Sample records for skeletal surface area

  1. New model for estimating the relationship between surface area and volume in the human body using skeletal remains.

    PubMed

    Kasabova, Boryana E; Holliday, Trenton W

    2015-04-01

    A new model for estimating human body surface area and body volume/mass from standard skeletal metrics is presented. This model is then tested against both 1) "independently estimated" body surface areas and "independently estimated" body volume/mass (both derived from anthropometric data) and 2) the cylindrical model of Ruff. The model is found to be more accurate in estimating both body surface area and body volume/mass than the cylindrical model, but it is more accurate in estimating body surface area than it is for estimating body volume/mass (as reflected by the standard error of the estimate when "independently estimated" surface area or volume/mass is regressed on estimates derived from the present model). Two practical applications of the model are tested. In the first test, the relative contribution of the limbs versus the trunk to the body's volume and surface area is compared between "heat-adapted" and "cold-adapted" populations. As expected, the "cold-adapted" group has significantly more of its body surface area and volume in its trunk than does the "heat-adapted" group. In the second test, we evaluate the effect of variation in bi-iliac breadth, elongated or foreshortened limbs, and differences in crural index on the body's surface area to volume ratio (SA:V). Results indicate that the effects of bi-iliac breadth on SA:V are substantial, while those of limb lengths and (especially) the crural index are minor, which suggests that factors other than surface area relative to volume are driving morphological variation and ecogeographical patterning in limb prorportions. © 2014 Wiley Periodicals, Inc.

  2. Clypeotheca, a new skeletal structure in scleractinian corals: a potential stress indicator

    NASA Astrophysics Data System (ADS)

    Nothdurft, L. D.; Webb, G. E.

    2009-03-01

    Physiological responses to environmental stress are increasingly well studied in scleractinian corals. This work reports a new stress-related skeletal structure we term clypeotheca. Clypeotheca was observed in several live-collected common reef-building coral genera and a two to three kya subfossil specimen from Heron Reef, Great Barrier Reef and consists of an epitheca-like skeletal wall that seals over the surface of parts of the corallum in areas of stress or damage. It appears to form from a coordinated process wherein neighboring polyps and adjoining coenosarc seal themselves off from the surrounding environment as they contract and die. Clypeotheca forms from inward skeletal centripetal growth at the edges of corallites and by the merging of flange-like outgrowths that surround individual spines over the surface of the coenosteum. Microstructurally, the merged flanges are similar to upside-down dissepiments and true epitheca. Clypeotheca is interpreted primarily as a response to stress that may help protect the colony from invasion of unhealthy tissues by parasites or disease by retracting tissues in areas that have become unhealthy for the polyps. Identification of skeletal responses of corals to environmental stress may enable the frequency of certain types of environmental stress to be documented in past environments. Such data may be important for understanding the nature of reef dynamics through intervals of climate change and for monitoring the effects of possible anthropogenic stress in modern coral reef habitats.

  3. Reconstructing skeletal fiber arrangement and growth mode in the coral Porites lutea (Cnidaria, Scleractinia): a confocal Raman microscopy study

    NASA Astrophysics Data System (ADS)

    Wall, M.; Nehrke, G.

    2012-11-01

    Confocal Raman microscopy (CRM) mapping was used to investigate the microstructural arrangement and organic matrix distribution within the skeleton of the coral Porites lutea. Relative changes in the crystallographic orientation of crystals within the fibrous fan-system could be mapped, without the need to prepare thin sections, as required if this information is obtained by polarized light microscopy. Simultaneously, incremental growth lines can be visualized without the necessity of etching and hence alteration of sample surface. Using these methods two types of growth lines could be identified: one corresponds to the well-known incremental growth layers, whereas the second type of growth lines resemble denticle finger-like structures (most likely traces of former spines or skeletal surfaces). We hypothesize that these lines represent the outer skeletal surface before another growth cycle of elongation, infilling and thickening of skeletal areas continues. We show that CRM mapping with high spatial resolution can significantly improve our understanding of the micro-structural arrangement and growth patterns in coral skeletons.

  4. Psoas muscle area is not representative of total skeletal muscle area in the assessment of sarcopenia in ovarian cancer.

    PubMed

    Rutten, Iris J G; Ubachs, Jorne; Kruitwagen, Roy F P M; Beets-Tan, Regina G H; Olde Damink, Steven W M; Van Gorp, Toon

    2017-08-01

    Computed tomography measurements of total skeletal muscle area can detect changes and predict overall survival (OS) in patients with advanced ovarian cancer. This study investigates whether assessment of psoas muscle area reflects total muscle area and can be used to assess sarcopenia in ovarian cancer patients. Ovarian cancer patients (n = 150) treated with induction chemotherapy and interval debulking were enrolled retrospectively in this longitudinal study. Muscle was measured cross sectionally with computed tomography in three ways: (i) software quantification of total skeletal muscle area (SMA); (ii) software quantification of psoas muscle area (PA); and (iii) manual measurement of length and width of the psoas muscle to derive the psoas surface area (PLW). Pearson correlation between the different methods was studied. Patients were divided into two groups based on the extent of change in muscle area, and agreement was measured with kappa coefficients. Cox-regression was used to test predictors for OS. Correlation between SMA and both psoas muscle area measurements was poor (r = 0.52 and 0.39 for PA and PLW, respectively). After categorizing patients into muscle loss or gain, kappa agreement was also poor for all comparisons (all κ < 0.40). In regression analysis, SMA loss was predictive of poor OS (hazard ratio 1.698 (95%CI 1.038-2.778), P = 0.035). No relationship with OS was seen for PA or PLW loss. Change in psoas muscle area is not representative of total muscle area change and should not be used to substitute total skeletal muscle to predict survival in patients with ovarian cancer. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  5. Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification.

    PubMed

    Crook, Elizabeth D; Cohen, Anne L; Rebolledo-Vieyra, Mario; Hernandez, Laura; Paytan, Adina

    2013-07-02

    As the surface ocean equilibrates with rising atmospheric CO2, the pH of surface seawater is decreasing with potentially negative impacts on coral calcification. A critical question is whether corals will be able to adapt or acclimate to these changes in seawater chemistry. We use high precision CT scanning of skeletal cores of Porites astreoides, an important Caribbean reef-building coral, to show that calcification rates decrease significantly along a natural gradient in pH and aragonite saturation (Ωarag). This decrease is accompanied by an increase in skeletal erosion and predation by boring organisms. The degree of sensitivity to reduced Ωarag measured on our field corals is consistent with that exhibited by the same species in laboratory CO2 manipulation experiments. We conclude that the Porites corals at our field site were not able to acclimatize enough to prevent the impacts of local ocean acidification on their skeletal growth and development, despite spending their entire lifespan in low pH, low Ωarag seawater.

  6. Three-dimensional facies architecture of the Salem Limestone (middle Mississippian), Eastern Margin of Illinois basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadeem, A.; Keith, B.D.; Thompson, T.A.

    Mapping of sedimentary surfaces in the Middle Mississippian Salem Limestone exposed on sawed quarry walls in south-central Indiana has revealed a hierarchy of depositional units representative of the extremely dynamic hydrographic regime of the upper shoreface zone. The depositional units on the scale of microform and mesoform are represented by the microfacies and the facies respectively. Based on their hierarchy, genetically related depositional units and associated bounding surfaces were grouped together to construct four architectural packages (APs) of the scale of mesoforms. AP-I is dominantly an echinoderm- and bryozoan-rich grainstone and consists of bedforms ranging from small ripples bounded bymore » first-order surfaces to two- and three- dimensional megaripples bounded by the second-order surfaces. It formed as part of a giant ramp (asymmetric wavefield) within the intrashoal channel setting. AP-II, also a skeletal grainstone, is a complex of giant sandwaves that moved into the area under the infulence of a storm and partly filled the basal channel form of AP-I. Large avalanche foresets with tangential toesets prevail. AP-III is a dark-gray spatially discontinuous skeletal grainstone to packstone that laterally grades into a skeletal packstone to wackestone. It locally developed overhangs, rips-ups, and hardground on its upper surface. AP-IV is a skeletal and oolitic grainstone formed of tabular two-dimensional megaripples (planar cross-beds) and three-dimensional oscillatory megaripples (trough cross-beds). These architectural packages based on the bedform architecture and micro-and mesoscale compositional changes can be used to characterize micro-, meso, and macroscale heterogeneities. Models of facies architecture from this and similar outcrop studies can be applied to the subsurface Salem reservoirs in the Illinois Basin using cores.« less

  7. Do Skeletal Density Changes Within the Tissue Layer of Corals Affect Paleoclimate Reconstructions?

    NASA Astrophysics Data System (ADS)

    Griffiths, J. S.; DeLong, K. L.; Quinn, T.; Taylor, F. W.; Kilbourne, K. H.; Wagner, A. J.

    2016-02-01

    Sea surface temperature (SST) reconstructions from coral geochemistry provide information on past climate variability; however, not all coral studies agree on a common calibration slope. Therefore, understanding the impacts of coral skeletal growth on strontium-to-calcium ratios (Sr/Ca) and oxygen isotopic ratios (δ18O) is necessary to ensure accurate calibrations. The study of Gagan et al. (2012) suggests that for the Pacific coral genera Porites, SST calibrations for coral Sr/Ca and δ18O need to be adjusted to account for skeletal density changes in the tissue layer, which may attenuate the seasonal cycle in coral geochemistry. We attempt to duplicate those results and density patterns in several Porites lutea colonies from two locations, yet our results do not show an increase in density in the tissue layer. Another study with Montastraea faveolata reveals reduced seasonality in coral Sr/Ca compared to slower-growing Siderastrea siderea in close proximity and same water depth, suggesting the faster growing M. faveolata geochemistry may be attenuated. By measuring skeletal density changes by micromilling a standard volume throughout the tissue layer and immediately below, we find no pattern of skeletal accumulation in the tissue layer of multiple colonies of M. faveolata and S. siderea from different locations. We conclude that these species lay down all of their skeletal material at the skeleton surface, thus skeletal density changes in the tissue layer do not account for reduced seasonality. We propose that time averaging occurs in M. faveolata as a result of the coral polyp's deep calyces mixing time intervals in the adjacent thecal wall in which micromilling for geochemical analysis produces a sample area that contains several growth increments. Our results show that skeletal density growth effects cannot be applied to all coral genera and paves the way for new research on calyx depth as an alternative explanation for differences in coral calibration slopes.

  8. The Issue of Age Estimation in a Modern Skeletal Population: Are Even the More Modern Current Aging Methods Satisfactory for the Elderly?

    PubMed

    Cappella, Annalisa; Cummaudo, Marco; Arrigoni, Elena; Collini, Federica; Cattaneo, Cristina

    2017-01-01

    The main idea behind age assessment in adults is related to the analysis of the physiological degeneration of particular skeletal structures with age. The main issues with these procedures are due to the fact that they have not been tested on different modern populations and in different taphonomic contexts and that they tend to underestimate the age of older individuals. The purpose of this study was to test the applicability and the reliability of these methods on a contemporary population of skeletal remains of 145 elderly individuals of known sex and age. The results show that, due to taphonomic influences, some skeletal sites showed a lower survival. Therefore, the methods with the highest percentage of applicability were Lovejoy (89.6%) and Rougé-Maillart (81.3%), followed by Suchey-Brooks (59.3%), and those with the lowest percentage of applicability were Beauthier (26.2%) and Iscan (22.7%). In addition, this research has shown how for older adults the study of both acetabulum and auricular surface may be more reliable for aging. This is also in accordance with the fact that auricular surface and the acetabulum are the areas more frequently surviving taphonomic insult. © 2016 American Academy of Forensic Sciences.

  9. Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification

    PubMed Central

    Crook, Elizabeth D.; Cohen, Anne L.; Rebolledo-Vieyra, Mario; Hernandez, Laura; Paytan, Adina

    2013-01-01

    As the surface ocean equilibrates with rising atmospheric CO2, the pH of surface seawater is decreasing with potentially negative impacts on coral calcification. A critical question is whether corals will be able to adapt or acclimate to these changes in seawater chemistry. We use high precision CT scanning of skeletal cores of Porites astreoides, an important Caribbean reef-building coral, to show that calcification rates decrease significantly along a natural gradient in pH and aragonite saturation (Ωarag). This decrease is accompanied by an increase in skeletal erosion and predation by boring organisms. The degree of sensitivity to reduced Ωarag measured on our field corals is consistent with that exhibited by the same species in laboratory CO2 manipulation experiments. We conclude that the Porites corals at our field site were not able to acclimatize enough to prevent the impacts of local ocean acidification on their skeletal growth and development, despite spending their entire lifespan in low pH, low Ωarag seawater. PMID:23776217

  10. Estimation of skeletal movement of human locomotion from body surface shapes using dynamic spatial video camera (DSVC) and 4D human model.

    PubMed

    Saito, Toshikuni; Suzuki, Naoki; Hattori, Asaki; Suzuki, Shigeyuki; Hayashibe, Mitsuhiro; Otake, Yoshito

    2006-01-01

    We have been developing a DSVC (Dynamic Spatial Video Camera) system to measure and observe human locomotion quantitatively and freely. A 4D (four-dimensional) human model with detailed skeletal structure, joint, muscle, and motor functionality has been built. The purpose of our research was to estimate skeletal movements from body surface shapes using DSVC and the 4D human model. For this purpose, we constructed a body surface model of a subject and resized the standard 4D human model to match with geometrical features of the subject's body surface model. Software that integrates the DSVC system and the 4D human model, and allows dynamic skeletal state analysis from body surface movement data was also developed. We practically applied the developed system in dynamic skeletal state analysis of a lower limb in motion and were able to visualize the motion using geometrically resized standard 4D human model.

  11. Alendronate increases skeletal mass of growing rats during unloading by inhibiting resorption of calcified cartilage

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Morey-Holton, E. R.; Doty, S. B.; Currier, P. A.; Tanner, S. J.; Halloran, B. P.

    1994-01-01

    Loss of bone mass during periods of skeletal unloading remains an important clinical problem. To determine the extent to which resorption contributes to the relative loss of bone during skeletal unloading of the growing rat and to explore potential means of preventing such bone loss, 0.1 mg P/kg alendronate was administered to rats before unloading of the hindquarters. Skeletal unloading markedly reduced the normal increase in tibial mass and calcium content during the 9 day period of observation, primarily by decreasing bone formation, although bone resorption was also modestly stimulated. Alendronate not only prevented the relative loss of skeletal mass during unloading but led to a dramatic increase in calcified tissue in the proximal tibia compared with the vehicle-treated unloaded or normally loaded controls. Bone formation, however, assessed both by tetracycline labeling and by [3H]proline and 45Ca incorporation, was suppressed by alendronate treatment and further decreased by skeletal unloading. Total osteoclast number increased in alendronate-treated animals, but values were similar to those in controls when corrected for the increased bone area. However, the osteoclasts had poorly developed brush borders and appeared not to engage the bone surface when examined at the ultrastructural level. We conclude that alendronate prevents the relative loss of mineralized tissue in growing rats subjected to skeletal unloading, but it does so primarily by inhibiting the resorption of the primary and secondary spongiosa, leading to altered bone modeling in the metaphysis.

  12. Study of the relationship between the lifestyle of residents residing in fluorosis endemic areas and adult skeletal fluorosis.

    PubMed

    Liu, GuoJie; Ye, QingFang; Chen, Wei; Zhao, ZhenJuan; Li, Ling; Lin, Ping

    2015-07-01

    The relationship between fluorosis and the lifestyle of adult residents of areas in which fluorosis is endemic was evaluated. A cross-sectional and case-control analysis was performed to study 289 villagers living in fluorosis endemic areas who drank the local water. Subjects were divided into skeletal fluorosis and non-skeletal fluorosis groups according to whether they were afflicted with skeletal fluorosis. A semi-quantitative food frequency questionnaire, homemade lifestyle questionnaires, and general characteristics were analyzed. The factors that affected the occurrence of skeletal fluorosis were determined by generalized estimating equations. Our results showed that protective factors against skeletal fluorosis included drinking boiled water, storing water in a ceramic tank, and ingesting fruits, vitamin A, thiamine, and folic acid. Risk factors for skeletal fluorosis were overweight status and obesity, drinking tea, drinking water without storage, and ingestion of oils, fats, and phosphorus. Our results demonstrate that skeletal fluorosis has a close relationship with lifestyle. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA

    2011-10-11

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  14. Micromorphological features of the fine earth and skeletal fractions of soils of West Antarctica in the areas of Russian Antarctic stations

    NASA Astrophysics Data System (ADS)

    Abakumov, E. V.; Gagarina, E. I.; Sapega, V. F.; Vlasov, D. Yu.

    2013-12-01

    Micromorphological features of the fine earth and skeletal fractions of soils of West Antarctica forming under different conditions of pedogenesis have been studied in the areas of Russian Antarctic stations. The processes of mineral weathering and alteration of rock fragments are more pronounced in the Subantarctic soils with better developed humification and immobilization of iron compounds under conditions of surface overmoistening. The biogenic accumulative processes in the soils of King George Island result in the appearance of initial forms of humic plasma that have not been detected in the Antarctic soils in the areas of the Russkaya and Leningradskaya stations. Humus films on mineral grains are present in the soils of King George Island, and organic plasmic material is present in the ornithogenic soils under penguin guano on Lindsey Island. High-latitude Antarctic soils may contain surface concentrations of organic matter; rock fragments are covered by iron oxides and soluble salts. The formation of amorphous organic plasma takes place in the ornithogenic soils of Lindsey Island. The microprobe analysis indicates the presence of local concentrations of organic matter and pedogenic compounds not only on the surface of rock fragments but also in the fissures inside them. This analysis has also proved the translocation of guano-derived organic substances inside rock fragments through a system of fissures in the soils of Lindsey Island and the development of a network of pores inside rock fragments in the soils of King George Island.

  15. Equivalent complex conductivities representing the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by external-electrode method

    NASA Astrophysics Data System (ADS)

    Sekine, Katsuhisa

    2017-12-01

    In order to represent the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by the external-electrode method, analytical relations for the equivalent complex conductivities of hypothetical smooth surface membranes were derived. In the relations, the effects of each tubule were represented by the admittance of a straight cable. The effects of the folding of a surface membrane were represented by the increased area of surface membranes. The equivalent complex conductivities were represented as summation of these effects, and the effects of the T-tubules were different between the transversal and longitudinal directions. The validity of the equivalent complex conductivities was supported by the results of finite-difference method (FDM) calculations made using three-dimensional models in which T-tubules and folded surface membranes were represented explicitly. FDM calculations using the equivalent complex conductivities suggested that the electrically inhomogeneous structure due to the existence of muscle cells with T-tubules was sufficient for explaining the experimental results previously obtained using the external-electrode method. Results of FDM calculations in which the structural changes caused by muscle contractions were taken into account were consistent with the reported experimental results.

  16. Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan, Iran.

    PubMed

    Mohammadi, Ali Akbar; Yousefi, Mahmood; Yaseri, Mehdi; Jalilzadeh, Mohsen; Mahvi, Amir Hossein

    2017-12-11

    Skeletal fluorosis resulting from high fluoride level in drinking water is a major public health problem. The present study evaluated the association between exposures to drinking water fluoride and skeletal fluorosis in 5 villages of Poldasht County, Iran. All the data and information on the prevalence of bone diseases were obtained from the Health Record Department, Poldasht Health Centre. To obtain the odds ratio of bone disease problem in different risk factors, when considering the cluster effect of rural area, logistic regression in a multilevel model was used. Results showed that skeletal fluorosis of people who live in areas with high fluoride concentration is 18.1% higher than that of individuals who live in areas with low fluoride concentration. Skeletal fluorosis (54.5%) was observed in the age group of 71 years and above, and was more commonly found in females than males. According to Unadjusted, individuals who consume ≤3 unit milk and dairy products per week have almost the same level of bone diseases as compared to those that consume more than 3 units. This study indicated that, skeletal fluorosis is a general health problem in these rural areas because the results revealed that high percentage of the studied population had symptoms of skeletal fluorosis.

  17. Drilling from the intercondylar area for treatment of osteochondritis dissecans of the knee joint.

    PubMed

    Kawasaki, Kenzo; Uchio, Yuji; Adachi, Nobuo; Iwasa, Junji; Ochi, Mitsuo

    2003-09-01

    We demonstrate a new method in which a drilling is made from the intercondylar space, and its efficacy in treating osteochondritis dissecans (OCD) of the knee in skeletally immature patients with relatively stable lesions with an intact articular surface, in cases where there was failure of initial non-operative management. The lesions of 16 knees of 12 patients with OCD of the femoral condyles failed to heal by conservative treatment for more than 3 months (average 5-6 months) and thereafter were arthroscopically treated with drilling from not the transarticular but the intercondylar bare area without damaging the articular surface. Eight lesions involved the medial femoral condyle, and eight involved the lateral femoral condyle. The average follow-up was 16 months. All lesions healed after drilling, and the average time of healing was 4 months by X-ray and 7 months by MRI. The average Lysholm score improved from an average of 70.4 points at preoperation to an average of 97.8 points after operation. The results of the Hughston Rating Scale were similar: 10 of the 12 patients showed excellent results and the remaining two patients good results. We advocate our new and less invasive procedure of drilling from the bare area of the intercondylar space for OCD in the knee joint of skeletally immature patients who have had failure of initial non-operative management.

  18. Hydrogenation of artemisinin to dihydroartemisinin over heterogeneous metal catalysts

    NASA Astrophysics Data System (ADS)

    Kristiani, Anis; Pertiwi, Ralentri; Adilina, Indri Badria

    2017-01-01

    A series of heterogeneous metal catalysts of Ni, Pd, and Pt, both of synthesized and commercial catalysts were used for hydrogenation of artemisinin to dihydroartemisinin. Their catalytic properties were determsined by Surface Area Analyzer and Thermogravimetry Analyzer. The catalytic properties in various reaction conditions in terms of temperature, pressure, reaction time and reactant/catalyst ratio were also studied. The results catalytic activity tests showed that synthesized catalysts of Ni/zeolite, Ni-Sn/zeolite, Ni/bentonite and Ni-Sn/bentonite were not able to produced dihydroartemisinin and deoxyartemisinin was mainly formed. Meanwhile, commercial catalysts of Ni skeletal, Pd/activated charcoal and Pt/activated charcoal yielded the desired dihydroartemisinin product. Ni skeletal commercial catalyst gave the best performance of hydrogenation artemisinin to dihydroartemisinin in room temperature and low H2 pressure.

  19. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA

    2011-10-18

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  20. Skeletal changes in lower limb bones in domestic cattle from Eketorp ringfort on the Öland island in Sweden.

    PubMed

    Telldahl, Ylva

    2012-12-01

    In this paper the nature and frequency of skeletal changes in the lower limb bones of cattle are investigated. The bones derive from the archaeological site of Eketorp ringfort on the Öland island in Sweden dated between Iron Age-Middle Age (ca. A.D. 300-1200/50). The analysis was conducted to explore whether skeletal lesions were associated with traction activity, and if changes in the type and prevalence of lesions occurred over time. Different skeletal lesions were recorded by bone and precise anatomical location: the joint surfaces of metapodia and phalanges were divided into four to seven zones to determine if different types of lesions were located on particular regions of the articular surface. The results show that metatarsals exhibited a higher frequency of pathologies in the Iron Age and medieval period compared to metacarpals, while anterior phalanges 1 and 2 had a higher occurrence of lesions than the posterior elements. The study also demonstrates that the type and location of depressions on joint surfaces are unevenly distributed between bone elements. Finally, the results show that skeletal lesions were more common in robust animals. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. A national cross-sectional study on effects of fluoride-safe water supply on the prevalence of fluorosis in China.

    PubMed

    Wang, Cheng; Gao, Yanhui; Wang, Wei; Zhao, Lijun; Zhang, Wei; Han, Hepeng; Shi, Yuxia; Yu, Guangqian; Sun, Dianjun

    2012-01-01

    To assess the effects of provided fluoride-safe drinking-water for the prevention and control of endemic fluorosis in China. A national cross-sectional study in China. In 1985, randomly selected villages in 27 provinces (or cities and municipalities) in 5 geographic areas all over China. Involved 81 786 children aged from 8 to 12 and 594 698 adults aged over 16. The prevalence of dental fluorosis and clinical skeletal fluorosis, the fluoride concentrations in the drinking-water in study villages and in the urine of subjects. The study showed that in the villages where the drinking-water fluoride concentrations were higher than the government standard of 1.2 mg/l, but no fluoride-safe drinking-water supply scheme was provided (FNB areas), the prevalence rate and index of dental fluorosis in children, and prevalence rate of clinical skeletal fluorosis in adults were all significantly higher than those in the historical endemic fluorosis villages after the fluoride-safe drinking-water were provided (FSB areas). Additionally, the prevalence rate of dental fluorosis as well as clinical skeletal fluorosis, and the concentration of fluoride in urine were found increased with the increase of fluoride concentration in drinking-water, with significant positive correlations in the FNB areas. While, the prevalence rate of dental fluorosis and clinical skeletal fluorosis in different age groups and their degrees of prevalence were significantly lower in the FSB areas than those in the FNB areas. The provision of fluoride-safe drinking-water supply schemes had significant effects on the prevention and control of dental fluorosis and skeletal fluorosis. The study also indicated that the dental and skeletal fluorosis is still prevailing in the high-fluoride drinking-water areas in China.

  2. Melatonin protects against uric acid-induced mitochondrial dysfunction, oxidative stress, and triglyceride accumulation in C2C12 myotubes.

    PubMed

    Maarman, Gerald J; Andrew, Brittany M; Blackhurst, Dee M; Ojuka, Edward O

    2017-04-01

    Excess uric acid has been shown to induce oxidative stress, triglyceride accumulation, and mitochondrial dysfunction in the liver and is an independent predictor of type-2 diabetes. Skeletal muscle plays a dominant role in type 2 diabetes and presents a large surface area to plasma uric acid. However, the effects of uric acid on skeletal muscle are underinvestigated. Our aim was therefore to characterize the effects of excessive uric acid on oxidative stress, triglyceride content, and mitochondrial function in skeletal muscle C 2 C 12 myotubes and assess how these are modulated by the antioxidant molecule melatonin. Differentiated C 2 C 12 myotubes were exposed to 750 µM uric acid or uric acid + 10 nM melatonin for 72 h. Compared with control, uric acid increased triglyceride content by ~237%, oxidative stress by 32%, and antioxidant capacity by 135%. Uric acid also reduced endogenous ROUTINE respiration, complex II-linked oxidative phosphorylation, and electron transfer system capacities. Melatonin counteracted the effects of uric acid without further altering antioxidant capacity. Our data demonstrate that excess uric acid has adverse effects on skeletal muscle similar to those previously reported in hepatocytes and suggest that melatonin at a low physiological concentration of 10 nM may be a possible therapy against some adverse effects of excess uric acid. NEW & NOTEWORTHY Few studies have investigated the effects of uric acid on skeletal muscle. This study shows that hyperuricemia induces mitochondrial dysfunction and triglyceride accumulation in skeletal muscle. The findings may explain why hyperuricemia is an independent predictor of diabetes. Copyright © 2017 the American Physiological Society.

  3. Clinical Outcomes of Living Liver Transplantation According to the Presence of Sarcopenia as Defined by Skeletal Muscle Mass, Hand Grip, and Gait Speed.

    PubMed

    Harimoto, N; Yoshizumi, T; Izumi, T; Motomura, T; Harada, N; Itoh, S; Ikegami, T; Uchiyama, H; Soejima, Y; Nishie, A; Kamishima, T; Kusaba, R; Shirabe, K; Maehara, Y

    2017-11-01

    Sarcopenia is an independent predictor of death after living-donor liver transplantation (LDLT). However, the ability of the Asian Working Group for Sarcopenia criteria for sarcopenia (defined as reduced skeletal muscle mass plus low muscle strength) to predict surgical outcomes in patients who have undergone LDLT has not been determined. This study prospectively enrolled 366 patients who underwent LDLT at Kyushu University Hospital. Skeletal muscle area (determined by computed tomography), hand-grip strength, and gait speed were measured in 102 patients before LDLT. We investigated the relationship between sarcopenia and surgical outcomes after LDLT performed in three time periods. The number of patients with lower skeletal muscle area has increased to 52.9% in recent years. The incidence of sarcopenia according to the Asian Working Group for Sarcopenia criteria was 23.5% (24/102). Patients with sarcopenia (defined by skeletal muscle area and functional parameters) had significantly lower skeletal muscle area and weaker hand-grip strength than did those without sarcopenia. Compared with non-sarcopenic patients, patients with sarcopenia also had significantly worse liver function, greater estimated blood loss, greater incidence of postoperative complications of Clavien-Dindo grade IV or greater (including amount of ascites on postoperative day 14, total bilirubin on postoperative day 14, and postoperative sepsis), and longer postoperative hospital stay. Multiple logistic regression analysis revealed sarcopenia as a significant predictor of 6-month mortality. The combination of skeletal muscle mass and function can predict surgical outcomes in LDLT patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Measuring Soil Moisture in Skeletal Soils Using a COSMOS Rover

    NASA Astrophysics Data System (ADS)

    Medina, C.; Neely, H.; Desilets, D.; Mohanty, B.; Moore, G. W.

    2017-12-01

    The presence of coarse fragments directly influences the volumetric water content of the soil. Current surface soil moisture sensors often do not account for the presence of coarse fragments, and little research has been done to calibrate these sensors under such conditions. The cosmic-ray soil moisture observation system (COSMOS) rover is a passive, non-invasive surface soil moisture sensor with a footprint greater than 100 m. Despite its potential, the COSMOS rover has yet to be validated in skeletal soils. The goal of this study was to validate measurements of surface soil moisture as taken by a COSMOS rover on a Texas skeletal soil. Data was collected for two soils, a Marfla clay loam and Chinati-Boracho-Berrend association, in West Texas. Three levels of data were collected: 1) COSMOS surveys at three different soil moistures, 2) electrical conductivity surveys within those COSMOS surveys, and 3) ground-truth measurements. Surveys with the COSMOS rover covered an 8000-h area and were taken both after large rain events (>2") and a long dry period. Within the COSMOS surveys, the EM38-MK2 was used to estimate the spatial distribution of coarse fragments in the soil around two COSMOS points. Ground truth measurements included coarse fragment mass and volume, bulk density, and water content at 3 locations within each EM38 survey. Ground-truth measurements were weighted using EM38 data, and COSMOS measurements were validated by their distance from the samples. There was a decrease in water content as the percent volume of coarse fragment increased. COSMOS estimations responded to both changes in coarse fragment percent volume and the ground-truth volumetric water content. Further research will focus on creating digital soil maps using landform data and water content estimations from the COSMOS rover.

  5. [Morphological analysis of alveolar bone of anterior mandible in high-angle skeletal class II and class III malocclusions assessed with cone-beam computed tomography].

    PubMed

    Ma, J; Jiang, J H

    2018-02-18

    To evaluate the difference of features of alveolar bone support under lower anterior teeth between high-angle adults with skeletal class II malocclusions and high-angle adults presenting skeletal class III malocclusions by using cone-beam computed tomography (CBCT). Patients who had taken the images of CBCT were selected from the Peking University School and Hospital of Stomatology between October 2015 and August 2017. The CBCT archives from 62 high-angle adult cases without orthodontic treatment were divided into two groups based on their sagittal jaw relationships: skeletal class II and skeletal class III. vertical bone level (VBL), alveolar bone area (ABA), and the width of alveolar bone were measured respectively at the 2 mm, 4 mm, 6 mm below the cemento-enamel junction (CEJ) level and at the apical level. After that, independent samples t-tests were conducted for statistical comparisons. The ABA of the mandibular alveolar bone in the area of lower anterior teeth was significantly thinner in the patients of skeletal class III than those of skeletal class II, especially in terms of the apical ABA, total ABA on the labial and lingual sides and the ABA at 6 mm below CEJ level on the lingual side (P<0.05). The thickness of the alveolar bone of mandibular anterior teeth was significantly thinner in the subjects of skeletal class III than those of skeletal class II, especially regarding the apical level on the labial and lingual side and at the level of 4 mm, 6 mm below CEJ level on the lingual side (P<0.05). The ABA and the thickness of the alveolar bone of mandibular anterior teeth were significantly thinner in the group of skeletal class III adult patients with high-angle when compared with the sample of high-angle skeletal class II adult cases. We recommend orthodontists to be more cautious in treatment of high-angle skeletal class III patients, especially pay attention to control the torque of lower anterior teeth during forward and backward movement, in case that the apical root might be absorbed or fenestration happen in the area of lower anterior teeth.

  6. Human Health Impact of Fluoride in Groundwater in the Chiang Mai Basin

    NASA Astrophysics Data System (ADS)

    Matsui, Y.; Takizawa, S.; Wattanachira, S.; Wongrueng, A.; Ibaraki, M.

    2005-12-01

    Chiang Mai Basin, in Northern Thailand, is known as a fluorotic area. Groundwater of the Chiang Mai Basin has been gradually replaced by contaminated surface water since the 1980's. People have been exposed to fluoride contaminated groundwater since that time. As a result, harmful health effects on dental and skeletal growth were observed in the 90's. These include dental and skeletal fluorosis. Dental fluorosis is characterized by yellow or white spots on teeth and pitting or mottled enamel, consequently causing the teeth to look unsightly. Skeletal fluorosis leads to changes in bone structure, making them extremely weak and brittle. The most severe form of this is known as ``crippling skeletal fluorosis,'' a condition that can cause immobility, muscle wasting, and neurological problems related to spinal cord compression. This study focuses on the problematic issue of the Chiang Mai Basin's groundwater from the viewpoint of fluoride occurrence and current health impacts. Chiang Mai and Lamphun Provinces comprise the Chiang Mai Basin. Fluoride rich granites or fluorite deposits are scattered across the mountainside of the Lamphun Province. Tropical savanna climate conditions with seasonal monsoons bring more than 1,000 mm of annual precipitation, which can prompt weathering of minerals containing fluoride. The Ping River dominates the Basin, and the main eastern tributary of the Ping River runs through the Lamphun Province. The Basin has geological units composed of lower semi-consolidated Tertiary fluvial and upper unconsolidated Quaternary alluvium deposits. The main aquifers are in the upper unconsolidated unit. High fluoride concentrations tend to be observed in the aquifer located in lower part of this unconsolidated unit. We have been investigating two areas in the Basin. These two locations are similar with respect to geological and hydrological settings. However, one area in which groundwater is Ca-bicarbonate dominant has a low fluoride occurrence. Groundwater of the other area contains a high fluoride concentration and is Na-bicarbonate dominant. We will present how naturally-occurring fluoride found in this groundwater has impacted the health of a large portion of residents in the Chiang Mai Basin, and we will explain the mechanism that differentiates Ca concentration, which controls fluoride concentration in groundwater, between different areas in the Basin.

  7. All-inside, physeal-sparing anterior cruciate ligament reconstruction does not significantly compromise the physis in skeletally immature athletes: a postoperative physeal magnetic resonance imaging analysis.

    PubMed

    Nawabi, Danyal H; Jones, Kristofer J; Lurie, Brett; Potter, Hollis G; Green, Daniel W; Cordasco, Frank A

    2014-12-01

    Anterior cruciate ligament (ACL) reconstruction in skeletally immature patients can result in growth disturbance due to iatrogenic physeal injury. Multiple physeal-sparing ACL reconstruction techniques have been described; however, few combine the benefits of anatomic reconstruction using sockets without violation of the femoral or tibial physis. To utilize physeal-specific magnetic resonance imaging (MRI) to quantify the zone of physeal injury after all-inside ACL reconstruction in skeletally immature athletes. Case series; Level of evidence, 4. Twenty-three skeletally immature patients (mean chronologic age 12.6 years; range, 10-15 years) were prospectively evaluated after all-inside ACL reconstruction. The mean bone age was 13.2 years. There were 8 females and 15 males. Fifteen patients underwent an all-epiphyseal (AE) ACL reconstruction and 8 patients had a partial transphyseal (PTP) ACL reconstruction, which spared the femoral physis but crossed the tibial physis. At 6 and 12 months postoperatively, MRI using 3-dimensional fat-suppressed spoiled gradient recalled echo sequences and full-length standing radiographs were performed to assess graft survival, growth arrest, physeal violation, angular deformity, and leg length discrepancy. The mean follow-up for this cohort was 18.5 months (range, 12-39 months). Minimal tibial physeal violation was seen in 10 of 15 patients in the AE group and, by definition, all patients in the PTP group. The mean area of tibial physeal disturbance (±SD) was 57.8 ± 52.2 mm(2) (mean 2.1% of total physeal area) in the AE group compared with 145.1 ± 100.6 mm(2) (mean 5.4% of total physeal area) in the PTP group (P = .003). Minimal compromise of the femoral physis (1.5%) was observed in 1 case in the PTP group and no cases in the AE group. No cases of growth arrest, articular surface violation, or avascular necrosis were noted on MRI. No postoperative angular deformities or significant leg length discrepancies were observed. The study data suggest that all-inside ACL reconstruction is a safe technique for skeletally immature athletes at short-term follow-up. Physeal-specific MRI reveals minimal growth plate compromise that is significantly lower than published thresholds for growth arrest. © 2014 The Author(s).

  8. A novel approach for treatment of skeletal Class II malocclusion: Miniplates-based skeletal anchorage.

    PubMed

    Al-Dumaini, Abdullsalam Abdulqawi; Halboub, Esam; Alhammadi, Maged Sultan; Ishaq, Ramy Abdul Rahman; Youssef, Mohamed

    2018-02-01

    The objective of this study was to evaluate the effect of a new approach-bimaxillary miniplates-based skeletal anchorage-in the treatment of skeletal Class II malocclusion compared with untreated subjects. The study (miniplates) group comprised 28 patients (14 boys, 14 girls) with skeletal Class II malocclusion due to mandibular retrusion, with a mean age of 11.83 years. After 0.017 × 0.025-in stainless steel archwires were placed in both arches, 4 miniplates were fixed bilaterally, 2 in the maxillary anterior areas and 2 in the mandibular posterior areas, and used for skeletal treatment with elastics. Twenty-four Class II untreated subjects (11 boys, 13 girls), with a mean age of 11.75 years, were included as controls. Skeletal and dental changes were evaluated using pretreatment and posttreatment or observational lateral cephalometric radiographs. The treatment changes were compared with the growth changes observed in the control group using independent t tests. Compared with the minimal changes induced by growth in the control group, the skeletal changes induced by miniplates were more obvious. The mandibular length increased significantly (3 mm), and the mandible moved forward, with a significant restraint in the sagittal position of the maxilla (P <0.001). The overjet correction (-4.26 mm) was found to be a net result of skeletal changes (A-Y-axis = -1.18 mm and B-Y-axis = 3.83 mm). The mandibular plane was significantly decreased by 2.75° (P <0.001). This new technique, bimaxillary miniplates-based skeletal anchorage, is an effective method for treating patients with skeletal Class II malocclusions through obvious skeletal, but minimal dentoalveolar, changes. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  9. A national cross-sectional study on effects of fluoride-safe water supply on the prevalence of fluorosis in China

    PubMed Central

    Wang, Cheng; Gao, Yanhui; Wang, Wei; Zhao, Lijun; Zhang, Wei; Han, Hepeng; Shi, Yuxia; Yu, Guangqian; Sun, Dianjun

    2012-01-01

    Objective To assess the effects of provided fluoride-safe drinking-water for the prevention and control of endemic fluorosis in China. Design A national cross-sectional study in China. Setting In 1985, randomly selected villages in 27 provinces (or cities and municipalities) in 5 geographic areas all over China. Participants Involved 81 786 children aged from 8 to 12 and 594 698 adults aged over 16. Main outcome measure The prevalence of dental fluorosis and clinical skeletal fluorosis, the fluoride concentrations in the drinking-water in study villages and in the urine of subjects. Results The study showed that in the villages where the drinking-water fluoride concentrations were higher than the government standard of 1.2 mg/l, but no fluoride-safe drinking-water supply scheme was provided (FNB areas), the prevalence rate and index of dental fluorosis in children, and prevalence rate of clinical skeletal fluorosis in adults were all significantly higher than those in the historical endemic fluorosis villages after the fluoride-safe drinking-water were provided (FSB areas). Additionally, the prevalence rate of dental fluorosis as well as clinical skeletal fluorosis, and the concentration of fluoride in urine were found increased with the increase of fluoride concentration in drinking-water, with significant positive correlations in the FNB areas. While, the prevalence rate of dental fluorosis and clinical skeletal fluorosis in different age groups and their degrees of prevalence were significantly lower in the FSB areas than those in the FNB areas. Conclusions The provision of fluoride-safe drinking-water supply schemes had significant effects on the prevention and control of dental fluorosis and skeletal fluorosis. The study also indicated that the dental and skeletal fluorosis is still prevailing in the high-fluoride drinking-water areas in China. PMID:23015601

  10. Co-expression in CHO cells of two muscle proteins involved in excitation-contraction coupling.

    PubMed

    Takekura, H; Takeshima, H; Nishimura, S; Takahashi, M; Tanabe, T; Flockerzi, V; Hofmann, F; Franzini-Armstrong, C

    1995-10-01

    Ryanodine receptors and dihydropyridine receptors are located opposite each other at the junctions between sarcoplasmic reticulum and either the surface membrane or the transverse tubules in skeletal muscle. Ryanodine receptors are the calcium release channels of the sarcoplasmic reticulum and their cytoplasmic domains form the feet, connecting sarcoplasmic reticulum to transverse tubules. Dihydropyridine receptors are L-type calcium channels that act as the voltage sensors of excitation-contraction coupling: they sense surface membrane and transverse tubule depolarization and induce opening of the sarcoplasmic reticulum release channels. In skeletal muscle, ryanodine receptors are arranged in extensive arrays and dihydropyridine receptors are grouped into tetrads, which in turn are associated with the four subunits of ryanodine receptors. The disposition allows for a direct interaction between the two sets of molecules. CHO cells were stably transformed with plasmids for skeletal muscle ryanodine receptors and either the skeletal dihydropyridine receptor, or a skeletal-cardiac dihydropyridine receptor chimera (CSk3) which can functionally substitute for the skeletal dihydropyridine receptor, in addition to plasmids for the alpha 2, beta and gamma subunits. RNA blot hybridization gave positive results for all components. Immunoblots, ryanodine binding, electron microscopy and exposure to caffeine show that the expressed ryanodine receptors forms functional tetrameric channels, which are correctly inserted into the endoplasmic reticulum membrane, and form extensive arrays with the same spacings as in skeletal muscle. Since formation of arrays does not require coexpression of dihydropyridine receptors, we conclude that self-aggregation is an independent property of ryanodine receptors. All dihydropyridine receptor-expressing clones show high affinity binding for dihydropyridine and immunolabelling with antibodies against dihydropyridine receptor. The presence of calcium currents with fast kinetics and immunolabelling for dihydropyridine receptors in the surface membrane of CSk3 clones indicate that CSk3-dihydropyridine receptors are appropriately targeted to the cell's plasmalemma. The expressed skeletal-type dihydropyridine receptors, however, remain mostly located within perinuclear membranes. In cells coexpressing functional dihydropyridine receptors and ryanodine receptors, no junctions between feet-bearing endoplasmic reticulum elements and surface membrane are formed, and dihydropyridine receptors do not assemble into tetrads. A separation between dihydropyridine receptors and ryanodine receptors is not unique to CHO cells, but is found also in cardiac muscle, in muscles of invertebrates and, under certain conditions, in skeletal muscle. We suggest that failure to form junctions in co-transfected CHO cell may be due to lack of an essential protein necessary either for the initial docking of the endoplasmic reticulum to the surface membrane or for maintaining the interaction between dihydropyridine receptors and ryanodine receptors. We also conclude that formation of tetrads requires a close interaction between dihydropyridine receptors and ryanodine receptors.

  11. Beyond sarcopenia: Characterization and integration of skeletal muscle quantity and radiodensity in a curable breast cancer population.

    PubMed

    Weinberg, Marc S; Shachar, Shlomit S; Muss, Hyman B; Deal, Allison M; Popuri, Karteek; Yu, Hyeon; Nyrop, Kirsten A; Alston, Shani M; Williams, Grant R

    2018-05-01

    Skeletal muscle loss, commonly known as sarcopenia, is highly prevalent and prognostic of adverse outcomes in oncology. However, there is limited information on adults with early breast cancer and examination of other skeletal muscle indices, despite the potential prognostic importance. This study characterizes and examines age-related changes in body composition of adults with early breast cancer and describes the creation of a novel integrated muscle measure. Female patients diagnosed with stage I-III breast cancer with abdominal computerized tomography (CT) scans within 12 weeks from diagnosis were identified from local tumor registry (N = 241). Skeletal muscle index (muscle area per height [cm 2 /m 2 ]), skeletal muscle density, and subcutaneous and visceral adipose tissue areas, were determined from CT L3 lumbar segments. We calculated a novel integrated skeletal measure, skeletal muscle gauge, which combines skeletal muscle index and density (SMI × SMD). 241 patients were identified with available CT imaging. Median age 52 years and range of 23-87. Skeletal muscle index and density significantly decreased with age. Using literature based cut-points, older adults (≥65 years) had significantly higher proportions of sarcopenia (63 vs 28%) and myosteatosis (90 vs 11%) compared to younger adults (<50 years). Body mass index was positively correlated with skeletal muscle index and negatively correlated with muscle density. Skeletal muscle gauge correlated better with increasing age (ρ = 0.52) than with either skeletal muscle index (ρ = 0.20) or density (ρ = 0.46). Wide variations and age-related changes in body composition metrics were found using routinely obtained abdominal CT imaging. Skeletal muscle index and density provide independent, complementary information, and the product of the two metrics, skeletal muscle gauge, requires further research to explore its impact on outcomes in women with curable breast cancer. © 2017 Wiley Periodicals, Inc.

  12. Skeletal Benefits of Pre-Menarcheal Gymnastics Are Retained After Activity Cessation

    PubMed Central

    Scerpella, Tamara A.; Dowthwaite, Jodi N.; Gero, Nicole M.; Kanaley, Jill A.; Ploutz-Snyder, Robert J.

    2015-01-01

    Mechanical loading during childhood and adolescence may yield skeletal benefits that persist beyond activity cessation and menarche. At 1 year pre- and 2 years post-menarche, non-dominant forearm areal bone mineral density (aBMD), bone mineral content (BMC) and projected area (area) were compared in gymnasts (n=9), ex-gymnasts (n=8) and non-gymnasts (n=13). At both observations, gymnasts and ex-gymnasts had higher forearm aBMD, BMC and area than non-gymnasts. gymnasts had higher post-menarcheal means than ex-gymnasts for all three parameters. Childhood mechanical loading yields skeletal advantages that persist at least 24 months after loading cessation and menarche. Continued post-menarcheal loading yields additional benefit. PMID:20332537

  13. [Skeletal Mass Depletion Is a Negative Prognostic Factor in Gastrointestinal Cancer Patients in the Terminal Stage].

    PubMed

    Takahashi, Goro; Yamada, Takeshi; Kan, Hayato; Koizumi, Michihiro; Shinji, Seiichi; Yokoyama, Yasuyuki; Iwai, Takuma; Uchida, Eiji

    2015-10-01

    Skeletal mass depletion has been reported to be a prognostic factor for cancer patients. However, special and expensive devices are required to measure skeletal mass, and this is a major reason why skeletal mass is not used extensively for prognostic marker in clinical settings. We developed a new method to measure skeletal mass for use as a prognostic marker using CT images without special and expensive devices. In this study, we evaluated the usefulness of skeletal mass as measured by this new method as a prognostic marker for gastrointestinal cancer patients. Patients who died from gastrointestinal cancer between March 2010 and October 2013 were included. We measured the right-sided maximum psoas muscle cross sectional area (MPCA) by using CT images before surgery and after the patients developed a terminal condition. The maximum psoas muscle cross sectional area ratio (MPCA-R) was defined as follows: MPCA-R=MPCA before surgery/MPCA after developing a terminal condition. We evaluated the correlation between MPCA-R and survival. Fifty-nine patients were included. The median survival was 44 days, and MPCA-R was significantly correlated with survival (p=0.001). On receiver operating characteristic (ROC) analysis, the area under the curve (AUC) to predict 30-day and 90-day survival was 0.710 and 0.748, respectively. MPCA-R is a new and novel prognostic marker for gastrointestinal cancer patients in terminal condition.

  14. Effects of different dietary intake on mRNA levels of MSTN, IGF-I, and IGF-II in the skeletal muscle of Dorper and Hu sheep hybrid F1 rams.

    PubMed

    Xing, H J; Wang, Z Y; Zhong, B S; Ying, S J; Nie, H T; Zhou, Z R; Fan, Y X; Wang, F

    2014-07-24

    MSTN, IGF-І(insulin-like growth factor-І) and IGF-II (insulin-like growth factor-II) regulate skeletal muscle growth. This study investigated the effects of different dietary intake levels on skeletal muscles. Sheep was randomly assigned to 3 feeding groups: 1) the maintenance diet (M), 2) 1.4 x the maintenance diet (1.4M), and 3) 2.15 x the maintenance diet (2.15M). Before slaughtering the animals, blood samples were collected to measure plasma urea, growth hormone, and insulin concentrations. After slaughtering, the longissimus dorsi, semitendinosus, semimembranosus, gastrocnemius, soleus, and chest muscle were removed to record various parameters, including the mRNA expression levels of MSTN and IGFs, in addition to skeletal muscle fiber diameter and cross-sectional area. The result showed that as dietary intake improved, the mRNA expression levels of MSTN and IGF-II decreased, whereas IGF-Іexpression increased. The mRNA expression levels of MSTN and IGFs were significantly different in the same skeletal muscle under different dietary intake. The skeletal muscle fiber diameter and cross-sectional area increased with greater dietary intake, as observed for the mRNA expression of IGF-І; however, it contrasted to that observed for the mRNA expression of MSTN and IGF-II. In conclusion, dietary intake levels have a certain influence on MSTN and IGFs mRNA expression levels, in addition to skeletal muscle fiber diameter and cross-sectional area. This study contributes valuable information for enhancing the molecular-based breeding of sheep.

  15. ER stress and subsequent activated calpain play a pivotal role in skeletal muscle wasting after severe burn injury

    PubMed Central

    Shen, Chuanan; Li, Dawei; Wang, Xiaoteng

    2017-01-01

    Severe burns are typically followed by hypermetabolism characterized by significant muscle wasting, which causes considerable morbidity and mortality. The aim of the present study was to explore the underlying mechanisms of skeletal muscle damage/wasting post-burn. Rats were randomized to the sham, sham+4-phenylbutyrate (4-PBA, a pharmacological chaperone promoting endoplasmic reticulum (ER) folding/trafficking, commonly considered as an inhibitor of ER), burn (30% total body surface area), and burn+4-PBA groups; and sacrificed at 1, 4, 7, 14 days after the burn injury. Tibial anterior muscle was harvested for transmission electron microscopy, calcium imaging, gene expression and protein analysis of ER stress / ubiquitin-proteasome system / autophagy, and calpain activity measurement. The results showed that ER stress markers were increased in the burn group compared with the sham group, especially at post-burn days 4 and 7, which might consequently elevate cytoplasmic calcium concentration, promote calpain production as well as activation, and cause skeletal muscle damage/wasting of TA muscle after severe burn injury. Interestingly, treatment with 4-PBA prevented burn-induced ER swelling and altered protein expression of ER stress markers and calcium release, attenuating calpain activation and skeletal muscle damage/wasting after severe burn injury. Atrogin-1 and LC3-II/LC3-I ratio were also increased in the burn group compared with the sham group, while MuRF-1 remained unchanged; 4-PBA decreased atrogin-1 in the burn group. Taken together, these findings suggested that severe burn injury induces ER stress, which in turns causes calpain activation. ER stress and subsequent activated calpain play a critical role in skeletal muscle damage/wasting in burned rats. PMID:29028830

  16. Build-and-fill sequences: How subtle paleotopography affects 3-D heterogeneity of potential reservoir facies

    USGS Publications Warehouse

    McKirahan, J.R.; Goldstein, R.H.; Franseen, E.K.

    2005-01-01

    This study analyzes the three-dimensional variability of a 20-meter-thick section of Pennsylvanian (Missourian) strata over a 600 km2 area of northeastern Kansas, USA. It hypothesizes that sea-level changes interact with subtle variations in paleotopography to influence the heterogeneity of potential reservoir systems in mixed carbonate-silidclastic systems, commonly produdng build-and-fill sequences. For this analysis, ten lithofacies were identified: (1) phylloid algal boundstone-packstone, (2) skeletal wackestone-packstone, (3) peloidal, skeletal packstone, (4) sandy, skeletal grainstone-packstone, (5) oolite grainstone-packstone, (6) Osagia-brachiopod packstone, (7) fossiliferous siltstone, (8) lenticular bedded-laminated siltstone and fine sandstone, (9) organic-rich mudstone and coal, and (10) massive mudstone. Each facies can be related to depositional environment and base-level changes to develop a sequence stratigraphy consisting of three sequence boundaries and two flooding surfaces. Within this framework, eighteen localities are used to develop a threedimensional framework of the stratigraphy and paleotopography. The studied strata illustrate the model of "build-and-fill". In this example, phylloid algal mounds produce initial relief, and many of the later carbonate and silidclastic deposits are focused into subtle paleotopographic lows, responding to factors related to energy, source, and accommodation, eventually filling the paleotopography. After initial buildup of the phylloid algal mounds, marine and nonmarine siliciclastics, with characteristics of both deltaic lobes and valley fills, were focused into low areas between mounds. After a sea-level rise, oolitic carbonates formed on highs and phylloid algal facies accumulated in lows. A shift in the source direction of siliciclastics resulted from flooding or filling of preexisting paleotopographic lows. Fine-grained silidclastics were concentrated in paleotopographic low areas and resulted in clay-rich phylloid algal carbonates that would have made poor reservoirs. In areas more distant from silidclastic influx, phylloid algal facies with better reservoir potential formed in topographic lows. After another relative fall in sea level, marine carbonates and silidclastics were concentrated in paleotopographic low areas. After the next relative rise in sea level, there is little thickness or fades variation in phylloid algal limestone throughout the study area because: (1) substrate paleotopography had been subdued by filling, and (2) no silidclastics were deposited in the area. Widespread subaerial exposure and erosion during a final relative fall in sea level resulted in redevelopment of variable paleotopography. Build-and-fill sequences, such as these, are well known in other surface and subsurface examples. Initial relief is built by folding or faulting, differential compaction, erosion, or deposition of relief-building facies, such as phylloid algal and carbonate grainstone reservoir fades, or silidclastic wedges. Relief is filled through deposition of reservoir-fades siliciclastics, phylloid algal fades, and grainy carbonates, as well as nonreservoir facies, resulting in complex heterogeneity.

  17. Recognition of microclimate zones through radon mapping, Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico

    USGS Publications Warehouse

    Cunningham, K.I.; LaRock, E.J.

    1991-01-01

    Radon concentrations range from <185 to 3,515 Bq m-3 throughout Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. Concentrations in the entrance passages and areas immediately adjacent to these passages are controlled by outside air temperature and barometric pressure, similar to other Type 2 caves. Most of the cave is developed in three geographic branches beneath the entrance passages; these areas maintain Rn levels independent of surface effects, an indication that Rn levels in deep, complex caves or mines cannot be simply estimated by outside atmospheric parameters. These deeper, more isolated areas are subject to convective ventilation driven by temperature differences along the 477-m vertical extent of the cave. Radon concentrations are used to delineate six microclimate zones (air circulation cells) throughout the cave in conjunction with observed airflow data. Suspected surface connections contribute fresh air to remote cave areas demonstrated by anomalous Rn lows surrounded by higher values, the presence of mammalian skeletal remains, CO2 concentrations and temperatures lower than the cave mean, and associated surficial karst features.

  18. Mapping disease-related missense mutations in the immunoglobulin-like fold domain of lamin A/C reveals novel genotype-phenotype associations for laminopathies.

    PubMed

    Scharner, Juergen; Lu, Hui-Chun; Fraternali, Franca; Ellis, Juliet A; Zammit, Peter S

    2014-06-01

    Mutations in A-type nuclear lamins cause laminopathies. However, genotype-phenotype correlations using the 340 missense mutations within the LMNA gene are unclear: partially due to the limited availability of three-dimensional structure. The immunoglobulin (Ig)-like fold domain has been solved, and using bioinformatics tools (including Polyphen-2, Fold X, Parameter OPtimized Surfaces, and PocketPicker) we characterized 56 missense mutations for position, surface exposure, change in charge and effect on Ig-like fold stability. We find that 21 of the 27 mutations associated with a skeletal muscle phenotype are distributed throughout the Ig-like fold, are nonsurface exposed and predicted to disrupt overall stability of the Ig-like fold domain. Intriguingly, the remaining 6 mutations clustered, had higher surface exposure, and did not affect stability. The majority of 9 lipodystrophy or 10 premature aging syndrome mutations also did not disrupt Ig-like fold domain stability and were surface exposed and clustered in distinct regions that overlap predicted binding pockets. Although buried, the 10 cardiac mutations had no other consistent properties. Finally, most lipodystrophy and premature aging mutations resulted in a -1 net charge change, whereas skeletal muscle mutations caused no consistent net charge changes. Since premature aging, lipodystrophy and the subset of 6 skeletal muscle mutations cluster tightly in distinct, charged regions, they likely affect lamin A/C -protein/DNA/RNA interactions: providing a consistent genotype-phenotype relationship for mutations in this domain. Thus, this subgroup of skeletal muscle laminopathies that we term the 'Skeletal muscle cluster', may have a distinct pathological mechanism. These novel associations refine the ability to predict clinical features caused by certain LMNA missense mutations. © 2013 Wiley Periodicals, Inc.

  19. Bioerosion by euendoliths decreases in phosphate-enriched skeletons of living corals

    NASA Astrophysics Data System (ADS)

    Godinot, C.; Tribollet, A.; Grover, R.; Ferrier-Pagès, C.

    2012-03-01

    While the role of microboring organisms, or euendoliths, is relatively well known in dead coral skeletons, their function in live corals remains poorly understood. They are suggested to behave like ectosymbionts or parasites, impacting their host health. However, the species composition of microboring communities, their abundance and dynamics in live corals under various environmental conditions have never been explored. Here, the effect of phosphate enrichment on boring microorganisms in live corals was tested for the first time. S. pistillata nubbins were exposed to 3 different treatments (phosphate enrichments of 0, 0.5 and 2.5 μmol l-1) during 15 weeks. After 15 weeks of phosphate enrichment, petrographic thin sections were prepared for observation with light microscopy, and additional samples were examined with scanning electron microscopy (SEM). Euendoliths comprised mainly autotrophic Ostreobium sp. filaments. Rare filaments of heterotrophic fungi were also observed. Filaments were densely distributed in the central part of nubbins, and less abundant towards the apex. Unexpectedly, there was a visible reduction of filaments abundance in the most recently-calcified apical part of phosphate-enriched nubbins. The overall abundance of euendoliths significantly decreased, from 9.12 ± 1.09% of the skeletal surface area in unenriched corals, to 5.81 ± 0.77% and 5.27 ± 0.34% in 0.5 and 2.5 μmol l-1-phosphate enriched corals respectively. SEM observations confirmed this decrease. Recent studies have shown that phosphate enrichment increases coral skeletal growth and metabolic rates, while it decreases skeletal density and resilience to mechanical stress. We thus hypothesize that increased skeletal growth in the presence of phosphate enrichment occurred too fast for an effective euendolith colonization. They could not keep up with coral growth, so they became diluted in the apex areas as nubbins grew with phosphate enrichment. The possible advantages and downsides of the reduction of euendoliths associated with phosphate eutrophication in live corals are discussed in this article.

  20. Ground displacements caused by aquifer-system water-level variations observed using interferometric synthetic aperture radar near Albuquerque, New Mexico

    USGS Publications Warehouse

    Heywood, Charles E.; Galloway, Devin L.; Stork, Sylvia V.

    2002-01-01

    Six synthetic aperture radar (SAR) images were processed to form five unwrapped interferometric (InSAR) images of the greater metropolitan area in the Albuquerque Basin. Most interference patterns in the images were caused by range displacements resulting from changes in land-surface elevation. Loci of land- surface elevation changes correlate with changes in aquifer-system water levels and largely result from the elastic response of the aquifer-system skeletal material to changes in pore-fluid pressure. The magnitude of the observed land-surface subsidence and rebound suggests that aquifer-system deformation resulting from ground-water withdrawals in the Albuquerque area has probably remained in the elastic (recoverable) range from July 1993 through September 1999. Evidence of inelastic (permanent) land subsidence in the Rio Rancho area exists, but its relation to compaction of the aquifer system is inconclusive because of insufficient water-level data. Patterns of elastic deformation in both Albuquerque and Rio Rancho suggest that intrabasin faults impede ground- water-pressure diffusion at seasonal time scales and that these faults are probably important in controlling patterns of regional ground-water flow.

  1. Shaping skeletal growth by modular regulatory elements in the Bmp5 gene.

    PubMed

    Guenther, Catherine; Pantalena-Filho, Luiz; Kingsley, David M

    2008-12-01

    Cartilage and bone are formed into a remarkable range of shapes and sizes that underlie many anatomical adaptations to different lifestyles in vertebrates. Although the morphological blueprints for individual cartilage and bony structures must somehow be encoded in the genome, we currently know little about the detailed genomic mechanisms that direct precise growth patterns for particular bones. We have carried out large-scale enhancer surveys to identify the regulatory architecture controlling developmental expression of the mouse Bmp5 gene, which encodes a secreted signaling molecule required for normal morphology of specific skeletal features. Although Bmp5 is expressed in many skeletal precursors, different enhancers control expression in individual bones. Remarkably, we show here that different enhancers also exist for highly restricted spatial subdomains along the surface of individual skeletal structures, including ribs and nasal cartilages. Transgenic, null, and regulatory mutations confirm that these anatomy-specific sequences are sufficient to trigger local changes in skeletal morphology and are required for establishing normal growth rates on separate bone surfaces. Our findings suggest that individual bones are composite structures whose detailed growth patterns are built from many smaller lineage and gene expression domains. Individual enhancers in BMP genes provide a genomic mechanism for controlling precise growth domains in particular cartilages and bones, making it possible to separately regulate skeletal anatomy at highly specific locations in the body.

  2. Exercise training during chemotherapy preserves skeletal muscle fiber area, capillarization, and mitochondrial content in patients with breast cancer.

    PubMed

    Mijwel, Sara; Cardinale, Daniele A; Norrbom, Jessica; Chapman, Mark; Ivarsson, Niklas; Wengström, Yvonne; Sundberg, Carl Johan; Rundqvist, Helene

    2018-05-11

    Exercise has been suggested to ameliorate the detrimental effects of chemotherapy on skeletal muscle. The aim of this study was to compare the effects of different exercise regimens with usual care on skeletal muscle morphology and mitochondrial markers in patients being treated with chemotherapy for breast cancer. Specifically, we compared moderate-intensity aerobic training combined with high-intensity interval training (AT-HIIT) and resistance training combined with high-intensity interval training (RT-HIIT) with usual care (UC). Resting skeletal muscle biopsies were obtained pre- and postintervention from 23 randomly selected women from the OptiTrain breast cancer trial who underwent RT-HIIT, AT-HIIT, or UC for 16 wk. Over the intervention, citrate synthase activity, muscle fiber cross-sectional area, capillaries per fiber, and myosin heavy chain isoform type I were reduced in UC, whereas RT-HIIT and AT-HIIT were able to counteract these declines. AT-HIIT promoted up-regulation of the electron transport chain protein levels vs. UC. RT-HIIT favored satellite cell count vs. UC and AT-HIIT. There was a significant association between change in citrate synthase activity and self-reported fatigue. AT-HIIT and RT-HIIT maintained or improved markers of skeletal muscle function compared with the declines found in the UC group, indicating a sustained trainability in addition to the preservation of skeletal muscle structural and metabolic characteristics during chemotherapy. These findings highlight the importance of supervised exercise programs for patients with breast cancer during chemotherapy.-Mijwel, S., Cardinale, D. A., Norrbom, J., Chapman, M., Ivarsson, N., Wengström, Y., Sundberg, C. J., Rundqvist, H. Exercise training during chemotherapy preserves skeletal muscle fiber area, capillarization, and mitochondrial content in patients with breast cancer.

  3. Soft, hard-tissues and pharyngeal airway volume changes following maxillomandibular transverse osteodistraction: Computed tomography and three-dimensional laser scanner evaluation.

    PubMed

    Bianchi, Francesca Antonella; Gerbino, Giovanni; Corsico, Marina; Schellino, Eleonora; Barla, Niccolò; Verzè, Laura; Ramieri, Guglielmo

    2017-01-01

    Maxillomandibular transverse osteodistraction (MMTOD) is an alternative approach to the traditional treatment for transverse maxillary and mandibular deficiencies and crowding. The aim was to report soft and hard-tissues changes and airway volume variation. In this study, skeletally mature, non-syndromic patients with transverse maxillary and mandibular hypoplasia, who underwent a MMTOD between 2010 and 2012, were included. Surgical changes were analysed using clinical evaluation, three-dimensional facial surface data and computed tomography analysis before (T0) and after the completion of post-op orthodontic treatment (T1). Nineteen patients (eight males and eleven females; average age: 26.3 years) were enrolled. MMTOD produces facial changes in the cheek, paranasal areas, nasal base and chin. Facial changes are mostly explained by the underlying skeletal movements, which are essentially represented by the transverse enlargement of both the maxilla and the mandible. Following MMTOD, the airway volume and the lateral dimension of the cross-sectional airway increased significantly. MMTOD is a technique that allows an increase in airway volume and in both maxillary and mandibular arch perimeters simultaneously by increasing skeletal width. Facial appearance is improved and a stable occlusion is obtained. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Functional analysis of the musculo-skeletal system of the gill apparatus in Heptranchias perlo (Chondrichthyes: Hexanchidae).

    PubMed

    Kryukova, Nadezhda V

    2017-08-01

    Musculo-skeletal morphology is an indispensable source for understanding functional adaptations. Analysis of morphology of the branchial apparatus of Hexanchiform sharks can provide insight into aspects of their respiration that are difficult to observe directly. In this study, I compare the structure of the musculo-skeletal system of the gill apparatus of Heptranchias perlo and Squalus acanthias in respect to their adaptation for one of two respiratory mechanisms known in sharks, namely, the active two-pump (oropharyngeal and parabranchial) ventilation and the ram-jet ventilation. In both species, the oropharyngeal pump possesses two sets of muscles, one for compression and the other for expansion. The parabranchial pump only has constrictors. Expansion of this pump occurs only due to passive elastic recoil of the extrabranchial cartilages. In Squalus acanthias the parabranchial chambers are large and equipped by powerful superficial constrictors. These muscles and the outer walls of the parabranchial chambers are much reduced in Heptranchias perlo, and thus it likely cannot use this pump. However, this reduction allows for vertical elongation of outer gill slits which, along with greater number of gill pouches, likely decreases branchial resistance and, at the same time, increases the gill surface area, and can be regarded as an adaptation for ram ventilation at lower speeds. © 2017 Wiley Periodicals, Inc.

  5. Assessment of the Contractile Properties of Permeabilized Skeletal Muscle Fibers.

    PubMed

    Claflin, Dennis R; Roche, Stuart M; Gumucio, Jonathan P; Mendias, Christopher L; Brooks, Susan V

    2016-01-01

    Permeabilized individual skeletal muscle fibers offer the opportunity to evaluate contractile behavior in a system that is greatly simplified, yet physiologically relevant. Here we describe the steps required to prepare, permeabilize and preserve small samples of skeletal muscle. We then detail the procedures used to isolate individual fiber segments and attach them to an experimental apparatus for the purpose of controlling activation and measuring force generation. We also describe our technique for estimating the cross-sectional area of fiber segments. The area measurement is necessary for normalizing the absolute force to obtain specific force, a measure of the intrinsic force-generating capability of the contractile system.

  6. Renal function alterations during skeletal muscle disuse in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Tucker, Bryan J.

    1992-01-01

    This project was to examine the alterations in renal functions during skeletal muscle disuse in simulated microgravity. Although this area could cover a wide range of investigative efforts, the limited funding resulted in the selection of two projects. These projects would result in data contributing to an area of research deemed high priority by NASA and would address issues of the alterations in renal response to vasoactive stimuli during conditions of skeletal muscle disuse as well as investigate the contribution of skeletal muscle disuse, conditions normally found in long term human exposure to microgravity, to the balance of fluid and macromolecules within the vasculature versus the interstitium. These two projects selected are as follows: investigate the role of angiotensin 2 on renal function during periods of simulated microgravity and skeletal muscle disuse to determine if the renal response is altered to changes in circulating concentrations of angiotensin 2 compared to appropriate controls; and determine if the shift of fluid balance from vasculature to the interstitium, the two components of extracellular fluid volume, that occur during prolonged exposure to microgravity and skeletal muscle disuse is a result, in part, to alterations in the fluid and macromolecular balance in the peripheral capillary beds, of which the skeletal muscle contains the majority of recruitment capillaries. A recruitment capillary bed would be most sensitive to alterations in Starling forces and fluid and macromolecular permeability.

  7. Skeletal stem cell and bone implant interactions are enhanced by LASER titanium modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisti, Karin E., E-mail: karinellensisti@gmail.com; Biomaterials Group, Institute of Chemistry, São Paulo State University; Federal University of Mato Grosso do Sul

    Purpose: To evaluate the osteo-regenerative potential of Titanium (Ti) modified by Light Amplification by Stimulated Emission of Radiation (LASER) beam (Yb-YAG) upon culture with human Skeletal Stem Cells (hSSCs{sup 1}). Methods: Human skeletal cell populations were isolated from the bone marrow of haematologically normal patients undergoing primary total hip replacement following appropriate consent. STRO-1{sup +} hSSC{sup 1} function was examined for 10 days across four groups using Ti discs: i) machined Ti surface group in basal media (Mb{sup 2}), ii) machined Ti surface group in osteogenic media (Mo{sup 3}), iii) LASER-modified Ti group in basal media (Lb{sup 4}) and, iv)more » LASER-modified Ti group in osteogenic media (Lo{sup 5}). Molecular analysis and qRT-PCR as well as functional analysis including biochemistry (DNA, Alkaline Phosphatase (ALP{sup 6}) specific activity), live/dead immunostaining (Cell Tracker Green (CTG{sup 7})/Ethidium Homodimer-1 (EH-1{sup 8})), and fluorescence staining (for vinculin and phalloidin) were undertaken. Inverted, confocal and Scanning Electron Microscopy (SEM) approaches were used to characterise cell adherence, proliferation, and phenotype. Results: Enhanced cell spreading and morphological rearrangement, including focal adhesions were observed following culture of hSSCs{sup 1} on LASER surfaces in both basal and osteogenic conditions. Biochemical analysis demonstrated enhanced ALP{sup 6} specific activity on the hSSCs{sup 1}-seeded on LASER-modified surface in basal culture media. Molecular analysis demonstrated enhanced ALP{sup 6} and osteopontin expression on titanium LASER treated surfaces in basal conditions. SEM, inverted microscopy and confocal laser scanning microscopy confirmed extensive proliferation and migration of human bone marrow stromal cells on all surfaces evaluated. Conclusions: LASER-modified Ti surfaces modify the behaviour of hSSCs.{sup 1} In particular, SSC{sup 1} adhesion, osteogenic gene expression, cell morphology and cytoskeleton structure were affected. The current studies show Ti LASER modification can enhance the osseointegration between Ti and skeletal cells, with important implications for orthopaedic application. - Highlights: • Bone stem cells on LASER Ti surface display enhanced cell growth and viability. • Bone stem cells on LASER Ti surface exhibit marked biocompatibility. • Human bone stem cells on LASER Ti surface exhibit altered morphology. • LASER Ti enhance osteogenic differentiation of human bone skeletal stem cells. • LASER Ti provides a unique approach to enhance osseointegration with the material.« less

  8. Catalyst support of mixed cerium zirconium titanium oxide, including use and method of making

    DOEpatents

    Willigan, Rhonda R [Manchester, CT; Vanderspurt, Thomas Henry [Glastonbury, CT; Tulyani, Sonia [Manchester, CT; Radhakrishnan, Rakesh [Vernon, CT; Opalka, Susanne Marie [Glastonbury, CT; Emerson, Sean C [Broad Brook, CT

    2011-01-18

    A durable catalyst support/catalyst is capable of extended water gas shift operation under conditions of high temperature, pressure, and sulfur levels. The support is a homogeneous, nanocrystalline, mixed metal oxide of at least three metals, the first being cerium, the second being Zr, and/or Hf, and the third importantly being Ti, the three metals comprising at least 80% of the metal constituents of the mixed metal oxide and the Ti being present in a range of 5% to 45% by metals-only atomic percent of the mixed metal oxide. The mixed metal oxide has an average crystallite size less than 6 nm and forms a skeletal structure with pores whose diameters are in the range of 4-9 nm and normally greater than the average crystallite size. The surface area of the skeletal structure per volume of the material of the structure is greater than about 240 m.sup.2/cm.sup.3. The method of making and use are also described.

  9. Resistance Training Enhances Skeletal Muscle Innervation Without Modifying the Number of Satellite Cells or their Myofiber Association in Obese Older Adults

    PubMed Central

    Messi, María Laura; Li, Tao; Wang, Zhong-Min; Marsh, Anthony P.; Nicklas, Barbara

    2016-01-01

    Studies in humans and animal models provide compelling evidence for age-related skeletal muscle denervation, which may contribute to muscle fiber atrophy and loss. Skeletal muscle denervation seems relentless; however, long-term, high-intensity physical activity appears to promote muscle reinnervation. Whether 5-month resistance training (RT) enhances skeletal muscle innervation in obese older adults is unknown. This study found that neural cell-adhesion molecule, NCAM+ muscle area decreased with RT and was inversely correlated with muscle strength. NCAM1 and RUNX1 gene transcripts significantly decreased with the intervention. Type I and type II fiber grouping in the vastus lateralis did not change significantly but increases in leg press and knee extensor strength inversely correlated with type I, but not with type II, fiber grouping. RT did not modify the total number of satellite cells, their number per area, or the number associated with specific fiber subtypes or innervated/denervated fibers. Our results suggest that RT has a beneficial impact on skeletal innervation, even when started late in life by sedentary obese older adults. PMID:26447161

  10. A comparative study of the skeletal morphology of the temporo-mandibular joint of children and adults.

    PubMed

    Meng, F; Liu, Y; Hu, K; Zhao, Y; Kong, L; Zhou, S

    2008-01-01

    The skeletal morphology of the temporo-mandibular joint (TMJ) is constantly remodeled. A comparative study was undertaken to determine and characterize the differences in the skeletal morphology of TMJ of children and adults. The study was conducted on 30 children cadavers and 30 adult volunteers. Parameters that could reflect TMJ skeletal morphology were measured with a new technology combining helical computed tomography (CT) scan with multi-planar reformation (MPR) imaging. Significant differences between children cadavers and adults were found in the following parameters (P<0.05): Condylar axis inclination, smallest area of condylar neck/largest area of condylar process, inclination of anterior slope in inner, middle, and outer one-third of condyle, anteroposterior/mediolateral dimension of condyle, length of anterior slope/posterior slope in inner and middle one-third of condyle, anteroposterior dimension of condyle/glenoid fossa, mediolateral dimension of condyle/glenoid fossa, inclination of anterior slope of glenoid fossa, depth of glenoid fossa, and anteroposterior/mediolateral dimension of glenoid fossa. There are significant differences of TMJ skeletal morphology between children and adults.

  11. An image-based skeletal dosimetry model for the ICRP reference adult female—internal electron sources

    NASA Astrophysics Data System (ADS)

    O'Reilly, Shannon E.; DeWeese, Lindsay S.; Maynard, Matthew R.; Rajon, Didier A.; Wayson, Michael B.; Marshall, Emily L.; Bolch, Wesley E.

    2016-12-01

    An image-based skeletal dosimetry model for internal electron sources was created for the ICRP-defined reference adult female. Many previous skeletal dosimetry models, which are still employed in commonly used internal dosimetry software, do not properly account for electron escape from trabecular spongiosa, electron cross-fire from cortical bone, and the impact of marrow cellularity on active marrow self-irradiation. Furthermore, these existing models do not employ the current ICRP definition of a 50 µm bone endosteum (or shallow marrow). Each of these limitations was addressed in the present study. Electron transport was completed to determine specific absorbed fractions to both active and shallow marrow of the skeletal regions of the University of Florida reference adult female. The skeletal macrostructure and microstructure were modeled separately. The bone macrostructure was based on the whole-body hybrid computational phantom of the UF series of reference models, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 years-old female cadaver. The active and shallow marrow are typically adopted as surrogate tissue regions for the hematopoietic stem cells and osteoprogenitor cells, respectively. Source tissues included active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume, and cortical bone surfaces. Marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. All other sources were run at the defined ICRP Publication 70 cellularity for each bone site. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or analytically modeled. The method of combining skeletal macrostructure and microstructure absorbed fractions assessed using MCNPX electron transport was found to yield results similar to those determined with the PIRT model applied to the UF adult male skeletal dosimetry model. Calculated skeletal averaged absorbed fractions for each source-target combination were found to follow similar trends of more recent dosimetry models (image-based models) but did not follow results from skeletal models based upon assumptions of an infinite expanse of trabecular spongiosa.

  12. Vibrations At Surfaces During Heterogeneous Catalytic Reactions

    NASA Astrophysics Data System (ADS)

    Aragno, A.; Basini, Luca; Marchionna, M.; Raffaelli, A.

    1989-12-01

    FTIR spectroscopies can be used in a wide range of temperature and pressure conditions to investigate on the chemistry and the physics of heterogeneous catalytic reactions. In this paper we have shortly discussed the spectroscopic results obtained during the study of two different reactions; the skeletal isomerization of 1-butene to obtain 2-methylpropene and the surface aggregation and fragmentation of rhodium carbonyl complexes during thermal treatments in N2, H2, CO, CH4 atmospheres. In the first case high temperature proton tran-sfer reactions are proposed to be responsible for the skeletal isomerization reaction. In the second case our experiments have shown a partial reversibility of the nucleation processes at the surfaces and revealed a low temperature reactivity of methane on rhodium car-bonyl surface complexes.

  13. The geometrical precision of virtual bone models derived from clinical computed tomography data for forensic anthropology.

    PubMed

    Colman, Kerri L; Dobbe, Johannes G G; Stull, Kyra E; Ruijter, Jan M; Oostra, Roelof-Jan; van Rijn, Rick R; van der Merwe, Alie E; de Boer, Hans H; Streekstra, Geert J

    2017-07-01

    Almost all European countries lack contemporary skeletal collections for the development and validation of forensic anthropological methods. Furthermore, legal, ethical and practical considerations hinder the development of skeletal collections. A virtual skeletal database derived from clinical computed tomography (CT) scans provides a potential solution. However, clinical CT scans are typically generated with varying settings. This study investigates the effects of image segmentation and varying imaging conditions on the precision of virtual modelled pelves. An adult human cadaver was scanned using varying imaging conditions, such as scanner type and standard patient scanning protocol, slice thickness and exposure level. The pelvis was segmented from the various CT images resulting in virtually modelled pelves. The precision of the virtual modelling was determined per polygon mesh point. The fraction of mesh points resulting in point-to-point distance variations of 2 mm or less (95% confidence interval (CI)) was reported. Colour mapping was used to visualise modelling variability. At almost all (>97%) locations across the pelvis, the point-to-point distance variation is less than 2 mm (CI = 95%). In >91% of the locations, the point-to-point distance variation was less than 1 mm (CI = 95%). This indicates that the geometric variability of the virtual pelvis as a result of segmentation and imaging conditions rarely exceeds the generally accepted linear error of 2 mm. Colour mapping shows that areas with large variability are predominantly joint surfaces. Therefore, results indicate that segmented bone elements from patient-derived CT scans are a sufficiently precise source for creating a virtual skeletal database.

  14. Association of visceral fat area with abdominal skeletal muscle distribution in overweight Japanese adults.

    PubMed

    Tanaka, Noriko I; Murakami, Haruka; Ohmori, Yumi; Aiba, Naomi; Morita, Akemi; Watanabe, Shaw; Miyachi, Motohiko

    2016-07-20

    Quantitative evaluation of visceral fat mass and skeletal muscle mass is important for health promotion. Recently, some studies suggested the existence of adipocyte-myocyte negative crosstalk. If so, abdominal skeletal muscles may easily and negatively affected not only by the age but also the visceral fat because age-related reduction in abdominal region is greater compared with limbs. We cross-sectionally examined the existence of quantitative associations between visceral fat area and abdominal skeletal muscle distribution in overweight people. A total of 230 Japanese males and females who aged 40-64 years and whose body mass index (BMI) was 28.0-44.8kg/m 2 participated in this study. The cross-sectional area (CSA) of the visceral fat, subcutaneous fat, and abdominal skeletal muscles, namely, the rectus abdominis, abdominal oblique, erector spinae, and iliopsoas muscles were measured by the computed tomography images. Stepwise regression analyses revealed the existence of sex difference in the relation between visceral fat CSA and other morphological variables. In males, BMI was a positive, and the iliopsoas muscle group CSA was a negative contributor of the visceral fat CSA. In females, both age and BMI were selected as positive contributors. These data suggested that the visceral fat CSA may negatively associated with iliopsoas muscle group CSA in males. In females, the visceral fat CSA was not significantly related to the distribution of the abdominal skeletal muscle groups. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  15. Prevalence of skeletal fluorosis in fisherman from Kutch coast, Gujarat, India.

    PubMed

    John, Jacob; Hariharan, Madhu; Remy, Vimal; Haleem, Shaista; Thajuraj, Pathinettam Kandathil; Deepak, Baby; Rajeev, Kundaningattu Govindan; Devang Divakar, Darshan

    2015-01-01

    In health terms, consuming fluoride is well recognised to be a double-edged sword. Consumption of optimal amounts is beneficial to health, however an excess constitutes a health hazard. To assess the prevalence of skeletal fluorosis in fishermen from the Kutch coast, Gujarat, India. A descriptive cross-sectional survey was conducted on 653 fishermen from the Kutch District, Gujarat, India, from October 2014 to December 2014. Clinical skeletal fluorosis was assessed using three diagnostic tests. Drinking water fluoride concentrations in different regions of the study area were determined. General information regarding age, gender and adverse habits were also collected. The Chi square test was used for comparisons and the confidence level and critical p-value were set at 95% and 5% respectively. Fluoride concentrations in water from the study area ranged between 3.4-6.9 ppm. The prevalence of skeletal fluorosis was 30.3%, out of which, the majority of the subjects had mild skeletal fluorosis (18.4%). This condition was found to be significantly associated with age and gender along with tobacco and alcohol consumption; depending on the habit's duration. Being a public health problem in the fishermen community, skeletal fluorosis requires a-priori attention. Measures for preventing this disease should be undertaken on a communitywide basis.

  16. Overload-mediated skeletal muscle hypertrophy is not impaired by loss of myofiber STAT3.

    PubMed

    Pérez-Schindler, Joaquín; Esparza, Mary C; McKendry, James; Breen, Leigh; Philp, Andrew; Schenk, Simon

    2017-09-01

    Although the signal pathways mediating muscle protein synthesis and degradation are well characterized, the transcriptional processes modulating skeletal muscle mass and adaptive growth are poorly understood. Recently, studies in mouse models of muscle wasting or acutely exercised human muscle have suggested a potential role for the transcription factor signal transducer and activator of transcription 3 (STAT3), in adaptive growth. Hence, in the present study we sought to define the contribution of STAT3 to skeletal muscle adaptive growth. In contrast to previous work, two different resistance exercise protocols did not change STAT3 phosphorylation in human skeletal muscle. To directly address the role of STAT3 in load-induced (i.e., adaptive) growth, we studied the anabolic effects of 14 days of synergist ablation (SA) in skeletal muscle-specific STAT3 knockout (mKO) mice and their floxed, wild-type (WT) littermates. Plantaris muscle weight and fiber area in the nonoperated leg (control; CON) was comparable between genotypes. As expected, SA significantly increased plantaris weight, muscle fiber cross-sectional area, and anabolic signaling in WT mice, although interestingly, this induction was not impaired in STAT3 mKO mice. Collectively, these data demonstrate that STAT3 is not required for overload-mediated hypertrophy in mouse skeletal muscle. Copyright © 2017 the American Physiological Society.

  17. Lemonade from lemons: the taphonomic effect of lawn mowers on skeletal remains.

    PubMed

    Martin, D C; Dabbs, Gretchen R; Roberts, Lindsey G

    2013-09-01

    This study provides a descriptive analysis of the taphonomic changes produced by passing over skeletonized remains (n = 4, Sus scrofa) with three common lawn mowers. Two skeletons were mowed over with a riding lawn mower set at multiple blade heights (10.16, 7.62, 5.08 cm) and one each with a rotary mower (9.53, 6.35 cm) and a mulching mower (6.35 cm). Results show that different types of common lawn mowers will produce different patterns of bone dispersal and fragmentation rates. Overall, skeletal elements projecting upward from the surface frequently exhibited a sheared morphology characterized by a smooth, flat, cut surface (7.0-7.6% of elements). The push mowers yielded a higher frequency of undamaged bone than the riding mower (54.8-61.2% vs. 17.7%), and the riding mower created more catastrophic damage to skeletal elements. Additionally, each mower produced a distinct dispersal pattern of skeletal fragments. The dispersal patterns have been identified as "bull's-eye" (riding), circular (mulching), and discontinuous rectangle (rotary). © 2013 American Academy of Forensic Sciences.

  18. Stratigraphic evolution of the Late Jurassic Hanifa Formation along the Tuwaiq Escarpment, Saudi Arabia: Evidence for a carbonate ramp system

    NASA Astrophysics Data System (ADS)

    Fallatah, Mohammed I.; Kerans, Charles

    2018-01-01

    A sequence stratigraphic framework of the Late Jurassic (Oxfordian) Hanifa Formation at its exposure in Central Arabia is presented for the first time. This study offers the first high-resolution stratigraphic framework of the Hanifa along the Tuwaiq Escarpment by measuring 15 sections ( 770 m total thickness) over an oblique-to-dip distance of 260 km and collecting 295 samples for petrographic analysis. On the basis of these data, the Hanifa Formation can be subdivided into eight facies; 1) tabular cross-bedded quartz-peloidal-skeletal grainstone, 2) cross-bedded skeletal-peloidal grainstone, 3) bioturbated foraminiferal wackestone/mud-dominated packstone, 4) oncolitic rudstone, 5) stromatoporoid-coral biostrome/bioherm, 6) peloidal/composite-grain grain-dominated packstone/grainstone, 7) bioturbated spiculitic wackestone/mud-dominated packstone, and 8) thinly-bedded argillaceous mudstone/wackestone. The vertical and lateral distributions of these facies along the exposure define their sequence setting using the principals of sequence stratigraphy. By recognizing erosional surfaces, facies offset, and changes in facies proportions, five third-order sequences, with an average duration of 1.1 Myr, are interpreted for the Hanifa Formation. The correlation of the sequences across the study area shows that only four sequences are preserved in the north where shallow-water deposits are well-developed. Facies trends within these sequences are further illustrated in depositional models representing the highstand systems tracts (HST) and the transgressive systems tracts (TST) of the Hanifa Formation. These proposed models represent depositional settings of a carbonate ramp with normal open-marine conditions. The HST depositional model is characterized by a high-energy shoreline and depicts the presence of an offshore, structurally controlled skeletal-peloidal shoal body described here for the first time at the Hanifa exposure in the Hozwa area. This work provides a predictive framework and outcrop analog for applications in hydrocarbon exploration and development. Furthermore, a basinal setting predicted to the south of the study area is a potential site for unconventional plays.

  19. Deletion of the Rab GAP Tbc1d1 modifies glucose, lipid, and energy homeostasis in mice.

    PubMed

    Hargett, Stefan R; Walker, Natalie N; Hussain, Syed S; Hoehn, Kyle L; Keller, Susanna R

    2015-08-01

    Tbc1d1 is a Rab GTPase-activating protein (GAP) implicated in regulating intracellular retention and cell surface localization of the glucose transporter GLUT4 and thus glucose uptake in a phosphorylation-dependent manner. Tbc1d1 is most abundant in skeletal muscle but is expressed at varying levels among different skeletal muscles. Previous studies with male Tbc1d1-deficient (Tbc1d1(-/-)) mice on standard and high-fat diets established a role for Tbc1d1 in glucose, lipid, and energy homeostasis. Here we describe similar, but also additional abnormalities in male and female Tbc1d1(-/-) mice. We corroborate that Tbc1d1 loss leads to skeletal muscle-specific and skeletal muscle type-dependent abnormalities in GLUT4 expression and glucose uptake in female and male mice. Using subcellular fractionation, we show that Tbc1d1 controls basal intracellular GLUT4 retention in large skeletal muscles. However, cell surface labeling of extensor digitorum longus muscle indicates that Tbc1d1 does not regulate basal GLUT4 cell surface exposure as previously suggested. Consistent with earlier observations, female and male Tbc1d1(-/-) mice demonstrate increased energy expenditure and skeletal muscle fatty acid oxidation. Interestingly, we observe sex-dependent differences in in vivo phenotypes. Female, but not male, Tbc1d1(-/-) mice have decreased body weight and impaired glucose and insulin tolerance, but only male Tbc1d1(-/-) mice show increased lipid clearance after oil gavage. We surmise that similar changes at the tissue level cause differences in whole-body metabolism between male and female Tbc1d1(-/-) mice and between male Tbc1d1(-/-) mice in different studies due to variations in body composition and nutrient handling. Copyright © 2015 the American Physiological Society.

  20. A Study on Generic Representation of Skeletal Remains Replication of Prehistoric Burial

    NASA Astrophysics Data System (ADS)

    Shao, C.-W.; Chiu, H.-L.; Chang, S.-K.

    2015-08-01

    Generic representation of skeletal remains from burials consists of three dimensions which include physical anthropologists, replication technicians, and promotional educators. For the reason that archaeological excavation is irreversible and disruptive, detail documentation and replication technologies are surely needed for many purposes. Unearthed bones during the process of 3D digital scanning need to go through reverse procedure, 3D scanning, digital model superimposition, rapid prototyping, mould making, and the integrated errors generated from the presentation of colours and textures are important issues for the presentation of replicate skeleton remains among professional decisions conducted by physical anthropologists, subjective determination of makers, and the expectations of viewers. This study presents several cases and examines current issues on display and replication technologies for human skeletal remains of prehistoric burials. This study documented detail colour changes of human skeleton over time for the reference of reproduction. The tolerance errors of quantification and required technical qualification is acquired according to the precision of 3D scanning, the specification requirement of rapid prototyping machine, and the mould making process should following the professional requirement for physical anthropological study. Additionally, the colorimeter is adopted to record and analyse the "colour change" of the human skeletal remains from wet to dry condition. Then, the "colure change" is used to evaluate the "real" surface texture and colour presentation of human skeletal remains, and to limit the artistic presentation among the human skeletal remains reproduction. The"Lingdao man No.1", is a well preserved burial of early Neolithic period (8300 B.P.) excavated from Liangdao-Daowei site, Matsu, Taiwan , as the replicating object for this study. In this study, we examined the reproduction procedures step by step for ensuring the surface texture and colour of the replica matches the real human skeletal remains when discovered. The "colour change" of the skeleton documented and quantified in this study could be the reference for the future study and educational exhibition of human skeletal remain reproduction.

  1. Pharyngeal airway effects of Herbst and skeletal anchored Forsus FRD EZ appliances.

    PubMed

    Celikoglu, Mevlut; Buyuk, Suleyman Kutalmis; Ekizer, Abdullah; Unal, Tuba

    2016-11-01

    To evaluate the skeletal and pharyngeal airway effects of skeletal anchored Forsus FRD EZ appliance using bilateral miniplates inserted on mandibular symphyses and to compare the findings with a well matched control group treated using a Herbst appliance. Thirty patients with skeletal Class II malocclusion due to mandibular retrusion were divided into two groups. Group 1 consisted of 15 patients (8 females and 7 males; mean age: 13.11 ± 1.29 years) treated using the Herbst appliance and Group 2 consisted of 15 patients (9 females and 7 males; 12.84 ± 1.27 years) treated using the skeletal anchored Forsus FRD EZ appliance. Treatment changes were assessed by means of linear, angular, and area measurements. The groups were well matched regarding to the chronological ages, gender distribution and initial cephalometric values (P > 0.05). In both groups, skeletal Class II malocclusion was corrected by decrease in SNA and increase in SNB, Co-Gn, VRL-B and VRL-Pog measurements. Those changes caused a significant correction in the maxillo-mandibular relationship. Upper and lower pharyngeal airway dimensions were increased in both group, while the increase in the lower pharyngeal dimension was found to be statistically significant in the skeletal anchored Forsus FRD EZ group (P < 0.05). Oropharyngeal area measurements significantly increased in both groups (P < 0.001 and P < 0.01, respectively). Comparison of the groups showed that both groups had similar changes with no statistically significant differences (P > 0.05). Skeletal changes produced by both appliances caused significant pharyngeal airway changes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Differences in skeletal muscle loss caused by cytotoxic chemotherapy and molecular targeted therapy in patients with advanced non‐small cell lung cancer

    PubMed Central

    Tsuruoka, Hazime; Morikawa, Kei; Furuya, Naoki; Inoue, Takeo; Miyazawa, Teruomi; Mineshita, Masamichi

    2017-01-01

    Background Recent studies have revealed a reduction in the skeletal muscle area in patients with advanced non‐small cell lung cancer (NSCLC) after chemotherapy. EGFR and ALK tyrosine kinase inhibitor (TKI)‐based therapies are less cytotoxic than chemotherapy, but differences in skeletal muscle mass between patients receiving EGFR and ALK TKI therapies and patients receiving cytotoxic chemotherapy have not yet been reported. Methods Data of pathologically proven NSCLC patients were reviewed, and chest computed tomography and/or positron emission tomography‐computed tomography images obtained from January 2012 to December 2014 were selected. Patients were divided into two groups: cytotoxic chemotherapy (CG) and molecular targeted (MG). Muscle mass was measured with a single cross‐sectional area of the muscle at the third lumber vertebra (L3MA). To estimate skeletal muscle changes during chemotherapy, we defined the following L3 skeletal muscle index (L3SMI) ratio: post L3SMI/pre L3SMI. Differences in the SMI ratio between the groups were evaluated using the Wilcoxon signed‐rank test. Results Sixty‐five patients were included in this study: 44 patients received cytotoxic chemotherapy and 21 received molecular targeted therapy (EGFR and ALK TKI). The loss of L3MA in the CG was higher than in the MG (P = 0.03). In the CG, the L3SMI ratio defined to evaluate skeletal muscle mass changes was significantly lower than in the MG (P = 0.0188). Conclusion Our results suggest that skeletal muscle loss during first‐line therapy was significantly different between patients receiving cytotoxic chemotherapy and those receiving TKIs. Specifically, skeletal muscle loss was lower in patients receiving TKIs than in patients receiving cytotoxic chemotherapy. PMID:29067769

  3. Effects of early sea-floor processes on the taphonomy of temperate shelf skeletal carbonate deposits

    NASA Astrophysics Data System (ADS)

    Smith, Abigail M.; Nelson, Campbell S.

    2003-10-01

    Cool-water shelf carbonates differ from tropical carbonates in their sources, modes, and rates of deposition, geochemistry, and diagenesis. Inorganic precipitation, marine cementation, and sediment accumulation rates are absent or slow in cool waters, so that temperate carbonates remain longer at or near the sea bed. Early sea-floor processes, occurring between biogenic calcification and ultimate deposition, thus take on an important role, and there is the potential for considerable taphonomic loss of skeletal information into the fossilised record of cool-water carbonate deposits. The physical breakdown processes of dissociation, breakage, and abrasion are mediated mainly by hydraulic regime, and are always destructive. Impact damage reduces the size of grains, removes structure and therefore information, and ultimately may transform skeletal material into anonymous particles. Abrasion is highly selective amongst and within taxa, their skeletal form and structure strongly influencing resistance to mechanical breakdown. Dissolution and precipitation are the end-members of a two-way chemical equilibrium operating in sea water. In cool waters, inorganic precipitation is rare. There is conflicting opinion about the importance of diagenetic dissolution of carbonate skeletons on the temperate sea floor, but test maceration and early loss of aragonite in particular are reported. Dissolution may relate to undersaturated acidic pore waters generated locally by a combination of microbial metabolisation of organic matter, strong bioturbation, and oxidation of solid phase sulphides immediately beneath the sea floor in otherwise very slowly accumulating skeletal deposits. Laboratory experiments demonstrate that surface-to-volume ratio and skeletal mineralogy are both important in determining skeletal resistance to dissolution. Biological processes on the sea floor include encrustation and bioerosion. Encrustation, a constructive process, may be periodic or seasonal, and can be reversed. It produces both information and material. Bioerosion, in contrast, is destructive and permanent. In temperate areas bioerosion may destroy even very large shells during their long residence at the sea floor, on the order of hundreds to thousands of years. Overall, processes on the temperate sea floor may combine to destroy more carbonate than they produce, and the preservation potential of temperate shelf carbonate into the rock record may be significantly affected. Where preservation does occur in such a destructive regime, the effects of early sea-floor processes will be key determinants of the deposit, resulting in a "taphofacies" characteristic of temperate shelf carbonate sediments.

  4. Effects of exercise training on brain-derived neurotrophic factor in skeletal muscle and heart of rats post myocardial infarction.

    PubMed

    Lee, Heow Won; Ahmad, Monir; Wang, Hong-Wei; Leenen, Frans H H

    2017-03-01

    What is the central question of this study? Exercise training increases brain-derived neurotrophic factor (BDNF) in the hippocampus, which depends on a myokine, fibronectin type III domain-containing protein 5 (FNDC5). Whether exercise training after myocardial infarction induces parallel increases in FNDC5 and BDNF expression in skeletal muscle and the heart has not yet been studied. What is the main finding and its importance? Exercise training after myocardial infarction increases BDNF protein in skeletal muscle and the non-infarct area of the LV without changes in FNDC5 protein, suggesting that BDNF is not regulated by FNDC5 in skeletal muscle and heart. An increase in cardiac BDNF may contribute to the improvement of cardiac function by exercise training. Exercise training after myocardial infarction (MI) attenuates progressive left ventricular (LV) remodelling and dysfunction, but the peripheral stimuli induced by exercise that trigger these beneficial effects are still unclear. We investigated as possible mediators fibronectin type III domain-containing protein 5 (FNDC5) and brain-derived neurotrophic factor (BDNF) in the skeletal muscle and heart. Male Wistar rats underwent either sham surgery or ligation of the left descending coronary artery, and surviving MI rats were allocated to either a sedentary (Sed-MI) or an exercise group (ExT-MI). Exercise training was done for 4 weeks on a motor-driven treadmill. At the end, LV function was evaluated, and FNDC5 and BDNF mRNA and protein were assessed in soleus muscle, quadriceps and non-, peri- and infarct areas of the LV. At 5 weeks post MI, FNDC5 mRNA was decreased in soleus muscle and all areas of the LV, but FNDC5 protein was increased in the soleus muscle and the infarct area. Mature BDNF (mBDNF) protein was decreased in the infarct area without a change in mRNA. Exercise training attenuated the decrease in ejection fraction and the increase in LV end-diastolic pressure post MI. Exercise training had no effect on FNDC5 mRNA and protein, but increased mBDNF protein in soleus muscle, quadriceps and the non-infarct area of the LV. The mBDNF protein in the non-infarct area correlated positively with ejection fraction and inversely with LV end-diastolic pressure. In conclusion, mBDNF is induced by exercise training in skeletal muscle and the non-infarct area of the LV, which may contribute to improvement of muscle dysfunction and cardiac function post MI. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  5. Lower capillary density but no difference in VEGF expression in obese vs. lean young skeletal muscle in humans.

    PubMed

    Gavin, Timothy P; Stallings, Howard W; Zwetsloot, Kevin A; Westerkamp, Lenna M; Ryan, Nicholas A; Moore, Rebecca A; Pofahl, Walter E; Hickner, Robert C

    2005-01-01

    Obesity is associated with lower skeletal muscle capillarization and lower insulin sensitivity. Vascular endothelial growth factor (VEGF) is important for the maintenance of the skeletal muscle capillaries. To investigate whether VEGF and VEGF receptor [kinase insert domain-containing receptor (KDR) and Flt-1] expression are lower with obesity, vastus lateralis muscle biopsies were obtained from eight obese and eight lean young sedentary men before and 2 h after a 1-h submaximal aerobic exercise bout for the measurement of VEGF, KDR, Flt-1, and skeletal muscle fiber and capillary characteristics. There were no differences in VEGF or VEGF receptor mRNA at rest between lean and obese muscle. Exercise increased VEGF (10-fold), KDR (3-fold), and Flt-1 (5-fold) mRNA independent of group. There were no differences in VEGF, KDR, or Flt-1 protein between groups. Compared with lean skeletal muscle, the number of capillary contacts per fiber was the same, but lower capillary density (CD), greater muscle cross sectional area, and lower capillary-to-fiber area ratio were observed in both type I and II fibers in obese muscle. Multiple linear regression revealed that 49% of the variance in insulin sensitivity (homeostasis model assessment) could be explained by percentage of body fat (35%) and maximal oxygen uptake per kilogram of fat-free mass (14%). Linear regression revealed significant relationships between maximal oxygen uptake and both CD and capillary-to-fiber perimeter exchange. Although differences may exist in CD and capillary-to-fiber area ratio between lean and obese skeletal muscle, the present results provide evidence that VEGF and VEGF receptor expression are not different between lean and obese muscle.

  6. Deletion of Rab GAP AS160 modifies glucose uptake and GLUT4 translocation in primary skeletal muscles and adipocytes and impairs glucose homeostasis.

    PubMed

    Lansey, Melissa N; Walker, Natalie N; Hargett, Stefan R; Stevens, Joseph R; Keller, Susanna R

    2012-11-15

    Tight control of glucose uptake in skeletal muscles and adipocytes is crucial to glucose homeostasis and is mediated by regulating glucose transporter GLUT4 subcellular distribution. In cultured cells, Rab GAP AS160 controls GLUT4 intracellular retention and release to the cell surface and consequently regulates glucose uptake into cells. To determine AS160 function in GLUT4 trafficking in primary skeletal muscles and adipocytes and investigate its role in glucose homeostasis, we characterized AS160 knockout (AS160(-/-)) mice. We observed increased and normal basal glucose uptake in isolated AS160(-/-) adipocytes and soleus, respectively, while insulin-stimulated glucose uptake was impaired and GLUT4 expression decreased in both. No such abnormalities were found in isolated AS160(-/-) extensor digitorum longus muscles. In plasma membranes isolated from AS160(-/-) adipose tissue and gastrocnemius/quadriceps, relative GLUT4 levels were increased under basal conditions and remained the same after insulin treatment. Concomitantly, relative levels of cell surface-exposed GLUT4, determined with a glucose transporter photoaffinity label, were increased in AS160(-/-) adipocytes and normal in AS160(-/-) soleus under basal conditions. Insulin augmented cell surface-exposed GLUT4 in both. These observations suggest that AS160 is essential for GLUT4 intracellular retention and regulation of glucose uptake in adipocytes and skeletal muscles in which it is normally expressed. In vivo studies revealed impaired insulin tolerance in the presence of normal (male) and impaired (female) glucose tolerance. Concurrently, insulin-elicited increases in glucose disposal were abolished in all AS160(-/-) skeletal muscles and liver but not in AS160(-/-) adipose tissues. This suggests AS160 as a target for differential manipulation of glucose homeostasis.

  7. Morphological differences in skeletal muscle atrophy of rats with motor nerve and/or sensory nerve injury★

    PubMed Central

    Zhao, Lei; Lv, Guangming; Jiang, Shengyang; Yan, Zhiqiang; Sun, Junming; Wang, Ling; Jiang, Donglin

    2012-01-01

    Skeletal muscle atrophy occurs after denervation. The present study dissected the rat left ventral root and dorsal root at L4-6 or the sciatic nerve to establish a model of simple motor nerve injury, sensory nerve injury or mixed nerve injury. Results showed that with prolonged denervation time, rats with simple motor nerve injury, sensory nerve injury or mixed nerve injury exhibited abnormal behavior, reduced wet weight of the left gastrocnemius muscle, decreased diameter and cross-sectional area and altered ultrastructure of muscle cells, as well as decreased cross-sectional area and increased gray scale of the gastrocnemius muscle motor end plate. Moreover, at the same time point, the pathological changes were most severe in mixed nerve injury, followed by simple motor nerve injury, and the changes in simple sensory nerve injury were the mildest. These findings indicate that normal skeletal muscle morphology is maintained by intact innervation. Motor nerve injury resulted in larger damage to skeletal muscle and more severe atrophy than sensory nerve injury. Thus, reconstruction of motor nerves should be considered first in the clinical treatment of skeletal muscle atrophy caused by denervation. PMID:25337102

  8. Dissociation between the relief of skeletal pain behaviors and skin hypersensitivity in a model of bone cancer pain.

    PubMed

    Guedon, Jean-Marc G; Longo, Geraldine; Majuta, Lisa A; Thomspon, Michelle L; Fealk, Michelle N; Mantyh, Patrick W

    2016-06-01

    Recent studies have suggested that in humans and animals with significant skeletal pain, changes in the mechanical hypersensitivity of the skin can be detected. However, whether measuring changes in skin hypersensitivity can be a reliable surrogate for measuring skeletal pain itself remains unclear. To explore this question, we generated skeletal pain by injecting and confining GFP-transfected NCTC 2472 osteosarcoma cells unilaterally to the femur of C3H male mice. Beginning at day 7 post-tumor injection, animals were administered vehicle, an antibody to the P2X3 receptor (anti-P2X3) or anti-NGF antibody. Pain and analgesic efficacy were then measured on days 21, 28, and 35 post-tumor injection using a battery of skeletal pain-related behaviors and von Frey assessment of mechanical hypersensitivity on the plantar surface of the hind paw. Animals with bone cancer pain treated with anti-P2X3 showed a reduction in skin hypersensitivity but no attenuation of skeletal pain behaviors, whereas animals with bone cancer pain treated with anti-NGF showed a reduction in both skin hypersensitivity and skeletal pain behaviors. These results suggest that although bone cancer can induce significant skeletal pain-related behaviors and hypersensitivity of the skin, relief of hypersensitivity of the skin is not always accompanied by attenuation of skeletal pain. Understanding the relationship between skeletal and skin pain may provide insight into how pain is processed and integrated and help define the preclinical measures of skeletal pain that are predictive end points for clinical trials.

  9. Dissociation between the relief of skeletal pain behaviors and skin hypersensitivity in a model of bone cancer pain

    PubMed Central

    Guedon, Jean-Marc G.; Longo, Geraldine; Majuta, Lisa A.; Thomspon, Michelle L.; Fealk, Michelle N.; Mantyh, Patrick W.

    2016-01-01

    Recent studies have suggested that in humans and animals with significant skeletal pain, changes in the mechanical hypersensitivity of the skin can be detected. However, whether measuring changes in skin hypersensitivity can be a reliable surrogate for measuring skeletal pain itself remains unclear. To explore this question we generated skeletal pain by injecting and confining GFP-transfected NCTC 2472 osteosarcoma cells unilaterally to the femur of C3H male mice. Beginning at day 7 post-tumor injection, animals were administered vehicle, an antibody to the P2X3 receptor (anti-P2X3) or anti-NGF antibody. Pain and analgesic efficacy was then measured on days 21, 28 and 35 post-tumor injection using a battery of skeletal pain-related behaviors and von Frey assessment of mechanical hypersensitivity on the plantar surface of the hindpaw. Animals with bone cancer pain treated with anti-P2X3 showed a reduction in skin hypersensitivity but no attenuation of skeletal pain behaviors. Whereas animals with bone cancer pain treated with anti-NGF showed a reduction in both skin hypersensitivity and skeletal pain behaviors. These results suggest that while bone cancer can induce significant skeletal pain-related behaviors and hypersensitivity of the skin, relief of hypersensitivity of the skin is not always accompanied by attenuation of skeletal pain. Understanding the relationship between skeletal and skin pain may provide insight into how pain is processed and integrated and help define the preclinical measures of skeletal pain that are predictive endpoints for clinical trials. PMID:27186713

  10. High quality InSAR data linked to seasonal change in hydraulic head for an agricultural area in the San Luis Valley, Colorado

    NASA Astrophysics Data System (ADS)

    Reeves, Jessica A.; Knight, Rosemary; Zebker, Howard A.; Schreüder, Willem A.; Shanker Agram, Piyush; Lauknes, Tom R.

    2011-12-01

    In the San Luis Valley (SLV), Colorado legislation passed in 2004 requires that hydraulic head levels in the confined aquifer system stay within the range experienced in the years 1978-2000. While some measurements of hydraulic head exist, greater spatial and temporal sampling would be very valuable in understanding the behavior of the system. Interferometric synthetic aperture radar (InSAR) data provide fine spatial resolution measurements of Earth surface deformation, which can be related to hydraulic head change in the confined aquifer system. However, change in cm-scale crop structure with time leads to signal decorrelation, resulting in low quality data. Here we apply small baseline subset (SBAS) analysis to InSAR data collected from 1992 to 2001. We are able to show high levels of correlation, denoting high quality data, in areas between the center pivot irrigation circles, where the lack of water results in little surface vegetation. At three well locations we see a seasonal variation in the InSAR data that mimics the hydraulic head data. We use measured values of the elastic skeletal storage coefficient to estimate hydraulic head from the InSAR data. In general the magnitude of estimated and measured head agree to within the calculated error. However, the errors are unacceptably large due to both errors in the InSAR data and uncertainty in the measured value of the elastic skeletal storage coefficient. We conclude that InSAR is capturing the seasonal head variation, but that further research is required to obtain accurate hydraulic head estimates from the InSAR deformation measurements.

  11. Response Funtions for Computing Absorbed Dose to Skeletal Tissues from Photon Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckerman, Keith F; Bolch, W E; Zankl, M

    2007-01-01

    The calculation of absorbed dose in skeletal tissues at radiogenic risk has been a difficult problem because the relevant structures cannot be represented in conventional geometric terms nor can they be visualised in the tomographic image data used to define the computational models of the human body. The active marrow, the tissue of concern in leukaemia induction, is present within the spongiosa regions of trabecular bone, whereas the osteoprogenitor cells at risk for bone cancer induction are considered to be within the soft tissues adjacent to the mineral surfaces. The International Commission on Radiological Protection (ICRP) recommends averaging the absorbedmore » energy over the active marrow within the spongiosa and over the soft tissues within 10 mm of the mineral surface for leukaemia and bone cancer induction, respectively. In its forthcoming recommendation, it is expected that the latter guidance will be changed to include soft tissues within 50 mm of the mineral surfaces. To address the computational problems, the skeleton of the proposed ICRP reference computational phantom has been subdivided to identify those voxels associated with cortical shell, spongiosa and the medullary cavity of the long bones. It is further proposed that the Monte Carlo calculations with these phantoms compute the energy deposition in the skeletal target tissues as the product of the particle fluence in the skeletal subdivisions and applicable fluence-to-dose response functions. This paper outlines the development of such response functions for photons.« less

  12. Insulin regulates its own delivery to skeletal muscle by feed-forward actions on the vasculature

    PubMed Central

    Wang, Hong; Upchurch, Charles T.; Liu, Zhenqi

    2011-01-01

    Insulin, at physiological concentrations, regulates the volume of microvasculature perfused within skeletal and cardiac muscle. It can also, by relaxing the larger resistance vessels, increase total muscle blood flow. Both of these effects require endothelial cell nitric oxide generation and smooth muscle cell relaxation, and each could increase delivery of insulin and nutrients to muscle. The capillary microvasculature possesses the greatest endothelial surface area of the body. Yet, whether insulin acts on the capillary endothelial cell is not known. Here, we review insulin's actions at each of three levels of the arterial vasculature as well as recent data suggesting that insulin can regulate a vesicular transport system within the endothelial cell. This latter action, if it occurs at the capillary level, could enhance insulin delivery to muscle interstitium and thereby complement insulin's actions on arteriolar endothelium to increase insulin delivery. We also review work that suggests that this action of insulin on vesicle transport depends on endothelial cell nitric oxide generation and that insulin's ability to regulate this vesicular transport system is impaired by inflammatory cytokines that provoke insulin resistance. PMID:21610226

  13. Influence of racial origin and skeletal muscle properties on disease prevalence and physical performance.

    PubMed

    Suminski, Richard R; Mattern, Craig O; Devor, Steven T

    2002-01-01

    Skeletal muscle properties are related to disease (e.g. obesity) and physical performance. For example, a predominance of type I muscle fibres is associated with better performance in endurance sports and a lower risk of obesity. Disease and physical performance also differ among certain racial groups. African Americans are more likely than Caucasians to develop obesity, diabetes mellitus and hypertension. Empirical studies indicate that aerobic capacity is lower in African Americans than Caucasians. Because genetics is a partial determinant of skeletal muscle properties, it is reasonable to assume that skeletal muscle properties vary as a function of race. As such, genetically determined and race-specific skeletal muscle properties may partially explain racial disparities in disease and physical performance. However, additional research is needed in this area to enable the development of more definitive conclusions.

  14. The relationship between jaw-opening force and the cross-sectional area of the suprahyoid muscles in healthy elderly.

    PubMed

    Kajisa, E; Tohara, H; Nakane, A; Wakasugi, Y; Hara, K; Yamaguchi, K; Yoshimi, K; Minakuchi, S

    2018-03-01

    We conducted a clinical cross-sectional study to examine the relationship between jaw-opening force and the cross-sectional area of the suprahyoid muscles and whole skeletal muscle mass. Subjects were healthy 39 males and 51 females without dysphagia and sarcopenia, aged 65 years and older. Jaw-opening force was measured three times using a jaw-opening sthenometer; the maximum of these three was taken as the measurement value. The cross-sectional area of the geniohyoid and anterior belly of the digastric muscles were evaluated using ultrasonography. The skeletal muscle mass index, gait speed and grip strength were evaluated according to the diagnostic criteria of the Asian Working Group for Sarcopenia. For each sex, a multiple regression analysis determined the factors that affect jaw-opening force. Jaw-opening force was associated with the cross-sectional area of the geniohyoid muscle in males (regression coefficient [β] = 0.441, 95% confidence interval [CI] = 14.28-56.09) and females (β = 0.28, 95% CI = 3.10-54.57). Furthermore, in females only, jaw-opening force was associated with the skeletal muscle mass index (β = 0.40, 95% CI = 3.67-17.81). In contrast, jaw-opening force was not associated with the cross-sectional area of the anterior belly of the digastric muscle in either sex. In healthy elderly males and females, jaw-opening force was positively associated with the cross-sectional area of the geniohyoid muscle. However, the jaw-opening force was positively associated with the skeletal muscle mass index only in females. © 2017 John Wiley & Sons Ltd.

  15. Skeletal myogenic differentiation of human urine-derived cells as a potential source for skeletal muscle regeneration.

    PubMed

    Chen, Wei; Xie, Minkai; Yang, Bin; Bharadwaj, Shantaram; Song, Lujie; Liu, Guihua; Yi, Shanhong; Ye, Gang; Atala, Anthony; Zhang, Yuanyuan

    2017-02-01

    Stem cells are regarded as possible cell therapy candidates for skeletal muscle regeneration. However, invasive harvesting of those cells can cause potential harvest-site morbidity. The goal of this study was to assess whether human urine-derived stem cells (USCs), obtained through non-invasive procedures, can differentiate into skeletal muscle linage cells (Sk-MCs) and potentially be used for skeletal muscle regeneration. In this study, USCs were harvested from six healthy individuals aged 25-55. Expression profiles of cell-surface markers were assessed by flow cytometry. To optimize the myogenic differentiation medium, we selected two from four different types of myogenic differentiation media to induce the USCs. Differentiated USCs were identified with myogenic markers by gene and protein expression. USCs were implanted into the tibialis anterior muscles of nude mice for 1 month. The results showed that USCs displayed surface markers with positive staining for CD24, CD29, CD44, CD73, CD90, CD105, CD117, CD133, CD146, SSEA-4 and STRO-1, and negative staining for CD14, CD31, CD34 and CD45. After myogenic differentiation, a change in morphology was observed from 'rice-grain'-like cells to spindle-shaped cells. The USCs expressed specific Sk-MC transcripts and protein markers (myf5, myoD, myosin, and desmin) after being induced with different myogenic culture media. Implanted cells expressed Sk-MC markers stably in vivo. Our findings suggest that USCs are able to differentiate into the Sk-MC lineage in vitro and after being implanted in vivo. Thus, they might be a potential source for cell injection therapy in the use of skeletal muscle regeneration. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Scaling relations between trabecular bone volume fraction and microstructure at different skeletal sites.

    PubMed

    Räth, Christoph; Baum, Thomas; Monetti, Roberto; Sidorenko, Irina; Wolf, Petra; Eckstein, Felix; Matsuura, Maiko; Lochmüller, Eva-Maria; Zysset, Philippe K; Rummeny, Ernst J; Link, Thomas M; Bauer, Jan S

    2013-12-01

    In this study, we investigated the scaling relations between trabecular bone volume fraction (BV/TV) and parameters of the trabecular microstructure at different skeletal sites. Cylindrical bone samples with a diameter of 8mm were harvested from different skeletal sites of 154 human donors in vitro: 87 from the distal radius, 59/69 from the thoracic/lumbar spine, 51 from the femoral neck, and 83 from the greater trochanter. μCT images were obtained with an isotropic spatial resolution of 26μm. BV/TV and trabecular microstructure parameters (TbN, TbTh, TbSp, scaling indices (< > and σ of α and αz), and Minkowski Functionals (Surface, Curvature, Euler)) were computed for each sample. The regression coefficient β was determined for each skeletal site as the slope of a linear fit in the double-logarithmic representations of the correlations of BV/TV versus the respective microstructure parameter. Statistically significant correlation coefficients ranging from r=0.36 to r=0.97 were observed for BV/TV versus microstructure parameters, except for Curvature and Euler. The regression coefficients β were 0.19 to 0.23 (TbN), 0.21 to 0.30 (TbTh), -0.28 to -0.24 (TbSp), 0.58 to 0.71 (Surface) and 0.12 to 0.16 (<α>), 0.07 to 0.11 (<αz>), -0.44 to -0.30 (σ(α)), and -0.39 to -0.14 (σ(αz)) at the different skeletal sites. The 95% confidence intervals of β overlapped for almost all microstructure parameters at the different skeletal sites. The scaling relations were independent of vertebral fracture status and similar for subjects aged 60-69, 70-79, and >79years. In conclusion, the bone volume fraction-microstructure scaling relations showed a rather universal character. © 2013.

  17. Substrate growth dynamics and biomineralization of an Ediacaran encrusting poriferan.

    PubMed

    Wood, Rachel; Penny, Amelia

    2018-01-10

    The ability to encrust in order to secure and maintain growth on a substrate is a key competitive innovation in benthic metazoans. Here we describe the substrate growth dynamics, mode of biomineralization and possible affinity of Namapoikia rietoogensis , a large (up to 1 m), robustly skeletal, and modular Ediacaran metazoan which encrusted the walls of synsedimentary fissures within microbial-metazoan reefs. Namapoikia formed laminar or domal morphologies with an internal structure of open tubules and transverse elements, and had a very plastic, non-deterministic growth form which could encrust both fully lithified surfaces as well as living microbial substrates, the latter via modified skeletal holdfasts. Namapoikia shows complex growth interactions and substrate competition with contemporary living microbialites and thrombolites, including the production of plate-like dissepiments in response to microbial overgrowth which served to elevate soft tissue above the microbial surface. Namapoikia could also recover from partial mortality due to microbial fouling. We infer initial skeletal growth to have propagated via the rapid formation of an organic scaffold via a basal pinacoderm prior to calcification. This is likely an ancient mode of biomineralization with similarities to the living calcified demosponge Vaceletia. Namapoikia also shows inferred skeletal growth banding which, combined with its large size, implies notable individual longevity. In sum, Namapoikia was a large, relatively long-lived Ediacaran clonal skeletal metazoan that propagated via an organic scaffold prior to calcification, enabling rapid, effective and dynamic substrate occupation and competition in cryptic reef settings. The open tubular internal structure, highly flexible, non-deterministic skeletal organization, and inferred style of biomineralization of Namapoikia places probable affinity within total-group poriferans. © 2018 The Author(s).

  18. Resistance Training Enhances Skeletal Muscle Innervation Without Modifying the Number of Satellite Cells or their Myofiber Association in Obese Older Adults.

    PubMed

    Messi, María Laura; Li, Tao; Wang, Zhong-Min; Marsh, Anthony P; Nicklas, Barbara; Delbono, Osvaldo

    2016-10-01

    Studies in humans and animal models provide compelling evidence for age-related skeletal muscle denervation, which may contribute to muscle fiber atrophy and loss. Skeletal muscle denervation seems relentless; however, long-term, high-intensity physical activity appears to promote muscle reinnervation. Whether 5-month resistance training (RT) enhances skeletal muscle innervation in obese older adults is unknown. This study found that neural cell-adhesion molecule, NCAM+ muscle area decreased with RT and was inversely correlated with muscle strength. NCAM1 and RUNX1 gene transcripts significantly decreased with the intervention. Type I and type II fiber grouping in the vastus lateralis did not change significantly but increases in leg press and knee extensor strength inversely correlated with type I, but not with type II, fiber grouping. RT did not modify the total number of satellite cells, their number per area, or the number associated with specific fiber subtypes or innervated/denervated fibers. Our results suggest that RT has a beneficial impact on skeletal innervation, even when started late in life by sedentary obese older adults. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Patient's Skeletal Muscle Radiation Attenuation and Sarcopenic Obesity are Associated with Postoperative Morbidity after Neoadjuvant Chemoradiation and Resection for Rectal Cancer.

    PubMed

    Berkel, Annefleur E M; Klaase, Joost M; de Graaff, Feike; Brusse-Keizer, Marjolein G J; Bongers, Bart C; van Meeteren, Nico L U

    2018-06-13

    To investigate the relation between skeletal muscle measurements (muscle mass, radiation attenuation, and sarcopenic obesity), postoperative morbidity, and survival after treatment of locally advanced rectal cancer. This explorative retrospective study identified 99 consecutive patients who underwent neoadjuvant chemoradiation and surgery between January 2007 and May 2012. Skeletal muscle mass was measured as total psoas area and total abdominal muscle area (TAMA) at 3 anatomical levels using the patient's preoperative computed tomography scan. Radiation attenuation was measured using corresponding mean Hounsfield units for TAMA. Sarcopenic obesity was defined as body mass index above 25 kg·m-2 combined with skeletal muscle mass index below the sex-specific median. Postoperative complications were graded by using the -Clavien-Dindo classification. Twenty-five patients (25.3%) developed a grade 3-5 complication. Lower radiation attenuation was independently associated with overall (p = 0.003) and grade 3-5 complications (p = 0.002). Sarcopenic obesity was associated with overall complications (all p < 0.05). Skeletal muscle measurements and survival were not significantly related. Radiation attenuation was associated with overall and grade 3-5 postoperative morbidity after neoadjuvant chemoradiation and non-laparoscopic resection for rectal cancer. Sarcopenic obesity was associated with overall complications. © 2018 S. Karger AG, Basel.

  20. Differences in skeletal muscle loss caused by cytotoxic chemotherapy and molecular targeted therapy in patients with advanced non-small cell lung cancer.

    PubMed

    Kakinuma, Kazutaka; Tsuruoka, Hazime; Morikawa, Kei; Furuya, Naoki; Inoue, Takeo; Miyazawa, Teruomi; Mineshita, Masamichi

    2018-01-01

    Recent studies have revealed a reduction in the skeletal muscle area in patients with advanced non-small cell lung cancer (NSCLC) after chemotherapy. EGFR and ALK tyrosine kinase inhibitor (TKI)-based therapies are less cytotoxic than chemotherapy, but differences in skeletal muscle mass between patients receiving EGFR and ALK TKI therapies and patients receiving cytotoxic chemotherapy have not yet been reported. Data of pathologically proven NSCLC patients were reviewed, and chest computed tomography and/or positron emission tomography-computed tomography images obtained from January 2012 to December 2014 were selected. Patients were divided into two groups: cytotoxic chemotherapy (CG) and molecular targeted (MG). Muscle mass was measured with a single cross-sectional area of the muscle at the third lumber vertebra (L3MA). To estimate skeletal muscle changes during chemotherapy, we defined the following L3 skeletal muscle index (L3SMI) ratio: post L3SMI/pre L3SMI. Differences in the SMI ratio between the groups were evaluated using the Wilcoxon signed-rank test. Sixty-five patients were included in this study: 44 patients received cytotoxic chemotherapy and 21 received molecular targeted therapy (EGFR and ALK TKI). The loss of L3MA in the CG was higher than in the MG (P = 0.03). In the CG, the L3SMI ratio defined to evaluate skeletal muscle mass changes was significantly lower than in the MG (P = 0.0188). Our results suggest that skeletal muscle loss during first-line therapy was significantly different between patients receiving cytotoxic chemotherapy and those receiving TKIs. Specifically, skeletal muscle loss was lower in patients receiving TKIs than in patients receiving cytotoxic chemotherapy. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  1. Molecular events in skeletal muscle during disuse atrophy

    NASA Technical Reports Server (NTRS)

    Kandarian, Susan C.; Stevenson, Eric J.

    2002-01-01

    This review summarizes the current knowledge of the molecular processes underlying skeletal muscle atrophy due to disuse. Because the processes involved with muscle wasting due to illness are similar to disuse, this literature is used for comparison. Areas that are ripe for further study and that will advance our understanding of muscle atrophy are suggested.

  2. Massage therapy during early postnatal life promotes greater lean mass and bone growth, mineralization, and strength in juvenile and young adult rats.

    PubMed

    Chen, H; Miller, S; Shaw, J; Moyer-Mileur, L

    2009-01-01

    The objects of this study were to investigate the effects of massage therapy during early life on postnatal growth, body composition, and skeletal development in juvenile and young adult rats. Massage therapy was performed for 10 minutes daily from D6 to D10 of postnatal life in rat pups (MT, n=24). Body composition, bone area, mineral content, and bone mineral density were measured by dual energy X-ray absorptiometry (DXA); bone strength and intrinsic stiffness on femur shaft were tested by three-point bending; cortical and cancellous bone histomorphometric measurements were performed at D21 and D60. Results were compared to age- and gender-matched controls (C, n=24). D21 body weight, body length, lean mass, and bone area were significantly greater in the MT cohort. Greater bone mineral content was found in male MT rats; bone strength and intrinsic stiffness were greater in D60 MT groups. At D60 MT treatment promoted bone mineralization by increasing trabecular mineral apposition rate in male and endosteal mineral surface in females, and also improved micro-architecture by greater trabeculae width in males and decreasing trabecular separation in females. In summary, massage therapy during early life elicited immediate and prolonged anabolic effects on postnatal growth, lean mass and skeletal developmental in a gender-specific manner in juvenile and young adult rats.

  3. Nothing new under the heavens: MIH in the past?

    PubMed

    Ogden, A R; Pinhasi, R; White, W J

    2008-12-01

    This was to study an archaeological population of subadult teeth in 17th and 18th century skeletal material from a London (England) cemetery for enamel defects including molar-incisor-hypomineralisation (MIH). Dentitions of 45 sub-adults were examined using standard macroscopic methods and systematically recorded. A total of 557 teeth were examined with a *5 lens and photographed. Ages of the individuals were estimated from their dental crown and root development stages and not from charts that combine tooth eruption with development stages. The dental age of the individual and the approximate age of onset of enamel defects was then calculated on the basis of the chronological sequence of incremental deposition and calcification of the enamel matrix. Affected enamel was graded macroscopically as: - Mild: <30% of the tooth's enamel surface area visibly disrupted (this encompasses the entire range reported in most other studies), Moderate: 31-49% of the tooth's enamel surface area visibly disrupted and Severe: >50% of the tooth's enamel surface area visibly disrupted. Of the total number of individuals 41 (93.2%) showed signs of enamel developmental dysplasia or MIH, 28 of them showing moderate or severe lesions of molars, primary or permanent (63.6% of the sample). Incisors and canines, though surviving much less often, showed episodes of linear hypoplasia. The extensive lesions seen on many of the molars displayed cuspal enamel hypoplasia (CEH). Many of these teeth also exhibited Molar Incisal Hypomineralisation (MIH).

  4. Automated analysis of whole skeletal muscle for muscular atrophy detection of ALS in whole-body CT images: preliminary study

    NASA Astrophysics Data System (ADS)

    Kamiya, Naoki; Ieda, Kosuke; Zhou, Xiangrong; Yamada, Megumi; Kato, Hiroki; Muramatsu, Chisako; Hara, Takeshi; Miyoshi, Toshiharu; Inuzuka, Takashi; Matsuo, Masayuki; Fujita, Hiroshi

    2017-03-01

    Amyotrophic lateral sclerosis (ALS) causes functional disorders such as difficulty in breathing and swallowing through the atrophy of voluntary muscles. ALS in its early stages is difficult to diagnose because of the difficulty in differentiating it from other muscular diseases. In addition, image inspection methods for aggressive diagnosis for ALS have not yet been established. The purpose of this study is to develop an automatic analysis system of the whole skeletal muscle to support the early differential diagnosis of ALS using whole-body CT images. In this study, the muscular atrophy parts including ALS patients are automatically identified by recognizing and segmenting whole skeletal muscle in the preliminary steps. First, the skeleton is identified by its gray value information. Second, the initial area of the body cavity is recognized by the deformation of the thoracic cavity based on the anatomical segmented skeleton. Third, the abdominal cavity boundary is recognized using ABM for precisely recognizing the body cavity. The body cavity is precisely recognized by non-rigid registration method based on the reference points of the abdominal cavity boundary. Fourth, the whole skeletal muscle is recognized by excluding the skeleton, the body cavity, and the subcutaneous fat. Additionally, the areas of muscular atrophy including ALS patients are automatically identified by comparison of the muscle mass. The experiments were carried out for ten cases with abnormality in the skeletal muscle. Global recognition and segmentation of the whole skeletal muscle were well realized in eight cases. Moreover, the areas of muscular atrophy including ALS patients were well identified in the lower limbs. As a result, this study indicated the basic technology to detect the muscle atrophy including ALS. In the future, it will be necessary to consider methods to differentiate other kinds of muscular atrophy as well as the clinical application of this detection method for early ALS detection and examine a large number of cases with stage and disease type.

  5. Physeal-Specific MRI Analysis of Growth Plate Disturbance Following All-Inside Anterior Cruciate Ligament Reconstruction in Skeletally Immature Patients: Does a Physeal-Sparing Technique Offer any Advantage?

    PubMed Central

    Nawabi, Danyal H.; Jones, Kristofer J.; Lurie, Brett; Potter, Hollis G.; Green, Daniel W.; Cordasco, Frank A.

    2013-01-01

    Objectives: The decision to perform anterior cruciate ligament (ACL) reconstruction in skeletally immature patients carries a risk of growth disturbance due to iatrogenic physeal injury. Multiple physeal-sparing techniques have been described but none, to our knowledge combine the benefits of an anatomic reconstruction and socket fixation, without violation of either the femoral or tibial physis at any stage of the procedure. The purpose of this study was to compare the incidence and calculate the area of post-operative physeal disturbances, using a physeal-sensitive magnetic resonance imaging (MRI) sequence*, between all-epiphyseal (AE) and partial transphyseal (PTP) ACL reconstructions in a cohort of skeletally-immature patients. Methods: Twenty-one skeletally immature patients with a mean chronologic age of 12.7 years (range 10 to 16) undergoing all-inside ACL reconstruction were prospectively followed. Fourteen patients had an all-epiphyseal (AE) ACL reconstruction and 7 patients had a partial transphyseal (PTP) ACL reconstruction, which spared the femoral physis but crossed the tibial physis. Hamstring autograft was used in all cases. At a mean of 11.6 months follow-up, all patients were assessed for focal physeal disturbance and graft survival using a three-dimensional (3D) fat suppressed spoiled gradient-recalled echo (SPGR) MRI sequence. Angular deformity and leg length discrepancy were evaluated on full-length standing radiographs. The International Knee Documentation Committee (IKDC) subjective score and Lysholm knee score were also documented. Results: The tibial physis was violated in 13/14 patients in the AE group and all patients in the PTP group. The mean area of post-operative tibial physeal disturbance (± SD) was 42.4 ± 38.6 mm2 (mean 1.7% of total physeal area) in the AE group compared to 216.7 ± 129.1 mm2 (mean 7.3% of total physeal area) in the PTP group (p = 0.003). The femoral physis was violated in one case in both groups resulting in a mean physeal disturbance of 1.5% of the total distal femoral physeal area. No cases of fracture, articular surface violation or avascular necrosis were noted on MRI in either group. Short-term graft survival was 100% amongst the entire cohort. There were no cases of angular deformity in either group with a mean side-side difference in the lateral distal femoral angle of 1.11° ± 1.02° in the AE group and 0.72° ± 0.65° in the PTP group (p = 0.23). No significant leg-length discrepancies were measured in either group. The mean IKDC and Lysholm scores (± SD) were 93.3 ± 5.9 and 97.8 ± 3.8 respectively in the AE group and 87.7 ± 3.5 and 96 ± 5.2 respectively in the PTP group. Conclusion: All-epiphyseal ACL reconstruction caused significantly less focal physeal disturbance than PTP ACL reconstruction, as determined by a 3D physeal-sensitive MRI sequence. Neither technique however resulted in angular deformity or leg-length discrepancy at early follow-up. Both all-inside ACL reconstruction techniques used in this study are safe and effective at early follow-up in skeletally immature patients. Further longitudinal study of this cohort is required to determine any potential advantages of a purely physeal-sparing technique.

  6. Quantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity

    NASA Astrophysics Data System (ADS)

    Hoyt, Kenneth; Kneezel, Timothy; Castaneda, Benjamin; Parker, Kevin J.

    2008-08-01

    A novel quantitative sonoelastography technique for assessing the viscoelastic properties of skeletal muscle tissue was developed. Slowly propagating shear wave interference patterns (termed crawling waves) were generated using a two-source configuration vibrating normal to the surface. Theoretical models predict crawling wave displacement fields, which were validated through phantom studies. In experiments, a viscoelastic model was fit to dispersive shear wave speed sonoelastographic data using nonlinear least-squares techniques to determine frequency-independent shear modulus and viscosity estimates. Shear modulus estimates derived using the viscoelastic model were in agreement with that obtained by mechanical testing on phantom samples. Preliminary sonoelastographic data acquired in healthy human skeletal muscles confirm that high-quality quantitative elasticity data can be acquired in vivo. Studies on relaxed muscle indicate discernible differences in both shear modulus and viscosity estimates between different skeletal muscle groups. Investigations into the dynamic viscoelastic properties of (healthy) human skeletal muscles revealed that voluntarily contracted muscles exhibit considerable increases in both shear modulus and viscosity estimates as compared to the relaxed state. Overall, preliminary results are encouraging and quantitative sonoelastography may prove clinically feasible for in vivo characterization of the dynamic viscoelastic properties of human skeletal muscle.

  7. Evidences for Skeletal Structures in the Ocean from the Images Analyzed by Multilevel Dynamical Contrasting Method

    NASA Astrophysics Data System (ADS)

    Rantsev-Kartinov, Valentin A.

    2004-11-01

    An analysis of databases of photographic images of ocean's surface, taken from various altitudes and for various types of rough ocean surface, revealed the presence of an ocean's skeletal structures (OSS) = http://www.arxiv.org/ftp/physics/papers/0401/0401139.pdf [1] Rantsev-Kartinov V.A., Preprint, which exhibit a tendency toward self-similarity of structuring at various length scales (i.e., within various ``generations''). The topology of the OSS appears to be identical to that of skeletal structures which have been formerly found in a wide range of length scales, media and for various phenomena (Phys. Lett. A, 2002, 306). The typical OSS consists of separate identical blocks which are linked together to form a network. Two types of such blocks are found: (i) a coaxial tubular (CT) structures with internal radial bonds, and (ii) a cartwheel-like structures, located either on an axle or in the edges of the CT blocks. The OSSs differ from the formerly found SSs only by the fact that OSS, in their interior, are filled in with closely packed OSSs of a smaller size. We specially discuss the phenomenon of skeletal blocks in the form of vertically/horizontally oriented floating cylinders. The size of these observed blocks is shown to grow with increasing rough water.

  8. Graphene-based materials for tissue engineering.

    PubMed

    Shin, Su Ryon; Li, Yi-Chen; Jang, Hae Lin; Khoshakhlagh, Parastoo; Akbari, Mohsen; Nasajpour, Amir; Zhang, Yu Shrike; Tamayol, Ali; Khademhosseini, Ali

    2016-10-01

    Graphene and its chemical derivatives have been a pivotal new class of nanomaterials and a model system for quantum behavior. The material's excellent electrical conductivity, biocompatibility, surface area and thermal properties are of much interest to the scientific community. Two-dimensional graphene materials have been widely used in various biomedical research areas such as bioelectronics, imaging, drug delivery, and tissue engineering. In this review, we will highlight the recent applications of graphene-based materials in tissue engineering and regenerative medicine. In particular, we will discuss the application of graphene-based materials in cardiac, neural, bone, cartilage, skeletal muscle, and skin/adipose tissue engineering. We will also discuss the potential risk factors of graphene-based materials in tissue engineering. In conclusion, we will outline the opportunities in the usage of graphene-based materials for clinical applications. Published by Elsevier B.V.

  9. A unique skeletal microstructure of the deep-sea micrabaciid scleractinian corals

    NASA Astrophysics Data System (ADS)

    Janiszewska, Katarzyna; Stolarski, Jaroslaw; Benzerara, Karim; Meibom, Anders; Mazur, Maciej; Kitahara, Marcelo; Cairns, Stephen D.

    2010-05-01

    Structural and biogeochemical properties of the skeleton of many invertebrates rely on organic matrix-mediated biomineralization processes. Organic matrices, composed of complex assemblages of macromolecules (proteins, polysaccharides), may control nucleation, spatial delineation and organization of basic microstructural units. Biologically controlled mineralization is also suggested for the scleractinian corals whose different, molecularly recognized clades are supported by distinct types of skeletal microstructures. Main differences in scleractinian coral skeletal microstructures suggested so far consist in (1) varying spatial relationships between Rapid Accretion Deposits (RAD, 'centers of calcification') and thickening deposits (TD, 'fibers'), and (2) varying arrangements of biomineral fibers into higher order structures (e.g., bundles of fibers perpendicular to skeletal surfaces in some 'caryophylliid' corals vs. scale-like units with fibers parallel to the surface in acroporiids). However, a common feature of biomineral fibers in corals described thus far was their similar crystallographic arrangement within larger meso-scale structures (bundles of fibers) and continuity between successive growth layers. Herein we show that representatives of the deep-sea scleractinian family Micrabaciidae (genera: Letepsammia, Rhombopsammia, Stephanophyllia, Leptopenus) have thickening deposits composed of irregular meshwork of short (1-2 μm) and extremely thin (ca. 100-300 nm) fibers organized into small bundles (ca. 1-2 μm thick). Longer axes of fibers are aligned within individual bundles that, in turn, show rather irregular arrangement on the growing surfaces and within the skeleton (irregular criss-cross pattern). In contrast to other scleractinians (including deep-water 'caryophylliids', fungiacyathids, and anthemiphyllids sympatric with micrabaciids), growth layers are not distinct. Also the regions of rapid accretion and thickening deposits are not clearly separated at the meso-scale. However, AFM and FESEM observations of RAD show nanogranular units (ca. 30-100 nm in diameter) typical of fast growing skeletal regions. Unique microstructural organization of the micrabaciid skeleton supports their monophyletic status (reinforced by macromorphological and molecular data), and points to a diversity of organic matrix-mediated biomineralization strategies in Scleractinia.

  10. Waterspout as a result of the ocean skeletal structures

    NASA Astrophysics Data System (ADS)

    Rantsev-Kartinov, Valentin A.

    2004-11-01

    An analysis of databases of photographic images of oceanic surface, taken from various altitudes and for various types of rough ocean surface, reduced to a revealing the presence of oceanic skeletal structures (OSS) = http://www.arxiv.org/ftp/physics/papers/0401/0401139.pdf [1] Rantsev-Kartinov V.A., Preprint. The OSSs presumably differ from the formerly found skeletal structures (SS) (Phys. Lett. A 306 (2002) 175) only by the fact that OSS are filled in with the closely packed blocks of a smaller size, up to capillary sizes. It is suggested [1] the dust produced by the volcanic activity forms the SS of powerful clouds due to of atmospheric electricity. The fall-out of such SSs on the oceanic surface is a material source of OSS. It is suggested that an OSS block [1] in the form of vertically oriented floating cylinder may be a stimulator of waterspout (WS). The main body of the WS may be interpreted as a special type of atmospheric aerosol dusty plasma, and its column - as a long-lived filament, being formed in the process of electric breakdown between the cloud and oceanic surface. The charged water drops aerosol may behave similar to microdust and lift upward to the cloud by the electrostatic force. Suggested a capillary-electrostatic model of the WS permits to interpret many effects connected with the WS.

  11. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA

    2012-04-17

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  12. [Analysis of body composition and resting metabolic rate of 858 middle-aged and elderly people in urban area of Beijing].

    PubMed

    Yu, D N; Xian, T Z; Wang, L J; Cheng, B; Sun, M X; Guo, L X

    2018-05-10

    Objective: To understand the overweight rate and obesity rate in middle-aged and elderly people in urban area of Beijing, and analyze the changes of body composition and resting metabolic rate with age. Methods: From November 2014 to December 2015, body composition measurement and resting metabolic rate detection were conducted among 858 people aged 51 to 99 years, including 760 men, 98 women, who received physical examination at Beijing Hospital. Results: The overweight rate was 51.4 % , and the obesity rate was 16.9 % . The overweight rate was 26.5 % and the obesity rate was 14.3 % in women, significantly lower than those in men (54.6 % and 17.2 % ) ( P <0.001). The distribution of skeletal muscle volume, muscle index, body fat percentage, visceral fat area and resting metabolic rate in different age groups were different ( P <0.001). In the normal weight group, the skeletal muscle volume, muscle index and resting metabolic rate in age group ≥80 years decreased obviously ( P <0.05). At the same time, the body fat percentage and visceral fat area increased obviously ( P <0.05). However, the skeletal muscle volume, muscle index and resting metabolic rate of the overweight and obese groups began to decrease obviously in age group 70- years ( P <0.05), and the decrease in age group ≥80 years was more obvious. At the same time, body fat percentage and visceral fat area increased significantly in age group 70- years ( P <0.05). Conclusion: The overweight and obesity rates were high in the middle-aged and elderly people in the urban area of Beijing, and the rates were higher in men than in women. With the increase of age, the skeletal muscle volume, muscle index and resting metabolic rate gradually decreased, while the percentage of body fat and visceral fat area increased; Overweight and obese people had earlier changes in body composition and resting metabolic rate.

  13. MALDI imaging mass spectrometry: discrimination of pathophysiological regions in traumatized skeletal muscle by characteristic peptide signatures.

    PubMed

    Klein, Oliver; Strohschein, Kristin; Nebrich, Grit; Oetjen, Janina; Trede, Dennis; Thiele, Herbert; Alexandrov, Theodore; Giavalisco, Patrick; Duda, Georg N; von Roth, Philipp; Geissler, Sven; Klose, Joachim; Winkler, Tobias

    2014-10-01

    Due to formation of fibrosis and the loss of contractile muscle tissue, severe muscle injuries often result in insufficient healing marked by a significant reduction of muscle force and motor activity. Our previous studies demonstrated that the local transplantation of mesenchymal stromal cells into an injured skeletal muscle of the rat improves the functional outcome of the healing process. Since, due to the lack of sufficient markers, the accurate discrimination of pathophysiological regions in injured skeletal muscle is inadequate, underlying mechanisms of the beneficial effects of mesenchymal stromal cell transplantation on primary trauma and trauma adjacent muscle area remain elusive. For discrimination of these pathophysiological regions, formalin-fixed injured skeletal muscle tissue was analyzed by MALDI imaging MS. By using two computational evaluation strategies, a supervised approach (ClinProTools) and unsupervised segmentation (SCiLS Lab), characteristic m/z species could be assigned to primary trauma and trauma adjacent muscle regions. Using "bottom-up" MS for protein identification and validation of results by immunohistochemistry, we could identify two proteins, skeletal muscle alpha actin and carbonic anhydrase III, which discriminate between the secondary damage on adjacent tissue and the primary traumatized muscle area. Our results underscore the high potential of MALDI imaging MS to describe the spatial characteristics of pathophysiological changes in muscle. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine respond to exercise and influence insulin sensitivity in men.

    PubMed

    Lee, Sindre; Norheim, Frode; Gulseth, Hanne L; Langleite, Torgrim M; Aker, Andreas; Gundersen, Thomas E; Holen, Torgeir; Birkeland, Kåre I; Drevon, Christian A

    2018-04-25

    Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) composition in skeletal muscle have been linked to insulin sensitivity. We evaluated the relationships between skeletal muscle PC:PE, physical exercise and insulin sensitivity. We performed lipidomics and measured PC and PE in m. vastus lateralis biopsies obtained from 13 normoglycemic normal weight men and 13 dysglycemic overweight men at rest, immediately after 45 min of cycling at 70% maximum oxygen uptake, and 2 h post-exercise, before as well as after 12 weeks of combined endurance- and strength-exercise intervention. Insulin sensitivity was monitored by euglycemic-hyperinsulinemic clamp. RNA-sequencing was performed on biopsies, and mitochondria and lipid droplets were quantified on electron microscopic images. Exercise intervention for 12 w enhanced insulin sensitivity by 33%, skeletal muscle levels of PC by 21%, PE by 42%, and reduced PC:PE by 16%. One bicycle session reduced PC:PE by 5%. PC:PE correlated negatively with insulin sensitivity (β = -1.6, P < 0.001), percent area of mitochondria (ρ = -0.52, P = 0.035), and lipid droplet area (ρ = 0.55, P = 0.017) on EM pictures, and negatively with oxidative phosphorylation and mTOR based on RNA-sequencing. In conclusion, PC and PE contents of skeletal muscle respond to exercise, and PC:PE is inversely related to insulin sensitivity.

  15. Foam structure :from soap froth to solid foams.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraynik, Andrew Michael

    2003-01-01

    The properties of solid foams depend on their structure, which usually evolves in the fluid state as gas bubbles expand to form polyhedral cells. The characteristic feature of foam structure-randomly packed cells of different sizes and shapes-is examined in this article by considering soap froth. This material can be modeled as a network of minimal surfaces that divide space into polyhedral cells. The cell-level geometry of random soap froth is calculated with Brakke's Surface Evolver software. The distribution of cell volumes ranges from monodisperse to highly polydisperse. Topological and geometric properties, such as surface area and edge length, of themore » entire foam and individual cells, are discussed. The shape of struts in solid foams is related to Plateau borders in liquid foams and calculated for different volume fractions of material. The models of soap froth are used as templates to produce finite element models of open-cell foams. Three-dimensional images of open-cell foams obtained with x-ray microtomography allow virtual reconstruction of skeletal structures that compare well with the Surface Evolver simulations of soap-froth geometry.« less

  16. Insights on Coral Adaptation from Polyp and Colony Morphology, Skeletal Density Banding and Carbonate Depositional Facies

    NASA Astrophysics Data System (ADS)

    Oehlert, A. M.; Hill, C. A.; Piggot, A. M.; Fouke, B. W.

    2008-12-01

    As one of the core reservoirs of primary production in the world's oceans, tropical coral reefs support a complex ecosystem that directly impacts over ninety percent of marine organisms at some point in their life cycle. Corals themselves are highly complex organisms and exhibit a range of growth forms that range from branching to massive, foliaceous, columnar, encrusting, free living and laminar coralla. Fierce competition over scarce resources available to each individual coral species creates niche specialization. Throughout the Phanerozic geological record, this has driven speciation events and created distinct skeletal growth morphologies that have differential abilities in feeding strategy. In turn, this has presumably led to the development of niche specialization that can be quantitatively measured through hierarchical morphological differences from the micrometer to the meter scale. Porter (1976) observed significant differences in skeletal morphology between Caribbean coral species that reflects an adaptive geometry based on feeding strategy. Within the Montastraea species complex there are four major morphologies; columnar, bouldering, irregular mounding, and skirted. Each morphotype can be found forming high abundance along the bathymetric gradient of coral reefs that grow along the leeward coast of Curacao, Netherlands Antilles. We have undertaken a study to determine the relative relationships amongst coral morphology, skeletal density and feeding strategy by comparing the morphometric measurements of individual polyps as well as the entire colony along spatial and bathymetric gradients. Polyp diameter, mouth size, interpolyp area, and interpolyp distance were measured from high-resolution images taken on a stereoscope, and evaluated with AxioVision image analysis software. These high-resolution optical analyses have also revealed new observations regarding folded tissue structures of the outer margin of polyps in the Montastrea complex. Skeletal densities were measured in vertical cross-sections of each whole corallum using standard X-ray techniques utilizing a calibrated step wedge to portray banding and overall density. The combination of the stereoscope and X-ray analyses across spatial and temporal gradients provide insight into how coral reef carbonate depositional facies are affected by changes in key environmental parameters, such as increased pollution, or changing photosynthetic activity with depth or sea surface temperature fluctuations.

  17. Fusion of spectral models for dynamic modeling of sEMG and skeletal muscle force.

    PubMed

    Potluri, Chandrasekhar; Anugolu, Madhavi; Chiu, Steve; Urfer, Alex; Schoen, Marco P; Naidu, D Subbaram

    2012-01-01

    In this paper, we present a method of combining spectral models using a Kullback Information Criterion (KIC) data fusion algorithm. Surface Electromyographic (sEMG) signals and their corresponding skeletal muscle force signals are acquired from three sensors and pre-processed using a Half-Gaussian filter and a Chebyshev Type- II filter, respectively. Spectral models - Spectral Analysis (SPA), Empirical Transfer Function Estimate (ETFE), Spectral Analysis with Frequency Dependent Resolution (SPFRD) - are extracted from sEMG signals as input and skeletal muscle force as output signal. These signals are then employed in a System Identification (SI) routine to establish the dynamic models relating the input and output. After the individual models are extracted, the models are fused by a probability based KIC fusion algorithm. The results show that the SPFRD spectral models perform better than SPA and ETFE models in modeling the frequency content of the sEMG/skeletal muscle force data.

  18. Generation of sedimentary fabrics and facies by repetitive excavation and storm infilling of burrow networks Holocene of south Florida and Caicos Platform, B. W. I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedesco, L.P.; Wanless, H.R.

    Excavation of deep, open burrow networks and subsequent infilling with sediment from the surface produces an entirely new sedimentary deposit and results in obliteration to severe diagenetic transformation of precursor depositional facies. Repetitive excavation and infilling is responsible for creating the preserved depositional facies of many marine deposits. Excavating burrowers occur from intertidal to abyssal depths, and are important throughout the Phanerozoic. The repetitive coupling of deep, open burrow excavation with subsequent storm sediment infilling of open burrow networks is a gradual process that ultimately results in the loss of the original deposit and the generation of new lithologies, fabricsmore » and facies. The new lithologies are produced in the subsurface and possess fabrics, textures and skeletal assemblages that are not a direct reflection of either precursor facies or the surficial depositional conditions. Sedimentary facies generated by repetitive burrow excavation and infilling commonly are massively bedded and generally are mottled skeletal packstones. Skeletal grains usually are well-preserved and coarser components are concentrated in burrow networks, pockets and patches. The coarse skeletal components of burrow-generated facies are a mixture of coarse bioclasts from the precursor facies and both the coarse and fine skeletal material introduced from the sediment surface. Many so-called bioturbated or massive facies may, in fact, be primary depositional facies generated in the subsurface and represent severe diagenetic transformation of originally deposited sequences. In addition, mudstones and wackestones mottled with packstone patches may record storm sedimentation.« less

  19. Fatal falls involving stairs: an anthropological analysis of skeletal trauma.

    PubMed

    Rowbotham, Samantha K; Blau, Soren; Hislop-Jambrich, Jacqueline; Francis, Victoria

    2018-06-01

    The skeletal blunt force trauma resulting from fatal falls involving stairs is complex. There are countless ways an individual may fall when stairs are involved, and thus a variety of ways the skeleton may fracture. Therefore anecdotally, it may be said that there is no specific skeletal trauma characteristic of this fall type. In order to scientifically investigate this anecdotal understanding, this study provides a detailed investigation of the skeletal fracture patterns and morphologies resulting from fatal falls involving stairs. Skeletal trauma was analyzed using the full-body postmortem computed tomography scans of 57 individuals who died from a fall involving stairs. Trauma was examined in the context of the variables that potentially influence how an individual falls (i.e. sex, age, body mass index, number of stairs involved, psychoactive drugs, pre-existing conditions, landing surface and manner of the fall) using logistic regression. Skeletal trauma primarily occurred in the axial skeleton. An analysis of fracture patterns showed the cranial base was less likely to fracture in younger individuals and the cervical vertebrae were more likely to fracture in falls that involved more than half a flight of stairs. A total of 56 fracture morphologies were identified. Of these, diastatic fractures were less likely to occur in older individuals. Findings indicate that there are skeletal fracture patterns and morphologies characteristic of a fatal fall involving stairs.

  20. Characterization of human skeletal stem and bone cell populations using dielectrophoresis.

    PubMed

    Ismail, A; Hughes, M P; Mulhall, H J; Oreffo, R O C; Labeed, F H

    2015-02-01

    Dielectrophoresis (DEP) is a non-invasive cell analysis method that uses differences in electrical properties between particles and surrounding medium to determine a unique set of cellular properties that can be used as a basis for cell separation. Cell-based therapies using skeletal stem cells are currently one of the most promising areas for treating a variety of skeletal and muscular disorders. However, identifying and sorting these cells remains a challenge in the absence of unique skeletal stem cell markers. DEP provides an ideal method for identifying subsets of cells without the need for markers by using their dielectric properties. This study used a 3D dielectrophoretic well chip device to determine the dielectric characteristics of two osteosarcoma cell lines (MG-63 and SAOS-2) and an immunoselected enriched skeletal stem cell fraction (STRO-1 positive cell) of human bone marrow. Skeletal cells were exposed to a series of different frequencies to induce dielectrophoretic cell movement, and a model was developed to generate the membrane and cytoplasmic properties of the cell populations. Differences were observed in the dielectric properties of MG-63, SAOS-2 and STRO-1 enriched skeletal populations, which could potentially be used to sort cells in mixed populations. This study provide evidence of the ability to characterize different human skeletal stem and mature cell populations, and acts as a proof-of-concept that dielectrophoresis can be exploited to detect, isolate and separate skeletal cell populations from heterogeneous bone marrow cell populations. Copyright © 2012 John Wiley & Sons, Ltd.

  1. [Extra skeletal Ewing's sarcoma. Report of two cases. Ultrastructural study of one case (author's transl)].

    PubMed

    Krulik, M; Brechot, J M; de Saint-Maur, P; Lecomte, D; Mougeot-Martin, M; Audebert, A A; Zylberait, D; Debray, J

    The authors report two cases of extra skeletal Ewing's sarcoma. The first case concerns a 26 years old woman presenting a tumor at the level of the sacrum area, locally recurrent, metastazing to the lungs and the lumbar column, despite of radiotherapy and chemotherapy and leading to death after a course of 18 months. The second one is that of a 30 years old man bearing a tumor of the shoulder area probably already metastazed to bones, rapidly recurrent and metastazing to the lungs and cause of death after 9 months in spite of intensive therapy. About these 2 observations a review of the literature of the cases of extra skeletal Ewing's sarcoma is done. Whatever nosologic discussion it seems that Ewing's sarcoma may present essentially as a tumor of soft tissues. An ultrastructural study has been performed in the second case. The findings are similar to those reported in Ewing's sarcoma.

  2. Ectopic lipid deposition and the metabolic profile of skeletal muscle in ovariectomized mice.

    PubMed

    Jackson, Kathryn C; Wohlers, Lindsay M; Lovering, Richard M; Schuh, Rosemary A; Maher, Amy C; Bonen, Arend; Koves, Timothy R; Ilkayeva, Olga; Thomson, David M; Muoio, Deborah M; Spangenburg, Espen E

    2013-02-01

    Disruptions of ovarian function in women are associated with increased risk of metabolic disease due to dysregulation of peripheral glucose homeostasis in skeletal muscle. Our previous evidence suggests that alterations in skeletal muscle lipid metabolism coupled with altered mitochondrial function may also develop. The objective of this study was to use an integrative metabolic approach to identify potential areas of dysfunction that develop in skeletal muscle from ovariectomized (OVX) female mice compared with age-matched ovary-intact adult female mice (sham). The OVX mice exhibited significant increases in body weight, visceral, and inguinal fat mass compared with sham mice. OVX mice also had significant increases in skeletal muscle intramyocellular lipids (IMCL) compared with the sham animals, which corresponded to significant increases in the protein content of the fatty acid transporters CD36/FAT and FABPpm. A targeted metabolic profiling approach identified significantly lower levels of specific acyl carnitine species and various amino acids in skeletal muscle from OVX mice compared with the sham animals, suggesting a potential dysfunction in lipid and amino acid metabolism, respectively. Basal and maximal mitochondrial oxygen consumption rates were significantly impaired in skeletal muscle fibers from OVX mice compared with sham animals. Collectively, these data indicate that loss of ovarian function results in increased IMCL storage that is coupled with alterations in mitochondrial function and changes in the skeletal muscle metabolic profile.

  3. Ectopic lipid deposition and the metabolic profile of skeletal muscle in ovariectomized mice

    PubMed Central

    Jackson, Kathryn C.; Wohlers, Lindsay M.; Lovering, Richard M.; Schuh, Rosemary A.; Maher, Amy C.; Bonen, Arend; Koves, Timothy R.; Ilkayeva, Olga; Thomson, David M.; Muoio, Deborah M.

    2013-01-01

    Disruptions of ovarian function in women are associated with increased risk of metabolic disease due to dysregulation of peripheral glucose homeostasis in skeletal muscle. Our previous evidence suggests that alterations in skeletal muscle lipid metabolism coupled with altered mitochondrial function may also develop. The objective of this study was to use an integrative metabolic approach to identify potential areas of dysfunction that develop in skeletal muscle from ovariectomized (OVX) female mice compared with age-matched ovary-intact adult female mice (sham). The OVX mice exhibited significant increases in body weight, visceral, and inguinal fat mass compared with sham mice. OVX mice also had significant increases in skeletal muscle intramyocellular lipids (IMCL) compared with the sham animals, which corresponded to significant increases in the protein content of the fatty acid transporters CD36/FAT and FABPpm. A targeted metabolic profiling approach identified significantly lower levels of specific acyl carnitine species and various amino acids in skeletal muscle from OVX mice compared with the sham animals, suggesting a potential dysfunction in lipid and amino acid metabolism, respectively. Basal and maximal mitochondrial oxygen consumption rates were significantly impaired in skeletal muscle fibers from OVX mice compared with sham animals. Collectively, these data indicate that loss of ovarian function results in increased IMCL storage that is coupled with alterations in mitochondrial function and changes in the skeletal muscle metabolic profile. PMID:23193112

  4. The use of fractography to supplement analysis of bone mechanical properties in different strains of mice.

    PubMed

    Wise, L M; Wang, Z; Grynpas, M D

    2007-10-01

    Fractography has not been fully developed as a useful technique in assessing failure mechanisms of bone. While fracture surfaces of osteonal bone have been explored, this may not apply to conventional mechanical testing of mouse bone. Thus, the focus of this work was to develop and evaluate the efficacy of a fractography protocol for use in supplementing the interpretation of failure mechanisms in mouse bone. Micro-computed tomography and three-point bending were performed on femora of two groups of 6-month-old mice (C57BL/6 and a mixed strain background of 129SV/C57BL6). SEM images of fracture surfaces were collected, and areas of "tension", "compression" and "transition" were identified. Percent areas of roughness were identified and estimated within areas of "tension" and "compression" and subsequently compared to surface roughness measurements generated from an optical profiler. Porosity parameters were determined on the tensile side. Linear regression analysis was performed to evaluate correlations between certain parameters. Results show that 129 mice exhibit significantly increased bone mineral density (BMD), number of "large" pores, failure strength, elastic modulus and energy to failure compared to B6 mice (p<0.001). Both 129 and B6 mice exhibit significantly (p<0.01) more percent areas of tension (49+/-1%, 42+/-2%; respectively) compared to compression (26+/-2%, 31+/-1%; respectively). In terms of "roughness", B6 mice exhibit significantly less "rough" areas (30+/-4%) compared to "smooth" areas (70+/-4%) on the tensile side only (p<0.001). Qualitatively, 129 mice demonstrate more evidence of bone toughening through fiber bridging and loosely connected fiber bundles. The number of large pores is positively correlated with failure strength (p=0.004), elastic modulus (p=0.002) and energy to failure (p=0.041). Percent area of tensile surfaces is positively correlated with failure strength (p<0.001), elastic modulus (p=0.016) and BMD (p=0.037). Percent area of rough compressive surfaces is positively correlated with energy to failure (p=0.039). Evaluation of fracture surfaces has helped to explain why 129 mice have increased mechanical properties compared to B6 mice, namely via toughening mechanisms on the compressive side of failure. Several correlations exist between fractography parameters and mechanical behavior, supporting the utility of fractography with skeletal mouse models.

  5. The use of Leptodyctium riparium (Hedw.) Warnst in the estimation of minimum postmortem interval.

    PubMed

    Lancia, Massimo; Conforti, Federica; Aleffi, Michele; Caccianiga, Marco; Bacci, Mauro; Rossi, Riccardo

    2013-01-01

    The estimation of the postmortem interval (PMI) is still one of the most challenging issues in forensic investigations, especially in cases in which advanced transformative phenomena have taken place. The dating of skeletal remains is even more difficult and sometimes only a rough determination of the PMI is possible. Recent studies suggest that plant analysis can provide a reliable estimation for skeletal remains dating, when traditional techniques are not applicable. Forensic Botany is a relatively recent discipline that includes many subdisciplines such as Palynology, Anatomy, Dendrochronology, Limnology, Systematic, Ecology, and Molecular Biology. In a recent study, Cardoso et al. (Int J Legal Med 2010;124:451) used botanical evidence for the first time to establish the PMI of human skeletal remains found in a forested area of northern Portugal from the growth rate of mosses and shrub roots. The present paper deals with a case in which the study of the growth rate of the bryophyte Leptodyctium riparium (Hedw.) Warnst, was used in estimating the PMI of some human skeletal remains that were found in a wooded area near Perugia, in Central Italy. © 2012 American Academy of Forensic Sciences.

  6. Past 140-year environmental record in the northern South China Sea: evidence from coral skeletal trace metal variations.

    PubMed

    Song, Yinxian; Yu, Kefu; Zhao, Jianxin; Feng, Yuexing; Shi, Qi; Zhang, Huiling; Ayoko, Godwin A; Frost, Ray L

    2014-02-01

    About 140-year changes in the trace metals in Porites coral samples from two locations in the northern South China Sea were investigated. Results of PCA analyses suggest that near the coast, terrestrial input impacted behavior of trace metals by 28.4%, impact of Sea Surface Temperature (SST) was 19.0%, contribution of war and infrastructure were 14.4% and 15.6% respectively. But for a location in the open sea, contribution of War and SST reached 33.2% and 16.5%, while activities of infrastructure and guano exploration reached 13.2% and 14.7%. While the spatiotemporal change model of Cu, Cd and Pb in seawater of the north area of South China Sea during 1986-1997 were reconstructed. It was found that in the sea area Cu and Cd contaminations were distributed near the coast while areas around Sanya, Hainan had high Pb levels because of the well-developed tourism related activities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Skeletal muscle atrophy in bioengineered skeletal muscle: a new model system.

    PubMed

    Lee, Peter H U; Vandenburgh, Herman H

    2013-10-01

    Skeletal muscle atrophy has been well characterized in various animal models, and while certain pathways that lead to disuse atrophy and its associated functional deficits have been well studied, available drugs to counteract these deficiencies are limited. An ex vivo tissue-engineered skeletal muscle offers a unique opportunity to study skeletal muscle physiology in a controlled in vitro setting. Primary mouse myoblasts isolated from adult muscle were tissue engineered into bioartificial muscles (BAMs) containing hundreds of aligned postmitotic muscle fibers expressing sarcomeric proteins. When electrically stimulated, BAMs generated measureable active forces within 2-3 days of formation. The maximum isometric tetanic force (Po) increased for ∼3 weeks to 2587±502 μN/BAM and was maintained at this level for greater than 80 days. When BAMs were reduced in length by 25% to 50%, muscle atrophy occurred in as little as 6 days. Length reduction resulted in significant decreases in Po (50.4%), mean myofiber cross-sectional area (21.7%), total protein synthesis rate (22.0%), and noncollagenous protein content (6.9%). No significant changes occurred in either the total metabolic activity or protein degradation rates. This study is the first in vitro demonstration that length reduction alone can induce skeletal muscle atrophy, and establishes a novel in vitro model for the study of skeletal muscle atrophy.

  8. Piecing together the puzzle of perilipin proteins and skeletal muscle lipolysis.

    PubMed

    MacPherson, Rebecca E K; Peters, Sandra J

    2015-07-01

    The regulation of skeletal muscle lipolysis and fat oxidation is a complex process involving multiple proteins and enzymes. Emerging work indicates that skeletal muscle PLIN proteins likely play a role in the hydrolysis of triglycerides stored in lipid droplets and the passage of fatty acids to the mitochondria for oxidation. In adipocytes, PLIN1 regulates lipolysis by interacting with comparative gene identification-58 (CGI-58), an activator of adipose triglyceride lipase (ATGL). Upon lipolytic stimulation, PLIN1 is phosphorylated, releasing CGI-58 to activate ATGL and initiate triglyceride breakdown. The absence of PLIN1 in skeletal muscle leads us to believe that other PLIN family members undertake this role. The focus of this review is on the PLIN family proteins expressed in skeletal muscle: PLIN2, PLIN3, and PLIN5. To date, most studies involving these PLIN proteins have used nonmuscle tissues and cell cultures to determine their potential roles. Results from work in these models support a role for PLIN proteins in sequestering lipases during basal conditions and in potentially working together for lipase translocation and activity during lipolysis. In skeletal muscle, PLIN2 tends to mirror the lipid content and may play a role in lipid droplet growth and stability through lipase interactions on the lipid droplet surface, whereas the skeletal muscle roles of both PLIN3 and PLIN5 seem to be more complex because they are found not only on the lipid droplet, but also at the mitochondria. Clearly, further work is needed to fully understand the intricate mechanisms by which PLIN proteins contribute to skeletal muscle lipid metabolism.

  9. Mapping the natural variation in whole bone stiffness and strength across skeletal sites.

    PubMed

    Schlecht, Stephen H; Bigelow, Erin M R; Jepsen, Karl J

    2014-10-01

    Traits of the skeletal system are coordinately adjusted to establish mechanical homeostasis in response to genetic and environmental factors. Prior work demonstrated that this 'complex adaptive' process is not perfect, revealing a two-fold difference in whole bone stiffness of the tibia across a population. Robustness (specifically, total cross-sectional area relative to length) varies widely across skeletal sites and between sexes. However, it is unknown whether the natural variation in whole bone stiffness and strength also varies across skeletal sites and between men and women. We tested the hypotheses that: 1) all major long bones of the appendicular skeleton demonstrate inherent, systemic constraints in the degree to which morphological and compositional traits can be adjusted for a given robustness; and 2) these traits covary in a predictable manner independent of body size and robustness. We assessed the functional relationships among robustness, cortical area (Ct.Ar), cortical tissue mineral density (Ct.TMD), and bone strength index (BSI) across the long bones of the upper and lower limbs of 115 adult men and women. All bones showed a significant (p<0.001) positive regression between BSI and robustness after adjusting for body size, with slender bones being 1.7-2.3 times less stiff and strong in men and 1.3-2.8 times less stiff and strong in women compared to robust bones. Our findings are the first to document the natural inter-individual variation in whole bone stiffness and strength that exist within populations and that is predictable based on skeletal robustness for all major long bones. Documenting and further understanding this natural variation in strength may be critical for differentially diagnosing and treating skeletal fragility. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Mapping the natural variation in whole bone stiffness and strength across skeletal sites

    PubMed Central

    Schlecht, Stephen H.; Bigelow, Erin M.R.; Jepsen, Karl J.

    2016-01-01

    Traits of the skeletal system are coordinately adjusted to establish mechanical homeostasis in response to genetic and environmental factors. Prior work demonstrated that this `complex adaptive' process is not perfect, revealing a two-fold difference in whole bone stiffness of the tibia across a population. Robustness (specifically, total cross-sectional area relative to length) varies widely across skeletal sites and between sexes. However, it is unknown whether the natural variation in whole bone stiffness and strength also varies across skeletal sites and between men and women. We tested the hypotheses that: 1) all major long bones of the appendicular skeleton demonstrate inherent, systemic constraints in the degree to which morphological and compositional traits can be adjusted for a given robustness; and 2) these traits covary in a predictable manner independent of body size and robustness. We assessed the functional relationships among robustness, cortical area (Ct.Ar), cortical tissue mineral density (Ct.TMD), and bone strength index (BSI) across the long bones of the upper and lower limbs of 115 adult men and women. All bones showed a significant (p < 0.001) positive regression between BSI and robustness after adjusting for body size, with slender bones being 1.7–2.3 times less stiff and strong in men and 1.3–2.8 times less stiff and strong in women compared to robust bones. Our findings are the first to document the natural inter-individual variation in whole bone stiffness and strength that exist within populations and that is predictable based on skeletal robustness for all major long bones. Documenting and further understanding this natural variation in strength may be critical for differentially diagnosing and treating skeletal fragility. PMID:24999223

  11. An image-based skeletal dosimetry model for the ICRP reference newborn—internal electron sources

    NASA Astrophysics Data System (ADS)

    Pafundi, Deanna; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2010-04-01

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  12. An image-based skeletal dosimetry model for the ICRP reference adult male—internal electron sources

    NASA Astrophysics Data System (ADS)

    Hough, Matthew; Johnson, Perry; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2011-04-01

    In this study, a comprehensive electron dosimetry model of the adult male skeletal tissues is presented. The model is constructed using the University of Florida adult male hybrid phantom of Lee et al (2010 Phys. Med. Biol. 55 339-63) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow, associated with radiogenic leukemia, and total shallow marrow, associated with radiogenic bone cancer. Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following sources: bone marrow (active and inactive), trabecular bone (surfaces and volumes), and cortical bone (surfaces and volumes). Specific absorbed fractions are computed according to the MIRD schema, and are given as skeletal-averaged values in the paper with site-specific values reported in both tabular and graphical format in an electronic annex available from http://stacks.iop.org/0031-9155/56/2309/mmedia. The distribution of cortical bone and spongiosa at the macroscopic dimensions of the phantom, as well as the distribution of trabecular bone and marrow tissues at the microscopic dimensions of the phantom, is imposed through detailed analyses of whole-body ex vivo CT images (1 mm resolution) and spongiosa-specific ex vivo microCT images (30 µm resolution), respectively, taken from a 40 year male cadaver. The method utilized in this work includes: (1) explicit accounting for changes in marrow self-dose with variations in marrow cellularity, (2) explicit accounting for electron escape from spongiosa, (3) explicit consideration of spongiosa cross-fire from cortical bone, and (4) explicit consideration of the ICRP's change in the surrogate tissue region defining the location of the osteoprogenitor cells (from a 10 µm endosteal layer covering the trabecular and cortical surfaces to a 50 µm shallow marrow layer covering trabecular and medullary cavity surfaces). Skeletal-averaged values of absorbed fraction in the present model are noted to be very compatible with those weighted by the skeletal tissue distributions found in the ICRP Publication 110 adult male and female voxel phantoms, but are in many cases incompatible with values used in current and widely implemented internal dosimetry software.

  13. An Accurate and Dynamic Computer Graphics Muscle Model

    NASA Technical Reports Server (NTRS)

    Levine, David Asher

    1997-01-01

    A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.

  14. Craniofacial structures' development in prenatal period: An MRI study.

    PubMed

    Begnoni, G; Serrao, G; Musto, F; Pellegrini, G; Triulzi, F M; Dellavia, C

    2018-05-01

    The development of skeletal structures (cranial base, upper and lower) and upper airways spaces (oropharyngeal and nasopharyngeal) of the skull has always been an issue of great interest in orthodontics. Foetal MRI images obtained as screening exam during pregnancy can help to understand the development of these structures using a sample cephalometric analysis. A total of 28 MRI images in sagittal section of foetuses from 20th to 32th weeks of gestation were obtained to dispel doubts about the presence of skeletal malformations. Cephalometric measurements were performed on MRI T2-dependent images acquired with a 1.5 T scanner. The Software Osirix 5 permits to study sagittal and vertical dimensions of the skull analysing linear measurements, angles and areas of the skeletal structures. Vertical and sagittal dimension of cranial base, maxilla and mandible grow significantly (P < .01) between the second and third trimester of gestational period as well as nasopharyngeal and oropharyngeal spaces (P < .05). High correlation between the development of anterior cranial base and functional areas devoted to speech and swallow is demonstrated (r: .97). The development of craniofacial structures during foetal period seems to show a close correlation between skeletal features and functional spaces with a peak between the second and third trimester of gestation. MRI images result helpful for the clinician to detect with a sample cephalometric analysis anomalies of skeletal and functional structures during prenatal period. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. The Effects of Temperature and CO2-induced Acidification on Skeletal Morphology of the Tropical Reef-building Coral Siderastrea siderea

    NASA Astrophysics Data System (ADS)

    Cobleigh, K.

    2016-02-01

    Coral reefs are threatened by increasing sea surface temperatures and decreasing surface seawater pH. Although numerous experimental studies have examined the effects of these global scale stressors on corals, few have quantified the effects of temperature and acidification on coral skeletal morphology. We conducted controlled laboratory experiments to investigate the effects of temperature (25, 28, 32°C) and CO2-induced ocean acidification (pCO2 = 324, 477, 604, 2553 µatm) on skeletal morphology of the highly resilient Caribbean reef-building coral Siderastrea siderea over a 95-day interval. Post-treatment S. siderea corallites from nearshore, backreef, and forereef colonies were imaged via stereo microscopy to evaluate impact of warming and acidification on corallite height and infilling. Both an increase and decrease in temperature relative to the control (i.e., near-present-day temperatures) resulted in increased corallite height but decreased skeletal infilling. In contrast, corals reared under the lowest (i.e., pre-industrial) and highest pCO2 treatments (i.e., extreme pCO2) exhibited both decreased corallite height and skeletal infilling relative to the control. We observed no difference in corallite height or infilling across reef zones, either within or across treatments. Interestingly, the warming projected for the end of the 21st century (32°C) resulted in increased corallite height and reduced corallite infilling. Acidification projected for the same interval (pCO2 = 604 µatm) also resulted in increased corallite height and decreased infilling. Collectively, our results suggest that these two global stressors will result in S. siderea corallites that are taller yet less infilled by the end of the 21st century. Changes in S. siderea arising from warming and acificiation may exacerbate observed declines in coral health across Caribbean reef systems.

  16. Weight-adjusted lean body mass and calf circumference are protective against obesity-associated insulin resistance and metabolic abnormalities.

    PubMed

    Takamura, Toshinari; Kita, Yuki; Nakagen, Masatoshi; Sakurai, Masaru; Isobe, Yuki; Takeshita, Yumie; Kawai, Kohzo; Urabe, Takeshi; Kaneko, Shuichi

    2017-07-01

    To test the hypothesis that preserved muscle mass is protective against obesity-associated insulin resistance and metabolic abnormalities, we analyzed the relationship of lean body mass and computed tomography-assessed sectional areas of specific skeletal muscles with insulin resistance and metabolic abnormalities in a healthy cohort. A total of 195 subjects without diabetes who had completed a medical examination were included in this study. Various anthropometric indices such as circumferences of the arm, waist, hip, thigh, and calf were measured. Body composition (fat and lean body mass) was determined by bioelectrical impedance analysis. Sectional areas of specific skeletal muscles (iliopsoas, erector spinae, gluteus, femoris, and rectus abdominis muscles) were measured using computed tomography. Fat and lean body mass were significantly correlated with metabolic abnormalities and insulin resistance indices. When adjusted by weight, relationships of fat and lean body mass with metabolic parameters were mirror images of each other. The weight-adjusted lean body mass negatively correlated with systolic and diastolic blood pressures; fasting plasma glucose, HbA1c, alanine aminotransferase, and triglyceride, and insulin levels; and hepatic insulin resistance indices, and positively correlated with HDL-cholesterol levels and muscle insulin sensitivity indices. Compared with weight-adjusted lean body mass, weight-adjusted sectional areas of specific skeletal muscles showed similar, but not as strong, correlations with metabolic parameters. Among anthropometric measures, the calf circumference best reflected lean body mass, and weight-adjusted calf circumference negatively correlated with metabolic abnormalities and insulin resistance indices. Weight-adjusted lean body mass and skeletal muscle area are protective against weight-associated insulin resistance and metabolic abnormalities. The calf circumference reflects lean body mass and may be useful as a protective marker against obesity-associated metabolic abnormalities.

  17. Single cross-sectional area of pectoralis muscle by computed tomography - correlation with bioelectrical impedance based skeletal muscle mass in healthy subjects.

    PubMed

    Kim, Young Saing; Kim, Eun Young; Kang, Shin Myung; Ahn, Hee Kyung; Kim, Hyung Sik

    2017-09-01

    Skeletal muscle depletion is an important prognostic factor in patients with chronic obstructive pulmonary disease (COPD); a recent study demonstrated significant correlations between pectoralis muscle area on an axial CT image and COPD-related traits. The purpose of this study was to evaluate the relation between pectoralis muscle areas on CT scans and total body skeletal muscle mass (SMM) in healthy subjects. For 434 subjects that underwent a low-dose chest CT and bioelectrical impedance analysis (BIA) during health screening from January to June of 2014, cross-sectional area of pectoralis muscles were measured in CT scans. Pearson's correlation and multiple linear regression analysis were used to assess the relationship between cross-sectional CT areas of pectoralis muscles and BIA-assessed SMMs. Mean age was 50 ± 10 years (78·8% were male). The mean cross-sectional area of pectoralis muscles was 24·1 cm 2  ± 6·8. A moderate correlation was observed between pectoralis muscle area and BIA-based SMM (r = 0·665, P<0.001). Multivariable analysis showed CT determined pectoralis muscle area was significantly associated with BIA-assessed SMM after adjusting for gender, weight, height and age (β = 0·14 ± 0·02, P<0·001). Cross-sectional area of the pectoralis muscles on single axial CT images shows moderate correlation with total body SMM determined by BIA in healthy subjects. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  18. Tibia and radius bone geometry and volumetric density in obese compared to non-obese adolescents.

    PubMed

    Leonard, Mary B; Zemel, Babette S; Wrotniak, Brian H; Klieger, Sarah B; Shults, Justine; Stallings, Virginia A; Stettler, Nicolas

    2015-04-01

    Childhood obesity is associated with biologic and behavioral characteristics that may impact bone mineral density (BMD) and structure. The objective was to determine the association between obesity and bone outcomes, independent of sexual and skeletal maturity, muscle area and strength, physical activity, calcium intake, biomarkers of inflammation, and vitamin D status. Tibia and radius peripheral quantitative CT scans were obtained in 91 obese (BMI>97th percentile) and 51 non-obese adolescents (BMI>5th and <85th percentiles). Results were converted to sex- and race-specific Z-scores relative to age. Cortical structure, muscle area and muscle strength (by dynamometry) Z-scores were further adjusted for bone length. Obese participants had greater height Z-scores (p<0.001), and advanced skeletal maturity (p<0.0001), compared with non-obese participants. Tibia cortical section modulus and calf muscle area Z-scores were greater in obese participants (1.07 and 1.63, respectively, both p<0.0001). Tibia and radius trabecular and cortical volumetric BMD did not differ significantly between groups. Calf muscle area and strength Z-scores, advanced skeletal maturity, and physical activity (by accelerometry) were positively associated with tibia cortical section modulus Z-scores (all p<0.01). Adjustment for muscle area Z-score attenuated differences in tibia section modulus Z-scores between obese and non-obese participants from 1.07 to 0.28. After multivariate adjustment for greater calf muscle area and strength Z-scores, advanced maturity, and less moderate to vigorous physical activity, tibia section modulus Z-scores were 0.32 (95% CI -0.18, 0.43, p=0.06) greater in obese, vs. non-obese participants. Radius cortical section modulus Z-scores were 0.45 greater (p=0.08) in obese vs. non-obese participants; this difference was attenuated to 0.14 with adjustment for advanced maturity. These findings suggest that greater tibia cortical section modulus in obese adolescents is attributable to advanced skeletal maturation and greater muscle area and strength, while less moderate to vigorous physical activities offset the positive effects of these covariates. The impact of obesity on cortical structure was greater at weight bearing sites. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. STIM1 signaling controls store operated calcium entry required for development and contractile function in skeletal muscle

    PubMed Central

    Stiber, Jonathan; Hawkins, April; Zhang, Zhu-Shan; Wang, Sunny; Burch, Jarrett; Graham, Victoria; Ward, Cary C.; Seth, Malini; Finch, Elizabeth; Malouf, Nadia; Williams, R. Sanders; Eu, Jerry P.; Rosenberg, Paul

    2009-01-01

    It is now well established that stromal interaction molecule 1 (STIM1) is the calcium sensor of endoplasmic reticulum (ER) stores required to activate store-operated calcium entry (SOC) channels at the surface of non-excitable cells. Yet little is known about STIM1 in excitable cells such as striated muscle where the complement of calcium regulatory molecules is rather disparate from that of non-excitable cells. Here, we show that STIM1 is expressed in both myotubes and adult skeletal muscle. Myotubes lacking functional STIM1 fail to exhibit SOC and fatigue rapidly. Moreover, mice lacking functional STIM1 die perinatally from a skeletal myopathy. In addition, STIM1 haploinsufficiency confers a contractile defect only under conditions where rapid refilling of stores would be needed. These findings provide novel insight to the role of STIM1 in skeletal muscle and suggest that STIM1 has a universal role as an ER/SR calcium sensor in both excitable and non-excitable cells. PMID:18488020

  20. The structure of and origin of nodular chromite from the Troodos ophiolite, Cyprus, revealed using high-resolution X-ray computed tomography and electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Prichard, H. M.; Barnes, S. J.; Godel, B.; Reddy, S. M.; Vukmanovic, Z.; Halfpenny, A.; Neary, C. R.; Fisher, P. C.

    2015-03-01

    Nodular chromite is a characteristic feature of ophiolitic podiform chromitite and there has been much debate about how it forms. Nodular chromite from the Troodos ophiolite in Cyprus is unusual in that it contains skeletal crystals enclosed within the centres of the nodules and interstitial to them. 3D imaging and electron backscatter diffraction have shown that the skeletal crystals within the nodules are single crystals that are surrounded by a rim of polycrystalline chromite. 3D analysis reveals that the skeletal crystals are partially or completely formed cage or hopper structures elongated along the < 111 > axis. The rim is composed of a patchwork of chromite grains that are truncated on the outer edge of the rim. The skeletal crystals formed first from a magma supersaturated in chromite and silicate minerals crystallised from melt trapped between the chromite skeletal crystal blades as they grew. The formation of skeletal crystals was followed by a crystallisation event which formed a silicate-poor rim of chromite grains around the skeletal crystals. These crystals show a weak preferred orientation related to the orientation of the core skeletal crystal implying that they formed by nucleation and growth on this core, and did not form by random mechanical aggregation. Patches of equilibrium adcumulate textures within the rim attest to in situ development of such textures. The nodules were subsequently exposed to chromite undersaturated magma resulting in dissolution, recorded by truncated grain boundaries in the rim and a smooth outer surface to the nodule. None of these stages of formation require a turbulent magma. Lastly the nodules impinged on each other causing local deformation at points of contact.

  1. Effect of oxotremorine on resting membrane potential and cell volume in skeletal muscle fibers in rats after in vivo blockade of NO-synthase.

    PubMed

    Khairova, R A; Malomuzh, A I; Naumenko, N V; Urazaev, A Kh

    2003-02-01

    Denervation of rat phrenic muscle or block of NO-synthase in vivo increased the cross-section area of muscle fibers and decreased membrane resting potential. Oxotremorine prevented the development of denervation-induced or denervation-like (i.e. induced by NO-synthase blockade) membrane depolarization and increase of the cross-sectional area of muscle fibers. Pirenzepine abolished the effects of oxotremorine. It was concluded that non-quantal acetylcholine can be involved in the regulation of skeletal muscle fiber volume via activation of M1 muscarinic receptors followed by NO synthesis.

  2. Understanding cold bias: Variable response of skeletal Sr/Ca to seawater pCO2 in acclimated massive Porites corals

    PubMed Central

    Cole, Catherine; Finch, Adrian; Hintz, Christopher; Hintz, Kenneth; Allison, Nicola

    2016-01-01

    Coral skeletal Sr/Ca is a palaeothermometer commonly used to produce high resolution seasonal sea surface temperature (SST) records and to investigate the amplitude and frequency of ENSO and interdecadal climate events. The proxy relationship is typically calibrated by matching seasonal SST and skeletal Sr/Ca maxima and minima in modern corals. Applying these calibrations to fossil corals assumes that the temperature sensitivity of skeletal Sr/Ca is conserved, despite substantial changes in seawater carbonate chemistry between the modern and glacial ocean. We present Sr/Ca analyses of 3 genotypes of massive Porites spp. corals (the genus most commonly used for palaeoclimate reconstruction), cultured under seawater pCO2 reflecting modern, future (year 2100) and last glacial maximum (LGM) conditions. Skeletal Sr/Ca is indistinguishable between duplicate colonies of the same genotype cultured under the same conditions, but varies significantly in response to seawater pCO2 in two genotypes of Porites lutea, whilst Porites murrayensis is unaffected. Within P. lutea, the response is not systematic: skeletal Sr/Ca increases significantly (by 2–4%) at high seawater pCO2 relative to modern in both genotypes, and also increases significantly (by 4%) at low seawater pCO2 in one genotype. This magnitude of variation equates to errors in reconstructed SST of up to −5 °C. PMID:27241795

  3. Understanding cold bias: Variable response of skeletal Sr/Ca to seawater pCO2 in acclimated massive Porites corals.

    PubMed

    Cole, Catherine; Finch, Adrian; Hintz, Christopher; Hintz, Kenneth; Allison, Nicola

    2016-05-31

    Coral skeletal Sr/Ca is a palaeothermometer commonly used to produce high resolution seasonal sea surface temperature (SST) records and to investigate the amplitude and frequency of ENSO and interdecadal climate events. The proxy relationship is typically calibrated by matching seasonal SST and skeletal Sr/Ca maxima and minima in modern corals. Applying these calibrations to fossil corals assumes that the temperature sensitivity of skeletal Sr/Ca is conserved, despite substantial changes in seawater carbonate chemistry between the modern and glacial ocean. We present Sr/Ca analyses of 3 genotypes of massive Porites spp. corals (the genus most commonly used for palaeoclimate reconstruction), cultured under seawater pCO2 reflecting modern, future (year 2100) and last glacial maximum (LGM) conditions. Skeletal Sr/Ca is indistinguishable between duplicate colonies of the same genotype cultured under the same conditions, but varies significantly in response to seawater pCO2 in two genotypes of Porites lutea, whilst Porites murrayensis is unaffected. Within P. lutea, the response is not systematic: skeletal Sr/Ca increases significantly (by 2-4%) at high seawater pCO2 relative to modern in both genotypes, and also increases significantly (by 4%) at low seawater pCO2 in one genotype. This magnitude of variation equates to errors in reconstructed SST of up to -5 °C.

  4. Prevalence of skeletal muscle mass loss and its association with swallowing function after cardiovascular surgery.

    PubMed

    Wakabayashi, Hidetaka; Takahashi, Rimiko; Watanabe, Naoko; Oritsu, Hideyuki; Shimizu, Yoshitaka

    2017-06-01

    The aim of this study was to assess the prevalence of skeletal muscle mass loss and its association with swallowing function in patients with dysphagia after cardiovascular surgery. A retrospective cohort study was performed in 65 consecutive patients with dysphagia after cardiovascular surgery who were prescribed speech therapy. Skeletal muscle index (SMI) was calculated as total psoas muscle area assessed via abdominal computed tomography divided by height squared. Cutoff values were 6.36 cm 2 /m 2 for men and 3.92 cm 2 /m 2 for women. The Food Intake Level Scale (FILS) was used to assess the swallowing function. Univariate and ordered logistic regression analyses were applied to examine the associations between skeletal muscle mass loss and dysphagia. The study included 50 men and 15 women (mean age 73 ± 8 y). The mean SMI was 4.72 ± 1.37 cm 2 /m 2 in men and 3.33 ± 1.42 cm 2 /m 2 in women. Skeletal muscle mass loss was found in 53 (82%) patients. Twelve had tracheostomy cannula. Thirteen were non-oral feeding (FILS levels 1-3), 5 were oral food intake and alternative nutrition (levels 4-6), and 47 were oral food intake alone (levels 7-9) at discharge. The FILS at discharge was significantly lower in patients with skeletal muscle mass loss. Ordered logistic regression analysis of swallowing function showed that skeletal muscle mass loss and tracheostomy cannula were associated independently with the FILS at discharge. The prevalence of skeletal muscle mass loss is very high, and skeletal muscle mass loss is associated with swallowing function. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Skeletal accumulation of fluorescently tagged zoledronate is higher in animals with early stage chronic kidney disease.

    PubMed

    Swallow, E A; Aref, M W; Chen, N; Byiringiro, I; Hammond, M A; McCarthy, B P; Territo, P R; Kamocka, M M; Winfree, S; Dunn, K W; Moe, S M; Allen, M R

    2018-06-11

    This work examines the skeletal accumulation of fluorescently tagged zoledronate in an animal model of chronic kidney disease. The results show higher accumulation in 24-h post-dose animals with lower kidney function due to greater amounts of binding at individual surfaces. Chronic kidney disease (CKD) patients suffer from increased rates of skeletal-related mortality from changes driven by biochemical abnormalities. Bisphosphonates are commonly used in reducing fracture risk in a variety of diseases, yet their use is not recommended in advanced stages of CKD. This study aimed to characterize the accumulation of a single dose of fluorescently tagged zoledronate (FAM-ZOL) in the setting of reduced kidney function. At 25 weeks of age, FAM-ZOL was administered to normal and CKD rats. Twenty-four hours later, multiple bones were collected and assessed using bulk fluorescence imaging, two-photon imaging, and dynamic histomorphometry. CKD animals had significantly higher levels of FAM-ZOL accumulation in the proximal tibia, radius, and ulna, but not in lumbar vertebral body or mandible, based on multiple measurement modalities. Although a majority of trabecular bone surfaces were covered with FAM-ZOL in both normal and CKD animals, the latter had significantly higher levels of fluorescence per unit bone surface in the proximal tibia. These results provide new data regarding how reduced kidney function affects drug accumulation in rat bone.

  6. Astaxanthin supplementation attenuates immobilization-induced skeletal muscle fibrosis via suppression of oxidative stress.

    PubMed

    Maezawa, Toshiyuki; Tanaka, Masayuki; Kanazashi, Miho; Maeshige, Noriaki; Kondo, Hiroyo; Ishihara, Akihiko; Fujino, Hidemi

    2017-09-01

    Immobilization induces skeletal muscle fibrosis characterized by increasing collagen synthesis in the perimysium and endomysium. Transforming growth factor-β1 (TGF-β1) is associated with this lesion via promoting differentiation of fibroblasts into myofibroblasts. In addition, reactive oxygen species (ROS) are shown to mediate TGF-β1-induced fibrosis in tissues. These reports suggest the importance of ROS reduction for attenuating skeletal muscle fibrosis. Astaxanthin, a powerful antioxidant, has been shown to reduce ROS production in disused muscle. Therefore, we investigated the effects of astaxanthin supplementation on muscle fibrosis under immobilization. In the present study, immobilization increased the collagen fiber area, the expression levels of TGF-β1, α-smooth muscle actin, and superoxide dismutase-1 protein and ROS production. However, these changes induced by immobilization were attenuated by astaxanthin supplementation. These results indicate the effectiveness of astaxanthin supplementation on skeletal muscle fibrosis induced by ankle joint immobilization.

  7. High fluoride and low calcium levels in drinking water is associated with low bone mass, reduced bone quality and fragility fractures in sheep.

    PubMed

    Simon, M J K; Beil, F T; Rüther, W; Busse, B; Koehne, T; Steiner, M; Pogoda, P; Ignatius, A; Amling, M; Oheim, R

    2014-07-01

    Chronic environmental fluoride exposure under calcium stress causes fragility fractures due to osteoporosis and bone quality deterioration, at least in sheep. Proof of skeletal fluorosis, presenting without increased bone density, calls for a review of fracture incidence in areas with fluoridated groundwater, including an analysis of patients with low bone mass. Understanding the skeletal effects of environmental fluoride exposure especially under calcium stress remains an unmet need of critical importance. Therefore, we studied the skeletal phenotype of sheep chronically exposed to highly fluoridated water in the Kalahari Desert, where livestock is known to present with fragility fractures. Dorper ewes from two flocks in Namibia were studied. Chemical analyses of water, blood and urine were executed for both cohorts. Skeletal phenotyping comprised micro-computer tomography (μCT), histological, histomorphometric, biomechanical, quantitative backscattered electron imaging (qBEI) and energy-dispersive X-ray (EDX) analysis. Analysis was performed in direct comparison with undecalcified human iliac crest bone biopsies of patients with fluoride-induced osteopathy. The fluoride content of water, blood and urine was significantly elevated in the Kalahari group compared to the control. Surprisingly, a significant decrease in both cortical and trabecular bones was found in sheep chronically exposed to fluoride. Furthermore, osteoid parameters and the degree and heterogeneity of mineralization were increased. The latter findings are reminiscent of those found in osteoporotic patients with treatment-induced fluorosis. Mechanical testing revealed a significant decrease in the bending strength, concurrent with the clinical observation of fragility fractures in sheep within an area of environmental fluoride exposure. Our data suggest that fluoride exposure with concomitant calcium deficit (i) may aggravate bone loss via reductions in mineralized trabecular and cortical bone mass and (ii) can cause fragility fractures and (iii) that the prevalence of skeletal fluorosis especially due to groundwater exposure should be reviewed in many areas of the world as low bone mass alone does not exclude fluorosis.

  8. Genes Contributing to Genetic Variation of Muscling in Sheep

    PubMed Central

    Tellam, Ross L.; Cockett, Noelle E.; Vuocolo, Tony; Bidwell, Christopher A.

    2012-01-01

    Selective breeding programs aiming to increase the productivity and profitability of the sheep meat industry use elite, progeny tested sires. The broad genetic traits of primary interest in the progeny of these sires include skeletal muscle yield, fat content, eating quality, and reproductive efficiency. Natural mutations in sheep that enhance muscling have been identified, while a number of genome scans have identified and confirmed quantitative trait loci (QTL) for skeletal muscle traits. The detailed phenotypic characteristics of sheep carrying these mutations or QTL affecting skeletal muscle show a number of common biological themes, particularly changes in developmental growth trajectories, alterations of whole animal morphology, and a shift toward fast twitch glycolytic fibers. The genetic, developmental, and biochemical mechanisms underpinning the actions of some of these genetic variants are described. This review critically assesses this research area, identifies gaps in knowledge, and highlights mechanistic linkages between genetic polymorphisms and skeletal muscle phenotypic changes. This knowledge may aid the discovery of new causal genetic variants and in some cases lead to the development of biochemical and immunological strategies aimed at enhancing skeletal muscle. PMID:22952470

  9. The role of 1,25-dihydroxyvitamin D in the inhibition of bone formation induced by skeletal unloading

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Wronski, T. J.; GLOBUS. R.; Levens, M. J.; Morey-Holton, E.

    1983-01-01

    Skeletal unloading results in osteopenia. To examine the involvement of vitamin D in this process, the rear limbs of growing rats were unloaded and alterations in bone calcium and bone histology were related to changes in serum calcium (Ca), inorganic phosphorus (P sub i), 25-hydroxyvitamin D (25-OH-D), 24,25-dihydroxyvitamin D (24,25(OH)2D and 1,25-dihydroxyvitamin D (1,25(OH)2D. Acute skeletal unloading induced a transitory inhibition of Ca accumulation in unloaded bones. This was accompanied by a transitory rise in serum Ca, a 21% decrease in longitudinal bone growth (P 0.01), a 32% decrease in bone surface lined with osteoblasts (P .05), no change in bone surface lined with osteoclasts and a decrease in circulating (1,25(OH)2D. No significant changes in the serum concentrations of P sub i, 25-OH-D or 24,25(OH)2D were observed. After 2 weeks of unloading, bone Ca stabilized at approximately 70% of control and serum Ca and 1,25(OH)2D returned to control values. Maintenance of a constant serum 1,25(OH)2D concentration by chronic infusion of 1,25(OH)2D (Alza osmotic minipump) throughout the study period did not prevent the bone changes induced by acute unloading. These results suggest that acute skeletal unloading in the growing rat produces a transitory inhibition of bone formation which in turn produces a transitory hypercalcemia.

  10. Ultrastructural localization of the C-terminus of the 43-kd dystrophin-associated glycoprotein and its relation to dystrophin in normal murine skeletal myofiber.

    PubMed Central

    Wakayama, Y.; Shibuya, S.; Takeda, A.; Jimi, T.; Nakamura, Y.; Oniki, H.

    1995-01-01

    We used single and double immunogold labeling electron microscopy to investigate ultrastructural localization of the C terminus of the 43-kd dystrophin-associated glycoprotein (43-DAG) and its relationship to dystrophin in normal murine skeletal myofibers. Single immunolabeling localized the antibody against the C terminus of 43-DAG to the inside surface of the muscle plasma membrane and the sarcoplasmic side of plasma membrane invaginations. Double immunolabeling co-localized antibodies against dystrophin and the C terminus of 43-DAG to the same site noted in the single immunolabeling localization of 43-DAG. In particular, dystrophin and the C-terminal 43-DAG antibody signals were often observed as doublets separated by less than 30 nm. We compared these results with those obtained from double immunogold labeling with anti-dystrophin and anti-beta-spectrin, as well as anti-C-terminal 43-DAG and anti-beta-spectrin antibodies. The antibodies against dystrophin and beta-spectrin, or beta-spectrin and 43-DAG, also co-localized to similar sites in skeletal muscle fibers. Signals of doublet formations were noted but their frequency was significantly lower than the doublet frequency of antidystrophin and anti-43-DAG antibodies. The results support the presence of dystrophin and 43-DAG linkage at the inside surface of the murine skeletal muscle plasma membrane. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7856727

  11. Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb.

    PubMed

    Matsumoto, Kazu; Li, Yingcui; Jakuba, Caroline; Sugiyama, Yoshinori; Sayo, Tetsuya; Okuno, Misako; Dealy, Caroline N; Toole, Bryan P; Takeda, Junji; Yamaguchi, Yu; Kosher, Robert A

    2009-08-01

    The glycosaminoglycan hyaluronan (HA) is a structural component of extracellular matrices and also interacts with cell surface receptors to directly influence cell behavior. To explore functions of HA in limb skeletal development, we conditionally inactivated the gene for HA synthase 2, Has2, in limb bud mesoderm using mice that harbor a floxed allele of Has2 and mice carrying a limb mesoderm-specific Prx1-Cre transgene. The skeletal elements of Has2-deficient limbs are severely shortened, indicating that HA is essential for normal longitudinal growth of all limb skeletal elements. Proximal phalanges are duplicated in Has2 mutant limbs indicating an involvement of HA in patterning specific portions of the digits. The growth plates of Has2-deficient skeletal elements are severely abnormal and disorganized, with a decrease in the deposition of aggrecan in the matrix and a disruption in normal columnar cellular relationships. Furthermore, there is a striking reduction in the number of hypertrophic chondrocytes and in the expression domains of markers of hypertrophic differentiation in the mutant growth plates, indicating that HA is necessary for the normal progression of chondrocyte maturation. In addition, secondary ossification centers do not form in the central regions of Has2 mutant growth plates owing to a failure of hypertrophic differentiation. In addition to skeletal defects, the formation of synovial joint cavities is defective in Has2-deficient limbs. Taken together, our results demonstrate that HA has a crucial role in skeletal growth, patterning, chondrocyte maturation and synovial joint formation in the developing limb.

  12. Back-scattered electron imaging of skeletal tissues.

    PubMed

    Boyde, A; Jones, S J

    The use of solid-state back-scattered electron (BSE) detectors in the scanning electron microscopic study of skeletal tissues has been investigated. To minimize the topographic element in the image, flat samples and a ring detector configuration with the sample at normal incidence to the beam and the detector are used. Very flat samples are prepared by diamond micromilling or diamond polishing plastic-embedded tissue. Density discrimination in the image is so good that different density phases within mineralized bone can be imaged. For unembedded spongy bone, cut surfaces can be discriminated from natural surfaces by a topographic contrast mechanism. BSE imaging also presents advantages for unembedded samples with rough topography, such as anorganic preparations of the mineralization zone in cartilage, which give rise to severe charging problems with conventional secondary electron imaging.

  13. Skeletal muscle biopsy studies of cardiac patients.

    PubMed

    Fekete, G; Boros, Z; Cserhalmi, L; Apor, P

    1987-01-01

    Eleven patients diagnosed and treated for congestive cardiomyopathy (COCM) of unknown aetiology, and another 10 patients, with congestive alcoholic heart muscle disease (ACOCM) were studied. Muscle biopsy samples were obtained from the vastus lateralis (VL) and the gastrocnemius (G) muscles. In part of the sample muscle the fibre pattern was classified by means of ATPase activity staining, a technique based on the pH lability of the fibres concerned. Fibre typing and area measurements were carried out by light microscope. The other part of the sample was used as muscle homogenate of which the Ca2+-activated ATPase activity as well as citrate synthetase (CS) and aldolase activities were measured. No significant difference was found in these enzyme activities between the two groups of patients. The proportion of the slow twitch (ST) fibres in the VL, mainly in the patients with ACOCM, was lower as compared to data for healthy subjects. A similar tendency was revealed for G. In both muscles tested, the area of ST fibres was smaller in the ACOCM group. The fast twitch (FT) fibre area proved to be slightly different in the two groups of subjects tested. Occurrence of degenerative signs in the histological tests was higher in the ACOCM than in the COCM group. It was concluded that differences in the skeletal muscles of patients with ACOCM and COCM may primarily account for the alcoholism. The disease of the heart muscle has little effect on the function of skeletal muscle. Even so, a low amount or lack of physical activity may have an unfavourable influence on the skeletal muscles of patients with heart muscle disease.

  14. Effect of spaceflight on the functional, biochemical, and metabolic properties of skeletal muscle

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.

    1996-01-01

    This paper summarizes the effects of spaceflight on the functional, morphological, and biochemical properties of human and rodent skeletal muscle. The findings suggest that following as little as 5-6 in space there are deficits in both human and rodent motor capacity, strength, and endurance properties of skeletal muscle. The reduced strength is associated, in part, with a reduction in muscle mass as reflected in smaller cross-sectional areas of both fast- and slow-twitch fibers. Available evidence in animal models suggests that slow-twitch fibers are more sensitive to the atrophying process. Accompanying the atrophy is a transformation of slow to fast protein phenotype involving myosin heavy chain and sarcoplasmic reticulum protein isoforms. These transformations appear to be regulated, in part, by pretranslational processes. Data on the oxidative capacity of rodent skeletal muscle suggest a bias toward preferential utilization of carbohydrate as the primary substrate. These collective findings suggest that skeletal muscles comprised chiefly of slow fibers are highly dependent on gravity for the normal expression of protein mass and slow phenotype. Future studies need to focus on elucidating the mechanisms associated with the atrophy response, as well as identifying suitable exercise and other countermeasures capable of preserving the structural and functional integrity of skeletal muscle.

  15. The Ubiquitin Ligase Nedd4-1 Participates in Denervation-Induced Skeletal Muscle Atrophy in Mice

    PubMed Central

    Nagpal, Preena; Plant, Pamela J.; Correa, Judy; Bain, Alexandra; Takeda, Michiko; Kawabe, Hiroshi; Rotin, Daniela; Bain, James R.; Batt, Jane A. E.

    2012-01-01

    Skeletal muscle atrophy is a consequence of muscle inactivity resulting from denervation, unloading and immobility. It accompanies many chronic disease states and also occurs as a pathophysiologic consequence of normal aging. In all these conditions, ubiquitin-dependent proteolysis is a key regulator of the loss of muscle mass, and ubiquitin ligases confer specificity to this process by interacting with, and linking ubiquitin moieties to target substrates through protein∶protein interaction domains. Our previous work suggested that the ubiquitin-protein ligase Nedd4-1 is a potential mediator of skeletal muscle atrophy associated with inactivity (denervation, unloading and immobility). Here we generated a novel tool, the Nedd4-1 skeletal muscle-specific knockout mouse (myoCre;Nedd4-1flox/flox) and subjected it to a well validated model of denervation induced skeletal muscle atrophy. The absence of Nedd4-1 resulted in increased weights and cross-sectional area of type II fast twitch fibres of denervated gastrocnemius muscle compared with wild type littermates controls, at seven and fourteen days following tibial nerve transection. These effects are not mediated by the Nedd4-1 substrates MTMR4, FGFR1 and Notch-1. These results demonstrate that Nedd4-1 plays an important role in mediating denervation-induced skeletal muscle atrophy in vivo. PMID:23110050

  16. Comparing activated alumina with indigenous laterite and bauxite as potential sorbents for removing fluoride from drinking water in Ghana

    USGS Publications Warehouse

    Craig, Laura; Stillings, Lisa; Decker, David L.; Thomas, James M.

    2015-01-01

    Fluoride is considered beneficial to teeth and bones when consumed in low concentrations, but at elevated concentrations it can cause dental and skeletal fluorosis. Most fluoride-related health problems occur in poor, rural communities of the developing world where groundwater fluoride concentrations are high and the primary sources of drinking water are from community hand-pump borehole drilled wells. One solution to drinking high fluoride water is to attach a simple de-fluoridation filter to the hand-pump; and indigenous materials have been recommended as low-cost sorbents for use in these filters. In an effort to develop an effective, inexpensive, and low-maintenance de-fluoridation filter for a high fluoride region in rural northern Ghana, this study conducted batch fluoride adsorption experiments and potentiometric titrations to investigate the effectiveness of indigenous laterite and bauxite as sorbents for fluoride removal. It also determined the physical and chemical properties of each sorbent. Their properties and the experimental results, including fluoride adsorption capacity, were then compared to those of activated alumina, which has been identified as a good sorbent for removing fluoride from drinking water. The results indicate that, of the three sorbents, bauxite has the highest fluoride adsorption capacity per unit area, but is limited by a low specific surface area. When considering fluoride adsorption per unit weight, activated alumina has the highest fluoride adsorption capacity because of its high specific surface area. Activated alumina also adsorbs fluoride well in a wider pH range than bauxite, and particularly laterite. The differences in adsorption capacity are largely due to surface area, pore size, and mineralogy of the sorbent.

  17. Tight glycemic control with insulin does not affect skeletal muscle degradation during the early post-operative period following pediatric cardiac surgery

    PubMed Central

    Fisher, Jeremy G.; Sparks, Eric A.; Khan, Faraz A.; Alexander, Jamin L.; Asaro, Lisa A.; Wypij, David; Gaies, Michael; Modi, Biren P.; Duggan, Christopher; Agus, Michael S.D.; Yu, Yong-Ming; Jaksic, Tom

    2015-01-01

    Objective Critical illness is associated with significant catabolism and persistent protein loss correlates with increased morbidity and mortality. Insulin is a potent anti-catabolic hormone; high-dose insulin decreases skeletal muscle protein breakdown in critically ill pediatric surgical patients. However, insulin's effect on protein catabolism when given at clinically utilized doses has not been studied. The objective was to evaluate the effect of post-operative tight glycemic control and clinically-dosed insulin on skeletal muscle degradation in children after cardiac surgery with cardiopulmonary bypass. Design Secondary analysis of a two-center, prospective randomized trial comparing tight glycemic control with standard care. Randomization was stratified by study center. Patients Children 0-36 months who were admitted to the ICU after cardiac surgery requiring cardiopulmonary bypass. Interventions In the tight glycemic control (TGC) arm, insulin was titrated to maintain blood glucose between 80-110 mg/dL. Patients in the control arm received standard care. Skeletal muscle breakdown was quantified by a ratio of urinary 3-methylhistidine to urinary creatinine (3MH:Cr). Main Results A total of 561 patients were included: 281 in the TGC arm and 280 receiving standard care. There was no difference in 3MH:Cr between groups (TGC 249 ± 127 vs. standard care 253 ± 112, mean ± standard deviation in μmol/g, P=0.72). In analyses restricted to the TGC patients, higher 3MH:Cr correlated with younger age as well as lower weight, weight-for-age z-score, length, and body surface area (P<0.005 for each), and lower post-operative day 3 serum creatinine (r=-0.17, P=0.02). Sex, prealbumin, and albumin were not associated with 3MH:Cr. During urine collection, 245 patients (87%) received insulin. However, any insulin exposure did not impact 3MH:Cr (t-test, P=0.45), and there was no dose-dependent effect of insulin on 3MH:Cr (r=-0.03, P=0.60). Conclusion Though high-dose insulin has an anabolic effect in experimental conditions, at doses necessary to achieve normoglycemia, insulin appears to have no discernible impact on skeletal muscle degradation in critically ill pediatric cardiac surgical patients. PMID:25850865

  18. Sorting receptor Rer1 controls surface expression of muscle acetylcholine receptors by ER retention of unassembled alpha-subunits.

    PubMed

    Valkova, Christina; Albrizio, Marina; Röder, Ira V; Schwake, Michael; Betto, Romeo; Rudolf, Rüdiger; Kaether, Christoph

    2011-01-11

    The nicotinic acetylcholine receptor of skeletal muscle is composed of five subunits that are assembled in a stepwise manner. Quality control mechanisms ensure that only fully assembled receptors reach the cell surface. Here, we show that Rer1, a putative Golgi-ER retrieval receptor, is involved in the biogenesis of acetylcholine receptors. Rer1 is expressed in the early secretory pathway in the myoblast line C2C12 and in mouse skeletal muscle, and up-regulated during myogenesis. Upon down-regulation of Rer1 in C2C12 cells, unassembled acetylcholine receptor α-subunits escape from the ER and are transported to the plasma membrane and lysosomes, where they are degraded. As a result, the amount of fully assembled receptor at the cell surface is reduced. In vivo Rer1 knockdown and genetic inactivation of one Rer1 allele lead to significantly smaller neuromuscular junctions in mice. Our data show that Rer1 is a functionally important unique factor that controls surface expression of muscle acetylcholine receptors by localizing unassembled α-subunits to the early secretory pathway.

  19. Integrated diagenetic and sequence stratigraphy of a late Oligocene-early Miocene, mixed-sediment platform (Austral Basin, southern Patagonia): Resolving base-level and paleoceanographic changes, and paleoaquifer characteristics

    NASA Astrophysics Data System (ADS)

    Dix, George R.; Parras, Ana

    2014-06-01

    A condensed (~ 20-m-thick) marine transgressive-highstand succession comprises the upper San Julián Formation (upper Oligocene-lower Miocene) of the northern retroarc Austral Basin, southern Patagonia. Mixed-sediment facies identify a shelf-interior setting, part of an overall warm-temperate regional platform of moderate energy. Giant oyster-dominated skeletal-hiatal accumulations along the maximum flooding surface and forming high-energy event beds in the highstand succession preserve relict micrite in protected shelter porosity, and identify periods of reduced sediment accumulation. The stratigraphic distribution of marine-derived glaucony and diagenetic carbonates is spatially related to sequence development. Depositional siderite coincides with prominent marine transgression, defining transient mixing of marine and meteoric waters across coastal-plain deposits. Chemically evolved autochthonous glaucony coincides with periods of extended seafloor exposure and transgressions that bracket the marine succession, and within the oyster-dominated skeletal accumulations. Seafloor cement, likely once magnesian calcite, formed in association with an encrusting/boring biota along the maximum flooding surface in concert with incursion of cool (11-13 °C) water. The cement is present locally in skeletal event beds in the highstand succession suggesting a possible association with high-order base-level change and cooler water. As the highstand succession coincides with elevated global sea level in the late Oligocene-early Miocene, the locally marine-cemented glauconitic skeletal event beds in the highstand succession may identify higher order glacio-eustatic control. Local stratal condensation, however, is best explained by regional differences in basement subsidence. In the burial realm, carbonate diagenesis produced layers of phreatic calcrete coincident with skeletal-rich deposits. Zeolite (clinoptilolite-K) cement is restricted to the lowermost marine transgressive interval probably due to initial elevated metastability of reworked weathered silicates. Clay (illite)-cement is restricted to siliciclastic-rich intervals wherein skeletal carbonate did not buffer pore-water pH. Diagenetic carbonate geochemistry (Sr, Na, and δ18O and δ13C) shows that, with burial, the transgressive and highstand system tracts developed as distinct paleoaquifers resulting from different proximities to meteoric recharge zones.

  20. Skeletal muscle radiodensity is prognostic for survival in patients with advanced non-small cell lung cancer.

    PubMed

    Sjøblom, Bjørg; Grønberg, Bjørn H; Wentzel-Larsen, Tore; Baracos, Vickie E; Hjermstad, Marianne J; Aass, Nina; Bremnes, Roy M; Fløtten, Øystein; Bye, Asta; Jordhøy, Marit

    2016-12-01

    Recent research indicates that severe muscular depletion (sarcopenia) is frequent in cancer patients and linked to cachexia and poor survival. Our aim was to investigate if measures of skeletal muscle hold prognostic information in advanced non-small cell lung cancer (NSCLC). We included NSCLC patients with disease stage IIIB/IV, performance status 0-2, enrolled in three randomised trials of first-line chemotherapy (n = 1305). Computed tomography (CT) images obtained before start of treatment were used for body composition analyses at the level of the third lumbar vertebra (L3). Skeletal muscle mass was assessed by measures of the cross sectional muscle area, from which the skeletal muscle index (SMI) was obtained. Skeletal muscle radiodensity (SMD) was measured as the mean Hounsfield unit (HU) of the measured muscle area. A high level of mean HU indicates a high SMD. Complete data were available for 734 patients, mean age 65 years. Both skeletal muscle index (SMI) and muscle radiodensity (SMD) varied largely. Mean SMI and SMD were 47.7 cm 2 /m 2 and 37.4 HU in men (n = 420), 39.6 cm 2 /m 2 and 37.0 HU in women (n = 314). Multivariable Cox regression analyses, adjusted for established prognostic factors, showed that SMD was independently prognostic for survival (Hazard ratio (HR) 0.98, 95% CI 0.97-0.99, p = 0.001), whereas SMI was not (HR 0.99, 95% CI 0.98-1.01, p = 0.329). Low SMD is associated with poorer survival in advanced NSCLC. Further research is warranted to establish whether muscle measures should be integrated into routine practice to improve prognostic accuracy. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  1. FGFR1 inhibits skeletal muscle atrophy associated with hindlimb suspension

    PubMed Central

    Eash, John; Olsen, Aaron; Breur, Gert; Gerrard, Dave; Hannon, Kevin

    2007-01-01

    Background Skeletal muscle atrophy can occur under many different conditions, including prolonged disuse or immobilization, cachexia, cushingoid conditions, secondary to surgery, or with advanced age. The mechanisms by which unloading of muscle is sensed and translated into signals controlling tissue reduction remains a major question in the field of musculoskeletal research. While the fibroblast growth factors (FGFs) and their receptors are synthesized by, and intimately involved in, embryonic skeletal muscle growth and repair, their role maintaining adult muscle status has not been examined. Methods We examined the effects of ectopic expression of FGFR1 during disuse-mediated skeletal muscle atrophy, utilizing hindlimb suspension and DNA electroporation in mice. Results We found skeletal muscle FGF4 and FGFR1 mRNA expression to be modified by hind limb suspension,. In addition, we found FGFR1 protein localized in muscle fibers within atrophying mouse muscle which appeared to be resistant to atrophy. Electroporation and ectopic expression of FGFR1 significantly inhibited the decrease in muscle fiber area within skeletal muscles of mice undergoing suspension induced muscle atrophy. Ectopic FGFR1 expression in muscle also significantly stimulated protein synthesis in muscle fibers, and increased protein degradation in weight bearing muscle fibers. Conclusion These results support the theory that FGF signaling can play a role in regulation of postnatal skeletal muscle maintenance, and could offer potentially novel and efficient therapeutic options for attenuating muscle atrophy during aging, illness and spaceflight. PMID:17425786

  2. Skeletal Muscle Fascicle Arrangements Can Be Reconstructed Using a Laplacian Vector Field Simulation

    PubMed Central

    Choi, Hon Fai; Blemker, Silvia S.

    2013-01-01

    Skeletal muscles are characterized by a large diversity in anatomical architecture and function. Muscle force and contraction are generated by contractile fiber cells grouped in fascicle bundles, which transmit the mechanical action between origin and insertion attachments of the muscle. Therefore, an adequate representation of fascicle arrangements in computational models of skeletal muscles is important, especially when investigating three-dimensional muscle deformations in finite element models. However, obtaining high resolution in vivo measurements of fascicle arrangements in skeletal muscles is currently still challenging. This motivated the development of methods in previous studies to generate numerical representations of fascicle trajectories using interpolation templates. Here, we present an alternative approach based on the hypothesis of a rotation and divergence free (Laplacian) vector field behavior which reflects observed physical characteristics of fascicle trajectories. To obtain this representation, the Laplace equation was solved in anatomical reconstructions of skeletal muscle shapes based on medical images using a uniform flux boundary condition on the attachment areas. Fascicle tracts were generated through a robust flux based tracing algorithm. The concept of this approach was demonstrated in two-dimensional synthetic examples of typical skeletal muscle architectures. A detailed evaluation was performed in an example of the anatomical human tibialis anterior muscle which showed an overall agreement with measurements from the literature. The utility and capability of the proposed method was further demonstrated in other anatomical examples of human skeletal muscles with a wide range of muscle shapes and attachment morphologies. PMID:24204878

  3. [Morphological analysis of bone dynamics and metabolic bone disease. Effect of loading on bone tissue].

    PubMed

    Sakai, Akinori

    2011-04-01

    We developed a voluntarily climbing animal model to investigate the effect of skeletal loading on bone tissue. At the cross section of the mid-femur, climbing exercise increases outer diameter and area of cortical bone. The mechanical strength of the femur is increased. This change of cortical volume and structure is more marked in anti-gravity exercise, such as climbing and jumping, than aerobic exercise. At the bone marrow area, climbing exercise increases trabecular bone volume and osteoblast number, while it decreases fat volume and adipocyte number. Skeletal loading promotes differentiation from mesenchymal stem cells to osteoblasts and suppresses that to adipocytes by facilitating the signal through PTH÷PTHrP receptor.

  4. Pink spot, white spot: the pineal skylight of the leatherback turtle (Dermochelys coriacea Vandelli 1761) skull and its possible role in the phenology of feeding migrations

    USGS Publications Warehouse

    Davenport, John; Jones, T. Todd; Work, Thierry M.; Balazs, George H.

    2014-01-01

    Leatherback turtles, Dermochelys coriacea, which have an irregular pink area on the crown of the head known as the pineal or ‘pink spot’, forage upon jellyfish in cool temperate waters along the western and eastern margins of the North Atlantic during the summer. Our study showed that the skeletal structures underlying the pink spot in juvenile and adult turtles are compatible with the idea of a pineal dosimeter function that would support recognition of environmental light stimuli. We interrogated an extensive turtle sightings database to elucidate the phenology of leatherback foraging during summer months around Great Britain and Ireland and compared the sightings with historical data for sea surface temperatures and day lengths to assess whether sea surface temperature or light periodicity/levels were likely abiotic triggers prompting foraging turtles to turn south and leave their feeding grounds at the end of the summer. We found that sea temperature was too variable and slow changing in the study area to be useful as a trigger and suggest that shortening of day lengths as the late summer equilux is approached provides a credible phenological cue, acting via the pineal, for leatherbacks to leave their foraging areas whether they are feeding close to Nova Scotia or Great Britain and Ireland.

  5. [POLYMORPHISM IN THE PHENOTYPIC STRUCTURE OF A POPULATION OF TAIGA TICK AND ITS EPIDEMIOLOGICAL SIGNIFICANCE].

    PubMed

    Morozov, I M; Alekseev, A N; Dubinina, E V; Nikitin, A Ya; Melnikova, O V; Andaev, E I

    2015-01-01

    The paper presents the results of 10-year (2005-2014) observations of an Ixodespersulcatus Schulze population. The purpose of this investigation was to trace long-term changes in the structure of the taiga tick population from the proportion of specimens with external skeletal anomalies and to assess a relationship between the pattern of imago phenotypic variation and the virus percentage of a carrier. There were a total of reports of the external skeletal structure of 1123 females gathered from plants to a flag in an area at 43 km from the Baikal Road connecting Irkutsk and the settlement of Listvyanka (Irkutsk Region). The proportion of specimens with anomalies averaged 37.8 +/- 1.88%. Four-to-seven varying anomalies were annually recorded. There was a preponderance of scutum impairment (an average of 17.0 +/- 3.08% of all females) that was a conglomerate of prominences and indentations along the entire clypeus surface and that was denoted P9. The nature of a change in the proportion of ticks with two anomalies (average monthly registration rate, 2.5 +/- 0.66%) is exhibited by three-year high-frequency oscillations whereas the specimens with P9 anomalies fail to show so clear cycling. The percentage of virus-containing taiga ticks was individually determined estimating the level of tick-borne encephalitis virus antigen by an enzyme immunoassay. A total of 4022 ticks were examined. The male and female data were pooled. There was a positive correlation between the change in the proportion of females with P9 anomaly and the infection of ticks in the examined population (Spearman's correlation coefficient, 0.88; P < 0.01). This supports the earlier observation of the greater epidemiological significance of the imago of a taiga tick with external skeletal anomalies particularly with considerably marked ones.

  6. on the growth and photochemical efficiency of Acropora cervicornis

    NASA Astrophysics Data System (ADS)

    Enochs, I. C.; Manzello, D. P.; Carlton, R.; Schopmeyer, S.; van Hooidonk, R.; Lirman, D.

    2014-06-01

    The effects of light and elevated pCO2 on the growth and photochemical efficiency of the critically endangered staghorn coral, Acropora cervicornis, were examined experimentally. Corals were subjected to high and low treatments of CO2 and light in a fully crossed design and monitored using 3D scanning and buoyant weight methodologies. Calcification rates, linear extension, as well as colony surface area and volume of A. cervicornis were highly dependent on light intensity. At pCO2 levels projected to occur by the end of the century from ocean acidification (OA), A. cervicornis exhibited depressed calcification, but no change in linear extension. Photochemical efficiency ( F v / F m ) was higher at low light, but unaffected by CO2. Amelioration of OA-depressed calcification under high-light treatments was not observed, and we suggest that the high-light intensity necessary to reach saturation of photosynthesis and calcification in A. cervicornis may limit the effectiveness of this potentially protective mechanism in this species. High CO2 causes depressed skeletal density, but not linear extension, illustrating that the measurement of extension by itself is inadequate to detect CO2 impacts. The skeletal integrity of A. cervicornis will be impaired by OA, which may further reduce the resilience of the already diminished populations of this endangered species.

  7. Electrocatalytic hydrogenation and hydrodeoxygenation of oxygenated and unsaturated organic compounds

    DOEpatents

    Jackson, James E.; Lam, Chun Ho; Saffron, Christopher M.; Miller, Dennis J.

    2018-04-24

    A process and related electrode composition are disclosed for the electrocatalytic hydrogenation and/or hydrodeoxygenation of organic substrates such as biomass-derived bio-oil components by the production of hydrogen atoms on a catalyst surface followed by the reaction of the hydrogen atoms with the organic reactants. Biomass fast pyrolysis-derived bio-oil is a liquid mixture containing hundreds of organic compounds with chemical functionalities that are corrosive to container materials and are prone to polymerization. A high surface area skeletal metal catalyst material such as Raney Nickel can be used as the cathode. Electrocatalytic hydrogenation and/or hydrodeoxygenation convert the organic substrates under mild conditions to reduce coke formation and catalyst deactivation. The process converts oxygen-containing functionalities and unsaturated bonds into chemically reduced forms with an increased hydrogen content. The process is operated at mild conditions, which enables it to be a good means for stabilizing bio-oil to a form that can be stored and transported using metal containers and pipes.

  8. Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology: emphasis on apolipoprotein E deficiency and peripheral arterial disease.

    PubMed

    Sfyri, Peggy; Matsakas, Antonios

    2017-07-08

    Atherosclerosis is a chronic inflammatory process that, in the presence of hyperlipidaemia, promotes the formation of atheromatous plaques in large vessels of the cardiovascular system. It also affects peripheral arteries with major implications for a number of other non-vascular tissues such as the skeletal muscle, the liver and the kidney. The aim of this review is to critically discuss and assimilate current knowledge on the impact of peripheral atherosclerosis and its implications on skeletal muscle homeostasis. Accumulating data suggests that manifestations of peripheral atherosclerosis in skeletal muscle originates in a combination of increased i)-oxidative stress, ii)-inflammation, iii)-mitochondrial deficits, iv)-altered myofibre morphology and fibrosis, v)-chronic ischemia followed by impaired oxygen supply, vi)-reduced capillary density, vii)- proteolysis and viii)-apoptosis. These structural, biochemical and pathophysiological alterations impact on skeletal muscle metabolic and physiologic homeostasis and its capacity to generate force, which further affects the individual's quality of life. Particular emphasis is given on two major areas representing basic and applied science respectively: a)-the abundant evidence from a well-recognised atherogenic model; the Apolipoprotein E deficient mouse and the role of a western-type diet and b)-on skeletal myopathy and oxidative stress-induced myofibre damage from human studies on peripheral arterial disease. A significant source of reactive oxygen species production and oxidative stress in cardiovascular disease is the family of NADPH oxidases that contribute to several pathologies. Finally, strategies targeting NADPH oxidases in skeletal muscle in an attempt to attenuate cellular oxidative stress are highlighted, providing a better understanding of the crossroads between peripheral atherosclerosis and skeletal muscle pathophysiology.

  9. The relationship between frontal sinus morphology and skeletal maturation.

    PubMed

    Buyuk, Suleyman Kutalmıs; Simsek, Huseyin; Karaman, Ahmet

    2018-01-03

    The aim of this study is to evaluate the relationship between frontal sinus morphology and hand-wrist bone maturation by using postero-anterior (PA) cephalometric radiographs. The study sample consisted of 220 patients divided into eleven groups based on the hand-wrist radiographs. The right and left maximum height, width and area of the frontal sinus parameters were measured in postero-anterior cephalometric radiographs 220 subjects aged 8-18 years. The hand-wrist skeletal maturation stages were evaluated on the hand-wrist radiographs using the method of Fishman. The Kendall tau-b values were analyzed to evaluate the correlation between the hand-wrist skeletal maturation stages and the frontal sinus parameters. The right and left frontal sinus areas and widths were found to be larger in males than in females (p < 0.05). In males, a significant difference was observed in all frontal sinus parameters in different maturation stages (p < 0.001), while a statistically significant correlation was found in females between the left frontal sinus area, right frontal sinus height, right frontal sinus width and different maturation stages (p < 0.05). In conclusion, the relationship between frontal sinus dimensions obtained from PA cephalometric radiographs and hand-wrist maturation stages suggests that frontal sinuses can be used in determining growth and development.

  10. Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb

    PubMed Central

    Matsumoto, Kazu; Li, Yingcui; Jakuba, Caroline; Sugiyama, Yoshinori; Sayo, Tetsuya; Okuno, Misako; Dealy, Caroline N.; Toole, Bryan P.; Takeda, Junji; Yamaguchi, Yu; Kosher, Robert A.

    2009-01-01

    Summary The glycosaminoglycan hyaluronan (HA) is a structural component of extracellular matrices and also interacts with cell surface receptors to directly influence cell behavior. To explore functions of HA in limb skeletal development, we conditionally inactivated the gene for HA synthase 2, Has2, in limb bud mesoderm using mice that harbor a floxed allele of Has2 and mice carrying a limb mesoderm-specific Prx1-Cre transgene. The skeletal elements of Has2-deficient limbs are severely shortened, indicating that HA is essential for normal longitudinal growth of all limb skeletal elements. Proximal phalanges are duplicated in Has2 mutant limbs indicating an involvement of HA in patterning specific portions of the digits. The growth plates of Has2-deficient skeletal elements are severely abnormal and disorganized, with a decrease in the deposition of aggrecan in the matrix and a disruption in normal columnar cellular relationships. Furthermore, there is a striking reduction in the number of hypertrophic chondrocytes and in the expression domains of markers of hypertrophic differentiation in the mutant growth plates, indicating that HA is necessary for the normal progression of chondrocyte maturation. In addition, secondary ossification centers do not form in the central regions of Has2 mutant growth plates owing to a failure of hypertrophic differentiation. In addition to skeletal defects, the formation of synovial joint cavities is defective in Has2-deficient limbs. Taken together, our results demonstrate that HA has a crucial role in skeletal growth, patterning, chondrocyte maturation and synovial joint formation in the developing limb. PMID:19633173

  11. Skeletal development of the glenoid and glenoid-coracoid interface in the pediatric population: MRI features.

    PubMed

    Kothary, Shefali; Rosenberg, Zehava Sadka; Poncinelli, Leonardo L; Kwong, Steven

    2014-09-01

    To assess the MRI appearance of normal skeletal development of the glenoid and glenoid-coracoid interface in the pediatric population. To the best of our knowledge, this has not yet been studied in detail in the literature. An IRB-approved, HIPAA-compliant retrospective review of 105 consecutive shoulder MRI studies in children, ages 2 months to 18 years was performed. The morphology, MR signal, and development of the following were assessed: (1) scapular-coracoid bipolar growth plate, (2) glenoid and glenoid-coracoid interface secondary ossification centers, (3) glenoid advancing osseous surface. The glenoid and glenoid-coracoid interface were identified in infancy as a contiguous, cartilaginous mass. A subcoracoid secondary ossification center in the superior glenoid was identified and fused in all by age 12 and 16, respectively. In ten studies, additional secondary ossification centers were identified in the inferior two-thirds of the glenoid. The initial concavity of the glenoid osseous surface gradually transformed to convexity, matching the convex glenoid articular surface. The glenoid growth plate fused by 16 years of age. Our study, based on MRI, demonstrated a similar pattern of development of the glenoid and glenoid coracoid interface to previously reported anatomic and radiographic studies, except for an earlier development and fusion of the secondary ossification centers of the inferior glenoid. The pattern of skeletal development of the glenoid and glenoid-coracoid interface follows a chronological order, which can serve as a guideline when interpreting MRI studies in children.

  12. Beta 2-agonist fenoterol has greater effects on contractile function of rat skeletal muscles than clenbuterol.

    PubMed

    Ryall, James G; Gregorevic, Paul; Plant, David R; Sillence, Martin N; Lynch, Gordon S

    2002-12-01

    Potential treatments for skeletal muscle wasting and weakness ideally possess both anabolic and ergogenic properties. Although the beta(2)-adrenoceptor agonist clenbuterol has well-characterized effects on skeletal muscle, less is known about the therapeutic potential of the related beta(2)-adrenoceptor agonist fenoterol. We administered an equimolar dose of either clenbuterol or fenoterol to rats for 4 wk to compare their effects on skeletal muscle and tested the hypothesis that fenoterol would produce more powerful anabolic and ergogenic effects. Clenbuterol treatment increased fiber cross-sectional area (CSA) by 6% and maximal isometric force (P(o)) by 20% in extensor digitorum longus (EDL) muscles, whereas fiber CSA in soleus muscles decreased by 3% and P(o) was unchanged, compared with untreated controls. In the EDL muscles, fenoterol treatment increased fiber CSA by 20% and increased P(o) by 12% above values achieved after clenbuterol treatment. Soleus muscles of fenoterol-treated rats exhibited a 13% increase in fiber CSA and a 17% increase in P(o) above that of clenbuterol-treated rats. These data indicate that fenoterol has greater effects on the functional properties of rat skeletal muscles than clenbuterol.

  13. Relation of adrenal-derived steroids with bone maturation, mineral density and geometry in healthy prepubertal and early pubertal boys.

    PubMed

    Vandewalle, S; Taes, Y; Fiers, T; Toye, K; Van Caenegem, E; Kaufman, J-M; De Schepper, J

    2014-12-01

    Little is known about the effects of adrenal steroids on skeletal maturation and bone mass acquisition in healthy prepubertal boys. To study whether adrenal-derived steroids within the physiological range are associated with skeletal maturation, areal and volumetric bone mineral density (aBMD and vBMD) and bone geometry in healthy prepubertal and early pubertal boys. 98 healthy prepubertal and early pubertal boys (aged 6-14 y) were studied cross-sectionally. Androstenedione (A) and estrone (E1) were determined by liquid chromatography tandem mass spectrometry and DHEAS was determined by immunoassay. Whole body and lumbar spine aBMD and bone area were determined by dual-energy X-ray absorptiometry. Trabecular (distal site) and cortical (proximal site) vBMD and bone geometry were assessed at the non-dominant forearm and leg using peripheral QCT. Skeletal age was determined by X-ray of the left hand. Adrenal-derived steroids (DHEAS, A and E1) are positively associated with bone age in prepubertal and early pubertal children, independently of age. There are no associations between the adrenal-derived steroids and the studied parameters of bone size (lumbar spine and whole body bone area, trabecular or cortical area at the radius or tibia, periosteal circumference and cortical thickness at the radius or tibia) or BMD (aBMD or vBMD). In healthy prepubertal and early pubertal boys, serum adrenal-derived steroid levels, are associated with skeletal maturation, independently of age, but not with bone size or (v)BMD. Our data suggest that adrenal derived steroids are not implicated in the accretion of bone mass before puberty in boys. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Determination of mouse skeletal muscle architecture using three-dimensional diffusion tensor imaging.

    PubMed

    Heemskerk, Anneriet M; Strijkers, Gustav J; Vilanova, Anna; Drost, Maarten R; Nicolay, Klaas

    2005-06-01

    Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging (DTI) and fiber tracking to noninvasively determine the in vivo three-dimensional (3D) architecture of skeletal muscle in mouse hind leg. In six mice, the hindlimb was imaged with a diffusion-weighted (DW) 3D fast spin-echo (FSE) sequence followed by the acquisition of an exercise-induced, T(2)-enhanced data set. The data showed the expected fiber organization, from which the physiological cross-sectional area (PCSA), fiber length, and pennation angle for the tibialis anterior (TA) were obtained. The values of these parameters ranged from 5.4-9.1 mm(2), 5.8-7.8 mm, and 21-24 degrees , respectively, which is in agreement with values obtained previously with the use of invasive methods. This study shows that 3D DT acquisition and fiber tracking is feasible for the skeletal muscle of mice, and thus enables the quantitative determination of muscle architecture.

  15. Longitudinal study of the effects of chronic hypothyroidism on skeletal muscle in dogs.

    PubMed

    Rossmeisl, John H; Duncan, Robert B; Inzana, Karen D; Panciera, David L; Shelton, G Diane

    2009-07-01

    To study the effects of experimentally induced hypothyroidism on skeletal muscle and characterize any observed myopathic abnormalities in dogs. 9 female, adult mixed-breed dogs; 6 with hypothyroidism induced with irradiation with 131 iodine and 3 untreated control dogs. Clinical examinations were performed monthly. Electromyographic examinations; measurement of plasma creatine kinase, alanine aminotransferase, aspartate aminotransferase, lactate, and lactate dehydrogenase isoenzyme activities; and skeletal muscle morphologic-morphometric examinations were performed prior to and every 6 months for 18 months after induction of hypothyroidism. Baseline, 6-month, and 18-month assessments of plasma, urine, and skeletal muscle carnitine concentrations were also performed. Hypothyroid dogs developed electromyographic and morphologic evidence of myopathy by 6 months after treatment, which persisted throughout the study, although these changes were subclinical at all times. Hypothyroid myopathy was associated with significant increases in plasma creatine kinase, aspartate aminotransferase, and lactate dehydrogenase 5 isoenzyme activities and was characterized by nemaline rod inclusions, substantial and progressive predominance of type I myofibers, decrease in mean type II fiber area, subsarcolemmal accumulations of abnormal mitochondria, and myofiber degeneration. Chronic hypothyroidism was associated with substantial depletion in skeletal muscle free carnitine. Chronic, experimentally induced hypothyroidism resulted in substantial but subclinical phenotypic myopathic changes indicative of altered muscle energy metabolism and depletion of skeletal muscle carnitine. These abnormalities may contribute to nonspecific clinical signs, such as lethargy and exercise intolerance, often reported in hypothyroid dogs.

  16. Repair of traumatic skeletal muscle injury with bone-marrow-derived mesenchymal stem cells seeded on extracellular matrix.

    PubMed

    Merritt, Edward K; Cannon, Megan V; Hammers, David W; Le, Long N; Gokhale, Rohit; Sarathy, Apurva; Song, Tae J; Tierney, Matthew T; Suggs, Laura J; Walters, Thomas J; Farrar, Roger P

    2010-09-01

    Skeletal muscle injury resulting in tissue loss poses unique challenges for surgical repair. Despite the regenerative potential of skeletal muscle, if a significant amount of tissue is lost, skeletal myofibers will not grow to fill the injured area completely. Prior work in our lab has shown the potential to fill the void with an extracellular matrix (ECM) scaffold, resulting in restoration of morphology, but not functional recovery. To improve the functional outcome of the injured muscle, a muscle-derived ECM was implanted into a 1 x 1 cm(2), full-thickness defect in the lateral gastrocnemius (LGAS) of Lewis rats. Seven days later, bone-marrow-derived mesenchymal stem cells (MSCs) were injected directly into the implanted ECM. Partial functional recovery occurred over the course of 42 days when the LGAS was repaired with an MSC-seeded ECM producing 85.4 +/- 3.6% of the contralateral LGAS. This was significantly higher than earlier recovery time points (p < 0.05). The specific tension returned to 94 +/- 9% of the contralateral limb. The implanted MSC-seeded ECM had more blood vessels and regenerating skeletal myofibers than the ECM without cells (p < 0.05). The data suggest that the repair of a skeletal muscle defect injury by the implantation of a muscle-derived ECM seeded with MSCs can improve functional recovery after 42 days.

  17. Effects of environmental cocaine concentrations on the skeletal muscle of the European eel (Anguilla anguilla).

    PubMed

    Capaldo, Anna; Gay, Flaminia; Lepretti, Marilena; Paolella, Gaetana; Martucciello, Stefania; Lionetti, Lillà; Caputo, Ivana; Laforgia, Vincenza

    2018-06-04

    The presence of illicit drugs in the aquatic environment represents a new potential risk for aquatic organisms, due to their constant exposure to substances with strong pharmacological activity. Currently, little is known about the ecological effects of illicit drugs. The aim of this study was to evaluate the influence of environmental concentrations of cocaine, an illicit drug widespread in surface waters, on the skeletal muscle of the European eel (Anguilla anguilla). The skeletal muscle of silver eels exposed to 20 ng L -1 of cocaine for 50 days were compared to control, vehicle control and two post-exposure recovery groups (3 and 10 days after interruption of cocaine). The eels general health, the morphology of the skeletal muscle and several parameters indicative of the skeletal muscle physiology were evaluated, namely the muscle whole protein profile, marker of the expression levels of the main muscle proteins; cytochrome oxidase activity, markers of oxidative metabolism; caspase-3, marker of apoptosis activation; serum levels of creatine kinase, lactate dehydrogenase and aspartate aminotransferase, markers of skeletal muscle damages. Cocaine-exposed eels appeared hyperactive but they showed the same general health status as the other groups. In contrast, their skeletal muscle showed evidence of serious injury, including muscle breakdown and swelling, similar to that typical of rhabdomyolysis. These changes were still present 10 days after the interruption of cocaine exposure. In fact, with the exception of the expression levels of the main muscle proteins, which remained unchanged, all the other parameters examined showed alterations that persisted for at least 10 days after the interruption of cocaine exposure. This study shows that even low environmental concentrations of cocaine cause severe damage to the morphology and physiology of the skeletal muscle of the silver eel, confirming the harmful impact of cocaine in the environment that potentially affects the survival of this species. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Assessment of sella turcica area and skeletal maturation patterns of children with unilateral cleft lip and palate.

    PubMed

    Cesur, E; Altug, A T; Toygar-Memikoglu, U; Gumru-Celikel, D; Tagrikulu, B; Erbay, E

    2018-05-01

    The aim of this case-control study was to assess sella turcica area and skeletal maturity in children with unilateral cleft lip and palate (UCLP) and compare with those of non-cleft children. A total of 85 UCLP patients aged 7.5-17.08 years (Group 1: age 7-11 years, Group 2: age 11-14 years and Group 3: age 14-18 years) were compared with 85 control subjects without clefts who were divided into similar age groups. Hand-wrist radiographs and cervical vertebra maturation stages (CVMS) were used to evaluate growth. Lateral cephalograms were traced, and reference points of sella were determined. Sella turcica area was measured using a digital planimeter. Comparison of overall growth on hand-wrist radiographs revealed no significant difference between cleft and non-cleft subjects. However, according to the chronological age groups, Group 1-UCLP showed statistically significant delay in skeletal maturation when compared with the age-matched control subjects (P = .05). This difference was due to the delay among male subjects (P = .05). As for CVMS, more significant maturation delay was observed in Group 1-UCLP (P = .001) and was attributable to both male and female subjects (P = .05). Comparison of sella turcica area showed no significant difference between UCLP patients and controls. Although children with CLP showed significant delay in growth when they are younger compared with the non-cleft children, sella turcica area measurements were similar for individuals in both groups. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Implications of combined Ovariectomy/Multi-Deficiency Diet on rat bone with age-related variation in Bone Parameters and Bone Loss at Multiple Skeletal Sites by DEXA

    PubMed Central

    Govindarajan, Parameswari; Schlewitz, Gudrun; Schliefke, Nathalie; Weisweiler, David; Alt, Volker; Thormann, Ulrich; Lips, Katrin Susanne; Wenisch, Sabine; Langheinrich, Alexander C.; Zahner, Daniel; Hemdan, Nasr Y.; Böcker, Wolfgang; Schnettler, Reinhard; Heiss, Christian

    2013-01-01

    Background Osteoporosis is a multi-factorial, chronic, skeletal disease highly prevalent in post-menopausal women and is influenced by hormonal and dietary factors. Because animal models are imperative for disease diagnostics, the present study establishes and evaluates enhanced osteoporosis obtained through combined ovariectomy and deficient diet by DEXA (dual-energy X-ray absorptiometry) for a prolonged time period. Material/Methods Sprague-Dawley rats were randomly divided into sham (laparotomized) and OVX-diet (ovariectomized and fed with deficient diet) groups. Different skeletal sites were scanned by DEXA at the following time points: M0 (baseline), M12 (12 months post-surgery), and M14 (14 months post-surgery). Parameters analyzed included BMD (bone mineral density), BMC (bone mineral content), bone area, and fat (%). Regression analysis was performed to determine the interrelationships between BMC, BMD, and bone area from M0 to M14. Results BMD and BMC were significantly lower in OVX-diet rats at M12 and M14 compared to sham rats. The Z-scores were below −5 in OVX-diet rats at M12, but still decreased at M14 in OVX-diet rats. Bone area and percent fat were significantly lower in OVX-diet rats at M14 compared to sham rats. The regression coefficients for BMD vs. bone area, BMC vs. bone area, and BMC vs. BMD of OVX-diet rats increased with time. This is explained by differential percent change in BMD, BMC, and bone area with respect to time and disease progression. Conclusions Combined ovariectomy and deficient diet in rats caused significant reduction of BMD, BMC, and bone area, with nearly 40% bone loss after 14 months, indicating the development of severe osteoporosis. An increasing regression coefficient of BMD vs. bone area with disease progression emphasizes bone area as an important parameter, along with BMD and BMC, for prediction of fracture risk. PMID:23446183

  20. Implications of combined ovariectomy/multi-deficiency diet on rat bone with age-related variation in bone parameters and bone loss at multiple skeletal sites by DEXA.

    PubMed

    Govindarajan, Parameswari; Schlewitz, Gudrun; Schliefke, Nathalie; Weisweiler, David; Alt, Volker; Thormann, Ulrich; Lips, Katrin Susanne; Wenisch, Sabine; Langheinrich, Alexander C; Zahner, Daniel; Hemdan, Nasr Y; Böcker, Wolfgang; Schnettler, Reinhard; Heiss, Christian

    2013-02-28

    Osteoporosis is a multi-factorial, chronic, skeletal disease highly prevalent in post-menopausal women and is influenced by hormonal and dietary factors. Because animal models are imperative for disease diagnostics, the present study establishes and evaluates enhanced osteoporosis obtained through combined ovariectomy and deficient diet by DEXA (dual-energy X-ray absorptiometry) for a prolonged time period. Sprague-Dawley rats were randomly divided into sham (laparotomized) and OVX-diet (ovariectomized and fed with deficient diet) groups. Different skeletal sites were scanned by DEXA at the following time points: M0 (baseline), M12 (12 months post-surgery), and M14 (14 months post-surgery). Parameters analyzed included BMD (bone mineral density), BMC (bone mineral content), bone area, and fat (%). Regression analysis was performed to determine the interrelationships between BMC, BMD, and bone area from M0 to M14. BMD and BMC were significantly lower in OVX-diet rats at M12 and M14 compared to sham rats. The Z-scores were below -5 in OVX-diet rats at M12, but still decreased at M14 in OVX-diet rats. Bone area and percent fat were significantly lower in OVX-diet rats at M14 compared to sham rats. The regression coefficients for BMD vs. bone area, BMC vs. bone area, and BMC vs. BMD of OVX-diet rats increased with time. This is explained by differential percent change in BMD, BMC, and bone area with respect to time and disease progression. Combined ovariectomy and deficient diet in rats caused significant reduction of BMD, BMC, and bone area, with nearly 40% bone loss after 14 months, indicating the development of severe osteoporosis. An increasing regression coefficient of BMD vs. bone area with disease progression emphasizes bone area as an important parameter, along with BMD and BMC, for prediction of fracture risk.

  1. Whole-Body and Microenvironmental Localization of Radium-223 in Naïve and Mouse Models of Prostate Cancer Metastasis

    PubMed Central

    Abou, Diane S.; Ulmert, David; Doucet, Michele; Hobbs, Robert F.; Riddle, Ryan C.

    2016-01-01

    Background: Bone-metastatic, castration-resistant prostate cancer (bmCRPC) represents a lethal stage of the most common noncutaneous cancer in men. The recent introduction of Radium-223 dichloride, a bone-seeking alpha particle (α)–emitting radiopharmaceutical, demonstrates statistically significant survival benefit and palliative effect for bmCRPC patients. Clinical results have established safety and efficacy, yet questions remain regarding pharmacodynamics and dosing for optimized patient benefit. Methods: We elucidated the biodistribution of 223Ra as well as interaction with the bone and tumor compartments in skeletally mature mice (C57Bl/6 and CD-1, n = 3–6) and metastasis models (LNCaP and PC3, n = 4). Differences in uptake were evaluated by µCT and histological investigation. Novel techniques were leveraged on whole-mount undecalcified cryosections to determine microdistribution of Radium-223. All statistical tests were two-sided. Results: 223Ra uptake in the bones (>30% injected activity per gram) at 24 hours was also accompanied by non-negligible remnant activity in the kidney (2.33% ± 0.36%), intestines (5.73% ± 2.04%), and spleen (10.5% ± 5.9%) Skeletal accumulation across strains did not correspond with bone volume or surface area but instead to local blood vessel density (P = .04). Microdistribution analysis by autoradiography and α camera revealed targeting of the ossifying surfaces adjacent to the epiphyseal growth plate. In models of PCa metastasis, radioactivity does not localize directly within tumors but instead at the apposite bone surface. Osteoblastic and lytic lesions display similar intensity, which is comparable with uptake at sites of normal bone remodeling. Conclusions: Profiling the macro- and microdistribution of 223Ra in healthy and diseased models has important implications to guide precision application of this emerging α-therapy approach for bmCRPC and other bone metastastic diseases. PMID:26683407

  2. Stem cells, angiogenesis and muscle healing: a potential role in massage therapies?

    PubMed

    Best, Thomas M; Gharaibeh, Burhan; Huard, Johnny

    2013-11-01

    Skeletal muscle injuries are among the most common and frequently disabling injuries sustained by athletes. Repair of injured skeletal muscle is an area that continues to present a challenge for sports medicine clinicians and researchers due, in part, to complete muscle recovery being compromised by development of fibrosis leading to loss of function and susceptibility to re-injury. Injured skeletal muscle goes through a series of coordinated and interrelated phases of healing including degeneration, inflammation, regeneration and fibrosis. Muscle regeneration initiated shortly after injury can be limited by fibrosis which affects the degree of recovery and predisposes the muscle to reinjury. It has been demonstrated in animal studies that antifibrotic agents that inactivate transforming growth factor (TGF)-β1 have been effective at decreasing scar tissue formation. Several studies have also shown that vascular endothelial growth factor (VEGF) can increase the efficiency of skeletal muscle repair by increasing angiogenesis and, at the same time, reducing the accumulation of fibrosis. We have isolated and thoroughly characterised a population of skeletal muscle-derived stem cells (MDSCs) that enhance repair of damaged skeletal muscle fibres by directly differentiating into myofibres and secreting paracrine factors that promote tissue repair. Indeed, we have found that MDSCs transplanted into skeletal and cardiac muscles have been successful at repair probably because of their ability to secrete VEGF that works in a paracrine fashion. The application of these techniques to the study of sport-related muscle injuries awaits investigation. Other useful strategies to enhance skeletal muscle repair through increased vascularisation may include gene therapy, exercise, neuromuscular electrical stimulation and, potentially, massage therapy. Based on recent studies showing an accelerated recovery of muscle function from intense eccentric exercise through massage-based therapies, we believe that this treatment modality offers a practical and non-invasive form of therapy for skeletal muscle injuries. However, the biological mechanism(s) behind the beneficial effect of massage are still unclear and require further investigation using animal models and potentially randomised, human clinical studies.

  3. Stem cells, angiogenesis and muscle healing: a potential role in massage therapies?

    PubMed

    Best, Thomas M; Gharaibeh, Burhan; Huard, Johnny

    2013-06-01

    Skeletal muscle injuries are among the most common and frequently disabling injuries sustained by athletes. Repair of injured skeletal muscle is an area that continues to present a challenge for sports medicine clinicians and researchers due, in part, to complete muscle recovery being compromised by development of fibrosis leading to loss of function and susceptibility to re-injury. Injured skeletal muscle goes through a series of coordinated and interrelated phases of healing including degeneration, inflammation, regeneration and fibrosis. Muscle regeneration initiated shortly after injury can be limited by fibrosis which affects the degree of recovery and predisposes the muscle to reinjury. It has been demonstrated in animal studies that antifibrotic agents that inactivate transforming growth factor (TGF)-β1 have been effective at decreasing scar tissue formation. Several studies have also shown that vascular endothelial growth factor (VEGF) can increase the efficiency of skeletal muscle repair by increasing angiogenesis and, at the same time, reducing the accumulation of fibrosis. We have isolated and thoroughly characterised a population of skeletal muscle-derived stem cells (MDSCs) that enhance repair of damaged skeletal muscle fibres by directly differentiating into myofibres and secreting paracrine factors that promote tissue repair. Indeed, we have found that MDSCs transplanted into skeletal and cardiac muscles have been successful at repair probably because of their ability to secrete VEGF that works in a paracrine fashion. The application of these techniques to the study of sport-related muscle injuries awaits investigation. Other useful strategies to enhance skeletal muscle repair through increased vascularisation may include gene therapy, exercise, neuromuscular electrical stimulation and, potentially, massage therapy. Based on recent studies showing an accelerated recovery of muscle function from intense eccentric exercise through massage-based therapies, we believe that this treatment modality offers a practical and non-invasive form of therapy for skeletal muscle injuries. However, the biological mechanism(s) behind the beneficial effect of massage are still unclear and require further investigation using animal models and potentially randomised, human clinical studies.

  4. Trauma on eight wheels. A study of roller skating injuries in Seattle.

    PubMed

    Kvidera, D J; Frankel, V H

    1983-01-01

    Thirty-five fractures secondary to roller skating accidents from March 15 to October 1, 1979 were treated in the University of Washington-affiliated hospitals. Twenty-eight involved the wrist and elbow. Only three were in skeletally immature individuals. Sixty-three percent of the patients were female with the 20- to 34-year-old age group the most commonly involved. A fall, usually backwards, onto outstretched arms and hands was the most frequent mechanism of injury. A detailed study of the popular outdoor skating area in Seattle, Green Lake, indicated that more than 75% of the injuries occurred on sloped surfaces with otherwise favorable environmental conditions. Most people were either first time skaters or had not skated since childhood. Based on our study, we recommend: (1) skating on level, familiar terrain; (2) learning to skate in a sparsely congested area; (3) skating with experienced partners who can give instructions; and (4) using protective equipment, such as knee and elbow pads and rigid wrist splints.

  5. Ultrastructural alterations in skeletal muscle fibers of rats after exercise

    NASA Technical Reports Server (NTRS)

    Akuzawa, M.; Hataya, M.

    1982-01-01

    Ultrastructural alterations in skeletal muscle fibers were electron microscopically studied in rats forced to run on the treadmill until all-out. When they were mild and limited to relatively small areas, the reconstruction of filaments ensued within 10 days without infiltration of cells. When they were severe and extensive, phagocytes infiltrated in the lesions and removed degenerative sacroplasmic debris from muscle fibers. A little later, myoblasts appeared and regeneration was accomplished in 30 days in much the same manner as in myogenesis.

  6. Exuberant sprouting of sensory and sympathetic nerve fibers in nonhealed bone fractures and the generation and maintenance of chronic skeletal pain

    PubMed Central

    Chartier, Stephane R.; Thompson, Michelle L.; Longo, Geraldine; Fealk, Michelle N.; Majuta, Lisa A.; Mantyh, Patrick W.

    2014-01-01

    Skeletal injury is a leading cause of chronic pain and long-term disability worldwide. While most acute skeletal pain can be effectively managed with nonsteroidal anti-inflammatory drugs and opiates, chronic skeletal pain is more difficult to control using these same therapy regimens. One possibility as to why chronic skeletal pain is more difficult to manage over time is that there may be nerve sprouting in non-healed areas of the skeleton that normally receive little (mineralized bone) to no (articular cartilage) innervation. If such ectopic sprouting did occur, it could result in normally nonnoxious loading of the skeleton being perceived as noxious and/or the generation of a neuropathic pain state. To explore this possibility, a mouse model of skeletal pain was generated by inducing a closed fracture of the femur. Examined animals had comminuted fractures and did not fully heal even at 90+ days post fracture. In all mice with nonhealed fractures, exuberant sensory and sympathetic nerve sprouting, an increase in the density of nerve fibers, and the formation of neuroma-like structures near the fracture site were observed. Additionally, all of these animals exhibited significant pain behaviors upon palpation of the nonhealed fracture site. In contrast, sprouting of sensory and sympathetic nerve fibers or significant palpation-induced pain behaviors was never observed in naïve animals. Understanding what drives this ectopic nerve sprouting and the role it plays in skeletal pain may allow a better understanding and treatment of this currently difficult-to-control pain state. PMID:25196264

  7. Tooth enamel oxygen "isoscapes" show a high degree of human mobility in prehistoric Britain.

    PubMed

    Pellegrini, Maura; Pouncett, John; Jay, Mandy; Pearson, Mike Parker; Richards, Michael P

    2016-10-07

    A geostatistical model to predict human skeletal oxygen isotope values (δ 18 O p ) in Britain is presented here based on a new dataset of Chalcolithic and Early Bronze Age human teeth. The spatial statistics which underpin this model allow the identification of individuals interpreted as 'non-local' to the areas where they were buried (spatial outliers). A marked variation in δ 18 O p is observed in several areas, including the Stonehenge region, the Peak District, and the Yorkshire Wolds, suggesting a high degree of human mobility. These areas, rich in funerary and ceremonial monuments, may have formed focal points for people, some of whom would have travelled long distances, ultimately being buried there. The dataset and model represent a baseline for future archaeological studies, avoiding the complex conversions from skeletal to water δ 18 O values-a process known to be problematic.

  8. Tooth enamel oxygen “isoscapes” show a high degree of human mobility in prehistoric Britain

    PubMed Central

    Pellegrini, Maura; Pouncett, John; Jay, Mandy; Pearson, Mike Parker; Richards, Michael P.

    2016-01-01

    A geostatistical model to predict human skeletal oxygen isotope values (δ18Op) in Britain is presented here based on a new dataset of Chalcolithic and Early Bronze Age human teeth. The spatial statistics which underpin this model allow the identification of individuals interpreted as ‘non-local’ to the areas where they were buried (spatial outliers). A marked variation in δ18Op is observed in several areas, including the Stonehenge region, the Peak District, and the Yorkshire Wolds, suggesting a high degree of human mobility. These areas, rich in funerary and ceremonial monuments, may have formed focal points for people, some of whom would have travelled long distances, ultimately being buried there. The dataset and model represent a baseline for future archaeological studies, avoiding the complex conversions from skeletal to water δ18O values–a process known to be problematic. PMID:27713538

  9. Tooth enamel oxygen “isoscapes” show a high degree of human mobility in prehistoric Britain

    NASA Astrophysics Data System (ADS)

    Pellegrini, Maura; Pouncett, John; Jay, Mandy; Pearson, Mike Parker; Richards, Michael P.

    2016-10-01

    A geostatistical model to predict human skeletal oxygen isotope values (δ18Op) in Britain is presented here based on a new dataset of Chalcolithic and Early Bronze Age human teeth. The spatial statistics which underpin this model allow the identification of individuals interpreted as ‘non-local’ to the areas where they were buried (spatial outliers). A marked variation in δ18Op is observed in several areas, including the Stonehenge region, the Peak District, and the Yorkshire Wolds, suggesting a high degree of human mobility. These areas, rich in funerary and ceremonial monuments, may have formed focal points for people, some of whom would have travelled long distances, ultimately being buried there. The dataset and model represent a baseline for future archaeological studies, avoiding the complex conversions from skeletal to water δ18O values-a process known to be problematic.

  10. Trunk muscle quality assessed by computed tomography: Association with adiposity indices and glucose tolerance in men.

    PubMed

    Maltais, Alexandre; Alméras, Natalie; Lemieux, Isabelle; Tremblay, Angelo; Bergeron, Jean; Poirier, Paul; Després, Jean-Pierre

    2018-04-12

    Thigh muscle attenuation measured by computed tomography (CT) has been shown to be a reliable and useful index of skeletal muscle fat infiltration. Thigh muscle fat content assessed by CT has been linked to obesity and type 2 diabetes and is a correlate of insulin resistance in sedentary individuals. However, as measurement of mid-thigh fat content requires the assessment of another region of interest beyond the usual abdominal scan required to measure levels of visceral and subcutaneous abdominal adipose tissue, this study aimed at testing the hypothesis that skeletal muscle fat measured from a single abdominal scan (L 4 -L 5 ) would also provide information relevant to the estimation of muscle fat infiltration as it relates to cardiometabolic risk. Abdominal (L 4 -L 5 ) and mid-thigh CT scans were performed in a sample of 221 sedentary men covering a wide range of adiposity values. Trunk muscles on the L 4 -L 5 scan were classified into 2 groups: 1) psoas and 2) core muscles. The two scans were segmented to calculate muscle areas, mean attenuation values as well as low-attenuation muscle (LAM) areas, the latter being considered as an index of skeletal muscle fat infiltration. Body mass index (BMI), body composition and waist circumference were assessed and a 75 g oral glucose tolerance test (OGTT) was performed. Mid-thigh, psoas and core LAM areas were all significantly associated with body composition indices (0.46 ≤ r ≤ 0.71, p < 0.0001) whereas trunk muscle indices were more strongly associated with visceral adiposity and waist circumference (0.54 ≤ r ≤ 0.79, p < 0.0001) than were mid-thigh muscle variables (0.44 ≤ r ≤ 0.62, p < 0.0001). Mid-thigh LAM area as well as psoas and core LAM areas were significantly associated with fasting glucose, 2-h plasma glucose levels, the glucose area under the curve and with the HOMA-IR index (mid-thigh LAM area: 0.18 ≤ r ≤ 0.25, p < 0.01; psoas LAM area: 0.27 ≤ r ≤ 0.33, p < 0.0001; core LAM area: 0.24 ≤ r ≤ 0.34, p < 0.01). Multivariable stepwise regression analyses revealed that the associations between trunk muscle indices and glucose tolerance/insulin resistance were no longer significant after controlling for visceral adiposity measured at L 4 -L 5 . Our results suggest that CT-imaging derived indices of trunk muscle quality are related to glucose tolerance and visceral adiposity. However, the relationship between skeletal muscle fat and insulin resistance appears to be largely mediated by the concomitant variation in visceral adiposity. Finally, our results suggest that a single CT scan performed at L 4 -L 5 is adequate to assess skeletal muscle fat content related to cardiometabolic risk. Copyright © 2018. Published by Elsevier Inc.

  11. [Skeleton extractions and applications].

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quadros, William Roshan

    2010-05-01

    This paper focuses on the extraction of skeletons of CAD models and its applications in finite element (FE) mesh generation. The term 'skeleton of a CAD model' can be visualized as analogous to the 'skeleton of a human body'. The skeletal representations covered in this paper include medial axis transform (MAT), Voronoi diagram (VD), chordal axis transform (CAT), mid surface, digital skeletons, and disconnected skeletons. In the literature, the properties of a skeleton have been utilized in developing various algorithms for extracting skeletons. Three main approaches include: (1) the bisection method where the skeleton exists at equidistant from at leastmore » two points on boundary, (2) the grassfire propagation method in which the skeleton exists where the opposing fronts meet, and (3) the duality method where the skeleton is a dual of the object. In the last decade, the author has applied different skeletal representations in all-quad meshing, hex meshing, mid-surface meshing, mesh size function generation, defeaturing, and decomposition. A brief discussion on the related work from other researchers in the area of tri meshing, tet meshing, and anisotropic meshing is also included. This paper concludes by summarizing the strengths and weaknesses of the skeleton-based approaches in solving various geometry-centered problems in FE mesh generation. The skeletons have proved to be a great shape abstraction tool in analyzing the geometric complexity of CAD models as they are symmetric, simpler (reduced dimension), and provide local thickness information. However, skeletons generally require some cleanup, and stability and sensitivity of the skeletons should be controlled during extraction. Also, selecting a suitable application-specific skeleton and a computationally efficient method of extraction is critical.« less

  12. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis.

    PubMed

    Goldring, Mary B; Goldring, Steven R

    2010-03-01

    The articular surface plays an essential role in load transfer across the joint, and conditions that produce increased load transfer or altered patterns of load distribution accelerate the development of osteoarthritis (OA). Current knowledge segregates the risk factors into two fundamental mechanisms related to the adverse effects of "abnormal" loading on normal cartilage or "normal" loading on abnormal cartilage. Although chondrocytes can modulate their functional state in response to loading, their capacity to repair and modify the surrounding extracellular matrix is limited in comparison to skeletal cells in bone. This differential adaptive capacity underlies the more rapid appearance of detectable skeletal changes, especially after acute injuries that alter joint mechanics. The imbalance in the adaptation of the cartilage and bone disrupts the physiological relationship between these tissues and further contributes to OA pathology. This review focuses on the specific articular cartilage and skeletal features of OA and the putative mechanisms involved in their pathogenesis.

  13. Isolation and characterization of distinct domains of sarcolemma and T-tubules from rat skeletal muscle.

    PubMed

    Muñoz, P; Rosemblatt, M; Testar, X; Palacín, M; Zorzano, A

    1995-04-01

    1. Several cell-surface domains of sarcolemma and T-tubule from skeletal-muscle fibre were isolated and characterized. 2. A protocol of subcellular fractionation was set up that involved the sequential low- and high-speed homogenization of rat skeletal muscle followed by KCl washing, Ca2+ loading and sucrose-density-gradient centrifugation. This protocol led to the separation of cell-surface membranes from membranes enriched in sarcoplasmic reticulum and intracellular GLUT4-containing vesicles. 3. Agglutination of cell-surface membranes using wheat-germ agglutinin allowed the isolation of three distinct cell-surface membrane domains: sarcolemmal fraction 1 (SM1), sarcolemmal fraction 2 (SM2) and a T-tubule fraction enriched in protein tt28 and the alpha 2-component of dihydropyridine receptor. 4. Fractions SM1 and SM2 represented distinct sarcolemmal subcompartments based on different compositions of biochemical markers: SM2 was characterized by high levels of beta 1-integrin and dystrophin, and SM1 was enriched in beta 1-integrin but lacked dystrophin. 5. The caveolae-associated molecule caveolin was very abundant in SM1, SM2 and T-tubules, suggesting the presence of caveolae or caveolin-rich domains in these cell-surface membrane domains. In contrast, clathrin heavy chain was abundant in SM1 and T-tubules, but only trace levels were detected in SM2. 6. Immunoadsorption of T-tubule vesicles with antibodies against protein tt28 and against GLUT4 revealed the presence of GLUT4 in T-tubules under basal conditions and it also allowed the identification of two distinct pools of T-tubules showing different contents of tt28 and dihydropyridine receptors. 7. Our data on distribution of clathrin and dystrophin reveal the existence of subcompartments in sarcolemma from muscle fibre, featuring selective mutually exclusive components. T-tubules contain caveolin and clathrin suggesting that they contain caveolin- and clathrin-rich domains. Furthermore, evidence for the heterogeneous distribution of membrane proteins in T-tubules is also presented.

  14. Assessing the accuracy of cranial and pelvic ageing methods on human skeletal remains from a modern Greek assemblage.

    PubMed

    Xanthopoulou, Panagiota; Valakos, Efstratios; Youlatos, Dionisios; Nikita, Efthymia

    2018-05-01

    The present study tests the accuracy of commonly adopted ageing methods based on the morphology of the pubic symphysis, auricular surface and cranial sutures. These methods are examined both in their traditional form as well as in the context of transition analysis using the ADBOU software in a modern Greek documented collection consisting of 140 individuals who lived mainly in the second half of the twentieth century and come from cemeteries in the area of Athens. The auricular surface overall produced the most accurate age estimates in our material, with different methods based on this anatomical area showing varying degrees of success for different age groups. The pubic symphysis produced accurate results primarily for young adults and the same applied to cranial sutures but the latter appeared completely inappropriate for older individuals. The use of transition analysis through the ADBOU software provided less accurate results than the corresponding traditional ageing methods in our sample. Our results are in agreement with those obtained from validation studies based on material from across the world, but certain differences identified with other studies on Greek material highlight the importance of taking into account intra- and inter-population variability in age estimation. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Total Body Scanning with Strontium-85 in the Diagnosis of Metastatic Bone Disease

    PubMed Central

    Simpson, W. J.; Orange, R. P.

    1965-01-01

    To demonstrate skeletal metastases before radiographic changes were apparent, Sr85 scans were carried out on 46 patients who complained of sketetal pain but whose radiographs were negative. Positive scans were obtained in 34 patients, 20 of whom were subsequently shown to have metastases; three did not have skeletal metastases a year or more later; the outcome is unknown in 11 patients. Twelve patients had negative scans: three ultimately developed metastases, six did not, and three were inconclusive. Autoradiographs demonstrated Sr85 concentrations in areas of reactive osteogenesis. Although not specific for skeletal metastases, Sr85 scans are most helpful in substantiating this diagnosis when radiographic changes are absent. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:5839221

  16. [Palaeopathology in Roman Imperial age].

    PubMed

    Minozzi, Simona; Catalano, Paola; Di Giannantonio, Stefania; Fornaciari, Gino

    2013-01-01

    The increasing attention of archaeological and anthropological research towards palaepathological studies has allowed to focus the examination of many skeletal samples on this aspect and to evaluate the presence of many diseases afflicting ancient populations. This paper describes the most interesting diseases observed in skeletal samples from some necropoles found in urban and suburban areas of Rome during archaeological excavations in the last decades, and dating back to the Imperial Age. The diseases observed were grouped into the following categories: articular diseases, traumas, infections, metabolic or nutritional diseases, congenital diseases and tumours, and some examples are reported for each group. Although extensive epidemiological investigation in ancient skeletal records is impossible, the palaeopathological study allowed to highlight the spread of numerous illnesses, many of which can be related to the life and health conditions of the Roman population.

  17. Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis.

    PubMed

    Contreras, Osvaldo; Rebolledo, Daniela L; Oyarzún, Juan Esteban; Olguín, Hugo C; Brandan, Enrique

    2016-06-01

    Fibrosis occurs in skeletal muscle under various pathophysiological conditions such as Duchenne muscular dystrophy (DMD), a devastating disease characterized by fiber degeneration that results in progressive loss of muscle mass, weakness and increased extracellular matrix (ECM) accumulation. Fibrosis is also observed after skeletal muscle denervation and repeated cycles of damage followed by regeneration. The ECM is synthesized largely by fibroblasts in the muscle connective tissue under normal conditions. Myofibroblasts, cells that express α-smooth muscle actin (α-SMA), play a role in many tissues affected by fibrosis. In skeletal muscle, fibro/adipogenic progenitors (FAPs) that express cell-surface platelet-derived growth factor receptor-α (PDGFR-α) and the transcription factor Tcf4 seem to be responsible for connective tissue synthesis and are good candidates for the origin of myofibroblasts. We show that cells positive for Tcf4 and PDGFR-α are expressed in skeletal muscle under normal conditions and are increased in various skeletal muscles of mdx mice, a murine model for DMD, wild type muscle after sciatic denervation and muscle subjected to chronic damage. These cells co-label with the myofibroblast marker α-SMA in dystrophic muscle but not in normal tissue. The Tcf4-positive cells lie near macrophages mainly concentrated in dystrophic necrotic-regenerating foci. The close proximity of Tcf4-positive cells to inflammatory cells and their previously described role in muscle regeneration might reflect an active interaction between these cell types and growth factors, possibly resulting in a muscular regenerative or fibrotic condition.

  18. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages.

    PubMed

    Arsic, Nikola; Mamaeva, Daria; Lamb, Ned J; Fernandez, Anne

    2008-04-01

    Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal beta III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders.

  19. Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle.

    PubMed

    Tamaki, Tetsuro; Akatsuka, Akira; Ando, Kiyoshi; Nakamura, Yoshihiko; Matsuzawa, Hideyuki; Hotta, Tomomitsu; Roy, Roland R; Edgerton, V Reggie

    2002-05-13

    Putative myogenic and endothelial (myo-endothelial) cell progenitors were identified in the interstitial spaces of murine skeletal muscle by immunohistochemistry and immunoelectron microscopy using CD34 antigen. Enzymatically isolated cells were characterized by fluorescence-activated cell sorting on the basis of cell surface antigen expression, and were sorted as a CD34+ and CD45- fraction. Cells in this fraction were approximately 94% positive for Sca-1, and mostly negative (<3% positive) for CD14, 31, 49, 144, c-kit, and FLK-1. The CD34+/45- cells formed colonies in clonal cell cultures and colony-forming units displayed the potential to differentiate into adipocytes, endothelial, and myogenic cells. The CD34+/45- cells fully differentiated into vascular endothelial cells and skeletal muscle fibers in vivo after transplantation. Immediately after sorting, CD34+/45- cells expressed only c-met mRNA, and did not express any other myogenic cell-related markers such as MyoD, myf-5, myf-6, myogenin, M-cadherin, Pax-3, and Pax-7. However, after 3 d of culture, these cells expressed mRNA for all myogenic markers. CD34+/45- cells were distinct from satellite cells, as they expressed Bcrp1/ABCG2 gene mRNA (Zhou et al., 2001). These findings suggest that myo-endothelial progenitors reside in the interstitial spaces of mammalian skeletal muscles, and that they can potentially contribute to postnatal skeletal muscle growth.

  20. Maxillary distraction osteogenesis in cleft lip and palate patients with skeletal anchorage.

    PubMed

    Minami, Katsuhiro; Mori, Yoshihide; Tae-Geon, Kwon; Shimizu, Hidetaka; Ohtani, Miyuki; Yura, Yoshiaki

    2007-03-01

    Maxillary distraction osteogenesis with the rigid external distraction (RED) system has been used to treat cleft lip and palate (CLP) patients with severe maxillary hypoplasia. We introduce maxillary distraction osteogenesis for CLP patients with skeletal anchorage adapted on a stereolithographic model. Six maxillary deficiency CLP patients treated according to our CLP treatment protocol had undergone maxillary distraction osteogenesis. In all patients, computed tomography (CT) images were recorded preoperatively, and the data were transferred to a workstation. Three-dimensional skeletal structures were reconstructed with CT data sets, and a stereolithographic model was produced. On the stereolithographic model, miniplates were adapted to the surface of maxilla beside aperture piriforms. The operation performed involved a high Le Fort I osteotomy with pterygomaxillary disjunction. Miniplates were fixed to the maxillary segment with three or four screws and used for anchorage of the RED system. Retraction of the maxillary segment was initiated after 1 week. The accuracy of the stereolithographic models was enough to adapt the miniplates so that there was no need to readjust the plates during surgery. Postoperative cephalometric analysis showed that the direction of the retraction was almost parallel to the palatal plane, and dental compensation did not occur. We performed maxillary distraction osteogenesis with skeletal anchorage adapted on the stereolithographic models. Excellent esthetic outcome and skeletal advancement were achieved without dentoalveolar compensations.

  1. The Chemical Composition and Structure of Supported Sulfated Zirconia with Regulated Size Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kanazhevskiy, V. V.; Shmachkova, V. P.; Kotsarenko, N. S.; Kochubey, D. I.; Vedrine, J. C.

    2007-02-01

    A set of model skeletal isomerization catalysts — sulfated zirconia nanoparticles of controlled thickness anchored on different supports — was prepared using colloidal solutions of Zr salt on titania as support. The nanoparticles of zirconia (1-5 nm) are epitaxially connected to the support surface, with S/Zr ratio equals to 1.3-1.5. It was shown by EXAFS that nanoparticles of non-stoichiometric zirconium sulfate Zr(SO4)1+x, where x<0.5, are formed on the support surface. Its structure looks like half-period shifted counterdirected chains built-up by zirconium atoms linked by triangle pyramids of sulfate groups. Considering catalytic data of skeletal n-butane isomerisation at 150°C, one can suggest that these species behave as the active component of sulfated zirconia. They are formed in subsurface layers as zirconium hydroxide undergoes sulfation followed by thermal treatment.

  2. Forensic age estimation by morphometric analysis of the manubrium from 3D MR images.

    PubMed

    Martínez Vera, Naira P; Höller, Johannes; Widek, Thomas; Neumayer, Bernhard; Ehammer, Thomas; Urschler, Martin

    2017-08-01

    Forensic age estimation research based on skeletal structures focuses on patterns of growth and development using different bones. In this work, our aim was to study growth-related evolution of the manubrium in living adolescents and young adults using magnetic resonance imaging (MRI), which is an image acquisition modality that does not involve ionizing radiation. In a first step, individual manubrium and subject features were correlated with age, which confirmed a statistically significant change of manubrium volume (M vol :p<0.01, R 2 ¯=0.50) and surface area (M sur :p<0.01, R 2 ¯=0.53) for the studied age range. Additionally, shapes of the manubria were for the first time investigated using principal component analysis. The decomposition of the data in principal components allowed to analyse the contribution of each component to total shape variation. With 13 principal components, ∼96% of shape variation could be described (M shp :p<0.01, R 2 ¯=0.60). Multiple linear regression analysis modelled the relationship between the statistically best correlated variables and age. Models including manubrium shape, volume or surface area divided by the height of the subject (Y∼M shp M sur /S h :p<0.01, R 2 ¯=0.71; Y∼M shp M vol /S h :p<0.01, R 2 ¯=0.72) presented a standard error of estimate of two years. In order to estimate the accuracy of these two manubrium-based age estimation models, cross validation experiments predicting age on held-out test sets were performed. Median absolute difference of predicted and known chronological age was 1.18 years for the best performing model (Y∼M shp M sur /S h :p<0.01, R p 2 =0.67). In conclusion, despite limitations in determining legal majority age, manubrium morphometry analysis presented statistically significant results for skeletal age estimation, which indicates that this bone structure may be considered as a new candidate in multi-factorial MRI-based age estimation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Qdot Labeled Actin Super Resolution Motility Assay Measures Low Duty Cycle Muscle Myosin Step-Size

    PubMed Central

    Wang, Yihua; Ajtai, Katalin; Burghardt, Thomas P.

    2013-01-01

    Myosin powers contraction in heart and skeletal muscle and is a leading target for mutations implicated in inheritable muscle diseases. During contraction, myosin transduces ATP free energy into the work of muscle shortening against resisting force. Muscle shortening involves relative sliding of myosin and actin filaments. Skeletal actin filaments were fluorescence labeled with a streptavidin conjugate quantum dot (Qdot) binding biotin-phalloidin on actin. Single Qdot’s were imaged in time with total internal reflection fluorescence microscopy then spatially localized to 1-3 nanometers using a super-resolution algorithm as they translated with actin over a surface coated with skeletal heavy meromyosin (sHMM) or full length β-cardiac myosin (MYH7). Average Qdot-actin velocity matches measurements with rhodamine-phalloidin labeled actin. The sHMM Qdot-actin velocity histogram contains low velocity events corresponding to actin translation in quantized steps of ~5 nm. The MYH7 velocity histogram has quantized steps at 3 and 8 nm in addition to 5 nm, and, larger compliance than sHMM depending on MYH7 surface concentration. Low duty cycle skeletal and cardiac myosin present challenges for a single molecule assay because actomyosin dissociates quickly and the freely moving element diffuses away. The in vitro motility assay has modestly more actomyosin interactions and methylcellulose inhibited diffusion to sustain the complex while preserving a subset of encounters that do not overlap in time on a single actin filament. A single myosin step is isolated in time and space then characterized using super-resolution. The approach provides quick, quantitative, and inexpensive step-size measurement for low duty cycle muscle myosin. PMID:23383646

  4. An essential role for the association of CD47 to SHPS-1 in skeletal remodeling.

    PubMed

    Maile, Laura A; DeMambro, Victoria E; Wai, Christine; Lotinun, Sutada; Aday, Ariel W; Capps, Byron E; Beamer, Wesley G; Rosen, Clifford J; Clemmons, David R

    2011-09-01

    Integrin-associated protein (IAP/CD47) has been implicated in macrophage-macrophage fusion. To understand the actions of CD47 on skeletal remodeling, we compared Cd47(-/-) mice with Cd47(+/+) controls. Cd47(-/-) mice weighed less and had decreased areal bone mineral density compared with controls. Cd47(-/-) femurs were shorter in length with thinner cortices and exhibited lower trabecular bone volume owing to decreased trabecular number and thickness. Histomorphometry revealed reduced bone-formation and mineral apposition rates, accompanied by decreased osteoblast numbers. No differences in osteoclast number were observed despite a nonsignificant but 40% decrease in eroded surface/bone surface in Cd47(-/-) mice. In vitro, the number of functional osteoclasts formed by differentiating Cd47(-/-) bone marrow cells was significantly decreased compared with wild-type cultures and was associated with a decrease in bone-resorption capacity. Furthermore, by disrupting the CD47-SHPS-1 association, we found that osteoclastogenesis was markedly impaired. Assays for markers of osteoclast maturation suggested that the defect was at the point of fusion and not differentiation and was associated with a lack of SHPS-1 phosphorylation, SHP-1 phosphatase recruitment, and subsequent dephosphorylation of non-muscle cell myosin IIA. We also demonstrated a significant decrease in osteoblastogenesis in bone marrow stromal cells derived from Cd47(-/-) mice. Our finding of cell-autonomous defects in Cd47(-/-) osteoblast and osteoclast differentiation coupled with the pronounced skeletal phenotype of Cd47(-/-) mice support the conclusion that CD47 plays an important role in regulating skeletal acquisition and maintenance through its actions on both bone formation and bone resorption. Copyright © 2011 American Society for Bone and Mineral Research.

  5. Evaluation of Bone Thickness and Density in the Lower Incisors' Region in Adults with Different Types of Skeletal Malocclusion using Cone-beam Computed Tomography.

    PubMed

    Al-Masri, Maram M N; Ajaj, Mowaffak A; Hajeer, Mohammad Y; Al-Eed, Muataz S

    2015-08-01

    To evaluate the bone thickness and density in the lower incisors' region in orthodontically untreated adults, and to examine any possible relationship between thickness and density in different skeletal patterns using cone-beam computed tomography (CBCT). The CBCT records of 48 patients were obtained from the archive of orthodontic department comprising three groups of malocclusion (class I, II and III) with 16 patients in each group. Using OnDemand 3D software, sagittal sections were made for each lower incisor. Thicknesses and densities were measured at three levels of the root (cervical, middle and apical regions) from the labial and lingual sides. Accuracy and reliability tests were undertaken to assess the intraobserver reliability and to detect systematic error. Pearson correlation coefficients were calculated and one-way analysis of variance (ANOVA) was employed to detect significant differences among the three groups of skeletal malocclusion. Apical buccal thickness (ABT) in the four incisors was higher in class II and I patients than in class III patients (p < 0.05). There were significant differences between buccal and lingual surfaces at the apical and middle regions only in class II and III patients. Statistical differences were found between class I and II patients for the cervical buccal density (CBD) and between class II and III patients for apical buccal density (ABD). Relationship between bone thickness and density values ranged from strong at the cervical regions to weak at the apical regions. Sagittal skeletal patterns affect apical bone thickness and density at buccal surfaces of the four lower incisors' roots. Alveolar bone thickness and density increased from the cervical to the apical regions.

  6. Self-recognition in corals facilitates deep-sea habitat engineering

    USGS Publications Warehouse

    Hennige, Sebastian J; Morrison, Cheryl L.; Form, Armin U.; Buscher, Janina; Kamenos, Nicholas A.; Roberts, J. Murray

    2014-01-01

    The ability of coral reefs to engineer complex three-dimensional habitats is central to their success and the rich biodiversity they support. In tropical reefs, encrusting coralline algae bind together substrates and dead coral framework to make continuous reef structures, but beyond the photic zone, the cold-water coral Lophelia pertusa also forms large biogenic reefs, facilitated by skeletal fusion. Skeletal fusion in tropical corals can occur in closely related or juvenile individuals as a result of non-aggressive skeletal overgrowth or allogeneic tissue fusion, but contact reactions in many species result in mortality if there is no ‘self-recognition’ on a broad species level. This study reveals areas of ‘flawless’ skeletal fusion in Lophelia pertusa, potentially facilitated by allogeneic tissue fusion, are identified as having small aragonitic crystals or low levels of crystal organisation, and strong molecular bonding. Regardless of the mechanism, the recognition of ‘self’ between adjacent L. pertusa colonies leads to no observable mortality, facilitates ecosystem engineering and reduces aggression-related energetic expenditure in an environment where energy conservation is crucial. The potential for self-recognition at a species level, and subsequent skeletal fusion in framework-forming cold-water corals is an important first step in understanding their significance as ecological engineers in deep-seas worldwide.

  7. The dead do not lie: using skeletal remains for rapid assessment of historical small-mammal community baselines

    PubMed Central

    Terry, Rebecca C.

    2010-01-01

    Conservation and restoration efforts are often hindered by a lack of historical baselines that pre-date intense anthropogenic environmental change. In this paper I document that natural accumulations of skeletal remains represent a potential source of high-quality data on the historical composition and structure of small-mammal communities. I do so by assessing the fidelity of modern, decadal and centennial-scale time-averaged samples of skeletal remains (concentrated by raptor predation) to the living small-mammal communities from which they are derived. To test the power of skeletal remains to reveal baseline shifts, I employ the design of a natural experiment, comparing two taphonomically similar Great Basin cave localities in areas where anthropogenic land-use practices have diverged within the last century. I find relative stasis at the undisturbed site, but document rapid restructuring of the small-mammal community at the site subjected to recent disturbance. I independently validate this result using historical trapping records to show that dead remains accurately capture both the magnitude and direction of this baseline shift. Surveys of skeletal remains therefore provide a simple, powerful and rapid alternative approach for gaining insight into the historical structure and dynamics of modern small-mammal communities. PMID:20031992

  8. Advances and challenges in skeletal muscle angiogenesis

    PubMed Central

    Baum, Oliver; Hellsten, Ylva; Egginton, Stuart

    2015-01-01

    The role of capillaries is to serve as the interface for delivery of oxygen and removal of metabolites to/from tissues. During the past decade there has been a proliferation of studies that have advanced our understanding of angiogenesis, demonstrating that tissue capillary supply is under strict control during health but poorly controlled in disease, resulting in either excessive capillary growth (pathological angiogenesis) or losses in capillarity (rarefaction). Given that skeletal muscle comprises nearly 40% of body mass in humans, skeletal muscle capillary density has a significant impact on metabolism, endocrine function, and locomotion and is tightly regulated at many different levels. Skeletal muscle is also high adaptable and thus one of the few organ systems that can be experimentally manipulated (e.g., by exercise) to study physiological regulation of angiogenesis. This review will focus on the methodological concerns that have arisen in determining skeletal muscle capillarity and highlight the concepts that are reshaping our understanding of the angio-adaptation process. We also summarize selected new findings (physical influences, molecular changes, and ultrastructural rearrangement of capillaries) that identify areas of future research with the greatest potential to expand our understanding of how angiogenesis is normally regulated, and that may also help to better understand conditions of uncontrolled (pathological) angiogenesis. PMID:26608338

  9. Skeletal muscle damage and impaired regeneration due to LPL-mediated lipotoxicity

    PubMed Central

    Tamilarasan, K P; Temmel, H; Das, S K; Al Zoughbi, W; Schauer, S; Vesely, P W; Hoefler, G

    2012-01-01

    According to the concept of lipotoxicity, ectopic accumulation of lipids in non-adipose tissue induces pathological changes. The most prominent effects are seen in fatty liver disease, lipid cardiomyopathy, non-insulin-dependent diabetes mellitus, insulin resistance and skeletal muscle myopathy. We used the MCK(m)-hLPL mouse distinguished by skeletal and cardiac muscle-specific human lipoprotein lipase (hLPL) overexpression to investigate effects of lipid overload in skeletal muscle. We were intrigued to find that ectopic lipid accumulation induced proteasomal activity, apoptosis and skeletal muscle damage. In line with these findings we observed reduced Musculus gastrocnemius and Musculus quadriceps mass in transgenic animals, accompanied by severely impaired physical endurance. We suggest that muscle loss was aggravated by impaired muscle regeneration as evidenced by reduced cross-sectional area of regenerating myofibers after cardiotoxin-induced injury in MCK(m)-hLPL mice. Similarly, an almost complete loss of myogenic potential was observed in C2C12 murine myoblasts upon overexpression of LPL. Our findings directly link lipid overload to muscle damage, impaired regeneration and loss of performance. These findings support the concept of lipotoxicity and are a further step to explain pathological effects seen in muscle of obese patients, patients with the metabolic syndrome and patients with cancer-associated cachexia. PMID:22825472

  10. The central role of myostatin in skeletal muscle and whole body homeostasis.

    PubMed

    Elliott, B; Renshaw, D; Getting, S; Mackenzie, R

    2012-07-01

    Myostatin is a powerful negative regulator of skeletal muscle mass in mammalian species. It plays a key role in skeletal muscle homeostasis and has now been well described since its discovery. Myostatin is capable of inducing muscle atrophy via its inhibition of myoblast proliferation, increasing ubiquitin-proteasomal activity and downregulating activity of the IGF-Akt pathway. These well-recognized effects are seen in multiple atrophy causing situations, including injury, diseases such as cachexia, disuse and space flight, demonstrating the importance of the myostatin signalling mechanism. Based on this central role, significant work has been pursued to inhibit myostatin's actions in vivo. Importantly, several new studies have uncovered roles for myostatin distinct from skeletal muscle size. Myostatin has been suggested to play a role in cardiomyocyte homeostasis, glucose metabolism and adipocyte proliferation, all of which are examined in detail below. Based on these effects, myostatin inhibition has potential to be widely utilized in many Western diseases such as chronic obstructive pulmonary disease, type II diabetes and obesity. However, if myostatin inhibitors are to successfully translate from bench-top to bedside in the near future, awareness must be raised on these non-traditional effects of myostatin away from skeletal muscle. Indeed, further research into these novel areas is required. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.

  11. Ocean acidification causes structural deformities in juvenile coral skeletons.

    PubMed

    Foster, Taryn; Falter, James L; McCulloch, Malcolm T; Clode, Peta L

    2016-02-01

    Rising atmospheric CO2 is causing the oceans to both warm and acidify, which could reduce the calcification rates of corals globally. Successful coral recruitment and high rates of juvenile calcification are critical to the replenishment and ultimate viability of coral reef ecosystems. Although elevated Pco2 (partial pressure of CO2) has been shown to reduce the skeletal weight of coral recruits, the structural changes caused by acidification during initial skeletal deposition are unknown. We show, using high-resolution three-dimensional x-ray microscopy, that ocean acidification (Pco2 ~900 μatm, pH ~7.7) not only causes reduced overall mineral deposition but also a deformed and porous skeletal structure in newly settled coral recruits. In contrast, elevated temperature (+3°C) had little effect on skeletal formation except to partially mitigate the effects of elevated Pco2. The striking structural deformities we observed show that new recruits are at significant risk, being unable to effectively build their skeletons in the Pco2 conditions predicted to occur for open ocean surface waters under a "business-as-usual" emissions scenario [RCP (representative concentration pathway) 8.5] by the year 2100.

  12. Interpreting environmental signals from the coralline sponge Astrosclera willeyana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallon, S J; McCulloch, M T; Guilderson, T P

    2004-06-30

    Coralline sponges (sclerosponges) have been proposed as a new source for paleo subsurface temperature reconstructions by utilizing methods developed for reef-building corals. However unlike corals, coralline sponges do not have density variations making age determination difficult. In this study we examined multiple elemental rations (B, Mg, Sr, Ba, U) in the coralline sponge Astrosclera willeyana. We also measured skeletal density profiles along the outer ''living'' edge of the sponges and this data indicates significant thickening of skeletal material over intervals of 2-3 mm or 2-3 years. This suggests that any skeletal recovered environmental record from Astrosclera willeyana is an integrationmore » of signals over a 2-3 year period. Sponge Sr/Ca seemed to hold the most promise as a recorder of water temperature and we compared Sr/Ca from 2 sponges in the Great Barrier Reef and one from Truk in Micronesia to their respective sea surface temperature record. The correlations were not that strong ({approx} r=-0.5) but they were significant. It appears that the signal smoothing due to thickening or perhaps even some biologic control on Sr skeletal partitioning limits the use of Sr/Ca as an indicator of water temperature in Astrosclera willeyana.« less

  13. Ocean acidification causes structural deformities in juvenile coral skeletons

    PubMed Central

    Foster, Taryn; Falter, James L.; McCulloch, Malcolm T.; Clode, Peta L.

    2016-01-01

    Rising atmospheric CO2 is causing the oceans to both warm and acidify, which could reduce the calcification rates of corals globally. Successful coral recruitment and high rates of juvenile calcification are critical to the replenishment and ultimate viability of coral reef ecosystems. Although elevated Pco2 (partial pressure of CO2) has been shown to reduce the skeletal weight of coral recruits, the structural changes caused by acidification during initial skeletal deposition are unknown. We show, using high-resolution three-dimensional x-ray microscopy, that ocean acidification (Pco2 ~900 μatm, pH ~7.7) not only causes reduced overall mineral deposition but also a deformed and porous skeletal structure in newly settled coral recruits. In contrast, elevated temperature (+3°C) had little effect on skeletal formation except to partially mitigate the effects of elevated Pco2. The striking structural deformities we observed show that new recruits are at significant risk, being unable to effectively build their skeletons in the Pco2 conditions predicted to occur for open ocean surface waters under a “business-as-usual” emissions scenario [RCP (representative concentration pathway) 8.5] by the year 2100. PMID:26989776

  14. Animation control of surface motion capture.

    PubMed

    Tejera, Margara; Casas, Dan; Hilton, Adrian

    2013-12-01

    Surface motion capture (SurfCap) of actor performance from multiple view video provides reconstruction of the natural nonrigid deformation of skin and clothing. This paper introduces techniques for interactive animation control of SurfCap sequences which allow the flexibility in editing and interactive manipulation associated with existing tools for animation from skeletal motion capture (MoCap). Laplacian mesh editing is extended using a basis model learned from SurfCap sequences to constrain the surface shape to reproduce natural deformation. Three novel approaches for animation control of SurfCap sequences, which exploit the constrained Laplacian mesh editing, are introduced: 1) space–time editing for interactive sequence manipulation; 2) skeleton-driven animation to achieve natural nonrigid surface deformation; and 3) hybrid combination of skeletal MoCap driven and SurfCap sequence to extend the range of movement. These approaches are combined with high-level parametric control of SurfCap sequences in a hybrid surface and skeleton-driven animation control framework to achieve natural surface deformation with an extended range of movement by exploiting existing MoCap archives. Evaluation of each approach and the integrated animation framework are presented on real SurfCap sequences for actors performing multiple motions with a variety of clothing styles. Results demonstrate that these techniques enable flexible control for interactive animation with the natural nonrigid surface dynamics of the captured performance and provide a powerful tool to extend current SurfCap databases by incorporating new motions from MoCap sequences.

  15. Sex discrimination from the acetabulum in a twentieth-century skeletal sample from France using digital photogrammetry.

    PubMed

    Macaluso, P J

    2011-02-01

    Digital photogrammetric methods were used to collect diameter, area, and perimeter data of the acetabulum for a twentieth-century skeletal sample from France (Georges Olivier Collection, Musée de l'Homme, Paris) consisting of 46 males and 36 females. The measurements were then subjected to both discriminant function and logistic regression analyses in order to develop osteometric standards for sex assessment. Univariate discriminant functions and logistic regression equations yielded overall correct classification accuracy rates for both the left and the right acetabula ranging from 84.1% to 89.6%. The multivariate models developed in this study did not provide increased accuracy over those using only a single variable. Classification sex bias ratios ranged between 1.1% and 7.3% for the majority of models. The results of this study, therefore, demonstrate that metric analysis of acetabular size provides a highly accurate, and easily replicable, method of discriminating sex in this documented skeletal collection. The results further suggest that the addition of area and perimeter data derived from digital images may provide a more effective method of sex assessment than that offered by traditional linear measurements alone. Copyright © 2010 Elsevier GmbH. All rights reserved.

  16. Seeking: Accurate Measurement Techniques for Deep-Bone Density and Structure

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean

    2009-01-01

    We are seeking a clinically-useful technology with enough sensitivity to assess the microstructure of "spongy" bone that is found in the marrow cavities of whole bones. However, this technology must be for skeletal sites surrounded by layers of soft tissues, such as the spine and the hip. Soft tissue interferes with conventional imaging and using a more accessible area -- for example, the wrist or the ankle of limbs-- as a proxy for the less accessible skeletal regions, will not be accurate. A non-radioactive technology is strongly preferred.

  17. Forum on Aging and Skeletal Health: Summary of the Proceedings of an ASBMR Workshop

    PubMed Central

    Khosla, Sundeep; Bellido, Teresita M.; Drezner, Marc K.; Gordon, Catherine M.; Harris, Tamara B.; Kiel, Douglas P.; Kream, Barbara E.; LeBoff, Meryl S.; Lian, Jane B.; Peterson, Charlotte A.; Rosen, Clifford; Williams, John. P.; Winer, Karen K.; Sherman, Sherry S.

    2013-01-01

    With the aging of the population, the scope of the problem of age-related bone loss and osteoporosis will continue to increase. As such, it is critical to obtain a better understanding of the factors determining the acquisition and loss of bone mass, from childhood to senescence. While there have been significant advances in recent years in our understanding of both the basic biology of aging and a clinical definition of age-related frailty, few of these concepts in aging research have been adequately evaluated for their relevance and application to skeletal aging or fracture prevention. The March 2011 “Forum on Aging and Skeletal Health”, sponsored by the NIH and ASBMR, sought to bring together leaders in aging and bone research to enhance communications among diverse fields of study so as to accelerate the pace of scientific advances needed to reduce the burden of osteoporotic fractures. This report summarizes the major concepts presented at this meeting and in each area, identifies key questions to help set the agenda for future research in skeletal aging. PMID:21915901

  18. Resistance Training in Type II Diabetes Mellitus: Impact on Areas of Metabolic Dysfunction in Skeletal Muscle and Potential Impact on Bone

    PubMed Central

    Wood, Richard J.; O'Neill, Elizabeth C.

    2012-01-01

    The prevalence of Type II Diabetes mellitus (T2DM) is increasing rapidly and will continue to be a major healthcare expenditure burden. As such, identification of effective lifestyle treatments is paramount. Skeletal muscle and bone display metabolic and functional disruption in T2DM. Skeletal muscle in T2DM is characterized by insulin resistance, impaired glycogen synthesis, impairments in mitochondria, and lipid accumulation. Bone quality in T2DM is decreased, potentially due to the effects of advanced glycation endproducts on collagen, impaired osteoblast activity, and lipid accumulation. Although exercise is widely recognized as an important component of treatment for T2DM, the focus has largely been on aerobic exercise. Emerging research suggests that resistance training (strength training) may impose potent and unique benefits in T2DM. The purpose of this review is to examine the role of resistance training in treating the dysfunction in skeletal muscle and the potential role for resistance training in treating the associated dysfunction in bone. PMID:22474580

  19. Bone Cell Bioenergetics and Skeletal Energy Homeostasis

    PubMed Central

    Riddle, Ryan C.; Clemens, Thomas L.

    2017-01-01

    The rising incidence of metabolic diseases worldwide has prompted renewed interest in the study of intermediary metabolism and cellular bioenergetics. The application of modern biochemical methods for quantitating fuel substrate metabolism with advanced mouse genetic approaches has greatly increased understanding of the mechanisms that integrate energy metabolism in the whole organism. Examination of the intermediary metabolism of skeletal cells has been sparked by a series of unanticipated observations in genetically modified mice that suggest the existence of novel endocrine pathways through which bone cells communicate their energy status to other centers of metabolic control. The recognition of this expanded role of the skeleton has in turn led to new lines of inquiry directed at defining the fuel requirements and bioenergetic properties of bone cells. This article provides a comprehensive review of historical and contemporary studies on the metabolic properties of bone cells and the mechanisms that control energy substrate utilization and bioenergetics. Special attention is devoted to identifying gaps in our current understanding of this new area of skeletal biology that will require additional research to better define the physiological significance of skeletal cell bioenergetics in human health and disease. PMID:28202599

  20. Skeletal muscle responses to lower limb suspension in humans

    NASA Technical Reports Server (NTRS)

    Hather, Bruce M.; Adams, Gregory R.; Tesch, Per A.; Dudley, Gary A.

    1992-01-01

    The morphological responses of human skeletal muscle to unweighting were assessed by analyzing multiple transaxial magnetic resonance (MR) images of both lower limbs and skeletal muscle biopsies of the unweighted lower limb before and after six weeks of unilaterial (left) lower limb suspension (ULLS). Results indicated that, as a results of 6 weeks of unweighting (by the subjects walking on crutches using only one limb), the cross sectional area (CSA) of the thigh muscle of the unweighted left limb decreased 12 percent, while the CSA of the right thigh muscle did not change. The decrease was due to a twofold greater response of the knee extensors than the knee flexors. The pre- and post-ULLS biopsies of the left vastus lateralis showed a 14 percent decrease in average fiber CSA due to unweighting. The number of capillaries surrounding the different fiber types was unchanged after ULLS. Results showed that the adaptive responses of human skeletal muscle to unweighting are qualitatively, but not quantitatively, similar to those of lower mammals and not necessarily dependent on the fiber-type composition.

  1. Aging Induces Changes in the Somatic Nerve and Postsynaptic Component without Any Alterations in Skeletal Muscles Morphology and Capacity to Carry Load of Wistar Rats

    PubMed Central

    Krause Neto, Walter; Silva, Wellington de Assis; Ciena, Adriano P.; de Souza, Romeu R.; Anaruma, Carlos A.; Gama, Eliane F.

    2017-01-01

    The present study aimed to analyze the morphology of the peripheral nerve, postsynaptic compartment, skeletal muscles and weight-bearing capacity of Wistar rats at specific ages. Twenty rats were divided into groups: 10 months-old (ADULT) and 24 months-old (OLD). After euthanasia, we prepared and analyzed the tibial nerve using transmission electron microscopy and the soleus and plantaris muscles for cytofluorescence and histochemistry. For the comparison of the results between groups we used dependent and independent Student's t-test with level of significance set at p ≤ 0.05. For the tibial nerve, the OLD group presented the following alterations compared to the ADULT group: larger area and diameter of both myelinated fibers and axons, smaller area occupied by myelinated and unmyelinated axons, lower numerical density of myelinated fibers, and fewer myelinated fibers with normal morphology. Both aged soleus and plantaris end-plate showed greater total perimeter, stained perimeter, total area and stained area compared to ADULT group (p < 0.05). Yet, aged soleus end-plate presented greater dispersion than ADULT samples (p < 0.05). For the morphology of soleus and plantaris muscles, density of the interstitial volume was greater in the OLD group (p < 0.05). No statistical difference was found between groups in the weight-bearing tests. The results of the present study demonstrated that the aging process induces changes in the peripheral nerve and postsynaptic compartment without any change in skeletal muscles and ability to carry load in Wistar rats. PMID:29326543

  2. Ocean acidification induces biochemical and morphological changes in the calcification process of large benthic foraminifera.

    PubMed

    Prazeres, Martina; Uthicke, Sven; Pandolfi, John M

    2015-03-22

    Large benthic foraminifera are significant contributors to sediment formation on coral reefs, yet they are vulnerable to ocean acidification. Here, we assessed the biochemical and morphological impacts of acidification on the calcification of Amphistegina lessonii and Marginopora vertebralis exposed to different pH conditions. We measured growth rates (surface area and buoyant weight) and Ca-ATPase and Mg-ATPase activities and calculated shell density using micro-computer tomography images. In A. lessonii, we detected a significant decrease in buoyant weight, a reduction in the density of inner skeletal chambers, and an increase of Ca-ATPase and Mg-ATPase activities at pH 7.6 when compared with ambient conditions of pH 8.1. By contrast, M. vertebralis showed an inhibition in Mg-ATPase activity under lowered pH, with growth rate and skeletal density remaining constant. While M. vertebralis is considered to be more sensitive than A. lessonii owing to its high-Mg-calcite skeleton, it appears to be less affected by changes in pH, based on the parameters assessed in this study. We suggest difference in biochemical pathways of calcification as the main factor influencing response to changes in pH levels, and that A. lessonii and M. vertebralis have the ability to regulate biochemical functions to cope with short-term increases in acidity. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Palaeopathology of human remains from the Roman Imperial Age.

    PubMed

    Minozzi, Simona; Catalano, Paola; Caldarini, Carla; Fornaciari, Gino

    2012-01-01

    The increasing attention of archaeological and anthropological research towards palaeopathological studies has allowed to focus the examination of many skeletal samples on this aspect and to evaluate the presence of many diseases afflicting ancient populations. This paper describes the most interesting diseases observed in skeletal samples from five necropolises found in urban and suburban areas of Rome during archaeological excavations in the last decades, and dating back to the Imperial Age. The diseases observed were grouped into the following categories: articular diseases, traumas, infections, metabolic or nutritional diseases, congenital diseases and tumors, and some examples are reported for each group. Although extensive epidemiological investigation in ancient skeletal records is impossible, palaeopathology allowed highlighting the spread of numerous illnesses, many of which can be related to the life and health conditions of the Roman population. Copyright © 2012 S. Karger AG, Basel.

  4. Autophagy is altered in skeletal and cardiac muscle of spontaneously hypertensive rats.

    PubMed

    Bloemberg, D; McDonald, E; Dulay, D; Quadrilatero, J

    2014-02-01

    Autophagy is a subcellular degradation mechanism important for muscle maintenance. Hypertension induces well-characterized pathological changes to the heart and is associated with impaired function and increased apoptotic signalling in skeletal muscle. We examined whether essential hypertension affects several autophagy markers in skeletal and cardiac muscle. Immunoblotting and qRT-PCR were used to measure autophagy-related proteins/mRNA in multiple skeletal muscles as well as left ventricle (LV) of spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). Skeletal muscles of hypertensive rats had decreased (P < 0.01) cross-sectional area of type I fibres (e.g. soleus WKY: 2952.9 ± 64.4 μm(2) vs. SHR: 2579.9 ± 85.8 μm(2)) and a fibre redistribution towards a 'fast' phenotype. Immunoblot analysis revealed that some SHR skeletal muscles displayed a decreased LC3II/I ratio (P < 0.05), but none showed differences in p62 protein. LC3 and LAMP2 mRNA levels were increased approx. 2-3-fold in all skeletal muscles (P < 0.05), while cathepsin activity, cathepsin L mRNA and Atg7 protein were increased 16-17% (P < 0.01), 2-3-fold (P < 0.05) and 29-49% (P < 0.01), respectively, in fast muscles of hypertensive animals. Finally, protein levels of BAG3, a marker of chaperone-assisted selective autophagy, were 18-25% lower (P < 0.05) in SHR skeletal muscles. In the LV of SHR, LC3I and p62 protein were elevated 34% (P < 0.05) and 47% (P < 0.01), respectively. Furthermore, p62 mRNA was 68% higher (P < 0.05), while LAMP2 mRNA was 45% lower (P < 0.05), in SHR cardiac muscle. There was no difference in Beclin1, Atg7, Bnip3 or BAG3 protein in the LV between strains. These results suggest that autophagy is altered in skeletal and cardiac muscle during hypertension. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  5. TGF-{beta} receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Droguett, Rebeca; Cabello-Verrugio, Claudio; Santander, Cristian

    2010-09-10

    Skeletal muscle differentiation is strongly inhibited by transforming growth factor type {beta} (TGF-{beta}), although muscle formation as well as regeneration normally occurs in an environment rich in this growth factor. In this study, we evaluated the role of intracellular regulatory Smads proteins as well as TGF-{beta}-receptors (TGF-{beta}-Rs) during skeletal muscle differentiation. We found a decrease of TGF-{beta} signaling during differentiation. This phenomenon is explained by a decline in the levels of the regulatory proteins Smad-2, -3, and -4, a decrease in the phosphorylation of Smad-2 and lost of nuclear translocation of Smad-3 and -4 in response to TGF-{beta}. No changemore » in the levels and inhibitory function of Smad-7 was observed. In contrast, we found that TGF-{beta}-R type I (TGF-{beta}-RI) and type II (TGF-{beta}-RII) increased on the cell surface during skeletal muscle differentiation. To analyze the direct role of the serine/threonine kinase activities of TGF-{beta}-Rs, we used the specific inhibitor SB 431542 and the dominant-negative form of TGF-{beta}-RII lacking the cytoplasmic domain. The TGF-{beta}-Rs were important for successful muscle formation, determined by the induction of myogenin, creatine kinase activity, and myosin. Silencing of Smad-2/3 expression by specific siRNA treatments accelerated myogenin, myosin expression, and myotube formation; although when SB 431542 was present inhibition in myosin induction and myotube formation was observed, suggesting that these last steps of skeletal muscle differentiation require active TGF-{beta}-Rs. These results suggest that both down-regulation of Smad regulatory proteins and cell signaling through the TGF-{beta} receptors independent of Smad proteins are essential for skeletal muscle differentiation.« less

  6. Evaluation of the closest speaking space in different dental and skeletal occlusions.

    PubMed

    Sakar, Olcay; Bural, Canan; Sülün, Tonguç; Öztaş, Evren; Marşan, Gülnaz

    2013-04-01

    The closest speaking space (CSS) together with the vertical overlap of anterior teeth during the production of the /s/ sound have not been previously investigated with respect to differences in dental and skeletal orthodontic classifications. The purpose of this study was to investigate the CSS in dental and skeletal occlusions and to analyze the cause and effect relationship of the CSS and the amount of the vertical overlap of anterior teeth. Poly vinylsiloxane interocclusal registration material was placed bilaterally onto the occlusal surfaces of premolar and molar teeth of 155 native Turkish speaking adolescent and young adult dentate participants, who were then asked to pronounce the word seyis. The thinnest point between the maxillary and mandibular teeth was recorded in millimeters as the CSS. The occlusion of each participant was classified according to the Angle dental and Steiner skeletal classifications. The differences in CSS values within each classification were statistically analyzed with the Kruskal-Wallis test, and the correlation between the CSS and the vertical overlap was statistically analyzed with the Spearman Rho Correlation tests (P<.05). The differences in the CSS were only significant between Angle Class II division 2 and Class III groups (P=.034), while the differences in the CSS between skeletal classes were not significant. The correlation between the amount of CSS and the amount of vertical overlap was not significant. The results showed that regardless of dental and skeletal occlusions, average CSS values could be used to determine the occlusal vertical dimension of prosthetic restorations. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  7. Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Mathur, A. B.; Collinsworth, A. M.; Reichert, W. M.; Kraus, W. E.; Truskey, G. A.

    2001-01-01

    This study evaluated the hypothesis that, due to functional and structural differences, the apparent elastic modulus and viscous behavior of cardiac and skeletal muscle and vascular endothelium would differ. To accurately determine the elastic modulus, the contribution of probe velocity, indentation depth, and the assumed shape of the probe were examined. Hysteresis was observed at high indentation velocities arising from viscous effects. Irreversible deformation was not observed for endothelial cells and hysteresis was negligible below 1 microm/s. For skeletal muscle and cardiac muscle cells, hysteresis was negligible below 0.25 microm/s. Viscous dissipation for endothelial and cardiac muscle cells was higher than for skeletal muscle cells. The calculated elastic modulus was most sensitive to the assumed probe geometry for the first 60 nm of indentation for the three cell types. Modeling the probe as a blunt cone-spherical cap resulted in variation in elastic modulus with indentation depth that was less than that calculated by treating the probe as a conical tip. Substrate contributions were negligible since the elastic modulus reached a steady value for indentations above 60 nm and the probe never indented more than 10% of the cell thickness. Cardiac cells were the stiffest (100.3+/-10.7 kPa), the skeletal muscle cells were intermediate (24.7+/-3.5 kPa), and the endothelial cells were the softest with a range of elastic moduli (1.4+/-0.1 to 6.8+/-0.4 kPa) depending on the location of the cell surface tested. Cardiac and skeletal muscle exhibited nonlinear elastic behavior. These passive mechanical properties are generally consistent with the function of these different cell types.

  8. An image-based skeletal tissue model for the ICRP reference newborn

    NASA Astrophysics Data System (ADS)

    Pafundi, Deanna; Lee, Choonsik; Watchman, Christopher; Bourke, Vincent; Aris, John; Shagina, Natalia; Harrison, John; Fell, Tim; Bolch, Wesley

    2009-07-01

    Hybrid phantoms represent a third generation of computational models of human anatomy needed for dose assessment in both external and internal radiation exposures. Recently, we presented the first whole-body hybrid phantom of the ICRP reference newborn with a skeleton constructed from both non-uniform rational B-spline and polygon-mesh surfaces (Lee et al 2007 Phys. Med. Biol. 52 3309-33). The skeleton in that model included regions of cartilage and fibrous connective tissue, with the remainder given as a homogenous mixture of cortical and trabecular bone, active marrow and miscellaneous skeletal tissues. In the present study, we present a comprehensive skeletal tissue model of the ICRP reference newborn to permit a heterogeneous representation of the skeleton in that hybrid phantom set—both male and female—that explicitly includes a delineation of cortical bone so that marrow shielding effects are correctly modeled for low-energy photons incident upon the newborn skeleton. Data sources for the tissue model were threefold. First, skeletal site-dependent volumes of homogeneous bone were obtained from whole-cadaver CT image analyses. Second, selected newborn bone specimens were acquired at autopsy and subjected to micro-CT image analysis to derive model parameters of the marrow cavity and bone trabecular 3D microarchitecture. Third, data given in ICRP Publications 70 and 89 were selected to match reference values on total skeletal tissue mass. Active marrow distributions were found to be in reasonable agreement with those given previously by the ICRP. However, significant differences were seen in total skeletal and site-specific masses of trabecular and cortical bone between the current and ICRP newborn skeletal tissue models. The latter utilizes an age-independent ratio of 80%/20% cortical and trabecular bone for the reference newborn. In the current study, a ratio closer to 40%/60% is used based upon newborn CT and micro-CT skeletal image analyses. These changes in mineral bone composition may have significant dosimetric implications when considering localized marrow dosimetry for radionuclides that target mineral bone in the newborn child.

  9. Genetic and environmental influences on skeletal muscle phenotypes as a function of age and sex in large, multigenerational families of African heritage.

    PubMed

    Prior, Steven J; Roth, Stephen M; Wang, Xiaojing; Kammerer, Candace; Miljkovic-Gacic, Iva; Bunker, Clareann H; Wheeler, Victor W; Patrick, Alan L; Zmuda, Joseph M

    2007-10-01

    The aim of this study was to estimate the heritability of and environmental contributions to skeletal muscle phenotypes (appendicular lean mass and calf muscle cross-sectional area) in subjects of African descent and to determine whether heritability estimates are impacted by sex or age. Body composition was measured by dual-energy X-ray absorptiometry and computed tomography in 444 men and women aged 18 yr and older (mean: 43 yr) from eight large, multigenerational Afro-Caribbean families (family size range: 21-112). Using quantitative genetic methods, we estimated heritability and the association of anthropometric, lifestyle, and medical variables with skeletal muscle phenotypes. In the overall group, we estimated the heritability of lean mass and calf muscle cross-sectional area (h(2) = 0.18-0.23, P < 0.01) and contribution of environmental factors to these phenotypes (r(2) = 0.27-0.55, P < 0.05). In our age-specific analysis, the heritability of leg lean mass was lower in older vs. younger individuals (h(2) = 0.05 vs. 0.23, respectively, P = 0.1). Sex was a significant covariate in our models (P < 0.001), although sex-specific differences in heritability varied depending on the lean mass phenotype analyzed. High genetic correlations (rho(G) = 0.69-0.81; P < 0.01) between different lean mass measures suggest these traits share a large proportion of genetic components. Our results demonstrate the heritability of skeletal muscle traits in individuals of African heritage and that heritability may differ as a function of sex and age. As the loss of skeletal muscle mass is related to metabolic abnormalities, disability, and mortality in older individuals, further research is warranted to identify specific genetic loci that contribute to these traits in general and in a sex- and age-specific manner.

  10. Crystallization of Skeletal Diamonds from Graphite and Natural Coal in Presence of Hydrous Fluids at P=8 GPa and T=1400-1500° C

    NASA Astrophysics Data System (ADS)

    Dobrzhinetskaya, L. F.; Renfro, A. P.; Green, H. W.

    2001-12-01

    Most metamorphic microdiamonds from crustal UHP rocks of the Kokchetav massive, Kazakhstan are characterized by skeletal-hopper crystals, cuboid-like crystals with cavities "healed over" by graphite, rose-like crystals, and other imperfect morphologies. According to the classical theory of crystal growth at thermodynamic equilibrium, only shapes with a minimum surface energy are stable. Thus imperfect crystallographic forms of most metamorphic diamonds formally may be interpreted as metastable while the presence of other high pressure phases associated with diamond indicates that the rocks have been subjected to UHP metamorphism within the diamond stability field. The classical theory also says that a skeletal-hopper crystal is one that develops under conditions of rapid growth, a high degree of supersaturation and in the presence of impurities. In contrast to these observations, most experiments on diamond synthesis at high P (5-7.7 GPa) and T (1250 - 1900° C) from graphite (Wang et al., 1999; Hong et al., 1999; Yamaoka et al., 2000) and carbonate material (Pal'anov et al., 1999; Sokol et al.,2000) in presence of fluid phase produced perfect octahedral and cube-octahedral diamond crystals. Advanced analytical research on metamorphic diamonds and their inclusions has demonstrated that they were crystallized from a multicomponent COH-rich supercritical fluid phase, the composition of which suggests intermixture of crustal and mantle components (de Corte et al., 1999; Dobrzhinetskaya et al., 2001, Stockhert et al., 2001). We have recently synthesized imperfect diamond crystals (skeletal-hopper morphologies with effect of etching of the diamond surfaces) from graphite and natural coal + 2% Mg(OH)2 as a source for fluid phase. Conditions of experiments are: P=8-8.5 GPa, T=1400-1500° C, t=14 to 136 hours. Our experimental data are in a good agreement with similar experiments conducted by Kanda et al. (1984) who showed that with increasing water content of the system, the morphology of diamond crystals changes progressively from octahedra to crystals with elements of dodecahedra to hollow/hopper and skeletal morphologies. We hypothesize that imperfect morphologies of metamorphic diamonds are due to the presence of OH in the system.

  11. Density Banding in Coral Skeletons: A Biotic Response to Sea Surface Temperature?

    NASA Astrophysics Data System (ADS)

    Hill, C. A.; Oehlert, A. M.; Piggot, A. M.; Yau, P. M.; Fouke, B. W.

    2008-12-01

    Density bands in the CaCO3 (aragonite) skeleton of scleractinian corals are commonly used as chronometers, where crystalline couplets of high and low density bands represent the span of one year. This provides a sensitive reconstructive tool for paleothermometry, paleoclimatology and paleoecology. However, the detailed mechanisms controlling aragonite nucleation and crystallization events and the rate of skeletal growth remain uncertain. The organic matrix, composed of macromolecules secreted by the calicoblastic ectoderm, is closely associated with skeletal precipitation and is itself incorporated into the skeleton. We postulate that density banding is primarily controlled by changes in the rate of aragonite crystal precipitation mediated by the coral holobiont response to changes in sea surface temperature (SST). To test this hypothesis, data were collected from coral skeleton-tissue biopsies (2.5 cm in diameter) extracted from four species of Montastraea growing on the fringing reef tract of Curacao, Netherlands Antilles (annual mean variation in SST is 29° C in mid-September to 26° C in late February). Samples were collected in the following three contextual modes: 1) at two sites (Water Plant and Playa Kalki) along a lateral 25 km spatial transect; 2) across a vertical bathymetric gradient from 5 to 15 m water depth at each site; and 3) at strategic time periods spanning the 3° C annual variations in SST. Preliminary results indicate that skeletal density banding is also expressed in the organic matrix, permitting biochemical characterization and correlation of the organic matrix banding to the skeletal banding. In addition, both surficial and ectodermal mucins were characterized in terms of total protein content, abundance and location of their anionic, cationic, and neutral macromolecular constituents. Furthermore, the ratio of mucocytes in the oral ectoderm to gastrodermal symbiotic zooxanthellae has permitted estimates of seasonal carbon allocation by the coral holobiont. Our nanometer-scale optical analyses of crystal morphology, arrangement, and densities have revealed consistent changes between high and low skeletal density bands. Mass spectrometry, newly developed immunohistochemical staining, fluorescence and polarized light microscopy are in progress to further quantify and model these observations.

  12. Clipperton Atoll (eastern Pacific): oceanography, geomorphology, reef-building coral ecology and biogeography

    NASA Astrophysics Data System (ADS)

    Glynn, P. W.; Veron, J. E. N.; Wellington, G. M.

    1996-06-01

    Coral reef geomorphology and community composition were investigated in the tropical northeastern Pacific during April 1994. Three areas were surveyed in the Revillagigedo Islands (Mexico), and an intensive study was conducted on Clipperton Atoll (1,300 km SW of Acapulco), including macro-scale surface circulation, sea surface temperature (SST) climatology, geomorphology, coral community structure, zonation, and biogeography. Satellite-tracked drifter buoys from 1979 1993 demonstrated complex patterns of surface circulation with dominantly easterly flow (North Equatorial Counter Current, NECC), but also westerly currents (South Equatorial Current, SEC) that could transport propagules to Clipperton from both central and eastern Pacific regions. The northernmost latitude reached by the NECC is not influenced by El Niño-Southern Oscillation (ENSO) events, but easterly flow velocity evidently is accelerated at such times. Maximum NECC flow rates indicate that the eastern Pacific barrier can be bridged in 60 to 120 days. SST anomalies at Clipperton occur during ENSO events and were greater at Clipperton in 1987 than during 1982 1983. Shallow (15 18 m)and deep (50 58 m) terraces are present around most of Clipperton, probably representing Modern and late Pleistocene sea level stands. Although Clipperton is a well developed atoll with high coral cover, the reef-building fauna is depauperate, consisting of only 7 species of scleractinian corals belonging to the genera Pocillopora, Porites, Pavona and Leptoseris, and 1 species of hydrocoral in the genus Millepora. The identities of the one Pocilpopora species and one of the two Porites species are still unknown. Two of the remaining scleractinians ( Pavona minuta, Leptoseris scabra) and the hydrocoral ( Millepora exaesa), all formerly known from central and western Pacific localities, represent new eastern Pacific records. Scleractinian corals predominate (10 100% cover) over insular shelf depths of 8 to 60m, and crustose coralline algae are dominant (5 40% cover) from 0.5 to 7m. Spur and groove features, constructed of alternating frameworks of Pocillopora and Porites, and veneered with crustose coralline algae, are generally well developed around most atoll exposures. Although crustose coralline algae predominate in the breaker zone (with up to 100% cover), a prominent algal ridge is absent with only a slight buildup (ca. 10 cm) to seaward. Frequent grazing by the pufferfish Arothron meleagris results in the removal of large amounts of live tissue and skeleton from Porites lobata. Acanthaster planci is present, but rare. The grazing of large diadematid sea urchins, (2 species each of Diadema and Echinothrix) on dead corals cause extensive erosion in some areas. Large numbers of corals on the 15 18 m terrace had recently suffered partial ( P. lobata, 60 70% maximum of all colonies sampled) or total ( Pocillopora sp., 80% maximum) mortality. The lengths of regenerating knobs and the rates of linear skeletal growth in P. lobata, determined by sclerochronologic analysis, indicated a period of stress during 1987. Massive skeletal growth is significantly higher at intermediate (16 17 m) than shallow (6 8 m) depths with mean extension rates of 1.5 mm yr-1 in P. lobata and 1.4 mm yr-1 in P. minuta at intermediate depths. Skeletal growth in P. lobata was depressed during the 1987 El Nifio event at Clipperton. The branching coral Pocillopora sp. demonstrated high and similar skeletal growth rates at both shallow (25.4 mm yr-1) and intermediate (26.5 mm yr-1) depths. The presence of widely distributed Indo-Pacific zooxanthellate corals at Clipperton and the Revillagigedo Islands indicates that these NE Pacific Islands probably serve as a stepping stone for dispersal into the far eastern Pacific region.

  13. Screening high-fluoride and high-arsenic drinking waters and surveying endemic fluorosis and arsenism in Shaanxi province in western China.

    PubMed

    Zhu, Cansheng; Bai, Guanglu; Liu, Xiaoli; Li, Yue

    2006-09-01

    The objectives of this study were to screen high-fluoride and high-arsenic drinking waters, to evaluate the effectiveness of fluoride-reducing projects and to assess the present condition of endemic fluorosis and arsenism in Shaanxi province in western China. For screening high-fluoride drinking waters, five water samples were collected from each selected village where dental fluorosis patients were detected in 8-12 year-old children. For evaluating the effectiveness of fluoride-reducing projects, four water samples were collected from each project at end-user level. Fluoride concentrations in water samples were measured by fluoride-selective electrode method or spectrophotometry. Dental fluorosis in children aging 8-12 years was examined according to Horowitz's Tooth Surface Index of Fluorosis. Skeletal fluorosis in adults was detected clinically and radiologically according to Chinese Criteria of Clinical Diagnosis of Skeletal Fluorosis. For screening high-arsenic waters, 20 water samples were collected from each village which was selected from areas characterized by the geographic features to induce high-arsenic underground water, i.e., alluvial plains, ore mining or smelting areas, geothermal artesians, and thermal springs. Arsenic concentrations in water samples were determined by spectrophotometry or arsine generation atomic fluorospectrophotometry. Arsenism in adults aging 40-89 years was examined in villages with arsenic concentrations in drinking water above 0.05 mg/l according to Chinese Criteria for Classification of Endemic Arsenism Areas and Clinical Diagnoses of Endemic Arsenism. The results showed that the fluoride level of 7144 water samples was 1.17 +/- 0.93 mg/l. There were 3396 (47.6%) high-fluoride waters (fluoride level was above 1.0 mg/l) distributing in 786 (45.1%) villages, where about 0.8 million (50.0%) people inhabited. Additionally, the 1315 fluoride-reducing projects were studied. The fluoride level of the projects was 2.79 +/- 1.09 and 0.98 +/- 0.47 mg/l before and after building the projects, which remained at relatively lower level (1.03 +/- 0.47 mg/l). But there were still 58.0% of the projects providing drinking waters with fluoride concentrations beyond 1.0mg/l. The rates of dental fluorosis and skeletal fluorosis were 38.2% and 11.8%, respectively. The arsenic level of 1732 water samples was 0.010 +/- 0.082 mg/l. There were 174 (14.9%) high-arsenic waters (arsenic level was above 0.010 mg/l) being detected, distributing in 41 (38.7%) villages. The arsenic level in 53 (4.5%) water samples was beyond 0.025 mg/l. There were 3 villages with arsenic level in drinking water beyond Chinese National Permissible Limits (0.050 mg/l), and the prevalence rate of arsenism reached 37.0% in these three villages, 3.7%, 22.2%, and 11.1% of subjects suffering from mild, moderate, and severe arsenism, respectively. Conclusively, the wide distribution of high-fluoride drinking waters contributes to the prevalence of dental and skeletal fluorosis in Shaanxi province and the quality of fluoride-reducing projects should be further improved. Ore mining and smelting induces high-arsenic drinking waters, resulting in arsenism prevalence in Shang-luo city. Proper measures should be taken to deal with water pollution in the ore mining and smelting areas in order to solve the high-arsenic water problem in Shaanxi province.

  14. MARS: A protein family involved in the formation of vertical skeletal elements.

    PubMed

    Abehsera, Shai; Peles, Shani; Tynyakov, Jenny; Bentov, Shmuel; Aflalo, Eliahu D; Li, Shihao; Li, Fuhua; Xiang, Jianhai; Sagi, Amir

    2017-05-01

    Vertical organizations of skeletal elements are found in various vertebrate teeth and invertebrate exoskeletons. The molecular mechanism behind the development of such structural organizations is poorly known, although it is generally held that organic matrix proteins play an essential role. While most crustacean cuticular organizations exhibit horizontal chitinous layering, a typical vertical organization is found towards the surface of the teeth in the mandibles of the crayfish Cherax quadricarinatus. Candidate genes encoding for mandible-forming structural proteins were mined in C. quadricarinatus molt-related transcriptomic libraries by using a binary patterning approach. A new protein family, termed the Mandible Alanine Rich Structural (MARS) protein family, with a modular sequence design predicted to form fibers, was found. Investigations of spatial and temporal expression of the different MARS genes suggested specific expression in the mandibular teeth-forming epithelium, particularly during the formation of the chitinous vertical organization. MARS loss-of-function RNAi experiments resulted in the collapse of the organization of the chitin fibers oriented vertically to the surface of the crayfish mandibular incisor tooth. A general search of transcriptomic libraries suggested conservation of MARS proteins across a wide array of crustaceans. Our results provide a first look into the molecular mechanism used to build the complex crustacean mandible and into the specialized vertical structural solution that has evolved in skeletal elements. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Colocalization properties of elementary Ca(2+) release signals with structures specific to the contractile filaments and the tubular system of intact mouse skeletal muscle fibers.

    PubMed

    Georgiev, Tihomir; Zapiec, Bolek; Förderer, Moritz; Fink, Rainer H A; Vogel, Martin

    2015-12-01

    Ca(2+) regulates several important intracellular processes. We combined second harmonic generation (SHG) and two photon excited fluorescence microscopy (2PFM) to simultaneously record the SHG signal of the myosin filaments and localized elementary Ca(2+) release signals (LCSs). We found LCSs associated with Y-shaped structures of the myosin filament pattern (YMs), so called verniers, in intact mouse skeletal muscle fibers under hypertonic treatment. Ion channels crucial for the Ca(2+) regulation are located in the tubular system, a system that is important for Ca(2+) regulation and excitation-contraction coupling. We investigated the tubular system of intact, living mouse skeletal muscle fibers using 2PFM and the fluorescent Ca(2+) indicator Fluo-4 dissolved in the external solution or the membrane dye di-8-ANEPPS. We simultaneously measured the SHG signal from the myosin filaments of the skeletal muscle fibers. We found that at least a subset of the YMs observed in SHG images are closely juxtaposed with Y-shaped structures of the transverse tubules (YTs). The distances of corresponding YMs and YTs yield values between 1.3 μm and 4.1 μm including pixel uncertainty with a mean distance of 2.52±0.10 μm (S.E.M., n=41). Additionally, we observed that some of the linear-shaped areas in the tubular system are colocalized with linear-shaped areas in the SHG images. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Cerebellum - function (image)

    MedlinePlus

    The cerebellum processes input from other areas of the brain, spinal cord and sensory receptors to provide precise timing ... the skeletal muscular system. A stroke affecting the cerebellum may cause dizziness, nausea, balance and coordination problems.

  17. Skeletal mineralogy of coral recruits under high temperature and pCO2

    NASA Astrophysics Data System (ADS)

    Foster, T.; Clode, P. L.

    2015-08-01

    Aragonite, which is the polymorph of CaCO3 precipitated by modern corals during skeletal formation, has a higher solubility than the more stable polymorph calcite. This higher solubility leaves animals that produce aragonitic skeletons more vulnerable to anthropogenic ocean acidification. It is therefore, important to determine whether scleractinian corals have the plasticity to adapt and produce calcite in their skeletons in response to changing environmental conditions. Both high pCO2 and lower Mg / Ca ratios in seawater are thought to have driven changes in the skeletal mineralogy of major marine calcifiers in the past ∼540 myr. Experimentally reduced Mg / Ca ratios in ambient seawater have been shown to induce some calcite precipitation in both adult and newly settled modern corals, however, the impact of high pCO2 on the mineralogy of recruits is unknown. Here we determined the skeletal mineralogy of one-month old Acropora spicifera coral recruits grown under high temperature (+3 °C) and pCO2 (∼900 μatm) conditions, using X-ray diffraction and Raman spectroscopy. We found that newly settled coral recruits produced entirely aragonitic skeletons regardless of the treatment. Our results show that elevated pCO2 alone is unlikely to drive changes in the skeletal mineralogy of young corals. Not having an ability to switch from aragonite to calcite precipitation may leave corals and ultimately coral reef ecosystems more susceptible to predicted ocean acidification. An important area for prospective research would be to investigate the combined impact of high pCO2 and reduced Mg / Ca ratio on coral skeletal mineralogy.

  18. HIF-1-driven skeletal muscle adaptations to chronic hypoxia: molecular insights into muscle physiology.

    PubMed

    Favier, F B; Britto, F A; Freyssenet, D G; Bigard, X A; Benoit, H

    2015-12-01

    Skeletal muscle is a metabolically active tissue and the major body protein reservoir. Drop in ambient oxygen pressure likely results in a decrease in muscle cells oxygenation, reactive oxygen species (ROS) overproduction and stabilization of the oxygen-sensitive hypoxia-inducible factor (HIF)-1α. However, skeletal muscle seems to be quite resistant to hypoxia compared to other organs, probably because it is accustomed to hypoxic episodes during physical exercise. Few studies have observed HIF-1α accumulation in skeletal muscle during ambient hypoxia probably because of its transient stabilization. Nevertheless, skeletal muscle presents adaptations to hypoxia that fit with HIF-1 activation, although the exact contribution of HIF-2, I kappa B kinase and activating transcription factors, all potentially activated by hypoxia, needs to be determined. Metabolic alterations result in the inhibition of fatty acid oxidation, while activation of anaerobic glycolysis is less evident. Hypoxia causes mitochondrial remodeling and enhanced mitophagy that ultimately lead to a decrease in ROS production, and this acclimatization in turn contributes to HIF-1α destabilization. Likewise, hypoxia has structural consequences with muscle fiber atrophy due to mTOR-dependent inhibition of protein synthesis and transient activation of proteolysis. The decrease in muscle fiber area improves oxygen diffusion into muscle cells, while inhibition of protein synthesis, an ATP-consuming process, and reduction in muscle mass decreases energy demand. Amino acids released from muscle cells may also have protective and metabolic effects. Collectively, these results demonstrate that skeletal muscle copes with the energetic challenge imposed by O2 rarefaction via metabolic optimization.

  19. Skeletal mineralogy of coral recruits under high temperature and pCO2

    NASA Astrophysics Data System (ADS)

    Foster, T.; Clode, P. L.

    2016-03-01

    Aragonite, which is the polymorph of CaCO3 precipitated by modern corals during skeletal formation, has a higher solubility than the more stable polymorph calcite. This higher solubility may leave animals that produce aragonitic skeletons more vulnerable to anthropogenic ocean acidification. It is therefore important to determine whether scleractinian corals have the plasticity to adapt and produce calcite in their skeletons in response to changing environmental conditions. Both high pCO2 and lower Mg / Ca ratios in seawater are thought to have driven changes in the skeletal mineralogy of major marine calcifiers in the past ˜ 540 Ma. Experimentally reduced Mg / Ca ratios in ambient seawater have been shown to induce some calcite precipitation in both adult and newly settled modern corals; however, the impact of high pCO2 on the mineralogy of recruits is unknown. Here we determined the skeletal mineralogy of 1-month-old Acropora spicifera coral recruits grown under high temperature (+3 °C) and pCO2 (˜ 900 µatm) conditions, using X-ray diffraction and Raman spectroscopy. We found that newly settled coral recruits produced entirely aragonitic skeletons regardless of the treatment. Our results show that elevated pCO2 alone is unlikely to drive changes in the skeletal mineralogy of young corals. Not having an ability to switch from aragonite to calcite precipitation may leave corals and ultimately coral reef ecosystems more susceptible to predicted ocean acidification. An important area for prospective research would be the investigation of the combined impact of high pCO2 and reduced Mg / Ca ratio on coral skeletal mineralogy.

  20. A finite element head and neck model as a supportive tool for deformable image registration.

    PubMed

    Kim, Jihun; Saitou, Kazuhiro; Matuszak, Martha M; Balter, James M

    2016-07-01

    A finite element (FE) head and neck model was developed as a tool to aid investigations and development of deformable image registration and patient modeling in radiation oncology. Useful aspects of a FE model for these purposes include ability to produce realistic deformations (similar to those seen in patients over the course of treatment) and a rational means of generating new configurations, e.g., via the application of force and/or displacement boundary conditions. The model was constructed based on a cone-beam computed tomography image of a head and neck cancer patient. The three-node triangular surface meshes created for the bony elements (skull, mandible, and cervical spine) and joint elements were integrated into a skeletal system and combined with the exterior surface. Nodes were additionally created inside the surface structures which were composed of the three-node triangular surface meshes, so that four-node tetrahedral FE elements were created over the whole region of the model. The bony elements were modeled as a homogeneous linear elastic material connected by intervertebral disks. The surrounding tissues were modeled as a homogeneous linear elastic material. Under force or displacement boundary conditions, FE analysis on the model calculates approximate solutions of the displacement vector field. A FE head and neck model was constructed that skull, mandible, and cervical vertebrae were mechanically connected by disks. The developed FE model is capable of generating realistic deformations that are strain-free for the bony elements and of creating new configurations of the skeletal system with the surrounding tissues reasonably deformed. The FE model can generate realistic deformations for skeletal elements. In addition, the model provides a way of evaluating the accuracy of image alignment methods by producing a ground truth deformation and correspondingly simulated images. The ability to combine force and displacement conditions provides flexibility for simulating realistic anatomic configurations.

  1. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branson, Oscar; Bonnin, Elisa A.; Perea, Daniel E.

    Biomineralizing organisms exhibit exquisite control over skeletal morphology and composition. The promise of understanding and harnessing this feat of natural engineering has motivated an intense search for the mechanisms that direct in vivo mineral self-assembly. We used atom probe tomography, a sub-nanometer 3D chemical mapping technique, to examine the chemistry of a buried organic-mineral interface in biomineral calcite from a marine foraminifer. The chemical patterns at this interface capture the processes of early biomineralization, when the shape, mineralogy, and orientation of skeletal growth are initially established. Sodium is enriched by a factor of nine on the organic side of themore » interface. Based on this pattern, we suggest that sodium plays an integral role in early biomineralization, potentially altering interfacial energy to promote crystal nucleation, and that interactions between organic surfaces and electrolytes other than calcium or carbonate could be a crucial aspect of CaCO3 biomineralization.« less

  2. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branson, Oscar; Bonnin, Elisa A.; Perea, Daniel E.

    2016-10-28

    Biomineralizing organisms exhibit exquisite control over skeletal morphology and composition. The promise of understanding and harnessing this feat of natural engineering has motivated an intense search for the mechanisms that direct in vivo mineral self-assembly. We used atom probe tomography, a sub-nanometer 3D chemical mapping technique, to examine the chemistry of a buried organic-mineral interface in biomineral calcite from a marine foraminifer. The chemical patterns at this interface capture the processes of early biomineralization, when the shape, mineralogy, and orientation of skeletal growth are initially established. Sodium is enriched by a factor of nine on the organic side of themore » interface. Based on this pattern, we suggest that sodium plays an integral role in early biomineralization, potentially altering interfacial energy to promote crystal nucleation, and that interactions between organic surfaces and electrolytes other than calcium or carbonate could be a crucial aspect of CaCO3 biomineralization.« less

  3. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation

    DOE PAGES

    Branson, Oscar; Bonnin, Elisa A.; Perea, Daniel E.; ...

    2016-10-28

    Biomineralizing organisms exhibit exquisite control over skeletal morphology and composition. The promise of understanding and harnessing this feat of natural engineering has motivated an intense search for the mechanisms that direct in vivo mineral self-assembly. We used atom probe tomography, a sub-nanometer 3D chemical mapping technique, to examine the chemistry of a buried organic-mineral interface in biomineral calcite from a marine foraminifer. Here, the chemical patterns at this interface capture the processes of early biomineralization, when the shape, mineralogy, and orientation of skeletal growth are initially established. Sodium is enriched by a factor of nine on the organic side ofmore » the interface. Based on this pattern, we suggest that sodium plays an integral role in early biomineralization, potentially altering interfacial energy to promote crystal nucleation, and that interactions between organic surfaces and electrolytes other than calcium or carbonate could be a crucial aspect of CaCO 3 biomineralization.« less

  4. Changes in bone structure and metabolism during simulated weightlessness: Endocrine and dietary factors

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Wronski, T. J.

    1985-01-01

    The role of vitamin D, PTH and corticosterone in the skeletal alterations induced by simulated weightlessness was examined. The first objective was to determine if changes in the serum concentrations of Ca, P sub i, osteocalcin, 25-OH-D, 24,25(OH)2D or 1,25(OH)2D also occur following acute skeletal unloading. Animals were either suspended or pair fed for 2, 5, 7, 10, 12 and 15 days and the serum concentrations of Ca, P sub i, osteocalcin and the vitamin D metabolites measured. Bone histology was examined at day 5 after suspension. Acute skeletal unloading produced a transient hypercalcemia, a significant fall in serum osteocalcin and serum 1,25(OH)2D, a slight rise in serum 24,25(OH)2D, but did not affect the serum concentrations of P sub i or 25-OH-D. At the nadir in serum 1,25(OH)2D serum osteocalcin was reduced by 22%, osteoblast surface by 32% and longitudinal bone growth by 21%.

  5. Running Economy from a Muscle Energetics Perspective.

    PubMed

    Fletcher, Jared R; MacIntosh, Brian R

    2017-01-01

    The economy of running has traditionally been quantified from the mass-specific oxygen uptake; however, because fuel substrate usage varies with exercise intensity, it is more accurate to express running economy in units of metabolic energy. Fundamentally, the understanding of the major factors that influence the energy cost of running (E run ) can be obtained with this approach. E run is determined by the energy needed for skeletal muscle contraction. Here, we approach the study of E run from that perspective. The amount of energy needed for skeletal muscle contraction is dependent on the force, duration, shortening, shortening velocity, and length of the muscle. These factors therefore dictate the energy cost of running. It is understood that some determinants of the energy cost of running are not trainable: environmental factors, surface characteristics, and certain anthropometric features. Other factors affecting E run are altered by training: other anthropometric features, muscle and tendon properties, and running mechanics. Here, the key features that dictate the energy cost during distance running are reviewed in the context of skeletal muscle energetics.

  6. Running Economy from a Muscle Energetics Perspective

    PubMed Central

    Fletcher, Jared R.; MacIntosh, Brian R.

    2017-01-01

    The economy of running has traditionally been quantified from the mass-specific oxygen uptake; however, because fuel substrate usage varies with exercise intensity, it is more accurate to express running economy in units of metabolic energy. Fundamentally, the understanding of the major factors that influence the energy cost of running (Erun) can be obtained with this approach. Erun is determined by the energy needed for skeletal muscle contraction. Here, we approach the study of Erun from that perspective. The amount of energy needed for skeletal muscle contraction is dependent on the force, duration, shortening, shortening velocity, and length of the muscle. These factors therefore dictate the energy cost of running. It is understood that some determinants of the energy cost of running are not trainable: environmental factors, surface characteristics, and certain anthropometric features. Other factors affecting Erun are altered by training: other anthropometric features, muscle and tendon properties, and running mechanics. Here, the key features that dictate the energy cost during distance running are reviewed in the context of skeletal muscle energetics. PMID:28690549

  7. Deficiency in Cardiac Dystrophin Affects the Abundance of the α-/β-Dystroglycan Complex

    PubMed Central

    2005-01-01

    Although Duchenne muscular dystrophy is primarily categorised as a skeletal muscle disease, deficiency in the membrane cytoskeletal protein dystrophin also affects the heart. The central transsarcolemmal linker between the actin membrane cytoskeleton and the extracellular matrix is represented by the dystrophin-associated dystroglycans. Chemical cross-linking analysis revealed no significant differences in the dimeric status of the α-/β-dystroglycan subcomplex in the dystrophic mdx heart as compared to normal cardiac tissue. In analogy to skeletal muscle fibres, heart muscle also exhibited a greatly reduced abundance of both dystroglycans in dystrophin-deficient cells. Immunoblotting demonstrated that the degree of reduction in α-dystroglycan is more pronounced in matured mdx skeletal muscle as contrasted to the mdx heart. The fact that the deficiency in dystrophin triggers a similar pathobiochemical response in both types of muscle suggests that the cardiomyopathic complications observed in x-linked muscular dystrophy might be initiated by the loss of the dystrophin-associated surface glycoprotein complex. PMID:15689636

  8. Triiodothyronine, beta-adrenergic receptors, agonist responses, and exercise capacity.

    PubMed

    Martin, W H

    1993-07-01

    Although thyroid hormone excess results in increased beta-adrenergic receptor density or agonist responses in some cells of experimental animals, the role of these effects in contributing to clinical manifestations of hyperthyroidism in human subjects is unclear. To shed further light on this issue, we characterized the effect of 2 weeks of excess triiodothyronine administration on cardiac and metabolic responses to graded-dose isoproterenol infusion, skeletal muscle beta-adrenergic receptor density, and physiologic determinants of exercise capacity in young healthy subjects. The slope of the heart rate response to isoproterenol was 36% greater (p < 0.05) after triiodothyronine administration. In addition, beta-adrenergic receptor density was increased (p < 0.01) in all types of skeletal muscle fibers. Maximal oxygen uptake during treadmill exercise declined 5% (p < 0.001) after triiodothyronine administration because of a decrease in the arteriovenous oxygen difference (p < 0.05). The plasma lactate response to submaximal exercise was 25% greater (p < 0.01) in the hyperthyroid state. These effects were paralleled by a decrement in skeletal muscle oxidative capacity and a decrease in cross-sectional area of type 2A skeletal myocytes. Thus, thyroid hormone excess enhances cardiac beta-adrenergic sensitivity under in vivo conditions in human subjects. Nevertheless, exercise capacity is diminished in the hyperthyroid state, an effect that may be related to reduced skeletal muscle oxidative capacity and type 2A fiber atrophy.

  9. In vitro effects of oxytocin, acepromazine, detomidine, xylazine, butorphanol, terbutaline, isoproterenol, and dantrolene on smooth and skeletal muscles of the equine esophagus.

    PubMed

    Wooldridge, Anne A; Eades, Susan C; Hosgood, Giselle L; Moore, Rustin M

    2002-12-01

    To characterize the in vitro effects of oxytocin, acepromazine, xylazine, butorphanol, detomidine, dantrolene, isoproterenol, and terbutaline on skeletal and smooth muscle from the equine esophagus. 14 adult horses without digestive tract disease. Circular and longitudinal strips from the skeletal and smooth muscle of the esophagus were suspended in tissue baths, connected to force-displacement transducers interfaced with a physiograph, and electrical field stimulation was applied. Cumulative concentration-response curves were generated for oxytocin, acepromazine, xylazine, detomidine, butorphanol, isoproterenol, terbutaline, and dantrolene. Mean maximum twitch amplitude for 3 contractions/min was recorded and compared with predrug-vehicle values for the skeletal muscle segments, and area under the curve (AUC) for 3 contractions/min was compared with predrug-vehicle values for the smooth muscle segments. No drugs caused a significant change in skeletal muscle response. In smooth muscle, isoproterenol, terbutaline, and oxytocin significantly reduced AUC in a concentration-dependent manner. Maximum reduction in AUC was 69% at 10(-4) M for isoproterenol, 63% at 10(-6) M for terbutaline, and 64% at 10(-4) M for oxytocin. Isoproterenol, terbutaline, and oxytocin cause relaxation of the smooth muscle portion of the esophagus. The clinical relaxant effects on the proximal portion of the esophagus reported of drugs such as oxytocin, detomidine, and acepromazine may be the result of centrally mediated mechanisms.

  10. Insulin-like growth factor-1 receptor in mature osteoblasts is required for periosteal bone formation induced by reloading

    NASA Astrophysics Data System (ADS)

    Kubota, Takuo; Elalieh, Hashem Z.; Saless, Neema; Fong, Chak; Wang, Yongmei; Babey, Muriel; Cheng, Zhiqiang; Bikle, Daniel D.

    2013-11-01

    Skeletal loading and unloading has a pronounced impact on bone remodeling, a process also regulated by insulin-like growth factor-1 (IGF-1) signaling. Skeletal unloading leads to resistance to the anabolic effect of IGF-1, while reloading after unloading restores responsiveness to IGF-1. However, a direct study of the importance of IGF-1 signaling in the skeletal response to mechanical loading remains to be tested. In this study, we assessed the skeletal response of osteoblast-specific Igf-1 receptor deficient (Igf-1r-/-) mice to unloading and reloading. The mice were hindlimb unloaded for 14 days and then reloaded for 16 days. Igf-1r-/- mice displayed smaller cortical bone and diminished periosteal and endosteal bone formation at baseline. Periosteal and endosteal bone formation decreased with unloading in Igf-1r+/+ mice. However, the recovery of periosteal bone formation with reloading was completely inhibited in Igf-1r-/- mice, although reloading-induced endosteal bone formation was not hampered. These changes in bone formation resulted in the abolishment of the expected increase in total cross-sectional area with reloading in Igf-1r-/- mice compared to the control mice. These results suggest that the Igf-1r in mature osteoblasts has a critical role in periosteal bone formation in the skeletal response to mechanical loading.

  11. Comparison of pQCT parameters between ulna and radius in retired elite gymnasts: the skeletal benefits associated with long-term gymnastics are bone- and site-specific.

    PubMed

    Ducher, G; Hill, B L; Angeli, T; Bass, S L; Eser, P

    2009-01-01

    To compare the skeletal benefits associated with gymnastics between ulna and radius. 19 retired artistic gymnasts, aged 18-36 years, were compared to 24 sedentary women. Bone mineral content (BMC), total and cortical bone area (ToA, CoA), trabecular and cortical volumetric density (TrD, CoD) and cortical thickness (CoTh) were measured by pQCT at the 4% and 66% forearm. At the 4% site, BMC and ToA were more than twice greater at the radius than ulna whereas at the 66% site, BMC, ToA, CoA, CoTh and SSIpol were 20 to 51% greater at the ulna than radius in both groups (p<0.0001). At the 4% site, the skeletal benefits in BMC of the retired gymnasts over the non-gymnasts were 1.9 times greater at the radius than ulna (p<0.001), with enlarged bone size at the distal radius only. In contrast, the skeletal benefits at the 66% site were twice greater at the ulna than radius for BMC and CoA (p<0.01). Whereas the skeletal benefits associated with long-term gymnastics were greater at the radius than ulna in the distal forearm, the reverse was found in the proximal forearm, suggesting both bones should be analysed when investigating forearm strength.

  12. Depositional facies and porosity development at Coon Creek Field (Newman [open quotes]Big Lime[close quotes]), Leslie County, Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moshier, S.O.; Stamper, M.E.

    1994-08-01

    Coon Creek field is a significant petroleum reservoir in the [open quotes]Big Lime[close quotes], Middle to Upper Mississippian Newman equivalent, in southeastern Kentucky. Initial production from select wells has exceeded 600 bbl of oil/day at drilling depths averaging 915 m (3300 ft). Facies patterns, dolomitization, porosity, and structure in this carbonate reservoir have been delineated by geophysical logs, subsurface mapping, and examination of cores and cuttings. The reservoir is set within a localized paleotopographic low on the unconformable surface of the underlying siliciclastic Borden Group; the Borden surface can express rapid relief of over a 10% grade within less thanmore » 300 m. Transgression across the exposed Borden surface resulted in the deposition of a complex system of carbonates lithofacies. Crinoidal dolostones, representing shallow subtidal skeletal bars and banks, form the basal Big Lime (1.5-6 m thick). They are overlain by a typical facies (30 m thick) of bryozoan grainstones/packstones, crinoid grainstones, and mixed skeletal wakestones/mudstones. The rybryozoanacies are characterized by unfragmented fenestrates cemented by radiaxial-fibrous calcite. Stratigraphic distributions indicate the bryozoan facies were broad buildups with crinoidal flank and cap deposits and muddy skeletal off-mount facies, similar to deeper water Waulsortian mounds in other basins. Pellet and ooid grainstones represent moderate- to high-energy subtidal shoal deposits that covered the mound complex. Hydrocarbon production is restricted in the field to the crinoid-bryozoan facies complex within the basal 30 m. Reservoir porosity and permeability have been enhanced by selective dolomitization of grainstones and fracturing related to postdepositional reactivation of basement faults.« less

  13. Measurement of Maximum Isometric Force Generated by Permeabilized Skeletal Muscle Fibers.

    PubMed

    Roche, Stuart M; Gumucio, Jonathan P; Brooks, Susan V; Mendias, Christopher L; Claflin, Dennis R

    2015-06-16

    Analysis of the contractile properties of chemically skinned, or permeabilized, skeletal muscle fibers offers a powerful means by which to assess muscle function at the level of the single muscle cell. Single muscle fiber studies are useful in both basic science and clinical studies. For basic studies, single muscle fiber contractility measurements allow investigation of fundamental mechanisms of force production, and analysis of muscle function in the context of genetic manipulations. Clinically, single muscle fiber studies provide useful insight into the impact of injury and disease on muscle function, and may be used to guide the understanding of muscular pathologies. In this video article we outline the steps required to prepare and isolate an individual skeletal muscle fiber segment, attach it to force-measuring apparatus, activate it to produce maximum isometric force, and estimate its cross-sectional area for the purpose of normalizing the force produced.

  14. Skeletal myopathy in juvenile barramundi, Lates calcarifer (Bloch), cultured in potassium-deficient saline groundwater.

    PubMed

    Partridge, G J; Creeper, J

    2004-09-01

    Saline groundwater is being pumped from a number of locations in rural Western Australia to prevent secondary salinity impacting farmland, rural infrastructure and areas with high conservation value. Aquaculture may offset the costs of groundwater pumping, and the suitability of groundwater for finfish aquaculture is being assessed through bioassays. There are marked spatial variations in the ionic composition of saline ground water in Western Australia and this paper describes two bioassays investigating a saline, potassium-deficient water source that resulted in mortalities in juvenile barramundi, Lates calcarifer (Bloch). Histopathological examination revealed severe degeneration and necrosis of skeletal muscles, marked hyperplasia of branchial chloride cells and renal tubular necrosis. Clinical chemistry findings included hypernatraemia and hyperchloridaemia of the blood plasma and lowered muscle potassium levels. It is concluded that the principal cause of death was skeletal myopathy induced by low water potassium levels.

  15. Historical Overview of the Effect of β-Adrenergic Agonists on Beef Cattle Production

    PubMed Central

    Johnson, Bradley J.; Smith, Stephen B.; Chung, Ki Yong

    2014-01-01

    Postnatal muscle hypertrophy of beef cattle is the result of enhanced myofibrillar protein synthesis and reduced protein turnover. Skeletal muscle hypertrophy has been studied in cattle fed β-adrenergic agonists (β-AA), which are receptor-mediated enhancers of protein synthesis and inhibitors of protein degradation. Feeding β-AA to beef cattle increases longissimus muscle cross-sectional area 6% to 40% compared to non-treated cattle. The β-AA have been reported to improve live animal performance, including average daily gain, feed efficiency, hot carcass weight, and dressing percentage. Treatment with β-AA increased mRNA concentration of the β2 or β1-adrenergic receptor and myosin heavy chain IIX in bovine skeletal muscle tissue. This review will examine the effects of skeletal muscle and adipose development with β-AA, and will interpret how the use of β-AA affects performance, body composition, and growth in beef cattle. PMID:25050012

  16. The influence of sarcopenia on survival and surgical complications in ovarian cancer patients undergoing primary debulking surgery.

    PubMed

    Rutten, I J G; Ubachs, J; Kruitwagen, R F P M; van Dijk, D P J; Beets-Tan, R G H; Massuger, L F A G; Olde Damink, S W M; Van Gorp, T

    2017-04-01

    Sarcopenia, severe skeletal muscle loss, has been identified as a prognostic factor in various malignancies. This study aims to investigate whether sarcopenia is associated with overall survival (OS) and surgical complications in patients with advanced ovarian cancer undergoing primary debulking surgery (PDS). Ovarian cancer patients (n = 216) treated with PDS were enrolled retrospectively. Total skeletal muscle surface area was measured on axial computed tomography at the level of the third lumbar vertebra. Optimum stratification was used to find the optimal skeletal muscle index cut-off to define sarcopenia (≤38.73 cm 2 /m 2 ). Cox-regression and Kaplan-Meier analysis were used to analyse the relationship between sarcopenia and OS. The effect of sarcopenia on the development of major surgical complications was studied with logistic regression. Kaplan-Meier analysis showed a significant survival disadvantage for patients with sarcopenia compared to patients without sarcopenia (p = 0.010). Sarcopenia univariably predicted OS (HR 1.536 (95% CI 1.105-2.134), p = 0.011) but was not significant in multivariable Cox-regression analysis (HR 1.362 (95% CI 0.968-1.916), p = 0.076). Significant predictors for OS in multivariable Cox-regression analysis were complete PDS, treatment in a specialised centre and the development of major complications. Sarcopenia was not predictive of major complications. Sarcopenia was not predictive of OS or major complications in ovarian cancer patients undergoing primary debulking surgery. However a strong trend towards a survival disadvantage for patients with sarcopenia was seen. Future prospective studies should focus on interventions to prevent or reverse sarcopenia and possibly increase ovarian cancer survival. Complete cytoreduction remains the strongest predictor of ovarian cancer survival. Copyright © 2017 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  17. Evaluating the angiogenic potential of a novel temperature-sensitive gel scaffold derived from porcine skeletal muscle tissue.

    PubMed

    Zhang, Di; Tan, Qiu-Wen; Luo, Jing-Cong; Lv, Qing

    2018-06-11

    Our previous study fabricated decellularized porcine muscle tissues (DPMTs) and demonstrated that DPMTs with few cell residues possess highly preserved protein components and good biocompatibility. In the physical state, skeletal muscle equips an abundant vascular network due to the vast demand of energy from aerobic metabolism. Vascular bioactive factors which are rich in skeletal muscle tissues may contribute to the angiogenic effect of DPMTs. However, implanting DPMTs in vivo in a less invasive way is unfeasible. Hence, the purpose of this study was to fabricate DPMTs into hydrogel and investigate the effects of DPMT gel on promoting neovessel formation in vitro and in vivo. The results demonstrated that the surface topographies of the DPMT gel were looser and more homogeneous than the DPMTs. The rates of retained VEGF, bFGF, and PDGF-BB in DPMT gel were almost half of the corresponding content in fresh skeletal muscle tissues. Human umbilical endothelial cells displayed better proliferation ability and enhanced the formation of neovascular loops when seeded on DPMT gel compared to small intestinal submucosa gels at the same concentration of 2% (W/V). Furthermore, the increased neovessel formation was detected after subcutaneous injection of DPMT gel. Taken together, these findings suggested that DPMT gel may possess the potential of promoting neovascular formation.

  18. Expression and function of heterotypic adhesion molecules during differentiation of human skeletal muscle in culture.

    PubMed Central

    Beauchamp, J. R.; Abraham, D. J.; Bou-Gharios, G.; Partridge, T. A.; Olsen, I.

    1992-01-01

    The infiltration of skeletal muscle by leukocytes occurs in a variety of myopathies and frequently accompanies muscle degeneration and regeneration. The latter involves development of new myofibers from precursor myoblasts, and so infiltrating cells may interact with muscle at all stages of differentiation. The authors have investigated the surface expression of ligands for T-cell adhesion during the differentiation of human skeletal muscle in vitro. Myoblasts expressed low levels of ICAM-1 (CD54), which remained constant during muscle cell differentiation and could be induced by cytokines such as gamma-interferon. It is therefore likely that ICAM-1 is involved in the invasive accumulation of lymphocytes during skeletal muscle inflammation. In contrast, LFA-3 (CD58) was expressed at higher levels than ICAM-1 on myoblasts, decreased significantly during myogenesis, and was unaffected by immune mediators. Both ICAM-1 and LFA-3 were able to mediate T cell binding to myoblasts, whereas adhesion to myotubes was independent of the LFA-3 ligand. Although expressed throughout myogenesis, human leukocyte antigen class I and CD44 did not appear to mediate T cell binding. The expression of ligands that facilitate interaction of myogenic cells with lymphocytes may have important implications for myoblast transplantation. Images Figure 1 Figure 3 Figure 4 PMID:1739132

  19. Variability in Beta-Adrenergic Receptor Population in Cultured Chicken Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, Ronald B; Bridge, Kristin Y.; Vaughn, Jeffrey R.

    1998-01-01

    Investigations into expression of the beta-adrenergic receptor (bAR) in chicken skeletal muscle cells in culture were initiated because several beta-adrenergic receptor agonists are known to increase skeletal muscle protein deposition in avian and mammalian species. During initial attempts to study the bAR population on the surface of chicken skeletal muscle cells, we observed a high degree of variability that was later found to be the result of using different batches of horse serum in the cell culture media. The separation between total binding and nonspecific binding in cells grown in two serum samples was approximately two-fold The number of nuclei within multinucleated myotubes was not significantly different in cells grown in the two serum samples. To investigate whether these two sera had an effect on coupling efficiency between bAR population and cAMP production, the ability of these cells to synthesize cAMP was also assessed. Despite the two-fold difference in receptor population, the ability of these cells to synthesize cAMP was not significantly different. Because of the possible link between bAR population and muscle protein, we also determined if the quantity of the major skeletal muscle protein, myosin, was affected by conditions that so drastically affected the bAR population. The quantity of myosin heavy chain was not significantly different.

  20. Neuromuscular Junction Formation between Human Stem cell-derived Motoneurons and Human Skeletal Muscle in a Defined System

    PubMed Central

    Guo, Xiufang; Gonzalez, Mercedes; Stancescu, Maria; Vandenburgh, Herman; Hickman, James

    2011-01-01

    Functional in vitro models composed of human cells will constitute an important platform in the next generation of system biology and drug discovery. This study reports a novel human-based in vitro Neuromuscular Junction (NMJ) system developed in a defined serum-free medium and on a patternable non-biological surface. The motoneurons and skeletal muscles were derived from fetal spinal stem cells and skeletal muscle stem cells. The motoneurons and skeletal myotubes were completely differentiated in the co-culture based on morphological analysis and electrophysiology. NMJ formation was demonstrated by phase contrast microscopy, immunocytochemistry and the observation of motoneuron-induced muscle contractions utilizing time lapse recordings and their subsequent quenching by D-Tubocurarine. Generally, functional human based systems would eliminate the issue of species variability during the drug development process and its derivation from stem cells bypasses the restrictions inherent with utilization of primary human tissue. This defined human-based NMJ system is one of the first steps in creating functional in vitro systems and will play an important role in understanding NMJ development, in developing high information content drug screens and as test beds in preclinical studies for spinal or muscular diseases/injuries such as muscular dystrophy, Amyotrophic lateral sclerosis and spinal cord repair. PMID:21944471

  1. Neuromuscular junction formation between human stem cell-derived motoneurons and human skeletal muscle in a defined system.

    PubMed

    Guo, Xiufang; Gonzalez, Mercedes; Stancescu, Maria; Vandenburgh, Herman H; Hickman, James J

    2011-12-01

    Functional in vitro models composed of human cells will constitute an important platform in the next generation of system biology and drug discovery. This study reports a novel human-based in vitro Neuromuscular Junction (NMJ) system developed in a defined serum-free medium and on a patternable non-biological surface. The motoneurons and skeletal muscles were derived from fetal spinal stem cells and skeletal muscle stem cells. The motoneurons and skeletal myotubes were completely differentiated in the co-culture based on morphological analysis and electrophysiology. NMJ formation was demonstrated by phase contrast microscopy, immunocytochemistry and the observation of motoneuron-induced muscle contractions utilizing time-lapse recordings and their subsequent quenching by d-Tubocurarine. Generally, functional human based systems would eliminate the issue of species variability during the drug development process and its derivation from stem cells bypasses the restrictions inherent with utilization of primary human tissue. This defined human-based NMJ system is one of the first steps in creating functional in vitro systems and will play an important role in understanding NMJ development, in developing high information content drug screens and as test beds in preclinical studies for spinal or muscular diseases/injuries such as muscular dystrophy, Amyotrophic lateral sclerosis and spinal cord repair. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Chemically Treated 3D Printed Polymer Scaffolds for Biomineral Formation.

    PubMed

    Jackson, Richard J; Patrick, P Stephen; Page, Kristopher; Powell, Michael J; Lythgoe, Mark F; Miodownik, Mark A; Parkin, Ivan P; Carmalt, Claire J; Kalber, Tammy L; Bear, Joseph C

    2018-04-30

    We present the synthesis of nylon-12 scaffolds by 3D printing and demonstrate their versatility as matrices for cell growth, differentiation, and biomineral formation. We demonstrate that the porous nature of the printed parts makes them ideal for the direct incorporation of preformed nanomaterials or material precursors, leading to nanocomposites with very different properties and environments for cell growth. Additives such as those derived from sources such as tetraethyl orthosilicate applied at a low temperature promote successful cell growth, due partly to the high surface area of the porous matrix. The incorporation of presynthesized iron oxide nanoparticles led to a material that showed rapid heating in response to an applied ac magnetic field, an excellent property for use in gene expression and, with further improvement, chemical-free sterilization. These methods also avoid changing polymer feedstocks and contaminating or even damaging commonly used selective laser sintering printers. The chemically treated 3D printed matrices presented herein have great potential for use in addressing current issues surrounding bone grafting, implants, and skeletal repair, and a wide variety of possible incorporated material combinations could impact many other areas.

  3. Chemically Treated 3D Printed Polymer Scaffolds for Biomineral Formation

    PubMed Central

    2018-01-01

    We present the synthesis of nylon-12 scaffolds by 3D printing and demonstrate their versatility as matrices for cell growth, differentiation, and biomineral formation. We demonstrate that the porous nature of the printed parts makes them ideal for the direct incorporation of preformed nanomaterials or material precursors, leading to nanocomposites with very different properties and environments for cell growth. Additives such as those derived from sources such as tetraethyl orthosilicate applied at a low temperature promote successful cell growth, due partly to the high surface area of the porous matrix. The incorporation of presynthesized iron oxide nanoparticles led to a material that showed rapid heating in response to an applied ac magnetic field, an excellent property for use in gene expression and, with further improvement, chemical-free sterilization. These methods also avoid changing polymer feedstocks and contaminating or even damaging commonly used selective laser sintering printers. The chemically treated 3D printed matrices presented herein have great potential for use in addressing current issues surrounding bone grafting, implants, and skeletal repair, and a wide variety of possible incorporated material combinations could impact many other areas. PMID:29732454

  4. Topologically Micropatterned Collagen and Poly(ε-caprolactone) Struts Fabricated Using the Poly(vinyl alcohol) Fibrillation/Leaching Process To Develop Efficiently Engineered Skeletal Muscle Tissue.

    PubMed

    Kim, Minseong; Kim, WonJin; Kim, GeunHyung

    2017-12-20

    Optimally designed three-dimensional (3D) biomedical scaffolds for skeletal muscle tissue regeneration pose significant research challenges. Currently, most studies on scaffolds focus on the two-dimensional (2D) surface structures that are patterned in the micro-/nanoscales with various repeating sizes and shapes to induce the alignment of myoblasts and myotube formation. The 2D patterned surface clearly provides effective analytical results of pattern size and shape of the myoblast alignment and differentiation. However, it is inconvenient in terms of the direct application for clinical usage due to the limited thickness and 3D shapeability. Hence, the present study suggests an innovative hydrogel or synthetic structure that consists of uniaxially surface-patterned cylindrical struts for skeleton muscle regeneration. The alignment of the pattern on the hydrogel (collagen) and poly(ε-caprolactone) struts was attained with the fibrillation of poly(vinyl alcohol) and the leaching process. Various cell culture results indicate that the C2C12 cells on the micropatterned collagen structure were fully aligned, and that a significantly high level of myotube formation was achieved when compared to the collagen structures that were not treated with the micropatterning process.

  5. A test of four innominate bone age assessment methods in a modern skeletal collection from Medellin, Colombia.

    PubMed

    Rivera-Sandoval, Javier; Monsalve, Timisay; Cattaneo, Cristina

    2018-01-01

    Studying bone collections with known data has proven to be useful in assessing reliability and accuracy of biological profile reconstruction methods used in Forensic Anthropology. Thus, it is necessary to calibrate these methods to clarify issues such as population variability and accuracy of estimations for the elderly. This work considers observations of morphological features examined by four innominate bone age assessment methods: (1) Suchey-Brooks Pubic Symphysis, (2) Lovejoy Iliac Auricular Surface, (3) Buckberry and Chamberlain Iliac Auricular Surface, and (4) Rouge-Maillart Iliac Auricular Surface and Acetabulum. This study conducted a blind test of a sample of 277 individuals from two contemporary skeletal collections from Universal and San Pedro cemeteries in Medellin, for which known pre-mortem data support the statistical analysis of results obtained using the four age assessment methods. Results from every method show tendency to increase bias and inaccuracy in relation to age, but Buckberry-Chamberlain and Rougé-Maillart's methods are the most precise for this particular Colombian population, where Buckberry-Chamberlain's is the best for analysis of older individuals. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. An evaluation of the reliability of muscle fiber cross-sectional area and fiber number measurements in rat skeletal muscle

    USDA-ARS?s Scientific Manuscript database

    Background: The reliability of estimating muscle fiber cross-sectional area (measure of muscle fiber size) and fiber number from only a subset of fibers in rat hindlimb muscle cross-sections has not been systematically evaluated. This study examined the variability in mean estimates of fiber cross-s...

  7. Short‐term disuse promotes fatty acid infiltration into skeletal muscle

    PubMed Central

    Pagano, Allan F.; Brioche, Thomas; Arc‐Chagnaud, Coralie; Demangel, Rémi; Chopard, Angèle

    2017-01-01

    Abstract Background Many physiological and/or pathological conditions lead to muscle deconditioning, a well‐described phenomenon characterized by a loss of strength and muscle power mainly due to the loss of muscle mass. Fatty infiltrations, or intermuscular adipose tissue (IMAT), are currently well‐recognized components of muscle deconditioning. Despite the fact that IMAT is present in healthy human skeletal muscle, its increase and accumulation are linked to muscle dysfunction. Although IMAT development has been largely attributable to inactivity, the precise mechanisms of its establishment are still poorly understood. Because the sedentary lifestyle that accompanies age‐related sarcopenia may favour IMAT development, deciphering the early processes of muscle disuse is of great importance before implementing strategies to limit IMAT deposition. Methods In our study, we took advantage of the dry immersion (DI) model of severe muscle inactivity to induce rapid muscle deconditioning during a short period. During the DI, healthy adult men (n = 12; age: 32 ± 5) remained strictly immersed, in a supine position, in a controlled thermo‐neutral water bath. Skeletal muscle biopsies were obtained from the vastus lateralis before and after 3 days of DI. Results We showed that DI for only 3 days was able to decrease myofiber cross‐sectional areas (−10.6%). Moreover, protein expression levels of two key markers commonly used to assess IMAT, perilipin, and fatty acid binding protein 4, were upregulated. We also observed an increase in the C/EBPα and PPARγ protein expression levels, indicating an increase in late adipogenic processes leading to IMAT development. While many stem cells in the muscle environment can adopt the capacity to differentiate into adipocytes, fibro‐adipogenic progenitors (FAPs) represent the population that appears to play a major role in IMAT development. In our study, we showed an increase in the protein expression of PDGFRα, the specific cell surface marker of FAPs, in response to 3 days of DI. It is well recognized that an unfavourable muscle environment drives FAPs to ectopic adiposity and/or fibrosis. Conclusions This study is the first to emphasize that during a short period of severe inactivity, muscle deconditioning is associated with IMAT development. Our study also reveals that FAPs could be the main resident muscle stem cell population implicated in ectopic adiposity development in human skeletal muscle. PMID:29248005

  8. Skeletal Muscle Metrics on Clinical 18F-FDG PET/CT Predict Health Outcomes in Patients with Sarcoma

    PubMed Central

    Foster, Brent; Boutin, Robert D.; Lenchik, Leon; Gedeon, David; Liu, Yu; Nittur, Vinay; Badawi, Ramsey D.; Li, Chin-Shang; Canter, Robert J.; Chaudhari, Abhijit J.

    2018-01-01

    The aim of this study was to determine the association of measures of skeletal muscle determined from 18F-FDG PET/CT with health outcomes in patients with soft-tissue sarcoma. 14 patients (8 women and 6 men; mean age 66.5 years) with sarcoma had PET/CT examinations. On CTs of the abdomen and pelvis, skeletal muscle was segmented, and cross-sectional muscle area, muscle volume, and muscle attenuation were determined. Within the segmented muscle, intramuscular fat area, volume, and density were derived. On PET images, the standardized uptake value (SUV) of muscle was determined. Regression analyses were conducted to determine the association between the imaging measures and health outcomes including overall survival (OS), local recurrence-free survival (LRFS), distant cancer recurrence (DCR), and major surgical complications (MSC). The association between imaging metrics and pre-therapy levels of serum C-reactive protein (CRP), creatinine, hemoglobin, and albumin was determined. Decreased volumetric muscle CT attenuation was associated with increased DCR. Increased PET SUV of muscle was associated with decreased OS and LRFS. Lower muscle SUV was associated with lower serum hemoglobin and albumin. Muscle measurements obtained on routine 18F-FDG PET/CT are associated with outcomes and serum hemoglobin and albumin in patients with sarcoma. PMID:29756042

  9. Skeletal Muscle Metrics on Clinical 18F-FDG PET/CT Predict Health Outcomes in Patients with Sarcoma.

    PubMed

    Foster, Brent; Boutin, Robert D; Lenchik, Leon; Gedeon, David; Liu, Yu; Nittur, Vinay; Badawi, Ramsey D; Li, Chin-Shang; Canter, Robert J; Chaudhari, Abhijit J

    2018-01-01

    The aim of this study was to determine the association of measures of skeletal muscle determined from 18 F-FDG PET/CT with health outcomes in patients with soft-tissue sarcoma. 14 patients (8 women and 6 men; mean age 66.5 years) with sarcoma had PET/CT examinations. On CTs of the abdomen and pelvis, skeletal muscle was segmented, and cross-sectional muscle area, muscle volume, and muscle attenuation were determined. Within the segmented muscle, intramuscular fat area, volume, and density were derived. On PET images, the standardized uptake value (SUV) of muscle was determined. Regression analyses were conducted to determine the association between the imaging measures and health outcomes including overall survival (OS), local recurrence-free survival (LRFS), distant cancer recurrence (DCR), and major surgical complications (MSC). The association between imaging metrics and pre-therapy levels of serum C-reactive protein (CRP), creatinine, hemoglobin, and albumin was determined. Decreased volumetric muscle CT attenuation was associated with increased DCR. Increased PET SUV of muscle was associated with decreased OS and LRFS. Lower muscle SUV was associated with lower serum hemoglobin and albumin. Muscle measurements obtained on routine 18 F-FDG PET/CT are associated with outcomes and serum hemoglobin and albumin in patients with sarcoma.

  10. Autophagy and Mis-targeting of Therapeutic Enzyme in Skeletal Muscle in Pompe Disease

    PubMed Central

    Fukuda, Tokiko; Ahearn, Meghan; Roberts, Ashley; Mattaliano, Robert J.; Zaal, Kristien; Ralston, Evelyn; Plotz, Paul H.; Raben, Nina

    2009-01-01

    Enzyme replacement therapy (ERT) became a reality for patients with Pompe disease, a fatal cardiomyopathy and skeletal muscle myopathy caused by a deficiency of glycogen-degrading lysosomal enzyme acid alpha-glucosidase (GAA). The therapy, which relies on receptor-mediated endocytosis of recombinant human GAA (rhGAA), appears to be effective in cardiac muscle, but less so in skeletal muscle. We have previously shown a profound disturbance of the lysosomal degradative pathway (autophagy) in therapy-resistant muscle of GAA knockout mice (KO). Our findings here demonstrate a progressive age-dependent autophagic build-up in addition to enlargement of glycogen-filled lysosomes in multiple muscle groups in the KO. Trafficking and processing of the therapeutic enzyme along the endocytic pathway appear to be affected by the autophagy. Confocal microscopy of live single muscle fibers exposed to fluorescently labeled rhGAA indicates that a significant portion of the endocytosed enzyme in the KO was trapped as a partially processed form in the autophagic areas instead of reaching its target – the lysosomes. A fluid-phase endocytic marker was similarly mis-targeted and accumulated in vesicular structures within the autophagic areas. These findings may explain why ERT often falls short of reversing the disease process, and point to new avenues for the development of pharmacological intervention. PMID:17008131

  11. Investigation of the Comparative Effects of Red and Infrared Laser Therapy on Skeletal Muscle Repair in Diabetic Rats.

    PubMed

    Assis, Lívia; Manis, Camila; Fernandes, Kelly Rossetti; Cabral, Daniel; Magri, Angela; Veronez, Suellen; Renno, Ana Claudia Muniz

    2016-07-01

    The aim of this study was to evaluate the in vivo response of 2 different laser wavelengths (red and infrared) on skeletal muscle repair process in diabetic rats. Forty Wistar rats were randomly divided into 4 experimental groups: basal control-nondiabetic and muscle-injured animals without treatment (BC); diabetic muscle-injured without treatment (DC); diabetic muscle-injured, treated with red laser (DCR) and infrared laser (DCIR). The injured region was irradiated daily for 7 consecutive days, starting immediately after the injury using a red (660 nm) and an infrared (808 nm) laser. The histological results demonstrated in both treated groups (red and infrared wavelengths) a modulation of the inflammatory process and a better tissue organization located in the site of the injury. However, only infrared light significantly reduced the injured area and increased MyoD and myogenin protein expression. Moreover, both red and infrared light increased the expression of the proangiogenic vascular endothelial growth factor and reduced the cyclooxygenase 2 protein expression. These results suggest that low-level laser therapy was efficient in promoting skeletal muscle repair in diabetic rats. However, the effect of infrared wavelength was more pronounced by reducing the area of the injury and modulating the expression proteins related to the repair.

  12. Displaced/re-worked rhodolith deposits infilling parts of a complex Miocene multistorey submarine channel: A case history from the Sassari area (Sardinia, Italy)

    NASA Astrophysics Data System (ADS)

    Murru, Marco; Bassi, Davide; Simone, Lucia

    2015-08-01

    In the Sassari area (north-western Sardinia, Italy), the Miocene Porto Torres sub-basin sequences represent the complex multistorey mixed carbonate-siliciclastic submarine feature called the Sassari Channel. During the late Burdigalian-early Serravallian, repeated terrigenous supplies from uplifted Paleozoic crystalline substrata fed the Sassari Channel system by means of turbidity and locally hyper-concentrated turbidity flows. Shelfal areas were the source of terrigenous clasts, but open shelf rhodalgal/foramol carbonate areas were very productive and largely also contributed to the channel infilling. Re-worked sands and skeletal debris were discontinuously re-sedimented offshore as pure terrigenous, mixed and/or carbonate deposits. Major sediment supply was introduced between the latest Burdigalian and the start of the middle Langhian, during which a large amount of carbonate, mixed and siliciclastic sediments reached the Porto Torres Basin (Sassari Channel I). Contributions from shallow proximal source areas typify the lower intervals (Unit A) in marginal sectors of the channel. Upward, these evolve into autochthonous rhodolith deposits, winnowed by strong currents in relatively shallow well lit settings within a complex network of narrow tidally-controlled channels (Unit D) locally bearing coral assemblages. Conversely, re-sedimented rhodoliths from the Units B and C accumulated under conditions of higher turbidity. In deeper parts of the channel taxonomically diversified rhodoliths point to the mixing of re-deposited skeletal components from different relatively deep bathmetric settings. In the latest early Langhian, major re-sedimentation episodes, resulting in large prograding bodies (Unit D), triggered by repeated regression pulses in a frame of persistent still stand. During these episodes photophile assemblages dwelled in the elevated margin sectors of the channel. A significant latest early Langhian drop in relative sea-level resulted in impressive mass flows involving early cemented channel-margin and levee blocks and culminated in the formation of major erosional surface (ER-E). Such events seemingly correlate with the long-term global cooling trend of the mid-Miocene climatic transition. Episodes of middle Langhian re-sedimentation concluded with the channel abandon phase after which new erosive episodes followed. Overall, this led to a shift in the Sassari Channel II, with phases presumably started during the earlymost Serravallian, subsequent to the major sea-level drop at the Langhian-Serravallian boundary.

  13. Does bone measurement on the radius indicate skeletal status. Concise communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazess, R.B.; Peppler, W.W.; Chesney, R.W.

    1984-03-01

    Single-photon (I-125) absorptiometry was used to measure bone mineral content (BMC) of the distal third of the radius, and dual-photon absorptiometry (Gd-153) was used to measure total-body bone mineral (TBBM), as well as the BMC of major skeletal regions. Measurements were done in normal females, normal males, osteoporotic females, osteoporotic males, and renal patients. The BMC of the radius predicted TBBM well in normal subjects, but was less satisfactory in the patient groups. The spinal BMC was predicted with even lower accuracy from radius measurement. The error in predicting areal density (bone mass per unit projected skeletal area) of themore » lumbar and thoracic spine from the radius BMC divided by its width was smaller, but the regressions differed significantly among normals, osteoporotics, and renal patients. There was a preferential spinal osteopenia in the osteoporotic group and in about half of the renal patients. Bone measurements on the radius can indicate overall skeletal status in normal subjects and to a lesser degree in patients, but these radius measurements are inaccurate, even on the average, as an indicator of spinal state.« less

  14. Association of the CPT1B Gene with Skeletal Muscle Fat Infiltration in Afro-Caribbean Men

    PubMed Central

    Miljkovic, Iva; Yerges, Laura M.; Li, Hu; Gordon, Christopher L.; Goodpaster, Bret H.; Kuller, Lewis H.; Nestlerode, Cara S.; Bunker, Clareann H.; Patrick, Alan L.; Wheeler, Victor W.; Zmuda, Joseph M.

    2010-01-01

    Skeletal muscle fat is greater in African ancestry individuals compared with whites, is associated with diabetes, and is a heritable polygenic trait. However, specific genetic factors contributing to skeletal muscle fat in humans remain to be defined. Muscle carnitine palmitoyltransferase-1B (CPT1B) is a key enzyme in the regulation of skeletal muscle mitochondrial β-oxidation of long-chain fatty acids, and as such is a reasonable biological candidate gene for skeletal muscle fat accumulation. Therefore, we examined the association of three nonsynonymous coding variants in CPT1B (G531L, I66V, and S427C; a fourth, A320G, could not be genotyped) and quantitative computed tomography measured tibia skeletal muscle composition and BMI among 1,774 Afro-Caribbean men aged ≥40, participants of the population-based Tobago Health Study. For all variants, no significant differences were observed for BMI or total adipose tissue. Among individuals who were homozygous for the minor allele at G531L or I66V, intermuscular adipose tissue (IMAT) was 87% (P = 0.03) and 54% lower (P = 0.03), respectively. In contrast, subcutaneous adipose tissue (SAT) was 11% (P = 0.017) and 7% (P = 0.049) higher, respectively, than among individuals without these genotypes. These associations were independent of age, body size, and muscle area. Finally, no individuals with type 2 diabetes were found among those who were homozygous for the minor allele of either at G531L and I66V whereas 14–18% of men with the major alleles had type 2 diabetes (P = 0.03 and 0.007, respectively). Our results suggest a novel association between common nonsynonymous coding variants in CPT1B and ectopic skeletal muscle fat among middle-aged and older African ancestry men. PMID:19553926

  15. When phosphorylated at Thr148, the β2-subunit of AMP-activated kinase does not associate with glycogen in skeletal muscle.

    PubMed

    Xu, Hongyang; Frankenberg, Noni T; Lamb, Graham D; Gooley, Paul R; Stapleton, David I; Murphy, Robyn M

    2016-07-01

    The 5'-AMP-activated protein kinase (AMPK), a heterotrimeric complex that functions as an intracellular fuel sensor that affects metabolism, is activated in skeletal muscle in response to exercise and utilization of stored energy. The diffusibility properties of α- and β-AMPK were examined in isolated skeletal muscle fiber segments dissected from rat fast-twitch extensor digitorum longus and oxidative soleus muscles from which the surface membranes were removed by mechanical dissection. After the muscle segments were washed for 1 and 10 min, ∼60% and 75%, respectively, of the total AMPK pools were found in the diffusible fraction. After in vitro stimulation of the muscle, which resulted in an ∼80% decline in maximal force, 20% of the diffusible pool became bound in the fiber. This bound pool was not associated with glycogen, as determined by addition of a wash step containing amylase. Stimulation of extensor digitorum longus muscles resulted in 28% glycogen utilization and a 40% increase in phosphorylation of the downstream AMPK target acetyl carboxylase-CoA. This, however, had no effect on the proportion of total β2-AMPK that was phosphorylated in whole muscle homogenates measured by immunoprecipitation. These findings suggest that, in rat skeletal muscle, β2-AMPK is not associated with glycogen and that activation of AMPK by muscle contraction does not dephosphorylate β2-AMPK. These findings question the physiological relevance of the carbohydrate-binding function of β2-AMPK in skeletal muscle. Copyright © 2016 the American Physiological Society.

  16. Activation of PPARδ signaling improves skeletal muscle oxidative metabolism and endurance function in an animal model of ischemic left ventricular dysfunction

    PubMed Central

    Zizola, Cynthia; Kennel, Peter J.; Akashi, Hirokazu; Ji, Ruiping; Castillero, Estibaliz; George, Isaac; Homma, Shunichi

    2015-01-01

    Exercise intolerance in heart failure has been linked to impaired skeletal muscle oxidative capacity. Oxidative metabolism and exercise capacity are regulated by PPARδ signaling. We hypothesized that PPARδ stimulation reverts skeletal muscle oxidative dysfunction. Myocardial infarction (MI) was induced in C57BL/6 mice and the development of ventricular dysfunction was monitored over 8 wk. Mice were randomized to the PPARδ agonist GW501516 (5 mg/kg body wt per day for 4 wk) or placebo 8 wk post-MI. Muscle function was assessed through running tests and grip strength measurements. In muscle, we analyzed muscle fiber cross-sectional area and fiber types, metabolic gene expression, fatty acid (FA) oxidation and ATP content. Signaling pathways were studied in C2C12 myotubes. FA oxidation and ATP levels decreased in muscle from MI mice compared with sham- operated mice. GW501516 administration increased oleic acid oxidation levels in skeletal muscle of the treated MI group compared with placebo treatment. This was accompanied by transcriptional changes including increased CPT1 expression. Further, the PPARδ-agonist improved running endurance compared with placebo. Cell culture experiments revealed protective effects of GW501516 against the cytokine-induced decrease of FA oxidation and changes in metabolic gene expression. Skeletal muscle dysfunction in HF is associated with impaired PPARδ signaling and treatment with the PPARδ agonist GW501516 corrects oxidative capacity and FA metabolism and improves exercise capacity in mice with LV dysfunction. Pharmacological activation of PPARδ signaling could be an attractive therapeutic intervention to counteract the progressive skeletal muscle dysfunction in HF. PMID:25713305

  17. Activation of PPARδ signaling improves skeletal muscle oxidative metabolism and endurance function in an animal model of ischemic left ventricular dysfunction.

    PubMed

    Zizola, Cynthia; Kennel, Peter J; Akashi, Hirokazu; Ji, Ruiping; Castillero, Estibaliz; George, Isaac; Homma, Shunichi; Schulze, P Christian

    2015-05-01

    Exercise intolerance in heart failure has been linked to impaired skeletal muscle oxidative capacity. Oxidative metabolism and exercise capacity are regulated by PPARδ signaling. We hypothesized that PPARδ stimulation reverts skeletal muscle oxidative dysfunction. Myocardial infarction (MI) was induced in C57BL/6 mice and the development of ventricular dysfunction was monitored over 8 wk. Mice were randomized to the PPARδ agonist GW501516 (5 mg/kg body wt per day for 4 wk) or placebo 8 wk post-MI. Muscle function was assessed through running tests and grip strength measurements. In muscle, we analyzed muscle fiber cross-sectional area and fiber types, metabolic gene expression, fatty acid (FA) oxidation and ATP content. Signaling pathways were studied in C2C12 myotubes. FA oxidation and ATP levels decreased in muscle from MI mice compared with sham- operated mice. GW501516 administration increased oleic acid oxidation levels in skeletal muscle of the treated MI group compared with placebo treatment. This was accompanied by transcriptional changes including increased CPT1 expression. Further, the PPARδ-agonist improved running endurance compared with placebo. Cell culture experiments revealed protective effects of GW501516 against the cytokine-induced decrease of FA oxidation and changes in metabolic gene expression. Skeletal muscle dysfunction in HF is associated with impaired PPARδ signaling and treatment with the PPARδ agonist GW501516 corrects oxidative capacity and FA metabolism and improves exercise capacity in mice with LV dysfunction. Pharmacological activation of PPARδ signaling could be an attractive therapeutic intervention to counteract the progressive skeletal muscle dysfunction in HF. Copyright © 2015 the American Physiological Society.

  18. Sarcopenia Is Associated With Lower Skeletal Muscle Capillarization and Exercise Capacity in Older Adults.

    PubMed

    Prior, Steven J; Ryan, Alice S; Blumenthal, Jacob B; Watson, Jonathan M; Katzel, Leslie I; Goldberg, Andrew P

    2016-08-01

    Skeletal muscle capillary rarefaction limits the transcapillary transport of nutrients and oxygen to muscle and may contribute to sarcopenia and functional impairment in older adults. We tested the hypothesis that skeletal muscle capillarization and exercise capacity (VO2max) are lower in sarcopenic than in nonsarcopenic older adults and that the degree of sarcopenia is related to lower skeletal muscle capillarization. Body composition, VO2max, and vastus lateralis capillarization were determined in 76 middle-aged and older men and women (age = 61±1 years, body mass index [BMI] = 30.7±0.5kg/m(2) [mean ± SEM]). Participants were classified as sarcopenic if appendicular lean mass divided by BMI (ALMBMI) was less than 0.789 for men or less than 0.512 for women. Sarcopenic subjects (ALMBMI = 0.65±0.04, n = 16) had 20% lower capillary-to-fiber ratio, as well as 13% and 15% lower VO2max expressed as mL/kg/min or L/min, respectively, compared with sex-, race-, and age-matched participants without sarcopenia (ALMBMI = 0.81±0.05, n = 16; p < .05). In all 76 subjects, ALMBMI, thigh muscle cross-sectional area, and VO2max correlated directly with capillarization (r = .30-.37, p ≤ .05), after accounting for age, sex, and race. These findings suggest that low skeletal muscle capillarization is one factor that may contribute to sarcopenia and reduced exercise capacity in older adults by limiting diffusion of substrates, oxygen, hormones, and nutrients. Strategies to prevent the aging-related decline in skeletal muscle capillarization may help to prevent or slow the progression of sarcopenia and its associated functional declines in generally healthy older adults. Published by Oxford University Press on behalf of the Gerontological Society of America 2016.

  19. Baculovirus-mediated vascular endothelial growth factor-D(ΔNΔC) gene transfer induces angiogenesis in rabbit skeletal muscle.

    PubMed

    Heikura, Tommi; Nieminen, Tiina; Roschier, Miia M; Karvinen, Henna; Kaikkonen, Minna U; Mähönen, Anssi J; Lesch, Hanna P; Rissanen, Tuomas T; Laitinen, Olli H; Airenne, Kari J; Ylä-Herttuala, Seppo

    2012-01-01

    Occluded arteries and ischemic tissues cannot always be treated by angioplasty, stenting or by-pass-surgery. Under such circumstances, viral gene therapy may be useful in inducing increased blood supply to ischemic area. There is evidence of improved blood flow in ischemic skeletal muscle and myocardium in both animal and human studies using adenoviral vascular endothelial growth factor (VEGF) gene therapy. However, the expression is transient and repeated gene transfers with the same vector are inefficient due to immune responses. Different baculoviral vectors pseudotyped with or without vesicular stomatitis virus glycoprotein (VSV-G) and/or carrying woodchuck hepatitis virus post-transcriptional regulatory element (Wpre) were tested both in vitro and in vivo. VEGF-D(ΔNΔC) was used as therapeutic transgene and lacZ as a control. In vivo efficacy was evaluated as capillary enlargement and transgene expression in New Zealand White (NZW) rabbit skeletal muscle. A statistically significant capillary enlargement was detected 6 days after gene transfer in transduced areas compared to the control gene transfers with baculovirus and adenovirus encoding β-galactosidase (lacZ). Substantially improved gene transfer efficiency was achieved with a modified baculovirus pseudotyped with VSV-G and carrying Wpre. Dose escalation experiments revealed that either too large volume or too many virus particles caused inflammation and necrosis in the target tissue, whereas 10(9) plaque forming units injected in multiple aliquots resulted in transgene expression with only mild immune reactions. We show the first evidence of biologically significant baculoviral gene transfer in skeletal muscle of NZW rabbits using VEGF-D(ΔNΔC) as a therapeutic transgene. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Exercise training prevents skeletal muscle damage in an experimental sepsis model

    PubMed Central

    Coelho, Carla Werlang; Jannig, Paulo R; de Souza, Arlete B; Fronza, Hercilio; Westphal, Glauco A; Petronilho, Fabricia; Constantino, Larissa; Dal-Pizzol, Felipe; Ferreira, Gabriela K; Streck, Emilio E; Silva, Eliezer

    2013-01-01

    OBJECTIVE: Oxidative stress plays an important role in skeletal muscle damage in sepsis. Aerobic exercise can decrease oxidative stress and enhance antioxidant defenses. Therefore, it was hypothesized that aerobic exercise training before a sepsis stimulus could attenuate skeletal muscle damage by modulating oxidative stress. Thus, the aim of this study was to evaluate the effects of aerobic physical preconditioning on the different mechanisms that are involved in sepsis-induced myopathy. METHODS: Male Wistar rats were randomly assigned to either the untrained or trained group. The exercise training protocol consisted of an eight-week treadmill program. After the training protocol, the animals from both groups were randomly assigned to either a sham group or a cecal ligation and perforation surgery group. Thus, the groups were as follows: sham, cecal ligation and perforation, sham trained, and cecal ligation and perforation trained. Five days after surgery, the animals were euthanized and their soleus and plantaris muscles were harvested. Fiber cross-sectional area, creatine kinase, thiobarbituric acid reactive species, carbonyl, catalase and superoxide dismutase activities were measured. RESULTS: The fiber cross-sectional area was smaller, and the creatine kinase, thiobarbituric acid reactive species and carbonyl levels were higher in both muscles in the cecal ligation and perforation group than in the sham and cecal ligation and perforation trained groups. The muscle superoxide dismutase activity was higher in the cecal ligation and perforation trained group than in the sham and cecal ligation and perforation groups. The muscle catalase activity was lower in the cecal ligation and perforation group than in the sham group. CONCLUSION: In summary, aerobic physical preconditioning prevents atrophy, lipid peroxidation and protein oxidation and improves superoxide dismutase activity in the skeletal muscles of septic rats. PMID:23420166

  1. Clinical impact of sarcopenia on prognosis in pancreatic ductal adenocarcinoma: A retrospective cohort study.

    PubMed

    Ninomiya, Go; Fujii, Tsutomu; Yamada, Suguru; Yabusaki, Norimitsu; Suzuki, Kojiro; Iwata, Naoki; Kanda, Mitsuro; Hayashi, Masamichi; Tanaka, Chie; Nakayama, Goro; Sugimoto, Hiroyuki; Koike, Masahiko; Fujiwara, Michitaka; Kodera, Yasuhiro

    2017-03-01

    To investigate the impact of the body composition such as skeletal muscle, visceral fat and body mass index (BMI) on patients with resected pancreatic ductal adenocarcinoma (PDAC). A total of 265 patients who underwent curative surgery for PDAC were examined in this study. The total skeletal muscle and fat tissue areas were evaluated in a single image obtained at the third lumber vertebra during a preoperative computed tomography (CT) scan. The patients were assigned to either the sarcopenia or non-sarcopenia group based on their skeletal muscle index (SMI) and classified into high visceral fat area (H-VFA) or low VFA (L-VFA) groups. The association of clinicopathological features and prognosis with the body composition were statistically analyzed. There were 170 patients (64.2%) with sarcopenia. The median survival time (MST) was 23.7 months for sarcopenia patients and 25.8 months for patients without sarcopenia. The MST was 24.4 months for H-VFA patients and 25.8 months for L-VFA patients. However, sarcopenia patients with BMI ≥22 exhibited significantly poorer survival than patients without sarcopenia (MST: 19.2 vs. 35.4 months, P = 0.025). There was a significant difference between patients with and without sarcopenia who did not receive chemotherapy (5-year survival rate: 0% vs. 68.3%, P = 0.003). The multivariate analysis revealed that tumor size, positive dissected peripancreatic tissue margin, and sarcopenia were independent prognostic factors. Sarcopenia is an independent prognostic factor in PDAC patients with a BMI ≥22. Therefore, evaluating skeletal muscle mass may be a simple and useful approach for predicting patient prognosis. Copyright © 2017 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  2. In vivo imaging of coral tissue and skeleton with optical coherence tomography

    PubMed Central

    Wentzel, Camilla; Jacques, Steven L.; Wagner, Michael

    2017-01-01

    Application of optical coherence tomography (OCT) for in vivo imaging of tissue and skeleton structure of intact living corals enabled the non-invasive visualization of coral tissue layers (endoderm versus ectoderm), skeletal cavities and special structures such as mesenterial filaments and mucus release from intact living corals. Coral host chromatophores containing green fluorescent protein-like pigment granules appeared hyper-reflective to near-infrared radiation allowing for excellent optical contrast in OCT and a rapid characterization of chromatophore size, distribution and abundance. In vivo tissue plasticity could be quantified by the linear contraction velocity of coral tissues upon illumination resulting in dynamic changes in the live coral tissue surface area, which varied by a factor of 2 between the contracted and expanded state of a coral. Our study provides a novel view on the in vivo organization of coral tissue and skeleton and highlights the importance of microstructural dynamics for coral ecophysiology. PMID:28250104

  3. Sex-associated variations in coral skeletal oxygen and carbon isotopic composition of Porites panamensis in the southern Gulf of California

    NASA Astrophysics Data System (ADS)

    Cabral-Tena, R. A.; Sánchez, A.; Reyes-Bonilla, H.; Ruvalcaba-Díaz, A. H.; Balart, E. F.

    2015-11-01

    Coral δ18O variations are used as a proxy for changes in near sea surface temperature and seawater isotope composition. Skeletal δ13C of coral is frequently used as a proxy for solar radiation because most of its variability is controlled by an interrelationship between three processes: photosynthesis, respiration, and feeding. Coral growth rate is known to influence the δ18O and δ13C isotope record to a lesser extent. Recent published data show differences in growth parameters between female and male coral; thus, skeletal δ18O and δ13C are hypothesized to be different in each sex. To assess this difference, this study describes changes in the skeletal δ18O and δ13C record of four female and six male Porites panamensis coral collected in Bahía de La Paz, whose growth bands spanned 12 years. The isotopic data were compared to SST, precipitation, PAR, chlorophyll a, and skeletal growth parameters. Porites panamensis is a known gonochoric brooder whose growth parameters are different in females and males. Splitting the data by sexes explained 81 and 93 % of the differences of δ18O, and of δ13C, respectively, in the isotope record between colonies. Both isotope records were different between sexes. δ18O was higher in female colonies than in male colonies, with a 0.31 ‰ difference; δ13C was lower in female colonies, with a 0.28 ‰ difference. A difference in the skeletal δ18O implies an error in SST estimates of ≈ 1.0 °C to ≈ 2.6 °C. The δ18O records showed a seasonal pattern that corresponded to SST, with low correlation coefficients (-0.45, -0.32), and gentle slopes (0.09 ‰ °C-1, 0.10 ‰ °C-1) of the δ18O-SST relation. Seasonal variation in coral δ18O represents only 52.37 and 35.66 % of the SST cycle; 29.72 and 38.53 % can be attributed to δ18O variability in seawater. δ13C data did not correlate with any of the environmental variables; therefore, variations in skeletal δ13C appear to be driven mainly by metabolic effects. Our results support the hypothesis of a sex-associated difference in skeletal δ18O and δ13C signal, and suggest that environmental conditions and coral growth parameters affect skeletal isotopic signal differently in each sex.

  4. Embryonic stem cells improve skeletal muscle recovery after extreme atrophy in mice.

    PubMed

    Artioli, Guilherme Giannini; De Oliveira Silvestre, João Guilherme; Guilherme, João Paulo Limongi França; Baptista, Igor Luchini; Ramos, Gracielle Vieira; Da Silva, Willian José; Miyabara, Elen Haruka; Moriscot, Anselmo Sigari

    2015-03-01

    We injected embryonic stem cells into mouse tibialis anterior muscles subjected to botulinum toxin injections as a model for reversible neurogenic atrophy. Muscles were exposed to botulinum toxin for 4 weeks and allowed to recover for up to 6 weeks. At the onset of recovery, a single muscle injection of embryonic stem cells was administered. The myofiber cross-sectional area, single twitch force, peak tetanic force, time-to-peak force, and half-relaxation time were determined. Although the stem cell injection did not affect the myofiber cross-sectional area gain in recovering muscles, most functional parameters improved significantly compared with those of recovering muscles that did not receive the stem cell injection. Muscle function recovery was accelerated by embryonic stem cell delivery in this durable neurogenic atrophy model. We conclude that stem cells should be considered a potential therapeutic tool for recovery after extreme skeletal muscle atrophy. © 2014 Wiley Periodicals, Inc.

  5. Influence of bone affinity on the skeletal distribution of fluorescently labeled bisphosphonates in vivo.

    PubMed

    Roelofs, Anke J; Stewart, Charlotte A; Sun, Shuting; Błażewska, Katarzyna M; Kashemirov, Boris A; McKenna, Charles E; Russell, R Graham G; Rogers, Michael J; Lundy, Mark W; Ebetino, Frank H; Coxon, Fraser P

    2012-04-01

    Bisphosphonates are widely used antiresorptive drugs that bind to calcium. It has become evident that these drugs have differing affinities for bone mineral; however, it is unclear whether such differences affect their distribution on mineral surfaces. In this study, fluorescent conjugates of risedronate, and its lower-affinity analogues deoxy-risedronate and 3-PEHPC, were used to compare the localization of compounds with differing mineral affinities in vivo. Binding to dentine in vitro confirmed differences in mineral binding between compounds, which was influenced predominantly by the characteristics of the parent compound but also by the choice of fluorescent tag. In growing rats, all compounds preferentially bound to forming endocortical as opposed to resorbing periosteal surfaces in cortical bone, 1 day after administration. At resorbing surfaces, lower-affinity compounds showed preferential binding to resorption lacunae, whereas the highest-affinity compound showed more uniform labeling. At forming surfaces, penetration into the mineralizing osteoid was found to inversely correlate with mineral affinity. These differences in distribution at resorbing and forming surfaces were not observed at quiescent surfaces. Lower-affinity compounds also showed a relatively higher degree of labeling of osteocyte lacunar walls and labeled lacunae deeper within cortical bone, indicating increased penetration of the osteocyte canalicular network. Similar differences in mineralizing surface and osteocyte network penetration between high- and low-affinity compounds were evident 7 days after administration, with fluorescent conjugates at forming surfaces buried under a new layer of bone. Fluorescent compounds were incorporated into these areas of newly formed bone, indicating that "recycling" had occurred, albeit at very low levels. Taken together, these findings indicate that the bone mineral affinity of bisphosphonates is likely to influence their distribution within the skeleton. Copyright © 2012 American Society for Bone and Mineral Research.

  6. WE-E-BRE-01: An Image-Based Skeletal Dosimetry Model for the ICRP Reference Adult Female - Internal Electron Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Reilly, S; Maynard, M; Marshall, E

    Purpose: Limitations seen in previous skeletal dosimetry models, which are still employed in commonly used software today, include the lack of consideration of electron escape and cross-fire from cortical bone, the modeling of infinite spongiosa, the disregard of the effect of varying cellularity on active marrow self-irradiation, and the lack of use of the more recent ICRP definition of a 50 micron surrogate tissue region for the osteoprogenitor cells - shallow marrow. These limitations were addressed in the present dosimetry model. Methods: Electron transport was completed to determine specific absorbed fractions to active marrow and shallow marrow of the skeletalmore » regions of the adult female. The bone macrostructure was obtained from the whole-body hybrid computational phantom of the UF series of reference phantoms, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 year-old female cadaver. The target tissue regions were active marrow and shallow marrow. The source tissues were active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume and cortical bone surfaces. The marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or modeled analytically. Results: The method of combining macro- and microstructure absorbed fractions calculated using MCNPX electron transport was found to yield results similar to those determined with the PIRT model for the UF adult male in the Hough et al. study. Conclusion: The calculated skeletal averaged absorbed fractions for each source-target combination were found to follow similar trends of more recent dosimetry models (image-based models) and did not follow current models used in nuclear medicine dosimetry at high energies (due to that models use of an infinite expanse of trabecular spongiosa)« less

  7. Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: effect of obesity and ageing

    PubMed Central

    Strauss, Juliette A.; Shepherd, Sam O.; Keske, Michelle A.; Cocks, Matthew

    2015-01-01

    Abstract This review concludes that a sedentary lifestyle, obesity and ageing impair the vasodilator response of the muscle microvasculature to insulin, exercise and VEGF‐A and reduce microvascular density. Both impairments contribute to the development of insulin resistance, obesity and chronic age‐related diseases. A physically active lifestyle keeps both the vasodilator response and microvascular density high. Intravital microscopy has shown that microvascular units (MVUs) are the smallest functional elements to adjust blood flow in response to physiological signals and metabolic demands on muscle fibres. The luminal diameter of a common terminal arteriole (TA) controls blood flow through up to 20 capillaries belonging to a single MVU. Increases in plasma insulin and exercise/muscle contraction lead to recruitment of additional MVUs. Insulin also increases arteriolar vasomotion. Both mechanisms increase the endothelial surface area and therefore transendothelial transport of glucose, fatty acids (FAs) and insulin by specific transporters, present in high concentrations in the capillary endothelium. Future studies should quantify transporter concentration differences between healthy and at risk populations as they may limit nutrient supply and oxidation in muscle and impair glucose and lipid homeostasis. An important recent discovery is that VEGF‐B produced by skeletal muscle controls the expression of FA transporter proteins in the capillary endothelium and thus links endothelial FA uptake to the oxidative capacity of skeletal muscle, potentially preventing lipotoxic FA accumulation, the dominant cause of insulin resistance in muscle fibres. PMID:25627798

  8. Cardiovascular adaptations supporting human exercise-heat acclimation.

    PubMed

    Périard, Julien D; Travers, Gavin J S; Racinais, Sébastien; Sawka, Michael N

    2016-04-01

    This review examines the cardiovascular adaptations along with total body water and plasma volume adjustments that occur in parallel with improved heat loss responses during exercise-heat acclimation. The cardiovascular system is well recognized as an important contributor to exercise-heat acclimation that acts to minimize physiological strain, reduce the risk of serious heat illness and better sustain exercise capacity. The upright posture adopted by humans during most physical activities and the large skin surface area contribute to the circulatory and blood pressure regulation challenge of simultaneously supporting skeletal muscle blood flow and dissipating heat via increased skin blood flow and sweat secretion during exercise-heat stress. Although it was traditionally held that cardiac output increased during exercise-heat stress to primarily support elevated skin blood flow requirements, recent evidence suggests that temperature-sensitive mechanisms may also mediate an elevation in skeletal muscle blood flow. The cardiovascular adaptations supporting this challenge include an increase in total body water, plasma volume expansion, better sustainment and/or elevation of stroke volume, reduction in heart rate, improvement in ventricular filling and myocardial efficiency, and enhanced skin blood flow and sweating responses. The magnitude of these adaptations is variable and dependent on several factors such as exercise intensity, duration of exposure, frequency and total number of exposures, as well as the environmental conditions (i.e. dry or humid heat) in which acclimation occurs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Bone tumor location in dogs given skeletal irradiation by {sup 239}Pu or {sup 226}Ra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd, R.D.; Taylor, G.N.; Miller, S.C.

    1997-10-01

    Statistical analyses have indicated that there was a significant difference between dogs injected with bone volume-seeking {sup 226} Ra as compared to those given bone surface-seeking {sup 239}Pu with respect to location within the skeleton of 334 radiation-induced primary bone malignancies. Corresponding differences also were event when dogs given bone volume-seeking {sup 90}Sr or bone surface-seeking {sup 241}Am, {sup 228}Th {sup 248,252}Cf, or {sup 224}Ra (which decays mostly on bone surfaces because of its short, 3.6 d half time) were included along with the {sup 226}Ra or {sup 239}Pu, respectively (562 total tumors). Further analysis suggested that higher values ofmore » percent red marrow (M) and bone turnover rate (R) are correlated with increased probability. of tumor appearance at a particular location within the skeleton for the surface seekers. Proportionately higher values of M and R are associated with skeletal sites containing mostly trabecular bone as compared to those with mostly compact (cortical) bone. Coefficients of determination (r{sup 2}) for the relationship between percent of total tumors vs the combination of percent red marrow and turnover rate (= MR) was about 0.7 for the surface seekers but only about 0.1 for the volume seekers. This indicates that the neoplastic effects of surface seekers, but not volume seekers, are associated with the presence of trabecular bone at the various sites of radio nuclide deposition within the skeleton. 10 refs., 3 tabs.« less

  10. Twente spine model: A complete and coherent dataset for musculo-skeletal modeling of the thoracic and cervical regions of the human spine.

    PubMed

    Bayoglu, Riza; Geeraedts, Leo; Groenen, Karlijn H J; Verdonschot, Nico; Koopman, Bart; Homminga, Jasper

    2017-06-14

    Musculo-skeletal modeling could play a key role in advancing our understanding of the healthy and pathological spine, but the credibility of such models are strictly dependent on the accuracy of the anatomical data incorporated. In this study, we present a complete and coherent musculo-skeletal dataset for the thoracic and cervical regions of the human spine, obtained through detailed dissection of an embalmed male cadaver. We divided the muscles into a number of muscle-tendon elements, digitized their attachments at the bones, and measured morphological muscle parameters. In total, 225 muscle elements were measured over 39 muscles. For every muscle element, we provide the coordinates of its attachments, fiber length, tendon length, sarcomere length, optimal fiber length, pennation angle, mass, and physiological cross-sectional area together with the skeletal geometry of the cadaver. Results were consistent with similar anatomical studies. Furthermore, we report new data for several muscles such as rotatores, multifidus, levatores costarum, spinalis, semispinalis, subcostales, transversus thoracis, and intercostales muscles. This dataset complements our previous study where we presented a consistent dataset for the lumbar region of the spine (Bayoglu et al., 2017). Therefore, when used together, these datasets enable a complete and coherent dataset for the entire spine. The complete dataset will be used to develop a musculo-skeletal model for the entire human spine to study clinical and ergonomic applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Dietary Fluoride Intake and Associated Skeletal and Dental Fluorosis in School Age Children in Rural Ethiopian Rift Valley

    PubMed Central

    Kebede, Aweke; Retta, Negussie; Abuye, Cherinet; Whiting, Susan J.; Kassaw, Melkitu; Zeru, Tesfaye; Tessema, Masresha; Kjellevold, Marian

    2016-01-01

    An observational study was conducted to determine dietary fluoride intake, diet, and prevalence of dental and skeletal fluorosis of school age children in three fluorosis endemic districts of the Ethiopian Rift Valley having similar concentrations of fluoride (F) in drinking water (~5 mg F/L). The duplicate plate method was used to collect foods consumed by children over 24 h from 20 households in each community (n = 60) and the foods, along with water and beverages, were analyzed for fluoride (F) content. Prevalence of dental and skeletal fluorosis was determined using presence of clinical symptoms in children (n = 220). Daily dietary fluoride intake was at or above tolerable upper intake level (UL) of 10 mg F/day and the dietary sources (water, prepared food and beverages) all contributed to the daily fluoride burden. Urinary fluoride in children from Fentale and Adamitulu was almost twice (>5 mg/L) the concentration found in urine from children from Alaba, where rain water harvesting was most common. Severe and moderate dental fluorosis was found in Alaba and Adamitulu, the highest severity and prevalence being in the latter district where staple foods were lowest in calcium. Children in all three areas showed evidence of both skeletal and non-skeletal fluorosis. Our data support the hypothesis that intake of calcium rich foods in addition to using rain water for household consumption and preparation of food, may help in reducing risk of fluorosis in Ethiopia, but prospective studies are needed. PMID:27472351

  12. Dietary Fluoride Intake and Associated Skeletal and Dental Fluorosis in School Age Children in Rural Ethiopian Rift Valley.

    PubMed

    Kebede, Aweke; Retta, Negussie; Abuye, Cherinet; Whiting, Susan J; Kassaw, Melkitu; Zeru, Tesfaye; Tessema, Masresha; Kjellevold, Marian

    2016-07-26

    An observational study was conducted to determine dietary fluoride intake, diet, and prevalence of dental and skeletal fluorosis of school age children in three fluorosis endemic districts of the Ethiopian Rift Valley having similar concentrations of fluoride (F) in drinking water (~5 mg F/L). The duplicate plate method was used to collect foods consumed by children over 24 h from 20 households in each community (n = 60) and the foods, along with water and beverages, were analyzed for fluoride (F) content. Prevalence of dental and skeletal fluorosis was determined using presence of clinical symptoms in children (n = 220). Daily dietary fluoride intake was at or above tolerable upper intake level (UL) of 10 mg F/day and the dietary sources (water, prepared food and beverages) all contributed to the daily fluoride burden. Urinary fluoride in children from Fentale and Adamitulu was almost twice (>5 mg/L) the concentration found in urine from children from Alaba, where rain water harvesting was most common. Severe and moderate dental fluorosis was found in Alaba and Adamitulu, the highest severity and prevalence being in the latter district where staple foods were lowest in calcium. Children in all three areas showed evidence of both skeletal and non-skeletal fluorosis. Our data support the hypothesis that intake of calcium rich foods in addition to using rain water for household consumption and preparation of food, may help in reducing risk of fluorosis in Ethiopia, but prospective studies are needed.

  13. 21 CFR 888.4150 - Calipers for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....4150 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... or diameter of a part of the body or the distance between two body surfaces, such as for measuring an excised skeletal specimen to determine the proper replacement size of a prosthesis. (b) Classification...

  14. 21 CFR 888.4150 - Calipers for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....4150 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... or diameter of a part of the body or the distance between two body surfaces, such as for measuring an excised skeletal specimen to determine the proper replacement size of a prosthesis. (b) Classification...

  15. 21 CFR 888.4150 - Calipers for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....4150 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... or diameter of a part of the body or the distance between two body surfaces, such as for measuring an excised skeletal specimen to determine the proper replacement size of a prosthesis. (b) Classification...

  16. 21 CFR 888.4150 - Calipers for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....4150 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... or diameter of a part of the body or the distance between two body surfaces, such as for measuring an excised skeletal specimen to determine the proper replacement size of a prosthesis. (b) Classification...

  17. Digital image analysis of striated skeletal muscle tissue injury during reperfusion after induced ischemia

    NASA Astrophysics Data System (ADS)

    Rosero Salazar, Doris Haydee; Salazar Monsalve, Liliana

    2015-01-01

    Conditions such as surgical procedures or vascular diseases produce arterial ischemia and reperfusion injuries, which generate changes in peripheral tissues and organs, for instance, in striated skeletal muscle. To determine such changes, we conducted an experimental method in which 42 male Wistar rat were selected, to be undergone to tourniquet application on the right forelimb and left hind limb, to induce ischemia during one and three hours, followed by reperfusion periods starting at one hour and it was prolonged up to 32 days. Extensor carpi radialis longus and soleus respectively, were obtained to be processed for histochemical and morphometric analysis. By means of image processing and detection of regions of interest, variations of areas occupied by muscle fibers and intramuscular extracellular matrix (IM-ECM) throughout reperfusion were observed. In extensor carpi radialis longus, results shown reduction in the area occupied by muscle fibers; this change is significant between one hour and three hours ischemia followed by 16 hours, 48 hours and 32 days reperfusión (p˂0.005). To compare only periods of reperfusión that continued to three hours ischemia, were found significant differences, as well. For area occupied by IM-ECM, were identified increments in extensor carpi radialis longus by three hours ischemia and eight to 16 days reperfusion; in soleus, was observed difference by one hour ischemia with 42 hours reperfusion, and three hours ischemia followed by four days reperfusion (p˂0.005). Skeletal muscle develops adaptive changes in longer reperfusion, to deal with induced injury. Descriptions beyond 32 days reperfusion, can determine recovering normal pattern.

  18. Evaluating the Influence of Solar Radiation, Coral Extension Rate and Anthropogenic CO2 on Skeletal δ13C in a Network of Fiji and Tonga Porites Corals

    NASA Astrophysics Data System (ADS)

    Dassie, E. P.; Lemley, G. M.; Linsley, B. K.; Howe, S. S.

    2011-12-01

    While stable oxygen isotope signatures in coral reefs have proven to be reliable recorders of temperature and salinity, it is difficult to interpret their skeletal 13C/12C signatures. Various studies have suggested that coral skeletal δ13C is primarily controlled by complex physiological mechanisms. However, it has also been proposed that δ13C variations in coral skeletons are related to more apparent factors such as solar radiation, skeletal extension rate, and the anthropogenic addition of 13C-depleted CO2 into the atmosphere and surface ocean ("Suess Effect"). We will present time-series variations of δ13C in six coral cores from Fiji and Tonga (South Pacific Ocean). On seasonal timescales, increases in solar radiation are correlated to increases in skeletal δ13C and visa-versa. Annually averaged data shows a correlation between increased coral δ13C and reduced coral extension rate, while a decrease in δ13C is associated with an increased extension rate. In the most recent portion of four of the coral δ13C records (from around 1900 to the core top), the value progressively decreases - a trend that is not present in either the skeletal extension rate or solar radiation data. We conclude that this decreasing δ13C trend is a consequence of the Suess Effect, as reported in other coral δ13C records. However, two of the six corals do not show this decreasing trend, which may be a result of their residence in especially shallow water (sub-tidal environments). The onset of the Suess effect in the four corals may help constrain the timing of the uptake of anthropogenic carbon by the western South Pacific Ocean. Although all factors controlling δ13C variation in corals are not completely understood, this study works towards an understanding of their relative contribution to δ13C variation.

  19. Using stable isotope tracers to study bone metabolism in children.

    PubMed

    O'Brien, Kimberly O; Abrams, Steven A

    2018-06-05

    Skeletal mineralization is initiated in utero and continues throughout childhood and adolescence. During these key periods of the life cycle calcium retention must increase significantly to provide sufficient mineral for bone deposition and skeletal growth. Stable calcium isotopes have served as a fundamental tool to non-invasively characterize the dynamic changes in calcium physiology that occur from infancy through adolescence. These approaches have helped define the dynamics of calcium absorption and utilization in healthy children and in children with chronic diseases. As data in this area have accumulated, new areas of emphasis are beginning to characterize the determinants of variability in mineral retention, the genetic determinants of bone turnover and calcium flux and the impact of the gut microbiome on whole body and niche specific calcium dynamics. Advances in these areas will help define calcium utilization in pediatric populations and provide information that may be useful in maximizing bone acquisition across this critical phase of the life cycle. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Chloride currents from the transverse tubular system in adult mammalian skeletal muscle fibers

    PubMed Central

    DiFranco, Marino; Herrera, Alvaro

    2011-01-01

    Chloride fluxes are the main contributors to the resting conductance of mammalian skeletal muscle fibers. ClC-1, the most abundant chloride channel isoform in this preparation, is believed to be responsible for this conductance. However, the actual distribution of ClC-1 channels between the surface and transverse tubular system (TTS) membranes has not been assessed in intact muscle fibers. To investigate this issue, we voltageclamped enzymatically dissociated short fibers using a two-microelectrode configuration and simultaneously recorded chloride currents (ICl) and di-8-ANEPPS fluorescence signals to assess membrane potential changes in the TTS. Experiments were conducted in conditions that blocked all but the chloride conductance. Fibers were equilibrated with 40 or 70 mM intracellular chloride to enhance the magnitude of inward ICl, and the specific ClC-1 blocker 9-ACA was used to eliminate these currents whenever necessary. Voltage-dependent di-8-ANEPPS signals and ICl acquired before (control) and after the addition of 9-ACA were comparatively assessed. Early after the onset of stimulus pulses, di-8-ANEPPS signals under control conditions were smaller than those recorded in the presence of 9-ACA. We defined as attenuation the normalized time-dependent difference between these signals. Attenuation was discovered to be ICl dependent since its magnitude varied in close correlation with the amplitude and time course of ICl. While the properties of ICl, and those of the attenuation seen in optical records, could be simultaneously predicted by model simulations when the chloride permeability (PCl) at the surface and TTS membranes were approximately equal, the model failed to explain the optical data if PCl was precluded from the TTS membranes. Since the ratio between the areas of TTS membranes and the sarcolemma is large in mammalian muscle fibers, our results demonstrate that a significant fraction of the experimentally recorded ICl arises from TTS contributions. PMID:21149546

  1. Skeletal dosimetry based on µCT images of trabecular bone: update and comparisons

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Cassola, V. F.; Vieira, J. W.; Khoury, H. J.; de Oliveira Lira, C. A. B.; Robson Brown, K.

    2012-06-01

    Two skeletal dosimetry methods using µCT images of human bone have recently been developed: the paired-image radiation transport (PIRT) model introduced by researchers at the University of Florida (UF) in the US and the systematic-periodic cluster (SPC) method developed by researchers at the Federal University of Pernambuco in Brazil. Both methods use µCT images of trabecular bone (TB) to model spongiosa regions of human bones containing marrow cavities segmented into soft tissue volumes of active marrow (AM), trabecular inactive marrow and the bone endosteum (BE), which is a 50 µm thick layer of marrow on all TB surfaces and on cortical bone surfaces next to TB as well as inside the medullary cavities. With respect to the radiation absorbed dose, the AM and the BE are sensitive soft tissues for the induction of leukaemia and bone cancer, respectively. The two methods differ mainly with respect to the number of bone sites and the size of the µCT images used in Monte Carlo calculations and they apply different methods to simulate exposure from radiation sources located outside the skeleton. The PIRT method calculates dosimetric quantities in isolated human bones while the SPC method uses human bones embedded in the body of a phantom which contains all relevant organs and soft tissues. Consequently, the SPC method calculates absorbed dose to the AM and to the BE from particles emitted by radionuclides concentrated in organs or from radiation sources located outside the human body in one calculation step. In order to allow for similar calculations of AM and BE absorbed doses using the PIRT method, the so-called dose response functions (DRFs) have been developed based on absorbed fractions (AFs) of energy for electrons isotropically emitted in skeletal tissues. The DRFs can be used to transform the photon fluence in homogeneous spongiosa regions into absorbed dose to AM and BE. This paper will compare AM and BE AFs of energy from electrons emitted in skeletal tissues calculated with the SPC and the PIRT method and AM and BE absorbed doses and AFs calculated with PIRT-based DRFs and with the SPC method. The results calculated with the two skeletal dosimetry methods agree well if one takes the differences between the two models properly into account. Additionally, the SPC method will be updated with larger µCT images of TB.

  2. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    NASA Astrophysics Data System (ADS)

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-07-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.

  3. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    PubMed Central

    Gurley, Katelyn; Shang, Yu

    2012-01-01

    Abstract. This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (V˙O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and V˙O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (rV˙O2). The rBF and rV˙O2 signals were calibrated with absolute baseline BF and V˙O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology. PMID:22894482

  4. Prototapirella ciliates from wild habituated Virunga mountain gorillas (Gorilla beringei beringei) in Rwanda with the descriptions of two new species.

    PubMed

    Ito, Akira; Eckardt, Winnie; Stoinski, Tara S; Gillespie, Thomas R; Tokiwa, Toshihiro

    2016-06-01

    The morphology of Prototapirella fosseyi n. sp., P. rwanda n. sp. and P. gorillaeImai, Ikeda, Collet, and Bonhomme, 1991 in the Entodiniomorphida were described from the mountain gorillas, Gorilla beringei beringei, in Rwanda. The ciliates have a retractable adoral ciliary zone, four non-retractable ciliary tufts in four caudalia, and one broad skeletal plate beneath the body surface. P. rwanda has a dorsal lobe and ventral lobes in two rows whereas P. fosseyi has no lobes. These two new species have an elongated body, a flat tail flap leaning to the ventral, a macronucleus with a tapering anterior end, a round posterior end and a shallow depression on the dorsal side, a micronucleus lying near the anterior end of macronucleus, a thin left region of the skeletal plate, a distinct skeletal rod plate, and four contractile vacuoles. P. gorillae has some variations in the nuclei and the skeletal plate. The infraciliary bands of three Prototapirella species were the same as some Triplumaria species; a C-shaped adoral polybrachykinety, a slender perivestibular polybrachykinety, and paralabial kineties in their retractable adoral ciliary zone and short lateral polybrachykineties in their four caudalia. The perivestibular polybrachykinety is joined only to the right end of adoral polybrachykinety. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Substrate stiffness affects skeletal myoblast differentiation in vitro

    NASA Astrophysics Data System (ADS)

    Romanazzo, Sara; Forte, Giancarlo; Ebara, Mitsuhiro; Uto, Koichiro; Pagliari, Stefania; Aoyagi, Takao; Traversa, Enrico; Taniguchi, Akiyoshi

    2012-12-01

    To maximize the therapeutic efficacy of cardiac muscle constructs produced by stem cells and tissue engineering protocols, suitable scaffolds should be designed to recapitulate all the characteristics of native muscle and mimic the microenvironment encountered by cells in vivo. Moreover, so not to interfere with cardiac contractility, the scaffold should be deformable enough to withstand muscle contraction. Recently, it was suggested that the mechanical properties of scaffolds can interfere with stem/progenitor cell functions, and thus careful consideration is required when choosing polymers for targeted applications. In this study, cross-linked poly-ɛ-caprolactone membranes having similar chemical composition and controlled stiffness in a supra-physiological range were challenged with two sources of myoblasts to evaluate the suitability of substrates with different stiffness for cell adhesion, proliferation and differentiation. Furthermore, muscle-specific and non-related feeder layers were prepared on stiff surfaces to reveal the contribution of biological and mechanical cues to skeletal muscle progenitor differentiation. We demonstrated that substrate stiffness does affect myogenic differentiation, meaning that softer substrates can promote differentiation and that a muscle-specific feeder layer can improve the degree of maturation in skeletal muscle stem cells.

  6. Mechanical stimulation improves tissue-engineered human skeletal muscle

    NASA Technical Reports Server (NTRS)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  7. A minimally sufficient model for rib proximal-distal patterning based on genetic analysis and agent-based simulations

    PubMed Central

    Mah, In Kyoung

    2017-01-01

    For decades, the mechanism of skeletal patterning along a proximal-distal axis has been an area of intense inquiry. Here, we examine the development of the ribs, simple structures that in most terrestrial vertebrates consist of two skeletal elements—a proximal bone and a distal cartilage portion. While the ribs have been shown to arise from the somites, little is known about how the two segments are specified. During our examination of genetically modified mice, we discovered a series of progressively worsening phenotypes that could not be easily explained. Here, we combine genetic analysis of rib development with agent-based simulations to conclude that proximal-distal patterning and outgrowth could occur based on simple rules. In our model, specification occurs during somite stages due to varying Hedgehog protein levels, while later expansion refines the pattern. This framework is broadly applicable for understanding the mechanisms of skeletal patterning along a proximal-distal axis. PMID:29068314

  8. Scientific/Technical Report Bioenergetics Research Initiative Award number-DE-FG02-05ER64092

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trappe, Scott A

    2009-12-04

    General Project Overview and Final Technical Report This equipment grant was utilized to enhance the infrastructure of the Human Performance Laboratory at Ball State University. The laboratories primary focus is human based exercise physiology conducting research in the areas of sports performance, aging and exercise, unloading (space flight and bed rest), pediatric exercise and clinical exercise physiology. The main equipment supported by this grant was an ultrasound unit for cardiac and skeletal muscle imaging at the whole organ level, microscope system for micro imaging of skeletal muscle tissue, running treadmill for energy expenditure assessment, autoclave for sterilization, and upgrade tomore » our dual x–ray absorptiometry (DEXA) system that was utilized for body composition measurements. The equipment was involved in several human metabolic and skeletal muscle research projects as highlighted above. In particular, this equipment served a support role for other large–scale clinical projects funded by the National Institutes of Health (NIH), National Aeronautics and Space Administration (NASA), and corporate sponsors.« less

  9. Intrinsic qualities of primate bones as predictors of skeletal element representation in modern and fossil carnivore feeding assemblages.

    PubMed

    Carlson, Kristian J; Pickering, Travis Rayne

    2003-04-01

    Plio-Pleistocene faunal assemblages from Swartkrans Cave (South Africa) preserve large numbers of primate remains. Brain, C.K., 1981. The Hunters or the Hunted? An Introduction to African Cave Taphonomy. University of Chicago Press, Chicago suggested that these primate subassemblages might have resulted from a focus by carnivores on primate predation and bone accumulation. Brain's hypothesis prompted us to investigate, in a previous study, this taphonomic issue as it relates to density-mediated destruction of primate bones (J. Archaeol. Sci. 29, 2002, 883). Here we extend our investigation of Brain's hypothesis by examining additional intrinsic qualities of baboon bones and their role as mediators of skeletal element representation in carnivore-created assemblages. Using three modern adult baboon skeletons, we collected data on four intrinsic bone qualities (bulk bone mineral density, maximum length, volume, and cross-sectional area) for approximately 81 bones per baboon skeleton. We investigated the relationship between these intrinsic bone qualities and a measure of skeletal part representation (the percentage minimum animal unit) for baboon bones in carnivore refuse and scat assemblages. Refuse assemblages consist of baboon bones not ingested during ten separate experimental feeding episodes in which individual baboon carcasses were fed to individual captive leopards and a spotted hyena. Scat assemblages consist of those baboon bones recovered in carnivore regurgitations and feces resulting from the feeding episodes. In refuse assemblages, volume (i.e., size) was consistently the best predictor of element representation, while cross-sectional area was the poorest predictor in the leopard refuse assemblage and bulk bone mineral density (i.e., a measure of the proportion of cortical to trabecular bone) was the poorest predictor in the hyena refuse assemblage. In light of previous documentation of carnivore-induced density-mediated destruction to bone assemblages, we interpret the current findings as suggestive of the secondary importance of bulk bone mineral density to other intrinsic qualities of skeletal elements (e.g., size, maximum dimension, and average cross-sectional area). It is only when skeletal elements are too large for consumption (e.g., many long bones) that they are fragmented following intra-element patterns of density-mediated carnivore destruction. There appears to be a size threshold beneath which bulk bone mineral density contributes little to mediating carnivore destruction of carcasses. Thus, depending on body size of the predator, body size of the prey, and specific size of the element, bulk bone mineral density may play little or no role of primary importance in mediating the destruction of skeletal elements. We compare patterns in modern comparative assemblages to patterns in primate fossil assemblages from Swartkrans. One of the fossil assemblages, Swartkrans Member 1, Hanging Remnant, most closely approximates a hyena (possibly refuse) assemblage pattern, while the Swartkrans Member 2 assemblage most closely approximates a leopard (possibly scat) assemblage pattern. The Swartkrans Member 1, Lower Bank, assemblage does not closely approximate any of our modern comparative assemblage patterns.

  10. Suppression of skeletal muscle signal using a crusher coil: A human cardiac (31) p-MR spectroscopy study at 7 tesla.

    PubMed

    Schaller, Benoit; Clarke, William T; Neubauer, Stefan; Robson, Matthew D; Rodgers, Christopher T

    2016-03-01

    The translation of sophisticated phosphorus MR spectroscopy ((31)P-MRS) protocols to 7 Tesla (T) is particularly challenged by the issue of radiofrequency (RF) heating. Legal limits on RF heating make it hard to reliably suppress signals from skeletal muscle that can contaminate human cardiac (31)P spectra at 7T. We introduce the first surface-spoiling crusher coil for human cardiac (31)P-MRS at 7T. A planar crusher coil design was optimized with simulations and its performance was validated in phantoms. Crusher gradient pulses (100 μs) were then applied during human cardiac (31)P-MRS at 7T. In a phantom, residual signals were 50 ± 10% with BISTRO (B1 -insensitive train to obliterate signal), and 34 ± 8% with the crusher coil. In vivo, residual signals in skeletal muscle were 49 ± 4% using BISTRO, and 24 ± 5% using the crusher coil. Meanwhile, in the interventricular septum, spectral quality and metabolite quantification did not differ significantly between BISTRO (phosphocreatine/adenosine triphosphate [PCr/ATP] = 2.1 ± 0.4) and the crusher coil (PCr/ATP = 1.8 ± 0.4). However, the specific absorption rate (SAR) decreased from 96 ± 1% of the limit (BISTRO) to 16 ± 1% (crusher coil). A crusher coil is an SAR-efficient alternative for selectively suppressing skeletal muscle during cardiac (31)P-MRS at 7T. A crusher coil allows the use of sequence modules that would have been SAR-prohibitive, without compromising skeletal muscle suppression. © 2015 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance.

  11. Primary skeletal muscle cells cultured on gelatin bead microcarriers develop structural and biochemical features characteristic of adult skeletal muscle.

    PubMed

    Kubis, Hans-Peter; Scheibe, Renate J; Decker, Brigitte; Hufendiek, Karsten; Hanke, Nina; Gros, Gerolf; Meissner, Joachim D

    2016-04-01

    A primary skeletal muscle cell culture, in which myoblasts derived from newborn rabbit hindlimb muscles grow on gelatin bead microcarriers in suspension and differentiate into myotubes, has been established previously. In the course of differentiation and beginning spontaneous contractions, these multinucleated myotubes do not detach from their support. Here, we describe the development of the primary myotubes with respect to their ultrastructural differentiation. Scanning electron microscopy reveals that myotubes not only grow around the surface of one carrier bead but also attach themselves to neighboring carriers, forming bridges between carriers. Transmission electron microscopy demonstrates highly ordered myofibrils, T-tubules, and sarcoplasmic reticulum. The functionality of the contractile apparatus is evidenced by contractile activity that occurs spontaneously or can be elicited by electrostimulation. Creatine kinase activity increases steadily until day 20 of culture. Regarding the expression of isoforms of myosin heavy chains (MHC), we could demonstrate that from day 16 on, no non-adult MHC isoform mRNAs are present. Instead, on day 28 the myotubes express predominantly adult fast MHCIId/x mRNA and protein. This MHC pattern resembles that of fast muscles of adult rabbits. In contrast, primary myotubes grown on matrigel-covered culture dishes express substantial amounts of non-adult MHC protein even on day 21. To conclude, primary myotubes grown on microcarriers in their later stages exhibit many features of adult skeletal muscle and characteristics of fast type II fibers. Thus, the culture represents an excellent model of adult fast skeletal muscle, for example, when investigating molecular mechanisms of fast-to-slow fiber-type transformation. © 2015 International Federation for Cell Biology.

  12. Preamputation evaluation of lower-limb skeletal muscle perfusion with H(2) (15)O positron emission tomography.

    PubMed

    Scremin, Oscar U; Figoni, Stephen F; Norman, Keith; Scremin, A M Erika; Kunkel, Charles F; Opava-Rutter, Dorene; Schmitter, Eric D; Bert, Alberto; Mandelkern, Mark

    2010-06-01

    To establish whether muscle blood flow (MBF) measurements with O-water positron emission tomography could reliably identify patients with critical limb ischemia and detect and quantify a distal deficit in skeletal MBF in these cases. O-water positron emission tomography scans were performed at rest or during unloaded ankle plantar and dorsiflexion exercise of the diseased leg in 17 subjects with leg ischemia or on a randomly selected leg of 18 age-matched healthy control subjects. TcPO2 was evaluated with Novametrix monitors and perfusion of skin topically heated to 44 degrees C and adjacent nonheated areas with a Moor Instruments laser Doppler imaging scanner. The enhancement of MBF induced by exercise was significantly lower in ischemic than in normal legs, and the sensitivity and specificity of this phenomenon were similar to those of laser Doppler imaging or TcPO2 in identifying ischemia subjects. In addition, the exercise MBF deficit was predominant at the distal-leg levels, indicating the ability of the technique to help determine the correct level of amputation. Skeletal MBF of legs with severe ischemia can be detected accurately with O-water positron emission tomography and could add valuable information about viability of skeletal muscle in the residual limb when deciding the level of an amputation.

  13. Structural and functional remodeling of skeletal muscle microvasculature is induced by simulated microgravity

    NASA Technical Reports Server (NTRS)

    Delp, M. D.; Colleran, P. N.; Wilkerson, M. K.; McCurdy, M. R.; Muller-Delp, J.

    2000-01-01

    Hindlimb unloading of rats results in a diminished ability of skeletal muscle arterioles to constrict in vitro and elevate vascular resistance in vivo. The purpose of the present study was to determine whether alterations in the mechanical environment (i.e., reduced fluid pressure and blood flow) of the vasculature in hindlimb skeletal muscles from 2-wk hindlimb-unloaded (HU) rats induces a structural remodeling of arterial microvessels that may account for these observations. Transverse cross sections were used to determine media cross-sectional area (CSA), wall thickness, outer perimeter, number of media nuclei, and vessel luminal diameter of feed arteries and first-order (1A) arterioles from soleus and the superficial portion of gastrocnemius muscles. Endothelium-dependent dilation (ACh) was also determined. Media CSA of resistance arteries was diminished by hindlimb unloading as a result of decreased media thickness (gastrocnemius muscle) or reduced vessel diameter (soleus muscle). ACh-induced dilation was diminished by 2 wk of hindlimb unloading in soleus 1A arterioles, but not in gastrocnemius 1A arterioles. These results indicate that structural remodeling and functional adaptations of the arterial microvasculature occur in skeletal muscles of the HU rat; the data suggest that these alterations may be induced by reductions in transmural pressure (gastrocnemius muscle) and wall shear stress (soleus muscle).

  14. Image-based modelling of skeletal muscle oxygenation

    PubMed Central

    Clough, G. F.

    2017-01-01

    The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, in particular for skeletal muscle during exercise. Disease is often associated with both an inhibition of the microvascular supply capability and is thought to relate to changes in the structure of blood vessel networks. Different methods exist to investigate the influence of the microvascular structure on tissue oxygenation, varying over a range of application areas, i.e. biological in vivo and in vitro experiments, imaging and mathematical modelling. Ideally, all of these methods should be combined within the same framework in order to fully understand the processes involved. This review discusses the mathematical models of skeletal muscle oxygenation currently available that are based upon images taken of the muscle microvasculature in vivo and ex vivo. Imaging systems suitable for capturing the blood vessel networks are discussed and respective contrasting methods presented. The review further informs the association between anatomical characteristics in health and disease. With this review we give the reader a tool to understand and establish the workflow of developing an image-based model of skeletal muscle oxygenation. Finally, we give an outlook for improvements needed for measurements and imaging techniques to adequately investigate the microvascular capability for oxygen exchange. PMID:28202595

  15. Application of the laser capture microdissection technique for molecular definition of skeletal cell differentiation in vivo.

    PubMed

    Benayahu, Dafna; Socher, Rina; Shur, Irena

    2008-01-01

    Laser capture microdissection (LCM) method allows selection of individual or clustered cells from intact tissues. This technology enables one to pick cells from tissues that are difficult to study individually, sort the anatomical complexity of these tissues, and make the cells available for molecular analyses. Following the cells' extraction, the nucleic acids and proteins can be isolated and used for multiple applications that provide an opportunity to uncover the molecular control of cellular fate in the natural microenvironment. Utilization of LCM for the molecular analysis of cells from skeletal tissues will enable one to study differential patterns of gene expression in the native intact skeletal tissue with reliable interpretation of function for known genes as well as to discover novel genes. Variability between samples may be caused either by differences in the tissue samples (different areas isolated from the same section) or some variances in sample handling. LCM is a multi-task technology that combines histology, microscopy work, and dedicated molecular biology. The LCM application will provide results that will pave the way toward high throughput profiling of tissue-specific gene expression using Gene Chip arrays. Detailed description of in vivo molecular pathways will make it possible to elaborate on control systems to apply for the repair of genetic or metabolic diseases of skeletal tissues.

  16. Le Fort-based maxillofacial transplantation: current state of the art and a refined technique using orthognathic applications.

    PubMed

    Gordon, Chad R; Susarla, Srinivas M; Peacock, Zachary S; Kaban, Leonard B; Yaremchuk, Michael J

    2012-01-01

    Following encouraging results from the first 6 maxillofacial allotransplants, there has been a dramatic rise in interest worldwide. Numerous groups are now devoting resources to increase the frequency of these complex procedures, and with this, the craniomaxillofacial surgeon should become familiar with the emerging state of the art. This article reviews the evolution of Le Fort-based cadaveric studies pertaining to maxillofacial allotransplantation, briefly describes the clinical reports through 2010, and introduces a refined technique applying orthognathic applications. Preliminary studies over the last 5 years have highlighted the challenges associated with transplanting skeletal components, and clinical results presented thus far have been extremely promising. However, a notable area for improvement is suboptimal facial-skeletal harmony and profile in the context of sagittal skeletal projection and maxillomandibular relation. To our knowledge, orthognathic planning as applied to osteocutaneous face transplantation has not been described. Many recipients seen thus far demonstrate some degree of malocclusion and suboptimal harmony, as expected, given the donor-to-recipient skeletal/jaw discrepancies. Given that the goal is to improve function as well as form, the importance of orthognathic planning cannot be overstated with respect to optimizing harmony, profile, and occlusion. Preoperative planning, including generation of donor/recipient dental cast models, as described herein for the first time, is essential.

  17. Skeletal muscle weakness in osteogenesis imperfecta mice.

    PubMed

    Gentry, Bettina A; Ferreira, J Andries; McCambridge, Amanda J; Brown, Marybeth; Phillips, Charlotte L

    2010-09-01

    Exercise intolerance, muscle fatigue and weakness are often-reported, little-investigated concerns of patients with osteogenesis imperfecta (OI). OI is a heritable connective tissue disorder hallmarked by bone fragility resulting primarily from dominant mutations in the proα1(I) or proα2(I) collagen genes and the recently discovered recessive mutations in post-translational modifying proteins of type I collagen. In this study we examined the soleus (S), plantaris (P), gastrocnemius (G), tibialis anterior (TA) and quadriceps (Q) muscles of mice expressing mild (+/oim) and moderately severe (oim/oim) OI for evidence of inherent muscle pathology. In particular, muscle weight, fiber cross-sectional area (CSA), fiber type, fiber histomorphology, fibrillar collagen content, absolute, relative and specific peak tetanic force (P(o), P(o)/mg and P(o)/CSA respectively) of individual muscles were evaluated. Oim/oim mouse muscles were generally smaller, contained less fibrillar collagen, had decreased P(o) and an inability to sustain P(o) for the 300-ms testing duration for specific muscles; +/oim mice had a similar but milder skeletal muscle phenotype. +/oim mice had mild weakness of specific muscles but were less affected than their oim/oim counterparts which demonstrated readily apparent skeletal muscle pathology. Therefore muscle weakness in oim mice reflects inherent skeletal muscle pathology. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Characterization of the bone marrow adipocyte niche with three-dimensional electron microscopy.

    PubMed

    Robles, Hero; Park, SungJae; Joens, Matthew S; Fitzpatrick, James A J; Craft, Clarissa S; Scheller, Erica L

    2018-01-27

    Unlike white and brown adipose tissues, the bone marrow adipocyte (BMA) exists in a microenvironment containing unique populations of hematopoietic and skeletal cells. To study this microenvironment at the sub-cellular level, we performed a three-dimensional analysis of the ultrastructure of the BMA niche with focused ion beam scanning electron microscopy (FIB-SEM). This revealed that BMAs display hallmarks of metabolically active cells including polarized lipid deposits, a dense mitochondrial network, and areas of endoplasmic reticulum. The distinct orientations of the triacylglycerol droplets suggest that fatty acids are taken up and/or released in three key areas - at the endothelial interface, into the hematopoietic milieu, and at the bone surface. Near the sinusoidal vasculature, endothelial cells send finger-like projections into the surface of the BMA which terminate near regions of lipid within the BMA cytoplasm. In some regions, perivascular cells encase the BMA with their flattened cellular projections, limiting contacts with other cells in the niche. In the hematopoietic milieu, BMAT adipocytes of the proximal tibia interact extensively with maturing cells of the myeloid/granulocyte lineage. Associations with erythroblast islands are also prominent. At the bone surface, the BMA extends organelle and lipid-rich cytoplasmic regions toward areas of active osteoblasts. This suggests that the BMA may serve to partition nutrient utilization between diverse cellular compartments, serving as an energy-rich hub of the stromal-reticular network. Lastly, though immuno-EM, we've identified a subset of bone marrow adipocytes that are innervated by the sympathetic nervous system, providing an additional mechanism for regulation of the BMA. In summary, this work reveals that the bone marrow adipocyte is a dynamic cell with substantial capacity for interactions with the diverse components of its surrounding microenvironment. These local interactions likely contribute to its unique regulation relative to peripheral adipose tissues. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Hard- and soft-tissue profiles of the midface region in patients with skeletal Class III malocclusion using cone-beam computed tomography multiplanar-reconstructed image analysis.

    PubMed

    Kim, Bomi; Lee, Hyung-Chul; Kim, Seong-Hun; Kim, Yongil; Son, Woosung; Kim, Seong Sik

    2018-05-01

    This study examined cone-beam computed tomography (CBCT)-derived multiplanar-reconstructed (MPR) cross-sections to clarify the salient characteristics of patients with skeletal class III malocclusion with midface deficiency (MD). The horizontal and sagittal plane intersection points were identified for middle-third facial analysis in 40 patients in the MD or normal (N) groups. MPR images acquired parallel to each horizontal plane were used for length and angular measurements. A comparison of the MD and N groups revealed significant differences in the zygoma prominence among female patients. The convex zygomatic area in the N group was larger than that in the MD group, and the inferior part of the midface in the N group was smaller than that in the MD group for both male and female patients. A significant difference was observed in the concave middle maxillary area among male patients. This study was conducted to demonstrate the difference between MD and normal face through MPR images derived from CBCT. Male patients in the MD group had a more flattened face than did those in the N group. Female patients in the MD group showed a concave-shaped lower section of the zygoma, which tended to have more severe MD. These findings indicate that orthognathic surgery to improve skeletal discrepancy requires different approaches in male and female patients.

  20. Magnesium content within the skeletal architecture of the coral Montastraea faveolata: locations of brucite precipitation and implications to fine-scale data fluctuations

    USGS Publications Warehouse

    Buster, N.A.; Holmes, C.W.

    2006-01-01

    Small portions of coral cores were analyzed using a high-resolution laser ablation inductively coupled plasma mass spectrometer (LA ICP-MS) to determine the geochemical signatures within and among specific skeletal structures in the large framework coral, Montastraea faveolata. Vertical transects were sampled along three parallel skeletal structures: endothecal (septal flank), corallite wall, and exothecal (costal flank) areas. The results demonstrate that trace element levels varied among the three structures. Magnesium (Mg) varied among adjacent structures and was most abundant within the exothecal portion of the skeleton. Scanning electron microscopy (SEM) revealed the presence of hexagonal crystals forming thick discs, pairs or doublets of individual crystals, and rosettes in several samples. High Mg within these crystals was confirmed with energy dispersive spectroscopy (EDS), infrared spectrometry, and LA ICP-MS. The chemical composition is consistent with the mineral brucite [Mg(OH2)]. These crystals are located exclusively in the exothecal area of the skeleton, are often associated with green endolithic algae, and are commonly associated with increased Mg levels found in the adjacent corallite walls. Although scattered throughout the exothecal, the brucite crystals are concentrated within green bands where levels of Mg increase substantially relative to other portions of the skeleton. The presence and locations of high-Mg crystals may explain the fine-scale fluctuations in Mg data researchers have been questioning for years.

  1. Creation of three-dimensional craniofacial standards from CBCT images

    NASA Astrophysics Data System (ADS)

    Subramanyan, Krishna; Palomo, Martin; Hans, Mark

    2006-03-01

    Low-dose three-dimensional Cone Beam Computed Tomography (CBCT) is becoming increasingly popular in the clinical practice of dental medicine. Two-dimensional Bolton Standards of dentofacial development are routinely used to identify deviations from normal craniofacial anatomy. With the advent of CBCT three dimensional imaging, we propose a set of methods to extend these 2D Bolton Standards to anatomically correct surface based 3D standards to allow analysis of morphometric changes seen in craniofacial complex. To create 3D surface standards, we have implemented series of steps. 1) Converting bi-plane 2D tracings into set of splines 2) Converting the 2D splines curves from bi-plane projection into 3D space curves 3) Creating labeled template of facial and skeletal shapes and 4) Creating 3D average surface Bolton standards. We have used datasets from patients scanned with Hitachi MercuRay CBCT scanner providing high resolution and isotropic CT volume images, digitized Bolton Standards from age 3 to 18 years of lateral and frontal male, female and average tracings and converted them into facial and skeletal 3D space curves. This new 3D standard will help in assessing shape variations due to aging in young population and provide reference to correct facial anomalies in dental medicine.

  2. Waterspout as a special type of atmospheric aerosol dusty plasma

    NASA Astrophysics Data System (ADS)

    Rantsev-Kartinov, Valentin A.

    2004-11-01

    An analysis of databases of photographic images of oceanic surface revealed the presence of oceanic skeletal structures (OSS) [1] Rantsev-Kartinov V.A., Preprint . The OSSs presumably differ from the formerly found skeletal structures (SS) (Phys. Lett. A 306 (2002) 175) only by the fact that OSS are filled in with the closely packed blocks of a smaller size, up to thin, tens of microns-sized capillaries. The SSs in the Earth atmosphere were suggested [1] to be produced during atmospheric electricity activity by the volcanic-born dust. The fall-out of such SSs on the oceanic surface is a material source of OSS. Here we suggest that an OSS block [1] in the form of vertically oriented floating cylinder may be a stimulator of waterspout (WS). The main body of WS may be interpreted as a special type of atmospheric aerosol dusty plasma, and WS column - as a long-lived filament, being formed in the process of electric breakdown between the cloud and oceanic surface. The charged water drops aerosol may behave similar to microdust and lift upward to the cloud by the electrostatic force. With such a capillary&;electrostatic model of WS, it appears possible to interpret many effects related to WS.

  3. Congenital axis dysmorphism in a medieval skeleton : …secunda a vertendo epistropheus….

    PubMed

    Travan, Luciana; Saccheri, Paola; Toso, Francesco; Crivellato, Enrico

    2013-05-01

    We describe here the axis dysmorphism that we observed in the skeletal remains of a human child dug up from a fifteenth century cemetery located in north-eastern Italy. This bone defect is discussed in the light of pertinent literature. We performed macroscopical examination and CT scan analysis of the axis. Axis structure was remarkably asymmetric. Whilst the left half exhibited normal morphology, the right one was smaller than normal, and its lateral articular surface showed horizontal orientation. In addition, the odontoid process appeared leftward deviated and displayed a supplementary articular-like facet situated on the right side of its surface. These findings suggest a diagnosis of unilateral irregular segmentation of atlas and axis, a rare dysmorphism dependent upon disturbances of notochordal development in early embryonic life. Likewise other malformations of the craniovertebral junction, this axis defect may alter the delicate mechanisms of upper neck movements and cause a complex series of clinical symptoms. This is an emblematic case whereby human skeletal remains may provide valuable information on the anatomical defects of craniovertebral junction.

  4. Occurrence and problems of high fluoride waters in Turkey: an overview.

    PubMed

    Oruc, Nazmi

    2008-08-01

    Endemic dental fluorosis was first observed in Turkey in Isparta Province, located in the SW of Anatolia, with mottled enamel related to the high levels of fluoride (1.5-4.0 ppm) in drinking waters, about 55 years ago. The origin of fluoride was attributed to the contents of minerals in volcanic rocks, consisting of pyroxene, hornblende, biotite, fluorapatite and glassy groundmass minerals. It was also reported about 35 years ago that severe dental and skeletal fluorosis has been observed in human beings and livestock in Dogubeyazit and Caldiran areas, located around Tendurek Volcano in eastern Turkey, where natural waters contained fluoride levels between 2.5 and 12.5 ppm. It was hypothesised that fluoride, which might be transported by fumaroles or escaped from devitrified lavas, could be held on the surface of some minerals and then exchanged with OH(-) in ground waters with high pH at the foothills of the young Tendurek Volcano. Endemic dental and skeletal fluorosis was also observed in the inhabitants in Kizilcaoren Village of Beylikova Town in Eskişehir Province situated in the midwest of Turkey, where the fluoride content of the drinking waters ranged from 3.9 to 4.8 ppm. The origin of high fluoride in the natural waters was related to the fluorspar deposits, occurring in the catchment area near the village. During the survey in the Güllü Village of Esme-Usak, located in south-midwest of Turkey, it was observed that most of the inhabitants born and raised in the village and aged between 10 and 30 years, showed mild to moderate levels of mottled enamel. The fluoride contents of the deep well waters used for drinking in the village, varied from 0.7 to 2.0 ppm. Amorphous microscopic fluorite existing in the Pliocene lake limestones was considered as a possible origin of fluoride in the waters.

  5. Comparison of (31)P saturation and inversion magnetization transfer in human liver and skeletal muscle using a clinical MR system and surface coils.

    PubMed

    Buehler, Tania; Kreis, Roland; Boesch, Chris

    2015-02-01

    (31)P MRS magnetization transfer ((31)P-MT) experiments allow the estimation of exchange rates of biochemical reactions, such as the creatine kinase equilibrium and adenosine triphosphate (ATP) synthesis. Although various (31)P-MT methods have been successfully used on isolated organs or animals, their application on humans in clinical scanners poses specific challenges. This study compared two major (31)P-MT methods on a clinical MR system using heteronuclear surface coils. Although saturation transfer (ST) is the most commonly used (31)P-MT method, sequences such as inversion transfer (IT) with short pulses might be better suited for the specific hardware and software limitations of a clinical scanner. In addition, small NMR-undetectable metabolite pools can transfer MT to NMR-visible pools during long saturation pulses, which is prevented with short pulses. (31)P-MT sequences were adapted for limited pulse length, for heteronuclear transmit-receive surface coils with inhomogeneous B1 , for the need for volume selection and for the inherently low signal-to-noise ratio (SNR) on a clinical 3-T MR system. The ST and IT sequences were applied to skeletal muscle and liver in 10 healthy volunteers. Monte-Carlo simulations were used to evaluate the behavior of the IT measurements with increasing imperfections. In skeletal muscle of the thigh, ATP synthesis resulted in forward reaction constants (k) of 0.074 ± 0.022 s(-1) (ST) and 0.137 ± 0.042 s(-1) (IT), whereas the creatine kinase reaction yielded 0.459 ± 0.089 s(-1) (IT). In the liver, ATP synthesis resulted in k = 0.267 ± 0.106 s(-1) (ST), whereas the IT experiment yielded no consistent results. ST results were close to literature values; however, the IT results were either much larger than the corresponding ST values and/or were widely scattered. To summarize, ST and IT experiments can both be implemented on a clinical body scanner with heteronuclear transmit-receive surface coils; however, ST results are much more robust against experimental imperfections than the current implementation of IT. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Relationships between resting conductances, excitability, and t-system ionic homeostasis in skeletal muscle.

    PubMed

    Fraser, James A; Huang, Christopher L-H; Pedersen, Thomas H

    2011-07-01

    Activation of skeletal muscle fibers requires rapid sarcolemmal action potential (AP) conduction to ensure uniform excitation along the fiber length, as well as successful tubular excitation to initiate excitation-contraction coupling. In our companion paper in this issue, Pedersen et al. (2011. J. Gen. Physiol. doi:10.1085/jgp.201010510) quantify, for subthreshold stimuli, the influence upon both surface conduction velocity and tubular (t)-system excitation of the large changes in resting membrane conductance (G(M)) that occur during repetitive AP firing. The present work extends the analysis by developing a multi-compartment modification of the charge-difference model of Fraser and Huang to provide a quantitative description of the conduction velocity of actively propagated APs; the influence of voltage-gated ion channels within the t-system; the influence of t-system APs on ionic homeostasis within the t-system; the influence of t-system ion concentration changes on membrane potentials; and the influence of Phase I and Phase II G(M) changes on these relationships. Passive conduction properties of the novel model agreed with established linear circuit analysis and previous experimental results, while key simulations of AP firing were tested against focused experimental microelectrode measurements of membrane potential. This study thereby first quantified the effects of the t-system luminal resistance and voltage-gated Na(+) channel density on surface AP propagation and the resultant electrical response of the t-system. Second, it demonstrated the influence of G(M) changes during repetitive AP firing upon surface and t-system excitability. Third, it showed that significant K(+) accumulation occurs within the t-system during repetitive AP firing and produces a baseline depolarization of the surface membrane potential. Finally, it indicated that G(M) changes during repetitive AP firing significantly influence both t-system K(+) accumulation and its influence on the resting membrane potential. Thus, the present study emerges with a quantitative description of the changes in membrane potential, excitability, and t-system ionic homeostasis that occur during repetitive AP firing in skeletal muscle.

  7. Selective CO2 Sequestration with Monolithic Bimodal Micro/Macroporous Carbon Aerogels Derived from Stepwise Pyrolytic Decomposition of Polyamide-Polyimide-Polyurea Random Copolymers.

    PubMed

    Saeed, Adnan M; Rewatkar, Parwani M; Majedi Far, Hojat; Taghvaee, Tahereh; Donthula, Suraj; Mandal, Chandana; Sotiriou-Leventis, Chariklia; Leventis, Nicholas

    2017-04-19

    Polymeric aerogels (PA-xx) were synthesized via room-temperature reaction of an aromatic triisocyanate (tris(4-isocyanatophenyl) methane) with pyromellitic acid. Using solid-state CPMAS 13 C and 15 N NMR, it was found that the skeletal framework of PA-xx was a statistical copolymer of polyamide, polyurea, polyimide, and of the primary condensation product of the two reactants, a carbamic-anhydride adduct. Stepwise pyrolytic decomposition of those components yielded carbon aerogels with both open and closed microporosity. The open micropore surface area increased from <15 m 2 g -1 in PA-xx to 340 m 2 g -1 in the carbons. Next, reactive etching at 1,000 °C with CO 2 opened access to the closed pores and the micropore area increased by almost 4× to 1150 m 2 g -1 (out of 1750 m 2 g -1 of a total BET surface area). At 0 °C, etched carbon aerogels demonstrated a good balance of adsorption capacity for CO 2 (up to 4.9 mmol g -1 ), and selectivity toward other gases (via Henry's law). The selectivity for CO 2 versus H 2 (up to 928:1) is suitable for precombustion fuel purification. Relevant to postcombustion CO 2 capture and sequestration (CCS), the selectivity for CO 2 versus N 2 was in the 17:1 to 31:1 range. In addition to typical factors involved in gas sorption (kinetic diameters, quadrupole moments and polarizabilities of the adsorbates), it is also suggested that CO 2 is preferentially engaged by surface pyridinic and pyridonic N on carbon (identified with XPS) in an energy-neutral surface reaction. Relatively high uptake of CH 4 (2.16 mmol g -1 at 0 °C/1 bar) was attributed to its low polarizability, and that finding paves the way for further studies on adsorption of higher (i.e., more polarizable) hydrocarbons. Overall, high CO 2 selectivities, in combination with attractive CO 2 adsorption capacities, low monomer cost, and the innate physicochemical stability of carbon render the materials of this study reasonable candidates for further practical consideration.

  8. Myeloid cells are capable of synthesizing aldosterone to exacerbate damage in muscular dystrophy.

    PubMed

    Chadwick, Jessica A; Swager, Sarah A; Lowe, Jeovanna; Welc, Steven S; Tidball, James G; Gomez-Sanchez, Celso E; Gomez-Sanchez, Elise P; Rafael-Fortney, Jill A

    2016-12-01

    FDA-approved mineralocorticoid receptor (MR) antagonists are used to treat heart failure. We have recently demonstrated efficacy of MR antagonists for skeletal muscles in addition to heart in Duchenne muscular dystrophy mouse models and that mineralocorticoid receptors are present and functional in skeletal muscles. The goal of this study was to elucidate the underlying mechanisms of MR antagonist efficacy on dystrophic skeletal muscles. We demonstrate for the first time that infiltrating myeloid cells clustered in damaged areas of dystrophic skeletal muscles have the capacity to produce the natural ligand of MR, aldosterone, which in excess is known to exacerbate tissue damage. Aldosterone synthase protein levels are increased in leukocytes isolated from dystrophic muscles compared with controls and local aldosterone levels in dystrophic skeletal muscles are increased, despite normal circulating levels. All genes encoding enzymes in the pathway for aldosterone synthesis are expressed in muscle-derived leukocytes. 11β-HSD2, the enzyme that inactivates glucocorticoids to increase MR selectivity for aldosterone, is also increased in dystrophic muscle tissues. These results, together with the demonstrated preclinical efficacy of antagonists, suggest MR activation is in excess of physiological need and likely contributes to the pathology of muscular dystrophy. This study provides new mechanistic insight into the known contribution of myeloid cells to muscular dystrophy pathology. This first report of myeloid cells having the capacity to produce aldosterone may have implications for a wide variety of acute injuries and chronic diseases with inflammation where MR antagonists may be therapeutic. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. As solid as a rock-comparison of CE- and MPS-based analyses of the petrosal bone as a source of DNA for forensic identification of challenging cranial bones.

    PubMed

    Kulstein, Galina; Hadrys, Thorsten; Wiegand, Peter

    2018-01-01

    Short tandem repeat (STR) typing from skeletal remains can be a difficult task. Dependent on the environmental conditions of the provenance of the bones, DNA can be degraded and STR typing inhibited. Generally, dense and compact bones are known to preserve DNA better. Several studies already proved that femora and teeth have high DNA typing success rates. Unfortunately, these elements are not present in all cases involving skeletal remains. Processing partial or singular skeletal elements, it is favorable to select bone areas where DNA preservation is comparably higher. Especially, cranial bones are often accidentally discovered during criminal investigations. The cranial bone is composed of multiple parts. In this examination, we evaluated the potential of the petrous bone for human identification of skeletal remains in forensic case work. Material from different sections of eight unknown cranial bones and-where available-additionally other skeletal elements, collected at the DNA department of the Institute of Legal Medicine in Ulm, Germany, from 2010 to 2017, were processed with an optimized DNA extraction and STR typing strategy. The results highlight that STR typing from the petrous bones leads to reportable profiles in all individuals, even in cases where the analysis of the parietal bone failed. Moreover, the comparison of capillary electrophorese (CE) typing to massively parallel sequencing (MPS) analysis shows that MPS has the potential to analyze degraded human remains and is even capable to provide additional information about phenotype and ancestry of unknown individuals.

  10. Multiscale characterization of the mineral phase at skeletal sites of breast cancer metastasis.

    PubMed

    He, Frank; Chiou, Aaron E; Loh, Hyun Chae; Lynch, Maureen; Seo, Bo Ri; Song, Young Hye; Lee, Min Joon; Hoerth, Rebecca; Bortel, Emely L; Willie, Bettina M; Duda, Georg N; Estroff, Lara A; Masic, Admir; Wagermaier, Wolfgang; Fratzl, Peter; Fischbach, Claudia

    2017-10-03

    Skeletal metastases, the leading cause of death in advanced breast cancer patients, depend on tumor cell interactions with the mineralized bone extracellular matrix. Bone mineral is largely composed of hydroxyapatite (HA) nanocrystals with physicochemical properties that vary significantly by anatomical location, age, and pathology. However, it remains unclear whether bone regions typically targeted by metastatic breast cancer feature distinct HA materials properties. Here we combined high-resolution X-ray scattering analysis with large-area Raman imaging, backscattered electron microscopy, histopathology, and microcomputed tomography to characterize HA in mouse models of advanced breast cancer in relevant skeletal locations. The proximal tibial metaphysis served as a common metastatic site in our studies; we identified that in disease-free bones this skeletal region contained smaller and less-oriented HA nanocrystals relative to ones that constitute the diaphysis. We further observed that osteolytic bone metastasis led to a decrease in HA nanocrystal size and perfection in remnant metaphyseal trabecular bone. Interestingly, in a model of localized breast cancer, metaphyseal HA nanocrystals were also smaller and less perfect than in corresponding bone in disease-free controls. Collectively, these results suggest that skeletal sites prone to tumor cell dissemination contain less-mature HA (i.e., smaller, less-perfect, and less-oriented crystals) and that primary tumors can further increase HA immaturity even before secondary tumor formation, mimicking alterations present during tibial metastasis. Engineered tumor models recapitulating these spatiotemporal dynamics will permit assessing the functional relevance of the detected changes to the progression and treatment of breast cancer bone metastasis.

  11. Multiscale characterization of the mineral phase at skeletal sites of breast cancer metastasis

    PubMed Central

    Chiou, Aaron E.; Loh, Hyun Chae; Lynch, Maureen; Seo, Bo Ri; Song, Young Hye; Hoerth, Rebecca; Bortel, Emely L.; Willie, Bettina M.; Duda, Georg N.; Masic, Admir; Wagermaier, Wolfgang; Fratzl, Peter; Fischbach, Claudia

    2017-01-01

    Skeletal metastases, the leading cause of death in advanced breast cancer patients, depend on tumor cell interactions with the mineralized bone extracellular matrix. Bone mineral is largely composed of hydroxyapatite (HA) nanocrystals with physicochemical properties that vary significantly by anatomical location, age, and pathology. However, it remains unclear whether bone regions typically targeted by metastatic breast cancer feature distinct HA materials properties. Here we combined high-resolution X-ray scattering analysis with large-area Raman imaging, backscattered electron microscopy, histopathology, and microcomputed tomography to characterize HA in mouse models of advanced breast cancer in relevant skeletal locations. The proximal tibial metaphysis served as a common metastatic site in our studies; we identified that in disease-free bones this skeletal region contained smaller and less-oriented HA nanocrystals relative to ones that constitute the diaphysis. We further observed that osteolytic bone metastasis led to a decrease in HA nanocrystal size and perfection in remnant metaphyseal trabecular bone. Interestingly, in a model of localized breast cancer, metaphyseal HA nanocrystals were also smaller and less perfect than in corresponding bone in disease-free controls. Collectively, these results suggest that skeletal sites prone to tumor cell dissemination contain less-mature HA (i.e., smaller, less-perfect, and less-oriented crystals) and that primary tumors can further increase HA immaturity even before secondary tumor formation, mimicking alterations present during tibial metastasis. Engineered tumor models recapitulating these spatiotemporal dynamics will permit assessing the functional relevance of the detected changes to the progression and treatment of breast cancer bone metastasis. PMID:28923958

  12. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle

    PubMed Central

    McCarthy, John J.; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B.; Srikuea, Ratchakrit; Lawson, Benjamin A.; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S.; Esser, Karyn A.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.

    2011-01-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca2+ sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells. PMID:21828094

  13. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes.

    PubMed

    Park, Seok Won; Goodpaster, Bret H; Lee, Jung Sun; Kuller, Lewis H; Boudreau, Robert; de Rekeneire, Nathalie; Harris, Tamara B; Kritchevsky, Stephen; Tylavsky, Frances A; Nevitt, Michael; Cho, Yong-wook; Newman, Anne B

    2009-11-01

    A loss of skeletal muscle mass is frequently observed in older adults. The aim of the study was to investigate the impact of type 2 diabetes on the changes in body composition, with particular interest in the skeletal muscle mass. We examined total body composition with dual-energy X-ray absorptiometry annually for 6 years in 2,675 older adults. We also measured mid-thigh muscle cross-sectional area (CSA) with computed tomography in year 1 and year 6. At baseline, 75-g oral glucose challenge tests were performed. Diagnosed diabetes (n = 402, 15.0%) was identified by self-report or use of hypoglycemic agents. Undiagnosed diabetes (n = 226, 8.4%) was defined by fasting plasma glucose (>or=7 mmol/l) or 2-h postchallenge plasma glucose (>or=11.1 mmol/l). Longitudinal regression models were fit to examine the effect of diabetes on the changes in body composition variables. Older adults with either diagnosed or undiagnosed type 2 diabetes showed excessive loss of appendicular lean mass and trunk fat mass compared with nondiabetic subjects. Thigh muscle CSA declined two times faster in older women with diabetes than their nondiabetic counterparts. These findings remained significant after adjusting for age, sex, race, clinic site, baseline BMI, weight change intention, and actual weight changes over time. Type 2 diabetes is associated with excessive loss of skeletal muscle and trunk fat mass in community-dwelling older adults. Older women with type 2 diabetes are at especially high risk for loss of skeletal muscle mass.

  14. Archaeological Investigations in the Gainesville Lake Area of the Tennessee-Tombigbee Waterway. Volume I. The Gainesville Lake Area Excavations.

    DTIC Science & Technology

    1981-01-01

    97 71. Site 1Pi61, Removing Trees ........ .................. . 97 72. Site lPi6l, Testing the Midden ....... ................ . 97 6...the use of plant and animal species changes through time. Volume IV also describes the human skeletal remains from all excavated sites and discusses the...Gainesville Lake area were cultural features. A few 5 features resulted from forces other than human behavior ( tree roots, ro- dent burrows, erosional gullies

  15. Sex-associated variations in coral skeletal oxygen and carbon isotopic composition of Porites panamensis in the southern Gulf of California

    NASA Astrophysics Data System (ADS)

    Cabral-Tena, Rafael A.; Sánchez, Alberto; Reyes-Bonilla, Héctor; Ruvalcaba-Díaz, Angel H.; Balart, Eduardo F.

    2016-05-01

    Coral δ18O variations are used as a proxy for changes in sea surface temperature (SST) and seawater isotope composition. Skeletal δ13C of coral is frequently used as a proxy for solar radiation because most of its variability is controlled by an interrelationship between three processes: photosynthesis, respiration, and feeding. Coral growth rate is known to influence the δ18O and δ13C isotope record to a lesser extent than environmental variables. Recent published data show differences in growth parameters between female and male coral in the gonochoric brooding coral Porites panamensis; thus, skeletal δ18O and δ13C are hypothesized to be different in each sex. To test this, this study describes changes in the skeletal δ18O and δ13C record of four female and six male Porites panamensis coral collected in Bahía de La Paz, Mexico, whose growth bands spanned 12 years. The isotopic data were compared to SST, precipitation, photosynthetically active radiation (PAR), chlorophyll a, and skeletal growth parameters. Porites panamensis is a known gonochoric brooder whose growth parameters are different in females and males. Splitting the data by sexes explained 81 and 93 % of the differences of δ18O, and of δ13C, respectively, in the isotope record between colonies. Both isotope records were different between sexes. δ18O was higher in female colonies than in male colonies, with a 0.31 ‰ difference; δ13C was lower in female colonies, with a 0.28 ‰ difference. A difference in the skeletal δ18O could introduce an error in SST estimates of ≈ 1.0 to ≈ 2.6 °C. The δ18O records showed a seasonal pattern that corresponded to SST, with low correlation coefficients (-0.45, -0.32), and gentle slopes (0.09, 0.10 ‰ °C-1) of the δ18O-SST relation. Seasonal variation in coral δ18O represents only 52.37 and 35.66 % of the SST cycle; 29.72 and 38.53 % can be attributed to δ18O variability in seawater. δ13C data did not correlate with any of the environmental variables; therefore, variations in skeletal δ13C appear to be driven mainly by metabolic effects. Our results support the hypothesis of a sex-associated difference in skeletal δ18O and δ13C signal, and suggest that environmental conditions and coral growth parameters affect skeletal isotopic signals differently in each sex. Although these findings relate to one gonochoric brooding species, they may have some implications for the more commonly used gonochoric spawning species such as Porites lutea and Porites lobata.

  16. The p27 Pathway Modulates the Regulation of Skeletal Growth and Osteoblastic Bone Formation by Parathyroid Hormone-Related Peptide.

    PubMed

    Zhu, Min; Zhang, Jing; Dong, Zhan; Zhang, Ying; Wang, Rong; Karaplis, Andrew; Goltzman, David; Miao, Dengshun

    2015-11-01

    Parathyroid hormone-related peptide (PTHrP) 1-84 knock-in mice (Pthrp KI) develop skeletal growth retardation and defective osteoblastic bone formation. To further examine the mechanisms underlying this phenotype, microarray analyses of differential gene expression profiles were performed in long bone extracts from Pthrp KI mice and their wild-type (WT) littermates. We found that the expression levels of p27, p16, and p53 were significantly upregulated in Pthrp KI mice relative to WT littermates. To determine whether p27 was involved in the regulation by PTHrP of skeletal growth and development in vivo, we generated compound mutant mice, which were homozygous for both p27 deletion and the Pthrp KI mutation (p27(-/-) Pthrp KI). We then compared p27(-/-) Pthrp KI mice with p27(-/-), Pthrp KI, and WT littermates. Deletion of p27 in Pthrp KI mice resulted in a longer lifespan, increased body weight, and improvement in skeletal growth. At 2 weeks of age, skeletal parameters, including length of long bones, size of epiphyses, numbers of proliferating cell nuclear antigen (PCNA)-positive chondrocytes, bone mineral density, trabecular bone volume, osteoblast numbers, and alkaline phosphatase (ALP)-, type I collagen-, and osteocalcin-positive bone areas were increased in p27(-/-) mice and reduced in both Pthrp KI and p27(-/-) Pthrp KI mice compared with WT mice; however, these parameters were increased in p27(-/-) Pthrp KI mice compared with Pthrp KI mice. As well, protein expression levels of PTHR, IGF-1, and Bmi-1, and the numbers of total colony-forming unit fibroblastic (CFU-f) and ALP-positive CFU-f were similarly increased in p27(-/-) Pthrp KI mice compared with Pthrp KI mice. Our results demonstrate that deletion of p27 in Pthrp KI mice can partially rescue defects in skeletal growth and osteoblastic bone formation by enhancing endochondral bone formation and osteogenesis. These studies, therefore, indicate that the p27 pathway may function downstream in the action of PTHrP to regulate skeletal growth and development. © 2015 American Society for Bone and Mineral Research.

  17. Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice.

    PubMed

    Wada, Eiji; Tanihata, Jun; Iwamura, Akira; Takeda, Shin'ichi; Hayashi, Yukiko K; Matsuda, Ryoichi

    2017-10-27

    Chronic increases in the levels of the inflammatory cytokine interleukin-6 (IL-6) in serum and skeletal muscle are thought to contribute to the progression of muscular dystrophy. Dystrophin/utrophin double-knockout (dKO) mice develop a more severe and progressive muscular dystrophy than the mdx mice, the most common murine model of Duchenne muscular dystrophy (DMD). In particular, dKO mice have smaller body sizes and muscle diameters, and develop progressive kyphosis and fibrosis in skeletal and cardiac muscles. As mdx mice and DMD patients, we found that IL-6 levels in the skeletal muscle were significantly increased in dKO mice. Thus, in this study, we aimed to analyze the effects of IL-6 receptor (IL-6R) blockade on the muscle pathology of dKO mice. Male dKO mice were administered an initial injection (200 mg/kg intraperitoneally (i.p.)) of either the anti-IL-6R antibody MR16-1 or an isotype-matched control rat IgG at the age of 14 days, and were then given weekly injections (25 mg/kg i.p.) until 90 days of age. Treatment of dKO mice with the MR16-1 antibody successfully inhibited the IL-6 pathway in the skeletal muscle and resulted in a significant reduction in the expression levels of phosphorylated signal transducer and activator of transcription 3 in the skeletal muscle. Pathologically, a significant increase in the area of embryonic myosin heavy chain-positive myofibers and muscle diameter, and reduced fibrosis in the quadriceps muscle were observed. These results demonstrated the therapeutic effects of IL-6R blockade on promoting muscle regeneration. Consistently, serum creatine kinase levels were decreased. Despite these improvements observed in the limb muscles, degeneration of the diaphragm and cardiac muscles was not ameliorated by the treatment of mice with the MR16-1 antibody. As no adverse effects of treatment with the MR16-1 antibody were observed, our results indicate that the anti-IL-6R antibody is a potential therapy for muscular dystrophy particularly for promoting skeletal muscle regeneration.

  18. Surface modifications of the Sima de los Huesos fossil humans.

    PubMed

    Andrews, P; Fernandez Jalvo, Y

    1997-01-01

    The sample of fossil human bones from the Sima de los Huesos, Atapuerca, has been analysed to trace parts of its taphonomic history. The work reported here is restricted to analysis of the skeletal elements preserved and their surface modifications. Preliminary plans of specimen distribution published 6 years ago indicate that the skeletal elements are dispersed within the cave, but more recent data are not yet available. Most of the fossils are broken, with some breakage when the bone was fresh and some when already partly mineralized, both types showing some rounding. There are few longitudinal breaks on shafts of long bones and so very few bone splinters. All skeletal elements are preserved but in unequal proportions, with elements like femora, humeri and mandibles and teeth with greater structural density being best represented. There is no evidence of weathering or of human damage such as cut marks on any of the human assemblage, but trampling damage is present on most bones. Carnivore damage is also common, with some present on more than half the sample, but it is mostly superficial, either on the surfaces of shafts and articular ends or on the edges of spiral breaks. The sizes and distribution of the carnivore pits indicate extensive canid activity, and this is interpreted as scavenging of the bones in place in the cave. Indications of tooth marks from a larger carnivore indicate the activity possibly of a large felid: the marks are too large to be produced by small canids, with the larger marks concentrated on spiral breaks on the more robust bones, and there is no evidence of bone crushing and splintering in the manner of hyaenas. The nature of the SH human assemblage is also consistent with accumulation by humans, the evidence for this being the lack of other animals, especially the lack of herbivorous animals, associated with the humans, and the high number of individuals preserved.

  19. Fish glucose transporter (GLUT)-4 differs from rat GLUT4 in its traffic characteristics but can translocate to the cell surface in response to insulin in skeletal muscle cells.

    PubMed

    Díaz, Mònica; Antonescu, Costin N; Capilla, Encarnación; Klip, Amira; Planas, Josep V

    2007-11-01

    In mammals, glucose transporter (GLUT)-4 plays an important role in glucose homeostasis mediating insulin action to increase glucose uptake in insulin-responsive tissues. In the basal state, GLUT4 is located in intracellular compartments and upon insulin stimulation is recruited to the plasma membrane, allowing glucose entry into the cell. Compared with mammals, fish are less efficient restoring plasma glucose after dietary or exogenous glucose administration. Recently our group cloned a GLUT4-homolog in skeletal muscle from brown trout (btGLUT4) that differs in protein motifs believed to be important for endocytosis and sorting of mammalian GLUT4. To study the traffic of btGLUT4, we generated a stable L6 muscle cell line overexpressing myc-tagged btGLUT4 (btGLUT4myc). Insulin stimulated btGLUT4myc recruitment to the cell surface, although to a lesser extent than rat-GLUT4myc, and enhanced glucose uptake. Interestingly, btGLUT4myc showed a higher steady-state level at the cell surface under basal conditions than rat-GLUT4myc due to a higher rate of recycling of btGLUT4myc and not to a slower endocytic rate, compared with rat-GLUT4myc. Furthermore, unlike rat-GLUT4myc, btGLUT4myc had a diffuse distribution throughout the cytoplasm of L6 myoblasts. In primary brown trout skeletal muscle cells, insulin also promoted the translocation of endogenous btGLUT4 to the plasma membrane and enhanced glucose transport. Moreover, btGLUT4 exhibited a diffuse intracellular localization in unstimulated trout myocytes. Our data suggest that btGLUT4 is subjected to a different intracellular traffic from rat-GLUT4 and may explain the relative glucose intolerance observed in fish.

  20. Flight feather attachment in rock pigeons (Columba livia): covert feathers and smooth muscle coordinate a morphing wing.

    PubMed

    Hieronymus, Tobin L

    2016-11-01

    Mechanisms for passively coordinating forelimb movements and flight feather abduction and adduction have been described separately from both in vivo and ex vivo studies. Skeletal coordination has been identified as a way for birds to simplify the neuromotor task of controlling flight stroke, but an understanding of the relationship between skeletal coordination and the coordination of the aerodynamic control surface (the flight feathers) has been slow to materialize. This break between the biomechanical and aerodynamic approaches - between skeletal kinematics and airfoil shape - has hindered the study of dynamic flight behaviors. Here I use dissection and histology to identify previously overlooked interconnections between musculoskeletal elements and flight feathers. Many of these structures are well-placed to directly link elements of the passive musculoskeletal coordination system with flight feather movements. Small bundles of smooth muscle form prominent connections between upper forearm coverts (deck feathers) and the ulna, as well as the majority of interconnections between major flight feathers of the hand. Abundant smooth muscle may play a role in efficient maintenance of folded wing posture, and may also provide an autonomically regulated means of tuning wing shape and aeroelastic behavior in flight. The pattern of muscular and ligamentous linkages of flight feathers to underlying muscle and bone may provide predictable passive guidance for the shape of the airfoil during flight stroke. The structures described here provide an anatomical touchstone for in vivo experimental tests of wing surface coordination in an extensively researched avian model species. © 2016 Anatomical Society.

  1. Baseline reef health surveys at Bangka Island (North Sulawesi, Indonesia) reveal new threats

    PubMed Central

    Fratangeli, Francesca; Dondi, Nicolò; Segre Reinach, Marco; Serra, Clara; Sweet, Michael J.

    2016-01-01

    Worldwide coral reef decline appears to be accompanied by an increase in the spread of hard coral diseases. However, whether this is the result of increased direct and indirect human disturbances and/or an increase in natural stresses remains poorly understood. The provision of baseline surveys for monitoring coral health status lays the foundations to assess the effects of any such anthropogenic and/or natural effects on reefs. Therefore, the objectives of this present study were to provide a coral health baseline in a poorly studied area, and to investigate possible correlations between coral health and the level of anthropogenic and natural disturbances. During the survey period, we recorded 20 different types of coral diseases and other compromised health statuses. The most abundant were cases of coral bleaching, followed by skeletal deformations caused by pyrgomatid barnacles, damage caused by fish bites, general pigmentation response and galls caused by cryptochirid crabs. Instances of colonies affected by skeletal eroding bands, and sedimentation damage increased in correlation to the level of bio-chemical disturbance and/or proximity to villages. Moreover, galls caused by cryptochirid crabs appeared more abundant at sites affected by blast fishing and close to a newly opened metal mine. Interestingly, in the investigated area the percentage of corals showing signs of ‘common’ diseases such as black band disease, brown band disease, white syndrome and skeletal eroding band disease were relatively low. Nevertheless, the relatively high occurrence of less common signs of compromised coral-related reef health, including the aggressive overgrowth by sponges, deserves further investigation. Although diseases appear relatively low at the current time, this area may be at the tipping point and an increase in activities such as mining may irredeemably compromise reef health. PMID:27812416

  2. Baseline reef health surveys at Bangka Island (North Sulawesi, Indonesia) reveal new threats.

    PubMed

    Ponti, Massimo; Fratangeli, Francesca; Dondi, Nicolò; Segre Reinach, Marco; Serra, Clara; Sweet, Michael J

    2016-01-01

    Worldwide coral reef decline appears to be accompanied by an increase in the spread of hard coral diseases. However, whether this is the result of increased direct and indirect human disturbances and/or an increase in natural stresses remains poorly understood. The provision of baseline surveys for monitoring coral health status lays the foundations to assess the effects of any such anthropogenic and/or natural effects on reefs. Therefore, the objectives of this present study were to provide a coral health baseline in a poorly studied area, and to investigate possible correlations between coral health and the level of anthropogenic and natural disturbances. During the survey period, we recorded 20 different types of coral diseases and other compromised health statuses. The most abundant were cases of coral bleaching, followed by skeletal deformations caused by pyrgomatid barnacles, damage caused by fish bites, general pigmentation response and galls caused by cryptochirid crabs. Instances of colonies affected by skeletal eroding bands, and sedimentation damage increased in correlation to the level of bio-chemical disturbance and/or proximity to villages. Moreover, galls caused by cryptochirid crabs appeared more abundant at sites affected by blast fishing and close to a newly opened metal mine. Interestingly, in the investigated area the percentage of corals showing signs of 'common' diseases such as black band disease, brown band disease, white syndrome and skeletal eroding band disease were relatively low. Nevertheless, the relatively high occurrence of less common signs of compromised coral-related reef health, including the aggressive overgrowth by sponges, deserves further investigation. Although diseases appear relatively low at the current time, this area may be at the tipping point and an increase in activities such as mining may irredeemably compromise reef health.

  3. Correlation of embryonic skeletal muscle myotube physical characteristics with contractile force generation on an atomic force microscope-based bio-microelectromechanical systems device

    NASA Astrophysics Data System (ADS)

    Pirozzi, K. L.; Long, C. J.; McAleer, C. W.; Smith, A. S. T.; Hickman, J. J.

    2013-08-01

    Rigorous analysis of muscle function in in vitro systems is needed for both acute and chronic biomedical applications. Forces generated by skeletal myotubes on bio-microelectromechanical cantilevers were calculated using a modified version of Stoney's thin-film equation and finite element analysis (FEA), then analyzed for regression to physical parameters. The Stoney's equation results closely matched the more intensive FEA and the force correlated to cross-sectional area (CSA). Normalizing force to measured CSA significantly improved the statistical sensitivity and now allows for close comparison of in vitro data to in vivo measurements for applications in exercise physiology, robotics, and modeling neuromuscular diseases.

  4. Constant Fiber Number During Skeletal Muscle Atrophy and Modified Arachidonate Metabolism During Hypertrophy

    NASA Technical Reports Server (NTRS)

    Templeton, G.

    1985-01-01

    A previously documented shift from Type I to IIA predominance of the soleus muscle during rat suspension was further investigated to determine if this shift was by selective reduction of a single fiber type, simultaneous reduction and formation of fibers with different fiber types, or a transformation of fiber type by individual fibers. By partial acid digestion and dissection, average total soleus fiber number was found to be 3022 + or - 80 (SE) and 3008 + or - 64 before and after four-week suspension (n=12). Another area of current research was based on previous studies which indicate that prostaglandins are biosynthesized by skeletal muscle and evoke protein synthesis and degradation.

  5. Effects of fixed functional therapy on tongue and hyoid positions and posterior airway.

    PubMed

    Ozdemir, Fulya; Ulkur, Feyza; Nalbantgil, Didem

    2014-03-01

    To evaluate how therapy with a fixed functional appliance affects airway dimensions, dentoalveolar changes, and tongue and hyoid positions. A retrospective study was carried out on 46 pre- and posttreatment lateral cephalometric radiographs of 23 post-peak Class II patients (12 girls, 11 boys) treated with a Forsus Fatigue Resistant Device (FRD) appliance. The radiographies were taken at the start and at the end of Forsus FRD appliance therapy when a Class I or overcorrected Class I canine and molar relationship was achieved. The process took an average of 5 months 13 days ± 1 month 4 days. Skeletal and dental parameters were measured using Dolphin software, and the sagittal airway area was measured by AutoCAD software. Analyses of the pre- and posttreatment means revealed that there was no statistically significant skeletal correction of the sagittal malocclusion; increase of lower incisor inclination, decrease of upper incisor inclination, decrease of interincisal angle, and rotation of occlusal plane all contributed to the reduction of overjet. The tongue area and intermaxillary space area increased in response to these dentoalveolar changes; however, there was no statistically significant change in the hyoid position or the oropharyngeal area between the two time points. The dentoalveolar changes produced by Forsus FRD appliance did not cause any significant posterior airway changes in young adult patients.

  6. Role of Oxidative Damage in Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.

    2014-01-01

    During prolonged spaceflight, astronauts are exposed to both microgravity and space radiation, and are at risk for increased skeletal fragility due to bone loss. Evidence from rodent experiments demonstrates that both microgravity and ionizing radiation can cause bone loss due to increased bone-resorbing osteoclasts and decreased bone-forming osteoblasts, although the underlying molecular mechanisms for these changes are not fully understood. We hypothesized that excess reactive oxidative species (ROS), produced by conditions that simulate spaceflight, alter the tight balance between osteoclast and osteoblast activities, leading to accelerated skeletal remodeling and culminating in bone loss. To test this, we used the MCAT mouse model; these transgenic mice over-express the human catalase gene targeted to mitochondria, the major organelle contributing free radicals. Catalase is an anti-oxidant that converts reactive species, hydrogen peroxide into water and oxygen. This animal model was selected as it displays extended lifespan, reduced cardiovascular disease and reduced central nervous system radio-sensitivity, consistent with elevated anti-oxidant activity conferred by the transgene. We reasoned that mice overexpressing catalase in mitochondria of osteoblast and osteoclast lineage cells would be protected from the bone loss caused by simulated spaceflight. Over-expression of human catalase localized to mitochondria caused various skeletal phenotypic changes compared to WT mice; this includes greater bone length, decreased cortical bone area and moment of inertia, and indications of altered microarchitecture. These findings indicate mitochondrial ROS are important for normal bone-remodeling and skeletal integrity. Catalase over-expression did not fully protect skeletal tissue from structural decrements caused by simulated spaceflight; however there was significant protection in terms of cellular oxidative damage (MDA levels) to the skeletal tissue. Furthermore, we used an array of countermeasures (Antioxidant diets and injections) to prevent the radiation-induced bone loss, although these did not prevent bone loss, analysis is ongoing to determine if these countermeasure protected radiation-induced damage to other tissues.

  7. DNA damage checkpoint pathway modulates the regulation of skeletal growth and osteoblastic bone formation by parathyroid hormone-related peptide.

    PubMed

    Zhang, Ying; Chen, Guangpei; Gu, Zhen; Sun, Haijian; Karaplis, Andrew; Goltzman, David; Miao, Dengshun

    2018-01-01

    We previously demonstrated that parathyroid hormone-related peptide (PTHrP) 1-84 knockin ( Pthrp KI) mice, which lacked a PTHrP nuclear localization sequence (NLS) and C-terminus, displayed early senescence, defective osteoblastic bone formation, and skeletal growth retardation. However, the mechanism of action of the PTHrP NLS and C-terminus in regulating development of skeleton is still unclear. In this study, we examined alterations of oxidative stress and DNA damage response-related molecules in Pthrp KI skeletal tissue. We found that ROS levels, protein expression levels of γ-H2AX, a DNA damage marker, and the DNA damage response markers p-Chk2 and p53 were up-regulated, whereas gene expression levels of anti-oxidative enzymes were down-regulated significantly. We therefore further disrupted the DNA damage response pathway by deleting the Chk2 in Pthrp KI (Chk2 -/- KI) mice and did comparison with WT, Chk2 -/- and Pthrp KI littermates. The Pthrp KI mice with Chk2 deletion exhibited a longer lifespan, improvement in osteoblastic bone formation and skeletal growth including width of growth plates and length of long bones, trabecular and epiphyseal bone volume, BMD, osteoblast numbers, type I collagen and ALP positive bone areas, the numbers of total colony-forming unit fibroblasts (CFU-f), ALP + CFU-f and the expression levels of osteogenic genes. In addition, the genes associated with anti-oxidative enzymes were up-regulated significantly, whereas the tumor suppressor genes related to senescence were down-regulated in Chk2 -/- KI mice compared to Pthrp KI mice. Our results suggest that Chk2 deletion in Pthrp KI mice can somewhat rescue defects in osteoblastic bone formation and skeletal growth by enhancing endochondral bone formation and osteogenesis. These studies therefore indicate that the DNA damage checkpoint pathway may be a target for the nuclear action of PTHrP to regulate skeletal development and growth.

  8. [Clinical research of features of magnetic resonance imaging of high-voltage electrical burns in limbs at early stage].

    PubMed

    Li, S J; Wang, Z L; Zhu, W P; Xiang, Y; Lin, J; Yu, Y J; Li, P

    2017-12-20

    Objective: To analyze the features of magnetic resonance imaging (MRI) of patients with high-voltage electrical burns in limbs at early stage. Methods: Thirty-eight patients with high-voltage electrical burns, conforming to the study criteria, were hospitalized in our unit from March 2013 to August 2016. T(1) weighted imaging (T(1)WI), T(2)WI, fat-suppression T(2)WI plain scan, and fat-suppression T(1)WI enhanced scan of MRI were performed in 78 limbs, including 56 upper limbs and 22 lower limbs at post injury hour 72. The MRI signal characteristics of electrical burns in skin and subcutaneous tissue, skeletal muscle, tendon, joint ligament, and skeleton of limbs were analyzed. " Sandwich-like" necrosis and injury in skeletal muscle, injuries of tendon, joint ligament, and skeleton were observed. MRI signal characteristics of amputated upper limbs and salvaged limbs were also analyzed. All patients underwent surgery within 24 h after MRI examination, and the muscle vitality was judged during operation. Muscle tissue without reaction to electrical stimulation which was completely necrotic as shown by MRI, muscle tissue with weak reaction to electrical stimulation which was injured with blood supply as shown by MRI, and muscle tissue with edema as shown by MRI were collected, and then the pathological characteristics of muscle tissue were observed with HE staining. Results: (1) The defect area of patients at entrance of current was bigger than that at exit. The skin and subcutaneous tissue extensively unevenly thickened. T(2)WI manifested hyperintensity, and T(1)WI manifested isointensity, while fat-suppression enhanced T(1)WI manifested uneven enhancement. Zonal effusion was seen in the region of serious subcutaneous edema. (2) For complete necrosis of skeletal muscle, T(2)WI manifested hypointense, isointensity, or slight hyperintensity, and T(1)WI manifested isointensity, slight hyperintensity, or mixed signal of isointensity and slight hyperintensity, while fat-suppression enhanced T(1)WI manifested most no enhancement area with clear boundary. The MRI signals of injured skeletal muscle could be divided into two types. Type Ⅰ signal was for partial necrotic muscle adjacent to the completely necrotic zone. T(2)WI manifested uneven hyperintensity or slight hyperintensity, with unclear boundary. T(1)WI manifested isointensity or slight hyperintensity. Fat-suppression enhanced T(1)WI manifested significant banding or laciness enhancement. Type Ⅱ signal was for deep muscle tissue far from the complete necrotic zone. T(2)WI manifested hyperintensity, and T(1)WI manifested isointensity or main isointensity mixed with hyperintensity, while fat-suppression enhanced T(1)WI manifested uneven moderate or slight enhancement. Normal muscle signal, type Ⅰ signal, and type Ⅱ signal were all mixed with necrotic signal, showing " sandwich-like" change. For skeletal muscle edema, T(2)WI manifested slight hyperintensity and unclear boundary, and T(1)WI manifested hypointense, while fat-suppression enhanced T(1)WI manifested no obvious enhancement. (3) For complete necrosis of tendon, T(2)WI manifested isointensity or slight hyperintensity, and T(1)WI manifested isointensity, while fat-suppression enhanced T(1)WI manifested no enhancement. For tendon injury, T(2)WI manifested isointensity, and T(1)WI manifested isointensity or hypointense, while fat-suppression enhanced T(1)WI manifested slight enhancement. (4) Severe injury of wrist joint were manifested as complete necrosis of soft tissue around joint. T(2)WI manifested slight hyperintensity or isointensity, and T(1)WI manifested isointensity, while fat-suppression enhanced T(1)WI manifested no enhancement or slightly uneven enhancement. For completely destroyed wrist joints, the structures were not clear from outside to inside. T(2)WI manifested slight hyperintensity or isointensity, and T(1)WI manifested hypointense or isointensity, while fat-suppression enhanced T(1)WI manifested no enhancement. For elbow injury, T(2)WI manifested hyperintensity, and T(1)WI manifested isointensity or hypointense, while fat-suppression enhanced T(1)WI manifested uneven enhancement. For knee injury, T(2)WI manifested hyperintensity, and T(1)WI manifested hypointense, while fat-suppression enhanced T(1)WI manifested slight enhancement. (5) For bone edema, T(2)WI manifested isointensity, while fat-suppression T(2)WI manifested slight hyperintensity. T(1)WI manifested isointensity, and fat-suppression enhanced T(1)WI manifested patchy enhancement. (6) MRI of amputated upper limbs showed necrosis signals, type Ⅰ signals, type Ⅱ signals, and mixed signals of type Ⅰ and type Ⅱ in skeletal muscle. The necrosis signal and type Ⅰ signal area of the distal end were more than 50% greater than those of the lesion. The scope of the ecological tissue was large and the boundary was not clear. There were diffuse injuries in both anterior and posterior muscles, and the ulnar and radial artery pulsation disappeared in the upper limbs. The MRI of salvaged limbs were type Ⅰ signal, type Ⅱ signal, mixed signals of type Ⅰ and type Ⅱ, and local necrosis signals of skeletal muscle. The type Ⅰ signal was the main type, and the distal end showed type Ⅱ signal. (7) For completely necrotic skeletal muscle as shown by MRI, surgical exploration showed loss of muscle viability, and pathological examination showed complete necrosis of striated muscle tissue. For injury area of skeletal muscle as shown by MRI, surgical exploration showed interecological muscle with activity worse than mormal muscle, and pathological examination showed normal muscle cells and muscle fiber mixed with necrotic striated muscle cells having karyopyknosis, with different degree of injury. For edema area of skeletal muscle as shown by MRI, surgical exploration showed swelling skeletal muscle and normal muscle vitality, and pathological examination showed striated muscle interstitial edema with a large number of inflammatory cells infiltration. The manifestions of MRI were consistent with the results of surgical exploration and pathological examination. Conclusions: Skeletal muscle complete necrosis, injury, and edema could be preferably differentiated by MRI, and the definite scope and depth of electrical injury, the injury of skin, tendon, joint ligament, and bone could also be displayed well on MRI. It can provide objective imaging basis for the diagnosis of high-voltage electrical burns in limbs at early stage, the establishment of clinical operation plan, and the judgment of intraoperative tissue vitality.

  9. Connective tissue growth factor is required for skeletal development and postnatal skeletal homeostasis in male mice.

    PubMed

    Canalis, Ernesto; Zanotti, Stefano; Beamer, Wesley G; Economides, Aris N; Smerdel-Ramoya, Anna

    2010-08-01

    Connective tissue growth factor (CTGF), a member of the cysteine-rich 61 (Cyr 61), CTGF, nephroblastoma overexpressed (NOV) (CCN) family of proteins, is synthesized by osteoblasts, and its overexpression inhibits osteoblastogenesis and causes osteopenia. The global inactivation of Ctgf leads to defective endochondral bone formation and perinatal lethality; therefore, the consequences of Ctgf inactivation on the postnatal skeleton are not known. To study the function of CTGF, we generated Ctgf(+/LacZ) heterozygous null mice and tissue-specific null Ctgf mice by mating Ctgf conditional mice, where Ctgf is flanked by lox sequences with mice expressing the Cre recombinase under the control of the paired-related homeobox gene 1 (Prx1) enhancer (Prx1-Cre) or the osteocalcin promoter (Oc-Cre). Ctgf(+/LacZ) heterozygous mice exhibited transient osteopenia at 1 month of age secondary to decreased trabecular number. A similar osteopenic phenotype was observed in 1-month-old Ctgf conditional null male mice generated with Prx1-Cre, suggesting that the decreased trabecular number was secondary to impaired endochondral bone formation. In contrast, when the conditional deletion of Ctgf was achieved by Oc-Cre, an osteopenic phenotype was observed only in 6-month-old male mice. Osteoblast and osteoclast number, bone formation, and eroded surface were not affected in Ctgf heterozygous or conditional null mice. In conclusion, CTGF is necessary for normal skeletal development but to a lesser extent for postnatal skeletal homeostasis.

  10. Treatment of Severe Maxillary Hypoplasia With Combined Orthodontics and Distraction Osteogenesis.

    PubMed

    Lucchese, Alessandra; Albertini, Paolo; Asperio, Paolo; Manuelli, Maurizio; Gastaldi, Giorgio

    2018-01-05

    Distraction osteogenesis (DO) is a technique that allows the generation of new bone in a gap between 2 vascularized bone surfaces in response to the application of graduated tensile stress across the bone gap.Distraction osteogenesis has become a routine treatment of choice to correct skeletal deformities and severe bone defects in the craniofacial complex over the past decade. Distraction osteogenesis has been successfully chosen in lengthening the maxilla and the mandible; in the maxilla and recently in the mandible, the jawbones have been distracted and widened transversely to relieve severe anterior dental crowding and transverse discrepancies between the dental arches.Distraction osteogenesis for maxillary advancement started in 1993 and is now widely used, especially in patients with skeletal Class III malocclusion caused by maxillary hypoplasia.The aim of this study was to present the efficiency of combined orthodontic and DO in the severe maxillary hypoplasia.A 35-year-old Italian man presented to our clinical practice with the chief complaint of esthetic and functionally problems because of skeletal Class III malocclusion with anterior crossbite.Considering that the severity of the skeletal discrepancy is remarkable but compensated by the DO potential, the combined orthodontic and DO treatment was considered adequate, like less invasive and equally effective.It was obtained a good alignment with the upper and lower arch dental alveolar maxillary advancement that allowed to correct the sagittal relationships.The patient was satisfied for the treatment results and had considerable improvement in his self-esteem.

  11. Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: effect of obesity and ageing.

    PubMed

    Wagenmakers, Anton J M; Strauss, Juliette A; Shepherd, Sam O; Keske, Michelle A; Cocks, Matthew

    2016-04-15

    This review concludes that a sedentary lifestyle, obesity and ageing impair the vasodilator response of the muscle microvasculature to insulin, exercise and VEGF-A and reduce microvascular density. Both impairments contribute to the development of insulin resistance, obesity and chronic age-related diseases. A physically active lifestyle keeps both the vasodilator response and microvascular density high. Intravital microscopy has shown that microvascular units (MVUs) are the smallest functional elements to adjust blood flow in response to physiological signals and metabolic demands on muscle fibres. The luminal diameter of a common terminal arteriole (TA) controls blood flow through up to 20 capillaries belonging to a single MVU. Increases in plasma insulin and exercise/muscle contraction lead to recruitment of additional MVUs. Insulin also increases arteriolar vasomotion. Both mechanisms increase the endothelial surface area and therefore transendothelial transport of glucose, fatty acids (FAs) and insulin by specific transporters, present in high concentrations in the capillary endothelium. Future studies should quantify transporter concentration differences between healthy and at risk populations as they may limit nutrient supply and oxidation in muscle and impair glucose and lipid homeostasis. An important recent discovery is that VEGF-B produced by skeletal muscle controls the expression of FA transporter proteins in the capillary endothelium and thus links endothelial FA uptake to the oxidative capacity of skeletal muscle, potentially preventing lipotoxic FA accumulation, the dominant cause of insulin resistance in muscle fibres. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  12. A mechanism for trauma induced muscle wasting and immune dysfunction

    NASA Astrophysics Data System (ADS)

    Madihally, S.; Toner, M.; Yarmush, M.; Mitchell, R.

    A diverse physiological conditions lead to a hypercatabolic state marked by the loss of proteins, primarily derived from skeletal muscle. The sustained loss of proteins results in loss of muscle mass and strength, poor healing, and long-term hospitalization. These problems are further compounded by the deterioration of immunity to infection which is a leading cause of morbidity and mortality of traumatic patients. In an attempt to understand the signal propagation mechanism(s), we tested the role of Interferon-? (IFN-? ) in an animal burn injury model; IFN-? is best conceptualized as a macrophage activating protein and known to modulate a variety of intracellular processes potentially relevant to muscle wasting and immune dysfunction. Mice congenitally -deficient in IFN-? , and IFN-? -Receptor, and wild type (WT) animals treated with IFN-? neutralizing antibody received either a 20% total body surface area burn or a control sham treatment. At days 1, 2, and 7 following treatment, skeletal muscle, peripheral blood, and spleen were harvested from both groups. Overall body weight, protein turnovers, changes in the lymphocyte subpopulations and alterations in the major histocompatibility complex I expression (MHC I) and proliferation capacity of lymphocytes was measured using mixed lymphocyte reaction (MLR). These results indicate that we can prevent both muscle wasting and immune dysfunction. Based on these observations and our previous other animal model results (using insulin therapy), a novel mechanism of interactions leading to muscle wasting and immune dysfunction will be discussed. Further, implications of these findings on future research and clinical therapies will be discussed in detail.

  13. Influence of complete spinal cord injury on skeletal muscle within 6 mo of injury.

    PubMed

    Castro, M J; Apple, D F; Staron, R S; Campos, G E; Dudley, G A

    1999-01-01

    This study examined the influence of spinal cord injury (SCI) on affected skeletal muscle. The right vastus lateralis muscle was biopsied in 12 patients as soon as they were clinically stable (average 6 wk after SCI), and 11 and 24 wk after injury. Samples were also taken from nine able-bodied controls at two time points 18 wk apart. Surface electrical stimulation (ES) was applied to the left quadriceps femoris muscle to assess fatigue at these same time intervals. Biopsies were analyzed for fiber type percent and cross-sectional area (CSA), fiber type-specific succinic dehydrogenase (SDH) and alpha-glycerophosphate dehydrogenase (GPDH) activities, and myosin heavy chain percent. Controls showed no change in any variable over time. Patients showed 27-56% atrophy (P = 0.000) of type I, IIa, and IIax+IIx fibers from 6 to 24 wk after injury, resulting in fiber CSA approximately one-third that of controls. Their fiber type specific SDH and GPDH activities increased (P

  14. Virtual skeletal complex model- and landmark-guided orthognathic surgery system.

    PubMed

    Lee, Sang-Jeong; Woo, Sang-Yoon; Huh, Kyung-Hoe; Lee, Sam-Sun; Heo, Min-Suk; Choi, Soon-Chul; Han, Jeong Joon; Yang, Hoon Joo; Hwang, Soon Jung; Yi, Won-Jin

    2016-05-01

    In this study, correction of the maxillofacial deformities was performed by repositioning bone segments to an appropriate location according to the preoperative planning in orthognathic surgery. The surgery was planned using the patient's virtual skeletal models fused with optically scanned three-dimensional dentition. The virtual maxillomandibular complex (MMC) model of the patient's final occlusal relationship was generated by fusion of the maxillary and mandibular models with scanned occlusion. The final position of the MMC was simulated preoperatively by planning and was used as a goal model for guidance. During surgery, the intraoperative registration was finished immediately using only software processing. For accurate repositioning, the intraoperative MMC model was visualized on the monitor with respect to the simulated MMC model, and the intraoperative positions of multiple landmarks were also visualized on the MMC surface model. The deviation errors between the intraoperative and the final positions of each landmark were visualized quantitatively. As a result, the surgeon could easily recognize the three-dimensional deviation of the intraoperative MMC state from the final goal model without manually applying a pointing tool, and could also quickly determine the amount and direction of further MMC movements needed to reach the goal position. The surgeon could also perform various osteotomies and remove bone interference conveniently, as the maxillary tracking tool could be separated from the MMC. The root mean square (RMS) difference between the preoperative planning and the intraoperative guidance was 1.16 ± 0.34 mm immediately after repositioning. After surgery, the RMS differences between the planning and the postoperative computed tomographic model were 1.31 ± 0.28 mm and 1.74 ± 0.73 mm for the maxillary and mandibular landmarks, respectively. Our method provides accurate and flexible guidance for bimaxillary orthognathic surgery based on intraoperative visualization and quantification of deviations for simulated postoperative MMC and landmarks. The guidance using simulated skeletal models and landmarks can complement and improve conventional navigational surgery for bone repositioning in the craniomaxillofacial area. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  15. Effects of age, vitamin D3, and fructooligosaccharides on bone growth and skeletal integrity of broiler chicks.

    PubMed

    Kim, W K; Bloomfield, S A; Ricke, S C

    2011-11-01

    A study was conducted to evaluate the effects of age, vitamin D(3), and fructooligosaccharides (FOS) on bone mineral density (BMD), bone mineral content (BMC), cortical thickness, cortical and trabecular area, and mechanical properties in broiler chicks using peripheral quantitative computed tomography and mechanical testing. A total of 54 male broiler chicks (1 d old) were placed in battery brooders and fed a corn-soybean starter diet for 7 d. After 7 d, the chicks were randomly assigned to pens of 3 birds each. Each treatment was replicated 3 times. There were 6 treatments: 1) early age control (control 1); 2) control 2; 3) 125 µg/kg of vitamin D(3); 4) 250 µg/kg of vitamin D(3); 5) 2% FOS); and 6) 4% FOS. The control 1 chicks were fed a control broiler diet and killed on d 14 to collect femurs for bone analyses. The remaining groups were killed on d 21. Femurs from 3-wk-old chicks showed greater midshaft cortical BMD, BMC, bone area, thickness, and marrow area than those from 2-wk-old chicks (P = 0.016, 0.0003, 0.0002, 0.01, and 0.0001, respectively). Total, cortical, and trabecular BMD of chick proximal femurs were not influenced by age. However, BMC and bone area were significantly affected by age. The femurs of 2-wk-old chicks exhibited significantly lower stiffness and ultimate load than those of 3-wk-old chicks (P = 0.0001), whereas ultimate stress and elastic modulus of the femurs of 2-wk-old chicks were significantly higher than that of femurs of 3-wk-old chicks (P = 0.0001). Chicks fed 250 µg/kg of vitamin D(3) exhibited significantly greater midshaft cortical BMC (P = 0.04), bone area (P = 0.04), and thickness (P = 0.03) than control 2, 2% FOS, or 4% FOS chicks. In summary, our study suggests that high levels of vitamin D(3) can increase bone growth and mineral deposition in broiler chicks. However, FOS did not have any beneficial effects on bone growth and skeletal integrity. Age is an important factor influencing skeletal integrity and mechanical properties in broiler chicks.

  16. Functional integration of skeletal traits: an intraskeletal assessment of bone size, mineralization, and volume covariance.

    PubMed

    Schlecht, Stephen H; Jepsen, Karl J

    2013-09-01

    Understanding the functional integration of skeletal traits and how they naturally vary within and across populations will benefit assessments of functional adaptation directed towards interpreting bone stiffness in contemporary and past humans. Moreover, investigating how these traits intraskeletally vary will guide us closer towards predicting fragility from a single skeletal site. Using an osteological collection of 115 young adult male and female African-Americans, we assessed the functional relationship between bone robustness (i.e. total area/length), cortical tissue mineral density (Ct.TMD), and cortical area (Ct.Ar) for the upper and lower limbs. All long bones demonstrated significant trait covariance (p < 0.005) independent of body size, with slender bones having 25-50% less Ct.Ar and 5-8% higher Ct.TMD compared to robust bones. Robustness statistically explained 10.2-28% of Ct.TMD and 26.6-64.6% of Ct.Ar within male and female skeletal elements. This covariance is systemic throughout the skeleton, with either the slender or robust phenotype consistently represented within all long bones for each individual. These findings suggest that each person attains a unique trait set by adulthood that is both predictable by robustness and partially independent of environmental influences. The variation in these functionally integrated traits allows for the maximization of tissue stiffness and minimization of mass so that regardless of which phenotype is present, a given bone is reasonably stiff and strong, and sufficiently adapted to perform routine, habitual loading activities. Covariation intrinsic to functional adaptation suggests that whole bone stiffness depends upon particular sets of traits acquired during growth, presumably through differing levels of cellular activity, resulting in differing tissue morphology and composition. The outcomes of this intraskeletal examination of robustness and its correlates may have significant value in our progression towards improved clinical assessments of bone strength and fragility. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Skeletal Response of Male Mice to Anabolic Hormone Therapy in the Absence of the Igfals Gene

    PubMed Central

    Kennedy, Oran D.; Sun, Hui; Wu, YingJie; Courtland, Hayden-William; Williams, Garry A.; Cardoso, Luis; Basta-Pljakic, Jelena; Schaffler, Mitchell B.

    2014-01-01

    IGF-I is a critical regulator of skeletal acquisition, which acts in endocrine and autocrine/paracrine modes. In serum, IGF-I is carried by the IGF-binding proteins in binary complexes. Further stabilization of these complexes is achieved by binding to the acid labile subunit (ALS) in a ternary complex (of IGF-I-IGF-binding protein 3/5-ALS). Ablation of the Igfals gene in humans (ALS deficiency) and mice (ALS knockout [ALSKO]) leads to markedly decreased serum IGF-I levels, growth retardation, and impaired skeletal acquisition. To investigate whether hormonal replacement therapy would improve the skeletal phenotype in cases of Igfals gene ablation, we treated male ALSKO mice with GH, IGF-I, or a combination of both. Treatments were administered to animals between 4 and 16 weeks of age or from 8 to 16 weeks of age. Although all treatment groups showed an increase (20%) in serum IGF-I levels, there was no increase in body weight, weight gain, or bone length in either age group. Despite the blunted linear growth in response to hormone therapy, ALSKO mice treated with GH showed radial bone growth, which contributed to bone strength tested by 4-point bending. We found that ALSKO mice treated with GH showed increased total cross-sectional area, cortical bone area, and cortical thickness by microtomography. Dynamic histomorphometry showed that although GH and double treatment groups resulted in trends towards increased bone formation parameters, these did not reach significance. However, bone resorption parameters were significantly increased in all treatment groups. ALSKO mice treated between 4 and 16 weeks of age showed minor differences in bone traits compared with vehicle-treated mice. In conclusion, treatment with GH and IGF-I do not work synergistically to rescue the stunted growth found in mice lacking the Igfals gene. Although GH alone appears to increase bone parameters slightly, it does not affect body weight or linear growth. PMID:24424061

  18. Edentulation alters material properties of cortical bone in the human craniofacial skeleton: functional implications for craniofacial structure in primate evolution

    PubMed Central

    Dechow, Paul C.; Wang, Qian; Peterson, Jill

    2011-01-01

    Skeletal adaptations to reduced function are an important source of skeletal variation and may be indicative of environmental pressures that lead to evolutionary changes. Humans serve as a model animal to investigate the effects of loss of craniofacial function through edentulation. In the human maxilla, it is known that edentulation leads to significant changes in skeletal structure such as residual ridge resorption and loss of cortical thickness. However, little is known about changes in bone tissue structure and material properties, which are also important for understanding skeletal mechanics but are often ignored. The aims of this study were to determine cortical material properties in edentulous crania and to evaluate differences with dentate crania and thus examine the effects of loss of function on craniofacial structure. Cortical bone samples from fifteen edentulous human skulls were measured for thickness and density. Elastic properties and directions of maximum stiffness were determined by using ultrasonic techniques. These data were compared to those from dentate crania reported in a previous investigation. Cortical bone from all regions of the facial skeleton of edentulous individuals is thinner than in dentate skulls. Elastic and shear moduli, and density are similar or greater in the zygoma and cranial vault of edentulous individuals, while these properties are less in the maxilla. Most cortical bone, especially in edentulous maxillae, has reduced directional orientation. The loss of significant occlusal loads following edentulation may contribute to the change in material properties and the loss of orientation over time during the normal process of bone remodeling. These results suggest that area-specific cortical microstructural changes accompany bone resorption following edentulation. They also suggest that functional forces are important for maintaining bone mass throughout the craniofacial skeleton, even in areas such as the browridges, which have been thought to be little affected by function, because of low in vivo strains found there in several primate studies. PMID:20235319

  19. SU-D-303-01: Spatial Distribution of Bone Metastases In Metastatic Castrate-Resistant Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perk, T; Bradshaw, T; Harmon, S

    2015-06-15

    Purpose: Identification of metastatic bone lesions is critical in prostate cancer, where treatments may be more effective in patients with fewer lesions. This study aims characterize the distribution and spread of bone lesions and create a probability map of metastatic spread in bone. Methods: Fifty-five metastatic castrate-resistant prostate cancer patients received up to 3 whole-body [F-18]NaF PET/CT scans. Lesions were identified by physician on PET/CT and contoured using a threshold of SUV>15. An atlas-based segmentation method was used to create CT regions, which determined skeletal location of lesions. Patients were divided into 3 groups with low (N<40), medium (40100) numbersmore » of lesions. A combination of articulated and deformable registrations was used to register the skeletal segments and lesions of each patient to a single skeleton. All the lesion data was then combined to make a probability map. Results: A total of 4038 metastatic lesions (mean 74, range 2–304) were identified. Skeletal regions with highest occurrence of lesions included ribs, thoracic spine, and pelvis with 21%, 19%, and 15% of the total number lesions and 8%, 18%, and 31 % of the total lesion volume, respectively. Interestingly, patients with fewer lesions were found to have a lower proportion of lesions in the ribs (9% in low vs. 27% in high number of lesions). Additionally, the probability map showed specific areas in the spine and pelvis where over 75% of patients had metastases, and other areas in the skeleton with a less than 2% of metastases. Conclusion: We identified skeletal regions with higher incidence of metastases and specific sub-regions in the skeleton that had high or low probability of occurrence of metastases. Additionally, we found that metastatic lesions in the ribs and skull occur more commonly in advanced disease. These results may have future applications in computer-aided diagnosis. Funding from the Prostate Cancer Foundation.« less

  20. Skeletal response of male mice to anabolic hormone therapy in the absence of the Igfals gene.

    PubMed

    Kennedy, Oran D; Sun, Hui; Wu, Yingjie; Courtland, Hayden-William; Williams, Garry A; Cardoso, Luis; Basta-Pljakic, Jelena; Schaffler, Mitchell B; Yakar, Shoshana

    2014-03-01

    IGF-I is a critical regulator of skeletal acquisition, which acts in endocrine and autocrine/paracrine modes. In serum, IGF-I is carried by the IGF-binding proteins in binary complexes. Further stabilization of these complexes is achieved by binding to the acid labile subunit (ALS) in a ternary complex (of IGF-I-IGF-binding protein 3/5-ALS). Ablation of the Igfals gene in humans (ALS deficiency) and mice (ALS knockout [ALSKO]) leads to markedly decreased serum IGF-I levels, growth retardation, and impaired skeletal acquisition. To investigate whether hormonal replacement therapy would improve the skeletal phenotype in cases of Igfals gene ablation, we treated male ALSKO mice with GH, IGF-I, or a combination of both. Treatments were administered to animals between 4 and 16 weeks of age or from 8 to 16 weeks of age. Although all treatment groups showed an increase (20%) in serum IGF-I levels, there was no increase in body weight, weight gain, or bone length in either age group. Despite the blunted linear growth in response to hormone therapy, ALSKO mice treated with GH showed radial bone growth, which contributed to bone strength tested by 4-point bending. We found that ALSKO mice treated with GH showed increased total cross-sectional area, cortical bone area, and cortical thickness by microtomography. Dynamic histomorphometry showed that although GH and double treatment groups resulted in trends towards increased bone formation parameters, these did not reach significance. However, bone resorption parameters were significantly increased in all treatment groups. ALSKO mice treated between 4 and 16 weeks of age showed minor differences in bone traits compared with vehicle-treated mice. In conclusion, treatment with GH and IGF-I do not work synergistically to rescue the stunted growth found in mice lacking the Igfals gene. Although GH alone appears to increase bone parameters slightly, it does not affect body weight or linear growth.

  1. Physiology of a microgravity environment invited review: microgravity and skeletal muscle

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Riley, D. R.; Widrick, J. J.

    2000-01-01

    Spaceflight (SF) has been shown to cause skeletal muscle atrophy; a loss in force and power; and, in the first few weeks, a preferential atrophy of extensors over flexors. The atrophy primarily results from a reduced protein synthesis that is likely triggered by the removal of the antigravity load. Contractile proteins are lost out of proportion to other cellular proteins, and the actin thin filament is lost disproportionately to the myosin thick filament. The decline in contractile protein explains the decrease in force per cross-sectional area, whereas the thin-filament loss may explain the observed postflight increase in the maximal velocity of shortening in the type I and IIa fiber types. Importantly, the microgravity-induced decline in peak power is partially offset by the increased fiber velocity. Muscle velocity is further increased by the microgravity-induced expression of fast-type myosin isozymes in slow fibers (hybrid I/II fibers) and by the increased expression of fast type II fiber types. SF increases the susceptibility of skeletal muscle to damage, with the actual damage elicited during postflight reloading. Evidence in rats indicates that SF increases fatigability and reduces the capacity for fat oxidation in skeletal muscles. Future studies will be required to establish the cellular and molecular mechanisms of the SF-induced muscle atrophy and functional loss and to develop effective exercise countermeasures.

  2. Ferulic Acid Promotes Hypertrophic Growth of Fast Skeletal Muscle in Zebrafish Model.

    PubMed

    Wen, Ya; Ushio, Hideki

    2017-09-26

    As a widely distributed and natural existing antioxidant, ferulic acid and its functions have been extensively studied in recent decades. In the present study, hypertrophic growth of fast skeletal myofibers was observed in adult zebrafish after ferulic acid administration for 30 days, being reflected in increased body weight, body mass index (BMI), and muscle mass, along with an enlarged cross-sectional area of myofibers. qRT-PCR analyses demonstrated the up-regulation of relative mRNA expression levels of myogenic transcriptional factors (MyoD, myogenin and serum response factor (SRF)) and their target genes encoding sarcomeric unit proteins involved in muscular hypertrophy (skeletal alpha-actin, myosin heavy chain, tropomyosin, and troponin I). Western blot analyses detected a higher phosphorylated level of zTOR (zebrafish target of rapamycin), p70S6K, and 4E-BP1, which suggests an enhanced translation efficiency and protein synthesis capacity of fast skeletal muscle myofibers. These changes in transcription and translation finally converge and lead to higher protein contents in myofibers, as confirmed by elevated levels of myosin heavy chain (MyHC), and an increased muscle mass. To the best of our knowledge, these findings have been reported for the first time in vivo and suggest potential applications of ferulic acid as functional food additives and dietary supplements owing to its ability to promote muscle growth.

  3. Regulation of Skeletal Muscle Plasticity by Protein Arginine Methyltransferases and Their Potential Roles in Neuromuscular Disorders

    PubMed Central

    Stouth, Derek W.; vanLieshout, Tiffany L.; Shen, Nicole Y.; Ljubicic, Vladimir

    2017-01-01

    Protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the methylation of arginine residues on target proteins, thereby mediating a diverse set of intracellular functions that are indispensable for survival. Indeed, full-body knockouts of specific PRMTs are lethal and PRMT dysregulation has been implicated in the most prevalent chronic disorders, such as cancers and cardiovascular disease (CVD). PRMTs are now emerging as important mediators of skeletal muscle phenotype and plasticity. Since their first description in muscle in 2002, a number of studies employing wide varieties of experimental models support the hypothesis that PRMTs regulate multiple aspects of skeletal muscle biology, including development and regeneration, glucose metabolism, as well as oxidative metabolism. Furthermore, investigations in non-muscle cell types strongly suggest that proteins, such as peroxisome proliferator-activated receptor-γ coactivator-1α, E2F transcription factor 1, receptor interacting protein 140, and the tumor suppressor protein p53, are putative downstream targets of PRMTs that regulate muscle phenotype determination and remodeling. Recent studies demonstrating that PRMT function is dysregulated in Duchenne muscular dystrophy (DMD), spinal muscular atrophy (SMA), and amyotrophic lateral sclerosis (ALS) suggests that altering PRMT expression and/or activity may have therapeutic value for neuromuscular disorders (NMDs). This review summarizes our understanding of PRMT biology in skeletal muscle, and identifies uncharted areas that warrant further investigation in this rapidly expanding field of research. PMID:29163212

  4. Geologic constraints to fluid flow in the Jurassic Arab D reservoir, eastern Saudi Arabia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laing, J.E.

    1991-08-01

    A giant oil field located in eastern Saudi Arabia has produced several billion barrels of 37{degree} API oil from fewer than 100 wells. The Upper Jurassic Arab Formation is the main producing unit, and is made up of a series of upward-shoaling carbonate and anhydrite members. Porous carbonates of the Arab D member make up the principle oil reservoir, and overlying Arab D anhydrite provides the seal. Principal reservoir facies are stromatoporoid-coral and skeletal grainstones. Reservoir drive is currently provided by flank water injection. Despite more than 30 years of flank water injection (1.5 billion bbl) into the northern areamore » of the field, a thick oil column remains in the Arab D reservoir. Geological factors which affect fluid flow in this area are (1) a downdip facies change from permeable skeletal-stromatoporoid limestone to less permeable micritic limestone, (2) vertical permeability barriers resulting from shoaling-upward cycles, (3) a downdip tar mat, (4) dolomite along the flanks in the upper portion of the reservoir, (5) highly permeable intervals within the skeletal-stromatoporoid limestone, and (6) an updip, north to south facies change from predominantly stromatoporoid-coral grainstone to skeletal grainstone. These factors are considered in reservoir modeling, simulation studies, and planning locations for both water injection and producer wells.« less

  5. [Surprisingly old skeleton found at Bornheim-Uedorf (Rhein-Sieg-Kreis)--Research results in forensic medicine, anthropology and archaeology].

    PubMed

    Zesch, Stephanie; Doberentz, Elke; Schmauder, Michael; Rosendahl, Wilfried; Madea, Burkhard

    2016-01-01

    On April 15th 2014, human skeletal remains were found during digging activities for constructing a new building at Bornheim-Uedorf (Rhein-Sieg-Kreis) near the river Rhine (about 20 meters) in a pit measuring 10 by 10 meters and having a depth of about 150 cm. The skeletal remains were preserved quite well considering the fact that they were located so near to the Rhine, although several skeletal parts were missing. The preserved skeletal remains comprised some skull fragments (including two ear bones of the right side), right scapula, both humeri, left ulna, left radius, left metacarpal bone 2, right metacarpal bones 1, 3 and 4, rib fragments, three thoracic vertebrae, all lumbar vertebrae, one sacral vertebra, pelvis fragments, left femur, proximal part of the left tibial diaphysis, right tibia and diaphysis of both fibulae. The anthropological analysis revealed that the skeletal remains belonged to a 20-to-30-year-old presumably male individual with a body height of about 163 to 173 cm (depending on the formula used for body height estimation). Evidence of intense physical activity and traumatological findings could not be detected on the preserved bones. Periosteal reactions on the bone surface caused by nonspecific bacterial infection were found on the right humerus close to the elbow and on both tibiae, especially the left one. Besides the skeletal remains, metal fragments were recovered--among them an arrowhead, which was typologically classified as an early medieval finding (6th to 7th century). Radiocarbon dating of a bone sample revealed an age of 1561 ± 19 a BP corresponding to a calibrated age of 436 to 540 AD (1 sigma). So, the archaeological classification of the recovered skeleton into the early medieval period was verified. Amongst the human remains, there was also a metatarsal bone of cattle with cut marks. The animal bone as well as the metal fragments indicated that the find was part of an early medieval burial with typical grave goods.

  6. Health impact of supplying safe drinking water containing fluoride below permissible level on flourosis patients in a fluoride-endemic rural area of West Bengal.

    PubMed

    Majumdar, Kunal Kanti

    2011-01-01

    The problem of high fluoride concentration in groundwater resources has become one of the most important toxicological and geo-environmental issues in India. Excessive fluoride in drinking water causes dental and skeletal fluorosis, which is encountered in endemic proportions in several parts of the world. World Health Organization (WHO) guideline value and the permissible limit of fluoride as per Bureau of Indian Standard (BIS) is 1.5 mg/L. About 20 states of India, including 43 blocks of seven districts of West Bengal, were identified as endemic for fluorosis and about 66 million people in these regions are at risk of fluoride contamination. Studies showed that withdrawal of sources identified for fluoride often leads reduction of fluoride in the body fluids (re-testing urine and serum after a week or 10 days) and results in the disappearance of non-skeletal fluorosis within a short duration of 10-15 days. To determine the prevalence of signs and symptoms of suspected dental, skeletal, and non-skeletal fluorosis, along with food habits, addictions, and use of fluoride containing toothpaste among participants taking water with fluoride concentration above the permissible limit, and to assess the changes in clinical manifestations of the above participants after they started consuming safe drinking water. A longitudinal intervention study was conducted in three villages in Rampurhat Block I of Birbhum district of West Bengal to assess the occurrence of various dental, skeletal, and non-skeletal manifestations of fluorosis, along with food habits, addictions, and use of fluoride containing toothpaste among the study population and the impact of taking safe water from the supplied domestic and community filters on these clinical manifestations. The impact was studied by follow-up examination of the participants for 5 months to determine the changes in clinical manifestations of the above participants after they started consuming safe drinking water from supplied domestic filters and community filter with fluoride concentration below the permissible limit. The data obtained were compared with the collected data from the baseline survey. The prevalence of signs of dental, skeletal, and non-skeletal fluorosis was 66.7%, 4.8-23.8%, and 9.5-38.1%, respectively, among the study population. Withdrawal of source(s) identified for fluoride by providing domestic and community filters supplying safe water led to 9.6% decrease in manifestation of dental fluorosis, 2.4-14.3% decrease in various manifestations of skeletal fluorosis, and 7.1-21.5% decrease in various non-skeletal manifestations within 5 months. Following repeated motivation of participants during visit, there was also 9.7-38.1% decrease in the usage of fluoride containing toothpaste, and 9.8-45.3% and 7.3-11.9% decrease in the consumption of black lemon tea and tobacco, respectively, which are known sources of fluoride ingestion in our body and have an effect on the occurrence of various manifestations of fluorosis following drinking of safe water from domestic and community filters. Increased prevalence of dental, skeletal, and non-skeletal fluorosis was found among the study population. Withdrawal of source(s) identified for fluoride by supplying domestic and community filters, dietary restriction, and other nutritional interventions led to decrease in manifestation of the three types of fluorosis within 5 months.

  7. A role for nephrin, a renal protein, in vertebrate skeletal muscle cell fusion

    PubMed Central

    Sohn, Regina Lee; Huang, Ping; Kawahara, Genri; Mitchell, Matthew; Guyon, Jeffrey; Kalluri, Raghu; Kunkel, Louis M.; Gussoni, Emanuela

    2009-01-01

    Skeletal muscle is formed via fusion of myoblasts, a well-studied process in Drosophila. In vertebrates however, this process is less well understood, and whether there is evolutionary conservation with the proteins studied in flies is under investigation. Sticks and stones (Sns), a cell surface protein found on Drosophila myoblasts, has structural homology to nephrin. Nephrin is a protein expressed in kidney that is part of the filtration barrier formed by podocytes. No previous study has established any role for nephrin in skeletal muscle. We show, using two models, zebrafish and mice, that the absence of nephrin results in poorly developed muscles and incompletely fused myotubes, respectively. Although nephrin-knockout (nephrinKO) myoblasts exhibit prolonged activation of MAPK/ERK pathway during myogenic differentiation, expression of myogenin does not seem to be altered. Nevertheless, MAPK pathway blockade does not rescue myoblast fusion. Co-cultures of unaffected human fetal myoblasts with nephrinKO myoblasts or myotubes restore the formation of mature myotubes; however, the contribution of nephrinKO myoblasts is minimal. These studies suggest that nephrin plays a role in secondary fusion of myoblasts into nascent myotubes, thus establishing a possible functional conservation with Drosophila Sns. PMID:19470472

  8. Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation.

    PubMed

    Campbell, Graeme Michael; Glüer, Claus-C

    2017-07-01

    Finite element models simulate the mechanical response of bone under load, enabling noninvasive assessment of strength. Models generated from quantitative computed tomography (QCT) incorporate the geometry and spatial distribution of bone mineral density (BMD) to simulate physiological and traumatic loads as well as orthopaedic implant behaviour. The present review discusses the current strengths and weakness of finite element models for application to skeletal biomechanics. In cadaver studies, finite element models provide better estimations of strength compared to BMD. Data from clinical studies are encouraging; however, the superiority of finite element models over BMD measures for fracture prediction has not been shown conclusively, and may be sex and site dependent. Therapeutic effects on bone strength are larger than for BMD; however, model validation has only been performed on untreated bone. High-resolution modalities and novel image processing methods may enhance the structural representation and predictive ability. Despite extensive use of finite element models to study orthopaedic implant stability, accurate simulation of the bone-implant interface and fracture progression remains a significant challenge. Skeletal finite element models provide noninvasive assessments of strength and implant stability. Improved structural representation and implant surface interaction may enable more accurate models of fragility in the future.

  9. The effects of ultraviolet radiation on growth and bleaching in three species of Hawaiian coral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, G.D.

    1990-01-09

    Long term exposure to ultraviolet radiation is harmful to many organisms, including hermatypic corals, which obtain much of their nutrition from photosynthetic zooxanthellae. Therefore, increased UV radiation from atmospheric ozone depletion could inhibit growth of such corals. Moreover, coral bleaching, which has been attributed to loss of pigment and/or expulsion of zooxanthellae, may be a specific response to UV light. Does UV-A reduce skeletal growth or influence population density and pigment content of zooxanthellae In addition, do zooxanthellae migrate to shaded areas of the colony to avoid ultraviolet light Using alizarin red stain and suitable filters, I compared the stainmore » and suitable filters, I compared the effects of UV-A (320-400nm) and full-spectrum UV (280-400nm) on the skeletal growth of two Hawaiian corals, Montipora verrucosa, Pocillopora damicornis, in situ. In the perforate corals, M. Verrucosa and Porites compressa, I measured concentration of zooxanthellae and their chlorophyll content to quantify bleaching in response to UV light. Reduction in skeletal growth by the two corals in response to different ranges of UV light appears to be species specific. Bleaching by UV appears to be characterized by an initial loss of pigment followed by the expulsion and migration of the zooxanthellae to shaded areas of the colony. Differences in tolerance and adaptation to decreasing ozone levels and increasing UV light should confer a competitive advantage on various species and morphologies of reef-building corals.« less

  10. Evidence for prosauropod dinosaur gastroliths in the Bull Run Formation (Upper Triassic, Norian) of Virginia

    USGS Publications Warehouse

    Weems, Robert E.; Culp, Michelle J.; Wings, Oliver

    2007-01-01

    Definitive criteria for distinguishing gastroliths from sedimentary clasts are lacking for many depositional settings, and many reported occurrences of gastroliths either cannot be verified or have been refuted. We discuss four occurrences of gastrolith-like stones (category 6 exoliths) not found within skeletal remains from the Upper Triassic Bull Run Formation of northern Virginia, USA. Despite their lack of obvious skeletal association, the most parsimonious explanation for several characteristics of these stones is their prolonged residence in the gastric mills of large animals. These characteristics include 1) typical gastrolith microscopic surface texture, 2) evidence of pervasive surface wear on many of these stones that has secondarily removed variable amounts of thick weathering rinds typically found on these stones, and 3) a width/length-ratio modal peak for these stones that is more strongly developed than in any population of fluvial or fanglomerate stones of any age found in this region. When taken together, these properties of the stones can be explained most parsimoniously by animal ingestion and gastric-mill abrasion. The size of these stones indicates the animals that swallowed them were large, and the best candidate is a prosauropod dinosaur, possibly an ancestor of the Early Jurassic gastrolith-producing prosauropod Massospondylus or Ammosaurus.Skeletal evidence for Upper Triassic prosauropods is lacking in the Newark Supergroup basins; footprints (Agrestipus hottoni and Eubrontes isp.) from the Bull Run Formation in the Culpeper basin previously ascribed to prosauropods are now known to be underprints (Brachychirotherium parvum) of an aetosaur and underprints (Kayentapus minor) of a ceratosaur. The absence of prosauropod skeletal remains or footprints in all but the uppermost (upper Rhaetian) Triassic rocks of the Newark Supergroup is puzzling because prosauropod remains are abundant elsewhere in the world in Upper Triassic (Carnian, Norian, and lower Rhaetian) continental strata. The apparent scarcity of prosauropods in Upper Triassic strata of the Newark Supergroup is interpreted as an artifact of ecological partitioning, created by the habitat range and dietary preferences of phytosaurs and by the preservational biases at that time within the lithofacies of the Newark Supergroup basins.

  11. Skeletal maturity and body size of teenage Belgian track and field athletes.

    PubMed

    Malina, R M; Beunen, G; Wellens, R; Claessens, A

    1986-01-01

    Attained skeletal maturity (TW2 RUS method), skeletal maturity relative to chronological age, and body size of national-level Belgian track and field athletes 15 to 18 years of age were considered. Among the 47 male athletes, 29 (62%) were skeletally mature, while 15 (52%) of the 29 female athletes were skeletally mature. There appeared to be a predominance of skeletally mature individuals among male sprinters and jumpers, while a majority of female sprinters were not skeletally mature. Both skeletally mature and immature individuals were rather evenly represented in the other track and field categories, with the exception of female throwers, who were skeletally mature. Mean statures and weights of skeletally mature and immature 16-, 17-and 18-year-old male athletes did not differ significantly, though the skeletally mature tended to be heavier. In contrast, the skeletally mature female athletes, on the average, were taller and heavier than the skeletally immature, although the differences among the small groups were not statistically significant.

  12. Quantitative analysis of skeletal muscle mass in patients with rheumatic diseases under glucocorticoid therapy--comparison among bioelectrical impedance analysis, computed tomography, and magnetic resonance imaging.

    PubMed

    Hosono, Osamu; Yoshikawa, Noritada; Shimizu, Noriaki; Kiryu, Shigeru; Uehara, Masaaki; Kobayashi, Hiroshi; Matsumiya, Ryo; Kuribara, Akiko; Maruyama, Takako; Tanaka, Hirotoshi

    2015-03-01

    To determine the availability of bioelectrical impedance analysis (BIA), computed tomography (CT), and magnetic resonance imaging (MRI) for measurement of skeletal muscle mass in patients with rheumatic diseases and quantitatively assess skeletal muscle loss after glucocorticoid (GC) treatment. The data from 22 patients with rheumatic diseases were retrospectively obtained. The muscle mass of body segments was measured with a BIA device in terms of skeletal muscle mass index (SMI). Cross-sectional area (CSA) was obtained from CT and MRI scans at the mid-thigh level using the image analysis program. We further assessed the data of three different measurements before and after GC treatment in 7 patients with rheumatic diseases. SMI of whole body was significantly correlated with estimated muscle volume and mid-thigh muscle CSA with CT and MRI (p < 0.01). Significant correlations between SMI and mid-thigh muscle CSA of each leg were also found (p < 0.01). All the three measurements were negatively correlated with GC dosage (p < 0.01). Significant decline in mid-thigh muscle CSA with CT and MRI was found after GC treatment in 7 patients (p < 0.02). Those patients showed significant decline in SMI of whole body after GC treatment, but not in SMI of each leg. On the other hand, significant correlations between mid-thigh muscle CSA with CT and MRI were found before and after GC treatment (p < 0.01). GC-related skeletal muscle loss could be quantitatively assessed with BIA, CT, or MRI in patients with rheumatic diseases, and CT and MRI appeared to be more accurate than BIA.

  13. Skeletal muscle mass is associated with severe dysphagia in cancer patients

    PubMed Central

    Wakabayashi, Hidetaka; Matsushima, Masato; Uwano, Rimiko; Watanabe, Naoko; Oritsu, Hideyuki; Shimizu, Yoshitaka

    2015-01-01

    Background The purpose of this study was to assess the association between skeletal muscle mass, activities of daily living (ADLs) and severe dysphagia in cancer patients. Methods A nested case-control study was performed in 111 consecutive cancer patients with dysphagia who were prescribed speech therapy. Skeletal muscle mass comprising the cross-sectional area of the left and right psoas muscles was assessed via abdominal computed tomography at the third lumbar vertebral level. ADLs were evaluated by the Barthel Index. The severity of dysphagia was assessed by the Food Intake Level Scale and was characterized by non-oral feeding or oral food intake at discharge. Univariate and logistic regression analyses were applied to examine the associations between dysphagia, skeletal muscle index (SMI) and ADLs. Results There were 86 men and 25 women (mean age, 70 years). The mean SMI was 5.68 ± 1.74 cm2/m2 in men and 4.43 ± 1.21 cm2/m2 in women. The median Barthel Index score was 20. Thirty-three patients were on non-oral feeding at discharge. The mean SMI did not differ significantly between non-oral feeding and oral food intake groups in t-test. The median Barthel Index score was lower in the non-oral feeding group in Mann–Whitney U test. Logistic regression analysis of the severity of dysphagia adjusted for age, sex, SMI, Barthel Index score, serum albumin, cancer type and stage, and vocal cord paralysis showed that SMI was associated independently with oral food intake at discharge. Barthel Index score showed a tendency to be associated with oral food intake. Conclusions Skeletal muscle mass is associated with severe dysphagia in cancer patients. ADLs show a tendency to be associated with severe dysphagia in cancer patients. PMID:26673551

  14. Biological properties of human skeletal myoblasts genetically modified to simultaneously overexpress the pro-angiogenic factors vascular endothelial growth factor-A and fibroblast growth factor-4.

    PubMed

    Zimna, A; Janeczek, A; Rozwadowska, N; Fraczek, M; Kucharzewska, P; Rucinski, M; Mietkiewski, T; Kurpisz, M

    2014-04-01

    Myocardial infarction results in cardiomyocyte loss and may eventually lead to cardiac failure. Skeletal myoblast transplantation into the scar area may compensate for this observed cell loss by strengthening the weakened myocardium and inducing myogenesis. Moreover, skeletal myoblasts may serve as potential transgene carriers for the myocardium (i.e., delivering pro-angiogenic factors, which may potentially improve blood perfusion in infarcted heart). We examined the influence of the simultaneous overexpression of two potent pro-angiogenic factors, fibroblast growth factor-4 (FGF-4) and vascular endothelial growth factor (VEGF), on human primary myoblast proliferation, cell cycle, resistance to hypoxic stress conditions and myogenic gene expression, as well as the induction of pro-angiogenic activities. We used a bicistronic plasmid vector encoding two factors introduced via an efficient myoblast electroporation method. The levels of overexpressed proteins were assessed, and their functionality at capillary formation was evaluated. This combined approach led to a high level of non-viral transient overexpression of both pro-angiogenic proteins, which proved to be potent regulators of blood vessel development assayed in capillary formation tests. We demonstrated in in vitro conditions that the transfection of human skeletal myoblasts with both FGF-4 and VEGF did not affect their basic biological properties such as the cell cycle, proliferation or expression of myogenic lineage-specific genes, and the modified cells adapted to oxidative stress conditions. Overall, the results obtained suggest that the applied combined approach with the use of two pro-angiogenic genes overexpressed in skeletal muscle stem cells may be an interesting alternative for the effective therapy of myocardial infarction in animal models and/or prospective clinical trials.

  15. Distal radius geometry and skeletal strength indices after peripubertal artistic gymnastics.

    PubMed

    Dowthwaite, J N; Scerpella, T A

    2011-01-01

    Development of optimal skeletal strength should decrease adult bone fragility. Nongymnasts (NON): were compared with girls exposed to gymnastics during growth (EX/GYM: ), using peripheral quantitative computed tomography (pQCT) to evaluate postmenarcheal bone geometry, density, and strength. Pre- and perimenarcheal gymnastic loading yields advantages in indices of postmenarcheal bone geometry and skeletal strength. Two prior studies using pQCT have reported bone density and size advantages in Tanner I/II gymnasts, but none describe gymnasts' bone properties later in adolescence. The current study used pQCT to evaluate whether girls exposed to gymnastics during late childhood growth and perimenarcheal growth exhibited greater indices of distal radius geometry, density, and skeletal strength. Postmenarcheal subjects underwent 4% and 33% distal radius pQCT scans, yielding: 1) vBMD and cross-sectional areas (CSA) (total bone, compartments); 2) polar strength-strain index; 3) index of structural strength in axial compression. Output was compared for EX/GYM: vs. NON: , adjusting for gynecological age and stature (maturity and body size), reporting means, standard errors, and significance. Sixteen postmenarcheal EX/GYM: (age 16.7 years; gynecological age 3.4 years) and 13 NON: (age 16.2 years; gynecological age 3.6 years) were evaluated. At both diaphysis and metaphysis, EX/GYM: exhibited greater CSA and bone strength indices than NON; EX/GYM: exhibited 79% larger intramedullary CSA than NON: (p < 0.05). EX/GYM: had significantly higher 4% trabecular vBMD; differences were not detected for 4% total vBMD and 33% cortical vBMD. Following pre-/perimenarcheal gymnastic exposure, relative to nongymnasts, postmenarcheal EX/GYM: demonstrated greater indices of distal radius geometry and skeletal strength (metaphysis and diaphysis) with greater metaphyseal trabecular vBMD; larger intramedullary cavity size was particularly striking.

  16. Distal radius geometry and skeletal strength indices after peripubertal artistic gymnastics

    PubMed Central

    Scerpella, T. A.

    2011-01-01

    Summary Development of optimal skeletal strength should decrease adult bone fragility. Nongymnasts (NON) were compared with girls exposed to gymnastics during growth (EX/GYM), using peripheral quantitative computed tomography (pQCT) to evaluate postmenarcheal bone geometry, density, and strength. Pre- and perimenarcheal gymnastic loading yields advantages in indices of postmenarcheal bone geometry and skeletal strength. Introduction Two prior studies using pQCT have reported bone density and size advantages in Tanner I/II gymnasts, but none describe gymnasts’ bone properties later in adolescence. The current study used pQCT to evaluate whether girls exposed to gymnastics during late childhood growth and perimenarcheal growth exhibited greater indices of distal radius geometry, density, and skeletal strength. Methods Postmenarcheal subjects underwent 4% and 33% distal radius pQCT scans, yielding: 1) vBMD and cross-sectional areas (CSA) (total bone, compartments); 2) polar strength-strain index; 3) index of structural strength in axial compression. Output was compared for EX/GYM vs. NON, adjusting for gynecological age and stature (maturity and body size), reporting means, standard errors, and significance. Results Sixteen postmenarcheal EX/GYM (age 16.7 years; gynecological age 3.4 years) and 13 NON (age 16.2 years; gynecological age 3.6 years) were evaluated. At both diaphysis and metaphysis, EX/GYM exhibited greater CSA and bone strength indices than NON; EX/GYM exhibited 79% larger intramedullary CSA than NON (p<0.05). EX/GYM had significantly higher 4% trabecular vBMD; differences were not detected for 4% total vBMD and 33% cortical vBMD. Conclusions Following pre-/perimenarcheal gymnastic exposure, relative to nongymnasts, postmenarcheal EX/GYM demonstrated greater indices of distal radius geometry and skeletal strength (metaphysis and diaphysis) with greater metaphyseal trabecular vBMD; larger intramedullary cavity size was particularly striking. PMID:20419293

  17. Estimates of hydraulic properties from a one-dimensional numerical model of vertical aquifer-system deformation, Lorenzi site, Las Vegas, Nevada

    USGS Publications Warehouse

    Pavelko, Michael T.

    2004-01-01

    Land subsidence related to aquifer-system compaction and ground-water withdrawals has been occurring in Las Vegas Valley, Nevada, since the 1930's, and by the late 1980's some areas in the valley had subsided more than 5 feet. Since the late 1980's, seasonal artificial-recharge programs have lessened the effects of summertime pumping on aquifer-system compaction, but the long-term trend of compaction continues in places. Since 1994, the U.S. Geological Survey has continuously monitored water-level changes in three piezometers and vertical aquifer-system deformation with a borehole extensometer at the Lorenzi site in Las Vegas, Nevada. A one-dimensional, numerical, ground-water flow model of the aquifer system below the Lorenzi site was developed for the period 1901-2000, to estimate aquitard vertical hydraulic conductivity, aquitard inelastic skeletal specific storage, and aquitard and aquifer elastic skeletal specific storage. Aquifer water-level data were used in the model as the aquifer-system stresses that controlled simulated vertical aquifer-system deformation. Nonlinear-regression methods were used to calibrate the model, utilizing estimated and measured aquifer-system deformation data to minimize a weighted least-squares objective function, and estimate optimal property values. Model results indicate that at the Lorenzi site, aquitard vertical hydraulic conductivity is 3 x 10-6 feet per day, aquitard inelastic skeletal specific storage is 4 x 10-5 per foot, aquitard elastic skeletal specific storage is 5 x 10-6 per foot, and aquifer elastic skeletal specific storage is 3 x 10-7 per foot. Regression statistics indicate that the model and data provided sufficient information to estimate the target properties, the model adequately simulated observed data, and the estimated property values are accurate and unique.

  18. Transplantated mesenchymal stem cells derived from embryonic stem cells promote muscle regeneration and accelerate functional recovery of injured skeletal muscle.

    PubMed

    Ninagawa, Nana Takenaka; Isobe, Eri; Hirayama, Yuri; Murakami, Rumi; Komatsu, Kazumi; Nagai, Masataka; Kobayashi, Mami; Kawabata, Yuka; Torihashi, Shigeko

    2013-08-01

    We previously established that mesenchymal stem cells originating from mouse embryonic stem (ES) cells (E-MSCs) showed markedly higher potential for differentiation into skeletal muscles in vitro than common mesenchymal stem cells (MSCs). Further, the E-MSCs exhibited a low risk for teratoma formation. Here we evaluate the potential of E-MSCs for differentiation into skeletal muscles in vivo and reveal the regeneration and functional recovery of injured muscle by transplantation. E-MSCs were transplanted into the tibialis anterior (TA) muscle 24 h following direct clamping. After transplantation, the myogenic differentiation of E-MSCs, TA muscle regeneration, and re-innervation were morphologically analyzed. In addition, footprints and gaits of each leg under spontaneous walking were measured by CatWalk XT, and motor functions of injured TA muscles were precisely analyzed. Results indicate that >60% of transplanted E-MSCs differentiated into skeletal muscles. The cross-sectional area of the injured TA muscles of E-MSC-transplanted animals increased earlier than that of control animals. E-MSCs also promotes re-innervation of the peripheral nerves of injured muscles. Concerning function of the TA muscles, we reveal that transplantation of E-MSCs promotes the recovery of muscles. This is the first report to demonstrate by analysis of spontaneous walking that transplanted cells can accelerate the functional recovery of injured muscles. Taken together, the results show that E-MSCs have a high potential for differentiation into skeletal muscles in vivo as well as in vitro. The transplantation of E-MSCs facilitated the functional recovery of injured muscles. Therefore, E-MSCs are an efficient cell source in transplantation.

  19. Transplantated Mesenchymal Stem Cells Derived from Embryonic Stem Cells Promote Muscle Regeneration and Accelerate Functional Recovery of Injured Skeletal Muscle

    PubMed Central

    Ninagawa, Nana Takenaka; Isobe, Eri; Hirayama, Yuri; Murakami, Rumi; Komatsu, Kazumi; Nagai, Masataka; Kobayashi, Mami; Kawabata, Yuka

    2013-01-01

    Abstract We previously established that mesenchymal stem cells originating from mouse embryonic stem (ES) cells (E-MSCs) showed markedly higher potential for differentiation into skeletal muscles in vitro than common mesenchymal stem cells (MSCs). Further, the E-MSCs exhibited a low risk for teratoma formation. Here we evaluate the potential of E-MSCs for differentiation into skeletal muscles in vivo and reveal the regeneration and functional recovery of injured muscle by transplantation. E-MSCs were transplanted into the tibialis anterior (TA) muscle 24 h following direct clamping. After transplantation, the myogenic differentiation of E-MSCs, TA muscle regeneration, and re-innervation were morphologically analyzed. In addition, footprints and gaits of each leg under spontaneous walking were measured by CatWalk XT, and motor functions of injured TA muscles were precisely analyzed. Results indicate that >60% of transplanted E-MSCs differentiated into skeletal muscles. The cross-sectional area of the injured TA muscles of E-MSC–transplanted animals increased earlier than that of control animals. E-MSCs also promotes re-innervation of the peripheral nerves of injured muscles. Concerning function of the TA muscles, we reveal that transplantation of E-MSCs promotes the recovery of muscles. This is the first report to demonstrate by analysis of spontaneous walking that transplanted cells can accelerate the functional recovery of injured muscles. Taken together, the results show that E-MSCs have a high potential for differentiation into skeletal muscles in vivo as well as in vitro. The transplantation of E-MSCs facilitated the functional recovery of injured muscles. Therefore, E-MSCs are an efficient cell source in transplantation. PMID:23914336

  20. Identification of specific malformations of sea urchin larvae for toxicity assessment: application to marine pisciculture effluents.

    PubMed

    Carballeira, C; Ramos-Gómez, J; Martín-Díaz, L; DelValls, T A

    2012-06-01

    Standard toxicity screening tests are useful tools in the management of impacted coastal ecosystems. To our knowledge, this is the first time that the sea urchin embryo development test has been used to evaluate the potential impact of effluents from land-based aquaculture farms in coastal areas. The toxicity of effluents from 8 land-based turbot farms was determined by calculating the percentage of abnormal larvae, according to two criteria: (a) standard, considering as normal pyramid-shaped larvae with differentiated components, and (b) skeletal, a new criterion that considers detailed skeletal characteristics. The skeletal criterion appeared to be more sensitive and enabled calculation of effective concentrations EC(5), EC(10), EC(20) and EC(50), unlike the classical criterion. Inclusion of the skeleton criterion in the sea urchin embryo development test may be useful for categorizing the relatively low toxicity of discharges from land-based marine fish farms. Further studies are encouraged to establish any causative relationships between pollutants and specific larval deformities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. EFFECT OF MECHANICAL STIMULI ON SKELETAL REGENERATION AROUND IMPLANTS

    PubMed Central

    Leucht, Philipp; Kim, Jae-Beom; Wazen, Rima; Currey, Jennifer A.; Nanci, Antonio; Brunski, John B.; Helms, Jill A.

    2007-01-01

    Due to the aging population and the increasing need for total joint replacements, osseointegration is of a great interest for various clinical disciplines. Our objective was to investigate the molecular and cellular foundation that underlies this process. Here, we used an in vivo mouse model to study the cellular and molecular response in three distinct areas of unloaded implants: the periosteum, the gap between implant and cortical bone, and the marrow space. Our analyses began with the early phases of healing, and continued until the implants were completely osseointegrated. We investigated aspects of osseointegration ranging from vascularization, cell proliferation, differentiation, and bone remodeling. In doing so, we gained an understanding of the healing mechanisms of different skeletal tissues during unloaded implant osseointegration. To continue our analysis, we used a micromotion device to apply a defined physical stimulus to the implants, and in doing so, we dramatically enhanced bone formation in the peri-implant tissue. By comparing strain measurements with cellular and molecular analyses, we developed an understanding of the correlation between strain magnitudes and fate decisions of cells shaping the skeletal regenerate. PMID:17175211

  2. Localization of the transverse processes in ultrasound for spinal curvature measurement

    NASA Astrophysics Data System (ADS)

    Kamali, Shahrokh; Ungi, Tamas; Lasso, Andras; Yan, Christina; Lougheed, Matthew; Fichtinger, Gabor

    2017-03-01

    PURPOSE: In scoliosis monitoring, tracked ultrasound has been explored as a safer imaging alternative to traditional radiography. The use of ultrasound in spinal curvature measurement requires identification of vertebral landmarks such as transverse processes, but as bones have reduced visibility in ultrasound imaging, skeletal landmarks are typically segmented manually, which is an exceedingly laborious and long process. We propose an automatic algorithm to segment and localize the surface of bony areas in the transverse process for scoliosis in ultrasound. METHODS: The algorithm uses cascade of filters to remove low intensity pixels, smooth the image and detect bony edges. By applying first differentiation, candidate bony areas are classified. The average intensity under each area has a correlation with the possibility of a shadow, and areas with strong shadow are kept for bone segmentation. The segmented images are used to reconstruct a 3-D volume to represent the whole spinal structure around the transverse processes. RESULTS: A comparison between the manual ground truth segmentation and the automatic algorithm in 50 images showed 0.17 mm average difference. The time to process all 1,938 images was about 37 Sec. (0.0191 Sec. / Image), including reading the original sequence file. CONCLUSION: Initial experiments showed the algorithm to be sufficiently accurate and fast for segmentation transverse processes in ultrasound for spinal curvature measurement. An extensive evaluation of the method is currently underway on images from a larger patient cohort and using multiple observers in producing ground truth segmentation.

  3. Stable isotopic composition of deep sea gorgonian corals (Primnoa spp.): a new archive of surface processes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherwood, O A; Heikoop, J M; Scott, D B

    2005-02-03

    The deep-sea gorgonian coral Primnoa spp. lives in the Atlantic and Pacific Oceans at depths of 65-3200 m. This coral has an arborescent growth form with a skeletal axis composed of annual rings made from calcite and gorgonin. It has a lifespan of at least several hundred years. It has been suggested that isotopic profiles from the gorgonin fraction of the skeleton could be used to reconstruct long-term, annual-scale variations in surface productivity. We tested assumptions about the trophic level, intra-colony isotopic reproducibility, and preservation of isotopic signatures in a suite of modern and fossil specimens. Measurements of gorgonin {Delta}{supmore » 14}C and {delta}{sup 15}N indicate that Primnoa spp. feed mainly on zooplankton and/or sinking particulate organic matter (POM{sub SINK}), and not on suspended POM (POM{sub SUSP}) or dissolved organic carbon (DOC). Gorgonin {delta}{sup 13}C and {delta}{sup 15}N in specimens from NE Pacific shelf waters, NW Atlantic slope waters, the Sea of Japan, and a South Pacific (Southern Ocean sector) seamount were strongly correlated with Levitus 1994 surface apparent oxygen utilization (AOU; the best available measure of surface productivity), demonstrating coupling between skeletal isotopic ratios and biophysical processes in surface water. Time-series isotopic profiles from different sections along the same colony were identical for {delta}{sup 13}C, while {delta}{sup 15}N profiles became more dissimilar with increasing separation along the colony axis. Similarity in C:N, {delta}{sup 13}C and {delta}{sup 15}N between modern and fossil specimens suggest that isotopic signatures are preserved over millennial timescales. Finally, the utility of this new archive was demonstrated by reconstruction of 20th century bomb radiocarbon.« less

  4. The caveolin-cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle.

    PubMed

    Lo, Harriet P; Nixon, Susan J; Hall, Thomas E; Cowling, Belinda S; Ferguson, Charles; Morgan, Garry P; Schieber, Nicole L; Fernandez-Rojo, Manuel A; Bastiani, Michele; Floetenmeyer, Matthias; Martel, Nick; Laporte, Jocelyn; Pilch, Paul F; Parton, Robert G

    2015-08-31

    Dysfunction of caveolae is involved in human muscle disease, although the underlying molecular mechanisms remain unclear. In this paper, we have functionally characterized mouse and zebrafish models of caveolae-associated muscle disease. Using electron tomography, we quantitatively defined the unique three-dimensional membrane architecture of the mature muscle surface. Caveolae occupied around 50% of the sarcolemmal area predominantly assembled into multilobed rosettes. These rosettes were preferentially disassembled in response to increased membrane tension. Caveola-deficient cavin-1(-/-) muscle fibers showed a striking loss of sarcolemmal organization, aberrant T-tubule structures, and increased sensitivity to membrane tension, which was rescued by muscle-specific Cavin-1 reexpression. In vivo imaging of live zebrafish embryos revealed that loss of muscle-specific Cavin-1 or expression of a dystrophy-associated Caveolin-3 mutant both led to sarcolemmal damage but only in response to vigorous muscle activity. Our findings define a conserved and critical role in mechanoprotection for the unique membrane architecture generated by the caveolin-cavin system. © 2015 Lo et al.

  5. The caveolin–cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle

    PubMed Central

    Lo, Harriet P.; Nixon, Susan J.; Hall, Thomas E.; Cowling, Belinda S.; Ferguson, Charles; Morgan, Garry P.; Schieber, Nicole L.; Fernandez-Rojo, Manuel A.; Bastiani, Michele; Floetenmeyer, Matthias; Martel, Nick; Laporte, Jocelyn; Pilch, Paul F.

    2015-01-01

    Dysfunction of caveolae is involved in human muscle disease, although the underlying molecular mechanisms remain unclear. In this paper, we have functionally characterized mouse and zebrafish models of caveolae-associated muscle disease. Using electron tomography, we quantitatively defined the unique three-dimensional membrane architecture of the mature muscle surface. Caveolae occupied around 50% of the sarcolemmal area predominantly assembled into multilobed rosettes. These rosettes were preferentially disassembled in response to increased membrane tension. Caveola-deficient cavin-1−/− muscle fibers showed a striking loss of sarcolemmal organization, aberrant T-tubule structures, and increased sensitivity to membrane tension, which was rescued by muscle-specific Cavin-1 reexpression. In vivo imaging of live zebrafish embryos revealed that loss of muscle-specific Cavin-1 or expression of a dystrophy-associated Caveolin-3 mutant both led to sarcolemmal damage but only in response to vigorous muscle activity. Our findings define a conserved and critical role in mechanoprotection for the unique membrane architecture generated by the caveolin–cavin system. PMID:26323694

  6. Connective tissue growth factor induces cardiac hypertrophy through Akt signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayata, Nozomi; Fujio, Yasushi; Yamamoto, Yasuhiro

    2008-05-30

    In the process of cardiac remodeling, connective tissue growth factor (CTGF/CCN2) is secreted from cardiac myocytes. Though CTGF is well known to promote fibroblast proliferation, its pathophysiological effects in cardiac myocytes remain to be elucidated. In this study, we examined the biological effects of CTGF in rat neonatal cardiomyocytes. Cardiac myocytes stimulated with full length CTGF and its C-terminal region peptide showed the increase in cell surface area. Similar to hypertrophic ligands for G-protein coupled receptors, such as endothelin-1, CTGF activated amino acid uptake; however, CTGF-induced hypertrophy is not associated with the increased expression of skeletal actin or BNP, analyzedmore » by Northern-blotting. CTGF treatment activated ERK1/2, p38 MAPK, JNK and Akt. The inhibition of Akt by transducing dominant-negative Akt abrogated CTGF-mediated increase in cell size, while the inhibition of MAP kinases did not affect the cardiac hypertrophy. These findings indicate that CTGF is a novel hypertrophic factor in cardiac myocytes.« less

  7. In vivo imaging of coral tissue and skeleton with optical coherence tomography.

    PubMed

    Wangpraseurt, Daniel; Wentzel, Camilla; Jacques, Steven L; Wagner, Michael; Kühl, Michael

    2017-03-01

    Application of optical coherence tomography (OCT) for in vivo imaging of tissue and skeleton structure of intact living corals enabled the non-invasive visualization of coral tissue layers (endoderm versus ectoderm), skeletal cavities and special structures such as mesenterial filaments and mucus release from intact living corals. Coral host chromatophores containing green fluorescent protein-like pigment granules appeared hyper-reflective to near-infrared radiation allowing for excellent optical contrast in OCT and a rapid characterization of chromatophore size, distribution and abundance. In vivo tissue plasticity could be quantified by the linear contraction velocity of coral tissues upon illumination resulting in dynamic changes in the live coral tissue surface area, which varied by a factor of 2 between the contracted and expanded state of a coral. Our study provides a novel view on the in vivo organization of coral tissue and skeleton and highlights the importance of microstructural dynamics for coral ecophysiology. © 2017 The Author(s).

  8. Slow to fast alterations in skeletal muscle fibers caused by clenbuterol, a beta(2)-receptor agonist

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Ludemann, Robert; Easton, Thomas G.; Etlinger, Joseph D.

    1988-01-01

    The effects of a beta(2)-receptor agonist, clenbuterol, and a beta(2) antagonist, butoxamine, on the skeletal muscle fibers of rats were investigated. It was found that chronic treatment of rats with clenbuterol caused hypertrophy of histochemically identified fast-twitch, but not slow-twitch, fibers within the soleus, while in the extensor digitorum longus the mean areas of both fiber types were increased; in both muscles, the ratio of the number of fast-twitch to slow-twitch fibers was increased. In contrast, a treatment with butoxamine caused a reduction of the fast-twitch fiber size in both muscles, and the ratio of the fast-twitch to slow-twitch fibers was decreased.

  9. Branched-chain amino acid-rich diet improves skeletal muscle wasting caused by cigarette smoke in rats.

    PubMed

    Tomoda, Koichi; Kubo, Kaoru; Hino, Kazuo; Kondoh, Yasunori; Nishii, Yasue; Koyama, Noriko; Yamamoto, Yoshifumi; Yoshikawa, Masanori; Kimura, Hiroshi

    2014-04-01

    Cigarette smoke induces skeletal muscle wasting by a mechanism not yet fully elucidated. Branched-chain amino acids (BCAA) in the skeletal muscles are useful energy sources during exercise or systemic stresses. We investigated the relationship between skeletal muscle wasting caused by cigarette smoke and changes in BCAA levels in the plasma and skeletal muscles of rats. Furthermore, the effects of BCAA-rich diet on muscle wasting caused by cigarette smoke were also investigated. Wistar Kyoto (WKY) rats that were fed with a control or a BCAA-rich diet were exposed to cigarette smoke for four weeks. After the exposure, the skeletal muscle weight and BCAA levels in plasma and the skeletal muscles were measured. Cigarette smoke significantly decreased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles, while a BCAA-rich diet increased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles that had decreased by cigarette smoke exposure. In conclusion, skeletal muscle wasting caused by cigarette smoke was related to the decrease of BCAA levels in the skeletal muscles, while a BCAA-rich diet may improve cases of cigarette smoke-induced skeletal muscle wasting.

  10. IGFBP-4 regulates adult skeletal growth in a sex-specific manner.

    PubMed

    Maridas, David E; DeMambro, Victoria E; Le, Phuong T; Nagano, Kenichi; Baron, Roland; Mohan, Subburaman; Rosen, Clifford J

    2017-04-01

    Insulin-like growth factor-1 (IGF-1) and its binding proteins are critical mediators of skeletal growth. Insulin-like growth factor-binding protein 4 (IGFBP-4) is highly expressed in osteoblasts and inhibits IGF-1 actions in vitro Yet, in vivo studies suggest that it could potentiate IGF-1 and IGF-2 actions. In this study, we hypothesized that IGFBP-4 might potentiate the actions of IGF-1 on the skeleton. To test this, we comprehensively studied 8- and 16-week-old Igfbp4 -/- mice. Both male and female adult Igfbp4 -/- mice had marked growth retardation with reductions in body weight, body and femur lengths, fat proportion and lean mass at 8 and 16 weeks. Marked reductions in aBMD and aBMC were observed in 16-week-old Igfbp4 -/- females, but not in males. Femoral trabecular BV/TV and thickness, cortical fraction and thickness in 16-week-old Igfbp4 -/- females were significantly reduced. However, surprisingly, males had significantly more trabeculae with higher connectivity density than controls. Concordantly, histomorphometry revealed higher bone resorption and lower bone formation in Igfbp4 -/- females. In contrast, Igfbp4 -/- males had lower mineralized surface/bone surface. Femoral expression of Sost and circulating levels of sclerostin were reduced but only in Igfbp4 -/- males. Bone marrow stromal cultures from mutants showed increased osteogenesis, whereas osteoclastogenesis was markedly increased in cells from Igfbp4 -/- females but decreased in males. In sum, our results indicate that loss of Igfbp4 affects mesenchymal stromal cell differentiation, regulates osteoclastogenesis and influences both skeletal development and adult bone maintenance. Thus, IGFBP-4 modulates the skeleton in a gender-specific manner, acting as both a cell autonomous and cell non-autonomous factor. © 2017 The authors.

  11. Vitamin E provides protection for bone in mature hindlimb unloaded male rats

    NASA Technical Reports Server (NTRS)

    Smith, B. J.; Lucas, E. A.; Turner, R. T.; Evans, G. L.; Lerner, M. R.; Brackett, D. J.; Stoecker, B. J.; Arjmandi, B. H.

    2005-01-01

    The deleterious effects of skeletal unloading on bone mass and strength may, in part, result from increased production of oxygen-derived free radicals and proinflammatory cytokines. This study was designed to evaluate the ability of vitamin E (alpha-tocopherol), a free-radical scavenger with antiinflammatory properties, to protect against bone loss caused by skeletal unloading in mature male Sprague-Dawley rats. A 2 x 3 factorial design was used with either hindlimb unloading (HU) or normal loading (ambulatory; AMB), and low-dose (LD; 15 IU/kg diet), adequate-dose (AD; 75 IU/kg diet), or high-dose (HD; 500 IU/kg diet) vitamin E (DL-alpha-tocopherol acetate). To optimize the effects of vitamin E on bone, dietary treatments were initiated 9 weeks prior to unloading and continued during the 4-week unloading period, at which time animals were euthanized and blood and tissue samples were collected. Serum vitamin E was dose-dependently increased, confirming the vitamin E status of animals. The HD treatment improved oxidation parameters, as indicated by elevated serum ferric-reducing ability and a trend toward reducing tissue lipid peroxidation. Histomorphometric analysis of the distal femur revealed significant reductions in trabecular thickness (TbTh), double-labeled surface (dLS/BS), and rate of bone formation to bone volume (BFR/BV) due by HU. AMB animals on the HD diet and HU animals on the LD diet had reduced bone surface normalized to tissue volume (BS/TV) and trabecular number (TbN); however, the HD vitamin E protected against these changes in the HU animals. Our findings suggest that vitamin E supplementation provides modest bone protective effects during skeletal unloading.

  12. A new dinosaur ichnotaxon from the Lower Cretaceous Patuxent Formation of Maryland and Virginia

    USGS Publications Warehouse

    Stanford, Ray; Weems, Robert E.; Lockley, Martin G.

    2004-01-01

    In recent years, numerous dinosaur footprints have been discovered on bedding surfaces within the Lower Cretaceous Patuxent Formation of Maryland and Virginia. Among these, distinctive small tracks that display a combination of small manus with five digit impressions and a relatively much larger pes with four toe impressions evidently were made by animals belonging to the ornithischian family Hypsilophodontidae. These tracks differ from any ornithischian ichnotaxon previously described. We here name them Hypsiloichnus marylandicus and provide a description of their diagnostic characteristics. Although hypsilophodontid skeletal remains have not been found in the Patuxent, their skeletal remains are known from Lower Cretaceous strata of similar age in both western North America and Europe. Therefore, it is not surprising to find that an Early Cretaceous representative of this family also existed in eastern North America.

  13. Hybrid pregnant reference phantom series based on adult female ICRP reference phantom

    NASA Astrophysics Data System (ADS)

    Rafat-Motavalli, Laleh; Miri-Hakimabad, Hashem; Hoseinian-Azghadi, Elie

    2018-03-01

    This paper presents boundary representation (BREP) models of pregnant female and her fetus at the end of each trimester. The International Commission on Radiological Protection (ICRP) female reference voxel phantom was used as a base template in development process of the pregnant hybrid phantom series. The differences in shape and location of the displaced maternal organs caused by enlarging uterus were also taken into account. The CT and MR images of fetus specimens and pregnant patients of various ages were used to replace the maternal abdominal pelvic organs of template phantom and insert the fetus inside the gravid uterus. Each fetal model contains 21 different organs and tissues. The skeletal model of the fetus also includes age-dependent cartilaginous and ossified skeletal components. The replaced maternal organ models were converted to NURBS surfaces and then modified to conform to reference values of ICRP Publication 89. The particular feature of current series compared to the previously developed pregnant phantoms is being constructed upon the basis of ICRP reference phantom. The maternal replaced organ models are NURBS surfaces. With this great potential, they might have the feasibility of being converted to high quality polygon mesh phantoms.

  14. Mechanoprotection by skeletal muscle caveolae.

    PubMed

    Lo, Harriet P; Hall, Thomas E; Parton, Robert G

    2016-01-01

    Caveolae, small bulb-like pits, are the most abundant surface feature of many vertebrate cell types. The relationship of the structure of caveolae to their function has been a subject of considerable scientific interest in view of the association of caveolar dysfunction with human disease. In a recent study Lo et al. (1) investigated the organization and function of caveolae in skeletal muscle. Using quantitative 3D electron microscopy caveolae were shown to be predominantly organized into multilobed structures which provide a large reservoir of surface-connected membrane underlying the sarcolemma. These structures were preferentially disassembled in response to changes in membrane tension. Perturbation or loss of caveolae in mouse and zebrafish models suggested that caveolae can protect the muscle sarcolemma against damage in response to excessive membrane activity. Flattening of caveolae to release membrane into the bulk plasma membrane in response to increased membrane tension can allow cell shape changes and prevent membrane rupture. In addition, disassembly of caveolae can have widespread effects on lipid-based plasma membrane organization. These findings suggest that the ability of the caveolar membrane system to respond to mechanical forces is a crucial evolutionarily-conserved process which is compromised in disease conditions associated with mutations in key caveolar components.

  15. Mechanoprotection by skeletal muscle caveolae

    PubMed Central

    Lo, Harriet P; Hall, Thomas E; Parton, Robert G

    2016-01-01

    abstract Caveolae, small bulb-like pits, are the most abundant surface feature of many vertebrate cell types. The relationship of the structure of caveolae to their function has been a subject of considerable scientific interest in view of the association of caveolar dysfunction with human disease. In a recent study Lo et al.1 investigated the organization and function of caveolae in skeletal muscle. Using quantitative 3D electron microscopy caveolae were shown to be predominantly organized into multilobed structures which provide a large reservoir of surface-connected membrane underlying the sarcolemma. These structures were preferentially disassembled in response to changes in membrane tension. Perturbation or loss of caveolae in mouse and zebrafish models suggested that caveolae can protect the muscle sarcolemma against damage in response to excessive membrane activity. Flattening of caveolae to release membrane into the bulk plasma membrane in response to increased membrane tension can allow cell shape changes and prevent membrane rupture. In addition, disassembly of caveolae can have widespread effects on lipid-based plasma membrane organization. These findings suggest that the ability of the caveolar membrane system to respond to mechanical forces is a crucial evolutionarily-conserved process which is compromised in disease conditions associated with mutations in key caveolar components. PMID:26760312

  16. Development and Validation of Computational Fluid Dynamics Models for Prediction of Heat Transfer and Thermal Microenvironments of Corals

    PubMed Central

    Ong, Robert H.; King, Andrew J. C.; Mullins, Benjamin J.; Cooper, Timothy F.; Caley, M. Julian

    2012-01-01

    We present Computational Fluid Dynamics (CFD) models of the coupled dynamics of water flow, heat transfer and irradiance in and around corals to predict temperatures experienced by corals. These models were validated against controlled laboratory experiments, under constant and transient irradiance, for hemispherical and branching corals. Our CFD models agree very well with experimental studies. A linear relationship between irradiance and coral surface warming was evident in both the simulation and experimental result agreeing with heat transfer theory. However, CFD models for the steady state simulation produced a better fit to the linear relationship than the experimental data, likely due to experimental error in the empirical measurements. The consistency of our modelling results with experimental observations demonstrates the applicability of CFD simulations, such as the models developed here, to coral bleaching studies. A study of the influence of coral skeletal porosity and skeletal bulk density on surface warming was also undertaken, demonstrating boundary layer behaviour, and interstitial flow magnitude and temperature profiles in coral cross sections. Our models compliment recent studies showing systematic changes in these parameters in some coral colonies and have utility in the prediction of coral bleaching. PMID:22701582

  17. Zebrafish skeleton development: High resolution micro-CT and FIB-SEM block surface serial imaging for phenotype identification

    PubMed Central

    Silvent, Jeremie; Akiva, Anat; Brumfeld, Vlad; Reznikov, Natalie; Rechav, Katya; Yaniv, Karina; Addadi, Lia; Weiner, Steve

    2017-01-01

    Although bone is one of the most studied living materials, many questions about the manner in which bones form remain unresolved, including fine details of the skeletal structure during development. In this study, we monitored skeleton development of zebrafish larvae, using calcein fluorescence, high-resolution micro-CT 3D images and FIB-SEM in the block surface serial imaging mode. We compared calcein staining of the skeletons of the wild type and nacre mutants, which are transparent zebrafish, with micro-CT for the first 30 days post fertilization embryos, and identified significant differences. We quantified the bone volumes and mineral contents of bones, including otoliths, during development, and showed that such developmental differences, including otolith development, could be helpful in identifying phenotypes. In addition, high-resolution imaging revealed the presence of mineralized aggregates in the notochord, before the formation of the first bone in the axial skeleton. These structures might play a role in the storage of the mineral. Our results highlight the potential of these high-resolution 3D approaches to characterize the zebrafish skeleton, which in turn could prove invaluable information for better understanding the development and the characterization of skeletal phenotypes. PMID:29220379

  18. Gadd45a Protein Promotes Skeletal Muscle Atrophy by Forming a Complex with the Protein Kinase MEKK4.

    PubMed

    Bullard, Steven A; Seo, Seongjin; Schilling, Birgit; Dyle, Michael C; Dierdorff, Jason M; Ebert, Scott M; DeLau, Austin D; Gibson, Bradford W; Adams, Christopher M

    2016-08-19

    Skeletal muscle atrophy is a serious and highly prevalent condition that remains poorly understood at the molecular level. Previous work found that skeletal muscle atrophy involves an increase in skeletal muscle Gadd45a expression, which is necessary and sufficient for skeletal muscle fiber atrophy. However, the direct mechanism by which Gadd45a promotes skeletal muscle atrophy was unknown. To address this question, we biochemically isolated skeletal muscle proteins that associate with Gadd45a as it induces atrophy in mouse skeletal muscle fibers in vivo We found that Gadd45a interacts with multiple proteins in skeletal muscle fibers, including, most prominently, MEKK4, a mitogen-activated protein kinase kinase kinase that was not previously known to play a role in skeletal muscle atrophy. Furthermore, we found that, by forming a complex with MEKK4 in skeletal muscle fibers, Gadd45a increases MEKK4 protein kinase activity, which is both sufficient to induce skeletal muscle fiber atrophy and required for Gadd45a-mediated skeletal muscle fiber atrophy. Together, these results identify a direct biochemical mechanism by which Gadd45a induces skeletal muscle atrophy and provide new insight into the way that skeletal muscle atrophy occurs at the molecular level. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Numerical calculations for effects of structure of skeletal muscle on frequency-dependence of its electrical admittance and impedance

    NASA Astrophysics Data System (ADS)

    Sekine, Katsuhisa; Yamada, Ayumi; Kageyama, Hitomi; Igarashi, Takahiro; Yamamoto, Nana; Asami, Koji

    2015-06-01

    Numerical calculations were carried out by the finite difference method using three-dimensional models to examine effects of the structure of skeletal muscle on the frequency-dependence of its electrical admittance Y and impedance Z in transversal and longitudinal directions. In the models, the muscle cell was represented by a rectangular solid surrounded by a smooth surface membrane, and the cells were assumed to be distributed periodically. The width of the cross section of the cell, thickness of the intercellular medium, and the relative permittivities and the conductivities of the cell interior, the intercellular medium and the surface membrane were changed. Based on the results of the calculations, reported changes in Y and Z of the muscles from 1 kHz to 1 MHz were analyzed. The analyses revealed that a decreased cell radius was reasonable to explain the Y and Z of the muscles of immature rats, rats subjected to sciatic nerve crush at chronic stage and the amyotrophic lateral sclerosis (ALS) mice. Changes in Y and Z due to the sciatic nerve crush at acute stage were attributable to the decreased cell radius, the increased space between the cells, the increased permittivity of the surface membrane and the increased conductivity of the cell interior. The changes in Z due to contraction were explained by the changes in the cell radius, and the conductivities of the cell interior and the intercellular medium. The changes in Z of meat due to aging were compared with the effects of the increase in the conductivity of the surface membrane.

  20. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolch, Wesley

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2’s Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2’s revision of the target tissues of relevance for radiogenicmore » bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-μm cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-μm layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public« less

  1. Gender-related differences in the apparent timing of skeletal density bands in the reef-building coral Siderastrea siderea

    NASA Astrophysics Data System (ADS)

    Carricart-Ganivet, J. P.; Vásquez-Bedoya, L. F.; Cabanillas-Terán, N.; Blanchon, P.

    2013-09-01

    Density banding in skeletons of reef-building corals is a valuable source of proxy environmental data. However, skeletal growth strategy has a significant impact on the apparent timing of density-band formation. Some corals employ a strategy where the tissue occupies previously formed skeleton during as the new band forms, which leads to differences between the actual and apparent band timing. To investigate this effect, we collected cores from female and male colonies of Siderastrea siderea and report tissue thicknesses and density-related growth parameters over a 17-yr interval. Correlating these results with monthly sea surface temperature (SST) shows that maximum skeletal density in the female coincides with low winter SSTs, whereas in the male, it coincides with high summer SSTs. Furthermore, maximum skeletal densities in the female coincide with peak Sr/Ca values, whereas in the male, they coincide with low Sr/Ca values. Both results indicate a 6-month difference in the apparent timing of density-band formation between genders. Examination of skeletal extension rates also show that the male has thicker tissue and extends faster, whereas the female has thinner tissue and a denser skeleton—but both calcify at the same rate. The correlation between extension and calcification, combined with the fact that density banding arises from thickening of the skeleton throughout the depth reached by the tissue layer, implies that S. siderea has the same growth strategy as massive Porites, investing its calcification resources into linear extension. In addition, differences in tissue thicknesses suggest that females offset the greater energy requirements of gamete production by generating less tissue, resulting in differences in the apparent timing of density-band formation. Such gender-related offsets may be common in other corals and require that environmental reconstructions be made from sexed colonies and that, in fossil corals where sex cannot be determined, reconstructions must be duplicated in different colonies.

  2. Fine-Scale Skeletal Banding Can Distinguish Symbiotic from Asymbiotic Species among Modern and Fossil Scleractinian Corals.

    PubMed

    Frankowiak, Katarzyna; Kret, Sławomir; Mazur, Maciej; Meibom, Anders; Kitahara, Marcelo V; Stolarski, Jarosław

    2016-01-01

    Understanding the evolution of scleractinian corals on geological timescales is key to predict how modern reef ecosystems will react to changing environmental conditions in the future. Important to such efforts has been the development of several skeleton-based criteria to distinguish between the two major ecological groups of scleractinians: zooxanthellates, which live in symbiosis with dinoflagellate algae, and azooxanthellates, which lack endosymbiotic dinoflagellates. Existing criteria are based on overall skeletal morphology and bio/geo-chemical indicators-none of them being particularly robust. Here we explore another skeletal feature, namely fine-scale growth banding, which differs between these two groups of corals. Using various ultra-structural imaging techniques (e.g., TEM, SEM, and NanoSIMS) we have characterized skeletal growth increments, composed of doublets of optically light and dark bands, in a broad selection of extant symbiotic and asymbiotic corals. Skeletons of zooxanthellate corals are characterized by regular growth banding, whereas in skeletons of azooxanthellate corals the growth banding is irregular. Importantly, the regularity of growth bands can be easily quantified with a coefficient of variation obtained by measuring bandwidths on SEM images of polished and etched skeletal surfaces of septa and/or walls. We find that this coefficient of variation (lower values indicate higher regularity) ranges from ~40 to ~90% in azooxanthellate corals and from ~5 to ~15% in symbiotic species. With more than 90% (28 out of 31) of the studied corals conforming to this microstructural criterion, it represents an easy and robust method to discriminate between zooxanthellate and azooxanthellate corals. This microstructural criterion has been applied to the exceptionally preserved skeleton of the Triassic (Norian, ca. 215 Ma) scleractinian Volzeia sp., which contains the first example of regular, fine-scale banding of thickening deposits in a fossil coral of this age. The regularity of its growth banding strongly suggests that the coral was symbiotic with zooxanthellates.

  3. Fine-Scale Skeletal Banding Can Distinguish Symbiotic from Asymbiotic Species among Modern and Fossil Scleractinian Corals

    PubMed Central

    Frankowiak, Katarzyna; Kret, Sławomir; Mazur, Maciej; Meibom, Anders; Kitahara, Marcelo V.; Stolarski, Jarosław

    2016-01-01

    Understanding the evolution of scleractinian corals on geological timescales is key to predict how modern reef ecosystems will react to changing environmental conditions in the future. Important to such efforts has been the development of several skeleton-based criteria to distinguish between the two major ecological groups of scleractinians: zooxanthellates, which live in symbiosis with dinoflagellate algae, and azooxanthellates, which lack endosymbiotic dinoflagellates. Existing criteria are based on overall skeletal morphology and bio/geo-chemical indicators—none of them being particularly robust. Here we explore another skeletal feature, namely fine-scale growth banding, which differs between these two groups of corals. Using various ultra-structural imaging techniques (e.g., TEM, SEM, and NanoSIMS) we have characterized skeletal growth increments, composed of doublets of optically light and dark bands, in a broad selection of extant symbiotic and asymbiotic corals. Skeletons of zooxanthellate corals are characterized by regular growth banding, whereas in skeletons of azooxanthellate corals the growth banding is irregular. Importantly, the regularity of growth bands can be easily quantified with a coefficient of variation obtained by measuring bandwidths on SEM images of polished and etched skeletal surfaces of septa and/or walls. We find that this coefficient of variation (lower values indicate higher regularity) ranges from ~40 to ~90% in azooxanthellate corals and from ~5 to ~15% in symbiotic species. With more than 90% (28 out of 31) of the studied corals conforming to this microstructural criterion, it represents an easy and robust method to discriminate between zooxanthellate and azooxanthellate corals. This microstructural criterion has been applied to the exceptionally preserved skeleton of the Triassic (Norian, ca. 215 Ma) scleractinian Volzeia sp., which contains the first example of regular, fine-scale banding of thickening deposits in a fossil coral of this age. The regularity of its growth banding strongly suggests that the coral was symbiotic with zooxanthellates. PMID:26751803

  4. Soluble Leptin Receptor Predicts Insulin Sensitivity and Correlates With Upregulation of Metabolic Pathways in Men.

    PubMed

    Sommer, Christine; Lee, Sindre; Gulseth, Hanne Løvdal; Jensen, Jørgen; Drevon, Christian A; Birkeland, Kåre Inge

    2018-03-01

    Plasma soluble leptin receptor (sOb-R) seems protective of gestational and type 2 diabetes in observational studies, but the mechanisms are unknown. sOb-R is formed by ectodomain shedding of membrane-bound leptin receptors (Ob-Rs), but its associations with messenger RNA (mRNA) expression are scarcely explored. To explore associations between plasma levels of sOb-R and (1) insulin sensitivity, (2) mRNA pathways in adipose tissue and skeletal muscle, and (3) mRNA of candidate genes for sOb-R generation in adipose tissue and skeletal muscle. The MyoGlu study included 26 sedentary, middle-aged men who underwent a 12-week intensive exercise intervention. We measured plasma sOb-R with enzyme-linked immunosorbent assay, insulin sensitivity with a hyperinsulinemic euglycemic clamp, and mRNA in skeletal muscle and adipose tissue with high-throughput sequencing. Baseline plasma sOb-R was strongly associated with baseline glucose infusion rate (GIR) [β (95% confidence interval), 1.19 (0.57 to 1.82) mg/kg/min, P = 0.0006] and GIR improvement after the exercise intervention [0.58 (0.03 to 1.12) mg/kg/min, P = 0.039], also independently of covariates, including plasma leptin. In pathway analyses, high plasma sOb-R correlated with upregulation of metabolic pathways and downregulation of inflammatory pathways in both adipose tissue and skeletal muscle. In skeletal muscle, mRNA of LEPROT and LEPROTL1 (involved in Ob-R cell surface expression) and ADAM10 and ADAM17 (involved sOb-R-shedding) increased after the exercise intervention. Higher plasma sOb-R was associated with improved GIR, upregulation of metabolic pathways, and downregulation of inflammatory pathways, which may be possible mechanisms for the seemingly protective effect of plasma sOb-R on subsequent risk of gestational and type 2 diabetes found in observational studies.

  5. Rate equation for creatine kinase predicts the in vivo reaction velocity: /sup 31/P NMR surface coil studies in brain, heart, and skeletal muscle of the living rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bittl, J.A.; DeLayre, J.; Ingwall, J.S.

    1987-09-22

    Brain, heart, and skeletal muscle contain four different creatine kinase isozymes and various concentrations of substrates for the creatine kinase reaction. To identify if the velocity of the creatine kinase reaction under cellular conditions is regulated by enzyme activity and substrate concentrations as predicted by the rate equation, the authors used /sup 31/P NMR and spectrophotometric techniques to measure reaction velocity, enzyme content, isozyme distribution, and concentrations of substrates in brain, heart, and skeletal muscle of living rat under basal or resting conditions. The total tissue activity of creatine kinase in the direction of MgATP synthesis provided an estimate formore » V/sub max/ and exceeded the NMR-determined in vivo reaction velocities by an order of magnitude. The isozyme composition varied among the three tissues: >99% BB for brain; 14% MB, 61% MM, and 25% mitochondrial for heart; and 98% MM and 2% mitochondrial for skeletal muscle. The NMR-determined reaction velocities agreed with predicted values from the creatine kinase rate equation. The concentrations of free creatine and cytosolic MgADP, being less than or equal to the dissociation constants for each isozyme, were dominant terms in the creatine kinase rate equation for predicting the in vivo reaction velocity. Thus, they observed that the velocity of the creatine kinase reaction is regulated by total tissue enzyme activity and by the concentrations of creatine and MgADP in a manner that is independent of isozyme distribution.« less

  6. Paleotopography and substrate lithology as controls on initiation of Waulsortian Reef Growth: examples from Sacramento Mountains, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahr, W.M.; Blount, W.M.; George, P.G.

    1986-05-01

    Frameless mud mounds, usually called Waulsortian reefs, are common in Osagean and Kinderhookian rocks of North America and western Europe. Spectacular Waulsortian reefs crop out in the Sacramento Mountains of New Mexico along 10 mi of continuous exposure, where detailed petrographic studies and field measurements of the strata between the top of the Devonian and the base of the reefs reveal: (1) down-to-the-southwest paleoslope on an uneven, gently dipping ramp; (2) widespread deposition of skeletal packstones and siliciclastics to the northeast; (3) patchy, local thicks of skeletal packstones surrounded by shaly wackestones to the southwest; (4) relict highs on themore » Devonian surface beneath the skeletal packstone pods; (5) clusters of sheetlike reefs weakly associated with paleotopography in the northern outcrops; and (6) large, dome-like individual reefs strongly associated with depositional topography and skeletal packstone/grainstone substrates in the southern outcrops. The pre-reef strata do not exhibit abrupt changes in thickness or lithology to indicate a break in regional slope, and the reefs are not aligned with patterns in thickness of facies that would distinguish shelf-edge environments from lagoonal environments. Like their European counterparts, the Osagean reefs in the Sacramento Mountains grew on a ramp where the nonreef facies were grainy updip and muddy downdip, and reef anatomy varied from sheetlike updip to dome-like downdip. The association between paleotopography, substrate lithology, and the initiation of Waulsortian reef growth provides new information about regional depositional patterns in the Early Mississippian.« less

  7. The Sr/Ca-temperature relationship in coralline aragonite: Influence of variability in (Sr/Ca)[sub seawater] and skeletal growth parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Villiers, S.; Shen, G.T.; Nelson, B.K.

    1994-01-01

    This paper provides an evaluation of two of the most likely pitfalls of Sr/Ca thermometry, i.e., the effect of biogenic cycling of Sr vs. Ca in the surface ocean and the effect of variable extension rate on Sr incorporation in coralline aragonite. The authors also report calibration of the Sr/Ca-temperature relationship for three coral species, Porites lobata, Pocillopora eydouxi, and Pavona clavus, collected for the Hawaiian and Galapagos islands. Analyses of seawater samples show significant spatial and depth variability in the Sr:Ca ratio. The uncertainty introduced by this effect is estimated to be <0.2[degrees]C for corals located in tropical oligotrophicmore » waters, and potentially larger for corals located in upwelling areas. Sr/Ca along two different growth axes of a Galapagos Pavona clavus, with annual extension rates of [approximately]6 and 12 mm/y, respectively, indicate an offset of 1-2[degrees]C, with higher Sr/Ca values associated with slower extension rates. The offset observed between the two growth axes may be the result of variations in extension and/or calcification rate. These results are important in determining past sea surface temperatures for reconstruction of paleoclimates.« less

  8. A biodetrital coral mound complex: Key to early diagenetic processes in the mississippian bangor limestone

    USGS Publications Warehouse

    Haywick, D.W.; Kopaska-Merkel, D. C.; Bersch, M.G.

    2009-01-01

    The Bangor Limestone is a Mississippian (Chesterian) shallow marine carbonate formation exposed over a large portion of the Interior Low Plateaus province of northern Alabama. It is dominated by oolitic grainstone and skeletal wackestone and packstone, but in one outcrop near Moulton, Alabama, the Bangor contains a five m thick, 25 m wide, oolitebiodetrital moundtidal flat succession. This sequence is interpreted as a 4th order sea level cycle. Four petrofacies (oolite, mound, skeletal and mudstone/dolomicrite) and four diagenetic phases (iron oxide, fibrous calcite cement, calcite spar cement and dolomite) are distinguished at the study site. Iron oxide, a minor component, stained and/or coated some ooids, intraclasts and skeletal components in the oolite petrofacies. Many of the allochems were stained prior to secondary cortical growth suggesting a short period of subaerial exposure during oolite sedimentation. The oolite petrofacies also contains minor amounts of fibrous calcite cement, a first generation marine cement, and rare infiltrated micrite that might represent a second phase of marine cement, or a first phase of meteoric cement (i.e., "vadose silt") (Dunham 1969). Intergranular pore space in all four petrofacies is filled with up to three phases of meteoric calcite spar cement. The most complete record of meteoric cementation is preserved within coralline void spaces in the mound petrofacies and indicates precipitation in the following order: (1) non-ferroan scalenohedral spar, (2) ferroan drusy spar (0.1-0.4 wt% Fe2+) and (3) non-ferroan drusy spar. The first scalenohedral phase of meteoric cement is distributed throughout the oolite and mound petrofacies. The ferroan phase of meteoric calcite is a void-filling cement that is abundant in the mound petrofacies and less common in the skeletal and mudstone/dolomicrite petrofacies. Non-ferroan drusy calcite is pervasive throughout the Bangor Limestone at the Moulton study site. Growth of the fourth diagenetic phase, dolomite, was the dominant event in the micrite/dolomicrite petrofacies, particularly just below an irregular surface overlain by a brecciated interval. The irregular surface is interpreted as an exposure surface. Three phases of dolomite occur below the exposure surface. The majority is finely crystalline, anhedral, and enriched in Si4+, criteria which support a supratidal or mixed hypersaline\\meteoric origin. Secondary phases of coarser euhedral non-ferroan and ferroan dolomite are restricted to fenestrae and other voids in the micrite/dolomicrite petrofacies and were precipitated during subsequent meteoric diagenesis. Diagenesis of the Bangor Limestone at the Moulton outcrop was dominated by synsedimentary and very early meteoric processes driven by periods of subaerial exposure. Large voids within the mound petrofacies were particularly important, as they remained open long enough to record a more detailed early meteoric cement stratigraphy that might not be evident in Bangor Limestone outcrops elsewhere in Alabama.

  9. Facial and occlusal esthetic improvements of an adult skeletal Class III malocclusion using surgical, orthodontic, and implant treatment

    PubMed Central

    de Almeida Cardoso, Mauricio; de Avila, Erica Dorigatti; Guedes, Fabio Pinto; Battilani Filho, Valter Antonio Ban; Capelozza Filho, Leopoldino; Correa, Marcio Aurelio; Nary Filho, Hugo

    2016-01-01

    The aim of this clinical report is to describe the complex treatment of an adult Class III malocclusion patient who was disappointed with the outcome of a previous oral rehabilitation. Interdisciplinary treatment planning was performed with a primary indication for implant removal because of marginal bone loss and gingival recession, followed by orthodontic and surgical procedures to correct the esthetics and skeletal malocclusion. The comprehensive treatment approach included: (1) implant removal in the area of the central incisors; (2) combined orthodontic decompensation with mesial displacement and forced extrusion of the lateral incisors; (3) extraction of the lateral incisors and placement of new implants corresponding to the central incisors, which received provisional crowns; (4) orthognathic surgery for maxillary advancement to improve occlusal and facial relationships; and finally, (5) orthodontic refinement followed by definitive prosthetic rehabilitation of the maxillary central incisors and reshaping of the adjacent teeth. At the three-year follow-up, clinical and radiographic examinations showed successful replacement of the central incisors and improved skeletal and esthetic appearances. Moreover, a Class II molar relationship was obtained with an ideal overbite, overjet, and intercuspation. In conclusion, we report the successful esthetic anterior rehabilitation of a complex case in which interdisciplinary treatment planning improved facial harmony, provided gingival architecture with sufficient width and thickness, and improved smile esthetics, resulting in enhanced patient comfort and satisfaction. This clinical case report might be useful to improve facial esthetics and occlusion in patients with dentoalveolar and skeletal defects. PMID:26877982

  10. Creatine Supplementation and Skeletal Muscle Metabolism for Building Muscle Mass- Review of the Potential Mechanisms of Action.

    PubMed

    Farshidfar, Farnaz; Pinder, Mark A; Myrie, Semone B

    2017-01-01

    Creatine, a very popular supplement among athletic populations, is of growing interest for clinical applications. Since over 90% of creatine is stored in skeletal muscle, the effect of creatine supplementation on muscle metabolism is a widely studied area. While numerous studies over the past few decades have shown that creatine supplementation has many favorable effects on skeletal muscle physiology and metabolism, including enhancing muscle mass (growth/hypertrophy); the underlying mechanisms are poorly understood. This report reviews studies addressing the mechanisms of action of creatine supplementation on skeletal muscle growth/hypertrophy. Early research proposed that the osmotic effect of creatine supplementation serves as a cellular stressor (osmosensing) that acts as an anabolic stimulus for protein synthesis signal pathways. Other reports indicated that creatine directly affects muscle protein synthesis via modulations of components in the mammalian target of rapamycin (mTOR) pathway. Creatine may also directly affect the myogenic process (formation of muscle tissue), by altering secretions of myokines, such as myostatin and insulin-like growth factor-1, and expressions of myogenic regulatory factors, resulting in enhanced satellite cells mitotic activities and differentiation into myofiber. Overall, there is still no clear understanding of the mechanisms of action regarding how creatine affects muscle mass/growth, but current evidence suggests it may exert its effects through multiple approaches, with converging impacts on protein synthesis and myogenesis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Combining Short-Term Interval Training with Caloric Restriction Improves ß-Cell Function in Obese Adults.

    PubMed

    Francois, Monique E; Gilbertson, Nicole M; Eichner, Natalie Z M; Heiston, Emily M; Fabris, Chiara; Breton, Marc; Mehaffey, J Hunter; Hassinger, Taryn; Hallowell, Peter T; Malin, Steven K

    2018-06-03

    Although low-calorie diets (LCD) improve glucose regulation, it is unclear if interval exercise (INT) is additive. We examined the impact of an LCD versus LCD + INT training on ß-cell function in relation to glucose tolerance in obese adults. Twenty-six adults (Age: 46 ± 12 year; BMI 38 ± 6 kg/m²) were randomized to 2-week of LCD (~1200 kcal/day) or energy-matched LCD + INT (60 min/day alternating 3 min at 90 and 50% HRpeak). A 2 h 75 g oral glucose tolerance test (OGTT) was performed. Insulin secretion rates (ISR) were determined by deconvolution modeling to assess glucose-stimulated insulin secretion ([GSIS: ISR/glucose total area under the curve (tAUC)]) and ß-cell function (Disposition Index [DI: GSIS/IR]) relative to skeletal muscle (Matsuda Index), hepatic (HOMA-IR) and adipose (Adipose-IR fasting ) insulin resistance (IR). LCD + INT, but not LCD alone, reduced glucose and total-phase ISR tAUC (Interactions: p = 0.04 and p = 0.05, respectively). Both interventions improved skeletal muscle IR by 16% ( p = 0.04) and skeletal muscle and hepatic DI (Time: p < 0.05). Improved skeletal muscle DI was associated with lower glucose tAUC ( r = -0.57, p < 0.01). Thus, LCD + INT improved glucose tolerance more than LCD in obese adults, and these findings relate to ß-cell function. These data support LCD + INT for preserving pancreatic function for type 2 diabetes prevention.

  12. Antifibrotic effects of Smad4 small interfering RNAs in injured skeletal muscle after acute contusion.

    PubMed

    Li, H; Chen, J; Chen, S; Zhang, Q; Chen, S

    2011-10-01

    Muscle injuries are common musculoskeletal problems encountered in sports medicine clinics. In this study, we examined the effect of lentivirus-mediated small interfering RNA (siRNA) targeting Smad4 on the suppression of the fibrosis in injured skeletal muscles. We found that Smad4-siRNA could efficiently knock down the expression of Smad4 in the C2C12 myoblast cells and in the contunded mice gastrocnemius muscle. The expression of mRNA level of Smad4 decreased to 11% and 49% compared to the control group, respectively, and the expression of protein level decreased to 13% and 57% respectively. Moreover, the lentivirus-mediated siRNA was stably transfected only into the skeletal muscle and not into the liver of the animals. In contunded mice gastrocnemius, the collagenous and vimentin-positive area in the Smad4 siRNA group reduced to 36% and 37% compared to the control group, respectively. Furthermore, compared to the scrambled Smad4 siRNA-injected mice and PBS control-injected mice, the muscle function of the mice injected with lentivirus-mediated Smad4 siRNA improved in terms of both fast-twitch and tetanic strength (P<0.05). The results suggest that the gene therapy of inhibiting Smad4 by lentivirus-mediated siRNA could be a useful approach to prevent scar tissue formation and improve the function of injured skeletal muscle. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Establishment of a drug-induced rhabdomyolysis mouse model by co-administration of ciprofloxacin and atorvastatin.

    PubMed

    Matsubara, Akiko; Oda, Shingo; Akai, Sho; Tsuneyama, Koichi; Yokoi, Tsuyoshi

    2018-07-01

    Rhabdomyolysis is one of the serious side effects of ciprofloxacin (CPFX), a widely used antibacterial drug; and occasionally, acute kidney injury (AKI) occurs. Often, rhabdomyolysis has occurred in patients taking CPFX co-administered with statins. The purpose of this study is to establish a mouse model of drug-induced rhabdomyolysis by co-administration of CPFX and atorvastatin (ATV) and to clarify the mechanisms of its pathogenesis. C57BL/6J mice treated with L-buthionine-(S,R)-sulfoximine (BSO), a glutathione synthesis inhibitor, were orally administered with CPFX and ATV for 4 days. Plasma levels of creatinine phosphokinase (CPK) and aspartate aminotransferase (AST) were significantly increased in the CPFX and ATV-co-administered group. Histopathological examination of skeletal muscle observed degeneration in gastrocnemius muscle and an increased number of the satellite cells. Expressions of skeletal muscle-specific microRNA and mRNA in plasma and skeletal muscle, respectively, were significantly increased. The area under the curve (AUC) of plasma CPFX was significantly increased in the CPFX and ATV-co-administered group. Furthermore, cytoplasmic vacuolization and a positively myoglobin-stained region in kidney tissue and high content of myoglobin in urine were observed. These results indicated that AKI was induced by myoglobin that leaked from skeletal muscle. The established mouse model in the present study would be useful for predicting potential rhabdomyolysis risks in preclinical drug development. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Impact of Virtual Touch Quantification in Acoustic Radiation Force Impulse for Skeletal Muscle Mass Loss in Chronic Liver Diseases

    PubMed Central

    Nishikawa, Hiroki; Nishimura, Takashi; Enomoto, Hirayuki; Iwata, Yoshinori; Ishii, Akio; Miyamoto, Yuho; Ishii, Noriko; Yuri, Yukihisa; Takata, Ryo; Hasegawa, Kunihiro; Nakano, Chikage; Yoh, Kazunori; Aizawa, Nobuhiro; Sakai, Yoshiyuki; Ikeda, Naoto; Takashima, Tomoyuki; Nishiguchi, Shuhei; Iijima, Hiroko

    2017-01-01

    Background and aims: We sought to clarify the relationship between virtual touch quantification (VTQ) in acoustic radiation force impulse and skeletal muscle mass as assessed by bio-electronic impedance analysis in patients with chronic liver diseases (CLDs, n = 468, 222 males and 246 females, median age = 62 years). Patients and methods: Decreased skeletal muscle index (D-SMI) was defined as skeletal muscle index (SMI) <7.0 kg/m2 for males and as SMI <5.7 kg/m2 for females, according to the recommendations in current Japanese guidelines. We examined the correlation between SMI and VTQ levels and investigated factors linked to D-SMI in the univariate and multivariate analyses. The area under the receiver operating curve (AUROC) for the presence of D-SMI was also calculated. Results: In patients with D-SMI, the median VTQ level was 1.64 meters/second (m/s) (range, 0.93–4.32 m/s), while in patients without D-SMI, the median VTQ level was 1.11 m/s (range, 0.67–4.09 m/s) (p < 0.0001). In the multivariate analysis, higher VTQ was found to be an independent predictor linked to the presence of D-SMI (p < 0.0001). In receiver operating characteristic analysis, body mass index had the highest AUROC (0.805), followed by age (0.721) and VTQ (0.706). Conclusion: VTQ levels can be useful for predicting D-SMI in patients with CLDs. PMID:28621757

  15. Reduced fiber size, capillary supply and mitochondrial activity in constitutional thinness' skeletal muscle.

    PubMed

    Galusca, Bogdan; Verney, Julien; Meugnier, Emmanuelle; Ling, Yiin; Edouard, Pascal; Feasson, Leonard; Ravelojaona, Marion; Vidal, Hubert; Estour, Bruno; Germain, Natacha

    2018-05-13

    Constitutional thinness (CT) is a rare condition of natural low bodyweight, with no psychological issues, no marker of undernutrition and a resistance to weight gain. This study evaluated the skeletal muscle phenotype of CT women by comparison to a normal BMI control group. 10 CT women (BMI< 17.5 kg/m2) and 10 female controls (BMI: 18.5-25 kg/m2) underwent metabolic and hormonal assessment along with muscle biopsies to analyse the skeletal muscular fibers pattern, capillarity, enzymes activities and transcriptomics. CTs displayed similar energy balance metabolic and hormonal profile to controls. CTs presented with lower mean area of all the skeletal muscular fibers (-24%, p= 0.01) and percentage of slow-twitch type I fibers (-25%, p=0.02, respectively). Significant down regulation of the mRNA expression of several mitochondrial related genes and triglycerides metabolism was found along with low Cytochrome C Oxydase (COX) activity and capillary network in type I fibers. Pre and post mitochondrial respiratory chain enzymes levels were found similar to controls. Transcriptomics also revealed downregulation of cytoskeletal related genes. Diminished type I fibers, decreased mitochondrial and metabolic activity suggested by these results are discordant with normal resting metabolic rate of CT subjects. Downregulated genes related to cytoskeletal proteins and myocyte differentiation could account for CT's resistance to weight gain. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Effects of systemic hypoxia on human muscular adaptations to resistance exercise training

    PubMed Central

    Kon, Michihiro; Ohiwa, Nao; Honda, Akiko; Matsubayashi, Takeo; Ikeda, Tatsuaki; Akimoto, Takayuki; Suzuki, Yasuhiro; Hirano, Yuichi; Russell, Aaron P.

    2014-01-01

    Abstract Hypoxia is an important modulator of endurance exercise‐induced oxidative adaptations in skeletal muscle. However, whether hypoxia affects resistance exercise‐induced muscle adaptations remains unknown. Here, we determined the effect of resistance exercise training under systemic hypoxia on muscular adaptations known to occur following both resistance and endurance exercise training, including muscle cross‐sectional area (CSA), one‐repetition maximum (1RM), muscular endurance, and makers of mitochondrial biogenesis and angiogenesis, such as peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PGC‐1α), citrate synthase (CS) activity, nitric oxide synthase (NOS), vascular endothelial growth factor (VEGF), hypoxia‐inducible factor‐1 (HIF‐1), and capillary‐to‐fiber ratio. Sixteen healthy male subjects were randomly assigned to either a normoxic resistance training group (NRT, n =7) or a hypoxic (14.4% oxygen) resistance training group (HRT, n =9) and performed 8 weeks of resistance training. Blood and muscle biopsy samples were obtained before and after training. After training muscle CSA of the femoral region, 1RM for bench‐press and leg‐press, muscular endurance, and skeletal muscle VEGF protein levels significantly increased in both groups. The increase in muscular endurance was significantly higher in the HRT group. Plasma VEGF concentration and skeletal muscle capillary‐to‐fiber ratio were significantly higher in the HRT group than the NRT group following training. Our results suggest that, in addition to increases in muscle size and strength, HRT may also lead to increased muscular endurance and the promotion of angiogenesis in skeletal muscle. PMID:24907297

  17. Skeletal muscle adaptations to microgravity exposure in the mouse.

    PubMed

    Harrison, B C; Allen, D L; Girten, B; Stodieck, L S; Kostenuik, P J; Bateman, T A; Morony, S; Lacey, D; Leinwand, L A

    2003-12-01

    To investigate the effects of microgravity on murine skeletal muscle fiber size, muscle contractile protein, and enzymatic activity, female C57BL/6J mice, aged 64 days, were divided into animal enclosure module (AEM) ground control and spaceflight (SF) treatment groups. SF animals were flown on the space shuttle Endeavour (STS-108/UF-1) and subjected to approximately 11 days and 19 h of microgravity. Immunohistochemical analysis of muscle fiber cross-sectional area revealed that, in each of the muscles analyzed, mean muscle fiber cross-sectional area was significantly reduced (P < 0.0001) for all fiber types for SF vs. AEM control. In the soleus, immunohistochemical analysis of myosin heavy chain (MHC) isoform expression revealed a significant increase in the percentage of muscle fibers expressing MHC IIx and MHC IIb (P < 0.05). For the gastrocnemius and plantaris, no significant changes in MHC isoform expression were observed. For the muscles analyzed, no alterations in MHC I or MHC IIa protein expression were observed. Enzymatic analysis of the gastrocnemius revealed a significant decrease in citrate synthase activity in SF vs. AEM control.

  18. Hydrogenation of citral into its derivatives using heterogeneous catalyst

    NASA Astrophysics Data System (ADS)

    Sudiyarmanto, Hidayati, Luthfiana Nurul; Kristiani, Anis; Aulia, Fauzan

    2017-11-01

    Citral as known as a monoterpene can be found in plants and citrus fruits. The hydrogenation of citral into its derivatives become interesting area for scientist. This compound and its derivatives can be used for many application in pharmaceuticals and food areas. The development of heterogeneous catalysts become an important aspect in catalytic hydrogenation citral process. Nickel supported catalysts are well known as hydrogenation catalyst. These heterogeneous catalysts were tested their catalytic activity in hydrogenation of citral. The effect of various operation conditions, in term of feed concentration, catalyst loading, temperature, and reaction time were also studied. The liquid products produced were analyzed by using Gas Chromatography-Mass Spectroscopy (GC-MS). The result of catalytic activity tests showed nickel skeletal catalyst exhibits best catalytic activity in hydrogenation of citral. The optimum of operation condition was achieved in citral concentration 0.1 M with nickel skeletal catalyst loading of 10% (w/w) at 80 °C and 20 bar for 2 hours produced the highest conversion as of 64.20% and the dominant product resulted was citronellal as of 56.48%.

  19. Inhibition of myosin light-chain phosphorylation inverts the birefringence response of porcine airway smooth muscle

    PubMed Central

    Smolensky, Alexander V; Gilbert, Susan H; Harger-Allen, Margaret; Ford, Lincoln E

    2007-01-01

    Muscle birefringence, caused mainly by parallel thick filaments, increases in smooth muscle during stimulation, signalling thick filament formation upon activation. The reverse occurs in skeletal muscle, where a decrease in birefringence has been correlated with crossbridge movement away from the thick filaments. When force generation by trachealis muscle was inhibited with wortmannin, which inhibits myosin light-chain phosphorylation and thick-filament formation, but not the calcium increase caused by stimulation, the birefringence response inverted, suggesting crossbridge movement similar to that of skeletal muscle. Resistance to quick stretches was much greater in stimulated muscle than in unstimulated muscle before wortmannin treatment and no different in stimulated and unstimulated muscle after force inhibition by wortmannin. Before wortmannin treatment, stimulation reduced thick-filament cross-sectional areas in electron micrographs by 44%. After force inhibition by wortmannin, filament areas were not significantly different in stimulated and unstimulated muscle and not significantly different from those of relaxed muscle without wortmannin treatment. These results suggest that myofibrillar-space calcium causes crossbridges to move away from the thick filaments without firmly attaching to thin filaments. PMID:17095560

  20. Ca2+/calmodulin-dependent transcriptional pathways: potential mediators of skeletal muscle growth and development.

    PubMed

    Al-Shanti, Nasser; Stewart, Claire E

    2009-11-01

    The loss of muscle mass with age and disuse has a significant impact on the physiological and social well-being of the aged; this is an increasingly important problem as the population becomes skewed towards older age. Exercise has psychological benefits but it also impacts on muscle protein synthesis and degradation, increasing muscle tissue volume in both young and older individuals. Skeletal muscle hypertrophy involves an increase in muscle mass and cross-sectional area and associated increased myofibrillar protein content. Attempts to understand the molecular mechanisms that underlie muscle growth, development and maintenance, have focused on characterising the molecular pathways that initiate, maintain and regenerate skeletal muscle. Such understanding may aid in improving targeted interventional therapies for age-related muscle loss and muscle wasting associated with diseases. Two major routes through which skeletal muscle development and growth are regulated are insulin-like growth factor I (IGF-I) and Ca(2+)/calmodulin-dependent transcriptional pathways. Many reviews have focused on understanding the signalling pathways of IGF-I and its receptor, which govern skeletal muscle hypertrophy. However, alternative molecular signalling pathways such as the Ca(2+)/calmodulin-dependent transcriptional pathways should also be considered as potential mediators of muscle growth. These latter pathways have received relatively little attention and the purpose herein is to highlight the progress being made in the understanding of these pathways and associated molecules: calmodulin, calmodulin kinases (CaMKs), calcineurin and nuclear factor of activated T-cell (NFAT), which are involved in skeletal muscle regulation. We describe: (1) how conformational changes in the Ca(2+) sensor calmodulin result in the exposure of binding pockets for the target proteins (CaMKs and calcineurin). (2) How Calmodulin consequently activates either the Ca(2+)/calmodulin-dependent kinases pathways (via CaMKs) or calmodulin-dependent serine/threonine phosphatases (via calcineurin). (3) How calmodulin kinases alter transcription in the nucleus through the phosphorylation, deactivation and translocation of histone deacetylase 4 (HDAC4) from the nucleus to the cytoplasm. (4) How calcineurin transmits signals to the nucleus through the dephosphorylation and translocation of NFAT from the cytoplasm to the nucleus.

  1. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Torres, S.; Truong, T.; Moyer, E. L.; Kumar, A.; Tahimic, Candice C. G.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2016-01-01

    Bone loss can occur due to many challenges such age, radiation, microgravity, and Reactive Oxygen Species (ROS) play a critical role in bone resorption by osteoclasts (Bartell et al. 2014). We hypothesize that suppression of excess ROS in skeletal cells, both osteoblasts and osteoclasts, regulates skeletal growth and remodeling. To test our hypothesis, we used transgenic mCAT mice which overexpress the human anti-oxidant catalase gene targeted to the mitochondria, the main site for endogenous ROS production. mCAT mice have a longer life-span than wildtype controls and have been used to study various age-related disorders. To stimulate remodeling, 16 week old mCAT mice or wildtype mice were exposed to treatment (hindlimb-unloading and total body-irradiation) or sham treatment conditions (control). Tissues were harvested 2 weeks later for skeletal analysis (microcomputed tomography), biochemical analysis (gene expression and oxidative damage measurements), and ex vivo bone marrow derived cell culture (osteoblastogenesis and osteoclastogenesis). mCAT mice expressed the transgene and displayed elevated catalase activity in skeletal tissue and marrow-derived osteoblasts and osteoclasts grown ex vivo. In addition, when challenged with treatment, bone tissues from wildtype mice showed elevated levels of malondialdehyde (MDA), indicating oxidative damage) whereas mCAT mice did not. Correlation analysis revealed that increased catalase activity significantly correlated with decreased MDA levels and that increased oxidative damage correlated with decreased percent bone volume (BVTV). In addition, ex-vivo cultured osteoblast colony growth correlated with catalase activity in the osteoblasts. Thus, we showed that these transgenic mice can be used as a model to study the relationship between markers of oxidative damage and skeletal properties. mCAT mice displayed reduced BVTV and trabecular number relative to wildtype mice, as well as increased structural model index in the cancellous tibia. Treatment caused bone loss in wildtype mice, as expected. Treatment also caused deficits in microarchitecture of mCAT mice, although less severe than wildtype mice in some parameters (percent bone volume, structural model index and cortical area). In conclusion, our results indicate that endogenous ROS signaling in both osteoblast and osteoclast lineage cells contributes to skeletal growth and remodeling, and quenching oxidative damage could play a role in bone loss prevention.

  2. Miniplate with a bendable C-tube head allows the clinician to alter biomechanical advantage without physically moving the skeletal anchorage device.

    PubMed

    Seo, Kyung-Won; Ahn, Hyo-Won; Kim, Seong-Hun; Chung, Kyu-Rhim; Nelson, Gerald

    2014-01-01

    This article introduces a binary function of a miniplate with a bendable C-tube head used in corticotomy-assisted segment intrusion. The advantage of the device is that the point of force application can be altered without having to move the miniplate or place an additional anchorage device. Cases for this study were selected from patients who received perisegmental corticotomy with compression osteogenesis (Speedy Surgical Orthodontics) for segmental intrusion. For the skeletal anchorage on patients who received Speedy Surgical Orthodontics for posterior segment intrusion to improve on severe open bite correction, the C-tube was placed on the buccal wall of the maxilla for traction of orthopedic force as a temporary skeletal anchorage. The C-tube head portion is made with titanium grade II, which makes bending easy with a Weingart plier. This adjustment regains distance and range needed to continue intrusion of posterior segment. As an alternative to orthognathic surgery to correct a severe open bite, perisegmental corticotomy combined with orthopedic force application from a temporary skeletal anchorage device can be used. The corticotomy-assisted segment intrusion is a 2-stage procedure: first, the corticotomy is performed in the palate and 2 weeks later in the buccal alveolus. A C-plate was placed in the midpalatal area, and a C-tube was placed apical to the buccal corticotomy site. Elastics were used with orthopedic forces to induce compression osteogenesis. As the intrusion took place, the elastic stretched, and resultant force and range in the buccal segment decreased. The C-tube head was adjusted by bending to gain more distance, reviving the elastic force on the posterior segment until desired intrusion was accomplished. The miniplate with a bendable C-tube head serves for temporary skeletal anchorage of orthopedic traction force to achieve segmental intrusion and has the advantage that the bendable head can be adjusted to improve the force application for intrusion without having to move or place another temporary skeletal anchorage device.

  3. Molecular determinants of force production in human skeletal muscle fibers: effects of myosin isoform expression and cross-sectional area.

    PubMed

    Miller, Mark S; Bedrin, Nicholas G; Ades, Philip A; Palmer, Bradley M; Toth, Michael J

    2015-03-15

    Skeletal muscle contractile performance is governed by the properties of its constituent fibers, which are, in turn, determined by the molecular interactions of the myofilament proteins. To define the molecular determinants of contractile function in humans, we measured myofilament mechanics during maximal Ca(2+)-activated and passive isometric conditions in single muscle fibers with homogenous (I and IIA) and mixed (I/IIA and IIA/X) myosin heavy chain (MHC) isoforms from healthy, young adult male (n = 5) and female (n = 7) volunteers. Fibers containing only MHC II isoforms (IIA and IIA/X) produced higher maximal Ca(2+)-activated forces over the range of cross-sectional areas (CSAs) examined than MHC I fibers, resulting in higher (24-42%) specific forces. The number and/or stiffness of the strongly bound myosin-actin cross bridges increased in the higher force-producing MHC II isoforms and, in all isoforms, better predicted force than CSA. In men and women, cross-bridge kinetics, in terms of myosin attachment time and rate of myosin force production, were independent of CSA, although women had faster (7-15%) kinetics. The relative proportion of cross bridges and/or their stiffness was reduced as fiber size increased, causing a decline in specific force. Results from our examination of molecular mechanisms across the range of physiological CSAs explain the variation in specific force among the different fiber types in human skeletal muscle, which may have relevance to understanding how various physiological and pathophysiological conditions modulate single-fiber and whole muscle contractility. Copyright © 2015 the American Physiological Society.

  4. Molecular determinants of force production in human skeletal muscle fibers: effects of myosin isoform expression and cross-sectional area

    PubMed Central

    Bedrin, Nicholas G.; Ades, Philip A.; Palmer, Bradley M.; Toth, Michael J.

    2015-01-01

    Skeletal muscle contractile performance is governed by the properties of its constituent fibers, which are, in turn, determined by the molecular interactions of the myofilament proteins. To define the molecular determinants of contractile function in humans, we measured myofilament mechanics during maximal Ca2+-activated and passive isometric conditions in single muscle fibers with homogenous (I and IIA) and mixed (I/IIA and IIA/X) myosin heavy chain (MHC) isoforms from healthy, young adult male (n = 5) and female (n = 7) volunteers. Fibers containing only MHC II isoforms (IIA and IIA/X) produced higher maximal Ca2+-activated forces over the range of cross-sectional areas (CSAs) examined than MHC I fibers, resulting in higher (24–42%) specific forces. The number and/or stiffness of the strongly bound myosin-actin cross bridges increased in the higher force-producing MHC II isoforms and, in all isoforms, better predicted force than CSA. In men and women, cross-bridge kinetics, in terms of myosin attachment time and rate of myosin force production, were independent of CSA, although women had faster (7–15%) kinetics. The relative proportion of cross bridges and/or their stiffness was reduced as fiber size increased, causing a decline in specific force. Results from our examination of molecular mechanisms across the range of physiological CSAs explain the variation in specific force among the different fiber types in human skeletal muscle, which may have relevance to understanding how various physiological and pathophysiological conditions modulate single-fiber and whole muscle contractility. PMID:25567808

  5. The implications of reduced metabolic rate in resource-limited corals.

    PubMed

    Jacobson, Lianne M; Edmunds, Peter J; Muller, Erik B; Nisbet, Roger M

    2016-03-01

    Many organisms exhibit depressed metabolism when resources are limited, a change that makes it possible to balance an energy budget. For symbiotic reef corals, daily cycles of light and periods of intense cloud cover can be chronic causes of food limitation through reduced photosynthesis. Furthermore, coral bleaching is common in present-day reefs, creating a context in which metabolic depression could have beneficial value to corals. In the present study, corals (massive Porites spp.) were exposed to an extreme case of resource limitation by starving them of food and light for 20 days. When resources were limited, the corals depressed area-normalized respiration to 37% of initial rates, and coral biomass declined to 64% of initial amounts, yet the corals continued to produce skeletal mass. However, the declines in biomass cannot account for the declines in area-normalized respiration, as mass-specific respiration declined to 30% of the first recorded time point. Thus, these corals appear to be capable of metabolic depression. It is possible that some coral species are better able to depress metabolic rates than others; such variation could explain differential survival during conditions that limit resources (e.g. shading). Furthermore, we found that maintenance of existing biomass, in part, supports the production of skeletal mass. This association could be explained if maintenance supplies needed energy (e.g. ATP) or inorganic carbon (i.e. CO2) that otherwise limits the production of skeletal mass. Finally, the observed metabolic depression can be explained as a change in pool sizes, and does not require a change in metabolic rules. © 2016. Published by The Company of Biologists Ltd.

  6. Effects of Simulated Surface Effect Ship Motions on Crew Habitability. Phase II. Volume 4. Crew Cognitive Functions, Physiological Stress, and Sleep

    DTIC Science & Technology

    1977-05-01

    1OUM 44 rRE JamesIV FUNCION , Jn Vanlo07 James C./Miller NW147-C0_el H~fumnan Factors Research, Incorporated AE OKUI UBR Goleta, California 93017 311...a reduction in renal blood flow) and dilation of the skeletal muscle vessels produce a redistribution of the enlarged cardiac output which anticipates

  7. Polyurethane acrylates as effective substrates for sustained in vitro culture of human myotubes.

    PubMed

    Andriani, Yosephine; Chua, Jason Min-Wen; Chua, Benjamin Yan-Jiang; Phang, In Yee; Shyh-Chang, Ng; Tan, Wui Siew

    2017-07-15

    Muscular disease has debilitating effects with severe damage leading to death. Our knowledge of muscle biology, disease and treatment is largely derived from non-human cell models, even though non-human cells are known to differ from human cells in their biochemical responses. Attempts to develop highly sought after in vitro human cell models have been plagued by early cell delamination and difficulties in achieving human myotube culture in vitro. In this work, we developed polyurethane acrylate (PUA) materials to support long-term in vitro culture of human skeletal muscle tissue. Using a constant base with modulated crosslink density we were able to vary the material modulus while keeping surface chemistry and roughness constant. While previous studies have focused on materials that mimic soft muscle tissue with stiffness ca. 12kPa, we investigated materials with tendon-like surface moduli in the higher 150MPa to 2.4GPa range, which has remained unexplored. We found that PUA of an optimal modulus within this range can support human myoblast proliferation, terminal differentiation and sustenance beyond 35days, without use of any extracellular protein coating. Results show that PUA materials can serve as effective substrates for successful development of human skeletal muscle cell models and are suitable for long-term in vitro studies. We developed polyurethane acrylates (PUA) to modulate the human skeletal muscle cell growth and maturation in vitro by controlling surface chemistry, morphology and tuning material's stiffness. PUA was able to maintain muscle cell viability for over a month without any detectable signs of material degradation. The best performing PUA prevented premature cell detachment from the substrate which often hampered long-term muscle cell studies. It also supported muscle cell maturation up to the late stages of differentiation. The significance of these findings lies in the possibility to advance studies on muscle cell biology, disease and therapy by using human muscle cells instead of relying on the widely used animal-based in vitro models. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Biodistribution of strontium and barium in the developing and mature skeleton of rats.

    PubMed

    Panahifar, Arash; Chapman, L Dean; Weber, Lynn; Samadi, Nazanin; Cooper, David M L

    2018-06-19

    Bone acts as a reservoir for many trace elements. Understanding the extent and pattern of elemental accumulation in the skeleton is important from diagnostic, therapeutic, and toxicological perspectives. Some elements are simply adsorbed to bone surfaces by electric force and are buried under bone mineral, while others can replace calcium atoms in the hydroxyapatite structure. In this article, we investigated the extent and pattern of skeletal uptake of barium and strontium in two different age groups, growing, and skeletally mature, in healthy rats. Animals were dosed orally for 4 weeks with either strontium chloride or barium chloride or combined. The distribution of trace elements was imaged in 3D using synchrotron K-edge subtraction micro-CT at 13.5 µm resolution and 2D electron probe microanalysis (EPMA). Bulk concentration of the elements in serum and bone (tibiae) was also measured by mass spectrometry to study the extent of uptake. Toxicological evaluation did not show any cardiotoxicity or nephrotoxicity. Both elements were primarily deposited in the areas of active bone turnover such as growth plates and trabecular bone. Barium and strontium concentration in the bones of juvenile rats was 2.3 times higher, while serum levels were 1.4 and 1.5 times lower than adults. In all treatment and age groups, strontium was preferred to barium even though equal molar concentrations were dosed. This study displayed spatial co-localization of barium and strontium in bone for the first time. Barium and strontium can be used as surrogates for calcium to study the pathological changes in animal models of bone disease and to study the effects of pharmaceutical compounds on bone micro-architecture and bone remodeling in high spatial sensitivity and precision.

  9. Partial gravity unloading inhibits bone healing responses in a large animal model.

    PubMed

    Gadomski, Benjamin C; McGilvray, Kirk C; Easley, Jeremiah T; Palmer, Ross H; Santoni, Brandon G; Puttlitz, Christian M

    2014-09-22

    The reduction in mechanical loading associated with space travel results in dramatic decreases in the bone mineral density (BMD) and mechanical strength of skeletal tissue resulting in increased fracture risk during spaceflight missions. Previous rodent studies have highlighted distinct bone healing differences in animals in gravitational environments versus those during spaceflight. While these data have demonstrated that microgravity has deleterious effects on fracture healing, the direct translation of these results to human skeletal repair remains problematic due to substantial differences between rodent and human bone. Thus, the objective of this study was to investigate the effects of partial gravitational unloading on long-bone fracture healing in a previously-developed large animal Haversian bone model. In vivo measurements demonstrated significantly higher orthopedic plate strains (i.e. load burden) in the Partial Unloading (PU) Group as compared to the Full Loading (FL) Group following the 28-day healing period due to inhibited healing in the reduced loading environment. DEXA BMD in the metatarsus of the PU Group decreased 17.6% (p<0.01) at the time of the ostectomy surgery. Four-point bending stiffness of the PU Group was 4.4 times lower than that of the FL Group (p<0.01), while µCT and histomorphometry demonstrated reduced periosteal callus area (p<0.05), mineralizing surface (p<0.05), mineral apposition rate (p<0.001), bone formation rate (p<0.001), and periosteal/endosteal osteoblast numbers (p<0.001/p<0.01, respectively) as well as increased periosteal osteoclast number (p<0.05). These data provide strong evidence that the mechanical environment dramatically affects the fracture healing cascade, and likely has a negative impact on Haversian system healing during spaceflight. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Transphyseal ACL Reconstruction in Skeletally Immature Patients: Does Independent Femoral Tunnel Drilling Place the Physis at Greater Risk Compared With Transtibial Drilling?

    PubMed

    Cruz, Aristides I; Lakomkin, Nikita; Fabricant, Peter D; Lawrence, J Todd R

    2016-06-01

    Most studies examining the safety and efficacy of transphyseal anterior cruciate ligament (ACL) reconstruction for skeletally immature patients utilize transtibial drilling. Independent femoral tunnel drilling may impart a different pattern of distal femoral physeal involvement. To radiographically assess differences in distal femoral physeal disruption between transtibial and independent femoral tunnel drilling. We hypothesized that more oblique tunnels associated with independent drilling involve a significantly larger area of physeal disruption compared with vertically oriented tunnels. Cross-sectional study; Level of evidence, 3. We analyzed skeletally immature patients aged between 10 and 15 years who underwent transphyseal ACL reconstruction utilizing an independent femoral tunnel drilling technique between January 1, 2008, and March 31, 2011. These patients were matched with a transtibial technique cohort based on age and sex. Radiographic measurements were recorded from preoperative magnetic resonance imaging and postoperative radiographs. Ten patients in each group were analyzed. There were significant differences between independent drilling and transtibial drilling cohorts in the estimated area of physeal disruption (1.64 vs 0.74 cm(2); P < .001), femoral tunnel angles (32.1° vs 72.8°; P < .001), and medial/lateral location of the femoral tunnel (24.2 vs 36.1 mm from lateral cortex; P = .001), respectively. There was a significant inverse correlation between femoral tunnel angle and estimated area of distal femoral physeal disruption (r = -0.8255, P = .003). Femoral tunnels created with an independent tunnel drilling technique disrupt a larger area of the distal femoral physis and create more eccentric tunnels compared with a transtibial technique. As most studies noting the safety of transphyseal ACL reconstruction have utilized a central, vertical femoral tunnel, surgeons should be aware that if an independent femoral tunnel technique is utilized during transphyseal ACL reconstruction, more physeal tissue is at risk and tunnels are more eccentrically placed across the physis when drilling at more horizontal angles. Prior studies have shown that greater physeal involvement and eccentric tunnels may increase the risk of growth disturbance.

  11. Automatic reconstruction of the muscle architecture from the superficial layer fibres data.

    PubMed

    Kohout, Josef; Cholt, David

    2017-10-01

    Physiological cross-sectional area (PCSA) of a muscle plays a significant role in determining the force contribution of muscle fascicles to skeletal movement. This parameter is typically calculated from the lengths of muscle fibres selectively sampled from the superficial layer of the muscle. However, recent studies have found that the length of fibres in the superficial layer often differs significantly (p < 0.5) from the length of fibres in the deep layer. As a result, PCSA estimation is inaccurate. In this paper, we propose a method to automatically reconstruct fibres in the whole volume of a muscle from those selectively sampled on the superficial layer. The method performs a centripetal Catmull-Rom interpolation of the input fibres within the volume of a muscle represented by its 3D surface model, automatically distributing the fibres among multiple heads of the muscle and shortening the deep fibres to support large attachment areas with extremely acute angles. Our C++ implementation runs in a couple of seconds on commodity hardware providing realistic results for both artificial and real data sets we tested. The fibres produced by the method can be used directly to determine the personalised mechanical muscle functioning. Our implementation is publicly available for the researchers at https://mi.kiv.zcu.cz/. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A real-time monitoring platform of myogenesis regulators using double fluorescent labeling

    PubMed Central

    Sapoznik, Etai; Niu, Guoguang; Zhou, Yu; Prim, Peter M.; Criswell, Tracy L.

    2018-01-01

    Real-time, quantitative measurement of muscle progenitor cell (myoblast) differentiation is an important tool for skeletal muscle research and identification of drugs that support skeletal muscle regeneration. While most quantitative tools rely on sacrificial approach, we developed a double fluorescent tagging approach, which allows for dynamic monitoring of myoblast differentiation through assessment of fusion index and nuclei count. Fluorescent tagging of both the cell cytoplasm and nucleus enables monitoring of cell fusion and the formation of new myotube fibers, similar to immunostaining results. This labeling approach allowed monitoring the effects of Myf5 overexpression, TNFα, and Wnt agonist on myoblast differentiation. It also enabled testing the effects of surface coating on the fusion levels of scaffold-seeded myoblasts. The double fluorescent labeling of myoblasts is a promising technique to visualize even minor changes in myogenesis of myoblasts in order to support applications such as tissue engineering and drug screening. PMID:29444187

  13. Structural Evaluation of Exo-Skeletal Engine Fan Blades

    NASA Technical Reports Server (NTRS)

    Kuguoglu, Latife; Abumeri, Galib; Chamis, Christos C.

    2003-01-01

    The available computational simulation capability is used to demonstrate the structural viability of composite fan blades of innovative Exo-Skeletal Engine (ESE) developed at NASA Glenn Research Center for a subsonic mission. Full structural analysis and progressive damage evaluation of ESE composite fan blade is conducted through the NASA in-house computational simulation software system EST/BEST. The results of structural assessment indicate that longitudinal stresses acting on the blade are in compression. At a design speed of 2000 rpm, pressure and suction surface outer most ply stresses in longitudinal, transverse and shear direction are much lower than the corresponding composite ply strengths. Damage is initiated at 4870 rpm and blade fracture takes place at rotor speed of 7735 rpm. Damage volume is 51 percent. The progressive damage, buckling, stress and strength results indicate that the design at hand is very sound because of the factor of safety, damage tolerance, and buckling load of 6811 rpm.

  14. Effects of long term supplementation of anabolic androgen steroids on human skeletal muscle.

    PubMed

    Yu, Ji-Guo; Bonnerud, Patrik; Eriksson, Anders; Stål, Per S; Tegner, Yelverton; Malm, Christer

    2014-01-01

    The effects of long-term (over several years) anabolic androgen steroids (AAS) administration on human skeletal muscle are still unclear. In this study, seventeen strength training athletes were recruited and individually interviewed regarding self-administration of banned substances. Ten subjects admitted having taken AAS or AAS derivatives for the past 5 to 15 years (Doped) and the dosage and type of banned substances were recorded. The remaining seven subjects testified to having never used any banned substances (Clean). For all subjects, maximal muscle strength and body composition were tested, and biopsies from the vastus lateralis muscle were obtained. Using histochemistry and immunohistochemistry (IHC), muscle biopsies were evaluated for morphology including fiber type composition, fiber size, capillary variables and myonuclei. Compared with the Clean athletes, the Doped athletes had significantly higher lean leg mass, capillary per fibre and myonuclei per fiber. In contrast, the Doped athletes had significantly lower absolute value in maximal squat force and relative values in maximal squat force (relative to lean body mass, to lean leg mass and to muscle fiber area). Using multivariate statistics, an orthogonal projection of latent structure discriminant analysis (OPLS-DA) model was established, in which the maximal squat force relative to muscle mass and the maximal squat force relative to fiber area, together with capillary density and nuclei density were the most important variables for separating Doped from the Clean athletes (regression  =  0.93 and prediction  =  0.92, p<0.0001). In Doped athletes, AAS dose-dependent increases were observed in lean body mass, muscle fiber area, capillary density and myonuclei density. In conclusion, long term AAS supplementation led to increases in lean leg mass, muscle fiber size and a parallel improvement in muscle strength, and all were dose-dependent. Administration of AAS may induce sustained morphological changes in human skeletal muscle, leading to physical performance enhancement.

  15. Effects of Long Term Supplementation of Anabolic Androgen Steroids on Human Skeletal Muscle

    PubMed Central

    Yu, Ji-Guo; Bonnerud, Patrik; Eriksson, Anders; Stål, Per S.; Tegner, Yelverton; Malm, Christer

    2014-01-01

    The effects of long-term (over several years) anabolic androgen steroids (AAS) administration on human skeletal muscle are still unclear. In this study, seventeen strength training athletes were recruited and individually interviewed regarding self-administration of banned substances. Ten subjects admitted having taken AAS or AAS derivatives for the past 5 to 15 years (Doped) and the dosage and type of banned substances were recorded. The remaining seven subjects testified to having never used any banned substances (Clean). For all subjects, maximal muscle strength and body composition were tested, and biopsies from the vastus lateralis muscle were obtained. Using histochemistry and immunohistochemistry (IHC), muscle biopsies were evaluated for morphology including fiber type composition, fiber size, capillary variables and myonuclei. Compared with the Clean athletes, the Doped athletes had significantly higher lean leg mass, capillary per fibre and myonuclei per fiber. In contrast, the Doped athletes had significantly lower absolute value in maximal squat force and relative values in maximal squat force (relative to lean body mass, to lean leg mass and to muscle fiber area). Using multivariate statistics, an orthogonal projection of latent structure discriminant analysis (OPLS-DA) model was established, in which the maximal squat force relative to muscle mass and the maximal squat force relative to fiber area, together with capillary density and nuclei density were the most important variables for separating Doped from the Clean athletes (regression  =  0.93 and prediction  =  0.92, p<0.0001). In Doped athletes, AAS dose-dependent increases were observed in lean body mass, muscle fiber area, capillary density and myonuclei density. In conclusion, long term AAS supplementation led to increases in lean leg mass, muscle fiber size and a parallel improvement in muscle strength, and all were dose-dependent. Administration of AAS may induce sustained morphological changes in human skeletal muscle, leading to physical performance enhancement. PMID:25207812

  16. Nano/macro porous bioactive glass scaffold

    NASA Astrophysics Data System (ADS)

    Wang, Shaojie

    Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent exchange process. Although both techniques lower the surface area of BG scaffolds, the temperature-dependent sintering process closes nanopores through densification, while the concentration-dependent solvent exchange process enlarges nanopores through Ostwald-ripening type coarsening. Therefore, nanopore size and surface area of BG scaffold are independently controlled using these methods. In vitro cell and in vivo animal tissue responses have been investigated to evaluate the performance of the nano-macro porous BG scaffold. The cells are found to migrate and penetrate deep into the 3D nano-macro porous structure, while exhibiting excellent adhesion to the bioscaffold surface. Importantly, the new tissue with both blood vessels and collagen fibers is formed deep inside the implanted scaffolds without obvious inflammatory reaction. Furthermore, our observations show biological benefits of the nanopores in the BG scaffold. In comparison to BG scaffold without nanopores, cells migrate and penetrate into nano-macro dual-porous BG scaffold faster and deeper mainly because of the increase of surface area. To study the effect of nanopore topography, we fabricated BG scaffolds with the same surface area but different nanopore sizes. It is found that the initial cell attachment is significantly enhanced on the BG scaffold with the same surface area but smaller nanopores size, indicating that the nanopore topography strongly influences the performance of BG scaffold. In conclusion, the present results demonstrate most clearly the usefulness of our nano-macro dual-porous BG as a novel and superior 3D bioscaffold for regenerative medicine and hard tissue engineering.

  17. Internal mammary lymph node inclusion in standard tangent breast fields: effects of body habitus.

    PubMed

    Proulx, G M; Lee, R J; Stomper, P C

    2001-01-01

    The purpose of this study was to determine the variability of internal mammary node (IMN) coverage with standard breast tangent fields using surface anatomy as determined by computed tomography (CT) planning for patients treated with either breast-conserving treatment or postmastectomy, and to evaluate the influence of body habitus and shape on IMN coverage with standard tangent fields. This prospective study included consecutive women with breast cancer who underwent either local excision or mastectomy and had standard tangent fields intended to cover the breast plus a margin simulated using surface anatomy. CT planning determined the location of the IMN with respect to the tangent fields designed from surface anatomy. The internal mammary vessels were used as surrogates for the IMNs. CT measurements of the presternal fat thickness and anteroposterior (AP) and transverse skeletal diameters were made to determine their relationship to the inclusion of IMNs within the tangent fields. Only seven patients (14%) had their IMNs completely within the tangent fields. Twenty patients (40%) had partial coverage of their IMNs, and 23 (46%) had their IMNs completely outside the fields. IMN inclusion was inversely correlated with presternal fat thickness. Thoracic skeletal shape was not associated with IMN inclusion. Standard tangent fields generally do not cover the IMNs completely but may cover them at least partially in a majority of patients. The presternal fat thickness is inversely correlated with IMN inclusion in the tangent fields.

  18. Visualization of scoliotic spine using ultrasound-accessible skeletal landmarks

    NASA Astrophysics Data System (ADS)

    Church, Ben; Lasso, Andras; Schlenger, Christopher; Borschneck, Daniel P.; Mousavi, Parvin; Fichtinger, Gabor; Ungi, Tamas

    2017-03-01

    PURPOSE: Ultrasound imaging is an attractive alternative to X-ray for scoliosis diagnosis and monitoring due to its safety and inexpensiveness. The transverse processes as skeletal landmarks are accessible by means of ultrasound and are sufficient for quantifying scoliosis, but do not provide an informative visualization of the spine. METHODS: We created a method for visualization of the scoliotic spine using a 3D transform field, resulting from thin-spline interpolation of a landmark-based registration between the transverse processes that we localized in both the patient's ultrasound and an average healthy spine model. Additional anchor points were computationally generated to control the thin-spline interpolation, in order to gain a transform field that accurately represents the deformation of the patient's spine. The transform field is applied to the average spine model, resulting in a 3D surface model depicting the patient's spine. We applied ground truth CT from pediatric scoliosis patients in which we reconstructed the bone surface and localized the transverse processes. We warped the average spine model and analyzed the match between the patient's bone surface and the warped spine. RESULTS: Visual inspection revealed accurate rendering of the scoliotic spine. Notable misalignments occurred mainly in the anterior-posterior direction, and at the first and last vertebrae, which is immaterial for scoliosis quantification. The average Hausdorff distance computed for 4 patients was 2.6 mm. CONCLUSIONS: We achieved qualitatively accurate and intuitive visualization to depict the 3D deformation of the patient's spine when compared to ground truth CT.

  19. Prognostic Effect of Low Subcutaneous Adipose Tissue on Survival Outcome in Patients With Multiple Myeloma.

    PubMed

    Takeoka, Yasunobu; Sakatoku, Kazuki; Miura, Akiko; Yamamura, Ryosuke; Araki, Taku; Seura, Hirotaka; Okamura, Terue; Koh, Hideo; Nakamae, Hirohisa; Hino, Masayuki; Ohta, Kensuke

    2016-08-01

    Increasing evidence suggests that decreased skeletal muscle mass (sarcopenia) or adipose tissue assessed using computed tomography (CT) predicts negative outcomes in patients with solid tumors. However, the prognostic value of such an assessment in multiple myeloma (MM) remains unknown. Consecutive patients with newly diagnosed symptomatic MM were retrospectively analyzed. The cross-sectional area of skeletal muscles and subcutaneous or visceral adipose tissue was measured using CT. Body composition indexes (skeletal muscle index, subcutaneous adipose tissue index [SAI], and visceral adipose tissue index) were calculated. The association between these indexes and overall survival (OS) was examined. Of 56 evaluable patients, 37 (66%) had sarcopenia. The 2-year OS in patients with SAI < median was 58% compared with 91% in those with SAI ≥ median (P = .006). In multivariate analyses, SAI < median was significantly associated with poor OS (hazard ratio, 4.05; P = .02). Sarcopenia was not associated with OS. The maximum value of the standardized uptake value was significantly higher in patients with SAI < median (P = .02). The findings of this study suggest that low subcutaneous adipose tissue at baseline predicts poor survival outcome in patients with MM. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Characteristics of locomotion, muscle strength, and muscle tissue in regenerating rat skeletal muscles.

    PubMed

    Iwata, Akira; Fuchioka, Satoshi; Hiraoka, Koichi; Masuhara, Mitsuhiko; Kami, Katsuya

    2010-05-01

    Although numerous studies have aimed to elucidate the mechanisms used to repair the structure and function of injured skeletal muscles, it remains unclear how and when movement recovers following damage. We performed a temporal analysis to characterize the changes in movement, muscle function, and muscle structure after muscle injury induced by the drop-mass technique. At each time-point, movement recovery was determined by ankle kinematic analysis of locomotion, and functional recovery was represented by isometric force. As a histological analysis, the cross-sectional area of myotubes was measured to examine structural regeneration. The dorsiflexion angle of the ankle, as assessed by kinematic analysis of locomotion, increased after injury and then returned to control levels by day 14 post-injury. The isometric force returned to normal levels by day 21 post-injury. However, the size of the myotubes did not reach normal levels, even at day 21 post-injury. These results indicate that recovery of locomotion occurs prior to recovery of isometric force and that functional recovery occurs earlier than structural regeneration. Thus, it is suggested that recovery of the movement and function of injured skeletal muscles might be insufficient as markers for estimating the degree of neuromuscular system reconstitution.

  1. Effects of co-administration of clenbuterol and testosterone propionate on skeletal muscle in paraplegic mice.

    PubMed

    Ung, Roth-Visal; Rouleau, Pascal; Guertin, Pierre A

    2010-06-01

    Spinal cord injury (SCI) is generally associated with a rapid and significant decrease in muscle mass and corresponding changes in skeletal muscle properties. Although beta(2)-adrenergic and androgen receptor agonists are anabolic substances clearly shown to prevent or reverse muscle wasting in some pathological conditions, their effects in SCI patients remain largely unknown. Here we studied the effects of clenbuterol and testosterone propionate administered separately or in combination on skeletal muscle properties and adipose tissue in adult CD1 mice spinal-cord-transected (Tx) at the low-thoracic level (i.e., induced complete paraplegia). Administered shortly post-Tx, these substances were found to differentially reduce loss in body weight, muscle mass, and muscle fiber cross-sectional area (CSA) values. Although all three treatments induced significant effects, testosterone-treated animals were generally less protected against Tx-related changes. However, none of the treatments prevented fat tissue loss or muscle fiber type conversion and functional loss generally found in Tx animals. These results provide evidence suggesting that clenbuterol alone or combined with testosterone may constitute better clinically-relevant treatments than testosterone alone to decrease muscle atrophy (mass and fiber CSA) in SCI subjects.

  2. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning.

    PubMed

    Baldwin, K M; Caiozzo, V J; Haddad, F; Baker, M J; Herrick, R E

    1994-05-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.

  3. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Caiozzo, V. J.; Haddad, F.; Baker, M. J.; Herrick, R. E.

    1994-01-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.

  4. Morphological and functional analyses of skeletal muscles from an immunodeficient animal model of limb-girdle muscular dystrophy type 2E.

    PubMed

    Giovannelli, Gaia; Giacomazzi, Giorgia; Grosemans, Hanne; Sampaolesi, Maurilio

    2018-02-24

    Limb-girdle muscular dystrophy type 2E (LGMD2E) is caused by mutations in the β-sarcoglycan gene, which is expressed in skeletal, cardiac, and smooth muscles. β-Sarcoglycan-deficient (Sgcb-null) mice develop severe muscular dystrophy and cardiomyopathy with focal areas of necrosis. In this study we performed morphological (histological and cellular characterization) and functional (isometric tetanic force and fatigue) analyses in dystrophic mice. Comparison studies were carried out in 1-month-old (clinical onset of the disease) and 7-month-old control mice (C57Bl/6J, Rag2/γc-null) and immunocompetent and immunodeficient dystrophic mice (Sgcb-null and Sgcb/Rag2/γc-null, respectively). We found that the lack of an immunological system resulted in an increase of calcification in striated muscles without impairing extensor digitorum longus muscle performance. Sgcb/Rag2/γc-null muscles showed a significant reduction of alkaline phosphate-positive mesoangioblasts. The immunological system counteracts skeletal muscle degeneration in the murine model of LGMD2E. Muscle Nerve, 2018. © 2018 The Authors. Muscle & Nerve Published by Wiley Periodicals, Inc.

  5. Terrorist attacks in the largest metropolitan city of Pakistan: Profile of soft tissue and skeletal injuries from a single trauma center

    PubMed Central

    Khan, Muhammad Shahid; Waheed, Shahan; Ali, Arif; Mumtaz, Narjis; Feroze, Asher; Noordin, Shahryar

    2015-01-01

    BACKGROUND: Pakistan has been hugely struck with massive bomb explosions (car and suicide bombs) resulting in multiple casualties in the past few years. The aim of this study is to present the patterns of skeletal and soft tissue injuries and to review the outcome of the victims who presented to our hospital. METHODS: This is a retrospective chart review from January 2008 to December 2012. The medical record numbers of patients were obtained from the hospital Health Information and Management Sciences (HIMS) as per the ICD-9 coding. RESULTS: During the study period, more than 100 suicide and implanted bomb blast attacks took place in the public proceedings, government offices, residential areas and other places of the city. Altogether 262 patients were enrolled in the study. The mean age of the patients was 31±14 years. The shrapnel inflicted wounds were present on to the upper limb in 24 patients and the lower limb in 50. CONCLUSION: Long bone fractures were the most common skeletal injuries. The fractures were complicated by penetrating fragments and nails which result in post operative infections and prolonged hospital stay. PMID:26401184

  6. Terrorist attacks in the largest metropolitan city of Pakistan: Profile of soft tissue and skeletal injuries from a single trauma center.

    PubMed

    Khan, Muhammad Shahid; Waheed, Shahan; Ali, Arif; Mumtaz, Narjis; Feroze, Asher; Noordin, Shahryar

    2015-01-01

    Pakistan has been hugely struck with massive bomb explosions (car and suicide bombs) resulting in multiple casualties in the past few years. The aim of this study is to present the patterns of skeletal and soft tissue injuries and to review the outcome of the victims who presented to our hospital. This is a retrospective chart review from January 2008 to December 2012. The medical record numbers of patients were obtained from the hospital Health Information and Management Sciences (HIMS) as per the ICD-9 coding. During the study period, more than 100 suicide and implanted bomb blast attacks took place in the public proceedings, government offices, residential areas and other places of the city. Altogether 262 patients were enrolled in the study. The mean age of the patients was 31±14 years. The shrapnel inflicted wounds were present on to the upper limb in 24 patients and the lower limb in 50. Long bone fractures were the most common skeletal injuries. The fractures were complicated by penetrating fragments and nails which result in post operative infections and prolonged hospital stay.

  7. Siberian population of the New Stone Age: mtDNA haplotype diversity in the ancient population from the Ust'-Ida I burial ground, dated 4020-3210 BC by 14C.

    PubMed

    Naumova O, Y u; Rychkov S, Y u

    1998-03-01

    On the basis of analysis of mtDNA from skeletal remains, dated by 14C 4020-3210 BC, from the Ust'-Ida I Neolithic burial ground in Cis-Baikal area of Siberia, we obtained genetic characteristics of the ancient Mongoloid population. Using the 7 restriction enzymes for the analysis of site's polymorphism in 16,106-16,545 region of mtDNA, we studied the structure of the most frequent DNA haplotypes, and estimated the intrapopulational nucleotide diversity of the Neolithic population. Comparison of the Neolithic and modern indigeneous populations from Siberia, Mongolia and Ural showed, that the ancient Siberian population is one of the ancestors of the modern population of Siberia. From genetic distance, in the assumption of constant nucleotide substitution rate, we estimated the divergence time between the Neolithic and the modern Siberian population. This divergence time (5572 years ago) is conformed to the age of skeletal remains (5542-5652 years). With use of the 14C dates of the skeletal remains, nucleotide substitution rate in mtDNA was estimated as 1% sequence divergence for 8938-9115 years.

  8. Alterations in skeletal muscle related to impaired physical mobility: an empirical model

    NASA Technical Reports Server (NTRS)

    Kasper, C. E.; McNulty, A. L.; Otto, A. J.; Thomas, D. P.

    1993-01-01

    The objective of this investigation was to study impaired physical mobility and the resulting skeletal muscle atrophy. An animal model was used to study morphological adaptations of the soleus and plantaris muscles to decreased loading induced by hindlimb suspension of an adult rat for 7, 14, and 28 consecutive days. Alterations in weight, skeletal muscle growth, and changes in fiber type composition were studied in synergistic plantar flexors of the rat hindlimb. Body weight and the soleus muscle mass to body mass ratio demonstrated significant progressive atrophy over th 28-day experimental period with the most significant changes occurring in the first 7 days of hindlimb suspension. Hindlimb suspension produced atrophy of Type I and Type IIa muscle fibers as demonstrated by significant decreases in fiber cross-sectional area (micron 2). These latter changes account for the loss of contractile force production reported in the rat following hindlimb unloading. When compared to traditional models of hindlimb suspension and immobilization, the ISC model produces a less severe atrophy while maintaining animal mobility and health. We conclude that it is the preferred animal model to address nursing questions of impaired physical mobility.

  9. Relation of systemic and local muscle exercise capacity to skeletal muscle characteristics in men with congestive heart failure

    NASA Technical Reports Server (NTRS)

    Massie, B. M.; Simonini, A.; Sahgal, P.; Wells, L.; Dudley, G. A.

    1996-01-01

    OBJECTIVES. The present study was undertaken to further characterize changes in skeletal muscle morphology and histochemistry in congestive heart failure and to determine the relation of these changes to abnormalities of systemic and local muscle exercise capacity. BACKGROUND. Abnormalities of skeletal muscle appear to play a role in the limitation of exercise capacity in congestive heart failure, but information on the changes in muscle morphology and biochemistry and their relation to alterations in muscle function is limited. METHODS. Eighteen men with predominantly mild to moderate congestive heart failure (mean +/- SEM New York Heart Association functional class 2.6 +/- 0.2, ejection fraction 24 +/- 2%) and eight age- and gender-matched sedentary control subjects underwent measurements of peak systemic oxygen consumption (VO2) during cycle ergometry, resistance to fatigue of the quadriceps femoris muscle group and biopsy of the vastus lateralis muscle. RESULTS. Peak VO2 and resistance to fatigue were lower in the patients with heart failure than in control subjects (15.7 +/- 1.2 vs. 25.1 +/- 1.5 ml/min-kg and 63 +/- 2% vs. 85 +/- 3%, respectively, both p < 0.001). Patients had a lower proportion of slow twitch, type I fibers than did control subjects (36 +/- 3% vs. 46 +/- 5%, p = 0.048) and a higher proportion of fast twitch, type IIab fibers (18 +/- 3% vs. 7 +/- 2%, p = 0.004). Fiber cross-sectional area was smaller, and single-fiber succinate dehydrogenase activity, a mitochondrial oxidative marker, was lower in patients (both p < or = 0.034). Likewise, the ratio of average fast twitch to slow twitch fiber cross-sectional area was lower in patients (0.780 +/- 0.06 vs. 1.05 +/- 0.08, p = 0.019). Peak VO2 was strongly related to integrated succinate dehydrogenase activity in patients (r = 0.896, p = 0.001). Peak VO2, resistance to fatigue and strength also correlated significantly with several measures of fiber size, especially of fast twitch fibers, in patients. None of the skeletal muscle characteristics examined correlated with exercise capacity in control subjects. CONCLUSIONS. These results indicate that congestive heart failure is associated with changes in the characteristics of skeletal muscle and local as well as systemic exercise performance. There are fewer slow twitch fibers, smaller fast twitch fibers and lower succinate dehydrogenase activity. The latter finding suggests that mitochondrial content of muscle is reduced in heart failure and that impaired aerobic-oxidative capacity may play a role in the limitation of systemic exercise capacity.

  10. Paleoenvironmental model for the occurrence of vertebrate fossils in Carboniferous coal-bearing strata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hook, R.W.

    An interdisciplinary investigation was undertaken to identify the paleoenvironmental factors that governed the accumulation and preservation of a prolific Upper Carboniferous vertebrate assemblage known from a cannel coal underlying the Upper Freeport coal in the Diamond Coal Mine of Linton, Ohio. Stratigraphic data from previous work and field studies within an approximately 15 km radius of the fossil locality show that the channel occupies a 10 km long, north-northwest trending abandoned channel that occurs within a sandstone-dominated, fining-upwards fluvial sequence. Petrographic analysis of samples from eight sites along the course of the abandoned channel establishes that the cannel is composedmore » primarily of spores and very fine-grained micrinitic groundmass. Abundant primary pyrite and the absence of well-reserved humic materials suggest that the fossiliferous cannel originated as a sapropelic peat within a non-acidic anaerobic environment. Skeletal remains of animals are well preserved with little to no mineralogic alteration. Outside the abandoned channel in the Linton area and to the north, Upper Freeport coal averages 1 m in thickness. To the south, the Upper Freeport horizon is represented by interbedded flint clays and freshwater limestones. These sediment distribution patterns reflect the synsedimentary influence of the Transylvania Fault Zone, a previously documented, basement-controlled feature which trends east-west through the study area. Contemporaneous movement along this fault produced a topographic high in the Linton area which was locally entrenched by northward-flowing rivers. Upper Freeport swamps developed on this upthrown surface whereas carbonate lakes formed to the south of the fault zone in topographically lower areas.« less

  11. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    NASA Technical Reports Server (NTRS)

    Schreurs, A.-S.; Torres, S.; Truong, T.; Kumar, A.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2014-01-01

    Exposure to musculoskeletal disuse and radiation result in bone loss; we hypothesized that these catabolic treatments cause excess reactive oxygen species (ROS), and thereby alter the tight balance between bone resorption by osteoclasts and bone formation by osteoblasts, culminating in bone loss. To test this, we used transgenic mice which over-express the human gene for catalase, targeted to mitochondria (MCAT). Catalase is an anti-oxidant that converts the ROS hydrogen peroxide into water and oxygen. MCAT mice were shown previously to display reduced mitochondrial oxidative stress and radiosensitivity of the CNS compared to wild type controls (WT). As expected, MCAT mice expressed the transgene in skeletal tissue, and in marrow-derived osteoblasts and osteoclast precursors cultured ex vivo, and also showed greater catalase activity compared to wildtype (WT) mice (3-6 fold). Colony expansion in marrow cells cultured under osteoblastogenic conditions was 2-fold greater in the MCAT mice compared to WT mice, while the extent of mineralization was unaffected. MCAT mice had slightly longer tibiae than WT mice (2%, P less than 0.01), although cortical bone area was slightly lower in MCAT mice than WT mice (10%, p=0.09). To challenge the skeletal system, mice were treated by exposure to combined disuse (2 wk Hindlimb Unloading) and total body irradiation Cs(137) (2 Gy, 0.8 Gy/min), then bone parameters were analyzed by 2-factor ANOVA to detect possible interaction effects. Treatment caused a 2-fold increase (p=0.015) in malondialdehyde levels of bone tissue (ELISA) in WT mice, but had no effect in MCAT mice. These findings indicate that the transgene conferred protection from oxidative damage caused by treatment. Unexpected differences between WT and MCAT mice emerged in skeletal responses to treatment.. In WT mice, treatment did not alter osteoblastogenesis, cortical bone area, moment of inertia, or bone perimeter, whereas in MCAT mice, treatment increased these parameters. Taken together, this typically catabolic treatment (disuse and irradiation) appeared to stimulate cortical expansion in MCAT mice but not WT mice. In conclusion, these results reveal the importance of mitochondrial ROS generation in skeletal remodeling and show that MCAT mice provide a useful animal model for bone studies.

  12. Correlation among chronologic age, skeletal maturity, and dental age.

    PubMed

    Sukhia, Rashna H; Fida, Mubassar

    2010-01-01

    To determine the correlation among chronologic age, skeletal maturity, and dental age in reference to both sexes. In 380 subjects (147 males and 233 females) between 7 and 17 years of age, skeletal maturity was assessed using the cervical vertebral maturation stages described by Baccetti et al. Dental age was determined using the Demirjian method. The correlation between skeletal maturity and chronologic age on one side and between skeletal maturity and dental age on the other was assessed with Spearman rank correlation coefficients. Pearson correlation coefficients were used to assess the correlation between chronologic and dental age. For both sexes, significant correlations among chronologic age, skeletal maturity, and dental age were found. The mandibular first premolar had the highest correlation with skeletal maturation in both sexes. As skeletal maturity and dental age are significantly correlated, tooth development may be used to assess a patient's skeletal maturity at an early age. © 2011 BY QUINTESSENCE PUBLISHING CO, INC.

  13. Kinetics of GLUT4 Trafficking in Rat and Human Skeletal Muscle

    PubMed Central

    Karlsson, Håkan K.R.; Chibalin, Alexander V.; Koistinen, Heikki A.; Yang, Jing; Koumanov, Francoise; Wallberg-Henriksson, Harriet; Zierath, Juleen R.; Holman, Geoffrey D.

    2009-01-01

    OBJECTIVE In skeletal muscle, insulin stimulates glucose transport activity three- to fourfold, and a large part of this stimulation is associated with a net translocation of GLUT4 from an intracellular compartment to the cell surface. We examined the extent to which insulin or the AMP-activated protein kinase activator AICAR can lead to a stimulation of the exocytosis limb of the GLUT4 translocation pathway and thereby account for the net increase in glucose transport activity. RESEARCH DESIGN AND METHODS Using a biotinylated photoaffinity label, we tagged endogenous GLUT4 and studied the kinetics of exocytosis of the tagged protein in rat and human skeletal muscle in response to insulin or AICAR. Isolated epitrochlearis muscles were obtained from male Wistar rats. Vastus lateralis skeletal muscle strips were prepared from open muscle biopsies obtained from six healthy men (age 39 ± 11 years and BMI 25.8 ± 0.8 kg/m2). RESULTS In rat epitrochlearis muscle, insulin exposure leads to a sixfold stimulation of the GLUT4 exocytosis rate (with basal and insulin-stimulated rate constants of 0.010 and 0.067 min−1, respectively). In human vastus lateralis muscle, insulin stimulates GLUT4 translocation by a similar sixfold increase in the exocytosis rate constant (with basal and insulin-stimulated rate constants of 0.011 and 0.075 min−1, respectively). In contrast, AICAR treatment does not markedly increase exocytosis in either rat or human muscle. CONCLUSIONS Insulin stimulation of the GLUT4 exocytosis rate constant is sufficient to account for most of the observed increase in glucose transport activity in rat and human muscle. PMID:19188436

  14. In search of the skeletal stem cell: isolation and separation strategies at the macro/micro scale for skeletal regeneration.

    PubMed

    Gothard, David; Tare, Rahul S; Mitchell, Peter D; Dawson, Jonathan I; Oreffo, Richard O C

    2011-04-07

    Skeletal stem cells (SSCs) show great capacity for bone and cartilage repair however, current in vitro cultures are heterogeneous displaying a hierarchy of differentiation potential. SSCs represent the diminutive true multipotent stem cell fraction of bone marrow mononuclear cell (BMMNC) populations. Endeavours to isolate SSCs have generated a multitude of separation methodologies. SSCs were first identified and isolated by their ability to adhere to culture plastic. Once isolated, further separation is achieved via culture in selective or conditioned media (CM). Indeed, preferential SSC growth has been demonstrated through selective in vitro culture conditions. Other approaches have utilised cell morphology (size and shape) as selection criteria. Studies have also targeted SSCs based on their preferential adhesion to specified compounds, individually or in combination, on both macro and microscale platforms. Nevertheless, most of these methods which represent macroscale function with relatively high throughput, yield insufficient purity. Consequently, research has sought to downsize isolation methodologies to the microscale for single cell analysis. The central approach is identification of the requisite cell populations of SSC-specific surface markers that can be targeted for isolation by either positive or negative selection. SELEX and phage display technology provide apt means to sift through substantial numbers of candidate markers. In contrast, single cell analysis is the paramount advantage of microfluidics, a relatively new field for cell biology. Here cells can be separated under continuous or discontinuous flow according to intrinsic phenotypic and physicochemical properties. The combination of macroscale quantity with microscale specificity to generate robust high-throughput (HT) technology for pure SSC sorting, isolation and enrichment offers significant implications therein for skeletal regenerative strategies as a consequence of lab on chip derived methodology.

  15. When felids and hominins ruled at Olduvai Gorge: A machine learning analysis of the skeletal profiles of the non-anthropogenic Bed I sites

    NASA Astrophysics Data System (ADS)

    Arriaza, Mari Carmen; Domínguez-Rodrigo, Manuel

    2016-05-01

    In the past twenty years, skeletal part profiles, which are prone to equifinality, have not occupied a prominent role in the interpretation of early Pleistocene sites on Africa. Alternatively, taphonomic studies on bone surface modifications and bone breakage patterns, have provided heuristic interpretations of some of the best preserved archaeological record of this period; namely, the Olduvai Bed I sites. The most recent and comprehensive taphonomic study of these sites (Domínguez-Rodrigo et al., 2007a) showed that FLK Zinj was an anthropogenic assemblage in which hominins acquired carcasses via primary access. That study also showed that the other sites were palimpsests with minimal or no intervention by hominins. The FLK N, FLK NN and DK sequence seemed to be dominated by single-agent (mostly, felid) or multiple-agent (mostly, felid-hyenid) processes. The present study re-analyzes the Bed I sites focusing on skeletal part profiles. Machine learning methods, which incorporate complex algorithms, are powerful predictive and classification methods and have the potential to better extract information from skeletal part representation than past approaches. Here, multiple algorithms (via decision trees, neural networks, random forests and support vector machines) are combined to produce a solid interpretation of bone accumulation agency at the Olduvai Bed I sites. This new approach virtually coincides with previous taphonomic interpretations on a site by site basis and shows that felids were dominant accumulating agents over hyenas during Bed I times. The recent discovery of possibly a modern lion-accumulated assemblage at Olduvai Gorge (Arriaza et al., submitted) provides a very timely analog for this interpretation.

  16. INTERACTIONS BETWEEN OCEAN ACIDIFICATION AND WARMING ON THE MORTALITY AND DISSOLUTION OF CORALLINE ALGAE(1).

    PubMed

    Diaz-Pulido, Guillermo; Anthony, Kenneth R N; Kline, David I; Dove, Sophie; Hoegh-Guldberg, Ove

    2012-02-01

    Coralline algae are among the most sensitive calcifying organisms to ocean acidification as a result of increased atmospheric carbon dioxide (pCO2 ). Little is known, however, about the combined impacts of increased pCO2 , ocean acidification, and sea surface temperature on tissue mortality and skeletal dissolution of coralline algae. To address this issue, we conducted factorial manipulative experiments of elevated CO2 and temperature and examined the consequences on tissue survival and skeletal dissolution of the crustose coralline alga (CCA) Porolithon (=Hydrolithon) onkodes (Heydr.) Foslie (Corallinaceae, Rhodophyta) on the southern Great Barrier Reef (GBR), Australia. We observed that warming amplified the negative effects of high pCO2 on the health of the algae: rates of advanced partial mortality of CCA increased from <1% to 9% under high CO2 (from 400 to 1,100 ppm) and exacerbated to 15% under warming conditions (from 26°C to 29°C). Furthermore, the effect of pCO2 on skeletal dissolution strongly depended on temperature. Dissolution of P. onkodes only occurred in the high-pCO2 treatment and was greater in the warm treatment. Enhanced skeletal dissolution was also associated with a significant increase in the abundance of endolithic algae. Our results demonstrate that P. onkodes is particularly sensitive to ocean acidification under warm conditions, suggesting that previous experiments focused on ocean acidification alone have underestimated the impact of future conditions on coralline algae. Given the central role that coralline algae play within coral reefs, these conclusions have serious ramifications for the integrity of coral-reef ecosystems. © 2011 Phycological Society of America.

  17. Determination of the post mortem interval in skeletal remains by the comparative use of different physico-chemical methods: Are they reliable as an alternative to 14C?

    PubMed

    Amadasi, Alberto; Cappella, Annalisa; Cattaneo, Cristina; Cofrancesco, Pacifico; Cucca, Lucia; Merli, Daniele; Milanese, Chiara; Pinto, Andrea; Profumo, Antonella; Scarpulla, Valentina; Sguazza, Emanuela

    2017-05-01

    The determination of the post-mortem interval (PMI) of skeletal remains is a challenging aspect in the forensic field. Previous studies focused their attention on different macroscopic and morphological aspects but a thorough and complete evaluation of the potential of chemical and physical analyses in this field of research has not been performed. In addition to luminol test and Oxford histology index (OHI) reported in a recent paper, widely spread and accessible methods based on physical aspect and chemical characteristics of skeletal remains have been investigated as potential alternatives to dating by determination of 14 C. The investigation was performed on a total of 24 archeological and forensic bone samples with known PMI, with inductively coupled plasma optical emission spectrometer (ICP-OES), inductively coupled plasma quadruple mass spectrometry (ICP-MS), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-ray analysis (EDX), powder X-ray diffraction analysis (XRPD) and scanning electron microscopy (SEM). Finally, the feasibility of such alternative methods was discussed. Some results such as carbonates/phosphates ratio from FT-IR, the amounts of organic and inorganic matter by EDX, crystallite sizes with XRPD, and surface morphology obtained by SEM, showed significant trends along with PMI. Though, from a chemical point of view cut-off values and gold-standard methods still present challenges, and rather different techniques together can provide useful information toward the assessment of the PMI of skeletal remains. It is however clear that in a hypothetical flowchart those methods may be placed practically at the same level and a choice should always consider the evaluation of results by each technique, execution times and a costs/benefits relationship. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Skeletal muscle PLIN proteins, ATGL and CGI-58, interactions at rest and following stimulated contraction

    PubMed Central

    Ramos, Sofhia V.; Vandenboom, Rene; Roy, Brian D.; Peters, Sandra J.

    2013-01-01

    Evidence indicates that skeletal muscle lipid droplet-associated proteins (PLINs) regulate lipolysis through protein-protein interactions on the lipid droplet surface. In adipocytes, PLIN1 is thought to regulate lipolysis by directly interacting with comparative gene identification-58 (CGI-58), an activator of adipose triglyceride lipase (ATGL). Upon lipolytic stimulation, PLIN1 is phosphorylated, releasing CGI-58 to fully activate ATGL and initiate triglyceride breakdown. The absence of PLIN1 in skeletal muscle leads us to believe that other PLIN family members undertake this role. Our purpose was to examine interactions between PLIN2, PLIN3, and PLIN5, with ATGL and its coactivator CGI-58 at rest and following contraction. Isolated rat solei were incubated for 30 min at rest or during 30 min of intermittent tetanic stimulation [150-ms volleys at 60 Hz with a train rate of 20 tetani/min (25°C)] to maximally stimulate intramuscular lipid breakdown. Results show that the interaction between ATGL and CGI-58 increased 128% following contraction (P = 0.041). Further, ATGL interacts with PLIN2, PLIN3, and PLIN5 at rest and following contraction. The PLIN2-ATGL interaction decreased significantly by 21% following stimulation (P = 0.013). Both PLIN3 and PLIN5 coprecipitated with CGI-58 at rest and following contraction, while there was no detectable interaction between PLIN2 and CGI-58 in either condition. Therefore, our findings indicate that in skeletal muscle, during contraction-induced muscle lipolysis, ATGL and CGI-58 strongly associate and that the PLIN proteins work together to regulate lipolysis, in part, by preventing ATGL and CGI-58 interactions at rest. PMID:23408028

  19. Environmental stresses and skeletal deformities in fish from the Willamette River, Oregon

    USGS Publications Warehouse

    Villeneuve, Daniel L.; Curtis, Lawrence R.; Jenkins, Jeffrey J.; Warner, Kara E.; Tilton, Fred; Kent, Michael L.; Watral, Virginia G.; Cunningham, Michael E.; Markle, Douglas F.; Sethajintanin, Doolalai; Krissanakriangkrai, Oraphin; Johnson, Eugene R.; Grove, Robert

    2005-01-01

    The Willamette River, one of 14 American Heritage Rivers, flows through the most densely populated and agriculturally productive region of Oregon. Previous biological monitoring of the Willamette River detected elevated frequencies of skeletal deformities in fish from certain areas of the lower (Newberg pool [NP], rivermile [RM] 26−55) and middle (Wheatland Ferry [WF], RM 72−74) river, relative to those in the upper river (Corvallis [CV], RM 125−138). The objective of this study was to determine the likely cause of these skeletal deformities. In 2002 and 2003, deformity loads in Willamette River fishes were 2−3 times greater at the NP and WF locations than at the CV location. There were some differences in water quality parameters between the NP and CV sites, but they did not readily explain the difference in deformity loads. Concentrations of bioavailable metals were below detection limits (0.6−1 μg/L). Concentrations of bioavailable polychlorinated biphenyls (PCBs) and chlorinated pesticides were generally below 0.25 ng/L. Concentrations of bioavailable polycyclic aromatic hydrocarbons were generally less than 5 ng/L. Concentrations of most persistent organic pollutants were below detection limits in ovary/oocyte tissue samples and sediments, and those that were detected were not significantly different among sites. Bioassay of Willamette River water extracts provided no evidence that unidentified compounds or the complex mixture of compounds present in the extracts could induce skeletal deformities in cyprinid fish. However, metacercariae of a digenean trematode were directly associated with a large percentage of deformities detected in two Willamette River fishes, and similar deformities were reproduced in laboratory fathead minnows exposed to cercariae extracted from Willamette River snails. Thus, the weight of evidence suggests that parasitic infection, not chemical contaminants, was the primary cause of skeletal deformities observed in Willamette River fish.

  20. Hydroxyapatite and bioactive glass surfaces for fiber reinforced composite implants via surface ablation by Excimer laser.

    PubMed

    Kulkova, Julia; Moritz, Niko; Huhtinen, Hannu; Mattila, Riina; Donati, Ivan; Marsich, Eleonora; Paoletti, Sergio; Vallittu, Pekka K

    2017-11-01

    In skeletal reconstructions, composites, such as bisphenol-A-glycidyldimethacrylate resin reinforced with glass fibers, are potentially useful alternatives to metallic implants. Recently, we reported a novel method to prepare bioactive surfaces for these composites. Surface etching by Excimer laser was used to expose bioactive glass granules embedded in the resin. The purpose of this study was to analyze two types of bioactive surfaces created by this technique. The surfaces contained bioactive glass and hydroxyapatite granules. The selected processing parameters were adequate for the creation of the surfaces. However, the use of porous hydroxyapatite prevented the complete exposure the granules. In cell culture, for bioactive glass coatings, the pattern of proliferation of MG63 cells was comparable to that in the positive control group (Ti6Al4V) while inferior cell proliferation was observed on the surfaces containing hydroxyapatite granules. Scanning electron microscopy revealed osteointegration of implants with both types of surfaces. The technique is suitable for the exposure of solid bioactive glass granules. However, the long-term performance of the surfaces needs further assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Advances in Skeletal Dysplasia Genetics

    PubMed Central

    Geister, Krista A.; Camper, Sally A.

    2017-01-01

    Skeletal dysplasias result from disruptions in normal skeletal growth and development and are a major contributor to severe short stature. They occur in approximately 1/5,000 births, and some are lethal. Since the most recent publication of the Nosology and Classification of Genetic Skeletal Disorders, genetic causes of 56 skeletal disorders have been uncovered. This remarkable rate of discovery is largely due to the expanded use of high-throughput genomic technologies. In this review, we discuss these recent discoveries and our understanding of the molecular mechanisms behind these skeletal dysplasia phenotypes. We also cover potential therapies, unusual genetic mechanisms, and novel skeletal syndromes both with and without known genetic causes. The acceleration of skeletal dysplasia genetics is truly spectacular, and these advances hold great promise for diagnostics, risk prediction, and therapeutic design. PMID:25939055

  2. Age-related structural alterations in human skeletal muscle fibers and mitochondria are sex specific: relationship to single-fiber function.

    PubMed

    Callahan, Damien M; Bedrin, Nicholas G; Subramanian, Meenakumari; Berking, James; Ades, Philip A; Toth, Michael J; Miller, Mark S

    2014-06-15

    Age-related loss of skeletal muscle mass and function is implicated in the development of disease and physical disability. However, little is known about how age affects skeletal muscle structure at the cellular and ultrastructural levels or how such alterations impact function. Thus we examined skeletal muscle structure at the tissue, cellular, and myofibrillar levels in young (21-35 yr) and older (65-75 yr) male and female volunteers, matched for habitual physical activity level. Older adults had smaller whole muscle tissue cross-sectional areas (CSAs) and mass. At the cellular level, older adults had reduced CSAs in myosin heavy chain II (MHC II) fibers, with no differences in MHC I fibers. In MHC II fibers, older men tended to have fewer fibers with large CSAs, while older women showed reduced fiber size across the CSA range. Older adults showed a decrease in intermyofibrillar mitochondrial size; however, the age effect was driven primarily by women (i.e., age by sex interaction effect). Mitochondrial size was inversely and directly related to isometric tension and myosin-actin cross-bridge kinetics, respectively. Notably, there were no intermyofibrillar or subsarcolemmal mitochondrial fractional content or myofilament ultrastructural differences in the activity-matched young and older adults. Collectively, our results indicate age-related reductions in whole muscle size do not vary by sex. However, age-related structural alterations at the cellular and subcellular levels are different between the sexes and may contribute to different functional phenotypes in ways that modulate sex-specific reductions in physical capacity with age. Copyright © 2014 the American Physiological Society.

  3. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis.

    PubMed

    Bloemberg, Darin; Quadrilatero, Joe

    2012-01-01

    Skeletal muscle is a heterogeneous tissue comprised of fibers with different morphological, functional, and metabolic properties. Different muscles contain varying proportions of fiber types; therefore, accurate identification is important. A number of histochemical methods are used to determine muscle fiber type; however, these techniques have several disadvantages. Immunofluorescence analysis is a sensitive method that allows for simultaneous evaluation of multiple MHC isoforms on a large number of fibers on a single cross-section, and offers a more precise means of identifying fiber types. In this investigation we characterized pure and hybrid fiber type distribution in 10 rat and 10 mouse skeletal muscles, as well as human vastus lateralis (VL) using multicolor immunofluorescence analysis. In addition, we determined fiber type-specific cross-sectional area (CSA), succinate dehydrogenase (SDH) activity, and α-glycerophosphate dehydrogenase (GPD) activity. Using this procedure we were able to easily identify pure and hybrid fiber populations in rat, mouse, and human muscle. Hybrid fibers were identified in all species and made up a significant portion of the total population in some rat and mouse muscles. For example, rat mixed gastrocnemius (MG) contained 12.2% hybrid fibers whereas mouse white tibialis anterior (WTA) contained 12.1% hybrid fibers. Collectively, we outline a simple and time-efficient method for determining MHC expression in skeletal muscle of multiple species. In addition, we provide a useful resource of the pure and hybrid fiber type distribution, fiber CSA, and relative fiber type-specific SDH and GPD activity in a number of rat and mouse muscles.

  4. Study of lesions of the lumbar endplate based on the stage of maturation of the lumbar vertebral body: the relationship between skeletal maturity and chronological age.

    PubMed

    Uraoka, Hideyuki; Higashino, Kosaku; Morimoto, Masatoshi; Yamashita, Kazuta; Tezuka, Fumitake; Takata, Yoichiro; Sakai, Toshinori; Nagamachi, Akihiro; Murase, Masaaki; Sairyo, Koichi

    2018-02-01

    The lesion of the lumbar endplate is sometimes identified in the vertebrae of children and adolescents. The purpose of this study is to compare between skeletal maturity and chronological age. The second purpose of this study is to clarify the lesions of the lumbar endplate based on the maturation of the lumbar vertebral body. Six hundred and thirty-two (485 men and 147 women) consecutive patients were included. The mean age at the first medical examination was 13.8 years. Their skeletal maturity was evaluated based on the appearances of the secondary ossification center of L3. The area of the endplate lesions was classified into five types. The apophyseal stage was observed from 10 years old to 18 years old, and the apophyseal stage was shown the peak at 14 years old. The appearance of the apophyseal ring was observed earlier in female patients than in male patients. For the concave type, the lesion at upper level vertebra was more prevalent. The anterior and middle type of the lesion at upper level vertebra was more prevalent. For the posterior type, the lesion of the inferior rim of L4 and the lesion of the rim of L5 were more prevalent. This study emerged after comparing skeletal maturity based on the maturation of the lumbar vertebral body with the chronological age of a large number of patients and examining the lesions of the lumbar endplate based on the stage of maturation of the lumbar vertebral body.

  5. Msx genes are expressed in the carapacial ridge of turtle shell: a study of the European pond turtle, Emys orbicularis.

    PubMed

    Vincent, Christine; Bontoux, Martine; Le Douarin, Nicole M; Pieau, Claude; Monsoro-Burq, Anne-Hélène

    2003-09-01

    The turtle shell forms by extensive ossification of dermis ventrally and dorsally. The carapacial ridge (CR) controls early dorsal shell formation and is thought to play a similar role in shell growth as the apical ectodermal ridge during limb development. However, the molecular mechanisms underlying carapace development are still unknown. Msx genes are involved in the development of limb mesenchyme and of various skeletal structures. In particular, precocious Msx expression is recorded in skeletal precursors that develop close to the ectoderm, such as vertebral spinous processes or skull. Here, we have studied the embryonic expression of Msx genes in the European pond turtle, Emys orbicularis. The overall Msx expression in head, limb, and trunk is similar to what is observed in other vertebrates. We have focused on the CR area and pre-skeletal shell condensations. The CR expresses Msx genes transiently, in a pattern similar to that of fgf10. In the future carapace domain, the dermis located dorsal to the spinal cord expresses Msx genes, as in other vertebrates, but we did not see expansion of this expression in the dermis located more laterally, on top of the dermomyotomes. In the ventral plastron, although the dermal osseous condensations form in the embryonic Msx-positive somatopleura, we did not observe enhanced Msx expression around these elements. These observations may indicate that common mechanisms participate in limb bud and CR early development, but that pre-differentiation steps differ between shell and other skeletal structures and involve other gene activities than that of Msx genes.

  6. Osteopathia striata with cranial sclerosis: clinical, radiological, and bone histological findings in an adolescent girl.

    PubMed

    Ward, L M; Rauch, F; Travers, R; Roy, M; Montes, J; Chabot, G; Glorieux, F H

    2004-08-15

    Osteopathia striata with cranial sclerosis (OS-CS) is a rare skeletal dysplasia characterized by linear striations of the long bones, osteosclerosis of the cranium, and extra-skeletal anomalies. We provide a comprehensive description of the skeletal phenotype in a French-Canadian girl with a moderate to severe form of sporadic OS-CS. Multiple medical problems, including anal stenosis and the Pierre-Robin sequence, were evident in the first few years of life. At 14 years, she was fully mobile, with normal intellect and stature. She suffered chronic lower extremity pain in the absence of fractures, as well as severe headaches, unilateral facial paralysis, and bilateral mixed hearing loss. Biochemical indices of bone and mineral metabolism were within normal limits. Bone densitometry showed increased areal bone mineral density in the skull, trunk, and pelvis, but not in the upper and lower extremities. An iliac bone biopsy specimen revealed an increased amount of trabecular bone. Trabeculae were abnormally thick, but there was no evidence of disturbed bone remodeling. In a cranial bone specimen, multiple layers of periosteal bone were found that covered a compact cortical compartment containing tightly packed haversian canals. Bone lamellation was normal in both the iliac and skull samples. Osteoclast differentiation studies showed that peripheral blood osteoclast precursors from this patient formed functional osteoclasts in vitro. Thus, studies of bone metabolism did not explain why bone mass is increased in most skeletal areas of this patient. Cranial histology points to exuberant periosteal bone formation as a potential cause of the cranial sclerosis.

  7. Bioarcheology has a "health" problem: conceptualizing "stress" and "health" in bioarcheological research.

    PubMed

    Temple, Daniel H; Goodman, Alan H

    2014-10-01

    This article provides a critical historical overview of the stress concept in bioarcheological research and critically evaluates the term "health" in reference to skeletal samples. Stress has a considerable history in 20th century physiological research, and the term has reached a critical capacity of meaning. Stress was operationalized around a series of generalized physiological responses that were associated with a deviation from homeostasis. The term was incorporated into anthropological research during the mid-20th century, and further defined in bioarcheological context around a series of skeletal indicators of physiological disruption and disease. Emphases on stress became a predominate area of research in bioarcheology, and eventually, many studies utilized the terms "health" and "stress" interchangeably as part of a broader, problem-oriented approach to evaluating prehistoric population dynamics. Use of the term "health" in relation to skeletal samples is associated with the intellectual history of bioarcheological research, specifically influences from cultural ecology and processualist archeology and remains problematic for two reasons. First, health represents a comprehensive state of well-being that includes physiological status and individual perception, factors that cannot be readily observed in skeletal samples. Second, the categorization of populations into relative levels of health represents a typological approach, however unintentional. This article advocates for the integration of methodological and theoretical advances from human biology and primatology, while simultaneously incorporating the theoretical constructs associated with social epidemiology into bioarcheological research. Such an approach will significantly increase the applicability of bioarcheological findings to anthropological and evolutionary research, and help realize the goal of a truly relevant bioarcheological paradigm. Copyright © 2014 Wiley Periodicals, Inc.

  8. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration

    PubMed Central

    Castiglioni, Alessandra; Basso, Veronica; Vezzoli, Michela; Monno, Antonella; Almada, Albert E.; Mondino, Anna; Wagers, Amy J.; Manfredi, Angelo A.; Rovere-Querini, Patrizia

    2015-01-01

    Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue. PMID:26039259

  9. Creating Interactions between Tissue-Engineered Skeletal Muscle and the Peripheral Nervous System.

    PubMed

    Smith, Alec S T; Passey, Samantha L; Martin, Neil R W; Player, Darren J; Mudera, Vivek; Greensmith, Linda; Lewis, Mark P

    2016-01-01

    Effective models of mammalian tissues must allow and encourage physiologically (mimetic) correct interactions between co-cultured cell types in order to produce culture microenvironments as similar as possible to those that would normally occur in vivo. In the case of skeletal muscle, the development of such a culture model, integrating multiple relevant cell types within a biomimetic scaffold, would be of significant benefit for investigations into the development, functional performance, and pathophysiology of skeletal muscle tissue. Although some work has been published regarding the behaviour of in vitro muscle models co-cultured with organotypic slices of CNS tissue or with stem cell-derived neurospheres, little investigation has so far been made regarding the potential to maintain isolated motor neurons within a 3D biomimetic skeletal muscle culture platform. Here, we review the current state of the art for engineering neuromuscular contacts in vitro and provide original data detailing the development of a 3D collagen-based model for the co-culture of primary muscle cells and motor neurons. The devised culture system promotes increased myoblast differentiation, forming arrays of parallel, aligned myotubes on which areas of nerve-muscle contact can be detected by immunostaining for pre- and post-synaptic proteins. Quantitative RT-PCR results indicate that motor neuron presence has a positive effect on myotube maturation, suggesting neural incorporation influences muscle development and maturation in vitro. The importance of this work is discussed in relation to other published neuromuscular co-culture platforms along with possible future directions for the field. © 2016 S. Karger AG, Basel.

  10. Store-Operated Ca2+ Entry (SOCE) Contributes to Normal Skeletal Muscle Contractility in young but not in aged skeletal muscle

    PubMed Central

    Brotto, Leticia S.; Bougoin, Sylvain; Nosek, Thomas M.; Reid, Michael; Hardin, Brian; Pan, Zui; Ma, Jianjie; Parness, Jerome

    2011-01-01

    Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca2+ to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca2+ entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca2+ to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca2+ release channel-mediated Ca2+ release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca2+ entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle. PMID:21666285

  11. Store-operated Ca(2+) entry (SOCE) contributes to normal skeletal muscle contractility in young but not in aged skeletal muscle.

    PubMed

    Thornton, Angela M; Zhao, Xiaoli; Weisleder, Noah; Brotto, Leticia S; Bougoin, Sylvain; Nosek, Thomas M; Reid, Michael; Hardin, Brian; Pan, Zui; Ma, Jianjie; Parness, Jerome; Brotto, Marco

    2011-06-01

    Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca(2+) to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca(2+) entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca(2+) to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca(2+) release channel-mediated Ca(2+) release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca(2+) entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle.

  12. Trichinosis in Maryland raccoons

    USGS Publications Warehouse

    Winslow, D.J.; Price, D.L.; Neafie, R.C.; Herman, C.M.

    1966-01-01

    During recent studies of experimental Chagas’ disease, trichinosis was found in 2 out of a total of 44 Maryland raccoons (Procyon lotor) examined histologically following necropsy. All raccoons were trapped near the towns of Beltsville or Laurel. The raccoons found to have trichinosis were trapped in the area of the Agricultural Research Center, Beltsville. Cysts containing larvae of Trichinella spiralis were found in sections of diaphragm in one raccoon and in sections of diaphragm, skeletal muscle, and ocular muscle in the other. Three to five cysts could he seen in sections of skeletal muscle or diaphragm within a single low-power (scanning lens X 40) field. There was little if any inflammatory reaction to most of these cysts, but inflammatory cells were present adjacent to an occasional cyst (Fig. 1). Foci of calcification were found in some sections of muscle and may represent old calcified cysts.

  13. Skeletal muscle and resistance exercise training; the role of protein synthesis in recovery and remodeling

    PubMed Central

    McGlory, Chris; Devries, Michaela C.

    2017-01-01

    Exercise results in the rapid remodeling of skeletal muscle. This process is underpinned by acute and chronic changes in both gene and protein synthesis. In this short review we provide a brief summary of our current understanding regarding how exercise influences these processes as well as the subsequent impact on muscle protein turnover and resultant shift in muscle phenotype. We explore concepts of ribosomal biogenesis and the potential role of increased translational capacity vs. translational efficiency in contributing to muscular hypertrophy. We also examine whether high-intensity sprinting-type exercise promotes changes in protein turnover that lead to hypertrophy or merely a change in mitochondrial content. Finally, we propose novel areas for future study that will fill existing knowledge gaps in the fields of translational research and exercise science. PMID:27742803

  14. [PALEOPATHOLOGY OF HUMAN REMAINS].

    PubMed

    Minozzi, Simona; Fornaciari, Gino

    2015-01-01

    Many diseases induce alterations in the human skeleton, leaving traces of their presence in ancient remains. Paleopathological examination of human remains not only allows the study of the history and evolution of the disease, but also the reconstruction of health conditions in the past populations. This paper describes the most interesting diseases observed in skeletal samples from the Roman Imperial Age necropoles found in urban and suburban areas of Rome during archaeological excavations in the last decades. The diseases observed were grouped into the following categories: articular diseases, traumas, infections, metabolic or nutritional diseases, congenital diseases and tumours, and some examples are reported for each group. Although extensive epidemiological investigation in ancient skeletal records is impossible, the palaeopathological study allowed to highlight the spread of numerous illnesses, many of which can be related to the life and health conditions of the Roman population.

  15. Siliceous spicules in a vauxiid sponge (Demospongia) from the Kaili Biota(Cambrian Stage 5), Guizhou, South China

    NASA Astrophysics Data System (ADS)

    Yang, X.-L.; Zhao, Y.-L.; Babcock, L. E.; Peng, J.

    2017-02-01

    Fossils of the sponge Angulosuspongia sinensis from calcareous mudstones of the middle and upper part of the Kaili Formation (Cambrian Stage 5) in the Jianhe area of Guizhou province, South China, exhibit an apparently reticulate pattern, characteristic of the Vauxiidae. Energy Dispersive X-Ray Spectrometry (EDS) and Raman spectroscopy analysis indicate the presence of silica in the skeletal elements of these fossils, suggesting that this taxon possessed a skeleton comprised of spicules. This is the first confirmation of siliceous skeletal elements in fossils of the family Vauxiidae, and it lends support to the hypothesis that some early demosponges possessed biomineralized siliceous skeletons, which were subsequently lost and replaced by spongin later in the evolutionary history of this lineage. The new materials provide critical insight into the phylogeny and evolution of biomineralization in the Demosopongiae.

  16. Circuit resistance training in women with normal weight obesity syndrome: body composition, cardiometabolic and echocardiographic parameters, and cardiovascular and skeletal muscle fitness.

    PubMed

    Ferreira, Fabiano C; Bertucci, Danilo R; Barbosa, Marina R; Nunes, João E; Botero, João P; Rodrigues, Maria F; Shiguemoto, Gilberto E; Santoro, Valdir; Verzola, Ana C; Nonaka, Rodrigo O; Verzola, Roberto M; Baldissera, Vilmar; Perez, Sérgio E

    2017-01-01

    Normal weight obesity (NWO) syndrome has been characterized in subjects with normal Body Mass Index (BMI) and high body fat mass percentage (BF%>30 for women) being a risk factor for cardiometabolic dysregulation and cardiovascular mortality. This study evaluated whether circuit resistance training (CRT) improves body composition, heart size and function, cardiometabolic parameters, and cardiorespiratory, cardiovascular and skeletal muscle fitness in women with NWO. Data are means (95% Confidence Interval). Twenty-three women participated: 10 NWO-CRT (baseline: BMI=22.4 [21.4-23.3] kg/m2; BF%=44.5 [41.0-48.0]%) performed CRT; and 13 untrained NWO-control (baseline: BMI=21.7 [20.8-22.7] kg/m2; BF%=37.8 [34.6-41.1]%). At baseline and after 10 weeks were performed/measured dual-energy X-ray absorptiometry, echocardiography, blood tests, arterial pressure, exercise testing, and total-overload-by-training-session (TOL). At baseline, the NWO-CRT exhibited larger BF (27.28 [23.9-30.6] kg) than NWO-control (22.41 [19.5-25.3] kg) (P=0.0227). After training, NWO-CRT: reduced 8 kg of BF (P=0.000002); became BF% lower than NWO-control (33.1 [30.1-36.0] <37.0 [34.3-39.6]%, P=0.0423), with 30% of NWO-CRT subjects becoming without-obesity; reduced 3 kg in trunk fat mass (P=0.000005); showed fasting glucose (72.8 [69.4-76.2] mg/dL) smaller than NWO-control (81.7 [78.6-84.8] mg/dL) (P=0.004); increased TOL (5087.5 [4142.5-6032.5] to 6963.3 [6226.4-7700.2] rep.kg, P=0.0004); increased load at VO2peak (122.5 [106.8-138.2] to 137.5 [118.18-156.82] W, P=0.0051); reduced double product/load at VO2peak ratio (277.4 [222.1-332.8] to 237.7 [194.2-281.2] mmHg.bpm/W, P=0.0015); and increased left ventricular mass/body surface area ratio (84.29 [78.98-89.6] to 90.29 [81.45-99.12] g/m2, P=0.0215). CRT reduced BF% and generated cardiometabolic, cardiac, skeletal muscle and cardiovascular benefits, being a useful strategy to combat the normal weight obesity syndrome in women.

  17. FDG-PET response of skeletal (bone marrow and bone) involvement after induction chemotherapy in pediatric Hodgkin lymphoma - Are specific response criteria required?

    PubMed

    Georgi, Thomas Walter; Kluge, Regine; Kurch, Lars; Chavdarova, Lidia; Hasenclever, Dirk; Stoevesandt, Dietrich; Pelz, Tanja; Landman-Parker, Judith; Wallace, Hamish; Karlen, Jonas; Fernandez-Teijeiro, Ana; Cepelova, Michaela; Fossa, Alexander; Balwierz, Walentyna; Attarbaschi, Andishe; Ammann, Roland A; Pears, Jane; Hraskova, Andrea; Uyttebroeck, Anne; Beishuizen, Auke; Dieckmann, Karin; Leblanc, Thierry; Daw, Stephen; Baumann, Julia; Körholz, Dieter; Sabri, Osama; Mauz-Körholz, Christine

    2018-04-13

    Purpose: This study focused on skeletal involvement in FDG-PET (PET) in Hodgkin lymphoma (HL). We aimed at a systematic evaluation of the different types of skeletal involvement and their PET response after two cycles of chemotherapy (PET-2), to answer the question whether the current PET response criterion for skeletal involvement is suitable. A secondary objective was to observe the influence of initial uptake intensity and metabolic tumor volume (MTV) of skeletal lesions on the PET-2 response. Methods: Initial PET scans (PET-0) of 1068 pediatric HL patients from the EuroNet-PHL-C1 (C1) trial were evaluated by central review for skeletal involvement. Three types of skeletal lesions were distinguished: skeletal lesions detected only in PET (PETonly), bone marrow (BM) lesions confirmed by MRI or BM biopsy and bone lesions. Uptake intensity (measured as qPET value) and MTV were calculated for each skeletal lesion. All PET-2 scans were assessed for residual tumor activity. The rates of complete metabolic response in PET-2 of skeletal and nodal involvement were compared. Results: 139/1068 (13%) C1 patients showed skeletal involvement (44/139 PETonly patients, 32/139 BM patients and 63/139 bone patients). 101/139 (73%) patients became PET-2 negative in the skeleton while lymph node involvement was PET-2 negative in 94/139 (68%) patients. Highest skeletal PET-2 negative rate was seen in 42/44 (95%) PETonly patients, followed by 22/32 (69%) BM patients and 37/63 (59%) bone patients. Skeletal lesions who became PET-2 negative showed lower median values for initial qPET (2.74) and MTV (2ml) than lesions who remained PET-2 positive (3.84; 7ml). Conclusion: In this study with pediatric HL patients, the complete response rate in PET-2 of skeletal and nodal involvement was similar. Bone flare seemed to be irrelevant. Overall, the current skeletal PET response criterion - comparison with the local skeletal background - is well suited. Initial uptake intensity and MTV of skeletal lesions were predictive for the PET-2 result. Higher values for both parameters were associated with a worse PET-2 response. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  18. A comparison of capillary hydraulic conductivities in postural and locomotor muscle.

    PubMed

    McDonagh, P F; Gore, R W

    1982-09-01

    In a comparative skeletal muscle study Folkow and Halicka (Microvasc. Res. 1: 1-14, 1968) reported that the capillary filtration coefficient (CFC) of postural (red) muscle was two times the CFC of locomotor (white) muscle. It was concluded that the twofold difference in CFC was due solely to a difference in the perfused capillary surface areas (Sf) of red vs. white muscle. However, CFC is the product of capillary hydraulic conductivity (LP) and Sf. Hence their conclusion assumed that the average LP of red muscle capillaries is exactly equal to the average LP of white muscle capillaries. The following study was undertaken to test the validity of this assumption. The microocclusion procedures and analytical model described by Lee et al. (Circ. Res. 28: 358-370, 1971) and Gore [Am. J. Physiol. 242 (Heart Circ. Physiol. 11): H268-H287, 1982] were used to determine LP. Independent measurements of LP were recorded from single capillaries in red, anterior latissimus dorsi (ALD) and white, posterior latissimus dorsi (PLD) muscles of chickens anesthetized with L.A. Thesia. We found that the mean capillary hydraulic conductivity in postural muscle [(LP)ALD = 0.20 +/- 0.06 (SE) micrometers . s-1 . cmH2O-1 (n = 11)] was significantly different from the mean capillary hydraulic conductivity in locomotor muscle [(LP)PLD = 0.061 +/- 0.01 micrometers . s-1 . cmH2O-1 (n = 14)] (P less than 0.05). These results provide direct evidence that observed differences in red vs. white muscle CFC's may not be due solely to different perfused capillary surface areas but may also be due to differences in capillary hydraulic conductivity.

  19. Reservoir development in bryozoan bafflestone facies of the Ullin (Warsaw) Limestone (Middle Mississippian) in the Illinois basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasemi, Z.; Treworgy, J.D.; Norby, R.D.

    1994-08-01

    Recent drilling in Enfield South and Johnsonville fields in southern Illinois has encountered prolific petroleum-producing zones within the Ullin (Warsaw) Limestone. This and large cumulative production from a number of older wells in the Illinois basin indicate that the Ullin has greater reservoir potential than previously recognized. The Ullin reservoir facies is mainly a fenestrate bryozoan-dominated bafflestone developed on the flanks of Waulsortian-type mud mounds or on transported skeletal sand buildups. Subsurface geology and petrography reveal such porous bryozoan bafflestone facies (some with shows of oil) at various horizons within the Ullin. However, in part because of water problems inmore » some areas, only the upper part of the Ullin has been tested thus far and, as a result, significant reservoirs in the deeper part of the unit may have been missed. Preliminary data indicate several facies in the Ullin that vary in their aerial distribution in the basin. These facies include (1) skeletal sand-wave facies and/or bryozoan bafflestone in the upper Ullin, (2) bryozoan bafflestone with a dense Waulsortian mud mound core, (3) thick bryozoan bafflestone over a skeletal grainstone facies, and (4) thick mud mound-dominated facies with thin porous flanking bafflestone/grainstone facies. Areas with facies type 1 and 2 have the highest potential for commercial reservoir development. Facies type 3, although quite porous, is commonly wet, and the porous facies type 4 may be localized and not extensive enough to be commercial. Petrographic examination shows excellent preservation of primary intra- and interparticle porosities within the bryozoan bafflestone facies. The generally stable original mineralogy prevented extensive dissolution-reprecipitation and occlusion of porosity. Further, the stable mineralogy and minor early marine cementation prevented later compaction and burial diagenesis.« less

  20. Identification of morphological markers of sarcopenia at early stage of aging in skeletal muscle of mice.

    PubMed

    Sayed, Ramy K A; de Leonardis, Erika Chacin; Guerrero-Martínez, José A; Rahim, Ibtissem; Mokhtar, Doaa M; Saleh, Abdelmohaimen M; Abdalla, Kamal E H; Pozo, María J; Escames, Germaine; López, Luis C; Acuña-Castroviejo, Darío

    2016-10-01

    The gastrocnemius muscle (GM) of young (3months) and aged (12months) female wild-type C57/BL6 mice was examined by light and electron microscopy, looking for the presence of structural changes at early stage of the aging process. Morphometrical parameters including body and gastrocnemius weights, number and type of muscle fibers, cross section area (CSA), perimeter, and Feret's diameter of single muscle fiber, were measured. Moreover, lengths of the sarcomere, A-band, I-band, H-zone, and number and CSA of intermyofibrillar mitochondria (IFM), were also determined. The results provide evidence that 12month-old mice had significant changes on skeletal muscle structure, beginning with the reduction of gastrocnemius weight to body weight ratio, compatible with an early loss of skeletal muscle function and strength. Moreover, light microscopy revealed increased muscle fibers size, with a significant increase on their CSA, perimeter, and diameter of both type I and type II muscle fibers, and a reduction in the percentage of muscle area occupied by type II fibers. Enhanced connective tissue infiltrations, and the presence of centrally nucleated muscle fibers, were also found in aged mice. These changes may underlie an attempt to compensate the loss of muscle mass and muscle fibers number. Furthermore, electron microscopy discovered a significant age-dependent increase in the length of sarcomeres, I and H bands, and reduction on the overlapped actin/myosin length, supporting contractile force loss with age. Electron microscopy also showed an increased number and CSA of IFM with age, which may reveal more endurance at 12months of age. Together, mice at early stage of aging already show significant changes in gastrocnemius muscle morphology and ultrastructure that are suggestive of the onset of sarcopenia. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Cycling exercise and fetal spinal cord transplantation act synergistically on atrophied muscle following chronic spinal cord injury in rats.

    PubMed

    Peterson, C A; Murphy, R J; Dupont-Versteegden, E E; Houlé, J D

    2000-01-01

    The potential of two interventions, alone or in combination, to restore chronic spinal cord transection-induced changes in skeletal muscles of adult Sprague-Dawley rats was studied. Hind limb skeletal muscles were examined in the following groups of animals: rats with a complete spinal cord transection (Tx) for 8 weeks; Tx with a 4-week delay before initiation of a 4-week motor-assisted cycling exercise (Ex) program; Tx with a 4-week delay before transplantation (Tp) of fetal spinal cord tissue into the lesion cavity; Tx with a 4-week delay before Tp and Ex; and uninjured control animals. Muscle mass, muscle to body mass ratios, and mean myofiber cross-sectional areas were significantly reduced 8 weeks after transection. Whereas transplantation of fetal spinal cord tissue did not reverse this atrophy and exercise alone had only a modest effect in restoring lost muscle mass, the combination of exercise and transplantation significantly increased muscle mass, muscle to body mass ratios, and mean myofiber cross-sectional areas in both soleus and plantaris muscles. Spinal cord injury (SCI) also caused changes in myosin heavy chain (MyHC) expression toward faster isoforms in both soleus and plantaris and increased soleus myofiber succinate dehydrogenase (SDH) activity. Combined exercise and transplantation led to a change in the expression of the fastest MyHC isoform in soleus but had no effect in the plantaris. Exercise alone and in combination with transplantation reduced SDH activity to control levels in the soleus. These results suggest a synergistic action of exercise and transplantation of fetal spinal cord tissue on skeletal muscle properties following SCI, even after an extended post-injury period before intervention.

  2. Oxidative and proteolysis-related parameters of skeletal muscle from hamsters with experimental pulmonary emphysema: a comparison between papain and elastase induction.

    PubMed

    Brunnquell, Cláudia R; Vieira, Nichelle A; Sábio, Laís R; Sczepanski, Felipe; Cecchini, Alessandra L; Cecchini, Rubens; Guarnier, Flávia A

    2015-06-01

    The objective of this study was to investigate whether emphysema induced by elastase or papain triggers the same effects on skeletal muscle, related to oxidative stress and proteolysis, in hamsters. For this purpose, we evaluated pulmonary lesions, body weight, muscle loss, oxidative stress (thiobarbituric acid-reactive substances, total and oxidized glutathiones, chemiluminescence stimulated by tert-butyl hydroperoxide and carbonyl proteins), chymotrypsin-like and calpain-like proteolytic activities and muscle fibre cross-sectional area in the gastrocnemius muscles of emphysemic hamsters. Two groups of animals received different intratracheal inductions of experimental emphysema: by 40 mg/ml papain (EP) or 5.2 IU/100 g animal (EE) elastase (n = 10 animals/group). The control group received intratracheal instillation of 300 μl sterile NaCl 0.9%. Compared with the control group, the EP group had reduced muscle weight (18.34%) and the EE group had increased muscle weight (8.37%). Additionally, tert-butyl hydroperoxide-initiated chemiluminescence, carbonylated proteins and chymotrypsin-like proteolytic activity were all elevated in the EP group compared to the CS group, while total glutathione was decreased compared to the EE group. The EE group showed more fibres with increased cross-sectional areas and increased calpain-like activity. Together, these data show that elastase and papain, when used to induce experimental models of emphysema, lead to different speeds and types of adaptation. These findings provide more information on choosing a suitable experimental model for studying skeletal muscle adaptations in emphysema. © 2015 The Authors. International Journal of Experimental Pathology © 2015 International Journal of Experimental Pathology.

  3. Mus musculus bone fluoride concentration as a useful biomarker for risk assessment of skeletal fluorosis in volcanic areas.

    PubMed

    Linhares, Diana; Camarinho, Ricardo; Garcia, Patrícia Ventura; Rodrigues, Armindo Dos Santos

    2018-08-01

    Fluoride is often found in elevated concentrations in volcanic areas due to the release of magmatic fluorine as hydrogen fluorine through volcanic degassing. The exposure to high levels of fluoride can affect the processes of bone formation and resorption causing skeletal fluorosis, a pathology that can easily be mistaken for other skeletal diseases. In this study, we aimed to determine if fluoride concentration in the femoral bone of wild populations of the house mouse (Mus musculus) is a good biomarker of exposure to active volcanic environments naturally enriched in fluoride, allowing their use in biomonitoring programs. The fluoride concentration of the whole femoral bone of 9 mice from Furnas (5 males and 4 females) and 33 mice from Rabo de Peixe (16 males and 17 females) was measured by the potentiometric method with a fluoride ion selective electrode. Fluoride in bones was significantly higher in the mice from Furnas when compared with the mice from Rabo de Peixe (616.5 ± 129.3 μg F/g vs. 253.8 ± 10.5 μg F/g). Accumulation rates were also significantly higher in the mice collected in Furnas when compared with Rabo de Peixe individuals (3.84 ± 0.52 μg F/day vs. 1.22 ± 0.06 μg F/day). The results demonstrate a significant association between exposure to fluoride in the active volcanic environment and fluoride content in bone, revealing that bone fluoride concentration is a suitable biomarker of chronic environmental exposure to fluoride. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. A Murine Model of Robotic Training to Evaluate Skeletal Muscle Recovery after Injury.

    PubMed

    Lai, Stefano; Panarese, Alessandro; Lawrence, Ross; Boninger, Michael L; Micera, Silvestro; Ambrosio, Fabrisia

    2017-04-01

    In vivo studies have suggested that motor exercise can improve muscle regeneration after injury. Nevertheless, preclinical investigations still lack reliable tools to monitor motor performance over time and to deliver optimal training protocols to maximize force recovery. Here, we evaluated the utility of a murine robotic platform (i) to detect early impairment and longitudinal recovery after acute skeletal muscle injury and (ii) to administer varying intensity training protocols to enhance forelimb motor performance. A custom-designed robotic platform was used to train mice to perform a forelimb retraction task. After an acute injury to bilateral biceps brachii muscles, animals performed a daily training protocol in the platform at high (HL) or low (LL) loading levels over the course of 3 wk. Control animals were not trained (NT). Motor performance was assessed by quantifying force, time, submovement count, and number of movement attempts to accomplish the task. Myofiber number and cross-sectional area at the injury site were quantified histologically. Two days after injury, significant differences in the time, submovement count, number of movement attempts, and exerted force were observed in all mice, as compared with baseline values. Interestingly, the recovery time of muscle force production differed significantly between intervention groups, with HL group showing a significantly accelerated recovery. Three weeks after injury, all groups showed motor performance comparable with baseline values. Accordingly, there were no differences in the number of myofibers or average cross-sectional area among groups after 3 wk. Our findings demonstrate the utility of our custom-designed robotic device for the quantitative assessment of skeletal muscle function in preclinical murine studies. Moreover, we demonstrate that this device may be used to apply varying levels of resistance longitudinally as a means manipulate physiological muscle responses.

  5. Regenerating skeletal muscle in the face of aging and disease.

    PubMed

    Jasuja, Ravi; LeBrasseur, Nathan K

    2014-11-01

    Skeletal muscle is a fundamental organ in the generation of force and movement, the regulation of whole-body metabolism, and the provision of resiliency. Indeed, physical medicine and rehabilitation is recognized for optimizing skeletal muscle health in the context of aging (sarcopenia) and disease (cachexia). Exercise is, and will remain, the cornerstone of therapies to improve skeletal muscle health. However, there are now a number of promising biologic and small molecule interventions currently under development to rejuvenate skeletal muscle, including myostatin inhibitors, selective androgen receptor modulators, and an activator of the fast skeletal muscle troponin complex. The opportunities for skeletal muscle-based regenerative therapies and a selection of emerging pharmacologic interventions are discussed in this review.

  6. Oncological outcomes of patients with Ewing's sarcoma: is there a difference between skeletal and extra-skeletal Ewing's sarcoma?

    PubMed

    Pradhan, A; Grimer, R J; Spooner, D; Peake, D; Carter, S R; Tillman, R M; Abudu, A; Jeys, L

    2011-04-01

    The aim of this study was to identify whether there was any difference in patient, tumour, treatment or outcome characteristics between patients with skeletal or extra-skeletal Ewing's sarcoma. We identified 300 patients with new primary Ewing's sarcoma diagnosed between 1980 and 2005 from the centres' local database. There were 253 (84%) with skeletal and 47 (16%) with extra-skeletal Ewing's sarcomas. Although patients with skeletal Ewing's were younger (mean age 16.8 years) than those with extra-skeletal Ewing's sarcoma (mean age 27.5 years), there was little difference between the groups in terms of tumour stage or treatment. Nearly all the patients were treated with chemotherapy and most had surgery. There was no difference in the overall survival of patients with skeletal (64%) and extra-skeletal Ewing's sarcoma (61%) (p = 0.85), and this was also the case when both groups were split by whether they had metastases or not. This large series has shown that the oncological outcomes of Ewing's sarcoma are related to tumour characteristics and patient age, and not determined by whether they arise in bone or soft tissue.

  7. Application of skeletal age based on x-ray in selecting sports talents

    NASA Astrophysics Data System (ADS)

    Mao, Zongzhen; Xu, Guodong; Song, Tao

    2012-01-01

    Skeletal age has been studied and proved that for most elite athletes, it was coincident with the chronological ages when they were young. In order to explore the application of skeletal age in selecting sports talent, 32 athletes (female, chronological age 5-12 y) were chosen from the Gymnastics Training Base in this study. Their left hand-wrists were photographed with X-rays, and then the skeletal ages were estimated by Chinese version of the Tanner-Whitehouse Skeletal Maturity Assessment System. At the same time, their body shapes, functions, and sports ability were also measured. Results showed that 71.88% of the skeletal age was proportional to their chronological age (+/- 1 y); while 18.75% of the skeletal maturity was retarded by 1- 2 year, 9.37% of those was advanced more than 1 year. On the other hand, the body shape, functions and sports ability of the athletes were positively related with their skeletal maturity. This study proved that the determination of skeletal maturity is a reliable evaluation for selecting sports talent. A further study on the influence of gymnastics on the skeletal age is of great significance.

  8. Skeletal muscle and fetal alcohol spectrum disorder.

    PubMed

    Myrie, Semone B; Pinder, Mark A

    2018-04-01

    Skeletal muscle is critical for mobility and many metabolic functions integral to survival and long-term health. Alcohol can affect skeletal muscle physiology and metabolism, which will have immediate and long-term consequences on health. While skeletal muscle abnormalities, including morphological, biochemical, and functional impairments, are well-documented in adults that excessively consume alcohol, there is a scarcity of information about the skeletal muscle in the offspring prenatally exposed to alcohol ("prenatal alcohol exposure"; PAE). This minireview examines the available studies addressing skeletal muscle abnormalities due to PAE. Growth restriction, fetal alcohol myopathy, and abnormalities in the neuromuscular system, which contribute to deficits in locomotion, are some direct, immediate consequences of PAE on skeletal muscle morphology and function. Long-term health consequences of PAE-related skeletal abnormalities include impaired glucose metabolism in the skeletal muscle, resulting in glucose intolerance and insulin resistance, leading to an increased risk of type 2 diabetes. In general, there is limited information on the morphological, biochemical, and functional features of skeletal abnormalities in PAE offspring. There is a need to understand how PAE affects muscle growth and function at the cellular level during early development to improve the immediate and long-term health of offspring suffering from PAE.

  9. The application of muscle wrapping to voxel-based finite element models of skeletal structures.

    PubMed

    Liu, Jia; Shi, Junfen; Fitton, Laura C; Phillips, Roger; O'Higgins, Paul; Fagan, Michael J

    2012-01-01

    Finite elements analysis (FEA) is now used routinely to interpret skeletal form in terms of function in both medical and biological applications. To produce accurate predictions from FEA models, it is essential that the loading due to muscle action is applied in a physiologically reasonable manner. However, it is common for muscle forces to be represented as simple force vectors applied at a few nodes on the model's surface. It is certainly rare for any wrapping of the muscles to be considered, and yet wrapping not only alters the directions of muscle forces but also applies an additional compressive load from the muscle belly directly to the underlying bone surface. This paper presents a method of applying muscle wrapping to high-resolution voxel-based finite element (FE) models. Such voxel-based models have a number of advantages over standard (geometry-based) FE models, but the increased resolution with which the load can be distributed over a model's surface is particularly advantageous, reflecting more closely how muscle fibre attachments are distributed. In this paper, the development, application and validation of a muscle wrapping method is illustrated using a simple cylinder. The algorithm: (1) calculates the shortest path over the surface of a bone given the points of origin and ultimate attachment of the muscle fibres; (2) fits a Non-Uniform Rational B-Spline (NURBS) curve from the shortest path and calculates its tangent, normal vectors and curvatures so that normal and tangential components of the muscle force can be calculated and applied along the fibre; and (3) automatically distributes the loads between adjacent fibres to cover the bone surface with a fully distributed muscle force, as is observed in vivo. Finally, we present a practical application of this approach to the wrapping of the temporalis muscle around the cranium of a macaque skull.

  10. Structure and phase transitions of monolayers of intermediate-length n-alkanes on graphite studied by neutron diffraction and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Diama, A.; Matthies, B.; Herwig, K. W.; Hansen, F. Y.; Criswell, L.; Mo, H.; Bai, M.; Taub, H.

    2009-08-01

    We present evidence from neutron diffraction measurements and molecular dynamics (MD) simulations of three different monolayer phases of the intermediate-length alkanes tetracosane (n-C24H50 denoted as C24) and dotriacontane (n-C32H66 denoted as C32) adsorbed on a graphite basal-plane surface. Our measurements indicate that the two monolayer films differ principally in the transition temperatures between phases. At the lowest temperatures, both C24 and C32 form a crystalline monolayer phase with a rectangular-centered (RC) structure. The two sublattices of the RC structure each consists of parallel rows of molecules in their all-trans conformation aligned with their long axis parallel to the surface and forming so-called lamellas of width approximately equal to the all-trans length of the molecule. The RC structure is uniaxially commensurate with the graphite surface in its [110] direction such that the distance between molecular rows in a lamella is 4.26 Å=√3 ag, where ag=2.46 Å is the lattice constant of the graphite basal plane. Molecules in adjacent rows of a lamella alternate in orientation between the carbon skeletal plane being parallel and perpendicular to the graphite surface. Upon heating, the crystalline monolayers transform to a "smectic" phase in which the inter-row spacing within a lamella expands by ˜10% and the molecules are predominantly oriented with the carbon skeletal plane parallel to the graphite surface. In the smectic phase, the MD simulations show evidence of broadening of the lamella boundaries as a result of molecules diffusing parallel to their long axis. At still higher temperatures, they indicate that the introduction of gauche defects into the alkane chains drives a melting transition to a monolayer fluid phase as reported previously.

  11. Structure and phase transitions of monolayers of intermediate-length n-alkanes on graphite studied by neutron diffraction and molecular dynamics simulation.

    PubMed

    Diama, A; Matthies, B; Herwig, K W; Hansen, F Y; Criswell, L; Mo, H; Bai, M; Taub, H

    2009-08-28

    We present evidence from neutron diffraction measurements and molecular dynamics (MD) simulations of three different monolayer phases of the intermediate-length alkanes tetracosane (n-C(24)H(50) denoted as C24) and dotriacontane (n-C(32)H(66) denoted as C32) adsorbed on a graphite basal-plane surface. Our measurements indicate that the two monolayer films differ principally in the transition temperatures between phases. At the lowest temperatures, both C24 and C32 form a crystalline monolayer phase with a rectangular-centered (RC) structure. The two sublattices of the RC structure each consists of parallel rows of molecules in their all-trans conformation aligned with their long axis parallel to the surface and forming so-called lamellas of width approximately equal to the all-trans length of the molecule. The RC structure is uniaxially commensurate with the graphite surface in its [110] direction such that the distance between molecular rows in a lamella is 4.26 A=sqrt[3a(g)], where a(g)=2.46 A is the lattice constant of the graphite basal plane. Molecules in adjacent rows of a lamella alternate in orientation between the carbon skeletal plane being parallel and perpendicular to the graphite surface. Upon heating, the crystalline monolayers transform to a "smectic" phase in which the inter-row spacing within a lamella expands by approximately 10% and the molecules are predominantly oriented with the carbon skeletal plane parallel to the graphite surface. In the smectic phase, the MD simulations show evidence of broadening of the lamella boundaries as a result of molecules diffusing parallel to their long axis. At still higher temperatures, they indicate that the introduction of gauche defects into the alkane chains drives a melting transition to a monolayer fluid phase as reported previously.

  12. Daily chocolate milk consumption does not enhance the effect of resistance training in young and old men: a randomized controlled trial.

    PubMed

    Mitchell, Cameron J; Oikawa, Sara Y; Ogborn, Dan I; Nates, Nicholas J; MacNeil, Lauren G; Tarnopolsky, Mark; Phillips, Stuart M

    2015-02-01

    Older and younger men completed 12 weeks of resistance training and ingested either 500 mL of chocolate milk or placebo daily. Training increased strength in both age groups (p < 0.05), with no supplementation effect. Type I muscle fibre area increased with training (p = 0.008) with no effect of age or supplementation. Type II fibre area increased (p = 0.014) in young men only with no supplementation effect. Chocolate milk did not enhance skeletal muscle hypertrophy following training.

  13. Impact of nutritional status on outcomes in laparoscopy-assisted gastrectomy.

    PubMed

    Nagata, Tomoyuki; Nakase, Yuen; Nakamura, Kei; Sougawa, Akira; Mochiduki, Satoshi; Kitai, Shozo; Inaba, Seishiro

    2017-11-01

    There is a high morbidity rate after digestive surgery in patients with nutritional disorders such as high body mass index and depletion of skeletal muscle. The ratio of psoas muscle area to trunk area was defined as the Psoas and All trunk Ratio (PandA Ratio) and used as an index of the balance between muscle and adipose tissue. This ratio was determined in 77 patients undergoing laparoscopy-assisted gastrectomy (LAG) for gastric cancer. Patients were classified into groups with and without postoperative complications. Clinicopathological factors were compared between the groups, and relationships of PandA Ratio with other nutritional indices were examined. PandA Ratios were also analyzed in males and females in each Clavien-Dindo grade. Complications developed in 22 patients (28.6%) after LAG. The PandA Ratio was significantly lower in patients with complications in univariate (2.76 ± 0.22% versus 3.66 ± 0.14%, P = 0.0009) and multivariate (P = 0.0064) analyses. A low PandA Ratio was also associated with more severe complications in males. Measurement of the areas of the psoas muscle and trunk on CT is useful for evaluation of the balance between skeletal and adipose tissue. The PandA Ratio derived from these measurements is a predictor of the clinical course after LAG in males. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Aerobic Exercise Attenuates the Loss of Skeletal Muscle during Energy Restriction in Adults with Visceral Adiposity

    PubMed Central

    Yoshimura, Eiichi; Kumahara, Hideaki; Tobina, Takuro; Matsuda, Takuro; Watabe, Kiwa; Matono, Sakiko; Ayabe, Makoto; Kiyonaga, Akira; Anzai, Keizo; Higaki, Yasuki; Tanaka, Hiroaki

    2014-01-01

    Objective To evaluate the effects of energy restriction with or without aerobic exercise on thigh muscle mass and quality in adults with visceral adiposity. Methods 75 males and females were randomly assigned to the groups ‘diet only’ (DO; n = 42) or ‘diet plus aerobic exercise’ (D/Ex; n = 33) for 12 weeks. The target energy intake in both groups was 25 kcal/kg of ideal body weight. Subjects in the D/Ex group were instructed to exercise for ≥300 min/week at lactate threshold. Computed tomography was used to measure thigh muscle cross-sectional area (CSA), normal-density muscle area (NDMA), and visceral fat area. Results Total body weight (DO: −6.6 ± 3.6%; D/Ex: −7.3 ± 4.6%) and visceral fat (DO: −16.0 ± 13.8%; D/Ex: −23.1 ± 14.7%) decreased significantly in both groups; however, the changes were not significantly different between the two groups. The decrease in muscle CSA was significantly greater in the DO group (-5.1 ± 4.5%) compared with the D/Ex group (-2.5 ± 5.0%). NDMA decreased significantly in the DO (-4.9 ± 4.9%) but not in the D/Ex group (-1.4 ± 5.0%). Conclusion Aerobic exercise attenuated the loss of skeletal muscle during energy restriction in adults with visceral adiposity. PMID:24457527

  15. Eastern Baltic region vs. Western Europe: modelling age related changes in the pubic symphysis and the auricular surface.

    PubMed

    Jatautis, Šarūnas; Jankauskas, Rimantas

    2018-02-01

    Objectives. The present study addresses the following two main questions: a) Is the pattern of skeletal ageing observed in well-known western European reference collections applicable to modern eastern Baltic populations, or are population-specific standards needed? b) What are the consequences for estimating the age-at-death distribution in the target population when differences in the estimates from reference data are not taken into account? Materials and methods. The dataset consists of a modern Lithuanian osteological reference collection, which is the only collection of this type in the eastern Baltic countries (n = 381); and two major western European reference collections, Coimbra (n = 264) and Spitalfields (n = 239). The age-related changes were evaluated using the scoring systems of Suchey-Brooks (Brooks & Suchey 1990) and Lovejoy et al. (1985), and were modelled via regression models for multinomial responses. A controlled experiment based on simulations and the Rostock Manifesto estimation protocol (Wood et al. 2002) was then carried out to assess the effect of using estimates from different reference samples and different regression models on estimates of the age-at-death distribution in the hypothetical target population. Results. The following key results were obtained in this study. a) The morphological alterations in the pubic symphysis were much faster among women than among men at comparable ages in all three reference samples. In contrast, we found no strong evidence in any of the reference samples that sex is an important factor to explain rate of changes in the auricular surface. b) The rate of ageing in the pubic symphysis seems to be similar across the three reference samples, but there is little evidence of a similar pattern in the auricular surface. That is, the estimated rate of age-related changes in the auricular surface was much faster in the LORC and the Coimbra samples than in the Spitalfields sample. c) The results of simulations showed that the differences in the estimates from the reference data result in noticeably different age-at-death distributions in the target population. Thus, a degree bias may be expected if estimates from the western European reference data are used to collect information on ages at death in the eastern Baltic region based on the changes in the auricular surface. d) Moreover, the bias is expected to be more pronounced if the fitted regression model improperly describes the reference data. Conclusions. Differences in the timing of age-related changes in skeletal traits are to be expected among European reference samples, and cannot be ignored when seeking to reliably estimate an age-at-death distribution in the target population. This form of bias should be taken into consideration in further studies of skeletal samples from the eastern Baltic region.

  16. Editorial Commentary: The All-Epiphyseal Anterior Cruciate Ligament Distal Femoral Approach: Sockets or Tunnels?

    PubMed

    Cordasco, Frank A

    2018-05-01

    I believe that the distal femoral approach for anterior cruciate ligament reconstruction in the skeletally immature athlete with 3 to 6 years of remaining growth is best performed with an all-inside, all-epiphyseal technique using sockets rather than an outside-in approach creating tunnels. A shorter socket rather than a longer tunnel exposes a smaller surface area of the lateral distal femoral physis to potential compromise and resultant valgus malalignment. In addition, exiting the lateral femoral aspect of the epiphysis with a full-diameter tunnel as compared with a smaller diameter drill hole used to prepare a socket places the posterior articular cartilage, the lateral collateral ligament and anterolateral ligament footprints, and the popliteus tendon insertion at risk. My preference for sockets is also related to my belief that they provide a superior biologic milieu for graft incorporation compared with a full-length tunnel with the attendant violation of the lateral femoral cortex of the epiphysis. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  17. Hindlimb unloading has a greater effect on cortical compared with cancellous bone in mature female rats

    NASA Technical Reports Server (NTRS)

    Allen, Matthew R.; Bloomfield, Susan A.

    2003-01-01

    This study was designed to determine the effects of 28 days of hindlimb unloading (HU) on the mature female rat skeleton. In vivo proximal tibia bone mineral density and geometry of HU and cage control (CC) rats were measured with peripheral quantitative computed tomography (pQCT) on days 0 and 28. Postmortem pQCT, histomorphometry, and mechanical testing were performed on tibiae and femora. After 28 days, HU animals had significantly higher daily food consumption (+39%) and lower serum estradiol levels (-49%, P = 0.079) compared with CC. Proximal tibia bone mineral content and cortical bone area significantly declined over 28 days in HU animals (-4.0 and 4.8%, respectively), whereas total and cancellous bone mineral densities were unchanged. HU animals had lower cortical bone formation rates and mineralizing surface at tibial midshaft, whereas differences in similar properties were not detected in cancellous bone of the distal femur. These results suggest that cortical bone, rather than cancellous bone, is more prominently affected by unloading in skeletally mature retired breeder female rats.

  18. Coralline alga reveals first marine record of subarctic North Pacific climate change

    USGS Publications Warehouse

    Halfar, J.; Steneck, R.; Schone, B.; Moore, G.W.K.; Joachimski, M.; Kronz, A.; Fietzke, J.; Estes, James A.

    2007-01-01

    While recent changes in subarctic North Pacific climate had dramatic effects on ecosystems and fishery yields, past climate dynamics and teleconnection patterns are poorly understood due to the absence of century-long high-resolution marine records. We present the first 117-year long annually resolved marine climate history from the western Bering Sea/Aleutian Island region using information contained in the calcitic skeleton of the long-lived crustose coralline red alga Clathromorphum nereostratum, a previously unused climate archive. The skeletal ??18O-time series indicates significant warming and/or freshening of surface waters after the middle of the 20th century. Furthermore, the time series is spatiotemporally correlated with Pacific Decadal Oscillation (PDO) and tropical El Nio??-Southern Oscillation (ENSO) indices. Even though the western Bering Sea/Aleutian Island region is believed to be outside the area of significant marine response to ENSO, we propose that an ENSO signal is transmitted via the Alaskan Stream from the Eastern North Pacific, a region of known ENSO teleconnections. Copyright 2007 by the American Geophysical Union.

  19. IGFBP-4 regulates adult skeletal growth in a sex-specific manner

    PubMed Central

    DeMambro, Victoria E; Le, Phuong T; Nagano, Kenichi; Baron, Roland; Mohan, Subburaman; Rosen, Clifford J

    2017-01-01

    Insulin-like growth factor-1 (IGF-1) and its binding proteins are critical mediators of skeletal growth. Insulin-like growth factor-binding protein 4 (IGFBP-4) is highly expressed in osteoblasts and inhibits IGF-1 actions in vitro. Yet, in vivo studies suggest that it could potentiate IGF-1 and IGF-2 actions. In this study, we hypothesized that IGFBP-4 might potentiate the actions of IGF-1 on the skeleton. To test this, we comprehensively studied 8- and 16-week-old Igfbp4−/− mice. Both male and female adult Igfbp4−/− mice had marked growth retardation with reductions in body weight, body and femur lengths, fat proportion and lean mass at 8 and 16 weeks. Marked reductions in aBMD and aBMC were observed in 16-week-old Igfbp4−/− females, but not in males. Femoral trabecular BV/TV and thickness, cortical fraction and thickness in 16-week-old Igfbp4−/− females were significantly reduced. However, surprisingly, males had significantly more trabeculae with higher connectivity density than controls. Concordantly, histomorphometry revealed higher bone resorption and lower bone formation in Igfbp4−/− females. In contrast, Igfbp4−/− males had lower mineralized surface/bone surface. Femoral expression of Sost and circulating levels of sclerostin were reduced but only in Igfbp4−/− males. Bone marrow stromal cultures from mutants showed increased osteogenesis, whereas osteoclastogenesis was markedly increased in cells from Igfbp4−/− females but decreased in males. In sum, our results indicate that loss of Igfbp4 affects mesenchymal stromal cell differentiation, regulates osteoclastogenesis and influences both skeletal development and adult bone maintenance. Thus, IGFBP-4 modulates the skeleton in a gender-specific manner, acting as both a cell autonomous and cell non-autonomous factor. PMID:28184001

  20. AMP-Activated Protein Kinase Plays an Important Evolutionary Conserved Role in the Regulation of Glucose Metabolism in Fish Skeletal Muscle Cells

    PubMed Central

    Magnoni, Leonardo J.; Vraskou, Yoryia; Palstra, Arjan P.; Planas, Josep V.

    2012-01-01

    AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP∶ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish. PMID:22359576

  1. Evaluation of the need for a large primate research facility in space

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.

    1986-01-01

    In the summer of 1983, an advisory committee was organized that would be able to evaluate NASA's current and future capabilities for nonhuman primate research in space. Individuals were chosen who had experience in four key research areas: cardiovascular physiology, vestibular neurophysiology, musculo-skeletal physiology, and fluid and electrolyte balance. Recommendations of the committee to NASA are discussed.

  2. A randomized study on the effect of Vitamin D3 supplementation on skeletal muscle morphology and Vitamin D receptor concentration in older women

    USDA-ARS?s Scientific Manuscript database

    Studies examining whether vitamin D supplementation increases muscle mass or muscle-specific vitamin D receptor (VDR) concentration are lacking. Our objective was to determine whether vitamin D3 4000 IU/d alters muscle fiber cross-sectional area (FCSA) and intramyonuclear VDR concentration over 4 mo...

  3. [Study on the difference of corresponding age at cervical vertebral maturation stages among different skeletal malocclusions].

    PubMed

    Zuo, Changyan; Cong, Chao; Wang, Shihui; Gu, Yan

    2015-10-01

    To compare the difference of corresponding age at cervical vertebral maturation (CVM) stages among different skeletal malocclusions and provide clinic guideline on optimal treatment timing for skeletal malocclusion. Based on ANB angle, 2 575 cephalograms collected from Department of Orthodontics, Peking University School and Hospital of Stomatology from May, 2006 to November, 2014 were classified into skeletal Class I (ANB 0°~5°, 1 317 subjects), Class II (ANB > 5°, 685 subjects) and Class III (ANB < 0°, 573 subjects) groups. CVM stages were evaluated with the modified version of CVM method. Independent sample t test was performed to analyze the difference of age at different CVM stages among various skeletal groups. Significant gender difference of age was found at CS3 to CS6 for skeletal Class I group (P < 0.05), at CS5 and CS6 for skeletal Class II group (P < 0.05), and at CS3 and CS5 for skeletal Class III group (P < 0.05). At CS3 stage, the average age of male in skeletal Class II and skeletal Class III groups was (11.6 ± 1.5) years old and (10.3 ± 1.9) years old, respectively; the average age of females in those two groups was (11.7 ± 1.3) years old and (9.3 ± 1.5) years old, respectively, and significant difference was found in both comparisons (P < 0.05). Compared average age at CS5 and CS6 between skeletal Class II and skeletal Class III groups [the ages of male was (15.1 ± 1.7) and (16.8 ± 1.6) years old, the ages of male was (14.6 ± 1.2) and (15.7 ± 2.5) years old], significant difference was also found (P < 0.05). Significant gender differences were found when evaluated CVM stage and age in skeletal Class I, II and III groups. Significant differences of age at different CVM stage was noted when skeletal Class II was compared with skeletal Class III groups.

  4. An isometric muscle force estimation framework based on a high-density surface EMG array and an NMF algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Qiu, Bensheng; Zhang, Xu

    2017-08-01

    Objective. To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. Approach. Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. Main results. Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. Significance. The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.

  5. Aspects of skeletal muscle modelling.

    PubMed

    Epstein, Marcelo; Herzog, Walter

    2003-09-29

    The modelling of skeletal muscle raises a number of philosophical questions, particularly in the realm of the relationship between different possible levels of representation and explanation. After a brief incursion into this area, a list of desiderata is proposed as a guiding principle for the construction of a viable model, including: comprehensiveness, soundness, experimental consistency, predictive ability and refinability. Each of these principles is illustrated by means of simple examples. The presence of internal constraints, such as incompressibility, may lead to counterintuitive results. A one-panel example is exploited to advocate the use of the principle of virtual work as the ideal tool to deal with these situations. The question of stability in the descending limb of the force-length relation is addressed and a purely mechanical analogue is suggested. New experimental results confirm the assumption that fibre stiffness is positive even in the descending limb. The indeterminacy of the force-sharing problem is traditionally resolved by optimizing a, presumably, physically meaningful target function. After presenting some new results in this area, based on a separation theorem, it is suggested that a more fundamental approach to the problem is the abandoning of optimization criteria in favour of an explicit implementation of activation criteria.

  6. Does skeletal muscle have an 'epi'-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise.

    PubMed

    Sharples, Adam P; Stewart, Claire E; Seaborne, Robert A

    2016-08-01

    Skeletal muscle mass, quality and adaptability are fundamental in promoting muscle performance, maintaining metabolic function and supporting longevity and healthspan. Skeletal muscle is programmable and can 'remember' early-life metabolic stimuli affecting its function in adult life. In this review, the authors pose the question as to whether skeletal muscle has an 'epi'-memory? Following an initial encounter with an environmental stimulus, we discuss the underlying molecular and epigenetic mechanisms enabling skeletal muscle to adapt, should it re-encounter the stimulus in later life. We also define skeletal muscle memory and outline the scientific literature contributing to this field. Furthermore, we review the evidence for early-life nutrient stress and low birth weight in animals and human cohort studies, respectively, and discuss the underlying molecular mechanisms culminating in skeletal muscle dysfunction, metabolic disease and loss of skeletal muscle mass across the lifespan. We also summarize and discuss studies that isolate muscle stem cells from different environmental niches in vivo (physically active, diabetic, cachectic, aged) and how they reportedly remember this environment once isolated in vitro. Finally, we will outline the molecular and epigenetic mechanisms underlying skeletal muscle memory and review the epigenetic regulation of exercise-induced skeletal muscle adaptation, highlighting exercise interventions as suitable models to investigate skeletal muscle memory in humans. We believe that understanding the 'epi'-memory of skeletal muscle will enable the next generation of targeted therapies to promote muscle growth and reduce muscle loss to enable healthy aging. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  7. Hybrid fusion of linear, non-linear and spectral models for the dynamic modeling of sEMG and skeletal muscle force: an application to upper extremity amputation.

    PubMed

    Potluri, Chandrasekhar; Anugolu, Madhavi; Schoen, Marco P; Subbaram Naidu, D; Urfer, Alex; Chiu, Steve

    2013-11-01

    Estimating skeletal muscle (finger) forces using surface Electromyography (sEMG) signals poses many challenges. In general, the sEMG measurements are based on single sensor data. In this paper, two novel hybrid fusion techniques for estimating the skeletal muscle force from the sEMG array sensors are proposed. The sEMG signals are pre-processed using five different filters: Butterworth, Chebychev Type II, Exponential, Half-Gaussian and Wavelet transforms. Dynamic models are extracted from the acquired data using Nonlinear Wiener Hammerstein (NLWH) models and Spectral Analysis Frequency Dependent Resolution (SPAFDR) models based system identification techniques. A detailed comparison is provided for the proposed filters and models using 18 healthy subjects. Wavelet transforms give higher mean correlation of 72.6 ± 1.7 (mean ± SD) and 70.4 ± 1.5 (mean ± SD) for NLWH and SPAFDR models, respectively, when compared to the other filters used in this work. Experimental verification of the fusion based hybrid models with wavelet transform shows a 96% mean correlation and 3.9% mean relative error with a standard deviation of ± 1.3 and ± 0.9 respectively between the overall hybrid fusion algorithm estimated and the actual force for 18 test subjects' k-fold cross validation data. © 2013 Elsevier Ltd. All rights reserved.

  8. [Development and prospect on skeletal age evaluation methods of X-ray film].

    PubMed

    Wang, Ya-hui; Zhu, Guang-you; Qiao, Ke; Bian, Shi-zhong; Fan, Li-hua; Cheng, Yi-bin; Ying, Chong-liang; Shen, Yan

    2007-10-01

    The traditional methods of skeletal age estimation mainly include Numeration, Atlas, and Counting scores. In recent years, other new methods were proposed by several scholars. Utilizing image logical characteristics of X-ray film to extrapolate skeletal age is a key means by present forensic medicine workers in evaluating skeletal age. However, there exist some variations when we present the conclusion of skeletal age as an "evidence" directly to the Justice Trial Authority. In order to enhance the accuracy of skeletal age determination, further investigation for appropriate methodology should be undertaken. After a collective study of pertinent domestic and international literatures, we present this review of the research and advancement on skeletal age evaluation methods of X-ray film.

  9. Electrolysis stimulates creatine transport and transporter cell surface expression in incubated mouse skeletal muscle: potential role of ROS.

    PubMed

    Derave, Wim; Straumann, Nadine; Olek, Robert A; Hespel, Peter

    2006-12-01

    Electrical field stimulation of isolated, incubated rodent skeletal muscles is a frequently used model to study the effects of contractions on muscle metabolism. In this study, this model was used to investigate the effects of electrically stimulated contractions on creatine transport. Soleus and extensor digitorum longus muscles of male NMRI mice (35-50 g) were incubated in an oxygenated Krebs buffer between platinum electrodes. Muscles were exposed to [(14)C]creatine for 30 min after either 12 min of repeated tetanic isometric contractions (contractions) or electrical stimulation of only the buffer before incubation of the muscle (electrolysis). Electrolysis was also investigated in the presence of the reactive oxygen species (ROS) scavenging enzymes superoxide dismutase (SOD) and catalase. Both contractions and (to a lesser degree) electrolysis stimulated creatine transport severalfold over basal. The amount of electrolysis, but not contractile activity, induced (determined) creatine transport stimulation. Incubation with SOD and catalase at 100 and 200 U/ml decreased electrolysis-induced creatine transport by approximately 50 and approximately 100%, respectively. The electrolysis effects on creatine uptake were completely inhibited by beta-guanidino propionic acid, a competitive inhibitor of (creatine for) the creatine transporter (CRT), and were accompanied by increased cell surface expression of CRT. Muscle glucose transport was not affected by electrolysis. The present results indicate that electrical field stimulation of incubated mouse muscles, independently of contractions per se, stimulates creatine transport by a mechanism that depends on electrolysis-induced formation of ROS in the incubation buffer. The increased creatine uptake is paralleled by an increased cell surface expression of the creatine transporter.

  10. Skeletal injuries in small mammals: a multispecies assessment of prevalence and location

    USGS Publications Warehouse

    Stephens, Ryan B.; Burke, Christopher B.; Woodman, Neal; Poland, Lily B.; Rowe, Rebecca J.

    2018-01-01

    Wild mammals are known to survive injuries that result in skeletal abnormalities. Quantifying and comparing skeletal injuries among species can provide insight into the factors that cause skeletal injuries and enable survival following an injury. We documented the prevalence and location of structural bone abnormalities in a community of 7 small mammal species inhabiting the White Mountains of New Hampshire. These species differ in locomotion type and levels of intraspecific aggression. Overall, the majority of injuries were to the ribs or caudal vertebrae. Incidence of skeletal injuries was highest in older animals, indicating that injuries accumulate over a lifetime. Compared to species with ambulatory locomotion, those with more specialized (semi-fossorial, saltatorial, and scansorial) locomotion exhibited fewer skeletal abnormalities in the arms and legs, which we hypothesize is a result of a lesser ability to survive limb injuries. Patterns of skeletal injuries in shrews (Soricidae) were consistent with intraspecific aggression, particularly in males, whereas skeletal injuries in rodents (Rodentia) were more likely accidental or resulting from interactions with predators. Our results demonstrate that both the incidence and pattern of skeletal injuries vary by species and suggest that the ability of an individual to survive a specific skeletal injury depends on its severity and location as well as the locomotor mode of the species involved.

  11. Skeletal muscle myotubes of the severely obese exhibit altered ubiquitin-proteasome and autophagic/lysosomal proteolytic flux

    PubMed Central

    Bollinger, Lance M.; Powell, Jonathan J. S.; Houmard, Joseph A.; Witczak, Carol A.; Brault, Jeffrey J.

    2015-01-01

    Objective Whole-body protein metabolism is dysregulated with obesity. Our goal was to determine if activity and expression of major protein degradation pathways are compromised specifically in human skeletal muscle with obesity. Methods We utilized primary Human Skeletal Muscle cell (HSkM) cultures since cellular mechanisms can be studied absent of hormones and contractile activity that could independently influence metabolism. HSkM from 10 lean (BMI ≤ 26.0 kg/m2) and 8 severely obese (BMI ≥ 39.0) women were examined basally and when stimulated to atrophy (serum and amino acid starvation). Results HSkM from obese donors had a lower proportion of type I myosin heavy chain and slower flux through the autophagic/lysosomal pathway. During starvation, flux through the ubiquitin-proteasome system diverged according to obesity status, with a decrease in the lean and an increase in HSkM from obese subjects. HSkMC from the obese also displayed elevated proteasome activity despite no difference in proteasome content. Atrophy-related gene expression and myotube area were similar in myotubes derived from lean and obese individuals under basal and starved conditions. Conclusions Our data indicate that muscle cells of the lean and severely obese have innate differences in management of protein degradation, which may explain their metabolic differences. PMID:26010327

  12. The potential of induced pluripotent stem cells as a tool to study skeletal dysplasias and cartilage-related pathologic conditions.

    PubMed

    Liu, H; Yang, L; Yu, F F; Wang, S; Wu, C; Qu, C; Lammi, M J; Guo, X

    2017-05-01

    The development of induced pluripotent stem cells (iPSCs) technology has opened up new horizons for development of new research tools especially for skeletal dysplasias, which often lack human disease models. Regenerative medicine and tissue engineering could be the next areas to benefit from refinement of iPSC methods to repair focal cartilage defects, while applications for osteoarthritis (OA) and drug screening have evolved rather slowly. Although the advances in iPSC research of skeletal dysplasias and repair of focal cartilage lesions are not directly relevant to OA, they can be considered to pave the way to future prospects and solutions to OA research, too. The same problems which face the present cell-based treatments of cartilage injuries concern also the iPSC-based ones. However, established iPSC lines, which have no genomic aberrations and which efficiently differentiate into extracellular matrix secreting chondrocytes, could be an invaluable cell source for cell transplantations in the future. The safety issues concerning the recipient risks of teratoma formation and immune response still have to be solved before the potential use of iPSCs in cartilage repair of focal cartilage defects and OA. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  13. Characteristics of Rib Fractures in Child Abuse-The Role of Low-Dose Chest Computed Tomography.

    PubMed

    Sanchez, Thomas R; Grasparil, Angelo D; Chaudhari, Ruchir; Coulter, Kevin P; Wootton-Gorges, Sandra L

    2018-02-01

    Our aim is to describe the radiologic characteristics of rib fractures in clinically diagnosed cases of child abuse and suggest a complementary imaging for radiographically occult injuries in highly suspicious cases of child abuse. Retrospective analysis of initial and follow-up skeletal surveys and computed tomography (CT) scans of 16 patients younger than 12 months were reviewed after obtaining approval from our institutional review board. The number, location, displacement, and age of the rib fractures were recorded. Out of a total 105 rib fractures, 84% (87/105) were detected on the initial skeletal survey. Seventeen percent (18/105) were seen only after follow-up imaging, more than half of which (11/18) were detected on a subsequent CT. Majority of the fractures were posterior (43%) and anterior (30%) in location. An overwhelming majority (96%) of the fractures are nondisplaced. Seventeen percent of rib fractures analyzed in the study were not documented on the initial skeletal survey. Majority of fractures are nondisplaced and located posteriorly or anteriorly, areas that are often difficult to assess especially in the acute stage. The CT scan is more sensitive in evaluating these types of fractures. Low-dose chest CT can be an important imaging modality for suspicious cases of child abuse when initial radiographic findings are inconclusive.

  14. Temporomandibular disorders: referred cranio-cervico-facial clinic.

    PubMed

    Ramírez, Luis Miguel; Sandoval, German Pablo; Ballesteros, Luis Ernesto

    2005-04-01

    The bond between temporomandibular disorders and referred craniofacial symptomatology is more and more evident. In it subsists the prevailing necessity of understanding the temporomandibular disorders and the cranio-cervico-facial referred symptomatology from a neurophysiologic and muscle-skeletal perspective contained in the stomatognatic system. Diagnosis in head and neck areas is difficult because of its complex anatomy. Some painful craniofacial syndromes exhibit the same symptoms although they don.t seem objectively possible and that is what confuses the specialist and the patient. Pain in the head and the neck is one of the most complex to diagnose because of its varied origins that can be neurological, vascular, muscular, ligamental and bony. This article seeks to show some reasonable anatomical and pathophysiological connections of this muscle-skeletal disorder expressed with symptoms like tinnitus, otic fullness, otalgia and migraine among others. Disciplines in health such as neurology, the otolaryngology and dentistry share common anatomical and pathophysiological roads constructed in an increased muscular activity that generates muscle-skeletal disorders and is difficult to locate referred craniofacial symptomatology. This revision aspires to sensitize the medical specialist and the odontologist in the understanding of the important interdisciplinary handling in the detection of this disorder. This offers better tools in the conservative therapy phase of this craniofacial referred symptomatology.

  15. Expression of Pannexin 1 and Pannexin 3 during skeletal muscle development, regeneration, and Duchenne muscular dystrophy.

    PubMed

    Pham, Tammy L; St-Pierre, Marie-Eve; Ravel-Chapuis, Aymeric; Parks, Tara E C; Langlois, Stéphanie; Penuela, Silvia; Jasmin, Bernard J; Cowan, Kyle N

    2018-05-10

    Pannexin 1 (Panx1) and Pannexin 3 (Panx3) are single membrane channels recently implicated in myogenic commitment, as well as myoblast proliferation and differentiation in vitro. However, their expression patterns during skeletal muscle development and regeneration had yet to be investigated. Here, we show that Panx1 levels increase during skeletal muscle development becoming highly expressed together with Panx3 in adult skeletal muscle. In adult mice, Panx1 and Panx3 were differentially expressed in fast- and slow-twitch muscles. We also report that Panx1/PANX1 and Panx3/PANX3 are co-expressed in mouse and human satellite cells, which play crucial roles in skeletal muscle regeneration. Interestingly, Panx1 and Panx3 levels were modulated in muscle degeneration/regeneration, similar to the pattern seen during skeletal muscle development. As Duchenne muscular dystrophy is characterized by skeletal muscle degeneration and impaired regeneration, we next used mild and severe mouse models of this disease and found a significant dysregulation of Panx1 and Panx3 levels in dystrophic skeletal muscles. Together, our results are the first demonstration that Panx1 and Panx3 are differentially expressed amongst skeletal muscle types with their levels being highly modulated during skeletal muscle development, regeneration, and dystrophy. These findings suggest that Panx1 and Panx3 channels may play important and distinct roles in healthy and diseased skeletal muscles. © 2018 Wiley Periodicals, Inc.

  16. Skeletal and chronological ages in American adolescents: current findings in skeletal maturation.

    PubMed

    Calfee, Ryan P; Sutter, Melanie; Steffen, Jennifer A; Goldfarb, Charles A

    2010-10-01

    This study was designed to assess the relationship between skeletal and chronological ages among current American adolescents using the Greulich and Pyle atlas for skeletal age determination. We used the Greulich and Pyle atlas to prospectively determine skeletal age in a group of 138 otherwise healthy American adolescents from 12 to 18 years of age. 62 males and 76 females were enrolled in this cohort. Paired Student t-tests were used to statistically compare the skeletal and chronological ages in this population. Subgroup analysis examined the effect of gender on differences between chronologic age and skeletal age. For the entire cohort, mean skeletal age was significantly greater than chronological age (mean 0.80 years, P < 0.01). In 29 cases (21%) the skeletal age was at least 2 years greater than the chronologic age. Among females, such cases with marked discrepancy occurred exclusively in those chronologically between 12 and 15 years of age (P < 0.01). Males demonstrated a 2-year or greater discrepancy more commonly than females (26 vs. 17%). In males, 2-year discrepancies were equally likely across chronologic ages (P = 0.82). Current American adolescents are significantly more mature by skeletal age, as determined by the Greulich and Pyle method, than their chronological age would suggest. The skeletal ages of females are most likely to markedly exceed chronologic age between the ages of 12-15 years.

  17. Disease-Induced Skeletal Muscle Atrophy and Fatigue

    PubMed Central

    Powers, Scott K.; Lynch, Gordon S.; Murphy, Kate T.; Reid, Michael B.; Zijdewind, Inge

    2016-01-01

    Numerous health problems including acute critical illness, cancer, diseases associated with chronic inflammation, and neurological disorders often result in skeletal muscle weakness and fatigue. Disease-related muscle atrophy and fatigue is an important clinical problem because acquired skeletal muscle weakness can increase the duration of hospitalization, result in exercise limitation, and contribute to a poor quality of life. Importantly, skeletal muscle atrophy is also associated with increased morbidity and mortality of patients. Therefore, improving our understanding of the mechanism(s) responsible for skeletal muscle weakness and fatigue in patients is a required first step to develop clinical protocols to prevent these skeletal muscle problems. This review will highlight the consequences and potential mechanisms responsible for skeletal muscle atrophy and fatigue in patients suffering from acute critical illness, cancer, chronic inflammatory diseases, and neurological disorders. PMID:27128663

  18. IGF-1 prevents ANG II-induced skeletal muscle atrophy via Akt- and Foxo-dependent inhibition of the ubiquitin ligase atrogin-1 expression

    PubMed Central

    Yoshida, Tadashi; Semprun-Prieto, Laura; Sukhanov, Sergiy

    2010-01-01

    Congestive heart failure is associated with activation of the renin-angiotensin system and skeletal muscle wasting. Angiotensin II (ANG II) has been shown to increase muscle proteolysis and decrease circulating and skeletal muscle IGF-1. We have shown previously that skeletal muscle-specific overexpression of IGF-1 prevents proteolysis and apoptosis induced by ANG II. These findings indicated that downregulation of IGF-1 signaling in skeletal muscle played an important role in the wasting effect of ANG II. However, the signaling pathways and mechanisms whereby IGF-1 prevents ANG II-induced skeletal muscle atrophy are unknown. Here we show ANG II-induced transcriptional regulation of two ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1) that precedes the reduction of skeletal muscle IGF-1 expression, suggesting that activation of atrogin-1 and MuRF-1 is an initial mechanism leading to skeletal muscle atrophy in response to ANG II. IGF-1 overexpression in skeletal muscle prevented ANG II-induced skeletal muscle wasting and the expression of atrogin-1, but not MuRF-1. Dominant-negative Akt and constitutively active Foxo-1 blocked the ability of IGF-1 to prevent ANG II-mediated upregulation of atrogin-1 and skeletal muscle wasting. Our findings demonstrate that the ability of IGF-1 to prevent ANG II-induced skeletal muscle wasting is mediated via an Akt- and Foxo-1-dependent signaling pathway that results in inhibition of atrogin-1 but not MuRF-1 expression. These data suggest strongly that atrogin-1 plays a critical role in mechanisms of ANG II-induced wasting in vivo. PMID:20228261

  19. Quantification of skeletal fraction volume of a soil pit by means of photogrammetry

    NASA Astrophysics Data System (ADS)

    Baruck, Jasmin; Zieher, Thomas; Bremer, Magnus; Rutzinger, Martin; Geitner, Clemens

    2015-04-01

    The grain size distribution of a soil is a key parameter determining soil water behaviour, soil fertility and land use potential. It plays an important role in soil classification and allows drawing conclusions on landscape development as well as soil formation processes. However, fine soil material (i.e. particle diameter ≤2 mm) is usually documented more thoroughly than the skeletal fraction (i.e. particle diameter >2 mm). While fine soil material is commonly analysed in the laboratory in order to determine the soil type, the skeletal fraction is typically estimated in the field at the profile. For a more precise determination of the skeletal fraction other methods can be applied and combined. These methods can be volume-related (sampling rings, percussion coring tubes) or non-volume-related (sieve of spade excavation). In this study we present a framework for the quantification of skeletal fraction volumes of a soil pit by means of photogrammetry. As a first step 3D point clouds of both soil pit and skeletal grains were generated. Therefore all skeletal grains of the pit were spread out onto a plane, clean plastic sheet in the field and numerous digital photos were taken using a reflex camera. With the help of the open source tool VisualSFM (structure from motion) two scaled 3D point clouds were derived. As a second step the skeletal fraction point cloud was segmented by radiometric attributes in order to determine volumes of single skeletal grains. The comparison of the total skeletal fraction volume with the volume of the pit (closed by spline interpolation) yields an estimate of the volumetric proportion of skeletal grains. The presented framework therefore provides an objective reference value of skeletal fraction for the support of qualitative field records.

  20. Skeletal Muscle Tissue Engineering: Methods to Form Skeletal Myotubes and Their Applications

    PubMed Central

    Ostrovidov, Serge; Hosseini, Vahid; Ahadian, Samad; Fujie, Toshinori; Parthiban, Selvakumar Prakash; Ramalingam, Murugan; Bae, Hojae; Kaji, Hirokazu

    2014-01-01

    Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined. PMID:24320971

Top