these processes are regulated is crucial for the development of potential therapies against debilitating skeletal muscle wasting diseases. Two key signalling molecules, Insulin like Growth Factor (IGF) and GDF-8/myostatin, have emerged in recent years to be potent regulators of skeletal muscle size. In this review we bring together recent data highlighting the important and novel aspects of both molecules and their signalling pathways, culminating in a discussion of the cellular and tissue phenotypic outcomes of their stimulation or antagonism. We emphasise the complex regulatory mechanisms and discuss the temporal and spatial differences that control their action, understanding of which is crucial to further their use as potential therapeutic targets.

  7. A novel potassium channel in skeletal muscle mitochondria.

    PubMed

    Skalska, Jolanta; Piwońska, Marta; Wyroba, Elzbieta; Surmacz, Liliana; Wieczorek, Rafal; Koszela-Piotrowska, Izabela; Zielińska, Joanna; Bednarczyk, Piotr; Dołowy, Krzysztof; Wilczynski, Grzegorz M; Szewczyk, Adam; Kunz, Wolfram S

    2008-01-01

    In this work we provide evidence for the potential presence of a potassium channel in skeletal muscle mitochondria. In isolated rat skeletal muscle mitochondria, Ca(2+) was able to depolarize the mitochondrial inner membrane and stimulate respiration in a strictly potassium-dependent manner. These potassium-specific effects of Ca(2+) were completely abolished by 200 nM charybdotoxin or 50 nM iberiotoxin, which are well-known inhibitors of large conductance, calcium-activated potassium channels (BK(Ca) channel). Furthermore, NS1619, a BK(Ca)-channel opener, mimicked the potassium-specific effects of calcium on respiration and mitochondrial membrane potential. In agreement with these functional data, light and electron microscopy, planar lipid bilayer reconstruction and immunological studies identified the BK(Ca) channel to be preferentially located in the inner mitochondrial membrane of rat skeletal muscle fibers. We propose that activation of mitochondrial K(+) transport by opening of the BK(Ca) channel may be important for myoprotection since the channel opener NS1619 protected the myoblast cell line C2C12 against oxidative injury.

  8. Increased thermogenic responsiveness to intravenous beta-adrenergic stimulation in habitually exercising humans is not related to skeletal muscle beta2-adrenergic receptor density.

    PubMed

    Stob, Nicole R; Seals, Douglas R; Jørgen, Jensen; van Baak, Marleen A; Steig, Amy J; Lindstrom, Rachel C; Bikman, Benjamin T; Bell, Christopher

    2007-09-01

    Habitually exercising adults demonstrate greater thermogenic responsiveness to beta-adrenergic receptor (beta-AR) stimulation compared with their sedentary peers, but the molecular mechanisms involved are unknown. To determine the possible role of increased beta-AR density, we studied 32 healthy adults: 17 habitual aerobic exercisers (age 45 +/- 5 years, 11 males) and 15 sedentary (49 +/- 5 years, 7 males). Maximal oxygen uptake (43.7 +/- 2.5 versus 31.6 +/- 2.9 ml kg(-1) min(-1), P = 0.002, mean +/- S.E.M.) and vastus lateralis muscle maximal citrate synthase activity (1.70 +/- 0.36 versus 0.58 +/- 0.11 micromol min(-1) g(-1), P = 0.008) were higher in the habitually exercising subjects. Resting energy expenditure (EE) adjusted for fat-free mass (FFM) was similar in the habitually exercising (5903 +/- 280 kJ day(-1)) and sedentary adults (6054 +/- 289 kJ day(-1), P = 0.43). The percentage increase in EE (DeltaEE%; indirect calorimetry, ventilated hood) above resting EE in response to beta-AR stimulation (intravenous isoproterenol at 6, 12 and 24 ng (kg FFM)(-1) min(-1)) was greater (7.1 +/- 1.2, 13.7 +/- 1.0, 20.7 +/- 1.3 versus 5.9 +/- 0.9, 9.9 +/- 1.4, 15.9 +/- 1.70%, respectively, P = 0.04), and the dose of isoproterenol required to increase EE by 10% above resting EE was lower (8.2 +/- 1.5 versus 17.1 +/- 4.1 ng (kg FFM)(-1) min(-1), P = 0.03) in the habitually exercising adults. In contrast, vastus lateralis muscle beta(2)-AR density was similar in the habitually exercising and sedentary subjects (7.46 +/- 0.29 versus 7.44 +/- 0.60 fmol (mg dry weight muscle)(-1), P = 0.98), and was not related to DeltaEE% (r = 0.02, P = 0.94) or to the isoproterenol dose required to increase EE by 10% above resting EE (r = -0.06, P = 0.76). These findings indicate that increased beta(2)-AR density is not a mechanism contributing to the greater thermogenic responsiveness to beta-AR stimulation in adult humans who regularly perform aerobic exercise.

  9. Mapping of electrical muscle stimulation using MRI

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Harris, Robert T.; Woodard, Daniel; Dudley, Gary A.

    1993-01-01

    The pattern of muscle contractile activity elicited by electromyostimulation (EMS) was mapped and compared to the contractile-activity pattern produced by voluntary effort. This was done by examining the patterns and the extent of contrast shift, as indicated by T2 values, im magnetic resonance (MR) images after isometric activity of the left m. quadriceps of human subjects was elicited by EMS (1-sec train of 500-microsec sine wave pulses at 50 Hz) or voluntary effort. The results suggest that, whereas EMS stimulates the same fibers repeatedly, thereby increasing the metabolic demand and T2 values, the voluntary efforts are performed by more diffuse asynchronous activation of skeletal muscle even at forces up to 75 percent of maximal to maintain performance.

  10. Endoplasmic Reticulum Stress in Skeletal Muscle Homeostasis and Disease

    PubMed Central

    Rayavarapu, Sree; Coley, William

    2013-01-01

    Our appreciation of the role of endoplasmic reticulum(ER) stress pathways in both skeletal muscle homeostasis and the progression of muscle diseases is gaining momentum. This review provides insight into ER stress mechanisms during physiologic and pathological disturbances in skeletal muscle. The role of ER stress in the response to dietary alterations and acute stressors, including its role in autoimmune and genetic muscle disorders, has been described. Recent studies identifying ER stress markers in diseased skeletal muscle are noted. The emerging evidence for ER–mitochondrial interplay in skeletal muscle and its importance during chronic ER stress in activation of both inflammatory and cell death pathways (autophagy, necrosis, and apoptosis) have been discussed. Thus, understanding the ER stress–related molecular pathways underlying physiologic and pathological phenotypes in healthy and diseased skeletal muscle should lead to novel therapeutic targets for muscle disease. PMID:22410828

  11. REGULATION OF CARDIAC AND SKELETAL MUSCLE PROTEIN SYNTHESIS BY INDIVIDUAL BRANCHED-CHAIN AMINO ACIDS IN NEONATAL PIGS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Skeletal muscle grows at a very rapid rate in the neonatal pig, due in part to an enhanced sensitivity of protein synthesis to the postprandial rise in amino acids. An increase in leucine alone stimulates protein synthesis in skeletal muscle of the neonatal pig; however, the effect of isoleucine and...

  12. Ursolic Acid Increases Skeletal Muscle and Brown Fat and Decreases Diet-Induced Obesity, Glucose Intolerance and Fatty Liver Disease

    PubMed Central

    Kunkel, Steven D.; Elmore, Christopher J.; Bongers, Kale S.; Ebert, Scott M.; Fox, Daniel K.; Dyle, Michael C.; Bullard, Steven A.; Adams, Christopher M.

    2012-01-01

    Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II), blood vessel recruitment (Vegfa) and autocrine/paracrine IGF-I signaling (Igf1). As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness. PMID:22745735

  13. Circadian Rhythms, skeletal muscle molecular clocks and exercise

    PubMed Central

    Schroder, Elizabeth A.; Esser, Karyn A.

    2013-01-01

    Skeletal muscle comprises approximately 40 % of total body mass and, as such, contributes to maintenance of human health. In this review we will discuss the current state of knowledge regarding the role of molecular clocks in skeletal muscle. In addition we discuss a new function for exercise as a time setting cue for muscle and other peripheral tissues. PMID:23917214

  14. A Simplified Method for Tissue Engineering Skeletal Muscle Organoids in Vitro

    NASA Technical Reports Server (NTRS)

    Shansky, Janet; DelTatto, Michael; Chromiak, Joseph; Vandenburgh, Herman

    1996-01-01

    Tissue-engineered three dimensional skeletal muscle organ-like structures have been formed in vitro from primary myoblasts by several different techniques. This report describes a simplified method for generating large numbers of muscle organoids from either primary embryonic avian or neonatal rodent myoblasts, which avoids the requirements for stretching and other mechanical stimulation.

  15. Unacylated ghrelin restores insulin and autophagic signaling in skeletal muscle of diabetic mice.

    PubMed

    Tam, Bjorn T; Pei, Xiao M; Yung, Benjamin Y; Yip, Shea P; Chan, Lawrence W; Wong, Cesar S; Siu, Parco M

    2015-12-01

    Impairment of insulin signaling in skeletal muscle detrimentally affects insulin-stimulated disposal of glucose. Restoration of insulin signaling in skeletal muscle is important as muscle is one of the major sites for disposal of blood glucose. Recently, unacylated ghrelin (UnAG) has received attention in diabetic research due to its favorable actions on improving glucose tolerance, glycemic control, and insulin sensitivity. The investigation of UnAG has entered phase Ib clinical trial in type 2 diabetes and phase II clinical trial in hyperphagia in Prader-Willi syndrome. Nonetheless, the precise mechanisms responsible for the anti-diabetic actions of UnAG remain incompletely understood. In this study, we examined the effects of UnAG on restoring the impaired insulin signaling in skeletal muscle of db/db diabetic mice. Our results demonstrated that UnAG effectively restored the impaired insulin signaling in diabetic muscle. UnAG decreased insulin receptor substrate (IRS) phosphorylation, increased protein kinase B (Akt) phosphorylation, and, hence, suppressed mTOR signaling. Consequently, UnAG enhanced Glut4 localization and increased PDH activity in the diabetic skeletal muscle. Intriguingly, our data indicated that UnAG normalized the suppressed autophagic signaling in diabetic muscle. In conclusion, our findings illustrated that UnAG restored the impaired insulin and autophagic signaling in skeletal muscle of diabetic mice, which are valuable to understand the underlying mechanisms of the anti-diabetic action of UnAG at peripheral skeletal muscle level. PMID:26228926

  16. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation

    PubMed Central

    Wallace, Marita A.; Della Gatta, Paul A.; Ahmad Mir, Bilal; Kowalski, Greg M.; Kloehn, Joachim; McConville, Malcom J.; Russell, Aaron P.; Lamon, Séverine

    2016-01-01

    Background: Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. Results: We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. Conclusion: These findings position STARS as an important regulator of skeletal muscle growth and regeneration. PMID:26903873

  17. Skeletal Muscle Gender Dimorphism from Proteomics

    PubMed Central

    Dimova, Kalina; Metskas, Lauren Ann; Kulp, Mohini; Scordilis, Stylianos P.

    2011-01-01

    Gross contraction in skeletal muscle is primarily determined by a relatively small number of contractile proteins, however this tissue is also remarkably adaptable to environmental factors1 such as hypertrophy by resistance exercise and atrophy by disuse. It thereby exhibits remodeling and adaptations to stressors (heat, ischemia, heavy metals, etc.)2,3. Damage can occur to muscle by a muscle exerting force while lengthening, the so-called eccentric contraction4. The contractile proteins can be damaged in such exertions and need to be repaired, degraded and/or resynthesized; these functions are not part of the contractile proteins, but of other much less abundant proteins in the cell. To determine what subset of proteins is involved in the amelioration of this type of damage, a global proteome must be established prior to exercise5 and then followed subsequent to the exercise to determine the differential protein expression and thereby highlight candidate proteins in the adaptations to damage and its repair. Furthermore, most studies of skeletal muscle have been conducted on the male of the species and hence may not be representative of female muscle. In this article we present a method for extracting proteins reproducibly from male and female muscles, and separating them by two-dimensional gel electrophoresis followed by high resolution digital imaging6. This provides a protocol for spots (and subsequently identified proteins) that show a statistically significant (p < 0.05) two-fold increase or decrease, appear or disappear from the control state. These are then excised, digested with trypsin and separated by high-pressure liquid chromatography coupled to a mass spectrometer (LC/MS) for protein identification (LC/MS/MS)5. This methodology (Figure 1) can be used on many tissues with little to no modification (liver, brain, heart etc.). PMID:22215112

  18. Skeletal muscle gender dimorphism from proteomics.

    PubMed

    Dimova, Kalina; Metskas, Lauren Ann; Kulp, Mohini; Scordilis, Stylianos P

    2011-01-01

    Gross contraction in skeletal muscle is primarily determined by a relatively small number of contractile proteins, however this tissue is also remarkably adaptable to environmental factors such as hypertrophy by resistance exercise and atrophy by disuse. It thereby exhibits remodeling and adaptations to stressors (heat, ischemia, heavy metals, etc.). Damage can occur to muscle by a muscle exerting force while lengthening, the so-called eccentric contraction. The contractile proteins can be damaged in such exertions and need to be repaired, degraded and/or resynthesized; these functions are not part of the contractile proteins, but of other much less abundant proteins in the cell. To determine what subset of proteins is involved in the amelioration of this type of damage, a global proteome must be established prior to exercise and then followed subsequent to the exercise to determine the differential protein expression and thereby highlight candidate proteins in the adaptations to damage and its repair. Furthermore, most studies of skeletal muscle have been conducted on the male of the species and hence may not be representative of female muscle. In this article we present a method for extracting proteins reproducibly from male and female muscles, and separating them by two-dimensional gel electrophoresis followed by high resolution digital imaging. This provides a protocol for spots (and subsequently identified proteins) that show a statistically significant (p < 0.05) two-fold increase or decrease, appear or disappear from the control state. These are then excised, digested with trypsin and separated by high-pressure liquid chromatography coupled to a mass spectrometer (LC/MS) for protein identification (LC/MS/MS). This methodology (Figure 1) can be used on many tissues with little to no modification (liver, brain, heart etc.). PMID:22215112

  19. REACTIVE OXYGEN SPECIES: IMPACT ON SKELETAL MUSCLE

    PubMed Central

    Powers, Scott K.; Ji, Li Li; Kavazis, Andreas N.; Jackson, Malcolm J.

    2014-01-01

    It is well established that contracting muscles produce both reactive oxygen and nitrogen species. Although the sources of oxidant production during exercise continue to be debated, growing evidence suggests that mitochondria are not the dominant source. Regardless of the sources of oxidants in contracting muscles, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Further, oxidants regulate numerous cell signaling pathways and modulate the expression of many genes. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species result in contractile dysfunction and fatigue. Ongoing research continues to explore the redox-sensitive targets in muscle that are responsible for both redox-regulation of muscle adaptation and oxidant-mediated muscle fatigue. PMID:23737208

  20. Highly extensible skeletal muscle in snakes.

    PubMed

    Close, Matthew; Perni, Stefano; Franzini-Armstrong, Clara; Cundall, David

    2014-07-15

    Many snakes swallow large prey whole, and this process requires large displacements of the unfused tips of the mandibles and passive stretching of the soft tissues connecting them. Under these conditions, the intermandibular muscles are highly stretched but subsequently recover normal function. In the highly stretched condition we observed in snakes, sarcomere length (SL) increased 210% its resting value (SL0), and actin and myosin filaments no longer overlapped. Myofibrils fell out of register and triad alignment was disrupted. Following passive recovery, SLs returned to 82% SL0, creating a region of double-overlapping actin filaments. Recovery required recoil of intracellular titin filaments, elastic cytoskeletal components for realigning myofibrils, and muscle activation. Stretch of whole muscles exceeded that of sarcomeres as a result of extension of folded terminal tendon fibrils, stretching of extracellular elastin and independent slippage of muscle fibers. Snake intermandibular muscles thus provide a unique model of how basic components of vertebrate skeletal muscle can be modified to permit extreme extensibility.

  1. Glucocorticoid-induced skeletal muscle atrophy.

    PubMed

    Schakman, O; Kalista, S; Barbé, C; Loumaye, A; Thissen, J P

    2013-10-01

    Many pathological states characterized by muscle atrophy (e.g., sepsis, cachexia, starvation, metabolic acidosis and severe insulinopenia) are associated with an increase in circulating glucocorticoids (GC) levels, suggesting that GC could trigger the muscle atrophy observed in these conditions. GC-induced muscle atrophy is characterized by fast-twitch, glycolytic muscles atrophy illustrated by decreased fiber cross-sectional area and reduced myofibrillar protein content. GC-induced muscle atrophy results from increased protein breakdown and decreased protein synthesis. Increased muscle proteolysis, in particular through the activation of the ubiquitin proteasome and the lysosomal systems, is considered to play a major role in the catabolic action of GC. The stimulation by GC of these two proteolytic systems is mediated through the increased expression of several Atrogenes ("genes involved in atrophy"), such as FOXO, Atrogin-1, and MuRF-1. The inhibitory effect of GC on muscle protein synthesis is thought to result mainly from the inhibition of the mTOR/S6 kinase 1 pathway. These changes in muscle protein turnover could be explained by changes in the muscle production of two growth factors, namely Insulin-like Growth Factor (IGF)-I, a muscle anabolic growth factor and Myostatin, a muscle catabolic growth factor. This review will discuss the recent progress made in the understanding of the mechanisms involved in GC-induced muscle atrophy and consider the implications of these advancements in the development of new therapeutic approaches for treating GC-induced myopathy. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.

  2. Primary sacrococcygeal chordoma with unusual skeletal muscle metastasis

    PubMed Central

    Vu, Lisa; Haygood, Tamara Miner

    2015-01-01

    Chordomas are rare neoplasms that do not often metastasize. Of the small percent that do metastasize, they very infrequently involve skeletal muscle. Only a few cases of skeletal muscle metastases have been reported in the literature. We report an unusual case of a patient with a primary sacrococcygeal chordoma who experienced a long period of remission but who subsequently developed recurrence and multiple metastatic lesions to skeletal muscles including the deltoid, triceps, and pectineus. PMID:27190554

  3. Effects of regular exercise training on skeletal muscle contractile function

    NASA Technical Reports Server (NTRS)

    Fitts, Robert H.

    2003-01-01

    Skeletal muscle function is critical to movement and one's ability to perform daily tasks, such as eating and walking. One objective of this article is to review the contractile properties of fast and slow skeletal muscle and single fibers, with particular emphasis on the cellular events that control or rate limit the important mechanical properties. Another important goal of this article is to present the current understanding of how the contractile properties of limb skeletal muscle adapt to programs of regular exercise.

  4. Effects of intensive dietary treatment on insulin-stimulated skeletal muscle glycogen synthase activation and insulin secretion in newly presenting type 2 diabetic patients.

    PubMed

    Johnson, A B; Argyraki, M; Thow, J C; Broughton, D; Jones, I R; Taylor, R

    1990-06-01

    Ten newly presenting, untreated, Europid Type 2 diabetic patients were studied before and after 8 weeks treatment with intensive diet alone. Nine normal control subjects were also studied. The degree of activation of skeletal muscle glycogen synthase (GS) was used as an intracellular marker of insulin action, prior to and during a 240-min insulin infusion (100 mU kg-1 h-1). Fasting blood glucose decreased from 12.1 +/- 0.9 (+/- SE) to 9.2 +/- 0.8 mmol l-1 (p less than 0.01), but there was no change in fasting insulin concentrations, 9.9 +/- 2.3 vs 9.3 +/- 2.1 mU l-1. Fractional GS activity did not increase in the Type 2 diabetic patients during the insulin infusion either at presentation (change -1.5 +/- 1.9%) or after treatment (change +0.9 +/- 1.8%), and was markedly decreased compared with the control subjects (change +14.5 +/- 2.8%, both p less than 0.001). Glucose requirement during the clamp was decreased in the Type 2 diabetic patients at presentation (2.2 +/- 0.7 vs 7.3 +/- 0.6 mg kg-1 min-1, p less than 0.001), and despite improvement following dietary treatment to 3.3 +/- 0.6 mg kg-1 min-1 (p less than 0.01) remained lower than in the control subjects (p less than 0.001). Fasting plasma non-esterified fatty acid (NEFA) concentrations were elevated at presentation (p less than 0.05), and failed to suppress normally during the insulin infusion. After treatment fasting NEFA concentrations decreased (p less than 0.05) and suppressed normally (p less than 0.05). Insulin secretion was assessed following an intravenous bolus of glucose (0.5 g kg-1) at euglycaemia before and after treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Circadian rhythms, the molecular clock, and skeletal muscle.

    PubMed

    Harfmann, Brianna D; Schroder, Elizabeth A; Esser, Karyn A

    2015-04-01

    Circadian rhythms are the approximate 24-h biological cycles that function to prepare an organism for daily environmental changes. They are driven by the molecular clock, a transcriptional:translational feedback mechanism that in mammals involves the core clock genes Bmal1, Clock, Per1/2, and Cry1/2. The molecular clock is present in virtually all cells of an organism. The central clock in the suprachiasmatic nucleus (SCN) has been well studied, but the clocks in the peripheral tissues, such as heart and skeletal muscle, have just begun to be investigated. Skeletal muscle is one of the largest organs in the body, comprising approximately 45% of total body mass. More than 2300 genes in skeletal muscle are expressed in a circadian pattern, and these genes participate in a wide range of functions, including myogenesis, transcription, and metabolism. The circadian rhythms of skeletal muscle can be entrained both indirectly through light input to the SCN and directly through time of feeding and activity. It is critical for the skeletal muscle molecular clock not only to be entrained to the environment but also to be in synchrony with rhythms of other tissues. When circadian rhythms are disrupted, the observed effects on skeletal muscle include fiber-type shifts, altered sarcomeric structure, reduced mitochondrial respiration, and impaired muscle function. Furthermore, there are detrimental effects on metabolic health, including impaired glucose tolerance and insulin sensitivity, which skeletal muscle likely contributes to considering it is a key metabolic tissue. These data indicate a critical role for skeletal muscle circadian rhythms for both muscle and systems health. Future research is needed to determine the mechanisms of molecular clock function in skeletal muscle, identify the means by which skeletal muscle entrainment occurs, and provide a stringent comparison of circadian gene expression across the diverse tissue system of skeletal muscle. PMID:25512305

  6. Circadian Rhythms, the Molecular Clock, and Skeletal Muscle

    PubMed Central

    Harfmann, Brianna D.; Schroder, Elizabeth A.; Esser, Karyn A.

    2015-01-01

    Circadian rhythms are the approximate 24-h biological cycles that function to prepare an organism for daily environmental changes. They are driven by the molecular clock, a transcriptional:translational feedback mechanism that in mammals involves the core clock genes Bmal1, Clock, Per1/2, and Cry1/2. The molecular clock is present in virtually all cells of an organism. The central clock in the suprachiasmatic nucleus (SCN) has been well studied, but the clocks in the peripheral tissues, such as heart and skeletal muscle, have just begun to be investigated. Skeletal muscle is one of the largest organs in the body, comprising approximately 45% of total body mass. More than 2300 genes in skeletal muscle are expressed in a circadian pattern, and these genes participate in a wide range of functions, including myogenesis, transcription, and metabolism. The circadian rhythms of skeletal muscle can be entrained both indirectly through light input to the SCN and directly through time of feeding and activity. It is critical for the skeletal muscle molecular clock not only to be entrained to the environment but also to be in synchrony with rhythms of other tissues. When circadian rhythms are disrupted, the observed effects on skeletal muscle include fiber-type shifts, altered sarcomeric structure, reduced mitochondrial respiration, and impaired muscle function. Furthermore, there are detrimental effects on metabolic health, including impaired glucose tolerance and insulin sensitivity, which skeletal muscle likely contributes to considering it is a key metabolic tissue. These data indicate a critical role for skeletal muscle circadian rhythms for both muscle and systems health. Future research is needed to determine the mechanisms of molecular clock function in skeletal muscle, identify the means by which skeletal muscle entrainment occurs, and provide a stringent comparison of circadian gene expression across the diverse tissue system of skeletal muscle. PMID:25512305

  7. Circadian rhythms, the molecular clock, and skeletal muscle.

    PubMed

    Harfmann, Brianna D; Schroder, Elizabeth A; Esser, Karyn A

    2015-04-01

    Circadian rhythms are the approximate 24-h biological cycles that function to prepare an organism for daily environmental changes. They are driven by the molecular clock, a transcriptional:translational feedback mechanism that in mammals involves the core clock genes Bmal1, Clock, Per1/2, and Cry1/2. The molecular clock is present in virtually all cells of an organism. The central clock in the suprachiasmatic nucleus (SCN) has been well studied, but the clocks in the peripheral tissues, such as heart and skeletal muscle, have just begun to be investigated. Skeletal muscle is one of the largest organs in the body, comprising approximately 45% of total body mass. More than 2300 genes in skeletal muscle are expressed in a circadian pattern, and these genes participate in a wide range of functions, including myogenesis, transcription, and metabolism. The circadian rhythms of skeletal muscle can be entrained both indirectly through light input to the SCN and directly through time of feeding and activity. It is critical for the skeletal muscle molecular clock not only to be entrained to the environment but also to be in synchrony with rhythms of other tissues. When circadian rhythms are disrupted, the observed effects on skeletal muscle include fiber-type shifts, altered sarcomeric structure, reduced mitochondrial respiration, and impaired muscle function. Furthermore, there are detrimental effects on metabolic health, including impaired glucose tolerance and insulin sensitivity, which skeletal muscle likely contributes to considering it is a key metabolic tissue. These data indicate a critical role for skeletal muscle circadian rhythms for both muscle and systems health. Future research is needed to determine the mechanisms of molecular clock function in skeletal muscle, identify the means by which skeletal muscle entrainment occurs, and provide a stringent comparison of circadian gene expression across the diverse tissue system of skeletal muscle.

  8. Endurance training increases the efficiency of rat skeletal muscle mitochondria.

    PubMed

    Zoladz, Jerzy A; Koziel, Agnieszka; Woyda-Ploszczyca, Andrzej; Celichowski, Jan; Jarmuszkiewicz, Wieslawa

    2016-10-01

    Endurance training enhances mitochondrial oxidative capacity, but its effect on mitochondria functioning is poorly understood. In the present study, the influence of an 8-week endurance training on the bioenergetic functioning of rat skeletal muscle mitochondria under different assay temperatures (25, 35, and 42 °C) was investigated. The study was performed on 24 adult 4-month-old male Wistar rats, which were randomly assigned to either a treadmill training group (n = 12) or a sedentary control group (n = 12). In skeletal muscles, endurance training stimulated mitochondrial biogenesis and oxidative capacity. In isolated mitochondria, endurance training increased the phosphorylation rate and elevated levels of coenzyme Q. Moreover, a decrease in mitochondrial uncoupling, including uncoupling protein-mediated proton leak, was observed after training, which could explain the increased reactive oxygen species production (in nonphosphorylating mitochondria) and enhanced oxidative phosphorylation efficiency. At all studied temperatures, endurance training significantly augmented H2O2 production (and coenzyme Q reduction level) in nonphosphorylating mitochondria and decreased H2O2 production (and coenzyme Q reduction level) in phosphorylating mitochondria. Endurance training magnified the hyperthermia-induced increase in oxidative capacity and attenuated the hyperthermia-induced decline in oxidative phosphorylation efficiency and reactive oxygen species formation of nonphosphorylating mitochondria via proton leak enhancement. Thus, endurance training induces both quantitative and qualitative changes in muscle mitochondria that are important for cell signaling as well as for maintaining muscle energy homeostasis, especially at high temperatures. PMID:27568192

  9. Modeling of the Skeletal Muscle Microcirculation

    NASA Astrophysics Data System (ADS)

    Jacobitz, Frank; Beth, Christophe; Salado, Jerome

    2004-11-01

    Numerical simulations of blood flow in a microvascular network require extensive modeling. This contribution focuses on the reconstruction of a complete network topology from microscopic images of rat skeletal muscle and skeletal muscle fascia. The bifurcating network is composed of a feeding arterial network, a collecting venous network, and bundles of capillaries. Multiple topologies of each network component are recontructed and statistical properties of the network, such as distributions of vessel diameters, vessel lengths, and branching patters are determined. Particular attention has been paid to venous vessel loops that are observed only in the muscle fascia. The flow in the microvessel network is then computed. In the simulations, the microvessels are distensible by pressure, and the arterioles are actively contractile. The blood has non-Newtonian apparent viscosity. Models of each of these properties have previously been determined and are used in the computations. The method of indefinite admittances is used to compute the flow in the network. The apparent viscosity is computed from the local hematocrit, which is found using a combination of breadth first search and Dykstra's algorithms. The computations allow the determination of additional properties of the network, such as flow velocities, shear stresses, and hematocrit.

  10. Molecular mechanisms responsible for alcohol-induced myopathy in skeletal muscle and heart.

    PubMed

    Lang, Charles H; Frost, Robert A; Summer, Andrew D; Vary, Thomas C

    2005-10-01

    Chronic alcohol abuse has the potential to modulate striated muscle physiology and function. The skeletal muscle alcoholic myopathy is characterized by muscle weakness and difficulties in gait and locomotion, while chronic alcohol consumption ultimately leads to a decrease in cardiac contractility and output. In both tissues a loss of protein mass results in part from a decreased protein synthesis that initially manifests as a defect in translational efficiency. This review focuses on recent developments in understanding the cellular and molecular mechanisms by which alcohol impairs mRNA translation in skeletal and cardiac muscle, including identification of the signaling pathways and biochemical sites negatively impacted. Defective signaling potentially results from resistance to the normal stimulating effects of anabolic hormones (insulin and insulin-like growth factor-I) and nutrients (leucine) as well as increased production of several negative regulators of muscle mass. Overall, the biochemical mechanisms contributing to the pathogenesis of loss of skeletal and cardiac muscle are reviewed.

  11. Effect of vitamin D on skeletal muscle.

    PubMed

    Walrand, Stéphane

    2016-06-01

    Beyond its traditional biological roles on bone health, extra-skeletal effects of vitamin D are currently under extensive research. The expression of the vitamin D receptor in most tissues has also strengthened the argument for its multiple functions. Among these, the effect of vitamin D on the mass and muscle performance has long been discussed. In ancient Greece, Herodotus recommended the sun as a cure for the "weak and soft muscles" and former Olympians exposed to sunlight to improve their physical performance. In 1952, Dr Spellerberg, a sports physiologist, has conducted an extensive study on the effects of UV irradiation on the performance of elite athletes. Following the significant results of this investigation, the scientist has informed the Olympic Committee that UV irradiation had a "persuasive" effect on physical performance and motor skills. These data are consistent with many subsequent studies reporting an improvement in physical activity, speed and endurance in young subjects treated with UV or with supplements containing vitamin D. Additional observation indicates a significant effect on muscle strength, particularly in the lower limbs. Concerning the mechanisms involved, some recent fundamental studies have shown that vitamin D exerts some molecular effects within the muscle cell. Specifically, a regulatory effect of vitamin D on calcium flux, mineral homeostasis and signaling pathways controlling protein anabolism has been reported in muscle tissue. Several epidemiological studies show that low vitamin D status is always associated with a decrease in muscle mass, strength and contractile capacity in older people. Vitamin D deficiency accelerates muscle loss with age (sarcopenia), and therefore leads to a reduction in physical capacity and to an increased risk of falls and fractures. In contrast, an additional intake of vitamin D in older people significantly improves muscle function and physical performance. PMID:27100224

  12. Skeletal Muscle Function during Exercise—Fine-Tuning of Diverse Subsystems by Nitric Oxide

    PubMed Central

    Suhr, Frank; Gehlert, Sebastian; Grau, Marijke; Bloch, Wilhelm

    2013-01-01

    Skeletal muscle is responsible for altered acute and chronic workload as induced by exercise. Skeletal muscle adaptations range from immediate change of contractility to structural adaptation to adjust the demanded performance capacities. These processes are regulated by mechanically and metabolically induced signaling pathways, which are more or less involved in all of these regulations. Nitric oxide is one of the central signaling molecules involved in functional and structural adaption in different cell types. It is mainly produced by nitric oxide synthases (NOS) and by non-enzymatic pathways also in skeletal muscle. The relevance of a NOS-dependent NO signaling in skeletal muscle is underlined by the differential subcellular expression of NOS1, NOS2, and NOS3, and the alteration of NO production provoked by changes of workload. In skeletal muscle, a variety of highly relevant tasks to maintain skeletal muscle integrity and proper signaling mechanisms during adaptation processes towards mechanical and metabolic stimulations are taken over by NO signaling. The NO signaling can be mediated by cGMP-dependent and -independent signaling, such as S-nitrosylation-dependent modulation of effector molecules involved in contractile and metabolic adaptation to exercise. In this review, we describe the most recent findings of NO signaling in skeletal muscle with a special emphasis on exercise conditions. However, to gain a more detailed understanding of the complex role of NO signaling for functional adaptation of skeletal muscle (during exercise), additional sophisticated studies are needed to provide deeper insights into NO-mediated signaling and the role of non-enzymatic-derived NO in skeletal muscle physiology. PMID:23538841

  13. Skeletal muscle responses to unloading in humans

    NASA Technical Reports Server (NTRS)

    Dudley, G.; Tesch, P.; Hather, B.; Adams, G.; Buchanan, P.

    1992-01-01

    This study examined the effects of unloading on skeletal muscle structure. Method: Eight subjects walked on crutches for six weeks with a 110 cm elevated sole on the right shoe. This removed weight bearing by the left lower limb. Magnetic resonance imaging of both lower limbs and biopsies of the left m. vastus laterallis (VL) were used to study muscle structure. Results: Unloading decreased (P less than 0.05) muscle cross-sectional areas (CSA) of the knee extensors 16 percent. The knee flexors showed about 1/2 of this response (-7 percent, P less than 0.05). The three vasti muscles each showed decreases (P less than 0.05) of about 15 percent. M. rectus femoris did not change. Mean fiber CSA in VL decreased (P less than 0.05) 14 percent with type 2 and type 1 fibers showing reductions of 15 and 11 percent respectively. The ankle extensors showed a 20 percent decrease (P less than 0.05) in CSA. The reduction for the 'fast' m. gastrocnemius was 27 percent compared to the 18 percent decrease for the 'slow' soleus. Summary: The results suggest that decreases in muscle CSA are determined by the relative change in impact loading history because atrophy was (1) greater in extensor than flexor muscles, (2) at least as great in fast as compared to slow muscles or fibers, and (3) not dependent on single or multi-joint function. They also suggest that the atrophic responses to unloading reported for lower mammals are quantitatively but not qualitatively similar to those of humans.

  14. Myogenic Growth Factor Present in Skeletal Muscle is Purified by Heparin-Affinity Chromatography

    NASA Astrophysics Data System (ADS)

    Kardami, Elissavet; Spector, Dennis; Strohman, Richard C.

    1985-12-01

    A myogenic growth factor has been purified from a skeletal muscle, the anterior latissimus dorsi, of adult chickens. In the range of 1-10 ng, this factor stimulates DNA synthesis as well as protein and muscle-specific myosin accumulation in myogenic cell cultures. Purification is achieved through binding of the factor to heparin. The factor is distinct from transferrin and works synergistically with transferrin in stimulating myogenesis in vitro.

  15. Structure-function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    NASA Astrophysics Data System (ADS)

    Gao, Yingxin; Zhang, Chi

    2015-03-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure-function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure-function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure-function relationship of skeletal muscle into the design of artificial muscle.

  16. Three-dimensionally printed biological machines powered by skeletal muscle

    PubMed Central

    Cvetkovic, Caroline; Raman, Ritu; Chan, Vincent; Williams, Brian J.; Tolish, Madeline; Bajaj, Piyush; Sakar, Mahmut Selman; Asada, H. Harry; Saif, M. Taher A.; Bashir, Rashid

    2014-01-01

    Combining biological components, such as cells and tissues, with soft robotics can enable the fabrication of biological machines with the ability to sense, process signals, and produce force. An intuitive demonstration of a biological machine is one that can produce motion in response to controllable external signaling. Whereas cardiac cell-driven biological actuators have been demonstrated, the requirements of these machines to respond to stimuli and exhibit controlled movement merit the use of skeletal muscle, the primary generator of actuation in animals, as a contractile power source. Here, we report the development of 3D printed hydrogel “bio-bots” with an asymmetric physical design and powered by the actuation of an engineered mammalian skeletal muscle strip to result in net locomotion of the bio-bot. Geometric design and material properties of the hydrogel bio-bots were optimized using stereolithographic 3D printing, and the effect of collagen I and fibrin extracellular matrix proteins and insulin-like growth factor 1 on the force production of engineered skeletal muscle was characterized. Electrical stimulation triggered contraction of cells in the muscle strip and net locomotion of the bio-bot with a maximum velocity of ∼156 μm s−1, which is over 1.5 body lengths per min. Modeling and simulation were used to understand both the effect of different design parameters on the bio-bot and the mechanism of motion. This demonstration advances the goal of realizing forward-engineered integrated cellular machines and systems, which can have a myriad array of applications in drug screening, programmable tissue engineering, drug delivery, and biomimetic machine design. PMID:24982152

  17. Differential gene expression in skeletal muscle cells after membrane depolarization.

    PubMed

    Juretić, Nevenka; Urzúa, Ulises; Munroe, David J; Jaimovich, Enrique; Riveros, Nora

    2007-03-01

    Skeletal muscle is a highly plastic tissue with a remarkable capacity to adapt itself to challenges imposed by contractile activity. Adaptive response, that include hypertrophy and activation of oxidative mechanisms have been associated with transient changes in transcriptional activity of specific genes. To define the set of genes regulated by a depolarizing stimulus, we used 22 K mouse oligonucleotide microarrays. Total RNA from C2C12 myotubes was obtained at 2, 4, 18, and 24 h after high K+ stimulation. cDNA from control and depolarized samples was labeled with cyanine 3 or 5 dyes prior to microarray hybridization. Loess normalization followed by statistical analysis resulted in 423 differentially expressed genes using an unadjusted P-value < or = 0.01 as cut off. Depolarization affects transcriptional activity of a limited number of genes, mainly associated with metabolism, cell communication and response to stress. A number of genes related to Ca2+ signaling pathways are induced at 4 h, reinforcing the potential role of Ca2+ in early steps of signal transduction that leads to gene expression. Significant changes in the expression of molecules involved in muscle cell structure were observed; K+-depolarization increased Tnni1 and Acta1 mRNA levels in both differentiated C2C12 and rat skeletal muscle cells in primary culture. Of these two, depolarization induced slow Ca2+ transients appear to have a role only in the regulation of Tnni1 transcriptional activity. We suggest that depolarization induced expression of a small set of genes may underlie Ca2+ dependent plasticity of skeletal muscle cells. PMID:17146758

  18. Satellite cell proliferation in adult skeletal muscle

    NASA Technical Reports Server (NTRS)

    Booth, Frank W. (Inventor); Thomason, Donald B. (Inventor); Morrison, Paul R. (Inventor); Stancel, George M. (Inventor)

    1995-01-01

    Novel methods of retroviral-mediated gene transfer for the in vivo corporation and stable expression of eukaryotic or prokaryotic foreign genes in tissues of living animals is described. More specifically, methods of incorporating foreign genes into mitotically active cells are disclosed. The constitutive and stable expression of E. coli .beta.-galactosidase gene under the promoter control of the Moloney murine leukemia virus long terminal repeat is employed as a particularly preferred embodiment, by way of example, establishes the model upon which the incorporation of a foreign gene into a mitotically-active living eukaryotic tissue is based. Use of the described methods in therapeutic treatments for genetic diseases, such as those muscular degenerative diseases, is also presented. In muscle tissue, the described processes result in genetically-altered satellite cells which proliferate daughter myoblasts which preferentially fuse to form a single undamaged muscle fiber replacing damaged muscle tissue in a treated animal. The retroviral vector, by way of example, includes a dystrophin gene construct for use in treating muscular dystrophy. The present invention also comprises an experimental model utilizable in the study of the physiological regulation of skeletal muscle gene expression in intact animals.

  19. Effects of ethanol on rat heart and skeletal muscles

    SciTech Connect

    Pagala, M.; Ravindran, K.; Namba, T.; Grob, D. State Univ. of New York, Brooklyn )

    1991-03-11

    Chronic alcoholism causes myopathy of both cardiac and skeletal muscles. In order to evaluate acute effects, the authors infused ethanol intravenously in anesthetized rats, and, 10 min later, monitored the electrocardiogram, and the compound action potential and isometric tension of the anterior tibialis evoked by sciatic nerve stimulation. Ethanol at 0.1, 0.2 and 0.5 g/kg decreased the heart rate by 12%, 22% and 69%, increased the P-R interval by 5%, 25%, and 116%, and reduced the QRS amplitude by 1% , 2% and 10%, respectively. Within 5 min after infusing 0.5 g/kg ethanol, breathing was stopped. Ethanol increased the amplitude of the compound action potential and tension of the anterior tibialis by 25% at 0.1 and 0.2 g/kg, while it decreased the compound action potential by 5% and tension by 35% at 0.5 g/kg. At this dose, ethanol caused 70% decrement in amplitude of the compound action potentials and 50% fade of tetanic tensions evoked by a train of nerve stimulations at 100 Hz for 0.5 sec. When ethanol was injected intraperitoneally, about 10 times greater doses were required to produce effects equivalent to intravenous administration. These results indicate that ethanol reduces cardiac output dose-dependently, and potentiates skeletal muscle function at subintoxication doses and reduces it at higher doses.

  20. Taurine transporter knockout depletes muscle taurine levels and results in severe skeletal muscle impairment but leaves cardiac function uncompromised.

    PubMed

    Warskulat, Ulrich; Flögel, Ulrich; Jacoby, Christoph; Hartwig, Hans-Georg; Thewissen, Michael; Merx, Marc W; Molojavyi, Andrej; Heller-Stilb, Birgit; Schrader, Jürgen; Häussinger, Dieter

    2004-03-01

    Taurine is the most abundant free amino acid in heart and skeletal muscle. In the present study, the effects of hereditary taurine deficiency on muscle function were examined in taurine transporter knockout (taut-/-) mice. These mice show an almost complete depletion of heart and skeletal muscle taurine levels. Treadmill experiments demonstrated that total exercise capacity of taut-/- mice was reduced by >80% compared with wild-type controls. The decreased performance of taut-/- mice correlated with increased lactate levels in serum during exercise. Surprisingly, cardiac function of taut-/- mice as assessed by magnetic resonance imaging, echocardiography, and isolated heart studies showed a largely normal phenotype under both control and stimulated conditions. However, analysis of taut-/- skeletal muscle revealed electromyographic abnormalities. (1)H nuclear magnetic resonance spectroscopy of tissue extracts showed that in the heart of taut-/- mice the lack of taurine was compensated by the up-regulation of various organic solutes. In contrast, a deficit of >10 mM in total organic osmolyte concentration was found in skeletal muscle. The present study identifies taurine transport as a crucial factor for the maintenance of skeletal muscle function and total exercise capacity, while cardiac muscle apparently can compensate for the loss of taurine. PMID:14734644

  1. Taurine transporter knockout depletes muscle taurine levels and results in severe skeletal muscle impairment but leaves cardiac function uncompromised.

    PubMed

    Warskulat, Ulrich; Flögel, Ulrich; Jacoby, Christoph; Hartwig, Hans-Georg; Thewissen, Michael; Merx, Marc W; Molojavyi, Andrej; Heller-Stilb, Birgit; Schrader, Jürgen; Häussinger, Dieter

    2004-03-01

    Taurine is the most abundant free amino acid in heart and skeletal muscle. In the present study, the effects of hereditary taurine deficiency on muscle function were examined in taurine transporter knockout (taut-/-) mice. These mice show an almost complete depletion of heart and skeletal muscle taurine levels. Treadmill experiments demonstrated that total exercise capacity of taut-/- mice was reduced by >80% compared with wild-type controls. The decreased performance of taut-/- mice correlated with increased lactate levels in serum during exercise. Surprisingly, cardiac function of taut-/- mice as assessed by magnetic resonance imaging, echocardiography, and isolated heart studies showed a largely normal phenotype under both control and stimulated conditions. However, analysis of taut-/- skeletal muscle revealed electromyographic abnormalities. (1)H nuclear magnetic resonance spectroscopy of tissue extracts showed that in the heart of taut-/- mice the lack of taurine was compensated by the up-regulation of various organic solutes. In contrast, a deficit of >10 mM in total organic osmolyte concentration was found in skeletal muscle. The present study identifies taurine transport as a crucial factor for the maintenance of skeletal muscle function and total exercise capacity, while cardiac muscle apparently can compensate for the loss of taurine.

  2. Insulin action in denervated skeletal muscle

    SciTech Connect

    Smith, R.L.

    1987-01-01

    The goal of this study was to determine the mechanisms responsible for reduced insulin response in denervated muscle. Denervation for 3 days of rat muscles consisting of very different compositions of fiber types decreased insulin stimulated (U-/sup 14/C)glucose incorporation into glycogen by 80%. Associated with the reduction in glycogen synthesis was a decreased activation of glycogen synthase. Denervation of hemidiaphragms for 1 day decreased both the basal and insulin stimulated activity ratios of glycogen synthase and the rate of insulin stimulated (U-/sup 14/C(glucose incorporation into glycogen by 50%. Insulin stimulation of 2-deoxy(/sup 3/H)glucose uptake was not decreased until 3 days after denervation. Consistent with the effects on glucose transport,insulin did not increase the intracellular concentration of glucose-6-P in muscles 3 days after denervation. Furthermore, since the Ka for glucose-6-P activation of glycogen synthase was not decreased by insulin in denervated hemidiaphragms, the effects of denervation on glycogen synthase and glucose transport were synergistic resulting in the 80% decrease in glycogen synthesis rates.

  3. Skeletal muscle stem cells from animals I. Basic cell biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Skeletal muscle stem cells from food-producing animals have been of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding...

  4. Time-dependent behavior of passive skeletal muscle

    NASA Astrophysics Data System (ADS)

    Ahamed, T.; Rubin, M. B.; Trimmer, B. A.; Dorfmann, L.

    2016-03-01

    An isotropic three-dimensional nonlinear viscoelastic model is developed to simulate the time-dependent behavior of passive skeletal muscle. The development of the model is stimulated by experimental data that characterize the response during simple uniaxial stress cyclic loading and unloading. Of particular interest is the rate-dependent response, the recovery of muscle properties from the preconditioned to the unconditioned state and stress relaxation at constant stretch during loading and unloading. The model considers the material to be a composite of a nonlinear hyperelastic component in parallel with a nonlinear dissipative component. The strain energy and the corresponding stress measures are separated additively into hyperelastic and dissipative parts. In contrast to standard nonlinear inelastic models, here the dissipative component is modeled using an evolution equation that combines rate-independent and rate-dependent responses smoothly with no finite elastic range. Large deformation evolution equations for the distortional deformations in the elastic and in the dissipative component are presented. A robust, strongly objective numerical integration algorithm is used to model rate-dependent and rate-independent inelastic responses. The constitutive formulation is specialized to simulate the experimental data. The nonlinear viscoelastic model accurately represents the time-dependent passive response of skeletal muscle.

  5. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman W.

    1987-01-01

    New muscle tissue culture techniques were developed to grow embryonic skeletal myofibers which are able to differentiate into more adultlike myofibers. Studies on mechanical simulation of cultured muscle cell growth will now be more directly applicable to mechanically-induced growth in adult muscle, and lead to better models for understanding muscle tissue atrophy caused by disuse in the microgravity of space.

  6. Slow myosin in developing rat skeletal muscle

    PubMed Central

    1987-01-01

    Through S1 nuclease mapping using a specific cDNA probe, we demonstrate that the slow myosin heavy-chain (MHC) gene, characteristic of adult soleus, is expressed in bulk hind limb muscle obtained from the 18-d rat fetus. We support these results by use of a monoclonal antibody (mAb) which is highly specific to the adult slow MHC. Immunoblots of MHC peptide maps show the same peptides, uniquely recognized by this antibody in adult soleus, are also identified in 18-d fetal limb muscle. Thus synthesis of slow myosin is an early event in skeletal myogenesis and is expressed concurrently with embryonic myosin. By immunofluorescence we demonstrate that in the 16-d fetus all primary myotubes in future fast and future slow muscles homogeneously express slow as well as embryonic myosin. Fiber heterogeneity arises owing to a developmentally regulated inhibition of slow MHC accumulation as muscles are progressively assembled from successive orders of cells. Assembly involves addition of new, superficial areas of the anterior tibial muscle (AT) and extensor digitorum longus muscle (EDL) in which primary cells initially stain weakly or are unstained with the slow mAb. In the developing AT and EDL, expression of slow myosin is unstable and is progressively restricted as these muscles specialize more and more towards the fast phenotype. Slow fibers persisting in deep portions of the adult EDL and AT are interpreted as vestiges of the original muscle primordium. A comparable inhibition of slow MHC accumulation occurs in the developing soleus but involves secondary, not primary, cells. Our results show that the fate of secondary cells is flexible and is spatially determined. By RIA we show that the relative proportions of slow MHC are fivefold greater in the soleus than in the EDL or AT at birth. After neonatal denervation, concentrations of slow MHC in the soleus rapidly decline, and we hypothesize that, in this muscle, the nerve protects and amplifies initial programs of slow MHC

  7. β2-Adrenergic stimulation enhances Ca2+ release and contractile properties of skeletal muscles, and counteracts exercise-induced reductions in Na+–K+-ATPase Vmax in trained men

    PubMed Central

    Hostrup, M; Kalsen, A; Ørtenblad, N; Juel, C; Mørch, K; Rzeppa, S; Karlsson, S; Backer, V; Bangsbo, J

    2014-01-01

    The aim of the present study was to examine the effect of β2-adrenergic stimulation on skeletal muscle contractile properties, sarcoplasmic reticulum (SR) rates of Ca2+ release and uptake, and Na+–K+-ATPase activity before and after fatiguing exercise in trained men. The study consisted of two experiments (EXP1, n = 10 males, EXP2, n = 20 males), where β2-adrenoceptor agonist (terbutaline) or placebo was randomly administered in double-blinded crossover designs. In EXP1, maximal voluntary isometric contraction (MVC) of m. quadriceps was measured, followed by exercise to fatigue at 120% of maximal oxygen uptake (). A muscle biopsy was taken after MVC (non-fatigue) and at time of fatigue. In EXP2, contractile properties of m. quadriceps were measured with electrical stimulations before (non-fatigue) and after two fatiguing 45 s sprints. Non-fatigued MVCs were 6 ± 3 and 6 ± 2% higher (P < 0.05) with terbutaline than placebo in EXP1 and EXP2, respectively. Furthermore, peak twitch force was 11 ± 7% higher (P < 0.01) with terbutaline than placebo at non-fatigue. After sprints, MVC declined (P < 0.05) to the same levels with terbutaline as placebo, whereas peak twitch force was lower (P < 0.05) and half-relaxation time was prolonged (P < 0.05) with terbutaline. Rates of SR Ca2+ release and uptake at 400 nm [Ca2+] were 15 ± 5 and 14 ± 5% (P < 0.05) higher, respectively, with terbutaline than placebo at non-fatigue, but declined (P < 0.05) to similar levels at time of fatigue. Na+–K+-ATPase activity was unaffected by terbutaline compared with placebo at non-fatigue, but terbutaline counteracted exercise-induced reductions in maximum rate of activity (Vmax) at time of fatigue. In conclusion, increased contractile force induced by β2-adrenergic stimulation is associated with enhanced rate of Ca2+ release in humans. While β2-adrenergic stimulation elicits positive inotropic and lusitropic effects on non-fatigued m. quadriceps, these effects are blunted when

  8. Measurement of calcium release due to inositol trisphosphate receptors in skeletal muscle.

    PubMed

    Casas, Mariana; Altamirano, Francisco; Jaimovich, Enrique

    2012-01-01

    Calcium transients elicited by IP(3) receptors upon electrical stimulation of skeletal muscle cells (slow calcium signals) are often hard to visualize due to their relatively small amplitude compared to the large transient originated from ryanodine receptors associated to excitation-contraction coupling. The study of slow calcium transients, however, is relevant due to their function in regulation of muscle gene expression and in the process of excitation-transcription coupling. Discussed here are the procedures used to record slow calcium signals from both cultured mouse myotubes and from cultured adult skeletal muscle fibers. PMID:22130849

  9. Omega-3 Fatty Acids and Skeletal Muscle Health

    PubMed Central

    Jeromson, Stewart; Gallagher, Iain J.; Galloway, Stuart D. R.; Hamilton, D. Lee

    2015-01-01

    Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle. PMID:26610527

  10. Omega-3 Fatty Acids and Skeletal Muscle Health.

    PubMed

    Jeromson, Stewart; Gallagher, Iain J; Galloway, Stuart D R; Hamilton, D Lee

    2015-11-01

    Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle. PMID:26610527

  11. Omega-3 Fatty Acids and Skeletal Muscle Health.

    PubMed

    Jeromson, Stewart; Gallagher, Iain J; Galloway, Stuart D R; Hamilton, D Lee

    2015-11-19

    Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle.

  12. Expression of somatostatin receptor genes and acetylcholine receptor development in rat skeletal muscle during postnatal development.

    PubMed

    Peng, M; Conforti, L; Millhorn, D E

    1998-05-01

    Our laboratory reported previously that somatostatin (SST) is transiently expressed in rat motoneurons during the first 14 days after birth. We investigated the possibility that the SST receptor (SSTR) is expressed in skeletal muscle. We found that two of the five subtypes of SSTR (SSTR3 and SSTR4) are expressed in skeletal muscle with a time course that correlates with the transient expression of SST in motoneurons. In addition, SSTR2A is expressed from birth to adulthood in skeletal muscle. Both SSTR2A and SSTR4 are also expressed in L6 cells, a skeletal muscle cell line. Somatostatin acting through its receptors has been shown to stimulate tyrosine phosphatase activity in a number of different tissues. We found that several proteins (50, 65, 90, 140, 180 and 200 kDa) exhibited a reduced degree of tyrosine phosphorylation following SST treatment. Inhibition of tyrosine phosphatase activity with sodium orthovanadate increased expression of the nicotinic acetyl-choline receptor (nAChR) epsilon subunit mRNA by three fold. Somatostatin reversed the elevated epsilon mRNA following orthovanadate treatment. These findings show that SSTR is expressed in skeletal muscle and that SST acting via the SSTR regulates tyrosine phosphorylation and expression of the epsilon subunit of the AChR in the rat skeletal muscle. PMID:9852305

  13. Expanding roles for AMPK in skeletal muscle plasticity.

    PubMed

    Mounier, Rémi; Théret, Marine; Lantier, Louise; Foretz, Marc; Viollet, Benoit

    2015-06-01

    Skeletal muscle possesses a remarkable plasticity and responds to environmental and physiological challenges by changing its phenotype in terms of size, composition, and metabolic properties. Muscle fibers rapidly adapt to drastic changes in energy demands during exercise through fine-tuning of the balance between catabolic and anabolic processes. One major sensor of energy demand in exercising muscle is AMP-activated protein kinase (AMPK). Recent advances have shed new light on the relevance of AMPK both as a multitask gatekeeper and as an energy regulator in skeletal muscle. Here we summarize recent findings on the function of AMPK in skeletal muscle adaptation to contraction and highlight its role in the regulation of energy metabolism and the control of skeletal muscle regeneration post-injury. PMID:25818360

  14. Label-free multimodal nonlinear optical microscopy reveals fundamental insights of skeletal muscle development.

    PubMed

    Sun, Qiqi; Li, Yanfeng; He, Sicong; Situ, Chenghao; Wu, Zhenguo; Qu, Jianan Y

    2013-12-10

    We developed a label-free nonlinear optical (NLO) microscope integrating the stimulated Raman scattering, multi-color two-photon excited fluorescence and second harmonic generation. The system produces multimodal images of protein content, mitochondria distribution and sarcomere structure of fresh muscle samples. With the advanced imaging technique, we studied the mal-development of skeletal muscle caused by sarcomeric gene deficiency. In addition, important development processes of normal muscle from neonatal to adult stage were also clearly revealed based on the changing sarcomere structure, mitochondria distribution and muscle fiber size. The results demonstrate that the newly developed multimodal NLO microscope is a powerful tool to assess the muscle integrity and function.

  15. Satellite Cell Heterogeneity in Skeletal Muscle Homeostasis.

    PubMed

    Tierney, Matthew T; Sacco, Alessandra

    2016-06-01

    The cellular turnover required for skeletal muscle maintenance and repair is mediated by resident stem cells, also termed satellite cells. Satellite cells normally reside in a quiescent state, intermittently entering the cell cycle to fuse with neighboring myofibers and replenish the stem cell pool. However, the mechanisms by which satellite cells maintain the precise balance between self-renewal and differentiation necessary for long-term homeostasis remain unclear. Recent work has supported a previously unappreciated heterogeneity in the satellite cell compartment that may underlie the observed variability in cell fate and function. In this review, we examine the work supporting this notion as well as the potential governing principles, developmental origins, and principal determinants of satellite cell heterogeneity.

  16. Compartmentalized ATP synthesis in skeletal muscle triads.

    PubMed

    Han, J W; Thieleczek, R; Varsányi, M; Heilmeyer, L M

    1992-01-21

    Isolated skeletal muscle triads contain a compartmentalized glycolytic reaction sequence catalyzed by aldolase, triosephosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate kinase. These enzymes express activity in the structure-associated state leading to synthesis of ATP in the triadic junction upon supply of glyceraldehyde 3-phosphate or fructose 1,6-bisphosphate. ATP formation occurs transiently and appears to be kinetically compartmentalized, i.e., the synthesized ATP is not in equilibrium with the bulk ATP. The apparent rate constants of the aldolase and the glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase reaction are significantly increased when fructose 1,6-bisphosphate instead of glyceraldehyde 3-phosphate is employed as substrate. The observations suggest that fructose 1,6-bisphosphate is especially effectively channelled into the junctional gap. The amplitude of the ATP transient is decreasing with increasing free [Ca2+] in the range of 1 nM to 30 microM. In the presence of fluoride, the ATP transient is significantly enhanced and its declining phase is substantially retarded. This observation suggests utilization of endogenously synthesized ATP in part by structure associated protein kinases and phosphatases which is confirmed by the detection of phosphorylated triadic proteins after gel electrophoresis and autoradiography. Endogenous protein kinases phosphorylate proteins of apparent Mr 450,000, 180,000, 160,000, 145,000, 135,000, 90,000, 54,000, 51,000, and 20,000, respectively. Some of these phosphorylated polypeptides are in the Mr range of known phosphoproteins involved in excitation-contraction coupling of skeletal muscle, which might give a first hint at the functional importance of the sequential glycolytic reactions compartmentalized in triads. PMID:1731894

  17. Tissue Triage and Freezing for Models of Skeletal Muscle Disease

    PubMed Central

    Meng, Hui; Janssen, Paul M.L.; Grange, Robert W.; Yang, Lin; Beggs, Alan H.; Swanson, Lindsay C.; Cossette, Stacy A.; Frase, Alison; Childers, Martin K.; Granzier, Henk; Gussoni, Emanuela; Lawlor, Michael W.

    2014-01-01

    Skeletal muscle is a unique tissue because of its structure and function, which requires specific protocols for tissue collection to obtain optimal results from functional, cellular, molecular, and pathological evaluations. Due to the subtlety of some pathological abnormalities seen in congenital muscle disorders and the potential for fixation to interfere with the recognition of these features, pathological evaluation of frozen muscle is preferable to fixed muscle when evaluating skeletal muscle for congenital muscle disease. Additionally, the potential to produce severe freezing artifacts in muscle requires specific precautions when freezing skeletal muscle for histological examination that are not commonly used when freezing other tissues. This manuscript describes a protocol for rapid freezing of skeletal muscle using isopentane (2-methylbutane) cooled with liquid nitrogen to preserve optimal skeletal muscle morphology. This procedure is also effective for freezing tissue intended for genetic or protein expression studies. Furthermore, we have integrated our freezing protocol into a broader procedure that also describes preferred methods for the short term triage of tissue for (1) single fiber functional studies and (2) myoblast cell culture, with a focus on the minimum effort necessary to collect tissue and transport it to specialized research or reference labs to complete these studies. Overall, this manuscript provides an outline of how fresh tissue can be effectively distributed for a variety of phenotypic studies and thereby provides standard operating procedures (SOPs) for pathological studies related to congenital muscle disease. PMID:25078247

  18. Gender Differences in Skeletal Muscle Substrate Metabolism – Molecular Mechanisms and Insulin Sensitivity

    PubMed Central

    Lundsgaard, Anne-Marie; Kiens, Bente

    2014-01-01

    It has become increasingly apparent that substrate metabolism is subject to gender-specific regulation, and the aim of this review is to outline the available evidence of molecular gender differences in glucose and lipid metabolism of skeletal muscle. Female sex has been suggested to have a favorable effect on glucose homeostasis, and the available evidence from hyperinsulinemic–euglycemic clamp studies is summarized to delineate whether there is a gender difference in whole-body insulin sensitivity and in particular insulin-stimulated glucose uptake of skeletal muscle. Whether an eventual higher insulin sensitivity of female skeletal muscle can be related to gender-specific regulation of molecular metabolism will be topic for discussion. Gender differences in muscle fiber type distribution and substrate availability to and in skeletal muscle are highly relevant for substrate metabolism in men and women. In particular, the molecular machinery for glucose and fatty acid oxidative and storage capacities in skeletal muscle and its implications for substrate utilization during metabolic situations of daily living are discussed, emphasizing their relevance for substrate choice in the fed and fasted state, and during periods of physical activity and recovery. Together, handling of carbohydrate and lipids and regulation of their utilization in skeletal muscle have implications for whole-body glucose homeostasis in men and women. 17-β estradiol is the most important female sex hormone, and the identification of estradiol receptors in skeletal muscle has opened for a role in regulation of substrate metabolism. Also, higher levels of circulating adipokines as adiponectin and leptin in women and their implications for muscle metabolism will be considered. PMID:25431568

  19. Citrulline malate supplementation increases muscle efficiency in rat skeletal muscle.

    PubMed

    Giannesini, Benoît; Le Fur, Yann; Cozzone, Patrick J; Verleye, Marc; Le Guern, Marie-Emmanuelle; Bendahan, David

    2011-09-30

    Citrulline malate (CM; CAS 54940-97-5, Stimol®) is known to limit the deleterious effect of asthenic state on muscle function, but its effect under healthy condition remains poorly documented. The aim of this longitudinal double-blind study was to investigate the effect of oral ingestion of CM on muscle mechanical performance and bioenergetics in normal rat. Gastrocnemius muscle function was investigated strictly non-invasively using nuclear magnetic resonance techniques. A standardized rest-stimulation- (5.7 min of repeated isometric contractions electrically induced by transcutaneous stimulation at a frequency of 3.3 Hz) recovery-protocol was performed twice, i.e., before (t(0)-24 h) and after (t(0)+48 h) CM (3 g/kg/day) or vehicle treatment. CM supplementation did not affect PCr/ATP ratio, [PCr], [Pi], [ATP] and intracellular pH at rest. During the stimulation period, it lead to a 23% enhancement of specific force production that was associated to significant decrease in both PCr (28%) and oxidative (32%) costs of contraction, but had no effect on the time-courses of phosphorylated compounds and intracellular pH. Furthermore, both the rate of PCr resynthesis during the post-stimulation period (VPCr(rec)) and the oxidative ATP synthesis capacity (Q(max)) remained unaffected by CM treatment. These data demonstrate that CM supplementation under healthy condition has an ergogenic effect associated to an improvement of muscular contraction efficiency. PMID:21664351

  20. Calprotectin is released from human skeletal muscle tissue during exercise

    PubMed Central

    Mortensen, Ole Hartvig; Andersen, Kasper; Fischer, Christian; Nielsen, Anders Rinnov; Nielsen, Søren; Åkerström, Thorbjörn; Aastrøm, Maj-brit; Borup, Rehannah; Pedersen, Bente Klarlund

    2008-01-01

    Skeletal muscle has been identified as a secretory organ. We hypothesized that IL-6, a cytokine secreted from skeletal muscle during exercise, could induce production of other secreted factors in skeletal muscle. IL-6 was infused for 3 h into healthy young males (n = 7) and muscle biopsies obtained at time points 0, 3 and 6 h in these individuals and in resting controls. Affymetrix microarray analysis of gene expression changes in skeletal muscle biopsies identified a small set of genes changed by IL-6 infusion. RT-PCR validation confirmed that S100A8 and S100A9 mRNA were up-regulated 3-fold in skeletal muscle following IL-6 infusion compared to controls. Furthermore, S100A8 and S100A9 mRNA levels were up-regulated 5-fold in human skeletal muscle following cycle ergometer exercise for 3 h at ∼60% of in young healthy males (n = 8). S100A8 and S100A9 form calprotectin, which is known as an acute phase reactant. Plasma calprotectin increased 5-fold following acute cycle ergometer exercise in humans, but not following IL-6 infusion. To identify the source of calprotectin, healthy males (n = 7) performed two-legged dynamic knee extensor exercise for 3 h with a work load of ∼50% of peak power output and arterial–femoral venous differences were obtained. Arterial plasma concentrations for calprotectin increased 2-fold compared to rest and there was a net release of calprotectin from the working muscle. In conclusion, IL-6 infusion and muscle contractions induce expression of S100A8 and S100A9 in skeletal muscle. However, IL-6 alone is not a sufficient stimulus to facilitate release of calprotectin from skeletal muscle. PMID:18511485

  1. Lysophosphatidic acid mediates pleiotropic responses in skeletal muscle cells

    SciTech Connect

    Jean-Baptiste, Gael; Yang Zhao; Khoury, Chamel; Greenwood, Michael T.; E-mail: michael.greenwood@mcgill.ca

    2005-10-07

    Lysophosphatidic acid (LPA) is a potent modulator of growth, cell survival, and apoptosis. Although all four LPA receptors are expressed in skeletal muscle, very little is known regarding the role they play in this tissue. We used RT-PCR to demonstrate that cultured skeletal muscle C2C12 cells endogenously express multiple LPA receptor subtypes. The demonstration that LPA mediates the activation of ERK1/2 MAP kinase and Akt/PKB in C2C12 cells is consistent with the widely observed mitogenic properties of LPA. In spite of these observations, LPA did not induce proliferation in C2C12 cells. Paradoxically, we found that prolonged treatment of C2C12 cells with LPA led to caspase 3 and PARP cleavage as well as the activation of stress-associated MAP kinases JNK and p38. In spite of these typically pro-apoptotic responses, LPA did not induce cell death. Blocking ERK1/2 and Akt/PKB activation with specific pharmacological inhibitors, nevertheless, stimulated LPA-mediated apoptosis. Taken together, these results suggest that both mitogenic and apoptotic responses serve to counterbalance the effects of LPA in cultured C2C12 cells.

  2. Molecular events in skeletal muscle during disuse atrophy

    NASA Technical Reports Server (NTRS)

    Kandarian, Susan C.; Stevenson, Eric J.

    2002-01-01

    This review summarizes the current knowledge of the molecular processes underlying skeletal muscle atrophy due to disuse. Because the processes involved with muscle wasting due to illness are similar to disuse, this literature is used for comparison. Areas that are ripe for further study and that will advance our understanding of muscle atrophy are suggested.

  3. Lifting the nebula: novel insights into skeletal muscle contractility.

    PubMed

    Ottenheijm, Coen A C; Granzier, Henk

    2010-10-01

    Nebulin is a giant protein and a constituent of the skeletal muscle sarcomere. The name of this protein refers to its unknown (i.e., nebulous) function. However, recent rapid advances reveal that nebulin plays important roles in the regulation of muscle contraction. When these functions of nebulin are compromised, muscle weakness ensues, as is the case in patients with nemaline myopathy. PMID:20940435

  4. Glucose transporter expression in human skeletal muscle fibers.

    PubMed

    Gaster, M; Handberg, A; Beck-Nielsen, H; Schroder, H D

    2000-09-01

    The present study was initiated to investigate GLUT-1 through -5 expression in developing and mature human skeletal muscle. To bypass the problems inherent in techniques using tissue homogenates, we applied an immunocytochemical approach, employing the sensitive enhanced tyramide signal amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation, but its expression is markedly reduced around birth and is further reduced to undetectable levels within the first year of life; 2) GLUT-3 protein expression appears at 18 wk of gestation and disappears after birth; and 3) GLUT-4 protein is diffusely expressed in muscle cells throughout gestation, whereas after birth, the characteristic subcellular localization is as seen in adult muscle fibers. Our results show that GLUT-1, GLUT-3, and GLUT-4 seem to be of importance during muscle fiber growth and development. GLUT-5 protein was undetectable in fetal and adult skeletal muscle fibers. In adult muscle fibers, only GLUT-4 was expressed at significant levels. GLUT-1 immunoreactivity was below the detection limit in muscle fibers, indicating that this glucose transporter is of minor importance for muscle glucose supply. Thus we hypothesize that GLUT-4 also mediates basal glucose transport in muscle fibers, possibly through constant exposure to tonal contraction and basal insulin levels. PMID:10950819

  5. Acute skeletal muscle injury: CCL2 expression by both monocytes and injured muscle is required for repair

    PubMed Central

    Lu, Haiyan; Huang, Danping; Ransohoff, Richard M.; Zhou, Lan

    2011-01-01

    CC chemokine ligand 2 (CCL2), a ligand of CC chemokine receptor 2 (CCR2), is essential to mount an adequate inflammatory response to repair acute skeletal muscle injury. We studied the mechanisms by which CCL2 regulates muscle inflammation and regeneration. Mobilization of monocytes/macrophages (MOs/MPs) but not lymphocytes or neutrophils was impaired from bone marrow to blood and from blood to injured muscles in Ccl2−/− mice. This was accompanied by poor phagocytosis, reduced up-regulation of insulin-like growth factor-1 (IGF-1), and impaired muscle regeneration. Bone marrow transfer from wild-type mice to irradiated Ccr2−/− but not Ccl2−/− mice restored muscle inflammation. Intravenously injected CCL2-deficient bone marrow monocytes could not enter wild-type injured muscles as well as wild-type bone marrow monocytes. Intravenously injected wild-type bone marrow monocytes could not enter CCL2-deficient injured muscles as well as wild-type injured muscles. CCL2 stimulated IGF-1 expression by wild-type but not CCR2-deficient intramuscular macrophages. A single intramuscular injection of IGF-1, but not PBS, markedly improved muscle regeneration in Ccl2−/− mice. We conclude that CCL2 is a major ligand of CCR2 to recruit MOs/MPs into injured muscles to conduct phagocytosis and produce IGF-1 for injury repair. CCL2 needs to be expressed by bone marrow cells, circulating monocytes, and injured muscle tissue cells to recruit MOs/MPs into injured muscles. CCL2/CCR2 signaling also up-regulates IGF-1 expression by intramuscular macrophages to promote acute skeletal muscle injury repair.—Lu, H., Huang, D., Ransohoff, R. M., Zhou, L. Acute skeletal muscle injury: CCL2 expression by both monocytes and injured muscle is required for repair. PMID:21697550

  6. Enteral B-hydroxy-B-methylbutyrate supplementation increases protein synthesis in skeletal muscle of neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many low-birth weight infants are at risk for poor growth due to an inability to achieve adequate protein intake. Administration of the amino acid leucine stimulates protein synthesis in skeletal muscle of neonates. To determine the effects of enteral supplementation of the leucine metabolite B-hydr...

  7. PGC-1α-Mediated Branched-Chain Amino Acid Metabolism in the Skeletal Muscle

    PubMed Central

    Nagaike, Yuta; Morita, Akihito; Ogawa, Yoshihiro; Ezaki, Osamu; Takai-Igarashi, Takako; Kitaura, Yasuyuki; Shimomura, Yoshiharu; Kamei, Yasutomi; Miura, Shinji

    2014-01-01

    Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α) is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA) metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT) 2, branched-chain α-keto acid dehydrogenase (BCKDH), which catabolize BCAA. The expression of BCKDH kinase (BCKDK), which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism. PMID:24638054

  8. Renin-angiotensin system: an old player with novel functions in skeletal muscle.

    PubMed

    Cabello-Verrugio, Claudio; Morales, María Gabriela; Rivera, Juan Carlos; Cabrera, Daniel; Simon, Felipe

    2015-05-01

    Skeletal muscle is a tissue that shows the most plasticity in the body; it can change in response to physiological and pathological stimuli. Among the diseases that affect skeletal muscle are myopathy-associated fibrosis, insulin resistance, and muscle atrophy. A common factor in these pathologies is the participation of the renin-angiotensin system (RAS). This system can be functionally separated into the classical and nonclassical RAS axis. The main components of the classical RAS pathway are angiotensin-converting enzyme (ACE), angiotensin II (Ang-II), and Ang-II receptors (AT receptors), whereas the nonclassical axis is composed of ACE2, angiotensin 1-7 [Ang (1-7)], and the Mas receptor. Hyperactivity of the classical axis in skeletal muscle has been associated with insulin resistance, atrophy, and fibrosis. In contrast, current evidence supports the action of the nonclassical RAS as a counter-regulator axis of the classical RAS pathway in skeletal muscle. In this review, we describe the mechanisms involved in the pathological effects of the classical RAS, advances in the use of pharmacological molecules to inhibit this axis, and the beneficial effects of stimulation of the nonclassical RAS pathway on insulin resistance, atrophy, and fibrosis in skeletal muscle. PMID:25764065

  9. Endurance training increases stimulation of uncoupling of skeletal muscle mitochondria in humans by non-esterified fatty acids: an uncoupling-protein-mediated effect?

    PubMed Central

    Tonkonogi, M; Krook, A; Walsh, B; Sahlin, K

    2000-01-01

    Uncoupled respiration (UCR) is an essential property of muscle mitochondria and has several functions in the cell. We hypothesized that endurance training may alter the magnitude and properties of UCR in human muscle. Isolated mitochondria from muscle biopsies taken before and after 6 weeks of endurance exercise training (n=8) were analysed for UCR. To investigate the role of uncoupling protein 2 (UCP2) and UCP3 in UCR, the sensitivity of UCR to UCP-regulating ligands (non-esterified fatty acids and purine nucleotides) and UCP2 and UCP3 mRNA expression in muscle were examined. Oleate increased the mitochondrial oxygen consumption rate, an effect that was not attenuated by GDP and/or cyclosporin A. The effect of oleate was significantly greater after compared with before training. Training had no effect on UCP2 or UCP3 mRNA levels, but after training the relative increase in respiration rate induced by oleate was positively correlated with the UCP2 mRNA level. In conclusion, we show that the sensitivity of UCR to non-esterified fatty acids is up-regulated by endurance training. This suggests that endurance training causes intrinsic changes in mitochondrial function, which may enhance the potential for regulation of aerobic energy production, prevent excess free radical generation and contribute to a higher basal metabolic rate. PMID:11042137

  10. The extracellular compartments of frog skeletal muscle.

    PubMed Central

    Neville, M C; Mathias, R T

    1979-01-01

    1. Detailed studies of solute efflux from frog sartorius muscle and single muscle fibres were carried out in order to characterize a 'special region' (Harris, 1963) in the extracellular space of muscle and determine whether this 'special region' is the sarcoplasmic reticulum. 2. The efflux of radioactive Na, Cl, glusose, 3-O-methylglucose, xylose, glycine, leucine, cycloleucine, Rb, K, inulin (mol. wt. 5000) and dextran (mol. wt. 17,000) from previously loaded muscles was studied. In all cases except dextran the curve had three components, a rapid (A) component which could be equated with efflux from the extracellular space proper, a slow (C) component representing cellular solute and an intermediate (B) component. The distribution space for the B component was 8% of muscle volume in summer frogs and 12% in winter frogs and appeared to be equal for all compounds studied. We tested the hypothesis that the B component originated from the sarcoplasmic reticulum. 3. The C component was missing from the dextran curves. Both dextran and inulin entered the compartment of origin of the B component (compartment B) to the same extent as small molecules. 4. For all compounds studies, the efflux rate constant for the A component could be predicted from the diffusion coefficient. For the B component the efflux rate constant was 6--10 times slower than that for the A component but was still proportional to the diffusion coefficient for the solute in question. 5. When Na and sucrose efflux from single fibres was followed, a B component was usually observed. The average distribution space for this component was small, averaging 1.5% of fibre volume. There was no difference between the average efflux rate constants for Na and sucrose. 6. In an appendix, the constraints placed on the properties of a hypothetical channel between the sarcoplasmic reticulum and the T-system by the linear electrical parameters of frog skeletal muscle are derived. It is shown that the conductance of such

  11. Erythropoietin Does Not Enhance Skeletal Muscle Protein Synthesis Following Exercise in Young and Older Adults

    PubMed Central

    Lamon, Séverine; Zacharewicz, Evelyn; Arentson-Lantz, Emily; Gatta, Paul A. Della; Ghobrial, Lobna; Gerlinger-Romero, Frederico; Garnham, Andrew; Paddon-Jones, Douglas; Russell, Aaron P.

    2016-01-01

    Purpose: Erythropoietin (EPO) is a renal cytokine that is primarily involved in hematopoiesis while also playing a role in non-hematopoietic tissues expressing the EPO-receptor (EPOR). The EPOR is present in human skeletal muscle. In mouse skeletal muscle, EPO stimulation can activate the AKT serine/threonine kinase 1 (AKT) signaling pathway, the main positive regulator of muscle protein synthesis. We hypothesized that a single intravenous EPO injection combined with acute resistance exercise would have a synergistic effect on skeletal muscle protein synthesis via activation of the AKT pathway. Methods: Ten young (24.2 ± 0.9 years) and 10 older (66.6 ± 1.1 years) healthy subjects received a primed, constant infusion of [ring-13C6] L-phenylalanine and a single injection of 10,000 IU epoetin-beta or placebo in a double-blind randomized, cross-over design. 2 h after the injection, the subjects completed an acute bout of leg extension resistance exercise to stimulate skeletal muscle protein synthesis. Results: Significant interaction effects in the phosphorylation levels of the members of the AKT signaling pathway indicated a differential activation of protein synthesis signaling in older subjects when compared to young subjects. However, EPO offered no synergistic effect on vastus lateralis mixed muscle protein synthesis rate in young or older subjects. Conclusions: Despite its ability to activate the AKT pathway in skeletal muscle, an acute EPO injection had no additive or synergistic effect on the exercise-induced activation of muscle protein synthesis or muscle protein synthesis signaling pathways. PMID:27458387

  12. Skeletal muscle pathology in endurance athletes with acquired training intolerance

    PubMed Central

    Grobler, L; Collins, M; Lambert, M; Sinclair-Smith, C; Derman, W; St, C; Noakes, T

    2004-01-01

    Background: It is well established that prolonged, exhaustive endurance exercise is capable of inducing skeletal muscle damage and temporary impairment of muscle function. Although skeletal muscle has a remarkable capacity for repair and adaptation, this may be limited, ultimately resulting in an accumulation of chronic skeletal muscle pathology. Case studies have alluded to an association between long term, high volume endurance training and racing, acquired training intolerance, and chronic skeletal muscle pathology. Objective: To systematically compare the skeletal muscle structural and ultrastructural status of endurance athletes with acquired training intolerance (ATI group) with asymptomatic endurance athletes matched for age and years of endurance training (CON group). Methods: Histological and electron microscopic analyses were carried out on a biopsy sample of the vastus lateralis from 18 ATI and 17 CON endurance athletes. The presence of structural and ultrastructural disruptions was compared between the two groups of athletes. Results: Significantly more athletes in the ATI group than in the CON group presented with fibre size variation (15 v 6; p = 0.006), internal nuclei (9 v 2; p = 0.03), and z disc streaming (6 v 0; p = 0.02). Conclusions: There is an association between increased skeletal muscle disruptions and acquired training intolerance in endurance athletes. Further studies are required to determine the nature of this association and the possible mechanisms involved. PMID:15562162

  13. Dissemination of Walker 256 carcinoma cells to rat skeletal muscle

    SciTech Connect

    Ueoka, H.; Hayashi, K.; Namba, T.; Grob, D.

    1986-03-05

    After injection of 10/sup 6/ Walker 256 carcinoma cells labelled with /sup 125/I-5-iodo-2'-deoxyuridine into the tail vein, peak concentration in skeletal muscle was 46 cells/g at 60 minutes, which was lower than 169202, 1665, 555, 198 and 133 cells/g, respectively, at 30 or 60 minutes in lung, liver, spleen, kidney and heart. Because skeletal muscle constitutes 37.4% of body weight, the total number of tumor cells was 2323 cells, which was much greater than in spleen, kidney and heart with 238, 271, and 85 cells, respectively, and only less than in lung and liver, at 222857 and 11700 cells, respectively. The total number in skeletal muscle became greater than in liver at 4 hours and than in lung at 24 hours. Ten minutes after injection of 7.5 x 10/sup 6/ Walker 256 carcinoma cells into the abdominal aorta of rats, a mean of 31 colony-forming cells were recovered from the gastrocnemius, while 106 cells were recovered from the lung after injection into the tail vein. These results indicate that a large number of viable tumor cells can be arrested in skeletal muscle through circulation. The rare remote metastasis of malignancies into skeletal muscle despite constantly circulating tumor cells does not appear to be due to poor dissemination of tumor cells into muscle but due to unhospitable environment of skeletal muscle.

  14. Combinatory effects of siRNA-induced myostatin inhibition and exercise on skeletal muscle homeostasis and body composition.

    PubMed

    Mosler, Stephanie; Relizani, Karima; Mouisel, Etienne; Amthor, Helge; Diel, Patrick

    2014-01-01

    Abstract Inhibition of myostatin (Mstn) stimulates skeletal muscle growth, reduces body fat, and induces a number of metabolic changes. However, it remains unexplored how exercise training modulates the response to Mstn inhibition. The aim of this study was to investigate how siRNA-mediated Mstn inhibition alone but also in combination with physical activity affects body composition and skeletal muscle homeostasis. Adult mice were treated with Mstn-targeting siRNA and subjected to a treadmill-based exercise protocol for 4 weeks. Effects on skeletal muscle and fat tissue, expression of genes, and serum concentration of proteins involved in myostatin signaling, skeletal muscle homeostasis, and lipid metabolism were investigated and compared with Mstn(-/-) mice. The combination of siRNA-mediated Mstn knockdown and exercise induced skeletal muscle hypertrophy, which was associated with an upregulation of markers for satellite cell activity. SiRNA-mediated Mstn knockdown decreased visceral fat and modulated lipid metabolism similar to effects observed in Mstn(-/-) mice. Myostatin did not regulate its own expression via an autoregulatory loop, however, Mstn knockdown resulted in a decrease in the serum concentrations of myostatin propeptide, leptin, and follistatin. The ratio of these three parameters was distinct between Mstn knockdown, exercise, and their combination. Taken together, siRNA-mediated Mstn knockdown in combination with exercise stimulated skeletal muscle hypertrophy. Each intervention or their combination induced a specific set of adaptive responses in the skeletal muscle and fat metabolism which could be identified by marker proteins in serum. PMID:24760516

  15. Calcium regulation of oxidative phosphorylation in rat skeletal muscle mitochondria.

    PubMed

    Kavanagh, N I; Ainscow, E K; Brand, M D

    2000-02-24

    Activation of oxidative phosphorylation by physiological levels of calcium in mitochondria from rat skeletal muscle was analysed using top-down elasticity and regulation analysis. Oxidative phosphorylation was conceptually divided into three subsystems (substrate oxidation, proton leak and phosphorylation) connected by the membrane potential or the protonmotive force. Calcium directly activated the phosphorylation subsystem and (with sub-saturating 2-oxoglutarate) the substrate oxidation subsystem but had no effect on the proton leak kinetics. The response of mitochondria respiring on 2-oxoglutarate at two physiological concentrations of free calcium was quantified using control and regulation analysis. The partial integrated response coefficients showed that direct stimulation of substrate oxidation contributed 86% of the effect of calcium on state 3 oxygen consumption, and direct activation of the phosphorylation reactions caused 37% of the increase in phosphorylation flux. Calcium directly activated phosphorylation more strongly than substrate oxidation (78% compared to 45%) to achieve homeostasis of mitochondrial membrane potential during large increases in flux.

  16. Angiopoietin-1 enhances skeletal muscle regeneration in mice

    PubMed Central

    Mofarrahi, Mahroo; McClung, Joseph M.; Kontos, Christopher D.; Davis, Elaine C.; Tappuni, Bassman; Moroz, Nicolay; Pickett, Amy E.; Huck, Laurent; Harel, Sharon; Danialou, Gawiyou

    2015-01-01

    Activation of muscle progenitor cell myogenesis and endothelial cell angiogenesis is critical for the recovery of skeletal muscle from injury. Angiopoietin-1 (Ang-1), a ligand of Tie-2 receptors, enhances angiogenesis and skeletal muscle satellite cell survival; however, its role in skeletal muscle regeneration after injury is unknown. We assessed the effects of Ang-1 on fiber regeneration, myogenesis, and angiogenesis in injured skeletal muscle (tibialis anterior, TA) in mice. We also assessed endogenous Ang-1 levels and localization in intact and injured TA muscles. TA fiber injury was triggered by cardiotoxin injection. Endogenous Ang-1 mRNA levels immediately decreased in response to cardiotoxin then increased during the 2 wk. Ang-1 protein was expressed in satellite cells, both in noninjured and recovering TA muscles. Positive Ang-1 staining was present in blood vessels but not in nerve fibers. Four days after the initiation of injury, injection of adenoviral Ang-1 into injured muscles resulted in significant increases in in situ TA muscle contractility, muscle fiber regeneration, and capillary density. In cultured human skeletal myoblasts, recombinant Ang-1 protein increased survival, proliferation, migration, and differentiation into myotubes. The latter effect was associated with significant upregulation of the expression of the myogenic regulatory factors MyoD and Myogenin and certain genes involved in cell cycle regulation. We conclude that Ang-1 strongly enhances skeletal muscle regeneration in response to fiber injury and that this effect is mediated through induction of the myogenesis program in muscle progenitor cells and the angiogenesis program in endothelial cells. PMID:25608750

  17. Constitutive expression of Yes-associated protein (Yap) in adult skeletal muscle fibres induces muscle atrophy and myopathy.

    PubMed

    Judson, Robert N; Gray, Stuart R; Walker, Claire; Carroll, Andrew M; Itzstein, Cecile; Lionikas, Arimantas; Zammit, Peter S; De Bari, Cosimo; Wackerhage, Henning

    2013-01-01

    The aim of this study was to investigate the function of the Hippo pathway member Yes-associated protein (Yap, gene name Yap1) in skeletal muscle fibres in vivo. Specifically we bred an inducible, skeletal muscle fibre-specific knock-in mouse model (MCK-tTA-hYAP1 S127A) to test whether the over expression of constitutively active Yap (hYAP1 S127A) is sufficient to drive muscle hypertrophy or stimulate changes in fibre type composition. Unexpectedly, after 5-7 weeks of constitutive hYAP1 S127A over expression, mice suddenly and rapidly lost 20-25% body weight and suffered from gait impairments and kyphosis. Skeletal muscles atrophied by 34-40% and the muscle fibre cross sectional area decreased by ≈40% when compared to control mice. Histological analysis revealed evidence of skeletal muscle degeneration and regeneration, necrotic fibres and a NADH-TR staining resembling centronuclear myopathy. In agreement with the histology, mRNA expression of markers of regenerative myogenesis (embryonic myosin heavy chain, Myf5, myogenin, Pax7) and muscle protein degradation (atrogin-1, MuRF1) were significantly elevated in muscles from transgenic mice versus control. No significant changes in fibre type composition were detected using ATPase staining. The phenotype was largely reversible, as a cessation of hYAP1 S127A expression rescued body and muscle weight, restored muscle morphology and prevented further pathological progression. To conclude, high Yap activity in muscle fibres does not induce fibre hypertrophy nor fibre type changes but instead results in a reversible atrophy and deterioration. PMID:23544078

  18. Constitutive Expression of Yes-Associated Protein (Yap) in Adult Skeletal Muscle Fibres Induces Muscle Atrophy and Myopathy

    PubMed Central

    Judson, Robert N.; Gray, Stuart R.; Walker, Claire; Carroll, Andrew M.; Itzstein, Cecile; Lionikas, Arimantas; Zammit, Peter S.; De Bari, Cosimo; Wackerhage, Henning

    2013-01-01

    The aim of this study was to investigate the function of the Hippo pathway member Yes-associated protein (Yap, gene name Yap1) in skeletal muscle fibres in vivo. Specifically we bred an inducible, skeletal muscle fibre-specific knock-in mouse model (MCK-tTA-hYAP1 S127A) to test whether the over expression of constitutively active Yap (hYAP1 S127A) is sufficient to drive muscle hypertrophy or stimulate changes in fibre type composition. Unexpectedly, after 5–7 weeks of constitutive hYAP1 S127A over expression, mice suddenly and rapidly lost 20–25% body weight and suffered from gait impairments and kyphosis. Skeletal muscles atrophied by 34–40% and the muscle fibre cross sectional area decreased by ≈40% when compared to control mice. Histological analysis revealed evidence of skeletal muscle degeneration and regeneration, necrotic fibres and a NADH-TR staining resembling centronuclear myopathy. In agreement with the histology, mRNA expression of markers of regenerative myogenesis (embryonic myosin heavy chain, Myf5, myogenin, Pax7) and muscle protein degradation (atrogin-1, MuRF1) were significantly elevated in muscles from transgenic mice versus control. No significant changes in fibre type composition were detected using ATPase staining. The phenotype was largely reversible, as a cessation of hYAP1 S127A expression rescued body and muscle weight, restored muscle morphology and prevented further pathological progression. To conclude, high Yap activity in muscle fibres does not induce fibre hypertrophy nor fibre type changes but instead results in a reversible atrophy and deterioration. PMID:23544078

  19. Maintaining skeletal muscle mass: lessons learned from hibernation.

    PubMed

    Ivakine, Evgueni A; Cohn, Ronald D

    2014-04-01

    Muscle disuse and starvation are often associated with a catabolic response leading to a dramatic loss of skeletal muscle mass. Hibernating animals represent a unique situation where muscle mass is maintained despite prolonged periods of immobilization and lack of nutrition. We analysed the molecular pathways upregulated during hibernation in an obligate hibernator, the 13-lined ground squirrel (Ictidomys tridecemlineatus). Although Akt has an established role in skeletal muscle maintenance, we found that activated Akt was decreased in skeletal muscle of hibernating squirrels. Another serine-threonine kinase, serum- and glucocorticoid-regulated kinase 1 (SGK1), was upregulated during hibernation and contributed to protection from loss of muscle mass via downregulation of proteolysis and autophagy and via an increase in protein synthesis. We extended our observations to non-hibernating animals and demonstrated that SGK1-null mice developed muscle atrophy. These mice displayed an exaggerated response to immobilization and starvation. Furthermore, SGK1 overexpression prevented immobilization-induced muscle atrophy. Taken together, our results identify SGK1 as a novel therapeutic target to combat skeletal muscle loss in acquired and inherited forms of muscle atrophy.

  20. Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques

    PubMed Central

    2011-01-01

    Background Skeletal muscle fibres represent one of the most abundant cell types in mammals. Their highly specialised contractile and metabolic functions depend on a large number of membrane-associated proteins with very high molecular masses, proteins with extensive posttranslational modifications and components that exist in highly complex supramolecular structures. This makes it extremely difficult to perform conventional biochemical studies of potential changes in protein clusters during physiological adaptations or pathological processes. Results Skeletal muscle proteomics attempts to establish the global identification and biochemical characterisation of all members of the muscle-associated protein complement. A considerable number of proteomic studies have employed large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography, and combined them with mass spectrometry as the method of choice for high-throughput protein identification. Muscle proteomics has been applied to the comprehensive biochemical profiling of developing, maturing and aging muscle, as well as the analysis of contractile tissues undergoing physiological adaptations seen in disuse atrophy, physical exercise and chronic muscle transformation. Biomedical investigations into proteome-wide alterations in skeletal muscle tissues were also used to establish novel biomarker signatures of neuromuscular disorders. Importantly, mass spectrometric studies have confirmed the enormous complexity of posttranslational modifications in skeletal muscle proteins. Conclusions This review critically examines the scientific impact of modern muscle proteomics and discusses its successful application for a better understanding of muscle biology, but also outlines its technical limitations and emerging techniques to establish new biomarker candidates. PMID:21798084

  1. Piecing together the puzzle of perilipin proteins and skeletal muscle lipolysis.

    PubMed

    MacPherson, Rebecca E K; Peters, Sandra J

    2015-07-01

    The regulation of skeletal muscle lipolysis and fat oxidation is a complex process involving multiple proteins and enzymes. Emerging work indicates that skeletal muscle PLIN proteins likely play a role in the hydrolysis of triglycerides stored in lipid droplets and the passage of fatty acids to the mitochondria for oxidation. In adipocytes, PLIN1 regulates lipolysis by interacting with comparative gene identification-58 (CGI-58), an activator of adipose triglyceride lipase (ATGL). Upon lipolytic stimulation, PLIN1 is phosphorylated, releasing CGI-58 to activate ATGL and initiate triglyceride breakdown. The absence of PLIN1 in skeletal muscle leads us to believe that other PLIN family members undertake this role. The focus of this review is on the PLIN family proteins expressed in skeletal muscle: PLIN2, PLIN3, and PLIN5. To date, most studies involving these PLIN proteins have used nonmuscle tissues and cell cultures to determine their potential roles. Results from work in these models support a role for PLIN proteins in sequestering lipases during basal conditions and in potentially working together for lipase translocation and activity during lipolysis. In skeletal muscle, PLIN2 tends to mirror the lipid content and may play a role in lipid droplet growth and stability through lipase interactions on the lipid droplet surface, whereas the skeletal muscle roles of both PLIN3 and PLIN5 seem to be more complex because they are found not only on the lipid droplet, but also at the mitochondria. Clearly, further work is needed to fully understand the intricate mechanisms by which PLIN proteins contribute to skeletal muscle lipid metabolism. PMID:25971423

  2. Effects of Use and Disuse on Non-paralyzed and Paralyzed Skeletal Muscles

    PubMed Central

    Dolbow, David R.; Gorgey, Ashraf S.

    2016-01-01

    Skeletal muscle is an integral part of the somatic nervous system and plays a primary role in the performance of physical activities. Because physical activity is vital to countering the effects of aging and age related diseases and is a key component in the maintenance of healthy body composition it is important to understand the effects of use and disuse on skeletal muscle. While voluntary muscle activity provides optimal benefits to muscle and the maintenance of healthy body composition, neuromuscular electrical stimulation may be a viable alternative activity for individuals with paralysis. Body composition with a healthy muscle to fat ratio has been associated with healthy blood lipid and glucose profiles that may decrease the risk of cardiovascular and metabolic diseases. PMID:26816665

  3. Skeletal muscle myoblasts possess a stretch-responsive local angiotensin signalling system.

    PubMed

    Johnston, Adam P W; Baker, Jeff; De Lisio, Michael; Parise, Gianni

    2011-06-01

    A paucity of information exists regarding the presence of local renin-angiotensin systems (RASs) in skeletal muscle and associated muscle stem cells. Skeletal muscle and muscle stem cells were isolated from C57BL/6 mice and examined for the presence of a local RAS using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), Western blotting and liquid chromatography-mass spectrometry (LC-MS). Furthermore, the effect of mechanical stimulation on RAS member gene expression was analysed. Whole skeletal muscle, primary myoblasts and C2C12 derived myoblasts and myotubes differentially expressed members of the RAS including angiotensinogen, angiotensin-converting enzyme (ACE), angiotensin II (Ang II) type 1 (AT(1)) and type 2 (AT(2)). Renin transcripts were never detected, however, mRNA for the 'renin-like' enzyme cathepsin D was observed and Ang I and Ang II were identified in cell culture supernatants from proliferating myoblasts. AT(1) appeared to co-localise with polymerised actin filaments in proliferating myoblasts and was primarily found in the nucleus of terminally differentiated myotubes. Furthermore, mechanical stretch of proliferating and differentiating C2C12 cells differentially induced mRNA expression of angiotensinogen, AT(1) and AT(2). Proliferating and differentiated muscle stem cells possess a local stress-responsive RAS in vitro. The precise function of a local RAS in myoblasts remains unknown. However, evidence presented here suggests that Ang II may be a regulator of skeletal muscle myoblasts.

  4. Bone and Skeletal Muscle: Key Players in Mechanotransduction and Potential Overlapping Mechanisms

    PubMed Central

    Goodman, Craig A.; Hornberger, Troy A.; Robling, Alexander G.

    2015-01-01

    The development and maintenance of skeletal muscle and bone mass is critical for movement, health and issues associated with the quality of life. Skeletal muscle and bone mass are regulated by a variety of factors that include changes in mechanical loading. Moreover, bone mass is, in large part, regulated by muscle-derived mechanical forces and thus by changes in muscle mass/strength. A thorough understanding of the cellular mechanism(s) responsible for mechanotransduction in bone and skeletal muscle is essential for the development of effective exercise and pharmaceutical strategies aimed at increasing, and/or preventing the loss of, mass in these tissues. Thus, in this review we will attempt to summarize the current evidence for the major molecular mechanisms involved in mechanotransduction in skeletal muscle and bone. By examining the differences and similarities in mechanotransduction between these two tissues, it is hoped that this review will stimulate new insights and ideas for future research and promote collaboration between bone and muscle biologists. PMID:26453495

  5. Adipokines in Healthy Skeletal Muscle and Metabolic Disease.

    PubMed

    Coles, C A

    2016-01-01

    Adipose tissue not only functions as a reserve to store energy but has become of major interest as an endocrine organ, releasing signalling molecules termed adipokines which impact on other tissues, such as skeletal muscle. Adipocytes, within skeletal muscle and adipose tissue, secrete adipokines to finely maintain the balance between feed intake and energy expenditure. This book chapter focuses on the three adipokines, adiponectin, leptin and IL-6, which have potent effects on skeletal muscle during rest and exercise. Similarly, adiponectin, leptin and IL-6 enhance glucose uptake and increase fatty acid oxidation in skeletal muscle. Fatty acid oxidation is increased through activation of AMPK (adenosine monophosphate-activated protein kinase signalling) causing phosphorylation and inhibition of ACC (acetyl-coenzyme A carboxylase), decreasing availability of malonyl CoA. Leptin and adiponectin also control feed intake via AMPK signalling in the hypothalamus. Adipokines function to maintain energy homeostasis, however, when feed intake exceeds energy expenditure adipokines can become dysregulated causing lipotoxicity in skeletal muscle and metabolic disease can prevail. Cross-talk between adipocytes and skeletal muscle via correct control by adipokines is important in controlling energy homeostasis during rest and exercise and can help prevent metabolic disease. PMID:27003399

  6. Renal function alterations during skeletal muscle disuse in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Tucker, Bryan J.

    1992-01-01

    This project was to examine the alterations in renal functions during skeletal muscle disuse in simulated microgravity. Although this area could cover a wide range of investigative efforts, the limited funding resulted in the selection of two projects. These projects would result in data contributing to an area of research deemed high priority by NASA and would address issues of the alterations in renal response to vasoactive stimuli during conditions of skeletal muscle disuse as well as investigate the contribution of skeletal muscle disuse, conditions normally found in long term human exposure to microgravity, to the balance of fluid and macromolecules within the vasculature versus the interstitium. These two projects selected are as follows: investigate the role of angiotensin 2 on renal function during periods of simulated microgravity and skeletal muscle disuse to determine if the renal response is altered to changes in circulating concentrations of angiotensin 2 compared to appropriate controls; and determine if the shift of fluid balance from vasculature to the interstitium, the two components of extracellular fluid volume, that occur during prolonged exposure to microgravity and skeletal muscle disuse is a result, in part, to alterations in the fluid and macromolecular balance in the peripheral capillary beds, of which the skeletal muscle contains the majority of recruitment capillaries. A recruitment capillary bed would be most sensitive to alterations in Starling forces and fluid and macromolecular permeability.

  7. Quantitative studies of skeletal muscle lactate metabolism

    SciTech Connect

    Pagliassotti, M.J.

    1988-01-01

    In Situ, single-pass perfusions were employed on three isolated rabbit skeletal muscle preparations of differing fiber type and oxidative capacity to investigate the influence of fiber type and oxidative capacity per se on net carbon, {sup 14}C-lactate, and {sup 3}H-glucose fluxes. Preparations were exposed to six lactate concentrations ranging from 1-11mM. At basal lactate concentrations all preparations displayed net lactate release, {sup 14}C-lactate removal and {sup 14}CO{sub 2} release, all were linearly correlated with lactate concentration. By 4mM all preparations switched to net lactate uptake and {sup 14}C-lactate removal always exceeded net lactate uptake. To quantify the fate of net carbon, {sup 14}C-lactate, and {sup 3}H-glucose removal preparations were perfused at either basal or elevated lactate. Under basal conditions net carbon influx from glucose and glycogen was removed primarily via net lactate release in the glycolytic and mixed preparations and oxidation and net lactate release in the oxidative preparation. At elevated lactate, net carbon influx from lactate, pyruvate and glucose was removed primarily by net glycogen synthesis in the glycolytic preparation and both alanine release and oxidation in the mixed and oxidative preparations.

  8. Circadian Rhythms, the Molecular Clock, and Skeletal Muscle

    PubMed Central

    Lefta, Mellani; Wolff, Gretchen; Esser, Karyn A.

    2015-01-01

    Almost all organisms ranging from single cell bacteria to humans exhibit a variety of behavioral, physiological, and biochemical rhythms. In mammals, circadian rhythms control the timing of many physiological processes over a 24-h period, including sleep-wake cycles, body temperature, feeding, and hormone production. This body of research has led to defined characteristics of circadian rhythms based on period length, phase, and amplitude. Underlying circadian behaviors is a molecular clock mechanism found in most, if not all, cell types including skeletal muscle. The mammalian molecular clock is a complex of multiple oscillating networks that are regulated through transcriptional mechanisms, timed protein turnover, and input from small molecules. At this time, very little is known about circadian aspects of skeletal muscle function/metabolism but some progress has been made on understanding the molecular clock in skeletal muscle. The goal of this chapter is to provide the basic terminology and concepts of circadian rhythms with a more detailed review of the current state of knowledge of the molecular clock, with reference to what is known in skeletal muscle. Research has demonstrated that the molecular clock is active in skeletal muscles and that the muscle-specific transcription factor, MyoD, is a direct target of the molecular clock. Skeletal muscle of clock-compromised mice, Bmal1−/− and ClockΔ19 mice, are weak and exhibit significant disruptions in expression of many genes required for adult muscle structure and metabolism. We suggest that the interaction between the molecular clock, MyoD, and metabolic factors, such as PGC-1, provide a potential system of feedback loops that may be critical for both maintenance and adaptation of skeletal muscle. PMID:21621073

  9. Circadian rhythms, the molecular clock, and skeletal muscle.

    PubMed

    Lefta, Mellani; Wolff, Gretchen; Esser, Karyn A

    2011-01-01

    Almost all organisms ranging from single cell bacteria to humans exhibit a variety of behavioral, physiological, and biochemical rhythms. In mammals, circadian rhythms control the timing of many physiological processes over a 24-h period, including sleep-wake cycles, body temperature, feeding, and hormone production. This body of research has led to defined characteristics of circadian rhythms based on period length, phase, and amplitude. Underlying circadian behaviors is a molecular clock mechanism found in most, if not all, cell types including skeletal muscle. The mammalian molecular clock is a complex of multiple oscillating networks that are regulated through transcriptional mechanisms, timed protein turnover, and input from small molecules. At this time, very little is known about circadian aspects of skeletal muscle function/metabolism but some progress has been made on understanding the molecular clock in skeletal muscle. The goal of this chapter is to provide the basic terminology and concepts of circadian rhythms with a more detailed review of the current state of knowledge of the molecular clock, with reference to what is known in skeletal muscle. Research has demonstrated that the molecular clock is active in skeletal muscles and that the muscle-specific transcription factor, MyoD, is a direct target of the molecular clock. Skeletal muscle of clock-compromised mice, Bmal1(-/-) and Clock(Δ19) mice, are weak and exhibit significant disruptions in expression of many genes required for adult muscle structure and metabolism. We suggest that the interaction between the molecular clock, MyoD, and metabolic factors, such as PGC-1, provide a potential system of feedback loops that may be critical for both maintenance and adaptation of skeletal muscle.

  10. Systems analysis of biological networks in skeletal muscle function

    PubMed Central

    Smith, Lucas R.; Meyer, Gretchen; Lieber, Richard L.

    2014-01-01

    Skeletal muscle function depends on the efficient coordination among subcellular systems. These systems are composed of proteins encoded by a subset of genes, all of which are tightly regulated. In the cases where regulation is altered because of disease or injury, dysfunction occurs. To enable objective analysis of muscle gene expression profiles, we have defined nine biological networks whose coordination is critical to muscle function. We begin by describing the expression of proteins necessary for optimal neuromuscular junction function that results in the muscle cell action potential. That action potential is transmitted to proteins involved in excitation–contraction coupling enabling Ca2+ release. Ca2+ then activates contractile proteins supporting actin and myosin cross-bridge cycling. Force generated by cross-bridges is transmitted via cytoskeletal proteins through the sarcolemma and out to critical proteins that support the muscle extracellular matrix. Muscle contraction is fueled through many proteins that regulate energy metabolism. Inflammation is a common response to injury that can result in alteration of many pathways within muscle. Muscle also has multiple pathways that regulate size through atrophy or hypertrophy. Finally, the isoforms associated with fast muscle fibers and their corresponding isoforms in slow muscle fibers are delineated. These nine networks represent important biological systems that affect skeletal muscle function. Combining high-throughput systems analysis with advanced networking software will allow researchers to use these networks to objectively study skeletal muscle systems. PMID:23188744

  11. Aging related ER stress is not responsible for anabolic resistance in mouse skeletal muscle.

    PubMed

    Chalil, Sreeda; Pierre, Nicolas; Bakker, Astrid D; Manders, Ralph J; Pletsers, Annelies; Francaux, Marc; Klein-Nulend, Jenneke; Jaspers, Richard T; Deldicque, Louise

    2015-12-25

    Anabolic resistance reflects the inability of skeletal muscle to maintain protein mass by appropriate stimulation of protein synthesis. We hypothesized that endoplasmic reticulum (ER) stress contributes to anabolic resistance in skeletal muscle with aging. Muscles were isolated from adult (8 mo) and old (26 mo) mice and weighed. ER stress markers in each muscle were quantified, and the anabolic response to leucine was assessed by measuring the phosphorylation state of S6K1 in soleus and EDL using an ex vivo muscle model. Aging reduced the muscle-to-body weight ratio in soleus, gastrocnemius, and plantaris, but not in EDL and tibialis anterior. Compared to adult mice, the expression of ER stress markers BiP and IRE1α was higher in EDL, and phospho-eIF2α was higher in soleus and EDL of old mice. S6K1 response to leucine was impaired in soleus, but not in EDL, suggesting that anabolic resistance contributes to soleus weight loss in old mice. Pre-incubation with ER stress inducer tunicamycin before leucine stimulation increased S6K1 phosphorylation beyond the level reached by leucine alone. Since tunicamycin did not impair leucine-induced S6K1 response, and based on the different ER stress marker regulation patterns, ER stress is probably not involved in anabolic resistance in skeletal muscle with aging.

  12. Bex1 knock out mice show altered skeletal muscle regeneration

    SciTech Connect

    Koo, Jae Hyung Smiley, Mark A.; Lovering, Richard M.; Margolis, Frank L.

    2007-11-16

    Bex1 and Calmodulin (CaM) are upregulated during skeletal muscle regeneration. We confirm this finding and demonstrate the novel finding that they interact in a calcium-dependent manner. To study the role of Bex1 and its interaction with CaM in skeletal muscle regeneration, we generated Bex1 knock out (Bex1-KO) mice. These mice appeared to develop normally and are fertile, but displayed a functional deficit in exercise performance compared to wild type (WT) mice. After intramuscular injection of cardiotoxin, which causes extensive and reproducible myotrauma followed by recovery, regenerating muscles of Bex1-KO mice exhibited elevated and prolonged cell proliferation, as well as delayed cell differentiation, compared to WT mice. Thus, our results provide the first evidence that Bex1-KO mice show altered muscle regeneration, and allow us to propose that the interaction of Bex1 with Ca{sup 2+}/CaM may be involved in skeletal muscle regeneration.

  13. Triennial Growth Symposium--A role for vitamin D in skeletal muscle development and growth.

    PubMed

    Starkey, J D

    2014-03-01

    Although well known for its role in bone development and mineral homeostasis, there is emerging evidence that vitamin D is capable of functioning as a regulator of skeletal muscle development and hypertrophic growth. This review will focus on the relatively limited body of evidence regarding the impact of vitamin D on prenatal development and postnatal growth of skeletal muscle in meat animal species. Recent evidence indicating that improvement of maternal vitamin D status through dietary 25-hydroxycholecalciferol supplementation can positively affect fetal skeletal muscle fiber number and myoblast activity in swine as well as work demonstrating that posthatch vitamin D status enhancement stimulates a satellite cell-mediated skeletal muscle hypertrophy response in broiler chickens is discussed. The relative lack of information regarding how and when to best supply dietary vitamin D to promote optimal prenatal development and postnatal growth of skeletal muscle provides an exciting field of research. Expansion of knowledge in this area will ultimately improve our ability to efficiently and effectively produce the livestock required to meet the increasing worldwide demand for meat products.

  14. The AMPK activator R419 improves exercise capacity and skeletal muscle insulin sensitivity in obese mice

    PubMed Central

    Marcinko, Katarina; Bujak, Adam L.; Lally, James S.V.; Ford, Rebecca J.; Wong, Tammy H.; Smith, Brennan K.; Kemp, Bruce E.; Jenkins, Yonchu; Li, Wei; Kinsella, Todd M.; Hitoshi, Yasumichi; Steinberg, Gregory R.

    2015-01-01

    Objective Skeletal muscle AMP-activated protein kinase (AMPK) is important for regulating glucose homeostasis, mitochondrial content and exercise capacity. R419 is a mitochondrial complex-I inhibitor that has recently been shown to acutely activate AMPK in myotubes. Our main objective was to examine whether R419 treatment improves insulin sensitivity and exercise capacity in obese insulin resistant mice and whether skeletal muscle AMPK was important for mediating potential effects. Methods Glucose homeostasis, insulin sensitivity, exercise capacity, and electron transport chain content/activity were examined in wildtype (WT) and AMPK β1β2 muscle-specific null (AMPK-MKO) mice fed a high-fat diet (HFD) with or without R419 supplementation. Results There was no change in weight gain, adiposity, glucose tolerance or insulin sensitivity between HFD-fed WT and AMPK-MKO mice. In both HFD-fed WT and AMPK-MKO mice, R419 enhanced insulin tolerance, insulin-stimulated glucose disposal, skeletal muscle 2-deoxyglucose uptake, Akt phosphorylation and glucose transporter 4 (GLUT4) content independently of alterations in body mass. In WT, but not AMPK-MKO mice, R419 improved treadmill running capacity. Treatment with R419 increased muscle electron transport chain content and activity in WT mice; effects which were blunted in AMPK-MKO mice. Conclusions Treatment of obese mice with R419 improved skeletal muscle insulin sensitivity through a mechanism that is independent of skeletal muscle AMPK. R419 also increases exercise capacity and improves mitochondrial function in obese WT mice; effects that are diminished in the absence of skeletal muscle AMPK. These findings suggest that R419 may be a promising therapy for improving whole-body glucose homeostasis and exercise capacity. PMID:26413470

  15. Cav1.1 controls frequency-dependent events regulating adult skeletal muscle plasticity.

    PubMed

    Jorquera, Gonzalo; Altamirano, Francisco; Contreras-Ferrat, Ariel; Almarza, Gonzalo; Buvinic, Sonja; Jacquemond, Vincent; Jaimovich, Enrique; Casas, Mariana

    2013-03-01

    An important pending question in neuromuscular biology is how skeletal muscle cells decipher the stimulation pattern coming from motoneurons to define their phenotype as slow or fast twitch muscle fibers. We have previously shown that voltage-gated L-type calcium channel (Cav1.1) acts as a voltage sensor for activation of inositol (1,4,5)-trisphosphate [Ins(1,4,5)P₃]-dependent Ca(2+) signals that regulates gene expression. ATP released by muscle cells after electrical stimulation through pannexin-1 channels plays a key role in this process. We show now that stimulation frequency determines both ATP release and Ins(1,4,5)P₃ production in adult skeletal muscle and that Cav1.1 and pannexin-1 colocalize in the transverse tubules. Both ATP release and increased Ins(1,4,5)P₃ was seen in flexor digitorum brevis fibers stimulated with 270 pulses at 20 Hz, but not at 90 Hz. 20 Hz stimulation induced transcriptional changes related to fast-to-slow muscle fiber phenotype transition that required ATP release. Addition of 30 µM ATP to fibers induced the same transcriptional changes observed after 20 Hz stimulation. Myotubes lacking the Cav1.1-α1 subunit released almost no ATP after electrical stimulation, showing that Cav1.1 has a central role in this process. In adult muscle fibers, ATP release and the transcriptional changes produced by 20 Hz stimulation were blocked by both the Cav1.1 antagonist nifedipine (25 µM) and by the Cav1.1 agonist (-)S-BayK 8644 (10 µM). We propose a new role for Cav1.1, independent of its calcium channel activity, in the activation of signaling pathways allowing muscle fibers to decipher the frequency of electrical stimulation and to activate specific transcriptional programs that define their phenotype.

  16. Cav1.1 controls frequency-dependent events regulating adult skeletal muscle plasticity.

    PubMed

    Jorquera, Gonzalo; Altamirano, Francisco; Contreras-Ferrat, Ariel; Almarza, Gonzalo; Buvinic, Sonja; Jacquemond, Vincent; Jaimovich, Enrique; Casas, Mariana

    2013-03-01

    An important pending question in neuromuscular biology is how skeletal muscle cells decipher the stimulation pattern coming from motoneurons to define their phenotype as slow or fast twitch muscle fibers. We have previously shown that voltage-gated L-type calcium channel (Cav1.1) acts as a voltage sensor for activation of inositol (1,4,5)-trisphosphate [Ins(1,4,5)P₃]-dependent Ca(2+) signals that regulates gene expression. ATP released by muscle cells after electrical stimulation through pannexin-1 channels plays a key role in this process. We show now that stimulation frequency determines both ATP release and Ins(1,4,5)P₃ production in adult skeletal muscle and that Cav1.1 and pannexin-1 colocalize in the transverse tubules. Both ATP release and increased Ins(1,4,5)P₃ was seen in flexor digitorum brevis fibers stimulated with 270 pulses at 20 Hz, but not at 90 Hz. 20 Hz stimulation induced transcriptional changes related to fast-to-slow muscle fiber phenotype transition that required ATP release. Addition of 30 µM ATP to fibers induced the same transcriptional changes observed after 20 Hz stimulation. Myotubes lacking the Cav1.1-α1 subunit released almost no ATP after electrical stimulation, showing that Cav1.1 has a central role in this process. In adult muscle fibers, ATP release and the transcriptional changes produced by 20 Hz stimulation were blocked by both the Cav1.1 antagonist nifedipine (25 µM) and by the Cav1.1 agonist (-)S-BayK 8644 (10 µM). We propose a new role for Cav1.1, independent of its calcium channel activity, in the activation of signaling pathways allowing muscle fibers to decipher the frequency of electrical stimulation and to activate specific transcriptional programs that define their phenotype. PMID:23321639

  17. Skeletal muscle hypertrophy and structure and function of skeletal muscle fibres in male body builders

    PubMed Central

    D'Antona, Giuseppe; Lanfranconi, Francesca; Pellegrino, Maria Antonietta; Brocca, Lorenza; Adami, Raffaella; Rossi, Rosetta; Moro, Giorgio; Miotti, Danilo; Canepari, Monica; Bottinelli, Roberto

    2006-01-01

    Needle biopsy samples were taken from vastus lateralis muscle (VL) of five male body builders (BB, age 27.4 ± 0.93 years; mean ±s.e.m.), who had being performing hypertrophic heavy resistance exercise (HHRE) for at least 2 years, and from five male active, but untrained control subjects (CTRL, age 29.9 ± 2.01 years). The following determinations were performed: anatomical cross-sectional area and volume of the quadriceps and VL muscles in vivo by magnetic resonance imaging (MRI); myosin heavy chain isoform (MHC) distribution of the whole biopsy samples by SDS-PAGE; cross-sectional area (CSA), force (Po), specific force (Po/CSA) and maximum shortening velocity (Vo) of a large population (n= 524) of single skinned muscle fibres classified on the basis of MHC isoform composition by SDS-PAGE; actin sliding velocity (Vf) on pure myosin isoforms by in vitro motility assays. In BB a preferential hypertrophy of fast and especially type 2X fibres was observed. The very large hypertrophy of VL in vivo could not be fully accounted for by single muscle fibre hypertrophy. CSA of VL in vivo was, in fact, 54% larger in BB than in CTRL, whereas mean fibre area was only 14% larger in BB than in CTRL. MHC isoform distribution was shifted towards 2X fibres in BB. Po/CSA was significantly lower in type 1 fibres from BB than in type 1 fibres from CTRL whereas both type 2A and type 2X fibres were significantly stronger in BB than in CTRL. Vo of type 1 fibres and Vf of myosin 1 were significantly lower in BB than in CTRL, whereas no difference was observed among fast fibres and myosin 2A. The findings indicate that skeletal muscle of BB was markedly adapted to HHRE through extreme hypertrophy, a shift towards the stronger and more powerful fibre types and an increase in specific force of muscle fibres. Such adaptations could not be fully accounted for by well known mechanisms of muscle plasticity, i.e. by the hypertrophy of single muscle fibre (quantitative mechanism) and by a

  18. Functional Skeletal Muscle Formation with a Biologic Scaffold

    PubMed Central

    Valentin, Jolene E.; Turner, Neill J.; Gilbert, Thomas W.; Badylak, Stephen F.

    2010-01-01

    Biologic scaffolds composed of extracellular matrix (ECM) have been used to reinforce or replace damaged or missing musculotendinous tissues in both preclinical studies and in human clinical applications. However, most studies have focused upon morphologic endpoints and few studies have assessed the in-situ functionality of newly formed tissue; especially new skeletal muscle tissue. The objective of the present study was to determine both the in-situ tetanic contractile response and histomorphologic characteristics of skeletal muscle tissue reconstructed using one of four test articles in a rodent abdominal wall model: 1) porcine small intestinal submucosa (SIS)-ECM; 2) carbodiimide-crosslinked porcine SIS-ECM; 3) autologous tissue; or 4) polypropylene mesh. Six months after surgery, the remodeled SIS-ECM showed almost complete replacement by islands and sheets of skeletal muscle, which generated a similar maximal contractile force to native tissue but with greater resistance to fatigue. The autologous tissue graft was replaced by a mixture of collagenous connective tissue, adipose tissue with fewer islands of skeletal muscle compared to SIS-ECM and a similar fatigue resistance to native muscle. Carbodiimide-crosslinked SIS-ECM and polypropylene mesh were characterized by a chronic inflammatory response and produced little or no measureable tetanic force. The findings of this study show that non-crosslinked xenogeneic SIS scaffolds and autologous tissue are associated with the restoration of functional skeletal muscle with histomorphologic characteristics that resemble native muscle. PMID:20638716

  19. Nuclear factor-kappa B signaling in skeletal muscle atrophy.

    PubMed

    Li, Hong; Malhotra, Shweta; Kumar, Ashok

    2008-10-01

    Skeletal muscle atrophy/wasting is a serious complication of a wide range of diseases and conditions such as aging, disuse, AIDS, chronic obstructive pulmonary disease, space travel, muscular dystrophy, chronic heart failure, sepsis, and cancer. Emerging evidence suggests that nuclear factor-kappa B (NF-kappaB) is one of the most important signaling pathways linked to the loss of skeletal muscle mass in various physiological and pathophysiological conditions. Activation of NF-kappaB in skeletal muscle leads to degradation of specific muscle proteins, induces inflammation and fibrosis, and blocks the regeneration of myofibers after injury/atrophy. Recent studies employing genetic mouse models have provided strong evidence that NF-kappaB can serve as an important molecular target for the prevention of skeletal muscle loss. In this article, we have outlined the current understanding regarding the role of NF-kappaB in skeletal muscle with particular reference to different models of muscle wasting and the development of novel therapy.

  20. Mitochondrial energetics is impaired in vivo in aged skeletal muscle.

    PubMed

    Gouspillou, Gilles; Bourdel-Marchasson, Isabelle; Rouland, Richard; Calmettes, Guillaume; Biran, Marc; Deschodt-Arsac, Véronique; Miraux, Sylvain; Thiaudiere, Eric; Pasdois, Philippe; Detaille, Dominique; Franconi, Jean-Michel; Babot, Marion; Trézéguet, Véronique; Arsac, Laurent; Diolez, Philippe

    2014-02-01

    With aging, most skeletal muscles undergo a progressive loss of mass and strength, a process termed sarcopenia. Aging-related defects in mitochondrial energetics have been proposed to be causally involved in sarcopenia. However, changes in muscle mitochondrial oxidative phosphorylation with aging remain a highly controversial issue, creating a pressing need for integrative approaches to determine whether mitochondrial bioenergetics are impaired in aged skeletal muscle. To address this issue, mitochondrial bioenergetics was first investigated in vivo in the gastrocnemius muscle of adult (6 months) and aged (21 months) male Wistar rats by combining a modular control analysis approach with (31) P magnetic resonance spectroscopy measurements of energetic metabolites. Using this innovative approach, we revealed that the in vivo responsiveness ('elasticity') of mitochondrial oxidative phosphorylation to contraction-induced increase in ATP demand is significantly reduced in aged skeletal muscle, a reduction especially pronounced under low contractile activities. In line with this in vivo aging-related defect in mitochondrial energetics, we found that the mitochondrial affinity for ADP is significantly decreased in mitochondria isolated from aged skeletal muscle. Collectively, the results of this study demonstrate that mitochondrial bioenergetics are effectively altered in vivo in aged skeletal muscle and provide a novel cellular basis for this phenomenon. PMID:23919652

  1. Skeletal muscle mitochondrial health and spinal cord injury

    PubMed Central

    O’Brien, Laura C; Gorgey, Ashraf S

    2016-01-01

    Mitochondria are the main source of cellular energy production and are dynamic organelles that undergo biogenesis, remodeling, and degradation. Mitochondrial dysfunction is observed in a number of disease states including acute and chronic central or peripheral nervous system injury by traumatic brain injury, spinal cord injury (SCI), and neurodegenerative disease as well as in metabolic disturbances such as insulin resistance, type II diabetes and obesity. Mitochondrial dysfunction is most commonly observed in high energy requiring tissues like the brain and skeletal muscle. In persons with chronic SCI, changes to skeletal muscle may include remarkable atrophy and conversion of muscle fiber type from oxidative to fast glycolytic, combined with increased infiltration of intramuscular adipose tissue. These changes contribute to a proinflammatory environment, glucose intolerance and insulin resistance. The loss of metabolically active muscle combined with inactivity predisposes individuals with SCI to type II diabetes and obesity. The contribution of skeletal muscle mitochondrial density and electron transport chain activity to the development of the aforementioned comorbidities following SCI is unclear. A better understanding of the mechanisms involved in skeletal muscle mitochondrial dynamics is imperative to designing and testing effective treatments for this growing population. The current editorial will review ways to study mitochondrial function and the importance of improving skeletal muscle mitochondrial health in clinical populations with a special focus on chronic SCI. PMID:27795944

  2. Estimation of skeletal muscle mass from body creatine content

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.

    1982-01-01

    Procedures have been developed for studying the effect of changes in gravitational loading on skeletal muscle mass through measurements of the body creatine content. These procedures were developed for studies of gravitational scale effects in a four-species model, comprising the hamster, rat, guinea pig, and rabbit, which provides a sufficient range of body size for assessment of allometric parameters. Since intracellular muscle creatine concentration varies among species, and with age within a given species, the concentration values for metabolically mature individuals of these four species were established. The creatine content of the carcass, skin, viscera, smooth muscle, and skeletal muscle was determined for each species. In addition, the skeletal muscle mass of the major body components was determined, as well as the total and fat-free masses of the body and carcass, and the percent skeletal muscle in each. It is concluded that these procedures are particularly useful for studying the effect of gravitational loading on the skeletal muscle content of the animal carcass, which is the principal weight-bearing organ of the body.

  3. The Mitochondrial Calcium Uniporter controls skeletal muscle trophism in vivo

    PubMed Central

    Mammucari, Cristina; Gherardi, Gaia; Zamparo, Ilaria; Raffaello, Anna; Boncompagni, Simona; Chemello, Francesco; Cagnin, Stefano; Braga, Alessandra; Zanin, Sofia; Pallafacchina, Giorgia; Zentilin, Lorena; Sandri, Marco; De Stefani, Diego; Protasi, Feliciano; Lanfranchi, Gerolamo; Rizzuto, Rosario

    2015-01-01

    Summary Muscle atrophy contributes to the poor prognosis of many pathophysiological conditions, but pharmacological therapies are still limited. Muscle activity leads to major swings in mitochondrial [Ca2+] which control aerobic metabolism, cell death and survival pathways. We have investigated in vivo the effects of mitochondrial Ca2+ homeostasis in skeletal muscle function and trophism, by overexpressing or silencing the Mitochondrial Calcium Uniporter (MCU). The results demonstrate that both in developing and in adult muscles MCU-dependent mitochondrial Ca2+ uptake has a marked trophic effect that does not depend on aerobic control, but impinges on two major hypertrophic pathways of skeletal muscle, PGC-1α4 and IGF1-AKT/PKB. In addition, MCU overexpression protects from denervation-induced atrophy. These data reveal a novel Ca2+-dependent organelle-to-nucleus signaling route, which links mitochondrial function to the control of muscle mass and may represent a possible pharmacological target in conditions of muscle loss. PMID:25732818

  4. Challenges to acellular biological scaffold mediated skeletal muscle tissue regeneration.

    PubMed

    Corona, Benjamin T; Greising, Sarah M

    2016-10-01

    Volumetric muscle loss (VML) injuries present a complex and heterogeneous clinical problem that results in a chronic loss of muscle tissue and strength. The primary limitation to muscle tissue regeneration after VML injury is the frank loss of all native muscle constituents in the defect, especially satellite cells and the basal lamina. Recent advancements in regenerative medicine have set forth encouraging and emerging translational and therapeutic options for these devastating injuries including the surgical implantation of acellular biological scaffolds. While these biomaterials can modulate the wound environment, the existing data do not support their capacity to promote appreciable muscle fiber regeneration that can contribute to skeletal muscle tissue functional improvements. An apparent restriction of endogenous satellite cell (i.e., pax7(+)) migration to acellular biological scaffolds likely underlies this deficiency. This work critically evaluates the role of an acellular biological scaffold in orchestrating skeletal muscle tissue regeneration, specifically when used as a regenerative medicine approach for VML injury. PMID:27472161

  5. Challenges to acellular biological scaffold mediated skeletal muscle tissue regeneration.

    PubMed

    Corona, Benjamin T; Greising, Sarah M

    2016-10-01

    Volumetric muscle loss (VML) injuries present a complex and heterogeneous clinical problem that results in a chronic loss of muscle tissue and strength. The primary limitation to muscle tissue regeneration after VML injury is the frank loss of all native muscle constituents in the defect, especially satellite cells and the basal lamina. Recent advancements in regenerative medicine have set forth encouraging and emerging translational and therapeutic options for these devastating injuries including the surgical implantation of acellular biological scaffolds. While these biomaterials can modulate the wound environment, the existing data do not support their capacity to promote appreciable muscle fiber regeneration that can contribute to skeletal muscle tissue functional improvements. An apparent restriction of endogenous satellite cell (i.e., pax7(+)) migration to acellular biological scaffolds likely underlies this deficiency. This work critically evaluates the role of an acellular biological scaffold in orchestrating skeletal muscle tissue regeneration, specifically when used as a regenerative medicine approach for VML injury.

  6. Naturally derived and synthetic scaffolds for skeletal muscle reconstruction.

    PubMed

    Wolf, Matthew T; Dearth, Christopher L; Sonnenberg, Sonya B; Loboa, Elizabeth G; Badylak, Stephen F

    2015-04-01

    Skeletal muscle tissue has an inherent capacity for regeneration following injury. However, severe trauma, such as volumetric muscle loss, overwhelms these natural muscle repair mechanisms prompting the search for a tissue engineering/regenerative medicine approach to promote functional skeletal muscle restoration. A desirable approach involves a bioscaffold that simultaneously acts as an inductive microenvironment and as a cell/drug delivery vehicle to encourage muscle ingrowth. Both biologically active, naturally derived materials (such as extracellular matrix) and carefully engineered synthetic polymers have been developed to provide such a muscle regenerative environment. Next generation naturally derived/synthetic "hybrid materials" would combine the advantageous properties of these materials to create an optimal platform for cell/drug delivery and possess inherent bioactive properties. Advances in scaffolds using muscle tissue engineering are reviewed herein.

  7. Premature Aging in Skeletal Muscle Lacking Serum Response Factor

    PubMed Central

    Lahoute, Charlotte; Sotiropoulos, Athanassia; Favier, Marilyne; Guillet-Deniau, Isabelle; Charvet, Claude; Ferry, Arnaud; Butler-Browne, Gillian; Metzger, Daniel; Tuil, David; Daegelen, Dominique

    2008-01-01

    Aging is associated with a progressive loss of muscle mass, increased adiposity and fibrosis that leads to sarcopenia. At the molecular level, muscle aging is known to alter the expression of a variety of genes but very little is known about the molecular effectors involved. SRF (Serum Response Factor) is a crucial transcription factor for muscle-specific gene expression and for post-natal skeletal muscle growth. To assess its role in adult skeletal muscle physiology, we developed a post-mitotic myofiber-specific and tamoxifen-inducible SRF knockout model. Five months after SRF loss, no obvious muscle phenotype was observed suggesting that SRF is not crucial for myofiber maintenance. However, mutant mice progressively developed IIB myofiber-specific atrophy accompanied by a metabolic switch towards a more oxidative phenotype, muscular lipid accumulation, sarcomere disorganization and fibrosis. After injury, mutant muscles exhibited an altered regeneration process, showing smaller regenerated fibers and persistent fibrosis. All of these features are strongly reminiscent of abnormalities encountered in aging skeletal muscle. Interestingly, we also observed an important age associated decrease in SRF expression in mice and human muscles. Altogether, these results suggest that a naturally occurring SRF down-regulation precedes and contributes to the muscle aging process. Indeed, triggering SRF loss in the muscles of mutant mice results in an accelerated aging process. PMID:19079548

  8. Chemokine receptor CCR2 involvement in skeletal muscle regeneration.

    PubMed

    Warren, Gordon L; Hulderman, Tracy; Mishra, Dawn; Gao, Xin; Millecchia, Lyndell; O'Farrell, Laura; Kuziel, William A; Simeonova, Petia P

    2005-03-01

    Chemokines, signaling through the CCR2 receptor, are highly expressed in injured skeletal muscle. Their target specificity depends on the cellular expression of the specific receptors. Here we demonstrate that, in freeze-injured muscle, CCR2 co-localized with Mac-3, a marker of activated macrophages as well as with myogenin, a marker of activated muscle precursor cells. The degeneration/regeneration process in skeletal muscle of CCR2-/- and wild-type mice was not significantly different at day 3. However in contrast to the regenerated muscle of the wild-type mice, the muscle from CCR2-/- mice was characterized by impaired regeneration, inflammation, and fibrotic response at day 14, increased fat infiltration, fibrosis, and calcification at day 21, and impaired strength recovery until at least 28 days post-injury. Consistently, the increased expression of Mac-1 and TNF-alpha was prolonged in the injured muscle of CCR2-/- mice. The expression pattern of the myogenic factors MyoD and myogenin was similar for both types of mice, while NCAM, which is associated with the initiation of fusion of muscle precursor cells, was more increased in the injured muscle of CCR2-/- mice. In conclusion, the study delineates that signaling through CCR2 is involved in muscle precursor cell activities necessary for complete and rapid regeneration of injured skeletal muscle. PMID:15601671

  9. Action of Obestatin in Skeletal Muscle Repair: Stem Cell Expansion, Muscle Growth, and Microenvironment Remodeling

    PubMed Central

    Gurriarán-Rodríguez, Uxía; Santos-Zas, Icía; González-Sánchez, Jessica; Beiroa, Daniel; Moresi, Viviana; Mosteiro, Carlos S; Lin, Wei; Viñuela, Juan E; Señarís, José; García-Caballero, Tomás; Casanueva, Felipe F; Nogueiras, Rubén; Gallego, Rosalía; Renaud, Jean-Marc; Adamo, Sergio; Pazos, Yolanda; Camiña, Jesús P

    2015-01-01

    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration. PMID:25762009

  10. Action of obestatin in skeletal muscle repair: stem cell expansion, muscle growth, and microenvironment remodeling.

    PubMed

    Gurriarán-Rodríguez, Uxía; Santos-Zas, Icía; González-Sánchez, Jessica; Beiroa, Daniel; Moresi, Viviana; Mosteiro, Carlos S; Lin, Wei; Viñuela, Juan E; Señarís, José; García-Caballero, Tomás; Casanueva, Felipe F; Nogueiras, Rubén; Gallego, Rosalía; Renaud, Jean-Marc; Adamo, Sergio; Pazos, Yolanda; Camiña, Jesús P

    2015-06-01

    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration.

  11. Biomimetic Scaffolds for Regeneration of Volumetric Muscle Loss in Skeletal Muscle Injuries

    PubMed Central

    Grasman, Jonathan M.; Zayas, Michelle J.; Page, Ray; Pins, George D.

    2015-01-01

    Skeletal muscle injuries typically result from traumatic incidents such as combat injuries where soft-tissue extremity injuries are present in one of four cases. Further, about 4.5 million reconstructive surgical procedures are performed annually as a result of car accidents, cancer ablation, or cosmetic procedures. These combat- and trauma-induced skeletal muscle injuries are characterized by volumetric muscle loss (VML), which significantly reduces the functionality of the injured muscle. While skeletal muscle has an innate repair mechanism, it is unable to compensate for VML injuries because large amounts of tissue including connective tissue and basement membrane are removed or destroyed. This results in in a significant need to develop off-the-shelf biomimetic scaffolds to direct skeletal muscle regeneration. Here, the structure and organization of native skeletal muscle tissue is described in order to reveal clear design parameters that are necessary for scaffolds to mimic in order to successfully regenerate muscular tissue. We review the literature with respect to the materials and methodologies used to develop scaffolds for skeletal muscle tissue regeneration as well as the limitations of these materials. We further discuss the variety of cell sources and different injury models to provide some context for the multiple approaches used to evaluate these scaffold materials. Recent findings are highlighted to address the state of the field and directions are outlined for future strategies, both in scaffold design and in the use of different injury models to evaluate these materials, for regenerating functional skeletal muscle. PMID:26219862

  12. Rapamycin blocks leucine-induced protein synthesis by suppressing mTORC1 activation in skeletal muscle of neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine (Leu). To elucidate the molecular mechanism by which Leu stimulates protein synthesis in neonatal muscle, overnight fasted 7-day-old piglets were...

  13. Mechanisms of nascent fiber formation during avian skeletal muscle hypertrophy

    NASA Technical Reports Server (NTRS)

    McCormick, K. M.; Schultz, E.

    1992-01-01

    This study examined two putative mechanisms of new fiber formation in postnatal skeletal muscle, namely longitudinal fragmentation of existing fibers and de novo formation. The relative contributions of these two mechanisms to fiber formation in hypertrophying anterior latissimus dorsi (ALD) muscle were assessed by quantitative analysis of their nuclear populations. Muscle hypertrophy was induced by wing-weighting for 1 week. All nuclei formed during the weighting period were labeled by continuous infusion of 5-bromo-2'-deoxyuridine (BrdU), a thymidine analog, and embryonic-like fibers were identified using an antibody to ventricular-like embryonic (V-EMB) myosin. The number of BrdU-labeled and unlabeled nuclei in V-EMB-positive fibers were counted. Wing-weighting resulted in significant muscle enlargement and the appearance of many V-EMB+ fibers. The majority of V-EMB+ fibers were completely independent of mature fibers and had a nuclear density characteristics of developing fibers. Furthermore, nearly 100% of the nuclei in independent V-EMB+ fibers were labeled. These findings strongly suggest that most V-EMB+ fibers were nascent fibers formed de novo during the weighting period by satellite cell activation and fusion. Nascent fibers were found primarily in the space between fascicles where they formed a complex anastomosing network of fibers running at angles to one another. Although wing-weighting induced an increase in the number of branched fibers, there was no evidence that V-EMB+ fibers were formed by longitudinal fragmentation. The location of newly formed fibers in wing-weighted and regenerating ALD muscle was compared to determine whether satellite cells in the ALD muscle were unusual in that, if stimulated to divide, they would form fibers in the inter- and intrafascicular space. In contrast to wing-weighted muscle, nascent fibers were always found closely associated with necrotic fibers. These results suggest that wing-weighting is not simply another

  14. Roles of chondroitin sulfate proteoglycan 4 in fibrogenic/adipogenic differentiation in skeletal muscle tissues.

    PubMed

    Takeuchi, Shiho; Nakano, Shin-Ichi; Nakamura, Katsuyuki; Ozoe, Atsufumi; Chien, Peggie; Yoshihara, Hidehito; Hakuno, Fumihiko; Matsuwaki, Takashi; Saeki, Yasushi; Takahashi, Shin-Ichiro; Yamanouchi, Keitaro; Nishihara, Masugi

    2016-10-01

    Intramuscular adipose tissue and fibrous tissue are observed in some skeletal muscle pathologies such as Duchenne muscular dystrophy and sarcopenia, and affect muscle strength and myogenesis. They originate from common fibrogenic/adipogenic cells in the skeletal muscle. Thus, elucidating the regulatory mechanisms underlying fibrogenic/adipogenic cell differentiation is an important step toward the mediation of these disorders. Previously, we established a highly adipogenic progenitor clone, 2G11, from rat skeletal muscle and showed that basic fibroblast growth factor (bFGF) is pro-adipogenic in these cells. Here, we demonstrated that 2G11 cells give rise to fibroblasts upon transforming growth factor (TGF)-β1 stimulation, indicating that they possess mesenchymal progenitor cells (MPC)-like characteristics. The previously reported MPC marker PDGFRα is expressed in other cell populations. Accordingly, we produced monoclonal antibodies that specifically bind to 2G11 cell surface antigens and identified chondroitin sulfate proteoglycan 4 (CSPG4) as a potential MPC marker. Based on an RNA interference analysis, we found that CSPG4 is involved in both the pro-adipogenic effect of bFGF and in TGF-β-induced alpha smooth muscle actin expression and stress fiber formation. By establishing an additional marker for MPC detection and characterizing its role in fibrogenic/adipogenic differentiation, these results will facilitate the development of effective treatments for skeletal muscle pathologies. PMID:27582000

  15. Skeletal Muscle as a Peripheral Modifier of Behavior

    ERIC Educational Resources Information Center

    Jenkins, Robert R.

    1978-01-01

    Discusses how muscle can exert an influence on the behavioral potential of an organism and attempts to refute the "all or none law" by demonstrating that skeletal muscle is not merely a slave of the central nervous system. (Author/MA)

  16. Acylcarnitines: potential implications for skeletal muscle insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin resistance is linked to increased acylcarnitine species in a number of tissues including skeletal muscle, due to incomplete fatty acid oxidation (FAO). It is not known if acylcarnitines participate in muscle insulin resistance or simply reflect dysregulated metabolism. The aim of this stud...

  17. Physiologic and biochemical aspects of skeletal muscle denervation and reinnervation

    NASA Technical Reports Server (NTRS)

    Max, S. R.; Mayer, R. F.

    1984-01-01

    Some of the physiologic and biochemical changes that occur in mammalian skeletal muscle following denervation and reinnervation are considered and some comparisons are made with changes observed following altered motor function. The nature of the trophic influence by which nerves control muscle properties are discussed, including the effects of choline acetyltransferase and acetylcholinesterase and the role of the acetylcholine receptor.

  18. The impact of vitamin D on skeletal muscle function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review discusses the clinical and laboratory studies that have examined a role of vitamin D in skeletal muscle. Many observational studies, mainly in older populations, indicate that vitamin D status is positively associated with muscle strength and physical performance and inversely associated...

  19. Vitamin D and its role in skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review discusses the clinical and laboratory studies that have examined a role of vitamin D in skeletal muscle. Many observational studies, mainly in older populations, indicate that vitamin D status is positively associated with muscle strength and physical performance and inversely associated...

  20. Molecular responses to moderate endurance exercise in skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined alterations in skeletal-muscle growth and atrophy-related molecular events after a single bout of moderate-intensity endurance exercise. Muscle biopsies were obtained from 10 men (23 +/- 1 yr, body mass 80 +/- 2 kg, and VO(2peak) 45 +/- 1 ml x kg'¹ x min'¹) immediately (0 hr) and...

  1. Concept Developed for an Implanted Stimulated Muscle-Powered Piezoelectric Generator

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David; Gustafson, Kenneth

    2005-01-01

    Implanted electronic devices are typically powered by batteries or transcutaneous power transmission. Batteries must be replaced or recharged, and transcutaneous power sources burden the patient or subject with external equipment prone to failure. A completely self-sustaining implanted power source would alleviate these limitations. Skeletal muscle provides an available autologous power source containing native chemical energy that produces power in excess of the requirements for muscle activation by motor nerve stimulation. A concept has been developed to convert stimulated skeletal muscle power into electrical energy (see the preceding illustration). We propose to connect a piezoelectric generator between a muscle tendon and bone. Electrically stimulated muscle contractions would exert force on the piezoelectric generator, charging a storage circuit that would be used to power the stimulator and other devices.

  2. Obesity, insulin resistance, and skeletal muscle nitric oxide synthase

    PubMed Central

    Kraus, Raymond M.; Houmard, Joseph A.; Kraus, William E.; Tanner, Charles J.; Pierce, Joseph R.; Choi, Myung Dong

    2012-01-01

    The molecular mechanisms responsible for impaired insulin action have yet to be fully identified. Rodent models demonstrate a strong relationship between insulin resistance and an elevation in skeletal muscle inducible nitric oxide synthase (iNOS) expression; the purpose of this investigation was to explore this potential relationship in humans. Sedentary men and women were recruited to participate (means ± SE: nonobese, body mass index = 25.5 ± 0.3 kg/m2, n = 13; obese, body mass index = 36.6 ± 0.4 kg/m2, n = 14). Insulin sensitivity was measured using an intravenous glucose tolerance test with the subsequent modeling of an insulin sensitivity index (SI). Skeletal muscle was obtained from the vastus lateralis, and iNOS, endothelial nitric oxide synthase (eNOS), and neuronal nitric oxide synthase (nNOS) content were determined by Western blot. SI was significantly lower in the obese compared with the nonobese group (∼43%; P < 0.05), yet skeletal muscle iNOS protein expression was not different between nonobese and obese groups. Skeletal muscle eNOS protein was significantly higher in the nonobese than the obese group, and skeletal muscle nNOS protein tended to be higher (P = 0.054) in the obese compared with the nonobese group. Alternative analysis based on SI (high and low tertile) indicated that the most insulin-resistant group did not have significantly more skeletal muscle iNOS protein than the most insulin-sensitive group. In conclusion, human insulin resistance does not appear to be associated with an elevation in skeletal muscle iNOS protein in middle-aged individuals under fasting conditions. PMID:22797309

  3. Cytokines derived from cultured skeletal muscle cells after mechanical strain promote neutrophil chemotaxis in vitro.

    PubMed

    Peterson, Jennifer M; Pizza, Francis X

    2009-01-01

    We tested the hypothesis that cytokines derived from differentiated skeletal muscle cells in culture induce neutrophil chemotaxis after mechanical strain. Flexible-bottom plates with cultured human muscle cells attached were exposed to mechanical strain regimens (ST) of 0, 10, 30, 50, or 70 kPa of negative pressure. Conditioned media were tested for the ability to induce chemotaxis of human blood neutrophils in vitro and for a marker of muscle cell injury (lactate dehydrogenase). Conditioned media promoted neutrophil chemotaxis in a manner that was related both to the degree of strain and to the magnitude of muscle cell injury (ST 70 > ST 50 > ST 30). Protein profiling using a multiplex cytokine assay revealed that mechanical strain increased the presence of IL-8, granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor, monocyte chemotactic protein (MCP)-1, and IL-6 in conditioned media. We also detected 14 other cytokines in conditioned media from control cultures that did not respond to mechanical strain. Neutralization of IL-8 and GM-CSF completely inhibited the chemotactic response for ST 30 and ST 50 and reduced the chemotactic response for ST 70 by 40% and 47%, respectively. Neutralization of MCP-1 or IL-6 did not reduce chemotaxis after ST 70. This study enhances our understanding of the immunobiology of skeletal muscle by revealing that skeletal muscle cell-derived IL-8 and GM-CSF promote neutrophil chemotaxis after injurious mechanical strain.

  4. Angiotensin 1-7 improves insulin sensitivity by increasing skeletal muscle glucose uptake in vivo.

    PubMed

    Echeverría-Rodríguez, Omar; Del Valle-Mondragón, Leonardo; Hong, Enrique

    2014-01-01

    The renin-angiotensin system (RAS) regulates skeletal muscle insulin sensitivity through different mechanisms. The overactivation of the ACE (angiotensin-converting enzyme)/Ang (angiotensin) II/AT1R (Ang II type 1 receptor) axis has been associated with the development of insulin resistance, whereas the stimulation of the ACE2/Ang 1-7/MasR (Mas receptor) axis improves insulin sensitivity. The in vivo mechanisms by which this axis enhances skeletal muscle insulin sensitivity are scarcely known. In this work, we investigated whether rat soleus muscle expresses the ACE2/Ang 1-7/MasR axis and determined the effect of Ang 1-7 on rat skeletal muscle glucose uptake in vivo. Western blot analysis revealed the expression of ACE2 and MasR, while Ang 1-7 levels were detected in rat soleus muscle by capillary zone electrophoresis. The euglycemic clamp exhibited that Ang 1-7 by itself did not promote glucose transport, but it increased insulin-stimulated glucose disposal in the rat. In a similar manner, captopril (an ACE inhibitor) enhanced insulin-induced glucose uptake and this effect was blocked by the MasR antagonist A-779. Our results show for the first time that rat soleus muscle expresses the ACE2/Ang 1-7/MasR axis of the RAS, and Ang 1-7 improves insulin sensitivity by enhancing insulin-stimulated glucose uptake in rat skeletal muscle in vivo. Thus, endogenous (systemic and/or local) Ang 1-7 could regulate insulin-mediated glucose transport in vivo.

  5. Resistance Exercise Training Alters Mitochondrial Function in Human Skeletal Muscle

    PubMed Central

    Porter, Craig; Reidy, Paul T.; Bhattarai, Nisha; Sidossis, Labros S.; Rasmussen, Blake B.

    2014-01-01

    Introduction Loss of mitochondrial competency is associated with several chronic illnesses. Therefore, strategies that maintain or increase mitochondrial function will likely be of benefit in a number of clinical settings. Endurance exercise has long been known to increase mitochondrial function in skeletal muscle. Comparatively little is known regarding the impact of resistance exercise training on skeletal muscle mitochondrial respiratory function. Purpose The purpose of the current study was to determine the impact of chronic resistance training on skeletal muscle mitochondrial respiratory capacity and function. Methods Here, we studied the impact of a 12-week resistance exercise training program on skeletal muscle mitochondrial function in eleven young healthy men. Muscle biopsies were collected before and after the 12-week training program and mitochondrial respiratory capacity determined in permeabilized myofibers by high-resolution respirometry. Results Resistance exercise training increased lean body mass and quadriceps muscle strength by 4 and 15%, respectively (P<0.001). Coupled mitochondria respiration supported by complex I, and complex I and II substrates, increased by 2- and 1.4-fold, respectively (P<0.01). The ratio of coupled complex I supported respiration to maximal respiration increased with resistance exercise training (P<0.05), as did complex I protein abundance (P<0.05), while the substrate control ratio for succinate was reduced after resistance exercise training (P<0.001). Transcripts responsible for proteins critical to electron transfer and NAD+ production increased with training (P<0.05), while transcripts involved in mitochondrial biogenesis were unaltered. Conclusion Collectively, 12-weeks of resistance exercise training resulted in qualitative and quantitative changes in skeletal muscle mitochondrial respiration. This adaptation occurs with modest changes in mitochondrial proteins and transcript expression. Resistance exercise training

  6. High skeletal muscle adenylate cyclase in malignant hyperthermia.

    PubMed Central

    Willner, J H; Cerri, C G; Wood, D S

    1981-01-01

    Malignant hyperthermia occurs in humans with several congenital myopathies, usually in response to general anesthesia. Commonly, individuals who develop this syndrome lack symptoms of muscle disease, and their muscle lacks specific pathological changes. A biochemical marker for this myopathy has not previously been available; we found activity of adenylate cyclase and content of cyclic AMP to be abnormally high in skeletal muscle. Secondary modification of protein phosphorylation could explain observed abnormalities of phosphorylase activation and sarcoplasmic reticulum function. PMID:6271806

  7. Action of GH on skeletal muscle function: molecular and metabolic mechanisms.

    PubMed

    Chikani, Viral; Ho, Ken K Y

    2014-02-01

    Skeletal muscle is a target tissue of GH. Based on its anabolic properties, it is widely accepted that GH enhances muscle performance in sports and muscle function in the elderly. This paper critically reviews information on the effects of GH on muscle function covering structure, protein metabolism, the role of IGF1 mediation, bioenergetics and performance drawn from molecular, cellular and physiological studies on animals and humans. GH increases muscle strength by enhancing muscle mass without affecting contractile force or fibre composition type. GH stimulates whole-body protein accretion with protein synthesis occurring in muscular and extra-muscular sites. The energy required to power muscle function is derived from a continuum of anaerobic and aerobic sources. Molecular and functional studies provide evidence that GH stimulates the anaerobic and suppresses the aerobic energy system, in turn affecting power-based functional measures in a time-dependent manner. GH exerts complex multi-system effects on skeletal muscle function in part mediated by the IGF system.

  8. Decellularized Human Skeletal Muscle as Biologic Scaffold for Reconstructive Surgery

    PubMed Central

    Porzionato, Andrea; Sfriso, Maria Martina; Pontini, Alex; Macchi, Veronica; Petrelli, Lucia; Pavan, Piero G.; Natali, Arturo N.; Bassetto, Franco; Vindigni, Vincenzo; De Caro, Raffaele

    2015-01-01

    Engineered skeletal muscle tissues have been proposed as potential solutions for volumetric muscle losses, and biologic scaffolds have been obtained by decellularization of animal skeletal muscles. The aim of the present work was to analyse the characteristics of a biologic scaffold obtained by decellularization of human skeletal muscles (also through comparison with rats and rabbits) and to evaluate its integration capability in a rabbit model with an abdominal wall defect. Rat, rabbit and human muscle samples were alternatively decellularized with two protocols: n.1, involving sodium deoxycholate and DNase I; n.2, trypsin-EDTA and Triton X-NH4OH. Protocol 2 proved more effective, removing all cellular material and maintaining the three-dimensional networks of collagen and elastic fibers. Ultrastructural analyses with transmission and scanning electron microscopy confirmed the preservation of collagen, elastic fibres, glycosaminoglycans and proteoglycans. Implantation of human scaffolds in rabbits gave good results in terms of integration, although recellularization by muscle cells was not completely achieved. In conclusion, human skeletal muscles may be effectively decellularized to obtain scaffolds preserving the architecture of the extracellular matrix and showing mechanical properties suitable for implantation/integration. Further analyses will be necessary to verify the suitability of these scaffolds for in vitro recolonization by autologous cells before in vivo implantation. PMID:26140375

  9. Compensatory Hypertrophy of Skeletal Muscle: Contractile Characteristics

    ERIC Educational Resources Information Center

    Ianuzzo, C. D.; Chen, V.

    1977-01-01

    Describes an experiment using rats that demonstrates contractile characteristics of normal and hypertrophied muscle. Compensatory hypertrophy of the plantaris muscle is induced by surgical removal of the synergistic gastrocnemium muscle. Includes methods for determination of contractile properties of normal and hypertrophied muscle and…

  10. Hypodynamic and hypokinetic condition of skeletal muscles

    NASA Technical Reports Server (NTRS)

    Katinas, G. S.; Oganov, V. S.; Potapov, A. N.

    1980-01-01

    Data are presented in regard to the effect of unilateral brachial amputation on the physiological characteristics of two functionally different muscles, the brachial muscle (flexor of the brachium) and the medial head of the brachial triceps muscle (extensor of the brachium), which in rats represents a separate muscle. Hypokinesia and hypodynamia were studied.

  11. Circadian clock regulation of skeletal muscle growth and repair.

    PubMed

    Chatterjee, Somik; Ma, Ke

    2016-01-01

    Accumulating evidence indicates that the circadian clock, a transcriptional/translational feedback circuit that generates ~24-hour oscillations in behavior and physiology, is a key temporal regulatory mechanism involved in many important aspects of muscle physiology. Given the clock as an evolutionarily-conserved time-keeping mechanism that synchronizes internal physiology to environmental cues, locomotor activities initiated by skeletal muscle enable entrainment to the light-dark cycles on earth, thus ensuring organismal survival and fitness. Despite the current understanding of the role of molecular clock in preventing age-related sarcopenia, investigations into the underlying molecular pathways that transmit clock signals to the maintenance of skeletal muscle growth and function are only emerging. In the current review, the importance of the muscle clock in maintaining muscle mass during development, repair and aging, together with its contribution to muscle metabolism, will be discussed. Based on our current understandings of how tissue-intrinsic muscle clock functions in the key aspects muscle physiology, interventions targeting the myogenic-modulatory activities of the clock circuit may offer new avenues for prevention and treatment of muscular diseases. Studies of mechanisms underlying circadian clock function and regulation in skeletal muscle warrant continued efforts. PMID:27540471

  12. Circadian clock regulation of skeletal muscle growth and repair

    PubMed Central

    Chatterjee, Somik; Ma, Ke

    2016-01-01

    Accumulating evidence indicates that the circadian clock, a transcriptional/translational feedback circuit that generates ~24-hour oscillations in behavior and physiology, is a key temporal regulatory mechanism involved in many important aspects of muscle physiology. Given the clock as an evolutionarily-conserved time-keeping mechanism that synchronizes internal physiology to environmental cues, locomotor activities initiated by skeletal muscle enable entrainment to the light-dark cycles on earth, thus ensuring organismal survival and fitness. Despite the current understanding of the role of molecular clock in preventing age-related sarcopenia, investigations into the underlying molecular pathways that transmit clock signals to the maintenance of skeletal muscle growth and function are only emerging. In the current review, the importance of the muscle clock in maintaining muscle mass during development, repair and aging, together with its contribution to muscle metabolism, will be discussed. Based on our current understandings of how tissue-intrinsic muscle clock functions in the key aspects muscle physiology, interventions targeting the myogenic-modulatory activities of the clock circuit may offer new avenues for prevention and treatment of muscular diseases. Studies of mechanisms underlying circadian clock function and regulation in skeletal muscle warrant continued efforts. PMID:27540471

  13. Use It or Lose It: Skeletal Muscle Function and Performance Results from Space Shuttle

    NASA Technical Reports Server (NTRS)

    Ryder, Jeffrey

    2011-01-01

    The Space Shuttle Program provided a wealth of valuable information regarding the adaptations of skeletal muscle to weightlessness. Studies conducted during the Extended Duration Orbiter Medical Project (EDOMP) represented ground breaking work on the effects of spaceflight on muscle form and function from applied human research to cellular adaptations. Results from detailed supplementary objective (DSO) 477 demonstrated that muscle strength losses could occur rapidly in response to short-duration spaceflight. The effects of spaceflight-induced unloading were primarily restricted to postural muscles such as those of the back as well as the knee extensors. DSO 606 provided evidence from MRI that the observed strength losses were partially accounted for by a reduction in the size of the individual muscles. Muscle biopsy studies conducted during DSO 475 were able to show muscle atrophy in individual muscle fibers from the quadriceps muscles. Reduced quadriceps muscle size and strength was also observed during the 17-d Life and Microgravity Spacelab mission aboard STS-78. Multiple maximal strength tests were conducted in flight on the calf muscles and it has been hypothesized that these high force contractions may have acted as a countermeasure. Muscle fiber mechanics were studied on calf muscle samples pre- and postflight. While some responses were crewmember specific, the general trend was that muscle fiber force production dropped and shortening velocity increased. The increased shortening velocity helped to maintain muscle fiber power. Numerous rodent studies performed during Shuttle missions suggest that many of the effects reported in Shuttle crewmembers could be due to lesions in the cellular signaling pathways that stimulate protein synthesis as well as an increase in the mechanisms that up-regulate protein breakdown. The results have important implications regarding the overall health and performance capabilities of future crewmembers that will venture beyond

  14. Skeletal muscle tissue engineering: strategies for volumetric constructs

    PubMed Central

    Cittadella Vigodarzere, Giorgio; Mantero, Sara

    2014-01-01

    Skeletal muscle tissue is characterized by high metabolic requirements, defined structure and high regenerative potential. As such, it constitutes an appealing platform for tissue engineering to address volumetric defects, as proven by recent works in this field. Several issues common to all engineered constructs constrain the variety of tissues that can be realized in vitro, principal among them the lack of a vascular system and the absence of reliable cell sources; as it is, the only successful tissue engineering constructs are not characterized by active function, present limited cellular survival at implantation and possess low metabolic requirements. Recently, functionally competent constructs have been engineered, with vascular structures supporting their metabolic requirements. In addition to the use of biochemical cues, physical means, mechanical stimulation and the application of electric tension have proven effective in stimulating the differentiation of cells and the maturation of the constructs; while the use of co-cultures provided fine control of cellular developments through paracrine activity. This review will provide a brief analysis of some of the most promising improvements in the field, with particular attention to the techniques that could prove easily transferable to other branches of tissue engineering. PMID:25295011

  15. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    SciTech Connect

    Hamrick, Mark W.; Herberg, Samuel; Arounleut, Phonepasong; He, Hong-Zhi; Shiver, Austin; Qi, Rui-Qun; Zhou, Li; Isales, Carlos M.; and others

    2010-09-24

    Research highlights: {yields} Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. {yields} We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. {yields} Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. {yields} Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient

  16. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    SciTech Connect

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X.

    2010-04-01

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-{gamma} co-activator-1 (PGC-1{alpha}) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.

  17. Uncovering the exercise-related proteome signature in skeletal muscle.

    PubMed

    Padrão, Ana Isabel; Ferreira, Rita; Amado, Francisco; Vitorino, Rui; Duarte, José Alberto

    2016-03-01

    Exercise training has been recommended as a nonpharmacological strategy for the prevention and attenuation of skeletal muscle atrophy in distinct pathophysiological conditions. Despite the well-established phenotypic alterations, the molecular mechanisms underlying exercise-induced skeletal muscle remodeling are poorly characterized. Proteomics based on mass spectrometry have been successfully applied for the characterization of skeletal muscle proteome, representing a pivotal approach for the wide characterization of the molecular networks that lead to skeletal muscle remodeling. Nevertheless, few studies were performed to characterize the exercise-induced proteome remodeling of skeletal muscle, with only six research papers focused on the cross-talk between exercise and pathophysiological conditions. In order to add new insights on the impact of distinct exercise programs on skeletal muscle proteome, molecular network analysis was performed with bioinformatics tools. This analysis highlighted an exercise-related proteome signature characterized by the up-regulation of the capacity for ATP generation, oxygen delivery, antioxidant capacity and regulation of mitochondrial protein synthesis. Chronic endurance training up-regulates the tricarboxylic acid cycle and oxidative phosphorylation system, whereas the release of calcium ion into cytosol and amino acid metabolism are the biological processes up-regulated by a single bout of exercise. Other issues as exercise intensity, load, mode and regimen as well as muscle type also influence the exercise-induced proteome signature. The comprehensive analysis of the molecular networks modulated by exercise training in health and disease, taking in consideration all these variables, might not only support the therapeutic effect of exercise but also highlight novel targets for the development of enhanced pharmacological strategies. PMID:26632760

  18. Relative appendicular skeletal muscle mass is associated with isokinetic muscle strength and balance in healthy collegiate men.

    PubMed

    Kim, Sung-Eun; Hong, Ju; Cha, Jun-Youl; Park, Jung-Min; Eun, Denny; Yoo, Jaehyun; Jee, Yong-Seok

    2016-11-01

    There are few studies on the relationship between skeletal muscle mass and balance in the young ages. We investigated the relationship between appendicular skeletal muscle mass, isokinetic muscle strength of lower extremity, and balance among healthy young men using relative skeletal muscle index. Thirty men were grouped according to relative appendicular skeletal muscle mass index: higher skeletal muscle group (n = 15) and lower skeletal muscle group (n = 15). Static and dynamic balance abilities were measured using the following: a test where participants stood on one leg with eyes closed, a modified Clinical Test of Sensory Interaction on Balance (mCTSIB) with eyes open and eyes closed, a stability test, and limits of stability test. The muscle strength of lower extremities was measured with an isokinetic analyser in hip, knee, and ankle joints. Participants with higher appendicular skeletal muscle mass were significantly more stable in maintaining dynamic balance than those with lower appendicular skeletal muscle mass. Moreover, appendicular skeletal muscle mass index was positively correlated with dynamic balance ability. Participants with higher appendicular skeletal muscle mass had stronger strength in the lower extremity, and there were significant differences in the isokinetic torque ratios between groups. From these results, it can be inferred that higher appendicular skeletal muscle mass relates to muscle strength and the alteration in the peak torque ratio of the lower extremity, contributing to the maintenance of balance.

  19. Glucose-transporter (GLUT4) protein content in oxidative and glycolytic skeletal muscles from calf and goat.

    PubMed

    Hocquette, J F; Bornes, F; Balage, M; Ferre, P; Grizard, J; Vermorel, M

    1995-01-15

    It is well accepted that skeletal muscle is a major glucose-utilizing tissue and that insulin is able to stimulate in vivo glucose utilization in ruminants as in monogastrics. In order to determine precisely how glucose uptake is controlled in various ruminant muscles, particularly by insulin, this study was designed to investigate in vitro glucose transport and insulin-regulatable glucose-transporter protein (GLUT4) in muscle from calf and goat. Our data demonstrate that glucose transport is the rate-limiting step for glucose uptake in bovine fibre strips, as in rat muscle. Insulin increases the rate of in vitro glucose transport in bovine muscle, but to a lower extent than in rat muscle. A GLUT4-like protein was detected by immunoblot assay in all insulin-responsive tissues from calf and goat (heart, skeletal muscle, adipose tissue) but not in liver, brain, erythrocytes and intestine. Unlike the rat, bovine and goat GLUT4 content is higher in glycolytic and oxido-glycolytic muscles than in oxidative muscles. In conclusion, using both a functional test (insulin stimulation of glucose transport) and an immunological approach, this study demonstrates that ruminant muscles express GLUT4 protein. Our data also suggest that, in ruminants, glucose is the main energy-yielding substrate for glycolytic but not for oxidative muscles, and that insulin responsiveness may be lower in oxidative than in other skeletal muscles.

  20. Glucose-transporter (GLUT4) protein content in oxidative and glycolytic skeletal muscles from calf and goat.

    PubMed Central

    Hocquette, J F; Bornes, F; Balage, M; Ferre, P; Grizard, J; Vermorel, M

    1995-01-01

    It is well accepted that skeletal muscle is a major glucose-utilizing tissue and that insulin is able to stimulate in vivo glucose utilization in ruminants as in monogastrics. In order to determine precisely how glucose uptake is controlled in various ruminant muscles, particularly by insulin, this study was designed to investigate in vitro glucose transport and insulin-regulatable glucose-transporter protein (GLUT4) in muscle from calf and goat. Our data demonstrate that glucose transport is the rate-limiting step for glucose uptake in bovine fibre strips, as in rat muscle. Insulin increases the rate of in vitro glucose transport in bovine muscle, but to a lower extent than in rat muscle. A GLUT4-like protein was detected by immunoblot assay in all insulin-responsive tissues from calf and goat (heart, skeletal muscle, adipose tissue) but not in liver, brain, erythrocytes and intestine. Unlike the rat, bovine and goat GLUT4 content is higher in glycolytic and oxido-glycolytic muscles than in oxidative muscles. In conclusion, using both a functional test (insulin stimulation of glucose transport) and an immunological approach, this study demonstrates that ruminant muscles express GLUT4 protein. Our data also suggest that, in ruminants, glucose is the main energy-yielding substrate for glycolytic but not for oxidative muscles, and that insulin responsiveness may be lower in oxidative than in other skeletal muscles. Images Figure 1 Figure 2 PMID:7832761

  1. Skeletal muscle afferent regulation of bioassayable growth hormone in the rat pituitary

    NASA Technical Reports Server (NTRS)

    Gosselink, K. L.; Grindeland, R. E.; Roy, R. R.; Zhong, H.; Bigbee, A. J.; Grossman, E. J.; Edgerton, V. R.

    1998-01-01

    There are forms of growth hormone (GH) in the plasma and pituitary of the rat and in the plasma of humans that are undetected by presently available immunoassays (iGH) but can be measured by bioassay (bGH). Although the regulation of iGH release is well documented, the mechanism(s) of bGH release is unclear. On the basis of changes in bGH and iGH secretion in rats that had been exposed to microgravity conditions, we hypothesized that neural afferents play a role in regulating the release of these hormones. To examine whether bGH secretion can be modulated by afferent input from skeletal muscle, the proximal or distal ends of severed hindlimb fast muscle nerves were stimulated ( approximately 2 times threshold) in anesthetized rats. Plasma bGH increased approximately 250%, and pituitary bGH decreased approximately 60% after proximal nerve trunk stimulation. The bGH response was independent of muscle mass or whether the muscles were flexors or extensors. Distal nerve stimulation had little or no effect on plasma or pituitary bGH. Plasma iGH concentrations were unchanged after proximal nerve stimulation. Although there may be multiple regulatory mechanisms of bGH, the present results demonstrate that the activation of low-threshold afferents from fast skeletal muscles can play a regulatory role in the release of bGH, but not iGH, from the pituitary in anesthetized rats.

  2. Control levels of acetylcholinesterase expression in the mammalian skeletal muscle.

    PubMed

    Grubic, Z; Zajc-Kreft, K; Brank, M; Mars, T; Komel, R; Miranda, A F

    1999-05-14

    Protein expression can be controled at different levels. Understanding acetylcholinesterase (EC. 3.1.1.7, AChE) expression in the living organisms therefore necessitates: (1) determination and mapping of control levels of AChE metabolism; (2) identification of the regulatory factors acting at these levels; and (3) detailed insight into the mechanisms of action of these factors. Here we summarize the results of our studies on the regulation of AChE expression in the mammalian skeletal muscle. Three experimental models were employed: in vitro innervated human muscle, mechanically denervated adult fast rat muscle, and the glucocorticoid treated fast rat muscle. In situ hybridization of AChE mRNA, combined with AChE histochemistry, revealed that different distribution patterns of AChE, observed during in vitro ontogenesis and synaptogenesis of human skeletal muscle, reflect alterations in the distribution of AChE mRNA (Z. Grubic, R. Komel, W.F. Walker, A.F. Miranda, Myoblast fusion and innervation with rat motor nerve alter the distribution of acetylcholinesterase and its mRNA in human muscle cultures, Neuron 14 (1995) 317-327). To study the mechanisms of AChE mRNA loss in denervated adult rat skeletal muscle, we exposed deproteinated AChE mRNA to various subcellular fractions in vitro. Fractions were isolated from the normal and denervated rat sternomastoideus muscle. We found significantly increased, but non-specific AChE mRNA degradation capacities in the three fractions studied, suggesting that increased susceptibility of muscle mRNA to degradation might be at least partly responsible for the decreased AChE mRNA observed under such conditions (K. Zajc-Kreft, S. Kreft, Z. Grubic, Degradation of AChE mRNA in the normal and denervated rat skeletal muscle, Book of Abstracts, The Sixth International Meeting on Cholinesterases, La Jolla, CA, March 20-24, 1998, p. A3.). In adult fast rat muscle, treated chronically with glucocorticoids, we found the fraction of early

  3. Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Karlisch, Patricia

    1989-01-01

    A tissue-culture model system for growing skeletal-muscle cells under more dynamic conditions than found in normal tissue-culture environments is described. A computerized device presented allows mechanical stimulation of the cell's substratum by 300 to 400 pct in length in the horizontal plane. Cell growth rates and skeletal-muscle organogenesis are stimulated in this in vitro system. It is noted that longitudinal myotube growth observed is accompanied by increased rates of cell proliferation and myoblast fusion. Prestretching the collagen-coated substratum before cell plating is shown to lead to increased cell proliferation, myotube orientation, and longitudinal myotube growth. The effects of substratum stretching on myogenesis in the model system are also assessed and attributed to alterations in the cell's extracellular matrix.

  4. Kelch proteins: emerging roles in skeletal muscle development and diseases.

    PubMed

    Gupta, Vandana A; Beggs, Alan H

    2014-01-01

    Our understanding of genes that cause skeletal muscle disease has increased tremendously over the past three decades. Advances in approaches to genetics and genomics have aided in the identification of new pathogenic mechanisms in rare genetic disorders and have opened up new avenues for therapeutic interventions by identification of new molecular pathways in muscle disease. Recent studies have identified mutations of several Kelch proteins in skeletal muscle disorders. The Kelch superfamily is one of the largest evolutionary conserved gene families. The 66 known family members all possess a Kelch-repeat containing domain and are implicated in diverse biological functions. In skeletal muscle development, several Kelch family members regulate the processes of proliferation and/or differentiation resulting in normal functioning of mature muscles. Importantly, many Kelch proteins function as substrate-specific adaptors for Cullin E3 ubiquitin ligase (Cul3), a core component of the ubiquitin-proteasome system to regulate the protein turnover. This review discusses the emerging roles of Kelch proteins in skeletal muscle function and disease. PMID:24959344

  5. Soluble miniagrin enhances contractile function of engineered skeletal muscle

    PubMed Central

    Bian, Weining; Bursac, Nenad

    2012-01-01

    Neural agrin plays a pleiotropic role in skeletal muscle innervation and maturation, but its specific effects on the contractile function of aneural engineered muscle remain unknown. In this study, neonatal rat skeletal myoblasts cultured within 3-dimensional engineered muscle tissue constructs were treated with 10 nM soluble recombinant miniagrin and assessed using histological, biochemical, and functional assays. Depending on the treatment duration and onset time relative to the stage of myogenic differentiation, miniagrin was found to induce up to 1.7-fold increase in twitch and tetanus force amplitude. This effect was associated with the 2.3-fold up-regulation of dystrophin gene expression at 6 d after agrin removal and enhanced ACh receptor (AChR) cluster formation, but no change in cell number, expression of muscle myosin, or important aspects of intracellular Ca2+ handling. In muscle constructs with endogenous ACh levels suppressed by the application of α-NETA, miniagrin increased AChR clustering and twitch force amplitude but failed to improve intracellular Ca2+ handling and increase tetanus-to-twitch ratio. Overall, our studies suggest that besides its synaptogenic function that could promote integration of engineered muscle constructs in vivo, neural agrin can directly promote the contractile function of aneural engineered muscle via mechanisms distinct from those involving endogenous ACh.—Bian, W., Bursac, N. Soluble miniagrin enhances contractile function of engineered skeletal muscle. PMID:22075647

  6. Bone Marrow Mesenchymal Cells Improve Muscle Function in a Skeletal Muscle Re-Injury Model

    PubMed Central

    Ribeiro, Karla C.; Porto, Anderson; Peçanha, Ramon; Fortes, Fabio S. A.; Zapata-Sudo, Gisele; Campos-de-Carvalho, Antonio C.; Goldenberg, Regina C. S.; Werneck-de-Castro, João Pedro

    2015-01-01

    Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC) injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively). Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model. PMID:26039243

  7. Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously reported that the expression of mitochondrial deacetylase SIRT3 is high in the slow oxidative muscle and that the expression of muscle SIRT3 level is increased by dietary restriction or exercise training. To explore the function of SIRT3 in skeletal muscle, we report here the esta...

  8. Localisation of AMPK γ subunits in cardiac and skeletal muscles.

    PubMed

    Pinter, Katalin; Grignani, Robert T; Watkins, Hugh; Redwood, Charles

    2013-12-01

    The trimeric protein AMP-activated protein kinase (AMPK) is an important sensor of energetic status and cellular stress, and mutations in genes encoding two of the regulatory γ subunits cause inherited disorders of either cardiac or skeletal muscle. AMPKγ2 mutations cause hypertrophic cardiomyopathy with glycogen deposition and conduction abnormalities; mutations in AMPKγ3 result in increased skeletal muscle glycogen. In order to gain further insight into the roles of the different γ subunits in muscle and into possible disease mechanisms, we localised the γ2 and γ3 subunits, along with the more abundant γ1 subunit, by immunofluorescence in cardiomyocytes and skeletal muscle fibres. The predominant cardiac γ2 variant, γ2-3B, gave a striated pattern in cardiomyocytes, aligning with the Z-disk but with punctate staining similar to T-tubule (L-type Ca(2+) channel) and sarcoplasmic reticulum (SERCA2) markers. In skeletal muscle fibres AMPKγ3 localises to the I band, presenting a uniform staining that flanks the Z-disk, also coinciding with the position of Ca(2+) influx in these muscles. The localisation of γ2-3B- and γ3-containing AMPK suggests that these trimers may have similar functions in the different muscles. AMPK containing γ2-3B was detected in oxidative skeletal muscles which had low expression of γ3, confirming that these two regulatory subunits may be co-ordinately regulated in response to metabolic requirements. Compartmentalisation of AMPK complexes is most likely dependent on the regulatory γ subunit and this differential localisation may direct substrate selection and specify particular functional roles.

  9. Exercise-Induced Skeletal Muscle Damage.

    ERIC Educational Resources Information Center

    Evans, William J.

    1987-01-01

    Eccentric exercise, in which the muscles exert force by lengthening, is associated with delayed onset muscle soreness. How soreness occurs, how recovery proceeds, and what precautions athletes should take are described. (Author/MT)

  10. Skeletal muscle fatty acid handling in insulin resistant men.

    PubMed

    van Hees, Anneke M J; Jans, Anneke; Hul, Gabby B; Roche, Helen M; Saris, Wim H M; Blaak, Ellen E

    2011-07-01

    Disturbances in skeletal muscle lipid metabolism may precede or contribute to the development of whole body insulin resistance. In this study, we examined fasting and postprandial skeletal muscle fatty acid (FA) handling in insulin resistant (IR) men. Thirty men with the metabolic syndrome (MetS) (National Cholesterol Education Program-Adult Treatment Panel III) were included in this sub-study to the LIPGENE study, and divided in two groups (IR and control) based on the median of insulin sensitivity (S(I) = 2.06 (mU/l(-1))·min(-1)·10(-4)). Fasting and postprandial skeletal muscle FA handling were examined by combining the forearm balance technique with stable isotopes of palmitate. [(2)H(2)]-palmitate was infused intravenously to label endogenous triacylglycerol (TAG) and free FAs (FFAs) in the circulation and [U-(13)C]-palmitate was incorporated in a high-fat mixed meal (2.6 MJ, 61 E% fat) to label chylomicron-TAG. Muscle biopsies were taken to determine muscle TAG, diacylglycerol (DAG), FFA, and phospholipid (PL) content, their fractional synthetic rates (FSRs) and degree of saturation, as well as messenger RNA (mRNA) expression of genes involved in lipid metabolism. In the first 2 h after meal consumption, forearm muscle [(2)H(2)]-labeled TAG extraction was higher in IR vs. control (P = 0.05). Fasting percentage saturation of muscle DAG was higher in IR vs. control (P = 0.016). No differences were observed for intramuscular TAG, DAG, FFA, and PL content, FSR, and muscle mRNA expression. In conclusion, increased muscle (hepatically derived) TAG extraction during postprandial conditions and increased saturation of intramuscular DAG are associated with insulin resistance, suggesting that disturbances in skeletal muscle FA handling could play a role in the development of whole body insulin resistance and type 2 diabetes. PMID:21331063

  11. Bone and Skeletal Muscle: Neighbors With Close Ties

    PubMed Central

    DiGirolamo, Douglas J; Kiel, Douglas P; Esser, Karyn A

    2016-01-01

    The musculoskeletal system evolved in mammals to perform diverse functions that include locomotion, facilitating breathing, protecting internal organs, and coordinating global energy expenditure. Bone and skeletal muscles involved with locomotion are both derived from somitic mesoderm and accumulate peak tissue mass synchronously, according to genetic information and environmental stimuli. Aging results in the progressive and parallel loss of bone (osteopenia) and skeletal muscle (sarcopenia) with profound consequences for quality of life. Age-associated sarcopenia results in reduced endurance, poor balance, and reduced mobility that predispose elderly individuals to falls, which more frequently result in fracture because of concomitant osteoporosis. Thus, a better understanding of the mechanisms underlying the parallel development and involution of these tissues is critical to developing new and more effective means to combat osteoporosis and sarcopenia in our increasingly aged population. This perspective highlights recent advances in our understanding of mechanisms coupling bone and skeletal muscle mass, and identify critical areas where further work is needed. PMID:23630111

  12. Establishment of bipotent progenitor cell clone from rat skeletal muscle.

    PubMed

    Murakami, Yousuke; Yada, Erica; Nakano, Shin-ichi; Miyagoe-Suzuki, Yuko; Hosoyama, Tohru; Matsuwaki, Takashi; Yamanouchi, Keitaro; Nishihara, Masugi

    2011-12-01

    The present study describes the isolation, cloning and characterization of adipogenic progenitor cells from rat skeletal muscle. Among the obtained 10 clones, the most highly adipogenic progenitor, 2G11 cells, were further characterized. In addition to their adipogenicity, 2G11 cells retain myogenic potential as revealed by formation of multinucleated myotubes when co-cultured with myoblasts. 2G11 cells were resistant to an inhibitory effect of basic fibroblast growth factor on adipogenesis, while adipogenesis of widely used preadipogenic cell line, 3T3-L1 cells, was suppressed almost completely by the same treatment. In vivo transplantation experiments revealed that 2G11 cells are able to possess both adipogenicity and myogenicity in vivo. These results indicate the presence of bipotent progenitor cells in rat skeletal muscle, and suggest that such cells may contribute to ectopic fat formation in skeletal muscle.

  13. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle

    SciTech Connect

    Ploug, T.; Stallknecht, B.M.; Pedersen, O.; Kahn, B.B.; Ohkuwa, T.; Vinten, J.; Galbo, H. )

    1990-12-01

    The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers and an increase of approximately 33% for contraction-stimulated transport in slow-twitch red fibers compared with nonexercised sedentary muscle. A fully additive effect of insulin and contractions was observed both in trained and untrained muscle. Compared with transport in control rats subjected to an almost exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold by training in fast-twitch red muscle fibers. In parallel to this, Western blot demonstrated a approximately 47% increase in GLUT-1 protein and a approximately 31% increase in GLUT-4 protein. This indicates that the increases in maximum velocity for 3-MG transport in trained muscle is due to an increased number of glucose transporters.

  14. The Role of Skeletal Muscle Glycogen Breakdown for Regulation of Insulin Sensitivity by Exercise

    PubMed Central

    Jensen, Jørgen; Rustad, Per Inge; Kolnes, Anders Jensen; Lai, Yu-Chiang

    2011-01-01

    Glycogen is the storage form of carbohydrates in mammals. In humans the majority of glycogen is stored in skeletal muscles (∼500 g) and the liver (∼100 g). Food is supplied in larger meals, but the blood glucose concentration has to be kept within narrow limits to survive and stay healthy. Therefore, the body has to cope with periods of excess carbohydrates and periods without supplementation. Healthy persons remove blood glucose rapidly when glucose is in excess, but insulin-stimulated glucose disposal is reduced in insulin resistant and type 2 diabetic subjects. During a hyperinsulinemic euglycemic clamp, 70–90% of glucose disposal will be stored as muscle glycogen in healthy subjects. The glycogen stores in skeletal muscles are limited because an efficient feedback-mediated inhibition of glycogen synthase prevents accumulation. De novo lipid synthesis can contribute to glucose disposal when glycogen stores are filled. Exercise physiologists normally consider glycogen’s main function as energy substrate. Glycogen is the main energy substrate during exercise intensity above 70% of maximal oxygen uptake (Vo2max⁡) and fatigue develops when the glycogen stores are depleted in the active muscles. After exercise, the rate of glycogen synthesis is increased to replete glycogen stores, and blood glucose is the substrate. Indeed insulin-stimulated glucose uptake and glycogen synthesis is elevated after exercise, which, from an evolutional point of view, will favor glycogen repletion and preparation for new “fight or flight” events. In the modern society, the reduced glycogen stores in skeletal muscles after exercise allows carbohydrates to be stored as muscle glycogen and prevents that glucose is channeled to de novo lipid synthesis, which over time will causes ectopic fat accumulation and insulin resistance. The reduction of skeletal muscle glycogen after exercise allows a healthy storage of carbohydrates after meals and prevents development of type 2

  15. Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue.

    PubMed

    Watt, Matthew J; Holmes, Anna G; Pinnamaneni, Srijan K; Garnham, Andrew P; Steinberg, Gregory R; Kemp, Bruce E; Febbraio, Mark A

    2006-03-01

    Hormone-sensitive lipase (HSL) is important for the degradation of triacylglycerol in adipose and muscle tissue, but the tissue-specific regulation of this enzyme is not fully understood. We investigated the effects of adrenergic stimulation and AMPK activation in vitro and in circumstances where AMPK activity and catecholamines are physiologically elevated in humans in vivo (during physical exercise) on HSL activity and phosphorylation at Ser(563) and Ser(660), the PKA regulatory sites, and Ser(565), the AMPK regulatory site. In human experiments, skeletal muscle, subcutaneous adipose and venous blood samples were obtained before, at 15 and 90 min during, and 120 min after exercise. Skeletal muscle HSL activity was increased by approximately 80% at 15 min compared with rest and returned to resting rates at the cessation of and 120 min after exercise. Consistent with changes in plasma epinephrine, skeletal muscle HSL Ser(563) and Ser(660) phosphorylation were increased by 27% at 15 min (P < 0.05), remained elevated at 90 min, and returned to preexercise values postexercise. Skeletal muscle HSL Ser(565) phosphorylation and AMPK signaling were increased at 90 min during, and after, exercise. Phosphorylation of adipose tissue HSL paralleled changes in skeletal muscle in vivo, except HSL Ser(660) was elevated 80% in adipose compared with 35% in skeletal muscle during exercise. Studies in L6 myotubes and 3T3-L1 adipocytes revealed important tissue differences in the regulation of HSL. AMPK inhibited epinephrine-induced HSL activity in L6 myotubes and was associated with reduced HSL Ser(660) but not Ser(563) phosphorylation. HSL activity was reduced in L6 myotubes expressing constitutively active AMPK, confirming the inhibitory effects of AMPK on HSL activity. Conversely, in 3T3-L1 adipocytes, AMPK activation after epinephrine stimulation did not prevent HSL activity or glycerol release, which coincided with maintenance of HSL Ser(660) phosphorylation. Taken together

  16. Substrate kinetics in patients with disorders of skeletal muscle metabolism.

    PubMed

    Ørngreen, Mette Cathrine

    2016-07-01

    The main purpose of the following studies was to investigate pathophysiological mechanisms in fat and carbohydrate metabolism and effect of nutritional interventions in patients with metabolic myopathies and in patients with severe muscle wasting. Yet there is no cure for patients with skeletal muscle disorders. The group of patients is heterozygous and this thesis is focused on patients with metabolic myopathies and low muscle mass due to severe muscle wasting. Disorders of fatty acid oxidation (FAO) are, along with myophosphorylase deficiency (McArdle disease), the most common inborn errors of metabolism leading to recurrent episodes of rhabdomyolysis in adults. Prolonged exercise, fasting, and fever are the main triggering factors for rhabdomyolysis in these conditions, and can be complicated by acute renal failure. Patients with low muscle mass are in risk of loosing their functional skills and depend on a wheel chair and respiratory support. We used nutritional interventions and metabolic studies with stable isotope technique and indirect calorimetry in patients with metabolic myopathies and patients with low muscle mass to get information of the metabolism of the investigated diseases, and to gain knowledge of the biochemical pathways of intermediary metabolism in human skeletal muscle. We have shown that patients with fat metabolism disorders in skeletal muscle affecting the transporting enzyme of fat into the mitochondria (carnitine palmitoyltransferase II deficiency) and affecting the enzyme responsible for breakdown of the long-chain fatty acids (very long chain acyl-CoA dehydrogenase deficiency) have a normal fatty acid oxidation at rest, but enzyme activity is too low to increase fatty acid oxidation during exercise. Furthermore, these patients benefit from a carbohydrate rich diet. Oppositely is exercise capacity worsened by a fat-rich diet in these patients. The patients also benefit from IV glucose, however, when glucose is given orally just before

  17. Pericapillary basement membrane thickening in human skeletal muscles.

    PubMed

    Baum, Oliver; Bigler, Marius

    2016-09-01

    The basement membrane (BM) surrounding capillaries in skeletal muscles varies physiologically in thickness according to age, physical fitness, and anatomical site in humans. Furthermore, the pericapillary BM thickness (CBMT) increases pathophysiologically during several common disease states, including peripheral arterial disease and diabetes mellitus. This review on CBM thickening in human skeletal muscles is two pronged. First, it addresses the advantages/disadvantages of grid- and tablet-based measuring and morphometric techniques that are implemented to assess the CBMT on transmission electron micrographs. Second, it deals with the biology of CBM thickening in skeletal muscles, particularly its possible causes, molecular mechanisms, and functional impact. CBM thickening is triggered by several physical factors, including diabetes-associated glycation, hydrostatic pressure, and inflammation. Increased biosynthesis of type IV collagen expression or repetitive cycles in pericyte or endothelial cell degeneration/proliferation appear to be most critical for CBM accumulation. A thickened CBM obviously poses a greater barrier for diffusion, lowers the microvascular elasticity, and impedes transcytosis of inflammatory cells. Our own morphometric data reveal the CBM enlargement to be not accompanied by the pericyte coverage. Owing to an overlap or redundancy in the capillary supply, CBM thickening in skeletal muscles might not be such a devastating occurrence as in organs with endarterial circulation (e.g., kidney and retina). CBM growth in skeletal muscles can be reversed by training or administration of antidiabetic drugs. In conclusion, CBM thickening in skeletal muscles is a microvascular remodeling process by which metabolic, hemodynamic, and inflammatory forces are integrated together and which could play a hitherto underestimated role in etiology/progression of human diseases.

  18. Skeletal muscle metabolism in hypokinetic rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.

    1984-01-01

    Muscle growth, protein metabolism, and amino acid metabolism were studied in various groups of rats. Certain groups were adrenaliectomized; some rats were suspended while others (the controls) were weight bearing. Results show that: (1) metabolic changes in the extensor digitorum longus muscle of suspended rats are due primarily to increased circulating glucocorticoids; (2) metabolic changes in the soleus muscle due to higher steroid levels are probably potentiated by greater numbers of steroid receptors; and (3) not all metabolic responses of the soleus muscle to unloading are due to the elevated levels of glucocorticoids or the increased sensitivity of this muscle to these hormones.

  19. Functional heterogeneity of side population cells in skeletal muscle

    SciTech Connect

    Uezumi, Akiyoshi; Ojima, Koichi; Fukada, So-ichiro; Ikemoto, Madoka; Masuda, Satoru; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi . E-mail: takeda@ncnp.go.jp

    2006-03-17

    Skeletal muscle regeneration has been exclusively attributed to myogenic precursors, satellite cells. A stem cell-rich fraction referred to as side population (SP) cells also resides in skeletal muscle, but its roles in muscle regeneration remain unclear. We found that muscle SP cells could be subdivided into three sub-fractions using CD31 and CD45 markers. The majority of SP cells in normal non-regenerating muscle expressed CD31 and had endothelial characteristics. However, CD31{sup -}CD45{sup -} SP cells, which are a minor subpopulation in normal muscle, actively proliferated upon muscle injury and expressed not only several regulatory genes for muscle regeneration but also some mesenchymal lineage markers. CD31{sup -}CD45{sup -} SP cells showed the greatest myogenic potential among three SP sub-fractions, but indeed revealed mesenchymal potentials in vitro. These SP cells preferentially differentiated into myofibers after intramuscular transplantation in vivo. Our results revealed the heterogeneity of muscle SP cells and suggest that CD31{sup -}CD45{sup -} SP cells participate in muscle regeneration.

  20. Skeletal Muscle Laminopathies: A Review of Clinical and Molecular Features

    PubMed Central

    Maggi, Lorenzo; Carboni, Nicola; Bernasconi, Pia

    2016-01-01

    LMNA-related disorders are caused by mutations in the LMNA gene, which encodes for the nuclear envelope proteins, lamin A and C, via alternative splicing. Laminopathies are associated with a wide range of disease phenotypes, including neuromuscular, cardiac, metabolic disorders and premature aging syndromes. The most frequent diseases associated with mutations in the LMNA gene are characterized by skeletal and cardiac muscle involvement. This review will focus on genetics and clinical features of laminopathies affecting primarily skeletal muscle. Although only symptomatic treatment is available for these patients, many achievements have been made in clarifying the pathogenesis and improving the management of these diseases. PMID:27529282

  1. Skeletal Muscle Laminopathies: A Review of Clinical and Molecular Features.

    PubMed

    Maggi, Lorenzo; Carboni, Nicola; Bernasconi, Pia

    2016-01-01

    LMNA-related disorders are caused by mutations in the LMNA gene, which encodes for the nuclear envelope proteins, lamin A and C, via alternative splicing. Laminopathies are associated with a wide range of disease phenotypes, including neuromuscular, cardiac, metabolic disorders and premature aging syndromes. The most frequent diseases associated with mutations in the LMNA gene are characterized by skeletal and cardiac muscle involvement. This review will focus on genetics and clinical features of laminopathies affecting primarily skeletal muscle. Although only symptomatic treatment is available for these patients, many achievements have been made in clarifying the pathogenesis and improving the management of these diseases. PMID:27529282

  2. Assessment of the Contractile Properties of Permeabilized Skeletal Muscle Fibers.

    PubMed

    Claflin, Dennis R; Roche, Stuart M; Gumucio, Jonathan P; Mendias, Christopher L; Brooks, Susan V

    2016-01-01

    Permeabilized individual skeletal muscle fibers offer the opportunity to evaluate contractile behavior in a system that is greatly simplified, yet physiologically relevant. Here we describe the steps required to prepare, permeabilize and preserve small samples of skeletal muscle. We then detail the procedures used to isolate individual fiber segments and attach them to an experimental apparatus for the purpose of controlling activation and measuring force generation. We also describe our technique for estimating the cross-sectional area of fiber segments. The area measurement is necessary for normalizing the absolute force to obtain specific force, a measure of the intrinsic force-generating capability of the contractile system. PMID:27492182

  3. Correcting radiofrequency inhomogeneity effects in skeletal muscle magnetisation transfer maps.

    PubMed

    Sinclair, C D J; Morrow, J M; Hanna, M G; Reilly, M M; Yousry, T A; Golay, X; Thornton, J S

    2012-02-01

    The potential of MRI to provide quantitative measures of neuromuscular pathology for use in therapeutic trials is being increasingly recognised. Magnetisation transfer (MT) imaging shows particular promise in this context, being sensitive to pathological changes, particularly in skeletal muscle, where measurements correlate with clinically measured muscle strength. Radiofrequency (RF) transmit field (B(1)) inhomogeneities can be particularly problematic in measurements of the MT ratio (MTR) and may obscure genuine muscle MTR changes caused by disease. In this work, we evaluate, for muscle imaging applications, a scheme previously proposed for the correction of RF inhomogeneity artefacts in cerebral MTR maps using B(1) information acquired in the same session. We demonstrate the theoretical applicability of this scheme to skeletal muscle using a two-pool model of pulsed quantitative MT. The correction scheme is evaluated practically in MTR imaging of the lower limbs of 28 healthy individuals and in two groups of patients with representative neuromuscular diseases: Charcot-Marie-Tooth disease type 1A and inclusion body myositis. The correction scheme was observed to reduce both the within-subject and between-subject variability in the calf and thigh muscles of healthy subjects and patient groups in histogram- and region-of-interest-based approaches. This method of correcting for RF inhomogeneity effects in MTR maps using B(1) data may markedly improve the sensitivity of MTR mapping indices as measures of pathology in skeletal muscle.

  4. Dynamics of the Skeletal Muscle Secretome during Myoblast Differentiation*

    PubMed Central

    Henningsen, Jeanette; Rigbolt, Kristoffer T. G.; Blagoev, Blagoy; Pedersen, Bente Klarlund; Kratchmarova, Irina

    2010-01-01

    During recent years, increased efforts have focused on elucidating the secretory function of skeletal muscle. Through secreted molecules, skeletal muscle affects local muscle biology in an auto/paracrine manner as well as having systemic effects on other tissues. Here we used a quantitative proteomics platform to investigate the factors secreted during the differentiation of murine C2C12 skeletal muscle cells. Using triple encoding stable isotope labeling by amino acids in cell culture, we compared the secretomes at three different time points of muscle differentiation and followed the dynamics of protein secretion. We identified and quantitatively analyzed 635 secreted proteins, including 35 growth factors, 40 cytokines, and 36 metallopeptidases. The extensive presence of these proteins that can act as potent signaling mediators to other cells and tissues strongly highlights the important role of the skeletal muscle as a prominent secretory organ. In addition to previously reported molecules, we identified many secreted proteins that have not previously been shown to be released from skeletal muscle cells nor shown to be differentially released during the process of myogenesis. We found 188 of these secreted proteins to be significantly regulated during the process of myogenesis. Comparative analyses of selected secreted proteins revealed little correlation between their mRNA and protein levels, indicating pronounced regulation by posttranscriptional mechanisms. Furthermore, analyses of the intracellular levels of members of the semaphorin family and their corresponding secretion dynamics demonstrated that the release of secreted proteins is tightly regulated by the secretory pathway, the stability of the protein, and/or the processing of secreted proteins. Finally, we provide 299 unique hydroxyproline sites mapping to 48 distinct secreted proteins and have discovered a novel hydroxyproline motif. PMID:20631206

  5. Maternal nutrient restriction affects properties of skeletal muscle in offspring

    PubMed Central

    Zhu, Mei J; Ford, Stephen P; Means, Warrie J; Hess, Bret W; Nathanielsz, Peter W; Du, Min

    2006-01-01

    Maternal nutrient restriction (NR) affects fetal development with long-term consequences on postnatal health of offspring, including predisposition to obesity and diabetes. Most studies have been conducted in fetuses in late gestation, and little information is available on the persistent impact of NR from early to mid-gestation on properties of offspring skeletal muscle, which was the aim of this study. Pregnant ewes were subjected to 50% NR from day 28–78 of gestation and allowed to deliver. The longissimus dorsi muscle was sampled from 8-month-old offspring. Maternal NR during early to mid-gestation decreased the number of myofibres in the offspring and increased the ratio of myosin IIb to other isoforms by 17.6 ± 4.9% (P < 0.05) compared with offspring of ad libitum fed ewes. Activity of carnitine palmitoyltransferase-1, a key enzyme controlling fatty acid oxidation, was reduced by 24.7 ± 4.5% (P < 0.05) in skeletal muscle of offspring of NR ewes and would contribute to increased fat accumulation observed in offspring of NR ewes. Intramuscular triglyceride content (IMTG) was increased in skeletal muscle of NR lambs, a finding which may be linked to predisposition to diabetes in offspring of NR mothers, since enhanced IMTG predisposes to insulin resistance in skeletal muscle. Proteomic analysis by two-dimensional gel electrophoresis demonstrated downregulation of several catabolic enzymes in 8-month-old offspring of NR ewes. These data demonstrate that the early to mid-gestation period is important for skeletal muscle development. Impaired muscle development during this stage of gestation affects the number and composition of fibres in offspring which may lead to long-term physiological consequences, including predisposition to obesity and diabetes. PMID:16763001

  6. Altered cross-bridge properties in skeletal muscle dystrophies

    PubMed Central

    Guellich, Aziz; Negroni, Elisa; Decostre, Valérie; Demoule, Alexandre; Coirault, Catherine

    2014-01-01

    Force and motion generated by skeletal muscle ultimately depends on the cyclical interaction of actin with myosin. This mechanical process is regulated by intracellular Ca2+ through the thin filament-associated regulatory proteins i.e.; troponins and tropomyosin. Muscular dystrophies are a group of heterogeneous genetic affections characterized by progressive degeneration and weakness of the skeletal muscle as a consequence of loss of muscle tissue which directly reduces the number of potential myosin cross-bridges involved in force production. Mutations in genes responsible for skeletal muscle dystrophies (MDs) have been shown to modify the function of contractile proteins and cross-bridge interactions. Altered gene expression or RNA splicing or post-translational modifications of contractile proteins such as those related to oxidative stress, may affect cross-bridge function by modifying key proteins of the excitation-contraction coupling. Micro-architectural change in myofilament is another mechanism of altered cross-bridge performance. In this review, we provide an overview about changes in cross-bridge performance in skeletal MDs and discuss their ultimate impacts on striated muscle function. PMID:25352808

  7. Activation of histamine H3 receptor decreased cytoplasmic Ca(2+) imaging during electrical stimulation in the skeletal myotubes.

    PubMed

    Chen, Yan; Paavola, Jere; Stegajev, Vasili; Stark, Holger; Chazot, Paul L; Wen, Jian Guo; Konttinen, Yrjö T

    2015-05-01

    Histamine is a neurotransmitter and chemical mediator in multiple physiological processes. Histamine H3 receptor is expressed in the nervous system, heart, and gastrointestinal tract; however, little is known about H3 receptor in skeletal muscle. The aim of this study was to investigate the role of H3 receptor in skeletal myotubes. The expression of H3 receptor and myosin heavy chain (MHC), a late myogenesis marker, was assessed by real-time PCR and immunostaining in C2C12 skeletal myogenesis and adult mid-urethral skeletal muscle tissues. H3 receptor mRNA showed a significant increase upon differentiation of C2C12 into myotubes: 1-, 26-, 91-, and 182-fold at days 0, 2, 4, and 6, respectively. H3 receptor immunostaining in differentiated C2C12 cells and adult skeletal muscles was positive and correlated with that of MHC. The functional role of H3receptor in differentiated myotubes was assessed using an H3 receptor agonist, (R)-a-methylhistamine ((R)-α-MeHA). Ca(2+) imaging, stimulated by electric pacing, was decreased by 55% after the treatment of mature C2C12 myotubes with 1μM (R)-α-MeHA for 10min and 20min, while treatment with 100nm (R)-α-MeHA for 5min caused 45% inhibition. These results suggested that H3 receptor may participate in the maintenance of the relaxed state and prevention of over-contraction in mature differentiated myotubes. The elucidation of the role of H3R in skeletal myogenesis and adult skeletal muscle may open a new direction in the treatment of skeletal muscle disorders, such as muscle weakness, atrophy, and myotonia in motion systems or peri-urethral skeletal muscle tissues.

  8. Proteomic analysis of bovine skeletal muscle hypertrophy.

    PubMed

    Bouley, Julien; Meunier, Bruno; Chambon, Christophe; De Smet, Stefaan; Hocquette, Jean François; Picard, Brigitte

    2005-02-01

    Myostatin plays a major role in muscle growth and development and animals with disruption of this gene display marked increases in muscle mass. Little is known about muscle physiological adaptations in relation to this muscle hypertrophy. To provide a more comprehensive view, we analyzed bovine muscles from control, heterozygote and homozygote young Belgian blue bulls for myostatin deletion, which results in a normal level of inactive myostatin. Heterozygote and homozygote animals were characterized by a higher proportion of fast-twitch glycolytic fibers in Semitendinosus muscle. Differential proteomic analysis of this muscle was performed using two-dimensional gel electrophoresis followed by mass spectrometry. Thirteen proteins, corresponding to 28 protein spots, were significantly altered in response to the myostatin deletion. The observed changes in protein expression are consistent with an increased fast muscle phenotype, suggesting that myostatin negatively controls mainly fast-twitch glycolytic fiber number. Finally, we demonstrated that differential mRNA splicing of fast troponin T is altered by the loss of myostatin function. The structure of mutually exclusive exon 16 appears predominantly expressed in muscles from heterozygote and homozygote animals. This suggests a role for exon 16 of fast troponin T in the physiological adaptation of the fast muscle phenotype.

  9. Diffusion-Tensor MRI Based Skeletal Muscle Fiber Tracking

    PubMed Central

    Damon, Bruce M.; Buck, Amanda K. W.; Ding, Zhaohua

    2014-01-01

    A skeletal muscle's function is strongly influenced by the internal organization and geometric properties of its fibers, a property known as muscle architecture. Diffusion-tensor magnetic resonance imaging-based fiber tracking provides a powerful tool for non-invasive muscle architecture studies, has three-dimensional sensitivity, and uses a fixed frame of reference. Significant advances have been made in muscle fiber tracking technology, including defining seed points for fiber tracking, quantitatively characterizing muscle architecture, implementing denoising procedures, and testing validity and repeatability. Some examples exist of how these data can be integrated with those from other advanced MRI and computational methods to provide novel insights into muscle function. Perspectives are offered regarding future directions in muscle diffusion-tensor imaging, including needs to develop an improved understanding for the microstructural basis for reduced and anisotropic diffusion, establish the best practices for data acquisition and analysis, and integrate fiber tracking with other physiological data. PMID:25429308

  10. Understanding Age-Related Changes in Skeletal Muscle Metabolism: Differences Between Females and Males.

    PubMed

    Gheller, Brandon J F; Riddle, Emily S; Lem, Melinda R; Thalacker-Mercer, Anna E

    2016-07-17

    Skeletal muscle is the largest metabolic organ system in the human body. As such, metabolic dysfunction occurring in skeletal muscle impacts whole-body nutrient homeostasis. Macronutrient metabolism changes within the skeletal muscle with aging, and these changes are associated in part with age-related skeletal muscle remodeling. Moreover, age-related changes in skeletal muscle metabolism are affected differentially between males and females and are likely driven by changes in sex hormones. Intrinsic and extrinsic factors impact observed age-related changes and sex-related differences in skeletal muscle metabolism. Despite some support for sex-specific differences in skeletal muscle metabolism with aging, more research is necessary to identify underlying differences in mechanisms. Understanding sex-specific aging skeletal muscle will assist with the development of therapies to attenuate adverse metabolic and functional outcomes.

  11. Aspects of physical medicine and rehabilitation in the treatment of deconditioned patients in the acute care setting: the role of skeletal muscle.

    PubMed

    Quittan, Michael

    2016-02-01

    Skeletal muscles are essential for movement as well as for survival. Knowledge about the organ skeletal muscle is underrepresented. Ageing and multiple chronic diseases are accompanied by loss of muscle mass, termed "muscle wasting". Nevertheless, muscles are one of the target organs within the rehabilitation process. This review highlights the role of skeletal muscles from various aspects, diagnostic procedures to quantify muscle mass and strength and, most importantly, lists countermeasures to muscle wasting. Although structured and progressive strength training is the cornerstone in the treatment of muscle wasting, several other methods exist to slow down or reverse the process of muscle wasting. Among them are neuromuscular electrical stimulation and alternative exercise modes, positioning, stretching and, as an emerging field, drug therapy. PMID:26758982

  12. Insulin increases phosphorylation of mitochondrial proteins in human skeletal muscle in vivo.

    PubMed

    Zhao, Xiaolu; Bak, Steffen; Pedersen, Andreas J T; Jensen, Ole Nørregaard; Højlund, Kurt

    2014-05-01

    There is increasing evidence that multiple proteins involved in key regulatory processes in mitochondria are phosphorylated in mammalian tissues. Insulin regulates glucose metabolism by phosphorylation-dependent signaling and has been shown to stimulate ATP synthesis in human skeletal muscle. Here, we investigated the effect of insulin on the phosphorylation of mitochondrial proteins in human skeletal muscle in vivo. Using a combination of TiO(2) phosphopeptide-enrichment, HILIC fractionation, and LC-MS/MS, we compared the phosphoproteomes of isolated mitochondria from skeletal muscle samples obtained from healthy individuals before and after 4 h of insulin infusion. In total, we identified 207 phosphorylation sites in 95 mitochondrial proteins. Of these phosphorylation sites, 45% were identified in both basal and insulin-stimulated samples. Insulin caused a 2-fold increase in the number of different mitochondrial phosphopeptides (87 ± 7 vs 40 ± 7, p = 0.015) and phosphoproteins (46 ± 2 vs 26 ± 3, p = 0.005) identified in each mitochondrial preparation. Almost half of the mitochondrial phosphorylation sites (n = 94) were exclusively identified in the insulin-stimulated state and included the majority of novel sites. Phosphorylation sites detected more often or exclusively in insulin-stimulated samples include multiple sites in mitochondrial proteins involved in oxidative phosphorylation, tricarboxylic acid cycle, and fatty acid metabolism, as well as several components of the newly defined mitochondrial inner membrane organizing system (MINOS). In conclusion, the present study demonstrates that insulin increases the phosphorylation of several mitochondrial proteins in human skeletal muscle in vivo and provides a first step in the understanding of how insulin potentially regulates mitochondrial processes by phosphorylation-dependent mechanisms.

  13. Changes in skeletal muscle with aging: effects of exercise training.

    PubMed

    Rogers, M A; Evans, W J

    1993-01-01

    There is an approximate 30% decline in muscle strength and a 40% reduction in muscle area between the second and seventh decades of life. Thus, the loss of muscle mass with aging appears to be the major factor in the age-related loss of muscle strength. The loss of muscle mass is partially due to a significant decline in the numbers of both Type I and Type II muscle fibers plus a decrease in the size of the muscle cells, with the Type II fibers showing a preferential atrophy. There appears to be no loss of glycolytic capacity in senescent skeletal muscle whereas muscle oxidative enzyme activity and muscle capillarization decrease by about 25%. Vigorous endurance exercise training in older people, where the stimulus is progressively increased, elicits a proliferation of muscle capillaries, an increase in oxidative enzyme activity, and a significant improvement in VO2max. Likewise, progressive resistive training in older individuals results in muscle hypertrophy and increased strength, if the training stimulus is of a sufficient intensity and duration. Since older individuals adapt to resistive and endurance exercise training in a similar fashion to young people, the decline in the muscle's metabolic and force-producing capacity can no longer be considered as an inevitable consequence of the aging process. Rather, the adaptations in aging skeletal muscle to exercise training may prevent sarcopenia, enhance the ease of carrying out the activities of daily living, and exert a beneficial effect on such age-associated diseases as Type II diabetes, coronary artery disease, hypertension, osteoporosis, and obesity. PMID:8504850

  14. AMP decreases the efficiency of skeletal-muscle mitochondria.

    PubMed

    Cadenas, S; Buckingham, J A; St-Pierre, J; Dickinson, K; Jones, R B; Brand, M D

    2000-10-15

    Mitochondrial proton leak in rat muscle is responsible for approx. 15% of the standard metabolic rate, so its modulation could be important in regulating metabolic efficiency. We report in the present paper that physiological concentrations of AMP (K(0.5)=80 microM) increase the resting respiration rate and double the proton conductance of rat skeletal-muscle mitochondria. This effect is specific for AMP. AMP also doubles proton conductance in skeletal-muscle mitochondria from an ectotherm (the frog Rana temporaria), suggesting that AMP activation is not primarily for thermogenesis. AMP activation in rat muscle mitochondria is unchanged when uncoupling protein-3 is doubled by starvation, indicating that this protein is not involved in the AMP effect. AMP activation is, however, abolished by inhibitors and substrates of the adenine nucleotide translocase (ANT), suggesting that this carrier (possibly the ANT1 isoform) mediates AMP activation. AMP activation of ANT could be important for physiological regulation of metabolic rate.

  15. AMP decreases the efficiency of skeletal-muscle mitochondria.

    PubMed Central

    Cadenas, S; Buckingham, J A; St-Pierre, J; Dickinson, K; Jones, R B; Brand, M D

    2000-01-01

    Mitochondrial proton leak in rat muscle is responsible for approx. 15% of the standard metabolic rate, so its modulation could be important in regulating metabolic efficiency. We report in the present paper that physiological concentrations of AMP (K(0.5)=80 microM) increase the resting respiration rate and double the proton conductance of rat skeletal-muscle mitochondria. This effect is specific for AMP. AMP also doubles proton conductance in skeletal-muscle mitochondria from an ectotherm (the frog Rana temporaria), suggesting that AMP activation is not primarily for thermogenesis. AMP activation in rat muscle mitochondria is unchanged when uncoupling protein-3 is doubled by starvation, indicating that this protein is not involved in the AMP effect. AMP activation is, however, abolished by inhibitors and substrates of the adenine nucleotide translocase (ANT), suggesting that this carrier (possibly the ANT1 isoform) mediates AMP activation. AMP activation of ANT could be important for physiological regulation of metabolic rate. PMID:11023814

  16. Insights into skeletal muscle development and applications in regenerative medicine.

    PubMed

    Tran, T; Andersen, R; Sherman, S P; Pyle, A D

    2013-01-01

    Embryonic and postnatal development of skeletal muscle entails highly regulated processes whose complexity continues to be deconstructed. One key stage of development is the satellite cell, whose niche is composed of multiple cell types that eventually contribute to terminally differentiated myotubes. Understanding these developmental processes will ultimately facilitate treatments of myopathies such as Duchenne muscular dystrophy (DMD), a disease characterized by compromised cell membrane structure, resulting in severe muscle wasting. One theoretical approach is to use pluripotent stem cells in a therapeutic setting to help replace degenerated muscle tissue. This chapter discusses key myogenic developmental stages and their regulatory pathways; artificial myogenic induction in pluripotent stem cells; advantages and disadvantages of DMD animal models; and therapeutic approaches targeting DMD. Furthermore, skeletal muscle serves as an excellent paradigm for understanding general cell fate decisions throughout development.

  17. Biomaterial-based delivery for skeletal muscle repair

    PubMed Central

    Cezar, Christine A.; Mooney, David J.

    2015-01-01

    Skeletal muscle possesses a remarkable capacity for regeneration in response to minor damage, but severe injury resulting in a volumetric muscle loss can lead to extensive and irreversible fibrosis, scarring, and loss of muscle function. In early clinical trials, the intramuscular injection of cultured myoblasts was proven to be a safe but ineffective cell therapy, likely due to rapid death, poor migration, and immune rejection of the injected cells. In recent years, appropriate therapeutic cell types and culturing techniques have improved progenitor cell engraftment upon transplantation. Importantly, the identification of several key biophysical and biochemical cues that synergistically regulate satellite cell fate has paved the way for the development of cell-instructive biomaterials that serve as delivery vehicles for cells to promote in vivo regeneration. Material carriers designed to spatially and temporally mimic the satellite cell niche may be of particular importance for the complete regeneration of severely damaged skeletal muscle. PMID:25271446

  18. Transcriptional regulation of decreased protein synthesis during skeletal muscle unloading

    NASA Technical Reports Server (NTRS)

    Howard, G.; Steffen, J. M.; Geoghegan, T. E.

    1989-01-01

    The regulatory role of transcriptional alterations in unloaded skeletal muscles was investigated by determining levels of total muscle RNA and mRNA fractions in soleus, gastrocnemius, and extensor digitorum longus (EDL) of rats subjected to whole-body suspension for up to 7 days. After 7 days, total RNA and mRNA contents were lower in soleus and gastrocnemius, compared with controls, but the concentrations of both RNAs per g muscle were unaltered. Alpha-actin mRNA (assessed by dot hybridization) was significantly reduced in soleus after 1, 3, and 7 days of suspension and in gastrocnemius after 3 and 7 days, but was unchanged in EDL. Protein synthesis directed by RNA extracted from soleus and EDL indicated marked alteration in mRNAs coding for several small proteins. Results suggest that altered transcription and availability of specific mRNAs contribute significantly to the regulation of protein synthesis during skeletal muscle unloading.

  19. Altered Myokine Secretion Is an Intrinsic Property of Skeletal Muscle in Type 2 Diabetes

    PubMed Central

    Ciaraldi, Theodore P.; Ryan, Alexander J.; Mudaliar, Sunder R.; Henry, Robert R.

    2016-01-01

    Skeletal muscle secretes factors, termed myokines. We employed differentiated human skeletal muscle cells (hSMC) cultured from Type 2 diabetic (T2D) and non-diabetic (ND) subjects to investigate the impact of T2D on myokine secretion. Following 24 hours of culture concentrations of selected myokines were determined to range over 4 orders of magnitude. T2D hSMC released increased amounts of IL6, IL8, IL15, TNFa, Growth Related Oncogene (GRO)a, monocyte chemotactic protein (MCP)-1, and follistatin compared to ND myotubes. T2D and ND hSMC secreted similar levels of IL1ß and vascular endothelial growth factor (VEGF). Treatment with the inflammatory agents lipopolysaccharide (LPS) or palmitate augmented the secretion of many myokines including: GROa, IL6, IL8, IL15, and TNFa, but did not consistently alter the protein content and/or phosphorylation of IkBa, p44/42 MAPK, p38 MAPK, c-Jun N-terminal kinase (JNK) and NF-kB, nor lead to consistent changes in basal and insulin-stimulated glucose uptake or free fatty acid oxidation. Conversely, treatment with pioglitazone or oleate resulted in modest reductions in the secretion of several myokines. Our results demonstrate that altered secretion of a number of myokines is an intrinsic property of skeletal muscle in T2D, suggesting a putative role of myokines in the response of skeletal muscle to T2D. PMID:27453994

  20. Inactivity amplifies the catabolic response of skeletal muscle to cortisol

    NASA Technical Reports Server (NTRS)

    Ferrando, A. A.; Stuart, C. A.; Sheffield-Moore, M.; Wolfe, R. R.

    1999-01-01

    Severe injury or trauma is accompanied by both hypercortisolemia and prolonged inactivity or bed rest (BR). Trauma and BR alone each result in a loss of muscle nitrogen, albeit through different metabolic alterations. Although BR alone can result in a 2-3% loss of lean body mass, the effects of severe trauma can be 2- to 3-fold greater. We investigated the combined effects of hypercortisolemia and prolonged inactivity on muscle protein metabolism in healthy volunteers. Six males were studied before and after 14 days of strict BR using a model based on arteriovenous sampling and muscle biopsy. Fractional synthesis and breakdown rates of skeletal muscle protein were also directly calculated. Each assessment of protein metabolism was conducted during a 12-h infusion of hydrocortisone sodium succinate (120 microg/kg x h), resulting in blood cortisol concentrations that mimic severe injury (approximately 31 microg/dL). After 14 days of strict BR, hypercortisolemia increased phenylalanine efflux from muscle by 3-fold (P < 0.05). The augmented negative amino acid balance was the result of an increased muscle protein breakdown (P < 0.05) without a concomitant change in muscle protein synthesis. Muscle efflux of glutamine and alanine increased significantly after bed rest due to a significant increase in de novo synthesis (P < 0.05). Thus, inactivity sensitizes skeletal muscle to the catabolic effects of hypercortisolemia. Furthermore, these effects on healthy volunteers are analogous to those seen after severe injury.

  1. Leucine supplementation improves regeneration of skeletal muscles from old rats.

    PubMed

    Pereira, Marcelo G; Silva, Meiricris T; da Cunha, Fernanda M; Moriscot, Anselmo S; Aoki, Marcelo S; Miyabara, Elen H

    2015-12-01

    The decreased regenerative capacity of old skeletal muscles involves disrupted turnover of proteins. This study investigated whether leucine supplementation in old rats could improve muscle regenerative capacity. Young and old male Wistar rats were supplemented with leucine; then, the muscles were cryolesioned and examined after 3 and 10 days. Leucine supplementation attenuated the decrease in the expression of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1) and eukaryotic translation initiation factor 4E (eIF4E) in young and old muscles on day 3 post-injury and promoted an increase in the cross-sectional area of regenerating myofibers from both young and old soleus muscles on day 10 post-injury. This supplementation decreased the levels of ubiquitinated proteins and increased the proteasome activity in young regenerating muscles, but the opposite effect was observed in old regenerating muscles. Moreover, leucine decreased the inflammation area and induced an increase in the number of proliferating satellite cells in both young and old muscles. Our results suggest that leucine supplementation improves the regeneration of skeletal muscles from old rats, through the preservation of certain biological responses upon leucine supplementation. Such responses comprise the decrease in the inflammation area, increase in the number of proliferating satellite cells and size of regenerating myofibers, combined with the modulation of components of the phosphoinositide 3-kinase/Akt-protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway and ubiquitin-proteasome system.

  2. A 3-day EGCG-supplementation reduces interstitial lactate concentration in skeletal muscle of overweight subjects

    PubMed Central

    Most, Jasper; van Can, Judith G P; van Dijk, Jan-Willem; Goossens, Gijs H.; Jocken, Johan; Hospers, Jeannette J.; Bendik, Igor; Blaak, Ellen E.

    2015-01-01

    Green tea, particularly epigallocatechin-3-gallate (EGCG), may affect body weight and composition, possibly by enhancing fat oxidation. The aim of this double-blind, randomized placebo-controlled cross-over study was to investigate whether 3-day supplementation with EGCG (282mg/day) stimulates fat oxidation and lipolysis in 24 overweight subjects (age = 30 ± 2yrs, BMI = 27.7 ± 0.3 kg/m2). Energy expenditure, substrate metabolism and circulating metabolites were determined during fasting and postprandial conditions. After 6 h, a fat biopsy was collected to examine gene expression. In 12 subjects, skeletal muscle glycerol, glucose and lactate concentrations were determined using microdialysis. EGCG-supplementation did not alter energy expenditure and substrate oxidation compared to placebo. Although EGCG reduced postprandial circulating glycerol concentrations (P = 0.015), no difference in skeletal muscle lipolysis was observed. Fasting (P = 0.001) and postprandial (P = 0.003) skeletal muscle lactate concentrations were reduced after EGCG-supplementation compared to placebo, despite similar tissue blood flow. Adipose tissue leptin (P = 0.05) and FAT/CD36 expression (P = 0.08) were increased after EGCG compared to placebo. In conclusion, 3-day EGCG-supplementation decreased postprandial plasma glycerol concentrations, but had no significant effects on skeletal muscle lipolysis and whole-body fat oxidation in overweight individuals. Furthermore, EGCG decreased skeletal muscle lactate concentrations, which suggest a shift towards a more oxidative muscle phenotype. PMID:26647963

  3. Statin Therapy Alters Lipid Storage in Diabetic Skeletal Muscle.

    PubMed

    Rebalka, Irena A; Raleigh, Matthew J; Snook, Laelie A; Rebalka, Alexandra N; MacPherson, Rebecca E K; Wright, David C; Schertzer, Jonathan D; Hawke, Thomas J

    2016-01-01

    While statins significantly reduce cholesterol levels and thereby reduce the risk of cardiovascular disease, the development of myopathy with statin use is a significant clinical side effect. Recent guidelines recommend increasing inclusion criteria for statin treatment in diabetic individuals; however, the impact of statins on skeletal muscle health in those with diabetes (who already suffer from impairments in muscle health) is ill defined. Here, we investigate the effects of fluvastatin treatment on muscle health in wild type (WT) and streptozotocin (STZ)-induced diabetic mice. WT and STZ-diabetic mice received diet enriched with 600 mg/kg fluvastatin or control chow for 24 days. Muscle morphology, intra and extracellular lipid levels, and lipid transporter content were investigated. Our findings indicate that short-term fluvastatin administration induced a myopathy that was not exacerbated by the presence of STZ-induced diabetes. Fluvastatin significantly increased ectopic lipid deposition within the muscle of STZ-diabetic animals, findings that were not seen with diabetes or statin treatment alone. Consistent with this observation, only fluvastatin-treated diabetic mice downregulated protein expression of lipid transporters FAT/CD36 and FABPpm in their skeletal muscle. No differences in FAT/CD36 or FABPpm mRNA content were observed. Altered lipid compartmentalization resultant of a downregulation in lipid transporter content in STZ-induced diabetic skeletal muscle was apparent in the current investigation. Given the association between ectopic lipid deposition in skeletal muscle and the development of insulin-resistance, our findings highlight the necessity for more thorough investigations into the impact of statins in humans with diabetes. PMID:27486434

  4. Statin Therapy Alters Lipid Storage in Diabetic Skeletal Muscle

    PubMed Central

    Rebalka, Irena A.; Raleigh, Matthew J.; Snook, Laelie A.; Rebalka, Alexandra N.; MacPherson, Rebecca E. K.; Wright, David C.; Schertzer, Jonathan D.; Hawke, Thomas J.

    2016-01-01

    While statins significantly reduce cholesterol levels and thereby reduce the risk of cardiovascular disease, the development of myopathy with statin use is a significant clinical side effect. Recent guidelines recommend increasing inclusion criteria for statin treatment in diabetic individuals; however, the impact of statins on skeletal muscle health in those with diabetes (who already suffer from impairments in muscle health) is ill defined. Here, we investigate the effects of fluvastatin treatment on muscle health in wild type (WT) and streptozotocin (STZ)-induced diabetic mice. WT and STZ-diabetic mice received diet enriched with 600 mg/kg fluvastatin or control chow for 24 days. Muscle morphology, intra and extracellular lipid levels, and lipid transporter content were investigated. Our findings indicate that short-term fluvastatin administration induced a myopathy that was not exacerbated by the presence of STZ-induced diabetes. Fluvastatin significantly increased ectopic lipid deposition within the muscle of STZ-diabetic animals, findings that were not seen with diabetes or statin treatment alone. Consistent with this observation, only fluvastatin-treated diabetic mice downregulated protein expression of lipid transporters FAT/CD36 and FABPpm in their skeletal muscle. No differences in FAT/CD36 or FABPpm mRNA content were observed. Altered lipid compartmentalization resultant of a downregulation in lipid transporter content in STZ-induced diabetic skeletal muscle was apparent in the current investigation. Given the association between ectopic lipid deposition in skeletal muscle and the development of insulin-resistance, our findings highlight the necessity for more thorough investigations into the impact of statins in humans with diabetes. PMID:27486434

  5. Ultrastructural alterations in skeletal muscle fibers of rats after exercise

    NASA Technical Reports Server (NTRS)

    Akuzawa, M.; Hataya, M.

    1982-01-01

    Ultrastructural alterations in skeletal muscle fibers were electron microscopically studied in rats forced to run on the treadmill until all-out. When they were mild and limited to relatively small areas, the reconstruction of filaments ensued within 10 days without infiltration of cells. When they were severe and extensive, phagocytes infiltrated in the lesions and removed degenerative sacroplasmic debris from muscle fibers. A little later, myoblasts appeared and regeneration was accomplished in 30 days in much the same manner as in myogenesis.

  6. Mimicking muscle activity with electrical stimulation

    NASA Astrophysics Data System (ADS)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  7. Regulation of skeletal muscle protein degradation and synthesis by oral administration of lysine in rats.

    PubMed

    Sato, Tomonori; Ito, Yoshiaki; Nagasawa, Takashi

    2013-01-01

    Several catabolic diseases and unloading induce muscle mass wasting, which causes severe pathological progression in various diseases and aging. Leucine is known to attenuate muscle loss via stimulation of protein synthesis and suppression of protein degradation in skeletal muscle. The aim of this study was to investigate the effects of lysine intake on protein degradation and synthesis in skeletal muscle. Fasted rats were administered 22.8-570 mg Lys/100 g body weight and the rates of myofibrillar protein degradation were assessed for 0-6 h after Lys administration. The rates of myofibrillar protein degradation evaluated by MeHis release from the isolated muscles were markedly suppressed after administration of 114 mg Lys/100 g body weight and of 570 mg Lys/100 g body weight. LC3-II, a marker of the autophagic-lysosomal pathway, tended to decrease (p=0.05, 0.08) after Lys intake (114 mg/100 g body weight). However, expression of ubiquitin ligase E3 atrogin-1 mRNA and levels of ubiquitinated proteins were not suppressed by Lys intake. Phosphorylation levels of mTOR, S6K1 and 4E-BP1 in the gastrocnemius muscle were not altered after Lys intake. These results suggest that Lys is able to suppress myofibrillar protein degradation at least partially through the autophagic-lysosomal pathway, not the ubiquitin-proteasomal pathway, whereas Lys might be unable to stimulate protein synthesis within this time frame. PMID:24418875

  8. Regulation of skeletal muscle protein degradation and synthesis by oral administration of lysine in rats.

    PubMed

    Sato, Tomonori; Ito, Yoshiaki; Nagasawa, Takashi

    2013-01-01

    Several catabolic diseases and unloading induce muscle mass wasting, which causes severe pathological progression in various diseases and aging. Leucine is known to attenuate muscle loss via stimulation of protein synthesis and suppression of protein degradation in skeletal muscle. The aim of this study was to investigate the effects of lysine intake on protein degradation and synthesis in skeletal muscle. Fasted rats were administered 22.8-570 mg Lys/100 g body weight and the rates of myofibrillar protein degradation were assessed for 0-6 h after Lys administration. The rates of myofibrillar protein degradation evaluated by MeHis release from the isolated muscles were markedly suppressed after administration of 114 mg Lys/100 g body weight and of 570 mg Lys/100 g body weight. LC3-II, a marker of the autophagic-lysosomal pathway, tended to decrease (p=0.05, 0.08) after Lys intake (114 mg/100 g body weight). However, expression of ubiquitin ligase E3 atrogin-1 mRNA and levels of ubiquitinated proteins were not suppressed by Lys intake. Phosphorylation levels of mTOR, S6K1 and 4E-BP1 in the gastrocnemius muscle were not altered after Lys intake. These results suggest that Lys is able to suppress myofibrillar protein degradation at least partially through the autophagic-lysosomal pathway, not the ubiquitin-proteasomal pathway, whereas Lys might be unable to stimulate protein synthesis within this time frame.

  9. Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration.

    PubMed

    Choi, Ji Suk; Yoon, Hwa In; Lee, Kyoung Soo; Choi, Young Chan; Yang, Seong Hyun; Kim, In-San; Cho, Yong Woo

    2016-01-28

    Exosomes released from skeletal muscle cells play important roles in myogenesis and muscle development via the transfer of specific signal molecules. In this study, we investigated whether exosomes secreted during myotube differentiation from human skeletal myoblasts (HSkM) could induce a cellular response from human adipose-derived stem cells (HASCs) and enhance muscle regeneration in a muscle laceration mouse model. The exosomes contained various signal molecules including myogenic growth factors related to muscle development, such as insulin-like growth factors (IGFs), hepatocyte growth factor (HGF), fibroblast growth factor-2 (FGF2), and platelet-derived growth factor-AA (PDGF-AA). Interestingly, exosome-treated HASCs fused with neighboring cells at early time points and exhibited a myotube-like phenotype with increased expression of myogenic proteins (myosin heavy chain and desmin). On day 21, mRNAs of terminal myogenic genes were also up-regulated in exosome-treated HASCs. Moreover, in vivo studies demonstrated that exosomes from differentiating HSkM reduced the fibrotic area and increased the number of regenerated myofibers in the injury site, resulting in significant improvement of skeletal muscle regeneration. Our findings suggest that exosomes act as a biochemical cue directing stem cell differentiation and provide a cell-free therapeutic approach for muscle regeneration.

  10. Calsequestrins in skeletal and cardiac muscle from adult Danio rerio.

    PubMed

    Furlan, Sandra; Mosole, Simone; Murgia, Marta; Nagaraj, Nagarjuna; Argenton, Francesco; Volpe, Pompeo; Nori, Alessandra

    2016-04-01

    Calsequestrin (Casq) is a high capacity, low affinity Ca(2+)-binding protein, critical for Ca(2+)-buffering in cardiac and skeletal muscle sarcoplasmic reticulum. All vertebrates have multiple genes encoding for different Casq isoforms. Increasing interest has been focused on mammalian and human Casq genes since mutations of both cardiac (Casq2) and skeletal muscle (Casq1) isoforms cause different, and sometime severe, human pathologies. Danio rerio (zebrafish) is a powerful model for studying function and mutations of human proteins. In this work, expression, biochemical properties cellular and sub-cellular localization of D. rerio native Casq isoforms are investigated. By quantitative PCR, three mRNAs were detected in skeletal muscle and heart with different abundances. Three zebrafish Casqs: Casq1a, Casq1b and Casq2 were identified by mass spectrometry (Data are available via ProteomeXchange with identifier PXD002455). Skeletal and cardiac zebrafish calsequestrins share properties with mammalian Casq1 and Casq2. Skeletal Casqs were found primarily, but not exclusively, at the sarcomere Z-line level where terminal cisternae of sarcoplasmic reticulum are located. PMID:26585961

  11. Chronic Stimulation-Induced Changes in the Rodent Thyroarytenoid Muscle

    ERIC Educational Resources Information Center

    McMullen, Colleen A.; Butterfield, Timothy A.; Dietrich, Maria; Andreatta, Richard D.; Andrade, Francisco H.; Fry, Lisa; Stemple, Joseph C.

    2011-01-01

    Purpose: Therapies for certain voice disorders purport principles of skeletal muscle rehabilitation to increase muscle mass, strength, and endurance. However, applicability of limb muscle rehabilitation to the laryngeal muscles has not been tested. In this study, the authors examined the feasibility of the rat thyroarytenoid muscle to remodel as a…

  12. Combination of small RNAs for skeletal muscle regeneration.

    PubMed

    Kim, NaJung; Yoo, James J; Atala, Anthony; Lee, Sang Jin

    2016-03-01

    Selectively controlling the expression of the target genes through RNA interference (RNAi) has significant therapeutic potential for injuries or diseases of tissues. We used this strategy to accelerate and enhance skeletal muscle regeneration for the treatment of muscular atrophy. In this study, we used myostatin small interfering (si)RNA (siGDF-8), a major inhibitory factor in the development and postnatal regeneration of skeletal muscle and muscle-specific microRNAs (miR-1 and -206) to further accelerate muscle regeneration. This combination of 3 small RNAs significantly improved the gene expression of myogenic regulatory factors in vitro, suggesting myogenic activation. Moreover, cell proliferation and myotube formation improved without compromising each other, which indicates the myogenic potential of this combination of small RNAs. The recovery of chemically injured tibialis anterior muscles in rats was significantly accelerated, both functionally and structurally. This novel combination of siRNA and miRNAs has promising therapeutic potential to improve in situ skeletal muscle regeneration.

  13. Skeletal muscle disorders associated with selenium deficiency in humans.

    PubMed

    Chariot, Patrick; Bignani, Olivier

    2003-06-01

    Skeletal muscle disorders manifested by muscle pain, fatigue, proximal weakness, and serum creatine kinase (CK) elevation have been reported in patients with selenium deficiency. The object of this report was to review the conditions in which selenium deficiency is associated with human skeletal muscle disorders and to evaluate the importance of mitochondrial alterations in these disorders. A systematic literature review using the Medline database and Cochrane Library provided 38 relevant articles. The main conditions associated with selenium deficiency fell into three categories: (1) insufficient selenium intake in low soil-selenium areas; (2) parenteral or enteral nutrition, or malabsorption; and (3) chronic conditions associated with oxidative stress, such as chronic alcohol abuse and human immunodeficiency virus (HIV) infection. In low soil-selenium areas, reversibility of muscle symptoms was similar after selenium supplementation and placebo administration, suggesting a role for other factors in the development of disease. In parenteral or enteral nutrition, or malabsorption, muscle symptoms improved after selenium supplementation in 18 of 19 patients (median delay: 4 weeks). The reason that only a minority of selenium-deficient patients present with skeletal muscle disorders is unclear and is possibly related to cofactors, such as viral infections and drugs. Prospective studies of selenium-deficient myopathies would be useful in critically ill patients, alcohol abusers, and HIV-infected patients. PMID:12766976

  14. Regulation of skeletal muscle capillary growth in exercise and disease.

    PubMed

    Haas, Tara L; Nwadozi, Emmanuel

    2015-12-01

    Capillaries, which are the smallest and most abundant type of blood vessel, form the primary site of gas, nutrient, and waste transfer between the vascular and tissue compartments. Skeletal muscle exhibits the capacity to generate new capillaries (angiogenesis) as an adaptation to exercise training, thus ensuring that the heightened metabolic demand of the active muscle is matched by an improved capacity for distribution of gases, nutrients, and waste products. This review summarizes the current understanding of the regulation of skeletal muscle capillary growth. The multi-step process of angiogenesis is coordinated through the integration of a diverse array of signals associated with hypoxic, metabolic, hemodynamic, and mechanical stresses within the active muscle. The contributions of metabolic and mechanical factors to the modulation of key pro- and anti-angiogenic molecules are discussed within the context of responses to a single aerobic exercise bout and short-term and long-term training. Finally, the paradoxical lack of angiogenesis in peripheral artery disease and diabetes and the implications for disease progression and muscle health are discussed. Future studies that emphasize an integrated analysis of the mechanisms that control skeletal muscle capillary growth will enable development of targeted exercise programs that effectively promote angiogenesis in healthy individuals and in patient populations. PMID:26554747

  15. Myopathic changes in murine skeletal muscle lacking synemin

    PubMed Central

    García-Pelagio, Karla P.; Muriel, Joaquin; O'Neill, Andrea; Desmond, Patrick F.; Lovering, Richard M.; Lund, Linda; Bond, Meredith

    2015-01-01

    Diseases of striated muscle linked to intermediate filament (IF) proteins are associated with defects in the organization of the contractile apparatus and its links to costameres, which connect the sarcomeres to the cell membrane. Here we study the role in skeletal muscle of synemin, a type IV IF protein, by examining mice null for synemin (synm-null). Synm-null mice have a mild skeletal muscle phenotype. Tibialis anterior (TA) muscles show a significant decrease in mean fiber diameter, a decrease in twitch and tetanic force, and an increase in susceptibility to injury caused by lengthening contractions. Organization of proteins associated with the contractile apparatus and costameres is not significantly altered in the synm-null. Elastimetry of the sarcolemma and associated contractile apparatus in extensor digitorum longus myofibers reveals a reduction in tension consistent with an increase in sarcolemmal deformability. Although fatigue after repeated isometric contractions is more marked in TA muscles of synm-null mice, the ability of the mice to run uphill on a treadmill is similar to controls. Our results suggest that synemin contributes to linkage between costameres and the contractile apparatus and that the absence of synemin results in decreased fiber size and increased sarcolemmal deformability and susceptibility to injury. Thus synemin plays a moderate but distinct role in fast twitch skeletal muscle. PMID:25567810

  16. Regulation of skeletal muscle capillary growth in exercise and disease.

    PubMed

    Haas, Tara L; Nwadozi, Emmanuel

    2015-12-01

    Capillaries, which are the smallest and most abundant type of blood vessel, form the primary site of gas, nutrient, and waste transfer between the vascular and tissue compartments. Skeletal muscle exhibits the capacity to generate new capillaries (angiogenesis) as an adaptation to exercise training, thus ensuring that the heightened metabolic demand of the active muscle is matched by an improved capacity for distribution of gases, nutrients, and waste products. This review summarizes the current understanding of the regulation of skeletal muscle capillary growth. The multi-step process of angiogenesis is coordinated through the integration of a diverse array of signals associated with hypoxic, metabolic, hemodynamic, and mechanical stresses within the active muscle. The contributions of metabolic and mechanical factors to the modulation of key pro- and anti-angiogenic molecules are discussed within the context of responses to a single aerobic exercise bout and short-term and long-term training. Finally, the paradoxical lack of angiogenesis in peripheral artery disease and diabetes and the implications for disease progression and muscle health are discussed. Future studies that emphasize an integrated analysis of the mechanisms that control skeletal muscle capillary growth will enable development of targeted exercise programs that effectively promote angiogenesis in healthy individuals and in patient populations.

  17. Impact of placental insufficiency on fetal skeletal muscle growth.

    PubMed

    Brown, Laura D; Hay, William W

    2016-11-01

    Intrauterine growth restriction (IUGR) caused by placental insufficiency is one of the most common and complex problems in perinatology, with no known cure. In pregnancies affected by placental insufficiency, a poorly functioning placenta restricts nutrient supply to the fetus and prevents normal fetal growth. Among other significant deficits in organ development, the IUGR fetus characteristically has less lean body and skeletal muscle mass than their appropriately-grown counterparts. Reduced skeletal muscle growth is not fully compensated after birth, as individuals who were born small for gestational age (SGA) from IUGR have persistent reductions in muscle mass and strength into adulthood. The consequences of restricted muscle growth and accelerated postnatal "catch-up" growth in the form of adiposity may contribute to the increased later life risk for visceral adiposity, peripheral insulin resistance, diabetes, and cardiovascular disease in individuals who were formerly IUGR. This review will discuss how an insufficient placenta results in impaired fetal skeletal muscle growth and how lifelong reductions in muscle mass might contribute to increased metabolic disease risk in this vulnerable population.

  18. 21 CFR 890.5860 - Ultrasound and muscle stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasound and muscle stimulator. 890.5860 Section... Ultrasound and muscle stimulator. (a) Ultrasound and muscle stimulator for use in applying therapeutic deep heat for selected medical conditions—(1) Identification. An ultrasound and muscle stimulator for use...

  19. 21 CFR 890.5860 - Ultrasound and muscle stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasound and muscle stimulator. 890.5860 Section... Ultrasound and muscle stimulator. (a) Ultrasound and muscle stimulator for use in applying therapeutic deep heat for selected medical conditions—(1) Identification. An ultrasound and muscle stimulator for use...

  20. 21 CFR 890.5860 - Ultrasound and muscle stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultrasound and muscle stimulator. 890.5860 Section... Ultrasound and muscle stimulator. (a) Ultrasound and muscle stimulator for use in applying therapeutic deep heat for selected medical conditions—(1) Identification. An ultrasound and muscle stimulator for use...

  1. 21 CFR 890.5860 - Ultrasound and muscle stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasound and muscle stimulator. 890.5860 Section... Ultrasound and muscle stimulator. (a) Ultrasound and muscle stimulator for use in applying therapeutic deep heat for selected medical conditions—(1) Identification. An ultrasound and muscle stimulator for use...

  2. 21 CFR 890.5860 - Ultrasound and muscle stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasound and muscle stimulator. 890.5860 Section... Ultrasound and muscle stimulator. (a) Ultrasound and muscle stimulator for use in applying therapeutic deep heat for selected medical conditions—(1) Identification. An ultrasound and muscle stimulator for use...

  3. Oxidative stress in skeletal muscle impairs mitochondrial respiration and limits exercise capacity in type 2 diabetic mice.

    PubMed

    Yokota, Takashi; Kinugawa, Shintaro; Hirabayashi, Kagami; Matsushima, Shouji; Inoue, Naoki; Ohta, Yukihiro; Hamaguchi, Sanae; Sobirin, Mochamad A; Ono, Taisuke; Suga, Tadashi; Kuroda, Satoshi; Tanaka, Shinya; Terasaki, Fumio; Okita, Koichi; Tsutsui, Hiroyuki

    2009-09-01

    Insulin resistance or diabetes is associated with limited exercise capacity, which can be caused by the abnormal energy metabolism in skeletal muscle. Oxidative stress is involved in mitochondrial dysfunction in diabetes. We hypothesized that increased oxidative stress could cause mitochondrial dysfunction in skeletal muscle and make contribution to exercise intolerance in diabetes. C57/BL6J mice were fed on normal diet or high fat diet (HFD) for 8 wk to induce obesity with insulin resistance and diabetes. Treadmill tests with expired gas analysis were performed to determine the exercise capacity and whole body oxygen uptake (Vo(2)). The work (vertical distance x body weight) to exhaustion was reduced in the HFD mice by 36%, accompanied by a 16% decrease of peak Vo(2). Mitochondrial ADP-stimulated respiration, electron transport chain complex I and III activities, and mitochondrial content in skeletal muscle were decreased in the HFD mice. Furthermore, superoxide production and NAD(P)H oxidase activity in skeletal muscle were significantly increased in the HFD mice. Intriguingly, the treatment of HFD-fed mice with apocynin [10 mmol/l; an inhibitor of NAD(P)H oxidase activation] improved exercise intolerance and mitochondrial dysfunction in skeletal muscle without affecting glucose metabolism itself. The exercise capacity and mitochondrial function in skeletal muscle were impaired in type 2 diabetes, which might be due to enhanced oxidative stress. Therapies designed to regulate oxidative stress and maintain mitochondrial function could be beneficial to improve the exercise capacity in type 2 diabetes.

  4. Functional Overload Enhances Satellite Cell Properties in Skeletal Muscle.

    PubMed

    Fujimaki, Shin; Machida, Masanao; Wakabayashi, Tamami; Asashima, Makoto; Takemasa, Tohru; Kuwabara, Tomoko

    2016-01-01

    Skeletal muscle represents a plentiful and accessible source of adult stem cells. Skeletal-muscle-derived stem cells, termed satellite cells, play essential roles in postnatal growth, maintenance, repair, and regeneration of skeletal muscle. Although it is well known that the number of satellite cells increases following physical exercise, functional alterations in satellite cells such as proliferative capacity and differentiation efficiency following exercise and their molecular mechanisms remain unclear. Here, we found that functional overload, which is widely used to model resistance exercise, causes skeletal muscle hypertrophy and converts satellite cells from quiescent state to activated state. Our analysis showed that functional overload induces the expression of MyoD in satellite cells and enhances the proliferative capacity and differentiation potential of these cells. The changes in satellite cell properties coincided with the inactivation of Notch signaling and the activation of Wnt signaling and likely involve modulation by transcription factors of the Sox family. These results indicate the effects of resistance exercise on the regulation of satellite cells and provide insight into the molecular mechanism of satellite cell activation following physical exercise.

  5. Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cachexia is a wasting syndrome associated with cancer, AIDS, multiple sclerosis, and several other disease states. It is characterized by weight loss, fatigue, loss of appetite, and skeletal muscle atrophy and is associated with poor patient prognosis, making it an important treatment target. Ghreli...

  6. MicroRNA Transcriptome Profiles During Swine Skeletal Muscle Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNA (miR) are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts. To evaluate the role of miR in skeletal muscle of swine, global microRNA abundance was measured at specific developmental stages including proliferating satellite cells,...

  7. In utero Undernutrition Programs Skeletal and Cardiac Muscle Metabolism

    PubMed Central

    Beauchamp, Brittany; Harper, Mary-Ellen

    2016-01-01

    In utero undernutrition is associated with increased risk for insulin resistance, obesity, and cardiovascular disease during adult life. A common phenotype associated with low birth weight is reduced skeletal muscle mass. Given the central role of skeletal muscle in whole body metabolism, alterations in its mass as well as its metabolic characteristics may contribute to disease risk. This review highlights the metabolic alterations in cardiac and skeletal muscle associated with in utero undernutrition and low birth weight. These tissues have high metabolic demands and are known to be sites of major metabolic dysfunction in obesity, type 2 diabetes, and cardiovascular disease. Recent research demonstrates that mitochondrial energetics are decreased in skeletal and cardiac muscles of adult offspring from undernourished mothers. These effects apparently lead to the development of a thrifty phenotype, which may represent overall a compensatory mechanism programmed in utero to handle times of limited nutrient availability. However, in an environment characterized by food abundance, the effects are maladaptive and increase adulthood risks of metabolic disease. PMID:26779032

  8. Insulin signaling in skeletal muscle of HIV-infected patients in response to endurance and strength training.

    PubMed

    Broholm, Christa; Mathur, Neha; Hvid, Thine; Grøndahl, Thomas Sahl; Frøsig, Christian; Pedersen, Bente Klarlund; Lindegaard, Birgitte

    2013-08-01

    Human immunodeficiency virus (HIV)-infected patients with lipodystrophy have decreased insulin-stimulated glucose uptake. Both endurance and resistance training improve insulin-stimulated glucose uptake in skeletal muscle of HIV-infected patients, but the mechanisms are unknown. This study aims to identify the molecular pathways involved in the beneficial effects of training on insulin-stimulated glucose uptake in skeletal muscle of HIV-infected patients. Eighteen sedentary male HIV-infected patients underwent a 16 week supervised training intervention, either resistance or strength training. Euglycemic-hyperinsulinemic clamps with muscle biopsies were performed before and after the training interventions. Fifteen age- and body mass index (BMI)-matched HIV-negative men served as a sedentary baseline group. Phosphorylation and total protein expression of insulin signaling molecules as well as glycogen synthase (GS) activity were analyzed in skeletal muscle biopsies in relation to insulin stimulation before and after training. HIV-infected patients had reduced basal and insulin-stimulated GS activity (%fractional velocity, [FV]) as well as impaired insulin-stimulated Akt(thr308) phosphorylation. Despite improving insulin-stimulated glucose uptake, neither endurance nor strength training changed the phosphorylation status of insulin signaling proteins or affected GS activity. However; endurance training markedly increased the total Akt protein expression, and both training modalities increased hexokinase II (HKII) protein. HIV-infected patients with lipodystrophy have decreased insulin-stimulated glucose uptake in skeletal muscle and defects in insulin-stimulated phosphorylation of Akt(thr308). Endurance and strength training increase insulin-stimulated glucose uptake in these patients, and the muscular training adaptation is associated with improved capacity for phosphorylation of glucose by HKII, rather than changes in markers of insulin signaling to glucose uptake

  9. Differential global gene expression in red and white skeletal muscle

    NASA Technical Reports Server (NTRS)

    Campbell, W. G.; Gordon, S. E.; Carlson, C. J.; Pattison, J. S.; Hamilton, M. T.; Booth, F. W.

    2001-01-01

    The differences in gene expression among the fiber types of skeletal muscle have long fascinated scientists, but for the most part, previous experiments have only reported differences of one or two genes at a time. The evolving technology of global mRNA expression analysis was employed to determine the potential differential expression of approximately 3,000 mRNAs between the white quad (white muscle) and the red soleus muscle (mixed red muscle) of female ICR mice (30-35 g). Microarray analysis identified 49 mRNA sequences that were differentially expressed between white and mixed red skeletal muscle, including newly identified differential expressions between muscle types. For example, the current findings increase the number of known, differentially expressed mRNAs for transcription factors/coregulators by nine and signaling proteins by three. The expanding knowledge of the diversity of mRNA expression between white and mixed red muscle suggests that there could be quite a complex regulation of phenotype between muscles of different fiber types.

  10. Effect of beta-ADrenergic Agonist on Cyclic AMP Synthesis in Chicken Skeletal Muscle Cells in Culture

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Because it seems logical that these agonists exert their action on muscle through stimulation of cAMP synthesis, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate cAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of cAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of cAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax levels were approximately 15-fold weaker than isoproterenol in stimulating the rate of cAMP synthesis. In addition, the EC50 values for isoproterenol, cimaterol, clenbuterol, epinephrine, and albuterol were 360 nM, 630 nM, 900 nM, 2,470 nM, and 3,650 nM, respectively. Finally, dose response curves show that the concentrations of cimaterol and clenbuterol in culture media at concentrations known to cause significant muscle hypertrophy in animals had no detectable effect on stimulation of CAMP accumulation in chicken skeletal muscle cells.

  11. Advancements in stem cells treatment of skeletal muscle wasting

    PubMed Central

    Meregalli, Mirella; Farini, Andrea; Sitzia, Clementina; Torrente, Yvan

    2014-01-01

    Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders, in which progressive muscle wasting and weakness is often associated with exhaustion of muscle regeneration potential. Although physiological properties of skeletal muscle tissue are now well known, no treatments are effective for these diseases. Muscle regeneration was attempted by means transplantation of myogenic cells (from myoblast to embryonic stem cells) and also by interfering with the malignant processes that originate in pathological tissues, such as uncontrolled fibrosis and inflammation. Taking into account the advances in the isolation of new subpopulation of stem cells and in the creation of artificial stem cell niches, we discuss how these emerging technologies offer great promises for therapeutic approaches to muscle diseases and muscle wasting associated with aging. PMID:24575052

  12. The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass

    PubMed Central

    Chen, Justin L.; Qian, Hongwei; Liu, Yingying; Bernardo, Bianca C.; Beyer, Claudia; Watt, Kevin I.; Thomson, Rachel E.; Connor, Timothy; Turner, Bradley J.; McMullen, Julie R.; Larsson, Lars; McGee, Sean L.; Harrison, Craig A.

    2013-01-01

    Although the canonical transforming growth factor β signaling pathway represses skeletal muscle growth and promotes muscle wasting, a role in muscle for the parallel bone morphogenetic protein (BMP) signaling pathway has not been defined. We report, for the first time, that the BMP pathway is a positive regulator of muscle mass. Increasing the expression of BMP7 or the activity of BMP receptors in muscles induced hypertrophy that was dependent on Smad1/5-mediated activation of mTOR signaling. In agreement, we observed that BMP signaling is augmented in models of muscle growth. Importantly, stimulation of BMP signaling is essential for conservation of muscle mass after disruption of the neuromuscular junction. Inhibiting the phosphorylation of Smad1/5 exacerbated denervation-induced muscle atrophy via an HDAC4-myogenin–dependent process, whereas increased BMP–Smad1/5 activity protected muscles from denervation-induced wasting. Our studies highlight a novel role for the BMP signaling pathway in promoting muscle growth and inhibiting muscle wasting, which may have significant implications for the development of therapeutics for neuromuscular disorders. PMID:24145169

  13. Calcium transients in asymmetrically activated skeletal muscle fibers.

    PubMed Central

    Trube, G; Lopez, J R; Taylor, S R

    1981-01-01

    Skeletal muscle fibers of the frog Rana temporaria were held just taut and stimulated transversely by unidirectional electrical fields. We observed the reversible effects of stimulus duration (0.1-100 ms) and strength on action potentials, intracellular Ca2+ transients (monitored by aequorin), and contractile force during fixed-end contractions. Long duration stimuli (e.g., 10 ms) induced a maintained depolarization on the cathodal side of a cell and a maintained hyperpolarization on its anodal side. The hyperpolarization of the side facing the anode prevented the action potential from reaching mechanical threshold during strong stimuli. Variation of the duration or strength of a stimulus changed the luminescent response from a fiber injected with aequorin. Thus, the intracellular Ca2+ released during excitation-contraction coupling could be changed by the stimulus parameters. Prolongation of a stimulus at field strengths above 1.1 x rheobase decreased the amplitude of aequorin signals and the force of contractions. The decreases in aequorin and force signals from a given fiber paralleled one another and depended on the stimulus strength, but not on the stimulus polarity. These changes were completely reversible for stimulus strengths up to at least 4.2 x rheobase. The graded decreases in membrane depolarization, aequorin signals, and contractile force were correlated with the previously described folding of myofibrils in fibers allowed to shorten in response to the application of a long duration stimulus. The changes in aequorin signals and force suggest an absence of myofilament activation by Ca2+ in the section of the fiber closest to the anode. The results imply that injected aequorin distributes circumferentially in frog muscle with a coefficient of at least 10(-7) cm2/s, which is not remarkably different from the previously measured coefficient of 5 x 10(-8) cm2/s for its diffusion lengthwise. PMID:6976801

  14. Androgens Regulate Gene Expression in Avian Skeletal Muscles

    PubMed Central

    Fuxjager, Matthew J.; Barske, Julia; Du, Sienmi; Day, Lainy B.; Schlinger, Barney A.

    2012-01-01

    Circulating androgens in adult reproductively active male vertebrates influence a diversity of organ systems and thus are considered costly. Recently, we obtained evidence that androgen receptors (AR) are expressed in several skeletal muscles of three passeriform birds, the golden-collared manakin (Manacus vitellinus), zebra finch (Taenopygia guttata), and ochre-bellied flycatcher (Mionectes oleagieus). Because skeletal muscles that control wing movement make up the bulk of a bird’s body mass, evidence for widespread effects of androgen action on these muscles would greatly expand the functional impact of androgens beyond their well-characterized effects on relatively discrete targets throughout the avian body. To investigate this issue, we use quantitative PCR (qPCR) to determine if androgens alter gene mRNA expression patterns in wing musculature of wild golden-collared manakins and captive zebra finches. In manakins, the androgen testosterone (T) up-regulated expression of parvalbumin (PV) and insulin-like growth factor I (IGF-I), two genes whose products enhance cellular Ca2+ cycling and hypertrophy of skeletal muscle fibers. In T-treated zebra finches, the anti-androgen flutamide blunted PV and IGF-I expression. These results suggest that certain transcriptional effects of androgen action via AR are conserved in passerine skeletal muscle tissue. When we examined wing muscles of manakins, zebra finches and ochre-bellied flycatchers, we found that expression of PV and IGF-I varied across species and in a manner consistent with a function for AR-dependent gene regulation. Together, these findings imply that androgens have the potential to act on avian muscle in a way that may enhance the physicality required for successful reproduction. PMID:23284699

  15. Androgens regulate gene expression in avian skeletal muscles.

    PubMed

    Fuxjager, Matthew J; Barske, Julia; Du, Sienmi; Day, Lainy B; Schlinger, Barney A

    2012-01-01

    Circulating androgens in adult reproductively active male vertebrates influence a diversity of organ systems and thus are considered costly. Recently, we obtained evidence that androgen receptors (AR) are expressed in several skeletal muscles of three passeriform birds, the golden-collared manakin (Manacus vitellinus), zebra finch (Taenopygia guttata), and ochre-bellied flycatcher (Mionectes oleagieus). Because skeletal muscles that control wing movement make up the bulk of a bird's body mass, evidence for widespread effects of androgen action on these muscles would greatly expand the functional impact of androgens beyond their well-characterized effects on relatively discrete targets throughout the avian body. To investigate this issue, we use quantitative PCR (qPCR) to determine if androgens alter gene mRNA expression patterns in wing musculature of wild golden-collared manakins and captive zebra finches. In manakins, the androgen testosterone (T) up-regulated expression of parvalbumin (PV) and insulin-like growth factor I (IGF-I), two genes whose products enhance cellular Ca(2+) cycling and hypertrophy of skeletal muscle fibers. In T-treated zebra finches, the anti-androgen flutamide blunted PV and IGF-I expression. These results suggest that certain transcriptional effects of androgen action via AR are conserved in passerine skeletal muscle tissue. When we examined wing muscles of manakins, zebra finches and ochre-bellied flycatchers, we found that expression of PV and IGF-I varied across species and in a manner consistent with a function for AR-dependent gene regulation. Together, these findings imply that androgens have the potential to act on avian muscle in a way that may enhance the physicality required for successful reproduction. PMID:23284699

  16. The effect of feeding during recovery from aerobic exercise on skeletal muscle intracellular signaling.

    PubMed

    Reidy, Paul T; Konopka, Adam R; Hinkley, J Matthew; Undem, Miranda K; Harber, Matthew P

    2014-02-01

    We previously reported an increase in skeletal muscle protein synthesis during fasted and fed recovery from nonexhaustive aerobic exercise (Harber et al., 2010). The current study examined skeletal muscle intracellular signaling in the same subjects to further investigate mechanisms of skeletal muscle protein metabolism with and without feeding following aerobic exercise. Eight males (VO₂peak: 52 ± 2 ml⁻¹·kg⁻¹·min⁻¹) performed 60-min of cycle ergometry at 72 ± 1% VO₂peak on two occasions in a counter-balanced design. Exercise trials differed only in the postexercise nutritional intervention: EX-FED (5 kcal, 0.83 g carbohydrate, 0.37 g protein, 0.03 g fat per kg body weight) and EX-FAST (noncaloric, isovolumic placebo) ingested immediately and one hour after exercise. Muscle biopsies were obtained from the vastus lateralis at rest (on a separate day) and two hours postexercise to assess intracellular signaling via western blotting of p70S6K1, eEF2, 4EBP1, AMPKα and p38 MAPK. p70S6K1 phosphorylation was elevated (p < .05) in EX-FED relative to REST and EX-FAST. eEF2, 4EBP1, AMPKα and p38 MAPK signaling were unaltered at 2 h after exercise independent of feeding status when expressed as the ratio of phosphorylated to total protein normalized to actin. These data demonstrate that feeding after a nonexhaustive bout of aerobic exercise stimulates skeletal muscle p70S6K1 intracellular signaling favorable for promoting protein synthesis which may, as recent literature has suggested, better prepare the muscle for subsequent exercise bouts. These data provide further support into the role of feeding on mechanisms regulating muscle protein metabolism during recovery from aerobic exercise.

  17. Effect of ethanol on function of the rat heart and skeletal muscles.

    PubMed

    Pagala, M; Ravindran, K; Amaladevi, B; Namba, T; Grob, D

    1995-06-01

    The present study was undertaken to evaluate the acute effects of ethanol on responses of the rat heart and skeletal muscles both in vivo and in vitro. In the anesthetized rat, intravenous infusion of ethanol at 0.1-0.5 g/kg body weight (33-167 mM) decreased the breathing rate by 8-83%, heart rate by 4-52%, and QRS amplitude by 5-27%, and increased the P-R interval by 1-49%. In the anterior tibialis muscle subjected to repetitive nerve stimulation at 100 Hz for 0.5 sec, ethanol at 0.1 g/kg increased the amplitude of the muscle action potential (AP) by 7%, whereas at 0.5 g/kg it decreased the muscle AP by 32%. The nerve-evoked tetanic tension was reduced by 7-34% at 0.1-0.5 g/kg ethanol. In the isolated rat heart, perfusion of ethanol at 0.1-3.0% (22-651 mM) decreased the heart rate by 8-48% and QRS amplitude by 10-39%, and increased the P-R interval by 5-61%. Left ventricular pressure was increased by 10% at 0.1% ethanol, and decreased by 80% at 3.0% ethanol. In the isolated rat phrenic nerve-diaphragm muscle preparation subjected to repetitive nerve stimulation at 100 Hz for 0.5 sec, 0.1-3.0% ethanol decreased the amplitude of the nerve AP by 5-89%, nerve-evoked muscle AP by 2-96%, and peak tetanic tension by 1-87%. On repetitive direct muscle stimulation at 100 Hz for 0.5 sec, 0.1-3.0% ethanol decreased the amplitude of the muscle-evoked muscle AP by 8-65%, and muscle-evoked tetanic tension by 2-65%. These studies indicate that ethanol causes smaller reduction in responses of the heart and skeletal muscles at clinical concentrations, but marked reduction in these responses at higher concentrations due to direct action on excitability of these tissues. At higher concentrations, ethanol causes greater reduction in excitability of the skeletal muscle than of the heart. PMID:7573793

  18. Release of calcitonin gene-related peptide from nerve terminals in rat skeletal muscle.

    PubMed Central

    Sakaguchi, M; Inaishi, Y; Kashihara, Y; Kuno, M

    1991-01-01

    1. The amount of calcitonin gene-related peptide (CGRP) released from the isolated rat soleus muscle was measured by enzyme immunoassay. 2. When the soleus muscle was exposed to a solution containing high K+ (20-100 mM) in the presence of tetrodotoxin, the amount of CGRP released into the bathing medium increased with an increase in the K+ concentration. 3. The exposure to 100 mM-K+ did not increase CGRP release from chronically denervated soleus muscles or from pieces of the soleus nerve separated from the muscle. 4. The amount of CGRP released from the isolated muscle by 100 mM-K+ depended on the external Ca2+ concentration. The slope of the relation between the amount of CGRP release and the Ca2+ concentration was less than one on double logarithmic co-ordinates. 5. Following chronic section of the lumbar ventral roots, the mean amount of CGRP released from the soleus muscle by 100 mM-K+ was reduced by 28%, compared with that observed in normal muscle. 6. Antidromic stimulation of the lumbar dorsal roots at an intensity three times the threshold for most excitable sensory fibres failed to induce CGRP release from the soleus muscle, whereas stimulation at intensities 50-100 times the threshold increased significantly the amount of CGRP release from the muscle. 7. Stimulation of the muscle nerve at an intensity sufficient to activate the alpha-motor fibres did not release CGRP from the soleus muscle or from the diaphragm. 8. It is concluded that the major source of CGRP released from skeletal muscle is A delta- and/or C sensory terminals and that the Ca2+ dependence of CGRP release is less steep than that reported for acetylcholine release at neuromuscular junctions. PMID:2023119

  19. Exercise-induced histone modifications in human skeletal muscle

    PubMed Central

    McGee, Sean L; Fairlie, Erin; Garnham, Andrew P; Hargreaves, Mark

    2009-01-01

    Skeletal muscle adaptations to exercise confer many of the health benefits of physical activity and occur partly through alterations in skeletal muscle gene expression. The exact mechanisms mediating altered skeletal muscle gene expression in response to exercise are unknown. However, in recent years, chromatin remodelling through epigenetic histone modifications has emerged as a key regulatory mechanism controlling gene expression in general. The purpose of this study was to examine the effect of exercise on global histone modifications that mediate chromatin remodelling and transcriptional activation in human skeletal muscle in response to exercise. In addition, we sought to examine the signalling mechanisms regulating these processes. Following 60 min of cycling, global histone 3 acetylation at lysine 9 and 14, a modification associated with transcriptional initiation, was unchanged from basal levels, but was increased at lysine 36, a site associated with transcriptional elongation. We examined the regulation of the class IIa histone deacetylases (HDACs), which are enzymes that suppress histone acetylation and have been implicated in the adaptations to exercise. While we found no evidence of proteasomal degradation of the class IIa HDACs, we found that HDAC4 and 5 were exported from the nucleus during exercise, thereby removing their transcriptional repressive function. We also observed activation of the AMP-activated protein kinase (AMPK) and the calcium–calmodulin-dependent protein kinase II (CaMKII) in response to exercise, which are two kinases that induce phosphorylation-dependent class IIa HDAC nuclear export. These data delineate a signalling pathway that might mediate skeletal muscle adaptations in response to exercise. PMID:19884317

  20. Influence of spaceflight on rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Martin, Thomas P.; Edgerton, V. Reggie; Grindeland, Richard E.

    1988-01-01

    The effect of a 7-day spaceflight (aboard NASA's SL-3) on the size and the metabolism of single fibers from several rat muscles was investigated along with the specificity of these responses as related to the muscle type and the size of fibers. It was found that the loss of mass after flight was varied from 36 percent in the soleus to 15 percent in the extensor digitorum longus. Results of histochemical analyses showed that the succinate dehydrogenase (SDH) activity in muscles of flight-exposed rats was maintained at the control levels, whereas the alpha-glycerol phosphate dehydrogenase (GPD) activity was either maintained or increased. The analyses of the metabolic profiles of ATPase, SDH, and GPD indicated that, in some muscles, there was an increase in the poportion of fast oxidative-glycolytic fibers.

  1. Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats

    NASA Technical Reports Server (NTRS)

    Adams, G. R.; McCue, S. A.

    1998-01-01

    Insulin-like growth factor I (IGF-I) peptide levels have been shown to increase in overloaded skeletal muscles (G. R. Adams and F. Haddad. J. Appl. Physiol. 81: 2509-2516, 1996). In that study, the increase in IGF-I was found to precede measurable increases in muscle protein and was correlated with an increase in muscle DNA content. The present study was undertaken to test the hypothesis that direct IGF-I infusion would result in an increase in muscle DNA as well as in various measurements of muscle size. Either 0.9% saline or nonsystemic doses of IGF-I were infused directly into a non-weight-bearing muscle of rats, the tibialis anterior (TA), via a fenestrated catheter attached to a subcutaneous miniosmotic pump. Saline infusion had no effect on the mass, protein content, or DNA content of TA muscles. Local IGF-I infusion had no effect on body or heart weight. The absolute weight of the infused TA muscles was approximately 9% greater (P < 0.05) than that of the contralateral TA muscles. IGF-I infusion resulted in significant increases in the total protein and DNA content of TA muscles (P < 0.05). As a result of these coordinated changes, the DNA-to-protein ratio of the hypertrophied TA was similar to that of the contralateral muscles. These results suggest that IGF-I may be acting to directly stimulate processes such as protein synthesis and satellite cell proliferation, which result in skeletal muscle hypertrophy.

  2. Muscle damage induced by electrical stimulation.

    PubMed

    Nosaka, Kazunori; Aldayel, Abdulaziz; Jubeau, Marc; Chen, Trevor C

    2011-10-01

    Electrical stimulation (ES) induces muscle damage that is characterised by histological alterations of muscle fibres and connective tissue, increases in circulating creatine kinase (CK) activity, decreases in muscle strength and development of delayed onset muscle soreness (DOMS). Muscle damage is induced not only by eccentric contractions with ES but also by isometric contractions evoked by ES. Muscle damage profile following 40 isometric contractions of the knee extensors is similar between pulsed current (75 Hz, 400 μs) and alternating current (2.5 kHz delivered at 75 Hz, 400 μs) ES for similar force output. When comparing maximal voluntary and ES-evoked (75 Hz, 200 μs) 50 isometric contractions of the elbow flexors, ES results in greater decreases in maximal voluntary contraction strength, increases in plasma CK activity and DOMS. It appears that the magnitude of muscle damage induced by ES-evoked isometric contractions is comparable to that induced by maximal voluntary eccentric contractions, although the volume of affected muscles in ES is not as large as that of eccentric exercise-induced muscle damage. It seems likely that the muscle damage in ES is associated with high mechanical stress on the activated muscle fibres due to the specificity of motor unit recruitment (i.e., non-selective, synchronous and spatially fixed manner). The magnitude of muscle damage induced by ES is significantly reduced when the second ES bout is performed 2-4 weeks later. It is possible to attenuate the magnitude of muscle damage by "pre-conditioning" muscles, so that muscle damage should not limit the use of ES in training and rehabilitation. PMID:21811767

  3. The compliance of contracting skeletal muscle

    PubMed Central

    Bressler, B. H.; Clinch, N. F.

    1974-01-01

    1. The method of controlled releases was used to obtain tension—extension curves in toad (Bufo bufo) sartorii under a variety of conditions at 0° C. 2. The curves obtained were approximately linear over a considerable range of force (0·4P0 to P0) if the releases were given from the plateau of tetanic tension. The slope of this linear region was little affected by changes of release velocity in the range 10-120 mm/sec. 3. Such changes as did occur with alterations in release velocity could be quantitatively accounted for in terms of the internal shortening predicted by A. V. Hill's two-component model. 4. As the muscles were stretched above l0, we found that the maximum stiffness of the tetanized muscles fell in much the same way as the maximum developed force, P0. 5. In another series of experiments we found a rapid change in the overall shape of the tension—extension curve during the early phase of force development in an isometric tetanus. The stiffness of the muscle increased with increasing developed force during this period. 6. The force—velocity curve in these muscles was measured by two methods, both giving a similar result. Surprisingly, toad muscle appears to have about the same intrinsic speed as frog muscle at 0° C. The a.b product from our experiments is considerably greater than the reported values for the maintenance heat rate at 0° C in these muscles. 7. The probable site of the variable compliance in active muscle is discussed. It seems most likely that this is within the A-band, perhaps in the cross-bridges themselves. ImagesFig. 2Fig. 3 PMID:4207658

  4. Preservative solution for skeletal muscle biopsy samples

    PubMed Central

    Kurt, Yasemin Gulcan; Kurt, Bulent; Ozcan, Omer; Topal, Turgut; Kilic, Abdullah; Muftuoglu, Tuba; Acikel, Cengizhan; Sener, Kenan; Sahiner, Fatih; Yigit, Nuri; Aydin, Ibrahim; Alay, Semih; Ekinci, Safak

    2015-01-01

    Context: Muscle biopsy samples must be frozen with liquid nitrogen immediately after excision and maintained at -80°C until analysis. Because of this requirement for tissue processing, patients with neuromuscular diseases often have to travel to centers with on-site muscle pathology laboratories for muscle biopsy sample excision to ensure that samples are properly preserved. Aim: Here, we developed a preservative solution and examined its protectiveness on striated muscle tissues for a minimum of the length of time that would be required to reach a specific muscle pathology laboratory. Materials and Methods: A preservative solution called Kurt-Ozcan (KO) solution was prepared. Eight healthy Sprague-Dawley rats were sacrificed; striated muscle tissue samples were collected and divided into six different groups. Muscle tissue samples were separated into groups for morphological, enzyme histochemical, molecular, and biochemical analysis. Statistical method used: Chi-square and Kruskal Wallis tests. Results: Samples kept in the KO and University of Wisconsin (UW) solutions exhibited very good morphological scores at 3, 6, and 18 hours, but artificial changes were observed at 24 hours. Similar findings were observed for the evaluated enzyme activities. There were no differences between the control group and the samples kept in the KO or UW solution at 3, 6, and 18 hours for morphological, enzyme histochemical, and biochemical features. The messenger ribonucleic acid (mRNA) of β-actin gene was protected up to 6 hours in the KO and UW solutions. Conclusion: The KO solution protects the morphological, enzyme histochemical, and biochemical features of striated muscle tissue of healthy rats for 18 hours and preserves the mRNA for 6 hours. PMID:26019417

  5. Passive in vivo elastography from skeletal muscle noise

    SciTech Connect

    Sabra, Karim G.; Conti, Stephane; Roux, Philippe; Kuperman, W. A.

    2007-05-07

    Measuring the in vivo elastic properties of muscles (e.g., stiffness) provides a means for diagnosing and monitoring muscular activity. The authors demonstrated a passive in vivo elastography technique without an active external radiation source. This technique instead uses cross correlations of contracting skeletal muscle noise recorded with skin-mounted sensors. Each passive sensor becomes a virtual in vivo shear wave source. The results point to a low-cost, noninvasive technique for monitoring biomechanical in vivo muscle properties. The efficacy of the passive elastography technique originates from the high density of cross paths between all sensor pairs, potentially achieving the same sensitivity obtained from active elastography methods.

  6. Tomographic elastography of contracting skeletal muscles from their natural vibrations

    NASA Astrophysics Data System (ADS)

    Sabra, Karim G.; Archer, Akibi

    2009-11-01

    Conventional elastography techniques require an external mechanical or radiation excitation to measure noninvasively the viscoelastic properties of skeletal muscles and thus monitor human motor functions. We developed instead a passive elastography technique using only an array of skin-mounted accelerometers to record the low-frequency vibrations of the biceps brachii muscle naturally generated during voluntary contractions and to determine their two-dimensional directionality. Cross-correlating these recordings provided travel-times measurements of these muscle vibrations between multiple sensor pairs. Travel-time tomographic inversions yielded spatial variations of their propagation velocity during isometric elbow flexions which indicated a nonuniform longitudinal stiffening of the biceps.

  7. High-fat diet-mediated lipotoxicity and insulin resistance is related to impaired lipase expression in mouse skeletal muscle.

    PubMed

    Badin, Pierre-Marie; Vila, Isabelle K; Louche, Katie; Mairal, Aline; Marques, Marie-Adeline; Bourlier, Virginie; Tavernier, Geneviève; Langin, Dominique; Moro, Cedric

    2013-04-01

    Elevated expression/activity of adipose triglyceride lipase (ATGL) and/or reduced activity of hormone-sensitive lipase (HSL) in skeletal muscle are causally linked to insulin resistance in vitro. We investigated here the effect of high-fat feeding on skeletal muscle lipolytic proteins, lipotoxicity, and insulin signaling in vivo. Five-week-old C3H mice were fed normal chow diet (NCD) or 45% kcal high-fat diet (HFD) for 4 weeks. Wild-type and HSL knockout mice fed NCD were also studied. Whole-body and muscle insulin sensitivity, as well as lipolytic protein expression, lipid levels, and insulin signaling in skeletal muscle, were measured. HFD induced whole-body insulin resistance and glucose intolerance and reduced skeletal muscle glucose uptake compared with NCD. HFD increased skeletal muscle total diacylglycerol (DAG) content, protein kinase Cθ and protein kinase Cε membrane translocation, and impaired insulin signaling as reflected by a robust increase of basal Ser1101 insulin receptor substrate 1 phosphorylation (2.8-fold, P < .05) and a decrease of insulin-stimulated v-Akt murine thymoma viral oncogene homolog Ser473 (-37%, P < .05) and AS160 Thr642 (-47%, P <.01) phosphorylation. We next showed that HFD strongly reduced HSL phosphorylation at Ser660. HFD significantly up-regulated the muscle protein content of the ATGL coactivator comparative gene identification 58 and triacylglycerol hydrolase activity, despite a lower ATGL protein content. We further show a defective skeletal muscle insulin signaling and DAG accumulation in HSL knockout compared with wild-type mice. Together, these data suggest a pathophysiological link between altered skeletal muscle lipase expression and DAG-mediated insulin resistance in mice. PMID:23471217

  8. Exercise sensitizes skeletal muscle to extracellular ATP for IL-6 expression in mice.

    PubMed

    Fernández-Verdejo, R; Casas, M; Galgani, J E; Jaimovich, E; Buvinic, S

    2014-04-01

    Active skeletal muscle synthesizes and releases interleukin-6 (IL-6), which plays important roles in the organism's adaptation to exercise. Autocrine/paracrine ATP signaling has been shown to modulate IL-6 expression. The aim of this study was to determine whether a period of physical activity modifies the ATP-induced IL-6 expression. BalbC mice were either subject to 5 weeks voluntary wheel running (VA) or kept sedentary (SED). Flexor digitorum brevis muscles were dissected, stimulated with different ATP concentrations (0-100 μM) and IL-6 mRNA levels were measured using qPCR. ATP evoked a concentration-dependent rise in IL-6 mRNA in both SED and VA mice. VA mice however, had significantly higher ATP sensitivity (pD2 pharmacological values: VA=5.58±0.02 vs. SED=4.95±0.04, p<0.05). Interestingly, in VA mice we observed a positive correlation between the level of physical activity and the IL-6 mRNA increase following fiber stimulation with 10 μM ATP. In addition, there were lower P2Y2- and higher P2Y14-receptor mRNA levels in skeletal muscles of VA compared to SED mice, showing plasticity of nucleotide receptors with exercise. These results suggest that exercise increases skeletal muscle ATP sensitivity, a response dependent on the level of physical activity performed. This could have an important role in the mechanisms controlling skeletal muscle adaptation to exercise and training.

  9. Exercise sensitizes skeletal muscle to extracellular ATP for IL-6 expression in mice.

    PubMed

    Fernández-Verdejo, R; Casas, M; Galgani, J E; Jaimovich, E; Buvinic, S

    2014-04-01

    Active skeletal muscle synthesizes and releases interleukin-6 (IL-6), which plays important roles in the organism's adaptation to exercise. Autocrine/paracrine ATP signaling has been shown to modulate IL-6 expression. The aim of this study was to determine whether a period of physical activity modifies the ATP-induced IL-6 expression. BalbC mice were either subject to 5 weeks voluntary wheel running (VA) or kept sedentary (SED). Flexor digitorum brevis muscles were dissected, stimulated with different ATP concentrations (0-100 μM) and IL-6 mRNA levels were measured using qPCR. ATP evoked a concentration-dependent rise in IL-6 mRNA in both SED and VA mice. VA mice however, had significantly higher ATP sensitivity (pD2 pharmacological values: VA=5.58±0.02 vs. SED=4.95±0.04, p<0.05). Interestingly, in VA mice we observed a positive correlation between the level of physical activity and the IL-6 mRNA increase following fiber stimulation with 10 μM ATP. In addition, there were lower P2Y2- and higher P2Y14-receptor mRNA levels in skeletal muscles of VA compared to SED mice, showing plasticity of nucleotide receptors with exercise. These results suggest that exercise increases skeletal muscle ATP sensitivity, a response dependent on the level of physical activity performed. This could have an important role in the mechanisms controlling skeletal muscle adaptation to exercise and training. PMID:24022572

  10. Noncoding RNAs, Emerging Regulators of Skeletal Muscle Development and Diseases

    PubMed Central

    Nie, Mao; Deng, Zhong-Liang; Liu, Jianming; Wang, Da-Zhi

    2015-01-01

    A healthy and independent life requires skeletal muscles to maintain optimal function throughout the lifespan, which is in turn dependent on efficient activation of processes that regulate muscle development, homeostasis, and metabolism. Thus, identifying mechanisms that modulate these processes is of crucial priority. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), have emerged as a class of previously unrecognized transcripts whose importance in a wide range of biological processes and human disease is only starting to be appreciated. In this review, we summarize the roles of recently identified miRNAs and lncRNAs during skeletal muscle development and pathophysiology. We also discuss several molecular mechanisms of these noncoding RNAs. Undoubtedly, further systematic understanding of these noncoding RNAs' functions and mechanisms will not only greatly expand our knowledge of basic skeletal muscle biology, but also significantly facilitate the development of therapies for various muscle diseases, such as muscular dystrophies, cachexia, and sarcopenia. PMID:26258142

  11. Skeletal muscle responses to lower limb suspension in humans

    NASA Technical Reports Server (NTRS)

    Hather, Bruce M.; Adams, Gregory R.; Tesch, Per A.; Dudley, Gary A.

    1992-01-01

    The morphological responses of human skeletal muscle to unweighting were assessed by analyzing multiple transaxial magnetic resonance (MR) images of both lower limbs and skeletal muscle biopsies of the unweighted lower limb before and after six weeks of unilaterial (left) lower limb suspension (ULLS). Results indicated that, as a results of 6 weeks of unweighting (by the subjects walking on crutches using only one limb), the cross sectional area (CSA) of the thigh muscle of the unweighted left limb decreased 12 percent, while the CSA of the right thigh muscle did not change. The decrease was due to a twofold greater response of the knee extensors than the knee flexors. The pre- and post-ULLS biopsies of the left vastus lateralis showed a 14 percent decrease in average fiber CSA due to unweighting. The number of capillaries surrounding the different fiber types was unchanged after ULLS. Results showed that the adaptive responses of human skeletal muscle to unweighting are qualitatively, but not quantitatively, similar to those of lower mammals and not necessarily dependent on the fiber-type composition.

  12. Immunomodulatory effects of massage on nonperturbed skeletal muscle in rats

    PubMed Central

    Waters-Banker, Christine; Dupont-Versteegden, Esther E.

    2013-01-01

    Massage is an ancient manual therapy widely utilized by individuals seeking relief from various musculoskeletal maladies. Despite its popularity, the majority of evidence associated with massage benefits is anecdotal. Recent investigations have uncovered physiological evidence supporting its beneficial use following muscle injury; however, the effects of massage on healthy, unperturbed skeletal muscle are unknown. Utilizing a custom-fabricated massage mimetic device, the purpose of this investigation was to elucidate the effects of various loading magnitudes on healthy skeletal muscle with particular interest in the gene expression profile and modulation of key immune cells involved in the inflammatory response. Twenty-four male Wistar rats (200 g) were subjected to cyclic compressive loading (CCL) over the right tibialis anterior muscle for 30 min, once a day, for 4 consecutive days using four loading conditions: control (0N), low load (1.4N), moderate load (4.5N), and high load (11N). Microarray analysis showed that genes involved with the immune response were the most significantly affected by application of CCL. Load-dependent changes in cellular abundance were seen in the CCL limb for CD68+ cells, CD163+ cells, and CD43+cells. Surprisingly, load-independent changes were also discovered in the non-CCL contralateral limb, suggesting a systemic response. These results show that massage in the form of CCL exerts an immunomodulatory response to uninjured skeletal muscle, which is dependent upon the applied load. PMID:24201707

  13. Compartmentalization of NO signaling cascade in skeletal muscles

    SciTech Connect

    Buchwalow, Igor B. . E-mail: buchwalo@uni-muenster.de; Minin, Evgeny A.; Samoilova, Vera E.; Boecker, Werner; Wellner, Maren; Schmitz, Wilhelm; Neumann, Joachim

    2005-05-06

    Skeletal muscle functions regulated by NO are now firmly established. However, the literature on the compartmentalization of NO signaling in myocytes is highly controversial. To address this issue, we examined localization of enzymes engaged in L-arginine-NO-cGMP signaling in the rat quadriceps muscle. Employing immunocytochemical labeling complemented with tyramide signal amplification and electron microscopy, we found NO synthase expressed not only in the sarcolemma, but also along contractile fibers, in the sarcoplasmic reticulum and mitochondria. The expression pattern of NO synthase in myocytes showed striking parallels with the enzymes engaged in L-arginine-NO-cGMP signaling (arginase, phosphodiesterase, and soluble guanylyl cyclase). Our findings are indicative of an autocrine fashion of NO signaling in skeletal muscles at both cellular and subcellular levels, and challenge the notion that the NO generation is restricted to the sarcolemma.

  14. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    NASA Technical Reports Server (NTRS)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  15. Molecular studies of exercise, skeletal muscle, and ageing

    PubMed Central

    Timmons, James A.; Gallagher, Iain J.

    2016-01-01

    The purpose of an F1000 review is to reflect on the bigger picture, exploring controversies and new concepts as well as providing opinion as to what is limiting progress in a particular field. We reviewed about 200 titles published in 2015 that included reference to ‘skeletal muscle, exercise, and ageing’ with the aim of identifying key articles that help progress our understanding or research capacity while identifying methodological issues which represent, in our opinion, major barriers to progress. Loss of neuromuscular function with chronological age impacts on both health and quality of life. We prioritised articles that studied human skeletal muscle within the context of age or exercise and identified new molecular observations that may explain how muscle responds to exercise or age. An important aspect of this short review is perspective: providing a view on the likely ‘size effect’ of a potential mechanism on physiological capacity or ageing. PMID:27303646

  16. Molecular studies of exercise, skeletal muscle, and ageing.

    PubMed

    Timmons, James A; Gallagher, Iain J

    2016-01-01

    The purpose of an F1000 review is to reflect on the bigger picture, exploring controversies and new concepts as well as providing opinion as to what is limiting progress in a particular field. We reviewed about 200 titles published in 2015 that included reference to 'skeletal muscle, exercise, and ageing' with the aim of identifying key articles that help progress our understanding or research capacity while identifying methodological issues which represent, in our opinion, major barriers to progress. Loss of neuromuscular function with chronological age impacts on both health and quality of life. We prioritised articles that studied human skeletal muscle within the context of age or exercise and identified new molecular observations that may explain how muscle responds to exercise or age. An important aspect of this short review is perspective: providing a view on the likely 'size effect' of a potential mechanism on physiological capacity or ageing. PMID:27303646

  17. Mechanical effects of muscle contraction increase intravascular ATP draining quiescent and active skeletal muscle in humans

    PubMed Central

    Crecelius, Anne R.; Kirby, Brett S.; Richards, Jennifer C.

    2013-01-01

    Intravascular adenosine triphosphate (ATP) evokes vasodilation and is implicated in the regulation of skeletal muscle blood flow during exercise. Mechanical stresses to erythrocytes and endothelial cells stimulate ATP release in vitro. How mechanical effects of muscle contractions contribute to increased plasma ATP during exercise is largely unexplored. We tested the hypothesis that simulated mechanical effects of muscle contractions increase [ATP]venous and ATP effluent in vivo, independent of changes in tissue metabolic demand, and further increase plasma ATP when superimposed with mild-intensity exercise. In young healthy adults, we measured forearm blood flow (FBF) (Doppler ultrasound) and plasma [ATP]v (luciferin-luciferase assay), then calculated forearm ATP effluent (FBF×[ATP]v) during rhythmic forearm compressions (RFC) via a blood pressure cuff at three graded pressures (50, 100, and 200 mmHg; Protocol 1; n = 10) and during RFC at 100 mmHg, 5% maximal voluntary contraction rhythmic handgrip exercise (RHG), and combined RFC + RHG (Protocol 2; n = 10). [ATP]v increased from rest with each cuff pressure (range 144–161 vs. 64 ± 13 nmol/l), and ATP effluent was graded with pressure. In Protocol 2, [ATP]v increased in each condition compared with rest (RFC: 123 ± 33; RHG: 51 ± 9; RFC + RHG: 96 ± 23 vs. Mean Rest: 42 ± 4 nmol/l; P < 0.05), and ATP effluent was greatest with RFC + RHG (RFC: 5.3 ± 1.4; RHG: 5.3 ± 1.1; RFC + RHG: 11.6 ± 2.7 vs. Mean Rest: 1.2 ± 0.1 nmol/min; P < 0.05). We conclude that the mechanical effects of muscle contraction can 1) independently elevate intravascular ATP draining quiescent skeletal muscle without changes in local metabolism and 2) further augment intravascular ATP during mild exercise associated with increases in metabolism and local deoxygenation; therefore, it is likely one stimulus for increasing intravascular ATP during exercise in humans. PMID:23429876

  18. Exercise conditioning in old mice improves skeletal muscle regeneration.

    PubMed

    Joanisse, Sophie; Nederveen, Joshua P; Baker, Jeff M; Snijders, Tim; Iacono, Carlo; Parise, Gianni

    2016-09-01

    Skeletal muscle possesses the ability to regenerate after injury, but this ability is impaired or delayed with aging. Regardless of age, muscle retains the ability to positively respond to stimuli, such as exercise. We examined whether exercise is able to improve regenerative response in skeletal muscle of aged mice. Twenty-two-month-old male C57Bl/6J mice (n = 20) underwent an 8-wk progressive exercise training protocol [old exercised (O-Ex) group]. An old sedentary (O-Sed) and a sedentary young control (Y-Ctl) group were included. Animals were subjected to injections of cardiotoxin into the tibialis anterior muscle. The tibialis anterior were harvested before [O-Ex/O-Sed/Y-Ctl control (CTL); n = 6], 10 d (O-Ex/O-Sed/Y-Ctl d 10; n = 8), and 28 d (O-Ex/O-Sed/Y-Ctl d 28; n = 6) postinjection. Average fiber cross-sectional area was reduced in all groups at d 10 (CTL: O-Ex: 2499 ± 140; O-Sed: 2320 ± 165; Y-Ctl: 2474 ± 269; d 10: O-Ex: 1191 ± 100; O-Sed: 1125 ± 99; Y-Ctl: 1481 ± 167 µm(2); P < 0.05), but was restored to control values in O-Ex and Y-Ctl groups at d 28 (O-Ex: 2257 ± 181; Y-Ctl: 2398 ± 171 µm(2); P > 0.05). Satellite cell content was greater at CTL in O-Ex (2.6 ± 0.4 satellite cells/100 fibers) compared with O-Sed (1.0 ± 0.1% satellite cells/100 fibers; P < 0.05). Exercise conditioning appears to improve ability of skeletal muscle to regenerate after injury in aged mice.-Joanisse, S., Nederveen, J. P., Baker, J. M., Snijders, T., Iacono, C., Parise, G. Exercise conditioning in old mice improves skeletal muscle regeneration. PMID:27306336

  19. Contraction-induced lipolysis is not impaired by inhibition of hormone-sensitive lipase in skeletal muscle.

    PubMed

    Alsted, Thomas J; Ploug, Thorkil; Prats, Clara; Serup, Annette K; Høeg, Louise; Schjerling, Peter; Holm, Cecilia; Zimmermann, Robert; Fledelius, Christian; Galbo, Henrik; Kiens, Bente

    2013-10-15

    In skeletal muscle hormone-sensitive lipase (HSL) has long been accepted to be the principal enzyme responsible for lipolysis of intramyocellular triacylglycerol (IMTG) during contractions. However, this notion is based on in vitro lipase activity data, which may not reflect the in vivo lipolytic activity. We investigated lipolysis of IMTG in soleus muscles electrically stimulated to contract ex vivo during acute pharmacological inhibition of HSL in rat muscles and in muscles from HSL knockout (HSL-KO) mice. Measurements of IMTG are complicated by the presence of adipocytes located between the muscle fibres. To circumvent the problem with this contamination we analysed intramyocellular lipid droplet content histochemically. At maximal inhibition of HSL in rat muscles, contraction-induced breakdown of IMTG was identical to that seen in control muscles (P < 0.001). In response to contractions IMTG staining decreased significantly in both HSL-KO and WT muscles (P < 0.05). In vitro TG hydrolase activity data revealed that adipose triglyceride lipase (ATGL) and HSL collectively account for ∼98% of the TG hydrolase activity in mouse skeletal muscle, other TG lipases accordingly being of negligible importance for lipolysis of IMTG. The present study is the first to demonstrate that contraction-induced lipolysis of IMTG occurs in the absence of HSL activity in rat and mouse skeletal muscle. Furthermore, the results suggest that ATGL is activated and plays a major role in lipolysis of IMTG during muscle contractions.

  20. Dysregulation of skeletal muscle protein metabolism by alcohol

    PubMed Central

    Steiner, Jennifer L.

    2015-01-01

    Alcohol abuse, either by acute intoxication or prolonged excessive consumption, leads to pathological changes in many organs and tissues including skeletal muscle. As muscle protein serves not only a contractile function but also as a metabolic reserve for amino acids, which are used to support the energy needs of other tissues, its content is tightly regulated and dynamic. This review focuses on the etiology by which alcohol perturbs skeletal muscle protein balance and thereby over time produces muscle wasting and weakness. The preponderance of data suggest that alcohol primarily impairs global protein synthesis, under basal conditions as well as in response to several anabolic stimuli including growth factors, nutrients, and muscle contraction. This inhibitory effect of alcohol is mediated, at least in part, by a reduction in mTOR kinase activity via a mechanism that remains poorly defined but likely involves altered protein-protein interactions within mTOR complex 1. Furthermore, alcohol can exacerbate the decrement in mTOR and/or muscle protein synthesis present in other catabolic states. In contrast, alcohol-induced changes in muscle protein degradation, either global or via specific modulation of the ubiquitin-proteasome or autophagy pathways, are relatively inconsistent and may be model dependent. Herein, changes produced by acute intoxication versus chronic ingestion are contrasted in relation to skeletal muscle metabolism, and limitations as well as opportunities for future research are discussed. As the proportion of more economically developed countries ages and chronic illness becomes more prevalent, a better understanding of the etiology of biomedical consequences of alcohol use disorders is warranted. PMID:25759394

  1. Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation.

    PubMed

    Pedrotty, Dawn M; Koh, Jennifer; Davis, Bryce H; Taylor, Doris A; Wolf, Patrick; Niklason, Laura E

    2005-04-01

    Immature skeletal muscle cells, or myoblasts, have been used in cellular cardiomyoplasty in attempts to regenerate cardiac muscle tissue by injection of cells into damaged myocardium. In some studies, muscle tissue within myoblast implant sites may be morphologically similar to cardiac muscle. We hypothesized that identifiable aspects of the cardiac milieu may contribute to growth and development of implanted myoblasts in vivo. To test this hypothesis, we designed a novel in vitro system to mimic some aspects of the electrical and biochemical environment of native myocardium. This system enabled us to separate the three-dimensional (3-D) electrical and biochemical signals that may be involved in myoblast proliferation and plasticity. Myoblasts were grown on 3-D polyglycolic acid mesh scaffolds under control conditions, in the presence of cardiac-like electrical current fluxes, or in the presence of culture medium that had been conditioned by mature cardiomyocytes. Cardiac-like electrical current fluxes caused increased myoblast number in 3-D culture, as determined by DNA assay. The increase in cell number was due to increased cellular proliferation and not differences in apoptosis, as determined by proliferating cell nuclear antigen and TdT-mediated dUTP nick-end labeling. Cardiomyocyte-conditioned medium also significantly increased myoblast proliferation. Expression of transcription factors governing differentiation along skeletal or cardiac lineages was evaluated by immunoblotting. Although these assays are qualitative, no changes in differentiation state along skeletal or cardiac lineages were observed in response to electrical current fluxes. Furthermore, from these experiments, conditioned medium did not appear to alter the differentiation state of skeletal myoblasts. Hence, cardiac milieu appears to stimulate proliferation but does not affect differentiation of skeletal myoblasts.

  2. Mechanical characterization of skeletal muscle myofibrils.

    PubMed Central

    Friedman, A L; Goldman, Y E

    1996-01-01

    A new instrument, based on a technique described previously, is presented for studying mechanics of micron-scale preparations of two to three myofibrils or single myofibrils from muscle. Forces in the nanonewton to micronewton range are measurable with 0.5-ms time resolution. Programmed quick (200-microseconds) steps or ramp length changes are applied to contracting myofibrils to test their mechanical properties. Individual striations can be monitored during force production and shortening. The active isometric force, force-velocity relationship, and force transients after rapid length steps were obtained from bundles of two to three myofibrils from rabbit psoas muscle. Contrary to some earlier reports on myofibrillar mechanics, these properties are generally similar to expectations from studies on intact and skinned muscle fibers. Our experiments provide strong evidence that the mechanical properties of a fiber result from a simple summation of the myofibrillar force and shortening of independently contracting sarcomeres. Images FIGURE 1 FIGURE 2 PMID:8913614

  3. Skeletal muscle responses to unweighting in humans

    NASA Technical Reports Server (NTRS)

    Dudley, Gary A.

    1991-01-01

    An overview of earth-based studies is presented emphasizing the data on muscular strength and size derived from experiments under simulated microgravity. The studies involve the elimination of weight-bearing responsibility of lower-limb human musculature to simulate the unweighting effects of space travel in the absence of exercise. Reference is given to bedrest and unilateral lower-limb suspension, both of which provide data that demonstrate the decreased strength of the knee extensors of 20-25 percent. The response is related to the decrease in cross-sectional area of the knee extensors which is a direct indication of muscle-fiber atrophy. Most of the effects of unweighting are associated with extensor muscles in the lower limbs and not with postural muscles. Unweighting is concluded to cause significant adaptations in the human neuromuscular system that require further investigation.

  4. Defective regulation of energy metabolism in mdx-mouse skeletal muscles.

    PubMed

    Even, P C; Decrouy, A; Chinet, A

    1994-12-01

    Our previous finding of a reduced energy metabolism in slow- and fast-twitch skeletal muscle fibres from the murine model of Duchenne muscular dystrophy (the mdx mouse) led us to examine the importance of intracellular glucose availability for a normal energy turnover. To this end, basal and KCl-stimulated (20.9 mM total extracellular K+) rates of glucose uptake (GUP) and heat production were measured in isolated, glucose-incubated (5 mM) soleus and extensor digitorum longus muscles from mdx and control C57B1/10 mice, in the presence and in the absence of insulin (1.7 nM). Under all conditions and for both muscle types, glucose uptake values for mdx and control muscles were similar although heat production was lower in mdx muscles. The marked stimulation of GUP by insulin in both mdx and control muscles had only minor effects on heat production. In contrast, glucose deprivation or inhibition of glycolysis with 2-deoxy-D-glucose (5 mM) significantly decreased heat production in control muscles only, which attenuated, although did not suppress, the difference in basal heat production between mdx and control muscles. Stimulation of heat production by a short-chain fatty acid salt (octanoate, 2 mM) was significantly less marked in mdx than in control muscles. Increased cytoplasmic synthesis of CoA by addition of 5 mM pantothenate (vitamin B5) increased the thermogenic response to glucose more in mdx than in control muscles. We conclude that the low energy turnover in mdx-mouse muscle fibres is not due to a decrease of intracellular glucose availability, but rather to a decreased oxidative utilization of glucose and free fatty acids. We suggest that some enzyme complex of the tricarboxylic acid cycle or inefficiency of CoA transport in the mitochondria could be involved. PMID:7999003

  5. Vitamin D and Its Role in Skeletal Muscle

    PubMed Central

    Ceglia, Lisa

    2010-01-01

    Purpose of review Vitamin D is best known for its role in regulating calcium homeostasis and in strengthening bone. However, it has become increasingly clear that it also has important beneficial effects beyond the skeleton, including muscle. This review summarizes current knowledge about the role of vitamin D in skeletal muscle tissue and physical performance. Recent findings Molecular mechanisms of vitamin D action in muscle tissue include genomic and non-genomic effects via a receptor present in muscle cells. Knockout mouse models of the vitamin D receptor provide insight into understanding the direct effects of vitamin D on muscle tissue. Vitamin D status is positively associated with physical performance and inversely associated with risk of falling. Vitamin D supplementation has been shown to improve tests of muscle performance, reduce falls, and possibly impact on muscle fiber composition and morphology in vitamin D deficient older adults. Summary Further studies are needed to fully characterize the underlying mechanisms of vitamin D action in human muscle tissue, to understand how these actions translate into changes in muscle cell morphology and improvements in physical performance, and to define the 25-hydroxyvitamin D level at which to achieve these beneficial effects in muscle. PMID:19770647

  6. Dietary Nitrate and Skeletal Muscle Contractile Function in Heart Failure.

    PubMed

    Coggan, Andrew R; Peterson, Linda R

    2016-08-01

    Heart failure (HF) patients suffer from exercise intolerance that diminishes their ability to perform normal activities of daily living and hence compromises their quality of life. This is due largely to detrimental changes in skeletal muscle mass, structure, metabolism, and function. This includes an impairment of muscle contractile performance, i.e., a decline in the maximal force, speed, and power of muscle shortening. Although numerous mechanisms underlie this reduction in contractility, one contributing factor may be a decrease in nitric oxide (NO) bioavailability. Consistent with this, recent data demonstrate that acute ingestion of NO3 (-)-rich beetroot juice, a source of NO via the NO synthase-independent enterosalivary pathway, markedly increases maximal muscle speed and power in HF patients. This review discusses the role of muscle contractile dysfunction in the exercise intolerance characteristic of HF, and the evidence that dietary NO3 (-) supplementation may represent a novel and simple therapy for this currently underappreciated problem. PMID:27271563

  7. Cardiac Meets Skeletal: What's New in Microfluidic Models for Muscle Tissue Engineering.

    PubMed

    Visone, Roberta; Gilardi, Mara; Marsano, Anna; Rasponi, Marco; Bersini, Simone; Moretti, Matteo

    2016-01-01

    In the last few years microfluidics and microfabrication technique principles have been extensively exploited for biomedical applications. In this framework, organs-on-a-chip represent promising tools to reproduce key features of functional tissue units within microscale culture chambers. These systems offer the possibility to investigate the effects of biochemical, mechanical, and electrical stimulations, which are usually applied to enhance the functionality of the engineered tissues. Since the functionality of muscle tissues relies on the 3D organization and on the perfect coupling between electrochemical stimulation and mechanical contraction, great efforts have been devoted to generate biomimetic skeletal and cardiac systems to allow high-throughput pathophysiological studies and drug screening. This review critically analyzes microfluidic platforms that were designed for skeletal and cardiac muscle tissue engineering. Our aim is to highlight which specific features of the engineered systems promoted a typical reorganization of the engineered construct and to discuss how promising design solutions exploited for skeletal muscle models could be applied to improve cardiac tissue models and vice versa. PMID:27571058

  8. The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle.

    PubMed

    Chinsomboon, Jessica; Ruas, Jorge; Gupta, Rana K; Thom, Robyn; Shoag, Jonathan; Rowe, Glenn C; Sawada, Naoki; Raghuram, Srilatha; Arany, Zoltan

    2009-12-15

    Peripheral arterial disease (PAD) affects 5 million people in the US and is the primary cause of limb amputations. Exercise remains the single best intervention for PAD, in part thought to be mediated by increases in capillary density. How exercise triggers angiogenesis is not known. PPARgamma coactivator (PGC)-1alpha is a potent transcriptional co-activator that regulates oxidative metabolism in a variety of tissues. We show here that PGC-1alpha mediates exercise-induced angiogenesis. Voluntary exercise induced robust angiogenesis in mouse skeletal muscle. Mice lacking PGC-1alpha in skeletal muscle failed to increase capillary density in response to exercise. Exercise strongly induced expression of PGC-1alpha from an alternate promoter. The induction of PGC-1alpha depended on beta-adrenergic signaling. beta-adrenergic stimulation also induced a broad program of angiogenic factors, including vascular endothelial growth factor (VEGF). This induction required PGC-1alpha. The orphan nuclear receptor ERRalpha mediated the induction of VEGF by PGC-1alpha, and mice lacking ERRalpha also failed to increase vascular density after exercise. These data demonstrate that beta-adrenergic stimulation of a PGC-1alpha/ERRalpha/VEGF axis mediates exercise-induced angiogenesis in skeletal muscle.

  9. Alcohol-induced autophagy contributes to loss in skeletal muscle mass.

    PubMed

    Thapaliya, Samjhana; Runkana, Ashok; McMullen, Megan R; Nagy, Laura E; McDonald, Christine; Naga Prasad, Sathyamangla V; Dasarathy, Srinivasan

    2014-04-01

    Patients with alcoholic cirrhosis and hepatitis have severe muscle loss. Since ethanol impairs skeletal muscle protein synthesis but does not increase ubiquitin proteasome-mediated proteolysis, we investigated whether alcohol-induced autophagy contributes to muscle loss. Autophagy induction was studied in: A) Human skeletal muscle biopsies from alcoholic cirrhotics and controls, B) Gastrocnemius muscle from ethanol and pair-fed mice, and C) Ethanol-exposed murine C2C12 myotubes, by examining the expression of autophagy markers assessed by immunoblotting and real-time PCR. Expression of autophagy genes and markers were increased in skeletal muscle from humans and ethanol-fed mice, and in myotubes following ethanol exposure. Importantly, pulse-chase experiments showed suppression of myotube proteolysis upon ethanol-treatment with the autophagy inhibitor, 3-methyladenine (3MA) and not by MG132, a proteasome inhibitor. Correspondingly, ethanol-treated C2C12 myotubes stably expressing GFP-LC3B showed increased autophagy flux as measured by accumulation of GFP-LC3B vesicles with confocal microscopy. The ethanol-induced increase in LC3B lipidation was reversed upon knockdown of Atg7, a critical autophagy gene and was associated with reversal of the ethanol-induced decrease in myotube diameter. Consistently, CT image analysis of muscle area in alcoholic cirrhotics was significantly reduced compared with control subjects. In order to determine whether ethanol per se or its metabolic product, acetaldehyde, stimulates autophagy, C2C12 myotubes were treated with ethanol in the presence of the alcohol dehydrogenase inhibitor (4-methylpyrazole) or the acetaldehyde dehydrogenase inhibitor (cyanamide). LC3B lipidation increased with acetaldehyde treatment and increased further with the addition of cyanamide. We conclude that muscle autophagy is increased by ethanol exposure and contributes to sarcopenia.

  10. Effects of Dexamethasone on Satellite Cells and Tissue Engineered Skeletal Muscle Units.

    PubMed

    Syverud, Brian C; VanDusen, Keith W; Larkin, Lisa M

    2016-03-01

    Tissue engineered skeletal muscle has potential for application as a graft source for repairing soft tissue injuries, a model for testing pharmaceuticals, and a biomechanical actuator system for soft robots. However, engineered muscle to date has not produced forces comparable to native muscle, limiting its potential for repair and for use as an in vitro model for pharmaceutical testing. In this study, we examined the trophic effects of dexamethasone (DEX), a glucocorticoid that stimulates myoblast differentiation and fusion into myotubes, on our tissue engineered three-dimensional skeletal muscle units (SMUs). Using our established SMU fabrication protocol, muscle isolates were cultured with three experimental DEX concentrations (5, 10, and 25 nM) and compared to untreated controls. Following seeding onto a laminin-coated Sylgard substrate, the administration of DEX was initiated on day 0 or day 6 in growth medium or on day 9 after the switch to differentiation medium and was sustained until the completion of SMU fabrication. During this process, total cell proliferation was measured with a BrdU assay, and myogenesis and structural advancement of muscle cells were observed through immunostaining for MyoD, myogenin, desmin, and α-actinin. After SMU formation, isometric tetanic force production was measured to quantify function. The histological and functional assessment of the SMU showed that the administration of 10 nM DEX beginning on either day 0 or day 6 yielded optimal SMUs. These optimized SMUs exhibited formation of advanced sarcomeric structure and significant increases in myotube diameter and myotube fusion index, compared with untreated controls. Additionally, the optimized SMUs matured functionally, as indicated by a fivefold rise in force production. In conclusion, we have demonstrated that the addition of DEX to our process of engineering skeletal muscle tissue improves myogenesis, advances muscle structure, and increases force production in the

  11. Activity Dependent Signal Transduction in Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    Hamilton, Susan L.

    1999-01-01

    The overall goals of this project are: 1) to define the initial signal transduction events whereby the removal of gravitational load from antigravity muscles, such as the soleus, triggers muscle atrophy, and 2) to develop countermeasures to prevent this from happening. Our rationale for this approach is that, if countermeasures can be developed to regulate these early events, we could avoid having to deal with the multiple cascades of events that occur downstream from the initial event. One of our major findings is that hind limb suspension causes an early and sustained increase in intracellular Ca(2+) concentration ([Ca (2+)](sub i)). In most cells the consequences of changes in ([Ca (2+)](sub i))depend on the amplitude, frequency and duration of the Ca(2+) signal and on other factors in the intracellular environment. We propose that muscle remodeling in microgravity represents a change in the balance among several CA(2+) regulated signal transduction pathways, in particular those involving the transcription factors NFAT and NFkB and the pro-apoptotic protein BAD. Other Ca(2+) sensitive pathways involving PKC, ras, rac, and CaM kinase II may also contribute to muscle remodeling.

  12. Protein synthesis in skeletal muscle of neonatal pigs is enhanced by administration of beta-hydroxy-beta-methylbutyrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many low-birth-weight infants experience failure to thrive. The amino acid leucine stimulates protein synthesis in skeletal muscle of the neonate, but less is known about the effects of the leucine metabolite beta-hydroxy-beta-methylbutyrate (HMB). To determine the effects of HMB on protein synthesi...

  13. Protein synthesis in skeletal muscle of neonatal pigs is enhanced by administration of beta-hydroxy-beta-methylbutyrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many low-birth-weight infants experience failure to thrive. The amino acid leucine stimulates protein synthesis in skeletal muscle of the neonate, but less is known about the effects of the leucine metabolite ß-hydroxy-ß-methylbutyrate (HMB). To determine the effects of HMB on protein synthesis and ...

  14. Protein synthesis in skeletal muscle of neonatal pigs is enhanced by administration of Beta-hydroxy-Beta-methylbutyrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many low-birth-weight infants experience failure to thrive. The amino acid leucine stimulates protein synthesis in skeletal muscle of the neonate, but less is known about the effects of the leucine metabolite Beta-hydroxy-Beta-methylbutyrate (HMB). To determine the effects of HMB on protein synthesi...

  15. Molecular and Cellular Mechanisms of Muscle Aging and Sarcopenia and Effects of Electrical Stimulation in Seniors

    PubMed Central

    Barberi, Laura; Scicchitano, Bianca Maria

    2015-01-01

    The prolongation of skeletal muscle strength in aging and neuromuscular disease has been the objective of numerous studies employing a variety of approaches. It is generally accepted that cumulative failure to repair damage related to an overall decrease in anabolic processes is a primary cause of functional impairment in muscle. The functional performance of skeletal muscle tissues declines during post- natal life and it is compromised in different diseases, due to an alteration in muscle fiber composition and an overall decrease in muscle integrity as fibrotic invasions replace functional contractile tissue. Characteristics of skeletal muscle aging and diseases include a conspicuous reduction in myofiber plasticity (due to the progressive loss of muscle mass and in particular of the most powerful fast fibers), alteration in muscle-specific transcriptional mechanisms, and muscle atrophy. An early decrease in protein synthetic rates is followed by a later increase in protein degradation, to affect biochemical, physiological, and morphological parameters of muscle fibers during the aging process. Alterations in regenerative pathways also compromise the functionality of muscle tissues. In this review we will give an overview of the work on molecular and cellular mechanisms of aging and sarcopenia and the effects of electrical stimulation in seniors.. PMID:26913161

  16. Is Acetylation a Metabolic Rheostat that Regulates Skeletal Muscle Insulin Action?

    PubMed Central

    LaBarge, Samuel; Migdal, Christopher; Schenk, Simon

    2015-01-01

    Skeletal muscle insulin resistance, which increases the risk for developing various metabolic diseases, including type 2 diabetes, is a common metabolic disorder in obesity and aging. If potential treatments are to be developed to treat insulin resistance, then it is important to fully understand insulin signaling and glucose metabolism. While recent large-scale “omics” studies have revealed the acetylome to be comparable in size to the phosphorylome, the acetylation of insulin signaling proteins and its functional relevance to insulin-stimulated glucose transport and glucose metabolism is not fully understood. In this Mini Review we discuss the acetylation status of proteins involved in the insulin signaling pathway and review their potential effect on, and relevance to, insulin action in skeletal muscle. PMID:25824547

  17. An improved double vaseline gap voltage clamp to study electroporated skeletal muscle fibers.

    PubMed Central

    Chen, W; Lee, R C

    1994-01-01

    An improved voltage clamp with a double vaseline gap chamber was designed to study electroporated skeletal muscle fibers. The new clamp eliminated spike overshock of membrane potential when applying step stimulation occurring in the traditional configuration. It allowed greater consistency in membrane potential distribution. After the intracellular resistances of the fiber segment at the vaseline gap area were compensated, it was possible to change membrane potential more quickly. Using this technique, strong electrical pulses used to mimic the situation of electrical shock can be delivered to the cell membrane by voltage clamp. Transmembrane currents of skeletal muscle cell were simultaneously measured during a high pulsed shock and resolved into different components. Distinct transient changes of the transmembrane current, involving the time courses of the formation of electroporation and their recovery time constants, can be recorded. Because of more even membrane potential distribution and faster response to pulsed membrane potential change, this technique is also suitable for membrane study under physiological conditions. PMID:8011901

  18. The creation of a measurable contusion injury in skeletal muscle.

    PubMed

    Deane, Margaret N; Gregory, Michael; Mars, Maurice

    2014-08-26

    The effect that compressed air massage (CAM) has on skeletal muscle has been ascertained by the morphological and morphometric evaluation of healthy vervet monkey and rabbit skeletal muscle. How CAM may influence the process of healing following a contusion injury is not known. To determine how CAM or other physiotherapeutic modalities may influence healing, it is necessary to create a minor injury that is both reproducible and quantifiable at the termination of a pre-determined healing period. An earlier study described changes in the morphology of skeletal muscle following a reproducible contusion injury. This study extended that work in that it attempted to quantify the 'severity' of such an injury. A 201 g, elongated oval-shaped weight was dropped seven times through a 1 m tube onto the left vastus lateralis muscle of four New Zealand white rabbits. Biopsies were obtained 6 days after injury from the left healing juxta-bone and sub-dermal muscle and uninjured (control) right vastus lateralis of each animal. The tissue was fixed in formal saline, embedded in wax, cut and stained with haematoxylin and phosphotungstic haematoxylin. The muscle was examined by light microscopy and quantification of the severity of injury made using a modified, 'in-house' morphological index and by the comparative morphometric measurement of the cross-sectioned epimysium and myofibres in injured and control muscle. The results showed that a single contusion causes multiple, quantifiable degrees of injury from skin to bone - observations of particular importance to others wishing to investigate contusion injury in human or animal models.

  19. Fast skeletal muscle troponin activation increases force of mouse fast skeletal muscle and ameliorates weakness due to nebulin-deficiency.

    PubMed

    Lee, Eun-Jeong; De Winter, Josine M; Buck, Danielle; Jasper, Jeffrey R; Malik, Fady I; Labeit, Siegfried; Ottenheijm, Coen A; Granzier, Henk

    2013-01-01

    The effect of the fast skeletal muscle troponin activator, CK-2066260, on calcium-induced force development was studied in skinned fast skeletal muscle fibers from wildtype (WT) and nebulin deficient (NEB KO) mice. Nebulin is a sarcomeric protein that when absent (NEB KO mouse) or present at low levels (nemaline myopathy (NM) patients with NEB mutations) causes muscle weakness. We studied the effect of fast skeletal troponin activation on WT muscle and tested whether it might be a therapeutic mechanism to increase muscle strength in nebulin deficient muscle. We measured tension-pCa relations with and without added CK-2066260. Maximal active tension in NEB KO tibialis cranialis fibers in the absence of CK-2066260 was ∼60% less than in WT fibers, consistent with earlier work. CK-2066260 shifted the tension-calcium relationship leftwards, with the largest relative increase (up to 8-fold) at low to intermediate calcium levels. This was a general effect that was present in both WT and NEB KO fiber bundles. At pCa levels above ∼6.0 (i.e., calcium concentrations <1 µM), CK-2066260 increased tension of NEB KO fibers to beyond that of WT fibers. Crossbridge cycling kinetics were studied by measuring k(tr) (rate constant of force redevelopment following a rapid shortening/restretch). CK-2066260 greatly increased k(tr) at submaximal activation levels in both WT and NEB KO fiber bundles. We also studied the sarcomere length (SL) dependence of the CK-2066260 effect (SL 2.1 µm and 2.6 µm) and found that in the NEB KO fibers, CK-2066260 had a larger effect on calcium sensitivity at the long SL. We conclude that fast skeletal muscle troponin activation increases force at submaximal activation in both wildtype and NEB KO fiber bundles and, importantly, that this troponin activation is a potential therapeutic mechanism for increasing force in NM and other skeletal muscle diseases with loss of muscle strength. PMID:23437068

  20. Sarcocystis fayeri in skeletal muscle of horses with neuromuscular disease.

    PubMed

    Aleman, Monica; Shapiro, Karen; Sisó, Silvia; Williams, Diane C; Rejmanek, Daniel; Aguilar, Beatriz; Conrad, Patricia A

    2016-01-01

    Recent reports of Sarcocystis fayeri-induced toxicity in people consuming horse meat warrant investigation on the prevalence and molecular characterization of Sarcocystis spp. infection in horses. Sarcocysts in skeletal muscle of horses have been commonly regarded as an incidental finding. In this study, we investigated the prevalence of sarcocysts in skeletal muscle of horses with neuromuscular disease. Our findings indicated that S. fayeri infection was common in young mature horses with neuromuscular disease and could be associated with myopathic and neurogenic processes. The number of infected muscles and number of sarcocysts per muscle were significantly higher in diseased than in control horses. S. fayeri was predominantly found in low oxidative highly glycolytic myofibers. This pathogen had a high glycolytic metabolism. Common clinical signs of disease included muscle atrophy, weakness with or without apparent muscle pain, gait deficits, and dysphagia in horses with involvement of the tongue and esophagus. Horses with myositis were lethargic, apparently painful, stiff, and reluctant to move. Similar to humans, sarcocystosis and cardiomyopathy can occur in horses. This study did not establish causality but supported a possible association (8.9% of cases) with disease. The assumption of Sarcocysts spp. being an incidental finding in every case might be inaccurate.

  1. Aging and regenerative capacity of skeletal muscle in rats.

    PubMed

    Kaasik, Priit; Aru, Maire; Alev, Karin; Seene, Teet

    2012-07-01

    The objective of the study was to examine skeletal muscle regeneration capacity of young and very old rats during autotransplantation. In 3.5 and 30 month-old Wistar rats, gastrocnemius muscle was removed and grafted back to its original bed. Incorporation of 3H leucine into myofibrillar and sarcoplasmic protein fractions, their relative contents in autografts and synthesis rate of MyHC and actin were recorded. The relative muscle mass of old rats was about 67% of that of young rats; the absolute mass of autografted muscle was 61% intact in the young rat group and 51% in the old rat group. Content of myofibrillar protein in the autografts of young rats was 46% of the intact muscle content, and 39% in the old rat group. In conclusion, the difference in skeletal muscle regeneration capacity of young and very old rats is about ten percent. In the autografts of both young and old rats, the regeneration of the contractile apparatus is less effective in comparison with the sarcoplasmic compartment.

  2. Imaging two-dimensional mechanical waves of skeletal muscle contraction.

    PubMed

    Grönlund, Christer; Claesson, Kenji; Holtermann, Andreas

    2013-02-01

    Skeletal muscle contraction is related to rapid mechanical shortening and thickening. Recently, specialized ultrasound systems have been applied to demonstrate and quantify transient tissue velocities and one-dimensional (1-D) propagation of mechanical waves during muscle contraction. Such waves could potentially provide novel information on musculoskeletal characteristics, function and disorders. In this work, we demonstrate two-dimensional (2-D) mechanical wave imaging following the skeletal muscle contraction. B-mode image acquisition during multiple consecutive electrostimulations, speckle-tracking and a time-stamp sorting protocol were used to obtain 1.4 kHz frame rate 2-D tissue velocity imaging of the biceps brachii muscle contraction. The results present novel information on tissue velocity profiles and mechanical wave propagation. In particular, counter-propagating compressional and shear waves in the longitudinal direction were observed in the contracting tissue (speed 2.8-4.4 m/s) and a compressional wave in the transverse direction of the non-contracting muscle tissue (1.2-1.9 m/s). In conclusion, analysing transient 2-D tissue velocity allows simultaneous assessment of both active and passive muscle tissue properties.

  3. Biochemical and mechanical environment cooperatively regulate skeletal muscle regeneration

    PubMed Central

    Calve, Sarah; Simon, Hans-Georg

    2012-01-01

    During forelimb regeneration in the newt Notophthalmus viridescens, the dynamic expression of a transitional matrix rich in hyaluronic acid, tenascin-C, and fibronectin controls muscle cell behavior in vivo and in vitro. However, the influence of extracellular matrix (ECM) remodeling on tissue stiffness and the cellular response to mechanical variations during regeneration was unknown. By measuring the transverse stiffness of tissues in situ, we found undifferentiated regenerative blastemas were less stiff than differentiated stump muscle (13.3±1.6 vs. 16.6±1.2 kPa). To directly determine how ECM and stiffness combine to affect skeletal muscle fragmentation, migration, and fusion, we coated silicone-based substrates ranging from 2 to 100 kPa with matrices representative of transitional (tenascin-C and fibronectin) and differentiated environments (laminin and Matrigel). Using live-cell imaging, we found softer tenascin-C-coated substrates significantly enhanced migration and fragmentation of primary newt muscle cells. In contrast, stiffer substrates coated with laminin, Matrigel, or fibronectin increased differentiation while suppressing migration and fragmentation. These data support our in vivo observations that a transitional matrix of reduced stiffness regulates muscle plasticity and progenitor cell recruitment into the regenerative blastema. These new findings will enable the determination of how biochemical and mechanical cues from the ECM control genetic pathways that drive regeneration.—Calve, S., Simon, H.-G. Biochemical and mechanical environment cooperatively regulate skeletal muscle regeneration. PMID:22415307

  4. 21 CFR 890.1850 - Diagnostic muscle stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Diagnostic muscle stimulator. 890.1850 Section 890... muscle stimulator. (a) Identification. A diagnostic muscle stimulator is a device used mainly with an electromyograph machine to initiate muscle activity. It is intended for medical purposes, such as to...

  5. 21 CFR 890.1850 - Diagnostic muscle stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Diagnostic muscle stimulator. 890.1850 Section 890... muscle stimulator. (a) Identification. A diagnostic muscle stimulator is a device used mainly with an electromyograph machine to initiate muscle activity. It is intended for medical purposes, such as to...

  6. 21 CFR 890.1850 - Diagnostic muscle stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic muscle stimulator. 890.1850 Section 890... muscle stimulator. (a) Identification. A diagnostic muscle stimulator is a device used mainly with an electromyograph machine to initiate muscle activity. It is intended for medical purposes, such as to...

  7. 21 CFR 890.1850 - Diagnostic muscle stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Diagnostic muscle stimulator. 890.1850 Section 890... muscle stimulator. (a) Identification. A diagnostic muscle stimulator is a device used mainly with an electromyograph machine to initiate muscle activity. It is intended for medical purposes, such as to...

  8. 21 CFR 890.1850 - Diagnostic muscle stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic muscle stimulator. 890.1850 Section 890... muscle stimulator. (a) Identification. A diagnostic muscle stimulator is a device used mainly with an electromyograph machine to initiate muscle activity. It is intended for medical purposes, such as to...

  9. Skeletal muscle mitochondrial uncoupling in a murine cancer cachexia model.

    PubMed

    Tzika, A Aria; Fontes-Oliveira, Cibely Cristine; Shestov, Alexander A; Constantinou, Caterina; Psychogios, Nikolaos; Righi, Valeria; Mintzopoulos, Dionyssios; Busquets, Silvia; Lopez-Soriano, Francisco J; Milot, Sylvain; Lepine, Francois; Mindrinos, Michael N; Rahme, Laurence G; Argiles, Josep M

    2013-09-01

    Approximately half of all cancer patients present with cachexia, a condition in which disease-associated metabolic changes lead to a severe loss of skeletal muscle mass. Working toward an integrated and mechanistic view of cancer cachexia, we investigated the hypothesis that cancer promotes mitochondrial uncoupling in skeletal muscle. We subjected mice to in vivo phosphorous-31 nuclear magnetic resonance (31P NMR) spectroscopy and subjected murine skeletal muscle samples to gas chromatography/mass spectrometry (GC/MS). The mice used in both experiments were Lewis lung carcinoma models of cancer cachexia. A novel 'fragmented mass isotopomer' approach was used in our dynamic analysis of 13C mass isotopomer data. Our 31P NMR and GC/MS results indicated that the adenosine triphosphate (ATP) synthesis rate and tricarboxylic acid (TCA) cycle flux were reduced by 49% and 22%, respectively, in the cancer-bearing mice (p<0.008; t-test vs. controls). The ratio of ATP synthesis rate to the TCA cycle flux (an index of mitochondrial coupling) was reduced by 32% in the cancer-bearing mice (p=0.036; t-test vs. controls). Genomic analysis revealed aberrant expression levels for key regulatory genes and transmission electron microscopy (TEM) revealed ultrastructural abnormalities in the muscle fiber, consistent with the presence of abnormal, giant mitochondria. Taken together, these data suggest that mitochondrial uncoupling occurs in cancer cachexia and thus point to the mitochondria as a potential pharmaceutical target for the treatment of cachexia. These findings may prove relevant to elucidating the mechanisms underlying skeletal muscle wasting observed in other chronic diseases, as well as in aging.

  10. Skeletal muscle microvascular function in girls with Turner syndrome

    PubMed Central

    West, Sarah L.; O'Gorman, Clodagh S.; Elzibak, Alyaa H.; Caterini, Jessica; Noseworthy, Michael D.; Rayner, Tammy; Hamilton, Jill; Wells, Greg D.

    2014-01-01

    Background Exercise intolerance is prevalent in individuals with Turner Syndrome (TS). We recently demonstrated that girls with TS have normal aerobic but altered skeletal muscle anaerobic metabolism compared to healthy controls (HC). The purpose of this study was to compare peripheral skeletal muscle microvascular function in girls with TS to HC after exercise. We hypothesized that girls with TS would have similar muscle blood-oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) signal responses during recovery from exercise compared to HC. Methods Thirteen TS participants and 8 HC completed testing. BOLD MRI was used to measure skeletal muscle microvascular response during 60 second recovery, following 60 s of exercise at 65% of maximal workload. Exercise and recovery were repeated four times, and the BOLD signal time course was fit to a four-parameter sigmoid function. Results Participants were 13.7 ± 3.1 years old and weighed 47.9 ± 14.6 kg. The mean change in BOLD signal intensity following exercise at the end of recovery, the mean response time of the function/the washout of deoxyhemoglobin, and the mean half-time of recovery were similar between the TS and HC groups. Conclusions Our results demonstrate that compared to HC, peripheral skeletal muscle microvascular function following exercise in girls with TS is not impaired. General significance This study supports the idea that the aerobic energy pathway is not impaired in children with TS in response to submaximal exercise. Other mechanisms are likely responsible for exercise intolerance in TS; this needs to be further investigated. PMID:26676172

  11. Skeletal muscle calcineurin: influence of phenotype adaptation and atrophy

    NASA Technical Reports Server (NTRS)

    Spangenburg, E. E.; Williams, J. H.; Roy, R. R.; Talmadge, R. J.; Spangenberg, E. E. (Principal Investigator)

    2001-01-01

    Calcineurin (CaN) has been implicated as a signaling molecule that can transduce physiological stimuli (e.g., contractile activity) into molecular signals that initiate slow-fiber phenotypic gene expression and muscle growth. To determine the influence of muscle phenotype and atrophy on CaN levels in muscle, the levels of soluble CaN in rat muscles of varying phenotype, as assessed by myosin