Correcting Quadrupole Roll in Magnetic Lenses with Skew Quadrupoles
Walstrom, Peter Lowell
2014-11-10
Quadrupole rolls (i.e. rotation around the magnet axis) are known to be a significant source of image blurring in magnetic quadrupole lenses. These rolls may be caused by errors in mechanical mounting of quadrupoles, by uneven radiation-induced demagnetization of permanent-magnet quadrupoles, etc. Here a four-quadrupole ×10 lens with so-called ”Russian” or A -B B-A symmetry is used as a model problem. Existing SLAC 1/2 in. bore high-gradient quadrupoles are used in the design. The dominant quadrupole roll effect is changes in the first-order part of the transfer map (the R matrix) from the object to the image plane (Note effects on the R matrix can be of first order in rotation angle for some R-matrix elements and second order in rotation angle for other elements, as shown below). It is possible to correct roll-induced image blur by mechanically adjusting the roll angle of one or more of the quadrupoles. Usually, rotation of one quadrupole is sufficient to correct most of the combined effect of rolls in all four quadrupoles. There are drawbacks to this approach, however, since mechanical roll correction requires multiple entries into experimental area to make the adjustments, which are made according to their effect on images. An alternative is to use a single electromagnetic skew quadrupole corrector placed either between two of the quadrupoles or after the fourth quadrupole (so-called “non-local” correction). The basic feasibility of skew quadrupole correction of quadrupole roll effects is demonstrated here. Rolls of the third lens quadrupole of up to about 1 milliradian can be corrected with a 15 cm long skew quadrupole with a gradient of up to 1 T/m. Since the effect of rolls of the remaining three lens quadrupoles are lower, a weaker skew quadrupole can be used to correct them. Non-local correction of quadrupole roll effects by skew quadrupoles is shown to be about one-half as effective as local correction (i.e. rotating individual quadrupoles to zero
PRINCIPLE OF SKEW QUADRUPOLE MODULATION TO MEASURE BETATRON COUPLING.
LUO.Y.PILAT,F.ROSER,T.ET AL.
2004-07-05
The measurement of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of different skew quadrupole families the two eigentunes are precisely measured with the phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation directions are determined. The residual linear coupling could be corrected according to the measurement. An analytical solution for skew quadrupole modulation based on Hamiltonian perturbation approximation is given, and simulation code using smooth accelerator model is also developed. Some issues concerning the practical applications of this technique are discussed.
MEASURING LOCAL GRADIENT AND SKEW QUADRUPOLE ERRORS IN RHIC IRS.
CARDONA,J.; PEGGS,S.; PILAT,R.; PTITSYN,V.
2004-07-05
The measurement of local linear errors at RHIC interaction regions using an ''action and phase'' analysis of difference orbits has already been presented. This paper evaluates the accuracy of this technique using difference orbits that were taken when known gradient errors and skew quadrupole errors were intentionally introduced. It also presents action and phase analysis of simulated orbits when controlled errors are intentionally placed in a RHIC simulation model.
Restoring the skew quadrupole moment in the Tevatron dipoles
Harding, D.J.; Bauer, P.C.; Blowers, J.N.; DiMarco, J.; Glass, H.D.; Hanft, R.W.; Carson, J.A.; Robotham, W.F.; Tartaglia, M.A.; Tompkins, J.C.; Velev, G.; /Fermilab
2005-05-01
In early 2003 it was realized that mechanical changes in the Tevatron dipoles had led to a deterioration of the magnetic field quality that was hindering operation of the accelerator. After extensive study, a remediation program was started in late 2003 that will continue through 2005. The mechanical and magnetic effects are discussed. The readjustment process and experience are reported, along with other observations on aging magnets. In January 2003 two lines of inquiry converged, leading to the recognition that the severe betatron coupling that was hindering operation of the Tevatron could be explained by a systematic shift on the skew quadrupole field in the dipole magnets of the same size expected from observed mechanical movement of the coils inside the magnet yokes [1]. This paper reports on subsequent magnet studies that were conducted in parallel with additional beam studies and accelerator modeling [2] exploring the feasibility of the eventual remediation effort [3].
Permanent Magnet Skew Quadrupoles for the Low Emittance LER Lattice of PEP-II
Decker, F.-J.; Anderson, S.; Kharakh, D.; Sullivan, M.; /SLAC
2011-07-05
The vertical emittance of the low energy ring (LER) in the PEP-II B-Factory was reduced by using skew quadrupoles consisting of permanent magnet material. The advantages over electric quadrupoles or rotating existing normal quadrupoles are discussed. To assure a high field quality, a Biot-Savart calculation was used to cancel the natural 12-pole component by using different size poles over a few layers. A magnetic measurement confirmed the high quality of the magnets. After installation and adjusting the original electric 12 skew and 16 normal quadrupoles the emittance contribution from the region close to the interaction point, which was the biggest part in the original design, was considerably reduced. To strengthen the vertical behavior of the LER beam, a low emittance lattice was developed. It lowered the original vertical design emittance from 0.54 nm-rad to 0.034 nm-rad. In order to achieve this, additional skew quadrupoles were required to bring the coupling correction out of the arcs and closer to the detector solenoid in the straight (Fig. 1). It is important, together with low vertical dispersion, that the low vertical emittance is not coupled into the horizontal, which is what we get if the coupling correction continues into the arcs. Further details of the lattice work is described in another paper; here we concentrate on the development of the permanent skew (PSK) quadrupole solution. Besides the permanent magnets there are two other possibilities, using electric magnets or rotating normal quadrupoles. Electric magnets would have required much more additional equipment like magnets stands, power supply, and new vacuum chamber sections. Rotating existing quadrupoles was also not feasible since they are mostly mounted together with a bending magnet on the same support girder.
Coil Creep and Skew-Quadrupole Field Components in the Tevatron
Annala, G.; Harding, D.J.; Syphers, M.J.; /Fermilab
2011-07-11
During the start-up of Run II of the Tevatron Collider program, several issues surfaced which were not present, or not seen as detrimental, during Run I. These included the repeated deterioration of the closed orbit requiring orbit smoothing every two weeks or so, the inability to correct the closed orbit to desired positions due to various correctors running at maximum limits, regions of systematically strong vertical dipole corrections, and the identification of very strong coupling between the two transverse degrees-of-freedom. It became apparent that many of the problems being experienced operationally were connected to a deterioration of the main dipole magnet alignment, and remedial actions were undertaken. However, the alignment alone was not enough to explain the corrector strengths required to handle transverse coupling. With one exception, strong coupling had generally not been an issue in the Tevatron during Run I. Based on experience with the Main Ring, the Tevatron was designed with a very strong skew quadrupole circuit to compensate any quadrupole alignment and skew quadrupole field errors that might present themselves. The circuit was composed of 48 correctors placed evenly throughout the arcs, 8 per sector, evenly placed in every other cell. Other smaller circuits were installed but not initially needed or commissioned. These smaller circuits were composed of individual skew quadrupole correctors on either side of the long straight sections. These circuits were tuned by first bringing the horizontal and vertical tunes near each other. The skew quadrupoles were then adjusted to minimize tune split, usually to less than 0.003. Initially, the main skew quad circuit (designated T:SQ) could accomplish this global decoupling with only 4% of its possible current, and the smaller circuits were not required at all. The start-up of Run Ib was complicated by what was later discovered to be a rolled triplet quadrupole magnet in one of the Interaction Regions
Deterioration of the skew quadrupole moment in Tevatron dipoles over time
Syphers, M.J.; Harding, D.J.; /Fermilab
2005-05-01
During the 20 years since it was first commissioned, the Fermilab Tevatron has developed strong coupling between the two transverse degrees of freedom. A circuit of skew quadrupole magnets is used to correct for coupling and, though capable, its required strength has increased since 1983 by more than an order of magnitude. In more recent years changes to the Tevatron for colliding beams operation have altered the skew quadrupole corrector distribution and strong local coupling become evident, often encumbering routine operation during the present physics run. Detailed magnet measurements were performed on each individual magnet during construction, and in early 2003 it was realized that measurements could be performed on the magnets in situ which could determine coil movements within the iron yoke since the early 1980's. It was discovered that the superconducting coils had become vertically displaced relative to their yokes since their construction. The ensuing systematic skew quadrupole field introduced by this displacement accounts for the required corrector settings and observed beam behavior. An historical account of the events leading to this discovery and progress toward its remedy are presented.
Superconducting quadrupoles for the SLC final focus
Erickson, R.; Fieguth, T.; Murray, J.J.
1987-01-01
The final focus system of the SLC will be upgraded by replacing the final quadrupoles with higher gradient superconducting magnets positioned closer to the interaction point. The parameters of the new system have been chosen to be compatible with the experimental detectors with a minimum of changes to other final focus components. These parameter choices are discussed along with the expected improvement in SLC performance.
Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam
Maschke, Alfred W.
1985-01-01
A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.
Study of Row Phase Dependent Skew Quadrupole Fields in Apple-II Type EPUs at the ALS
Steier, C.; Marks, S.; Prestemon, Soren; Robin, David; Schlueter, Ross; Wolski, Andrzej
2004-05-07
Since about 5 years, Apple-II type Elliptically Polarizing Undulators (EPU) have been used very successfully at the ALS to generate high brightness photon beams with arbitrary polarization. However, both EPUs installed so far cause significant changes of the vertical beamsize, especially when the row phase is changed to change the polarization of the photons emitted. Detailed measurements indicate this is caused by a row phase dependent skew quadrupole term in the EPUs. Magnetic measurements revealed the same effect for the third EPU to be installed later this year. All measurements to identify and quantify the effect with beam will be presented, as well as some results of magnetic bench measurements and numeric field simulations.
Electrostatic quadrupole array for focusing parallel beams of charged particles
Brodowski, John
1982-11-23
An array of electrostatic quadrupoles, capable of providing strong electrostatic focusing simultaneously on multiple beams, is easily fabricated from a single array element comprising a support rod and multiple electrodes spaced at intervals along the rod. The rods are secured to four terminals which are isolated by only four insulators. This structure requires bias voltage to be supplied to only two terminals and eliminates the need for individual electrode bias and insulators, as well as increases life by eliminating beam plating of insulators.
Superconducting focusing quadrupoles for heavy ion fusion experiments
Sabbi, G.L.; Faltens, A.; Leitner, M.; Lietzke, A.; Seidl, P.; Barnard, J.; Lund, S.; Martovetsky, N.; Gung, C.; Minervini, J.; Radovinsky, A.; Schultz, J.; Meinke, R.
2003-05-01
The Heavy Ion Fusion (HIF) Program is developing superconducting focusing magnets for both near-term experiments and future driver accelerators. In particular, single bore quadrupoles have been fabricated and tested for use in the High Current Experiment (HCX) at Lawrence Berkeley National Laboratory (LBNL). The next steps involve the development of magnets for the planned Integrated Beam Experiment (IBX) and the fabrication of the first prototype multi-beam focusing arrays for fusion driver accelerators. The status of the magnet R&D program is reported, including experimental requirements, design issues and test results.
Final 6D Muon Ionization Colling using Strong Focusing Quadrupoles
Hart, T. L.; Acosta, J. G.; Cremaldi, L. M.; Oliveros, S. J.; Summers, D. J.; Neuffer, D. V.
2016-11-15
Abstract Low emittance muon beam lines and muon colliders are potentially a rich source of BSM physics for future exper- imenters. A muon beam normalized emittance of ax,y,z = (280, 280, 1570)µm has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to achieve a normalized transverse emittance of 100 µm and complete 6D cooling. The low beta regions, as low as 5 mm, produced by the quadrupoles are occupied by dense, low Z absorbers, such as lithium hydride or beryllium, that cool the beam transversely. Equilibrium transverse emittance is linearly proportional to the transverse betatron function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 µm at the expense of longitudinal emittance for a high energy lepton collider. Cooling challenges include chromaticity correction, ssband overlap, quadrupole acceptance, and staying in phase with RF.
Focusing properties of a three-element quadrupole lens system and its stigmatic focusing behaviour
NASA Astrophysics Data System (ADS)
Zafar, Yu.
The focusing properties of a three-element quadrupole lens system (triplet) have been studied in its general thick-lens form, and analytical expressions of corresponding matrix elements have been obtained. A graphical method has been utilized to determine the stigmatic focusing region of the triplet system generally, and in the special case of electrostatic triplet system installed in 'on-line SPIN-3 facility' in YASNAPP-2, JINR.
Development and testing of the improved focusing quadrupole for heavy ion fusion accelerators
Manahan, R R; Martovetsky, N N; Meinke, R B; Chiesa, L; Lietzke, A F; Sabbi, G L; Seidl, P A
2003-10-23
An improved version of the focusing magnet for a Heavy Ion Fusion (HIF) accelerator was designed, built and tested in 2002-2003. This quadrupole has higher focusing power and lower error field than the previous version of the focusing quadrupoles successfully built and tested in 2001. We discuss the features of the new design, selected fabrication issues and test results.
NASA Astrophysics Data System (ADS)
Nichols, Kimberley E. L.
Analysis of quadrupole focusing lattices for high-frequency TWT's is presented. This work is motivated by recent work performed at the Naval Research Laboratory (NRL) which demonstrated an advantageous case for strong focusing employing a Halbach quadrupole lattice. Using realistic Permanent Magnet Quadruple (PMQ) field cancellation, the advantage of using PMQ to transport higher current densities than Permanent Periodic Magnet (PPM) lattices disappears, while other advantages for employing quadrupole focusing remain. This dissertation gives a comprehensive analysis of the applicability of PMQ focusing in vacuum electronic devices.
Optimization of Superconducting Focusing Quadrupoles for the HighCurrent Experiment
Sabbi, GianLuca; Gourlay, Steve; Gung, Chen-yu; Hafalia, Ray; Lietzke, Alan; Martovetski, Nicolai; Mattafirri, Sara; Meinke, Rainer; Minervini, Joseph; Schultz, Joel; Seidl, Peter
2005-09-16
The Heavy Ion Fusion (HIF) program is progressing through a series of physics and technology demonstrations leading to an inertial fusion power plant. The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is exploring the physics of intense beams with high line-charge density. Superconducting focusing quadrupoles have been developed for the HCX magnetic transport studies. A baseline design was selected following several pre-series models. Optimization of the baseline design led to the development of a first prototype that achieved a conductor-limited gradient of 132 T/m in a 70 mm bore, without training, with measured field errors at the 0.1% level. Based on these results, the magnet geometry and fabrication procedures were adjusted to improve the field quality. These modifications were implemented in a second prototype. In this paper, the optimized design is presented and comparisons between the design harmonics and magnetic measurements performed on the new prototype are discussed.
NASA Astrophysics Data System (ADS)
Hofmann, Ingo
2013-04-01
Using laser accelerated protons or ions for various applications—for example in particle therapy or short-pulse radiographic diagnostics—requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. Generally speaking, the two approaches are equivalent in focusing capability, if parameters are such that the solenoid length approximately equals its diameter. The scaling also shows that this is usually not the case above a few MeV; consequently, a solenoid needs to be pulsed or superconducting, whereas the quadrupoles can remain conventional. It is also important that the transmission of the triplet is found only 25% lower than that of the equivalent solenoid. Both systems are equally suitable for energy selection based on their chromatic effect as is shown using an initial distribution following the RPA simulation model by Yan et al. [Phys. Rev. Lett. 103, 135001 (2009PRLTAO0031-900710.1103/PhysRevLett.103.135001].
Kim, C.H.
1987-04-01
This report compares two physics designs of the low energy end of an induction linac-ICF driver: one using electric quadrupole focusing of many parallel beams followed by transverse combining; the other using magnetic quadrupole focusing of fewer beams without beam combining. Because of larger head-to-tail velocity spread and a consequent rapid current amplification in a magnetic focusing channel, the overall accelerator size of the design using magnetic focusing is comparable to that using electric focusing.
NASA Astrophysics Data System (ADS)
Goswami, A.; Sing Babu, P.; Pandit, V. S.
2016-11-01
This paper describes the dynamics of a space-charge-dominated beam through a continuously twisted quadrupole magnet using ten independent first-order differential equations of the beam matrix elements under the assumption of linear space-charge force. Various beam optical properties of the magnet and the evolution of the emittance that results from the coupling between the two transverse planes are studied. The perturbed equations of motion around the matched beam envelopes have been derived and utilized to analyze the stability properties of the intense beam transport by calculating the eigenvalues of the transfer map over one lattice period. Detailed analysis shows the presence of instability due to parametric resonances in a twisted quadrupole channel which generally does not appear in the FODO quadrupole channel. A 2D particle-in-cell simulation code has been developed and utilized to verify the analytical results and to examine the behavior of the intense beam with Gaussian (GA) distribution in the twisted quadrupole channel.
Green, M.A. ); Cline, D.B. . Dept. of Physics)
1992-06-01
The proposed Phi Factory for the University of California at Los Angeles (UCLA) is a small 510 MeV electron-positron colliding beam storage ring with high luminosity (greater than 10{sup 32} CM{sup {minus}2} S{sup {minus}1}). In order to do high quality Phi physics, a particle detector system with a large solid angle (preferably greater than 98 percent ) is required. Particle detection and analysis will be done within a 0.5 tesla solenoidal magnetic field. The solenoidal field within the detector causes coupling between beam oscillations in the horizontal and vertical directions. Therefore, compensation solenoids are required to keep the circulating particle beams from seeing the effects of the field from the main detector solenoid. Since high luminosity and a large solid angle are required, the detectors and a pair of compensation solenoids must be integrated with the final focus quadrupoles within the detector straight section. This report describes the design of two tapered, 0.5 tesla, superconducting compensation solenoids which must go around six rare earth permanent final focus quadrupoles or six superconducting quadrupoles on either side of the beam collision point. A cryogenic cooling system for these two solenoids, which will be coupled with the cooling system for the primary detector solenoid, is also described.
2002-06-24
quadrupole magnetic tield. In the Paul trap configuration, a long nonncutral plastia column is confined axially by dc voltages on end cylinders at z = +L...and z --L, and transverse confinement is provided by segmented cylindrical electrodes with applied oscillatory voltages ±V0(1) over 90’ segments...axially by applied dc voltage V/ = const. on end cylinders at z = ±L. The particles making up the nonrelativistic nonneutral plasma in Fig. I have
NASA Astrophysics Data System (ADS)
Dymnikov, Alexander D.; Rout, Bibhudutta; Glass, Gary A.
2007-08-01
The new generation nuclear microprobe system at the Louisiana Accelerator Center in the University of Louisiana at Lafayette consists of a 6.25 m beam line that employs the magnetic quadrupole Sextuplet lens system. This Sextuplet is a zoom system having the same demagnifications, the same focal lengths and the same positions of the focal points in (xoz) and (yoz) planes as in the case for the Russian quadruplet. It also can have the same spherical aberrations in both planes. The parameters which allow obtaining the lowest coefficients of spherical aberration are found for different geometrical configurations of electric and magnetic quadrupole lenses. Specifically, the configuration of a combined Sextuplet consisting of two magnetic and four electrostatic lenses or consisting of two electrostatic and four magnetic lenses is studied and compared with magnetic and electrostatic Sextuplets. The values of the chromatic and spherical aberrations for these combined systems are compared and the minimum spot radius and the half-widths of the corresponding slits for some optimal magnetic and electrostatic Sextuplets are given.
Skew-Quad Parametric-Resonance Ionization Cooling: Theory and Modeling
Afanaciev, Andre; Derbenev, Yaroslav S.; Morozov, Vasiliy; Sy, Amy; Johnson, Rolland P.
2015-09-01
Muon beam ionization cooling is a key component for the next generation of high-luminosity muon colliders. To reach adequately high luminosity without excessively large muon intensities, it was proposed previously to combine ionization cooling with techniques using a parametric resonance (PIC). Practical implementation of PIC proposal is a subject of this report. We show that an addition of skew quadrupoles to a planar PIC channel gives enough flexibility in the design to avoid unwanted resonances, while meeting the requirements of radially-periodic beam focusing at ionization-cooling plates, large dynamic aperture and an oscillating dispersion needed for aberration corrections. Theoretical arguments are corroborated with models and a detailed numerical analysis, providing step-by-step guidance for the design of Skew-quad PIC (SPIC) beamline.
Muon Tracking Studies in a Skew Parametric Resonance Ionization Cooling Channel
Sy, Amy; Afanaciev, Andre; Derbenev, Yaroslav S.; Johnson, Rolland; Morozov, Vasiliy
2015-09-01
Skew Parametric-resonance Ionization Cooling (SPIC) is an extension of the Parametric-resonance Ionization Cooling (PIC) framework that has previously been explored as the final 6D cooling stage of a high-luminosity muon collider. The addition of skew quadrupoles to the PIC magnetic focusing channel induces coupled dynamic behavior of the beam that is radially periodic. The periodicity of the radial motion allows for the avoidance of unwanted resonances in the horizontal and vertical transverse planes, while still providing periodic locations at which ionization cooling components can be implemented. A first practical implementation of the magnetic field components required in the SPIC channel is modeled in MADX. Dynamic features of the coupled correlated optics with and without induced parametric resonance are presented and discussed.
NASA Astrophysics Data System (ADS)
Audenaert, Koenraad M. R.
2014-11-01
In this paper, we study the quantum generalisation of the skew divergence, which is a dissimilarity measure between distributions introduced by Lee in the context of natural language processing. We provide an in-depth study of the quantum skew divergence, including its relation to other state distinguishability measures. Finally, we present a number of important applications: new continuity inequalities for the quantum Jensen-Shannon divergence and the Holevo information, and a new and short proof of Bravyi's Small Incremental Mixing conjecture.
Audenaert, Koenraad M. R.
2014-11-15
In this paper, we study the quantum generalisation of the skew divergence, which is a dissimilarity measure between distributions introduced by Lee in the context of natural language processing. We provide an in-depth study of the quantum skew divergence, including its relation to other state distinguishability measures. Finally, we present a number of important applications: new continuity inequalities for the quantum Jensen-Shannon divergence and the Holevo information, and a new and short proof of Bravyi's Small Incremental Mixing conjecture.
Startsev, Edward A.; Davidson, Ronald C.
2011-05-15
Identifying regimes for quiescent propagation of intense beams over long distances has been a major challenge in accelerator research. In particular, the development of systematic theoretical approaches that are able to treat self-consistently the applied oscillating force and the nonlinear self-field force of the beam particles simultaneously has been a major challenge of modern beam physics. In this paper, the recently developed Hamiltonian averaging technique [E. A. Startsev, R. C. Davidson, and M. Dorf, Phys. Rev. ST Accel. Beams 13, 064402 (2010)] which incorporates both the applied periodic focusing force and the self-field force of the beam particles, is generalized to the case of time-dependent beam distributions. The new formulation allows not only a determination of quasi-equilibrium solutions of the non-linear Vlasov-Poison system of equations but also a detailed study of their stability properties. The corrections to the well-known ''smooth-focusing'' approximation are derived, and the results are applied to a matched beam with thermal equilibrium distribution function. It is shown that the corrections remain small even for moderate values of the vacuum phase advance {sigma}{sub {upsilon}}. Nonetheless, because the corrections to the average self-field potential are non-axisymmetric, the stability properties of the different beam quasi-equilibria can change significantly.
Skewness of elliptic flow fluctuations
NASA Astrophysics Data System (ADS)
Giacalone, Giuliano; Yan, Li; Noronha-Hostler, Jacquelyn; Ollitrault, Jean-Yves
2017-01-01
Using event-by-event hydrodynamic calculations, we find that the fluctuations of the elliptic flow (v2) in the reaction plane have a negative skew. We compare the skewness of v2 fluctuations to that of initial eccentricity fluctuations. We show that skewness is the main effect lifting the degeneracy between higher-order cumulants, with negative skew corresponding to the hierarchy v2{4 } >v2{6 } observed in Pb+Pb collisions at the CERN Large Hadron Collider. We describe how the skewness can be measured experimentally and show that hydrodynamics naturally reproduces its magnitude and centrality dependence.
Variable Permanent Magnet Quadrupole
Mihara, T.; Iwashita, Y.; Kumada, M.; Spencer, C.M.; /SLAC
2007-05-23
A permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens in a linear collider. An over 120 T/m strong variable permanent magnet quadrupole is achieved by the introduction of saturated iron and a 'double ring structure'. A fabricated PMQ achieved 24 T integrated gradient with 20 mm bore diameter, 100 mm magnet diameter and 20 cm pole length. The strength of the PMQ is adjustable in 1.4 T steps, due to its 'double ring structure': the PMQ is split into two nested rings; the outer ring is sliced along the beam line into four parts and is rotated to change the strength. This paper describes the variable PMQ from fabrication to recent adjustments.
Measuring Skewness: A Forgotten Statistic?
ERIC Educational Resources Information Center
Doane, David P.; Seward, Lori E.
2011-01-01
This paper discusses common approaches to presenting the topic of skewness in the classroom, and explains why students need to know how to measure it. Two skewness statistics are examined: the Fisher-Pearson standardized third moment coefficient, and the Pearson 2 coefficient that compares the mean and median. The former is reported in statistical…
Skew resisting hydrodynamic seal
Conroy, William T.; Dietle, Lannie L.; Gobeli, Jeffrey D.; Kalsi, Manmohan S.
2001-01-01
A novel hydrodynamically lubricated compression type rotary seal that is suitable for lubricant retention and environmental exclusion. Particularly, the seal geometry ensures constraint of a hydrodynamic seal in a manner preventing skew-induced wear and provides adequate room within the seal gland to accommodate thermal expansion. The seal accommodates large as-manufactured variations in the coefficient of thermal expansion of the sealing material, provides a relatively stiff integral spring effect to minimize pressure-induced shuttling of the seal within the gland, and also maintains interfacial contact pressure within the dynamic sealing interface in an optimum range for efficient hydrodynamic lubrication and environment exclusion. The seal geometry also provides for complete support about the circumference of the seal to receive environmental pressure, as compared the interrupted character of seal support set forth in U.S. Pat. Nos. 5,873,576 and 6,036,192 and provides a hydrodynamic seal which is suitable for use with non-Newtonian lubricants.
Magnetic Measurement Results of the LCLS Undulator Quadrupoles
Anderson, Scott; Caban, Keith; Nuhn, Heinz-Dieter; Reese, Ed; Wolf, Zachary; /SLAC
2011-08-18
This note details the magnetic measurements and the magnetic center fiducializations that were performed on all of the thirty-six LCLS undulator quadrupoles. Temperature rise, standardization reproducibility, vacuum chamber effects and magnetic center reproducibility measurements are also presented. The Linac Coherent Light Source (LCLS) undulator beam line has 33 girders, each with a LCLS undulator quadrupole which focuses and steers the beam through the beam line. Each quadrupole has main quadrupole coils, as well as separate horizontal and vertical trim coils. Thirty-six quadrupoles, thirty-three installed and three spares were, manufactured for the LCLS undulator system and all were measured to confirm that they met requirement specifications for integrated gradient, harmonics and for magnetic center shifts after current changes. The horizontal and vertical dipole trims of each quadrupole were similarly characterized. Each quadrupole was also fiducialized to its magnetic center. All characterizing measurements on the undulator quads were performed with their mirror plates on and after a standardization of three cycles from -6 to +6 to -6 amps. Since the undulator quadrupoles could be used as a focusing or defocusing magnet depending on their location, all quadrupoles were characterized as focusing and as defocusing quadrupoles. A subset of the undulator quadrupoles were used to verify that the undulator quadrupole design met specifications for temperature rise, standardization reproducibility and magnetic center reproducibility after splitting. The effects of the mirror plates on the undulator quadrupoles were also measured.
Skew-normal antedependence models for skewed longitudinal data.
Chang, Shu-Ching; Zimmerman, Dale L
2016-06-01
Antedependence models, also known as transition models, have proven to be useful for longitudinal data exhibiting serial correlation, especially when the variances and/or same-lag correlations are time-varying. Statistical inference procedures associated with normal antedependence models are well-developed and have many nice properties, but they are not appropriate for longitudinal data that exhibit considerable skewness. We propose two direct extensions of normal antedependence models to skew-normal antedependence models. The first is obtained by imposing antedependence on a multivariate skew-normal distribution, and the second is a sequential autoregressive model with skew-normal innovations. For both models, necessary and sufficient conditions for [Formula: see text]th-order antedependence are established, and likelihood-based estimation and testing procedures for models satisfying those conditions are developed. The procedures are applied to simulated data and to real data from a study of cattle growth.
Quadrupole magnets for the SSC
Lietzke, A.; Barale, P.; Benjegerdes, R.; Caspi, S.; Cortella, J.; Dell'Orco, D.; Gilbert, W.; Green, M.I.; Mirk, K.; Peters, C.; Scanlan, R.; Taylor, C.E.; Wandesforde, A.
1992-08-01
At LBL, we have designed, constructed, and tested ten models (4-1meter, 6-5meter) of the Superconducting Super Collider (SSC) main-ring 5 meter focusing quadrupole magnet (211Tesla/meter). The results of this program are herein summarized.
Female reproductive synchrony predicts skewed paternity across primates
Nunn, Charles L.; Schülke, Oliver
2008-01-01
Recent studies have uncovered remarkable variation in paternity within primate groups. To date, however, we lack a general understanding of the factors that drive variation in paternity skew among primate groups and across species. Our study focused on hypotheses from reproductive skew theory involving limited control and the use of paternity “concessions” by investigating how paternity covaries with the number of males, female estrous synchrony, and rates of extragroup paternity. In multivariate and phylogenetically controlled analyses of data from 27 studies on 19 species, we found strong support for a limited control skew model, with reproductive skew within groups declining as female reproductive synchrony and the number of males per group increase. Of these 2 variables, female reproductive synchrony explained more of the variation in paternity distributions. To test whether dominant males provide incentives to subordinates to resist matings by extragroup males, that is, whether dominants make concessions of paternity, we derived a novel prediction that skew is lower within groups when threat from outside the group exists. This prediction was not supported as a primary factor underlying patterns of reproductive skew among primate species. However, our approach revealed that if concessions occur in primates, they are most likely when female synchrony is low, as these conditions provide alpha male control of paternity that is assumed by concessions models. Collectively, our analyses demonstrate that aspects of male reproductive competition are the primary drivers of reproductive skew in primates. PMID:19018288
A Vibrating Wire System For Quadrupole Fiducialization
Wolf, Zachary
2010-12-13
A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization step of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method
Beta function measurement in the Tevatron using quadrupole gradient modulation
Jansson, A.; Lebrun, P.; Volk, J.T.; /Fermilab
2005-05-01
Early in Run2, there was an effort to compare the different emittance measurements in the Tevatron (flying wires and synchrotron light) and understand the origin of the observed differences. To measure the beta function at a few key locations near the instruments, air-core quadrupoles were installed. By modulating the gradient of these magnets and measuring the effect on the tune, the lattice parameters can be extracted. Initially, the results seem to disagree with other methods. At the time, the lattice was strongly coupled due to a skew component in the main dipoles, caused by sagging of the cryostat. After a large fraction of the superconducting magnets were shimmed to remove a strong skew quadrupole component, the results now agree with the theoretical values to within 20%.
A merged quadrupole-calorimeter for CEPC
NASA Astrophysics Data System (ADS)
Talman, Richard; Hauptman, John
2016-11-01
The luminosity ℒ of colliding beams in a storage ring such as CEPC depends strongly on l∗, the half-length of the free space centered on the intersection point (IP). l∗ is also the length from the IP to the front edges of the two near-in quadrupoles that are focusing the counter-circulating beams to the IP spot. The detector length cannot, therefore, exceed 2l∗. Since ℒ increases strongly with decreasing l∗, there is incentive for reducing l∗; but this requires the detector to be shorter than desirable. This paper proposes a method for integrating these adjacent quadrupoles into the particle detector to retain (admittedly degraded) active particle detection of those forward going particles that would otherwise be obscured by the quadrupole. A gently conical quadrupole shape is more natural for merging the quadrupole into the particle detector than is the analytically exact cylindrical shape. This is true whether or not the calorimeter is integrated. It will be the task of accelerator physicists to determine the extent to which deviation from the pure quadrupole field compromises (or improves) accelerator performance. Superficially, both the presence of strongest gradient close to the IP and largest aperture farther from the IP seem to be advantageous. A tentative design for this merged, quadrupole-calorimeter is given.
March, Raymond E
2009-01-01
The extraordinary story of the three-dimensional radiofrequency quadrupole ion trap, accompanied by a seemingly unintelligible theoretical treatment, is told in some detail because of the quite considerable degree of commercial success that quadrupole technology has achieved. The quadrupole ion trap, often used in conjunction with a quadrupole mass filter, remained a laboratory curiosity until 1979 when, at the American Society for Mass Spectrometry Conference in Seattle, George Stafford, Jr., of Finnigan Corp., learned of the Masters' study of Allison Armitage of a combined quadrupole ion trap/quadrupole mass filter instrument for the observation of electron impact and chemical ionization mass spectra of simple compounds eluting from a gas chromatograph. Stafford developed subsequently the mass-selective axial instability method for obtaining mass spectra from the quadrupole ion trap alone and, in 1983, Finnigan Corp. announced the first commercial quadrupole ion trap instrument as a detector for a gas chromatograph. In 1987, confinement of ions generated externally to the ion trap was demonstrated and, soon after, the new technique of electrospray ionization was shown to be compatible with the ion trap.
Locally adaptive document skew detection
NASA Astrophysics Data System (ADS)
Sauvola, Jaakko J.; Doermann, David S.; Pietikaeinen, Matti
1997-04-01
This paper proposes a new approach to the detection of local orientation and skew in document images. It is based on the observation that there are many documents where a single global estimate of the page skew is not sufficient. These documents require local adaptation to deal robustly with todays complex configurations of components on the page. The approach attempts to identify regions in the image which exhibit locally consistent physical properties and consistent physical properties and consistent orientation. To do this, we rapidly compute a coarse segmentation and delineate regions which differ with respect to layout and/or physical content. Each region is classified as text, graphics, mixed text/graphics, image or background using local features and additional features are extracted to estimate orientation. The local orientation decisions are propagated where appropriate to resolve ambiguity and to produce a global estimate of the skew for the page. The implementation of our algorithms is demonstrated on a set of images which have multiple regions with different orientations.
Superconducting magnetic quadrupole
Kim, J.W.; Shepard, K.W.; Nolen, J.A.
1995-08-01
A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.
Mixture of Skewed α-Stable Distributions
NASA Astrophysics Data System (ADS)
Shojaei, S. R. Hosseini; Nassiri, V.; Mohammadian, Gh. R.; Mohammadpour, A.
2011-03-01
Expectation maximization (EM) algorithm and the Bayesian techniques are two approaches for statistical inference of mixture models [3, 4]. By noting the advantages of the Bayesian methods, practitioners prefer them. However, implementing Markov chain Monte Carlo algorithms can be very complicated for stable distributions, due to the non-analytic density or distribution function formulas. In this paper, we introduce a new class of mixture of heavy-tailed distributions, called mixture of skewed stable distributions. Skewed stable distributions belongs to the exponential family and they have analytic density representation. It is shown that skewed stable distributions dominate skew stable distribution functions and they can be used to model heavy-tailed data. The class of skewed stable distributions has an analytic representation for its density function and the Bayesian inference can be done similar to the exponential family of distributions. Finally, mixture of skewed stable distributions are compared to the mixture of stable distributions through a simulations study.
Skew aberration: a form of polarization aberration.
Yun, Garam; Crabtree, Karlton; Chipman, Russell A
2011-10-15
We define a new class of aberration, skew aberration, which is a component of polarization aberration. Skew aberration is an intrinsic rotation of polarization states due to the geometric transformation of local coordinates, independent of coatings and interface polarization. Skew aberration in a radially symmetric system has the form of a circular retardance tilt plus coma aberration. Skew aberration causes undesired polarization distribution in the exit pupil. We demonstrate statistics on skew aberration of 2383 optical systems described in Code V's U.S. patent library [Code V Version 10.3 (Synopsys, 2011), pp. 22-24]; the mean skew aberration is 0.89° and the standard deviation is 1.37°. The maximum skew aberration found is 17.45° and the minimum is -11.33°. U.S. patent 2,896,506, which has ±7.01° of skew aberration, is analyzed in detail. Skew aberration should be of concern in microlithography optics and other high NA and large field of view optical systems.
SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT
Rainer Meinke Carl Goodzeit Penny Ball Roger Bangerter
2003-10-01
The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of low-cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet R&D construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed
Alternating Skew Deviation from Traumatic Intracranial Hypotension
Moster, Stephen J.; Moster, Mark L.
2014-01-01
Abstract A 56-year-old woman developed progressive headache, mental status changes, and diplopia after trauma. She was diagnosed with alternating skew deviation caused by intracranial hypotension. This is the first case of alternating skew deviation reported from intracranial hypotension and perhaps a differential pressure between intracranial and intraspinal spaces plays a role in the development of these findings. PMID:27928294
Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.; Kilic, Can
2016-05-10
We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in which dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. In conclusion, these events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.
Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.; ...
2016-05-10
We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in whichmore » dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. In conclusion, these events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.« less
Fieremans, Nathalie; Van Esch, Hilde; Holvoet, Maureen; Van Goethem, Gert; Devriendt, Koenraad; Rosello, Monica; Mayo, Sonia; Martinez, Francisco; Jhangiani, Shalini; Muzny, Donna M; Gibbs, Richard A; Lupski, James R; Vermeesch, Joris R; Marynen, Peter; Froyen, Guy
2016-08-01
Intellectual disability (ID) is a heterogeneous disorder with an unknown molecular etiology in many cases. Previously, X-linked ID (XLID) studies focused on males because of the hemizygous state of their X chromosome. Carrier females are generally unaffected because of the presence of a second normal allele, or inactivation of the mutant X chromosome in most of their cells (skewing). However, in female ID patients, we hypothesized that the presence of skewing of X-inactivation would be an indicator for an X chromosomal ID cause. We analyzed the X-inactivation patterns of 288 females with ID, and found that 22 (7.6%) had extreme skewing (>90%), which is significantly higher than observed in the general population (3.6%; P = 0.029). Whole-exome sequencing of 19 females with extreme skewing revealed causal variants in six females in the XLID genes DDX3X, NHS, WDR45, MECP2, and SMC1A. Interestingly, variants in genes escaping X-inactivation presumably cause both XLID and skewing of X-inactivation in three of these patients. Moreover, variants likely accounting for skewing only were detected in MED12, HDAC8, and TAF9B. All tested candidate causative variants were de novo events. Hence, extreme skewing is a good indicator for the presence of X-linked variants in female patients.
Commissioning a Vibrating Wire System for Quadrupole Fiducialization
Levashov, Michael Y
2010-12-03
Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of the quadrupoles. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing such a system. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). A previous study investigated the error associated with each step by using a permanent quadrupole magnet on an optical mover system. The study reported an error of 11{micro}m for step 1 and a repeatability of 4{micro}m for step 2. However, the set up used a FARO arm to measure tooling balls and didn't allow to accurately check step 2 for errors; an uncertainty of 100{micro}m was reported. Therefore, even though the repeatability was good, there was no way to check that the error in step 2 was small. Following the recommendations of
MQXFS1 Quadrupole Design Report
Ambrosio, Giorgio
2016-04-14
This report presents the reference design of MQXFS1, the first 1.5 m prototype of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. The MQXF quadrupoles have 150 mm aperture, coil peak field of about 12 T, and use $Nb_{3}Sn$ conductor. The design is based on the LARP HQ quadrupoles, which had 120 mm aperture. MQXFS1 has 1st generation cable cross-section and magnetic design.
Radio frequency quadrupole resonator for linear accelerator
Moretti, Alfred
1985-01-01
An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.
Skew chicane based betatron eigenmode exchange module
Douglas, David
2010-12-28
A skewed chicane eigenmode exchange module (SCEEM) that combines in a single beamline segment the separate functionalities of a skew quad eigenmode exchange module and a magnetic chicane. This module allows the exchange of independent betatron eigenmodes, alters electron beam orbit geometry, and provides longitudinal parameter control with dispersion management in a single beamline segment with stable betatron behavior. It thus reduces the spatial requirements for multiple beam dynamic functions, reduces required component counts and thus reduces costs, and allows the use of more compact accelerator configurations than prior art design methods.
Bayesian Inference for Skewed Stable Distributions
NASA Astrophysics Data System (ADS)
Shokripour, Mona; Nassiri, Vahid; Mohammadpour, Adel
2011-03-01
Stable distributions are a class of distributions which allow skewness and heavy tail. Non-Gaussian stable random variables play the role of normal distribution in the central limit theorem, for normalized sums of random variables with infinite variance. The lack of analytic formula for density and distribution functions of stable random variables has been a major drawback to the use of stable distributions, also in the case of inference in Bayesian framework. Buckle introduced priors for the parameters of stable random variables to obtain an analytic form of posterior distribution. However, many researchers tried to solve the problem, through the Markov chain Monte Carlo methods, e.g. [8] and their references. In this paper a new class of heavy-tailed distribution is introduced, called skewed stable. This class has two main advantages: It has many inferential advantages, since it is a member of exponential family, so the Bayesian inference can be drawn similar to the exponential family of distributions and modelling skew data with stable distributions is dominated by this family. Finally, Bayesian inference for skewed stable arc compared to the stable distributions through a few simulations study.
Variance and skewness in the FIRST survey
NASA Astrophysics Data System (ADS)
Magliocchetti, M.; Maddox, S. J.; Lahav, O.; Wall, J. V.
1998-10-01
We investigate the large-scale clustering of radio sources in the FIRST 1.4-GHz survey by analysing the distribution function (counts in cells). We select a reliable sample from the the FIRST catalogue, paying particular attention to the problem of how to define single radio sources from the multiple components listed. We also consider the incompleteness of the catalogue. We estimate the angular two-point correlation function w(theta), the variance Psi_2 and skewness Psi_3 of the distribution for the various subsamples chosen on different criteria. Both w(theta) and Psi_2 show power-law behaviour with an amplitude corresponding to a spatial correlation length of r_0~10h^-1Mpc. We detect significant skewness in the distribution, the first such detection in radio surveys. This skewness is found to be related to the variance through Psi_3=S_3(Psi_2)^alpha, with alpha=1.9+/-0.1, consistent with the non-linear gravitational growth of perturbations from primordial Gaussian initial conditions. We show that the amplitude of variance and the skewness are consistent with realistic models of galaxy clustering.
Direct focusing error correction with ring-wide TBT beam position data
Yang, M.J.; /Fermilab
2011-03-01
Turn-By-Turn (TBT) betatron oscillation data is a very powerful tool in studying machine optics. Hundreds and thousands of turns of free oscillations are taken in just few tens of milliseconds. With beam covering all positions and angles at every location TBT data can be used to diagnose focusing errors almost instantly. This paper describes a new approach that observes focusing error collectively over all available TBT data to find the optimized quadrupole strength, one location at a time. Example will be shown and other issues will be discussed. The procedure presented clearly has helped to reduce overall deviations significantly, with relative ease. Sextupoles, being a permanent feature of the ring, will need to be incorporated into the model. While cumulative effect from all sextupoles around the ring may be negligible on turn-to-turn basis it is not so in this transfer line analysis. It should be noted that this procedure is not limited to looking for quadrupole errors. By modifying the target of minimization it could in principle be used to look for skew quadrupole errors and sextupole errors as well.
Topological Conjugacy Between Skew Tent Maps
NASA Astrophysics Data System (ADS)
Shi, Yong-Guo; Wang, Zhihua
This paper investigates the conjugacy of any two skew tent maps. An explicit formula is given for the conjugacy. It is proved that the conjugacy is singular, Hölder continuous and not differentiable as well as its inverse. We calculate the arc-length of the conjugacy curve and the area under the conjugacy curve. We construct a sequence of functions to approximate the conjugacy, and give an estimation for the error of the approximation.
Variance and Skewness in the FIRST Survey
NASA Astrophysics Data System (ADS)
Magliocchetti, M.; Maddox, S. J.; Lahav, O.; Wall, J. V.
We investigate the large-scale clustering of radio sources by analysing the distribution function of the FIRST 1.4 GHz survey. We select a reliable galaxy sample from the FIRST catalogue, paying particular attention to the definition of single radio sources from the multiple components listed in the FIRST catalogue. We estimate the variance, Ψ2, and skewness, Ψ3, of the distribution function for the best galaxy subsample. Ψ2 shows power-law behaviour as a function of cell size, with an amplitude corresponding a spatial correlation length of r0 ~10 h-1 Mpc. We detect significant skewness in the distribution, and find that it is related to the variance through the relation Ψ3 = S3 (Ψ2)α with α = 1.9 +/- 0.1 consistent with the non-linear growth of perturbations from primordial Gaussian initial conditions. We show that the amplitude of clustering (corresponding to a spatial correlation length of r0 ~10 h-1 Mpc) and skewness are consistent with realistic models of galaxy clustering.
The past, present and future of reproductive skew theory and experiments.
Nonacs, Peter; Hager, Reinmar
2011-05-01
better at predicting quantitative differences in skew across populations or species. This suggests that kin selection can play a significant role in the evolution of sociality. To advance our understanding of reproductive skew will require focusing on a broader array of factors, such as the frequency of mistaken identity, delayed fitness payoffs, and selection pressures arising from across-group competition. We furthermore suggest a novel approach to investigate the sharing of reproduction that focuses on the underlying genetics of skew. A quantitative genetics approach allows the partitioning of variance in reproductive share itself or that of traits closely associated with skew into genetic and non-genetic sources. Thus, we can determine the heritability of reproductive share and infer whether it actually is the focus of natural selection. We view the 'animal model' as the most promising empirical method where the genetics of reproductive share can be directly analyzed in wild populations. In the quest to assess whether skew theory can provide a framework for understanding the evolution of sociality, quantitative genetics will be a central tool in future research.
Hurtado-Gaitán, Elías; Sellés-Marchart, Susana; Martínez-Márquez, Ascensión; Samper-Herrero, Antonio; Bru-Martínez, Roque
2017-03-07
Grapevine stilbenes are a family of polyphenols which derive from trans-resveratrol having antifungal and antimicrobial properties, thus being considered as phytoalexins. In addition to their diverse bioactive properties in animal models, they highlight a strong potential in human health maintenance and promotion. Due to this relevance, highly-specific qualitative and quantitative methods of analysis are necessary to accurately analyze stilbenes in different matrices derived from grapevine. Here, we developed a rapid, sensitive, and specific analysis method using ultra-high-performance liquid chromatography coupled to triple-quadrupole mass spectrometry (UHPLC-QqQ) in MRM mode to detect and quantify five grapevine stilbenes, trans-resveratrol, trans-piceid, trans-piceatannol, trans-pterostilbene, and trans-ε-viniferin, whose interest in relation to human health is continuously growing. The method was optimized to minimize in-source fragmentation of piceid and to avoid co-elution of cis-piceid and trans-resveratrol, as both are detected with resveratrol transitions. The applicability of the developed method of stilbene analysis was tested successfully in different complex matrices including cellular extracts of Vitis vinifera cell cultures, reaction media of biotransformation assays, and red wine.
Superconducting focusing lenses for the SSR-1 cryomodule of PXIE test stand at Fermilab
DiMarco, J.; Tartaglia, M.; Terechkine, I.
2016-12-05
Five solenoid-based focusing lenses designed for use inside the SSR1 cryomodule of the PXIE test stand at Fermilab have been fabricated and tested. In addition to a focusing solenoid, each lens is equipped with a set of windings that generate magnetic field in the transverse plane and can be used in the steering dipole mode or as a skew quadrupole corrector. The lenses will be installed between superconducting cavities in the cryomodule, so getting sufficiently low fringe magnetic field was one of the main design requirements. Beam dynamics simulations indicated a need for high accuracy positioning of the lenses in the cryomodule, which triggered a study towards understanding uncertainties of the magnetic axis position relative to the geometric features of the lens. Furthermore, this report summarizes the efforts towards certification of the lenses, including results of performance tests, fringe field data, and uncertainty of the magnetic axis position.
Superconducting focusing lenses for the SSR-1 cryomodule of PXIE test stand at Fermilab
DiMarco, J.; Tartaglia, M.; Terechkine, I.
2016-12-05
Five solenoid-based focusing lenses designed for use inside the SSR1 cryomodule of the PXIE test stand at Fermilab have been fabricated and tested. In addition to a focusing solenoid, each lens is equipped with a set of windings that generate magnetic field in the transverse plane and can be used in the steering dipole mode or as a skew quadrupole corrector. The lenses will be installed between superconducting cavities in the cryomodule, so getting sufficiently low fringe magnetic field was one of the main design requirements. Beam dynamics simulations indicated a need for high accuracy positioning of the lenses inmore » the cryomodule, which triggered a study towards understanding uncertainties of the magnetic axis position relative to the geometric features of the lens. Furthermore, this report summarizes the efforts towards certification of the lenses, including results of performance tests, fringe field data, and uncertainty of the magnetic axis position.« less
Dynamic Modeling from Flight Data with Unknown Time Skews
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2016-01-01
A method for estimating dynamic model parameters from flight data with unknown time skews is described and demonstrated. The method combines data reconstruction, nonlinear optimization, and equation-error parameter estimation in the frequency domain to accurately estimate both dynamic model parameters and the relative time skews in the data. Data from a nonlinear F-16 aircraft simulation with realistic noise, instrumentation errors, and arbitrary time skews were used to demonstrate the approach. The approach was further evaluated using flight data from a subscale jet transport aircraft, where the measured data were known to have relative time skews. Comparison of modeling results obtained from time-skewed and time-synchronized data showed that the method accurately estimates both dynamic model parameters and relative time skew parameters from flight data with unknown time skews.
Leiva, David; Solanas, Antonio; Salafranca, Lluís
2008-05-01
In the present article, we focus on two indices that quantify directionality and skew-symmetrical patterns in social interactions as measures of social reciprocity: the directional consistency (DC) and skew-symmetry indices. Although both indices enable researchers to describe social groups, most studies require statistical inferential tests. The main aims of the present study are first, to propose an overall statistical technique for testing null hypotheses regarding social reciprocity in behavioral studies, using the DC and skew-symmetry statistics (Phi) at group level; and second, to compare both statistics in order to allow researchers to choose the optimal measure depending on the conditions. In order to allow researchers to make statistical decisions, statistical significance for both statistics has been estimated by means of a Monte Carlo simulation. Furthermore, this study will enable researchers to choose the optimal observational conditions for carrying out their research, since the power of the statistical tests has been estimated.
Inferring climate variability from skewed proxy records
NASA Astrophysics Data System (ADS)
Emile-Geay, J.; Tingley, M.
2013-12-01
Many paleoclimate analyses assume a linear relationship between the proxy and the target climate variable, and that both the climate quantity and the errors follow normal distributions. An ever-increasing number of proxy records, however, are better modeled using distributions that are heavy-tailed, skewed, or otherwise non-normal, on account of the proxies reflecting non-normally distributed climate variables, or having non-linear relationships with a normally distributed climate variable. The analysis of such proxies requires a different set of tools, and this work serves as a cautionary tale on the danger of making conclusions about the underlying climate from applications of classic statistical procedures to heavily skewed proxy records. Inspired by runoff proxies, we consider an idealized proxy characterized by a nonlinear, thresholded relationship with climate, and describe three approaches to using such a record to infer past climate: (i) applying standard methods commonly used in the paleoclimate literature, without considering the non-linearities inherent to the proxy record; (ii) applying a power transform prior to using these standard methods; (iii) constructing a Bayesian model to invert the mechanistic relationship between the climate and the proxy. We find that neglecting the skewness in the proxy leads to erroneous conclusions and often exaggerates changes in climate variability between different time intervals. In contrast, an explicit treatment of the skewness, using either power transforms or a Bayesian inversion of the mechanistic model for the proxy, yields significantly better estimates of past climate variations. We apply these insights in two paleoclimate settings: (1) a classical sedimentary record from Laguna Pallcacocha, Ecuador (Moy et al., 2002). Our results agree with the qualitative aspects of previous analyses of this record, but quantitative departures are evident and hold implications for how such records are interpreted, and
Skew quad compensation for SPEAR minibeta optics
Wille, K.
1984-06-01
With the new minibeta insertion for SPEAR the betatron coupling and the perturbations of beam optics caused by the solenoid field of the MARK III detector can't be compensated by the simple coils used so far. Therefore another scheme with four skew quads arranged in two families has been chosen. Even though this scheme doesn't compensate the effect of the solenoid on the beam completely, the residual emittance coupling is much less than 1% which should be sufficient under all running conditions. The major advantage of this concept is its simplicity.
Evolution of cooperation and skew under imperfect information.
Akçay, Erol; Meirowitz, Adam; Ramsay, Kristopher W; Levin, Simon A
2012-09-11
The evolution of cooperation in nature and human societies depends crucially on how the benefits from cooperation are divided and whether individuals have complete information about their payoffs. We tackle these questions by adopting a methodology from economics called mechanism design. Focusing on reproductive skew as a case study, we show that full cooperation may not be achievable due to private information over individuals' outside options, regardless of the details of the specific biological or social interaction. Further, we consider how the structure of the interaction can evolve to promote the maximum amount of cooperation in the face of the informational constraints. Our results point to a distinct avenue for investigating how cooperation can evolve when the division of benefits is flexible and individuals have private information.
Nuclear Quadrupole Moments and Nuclear Shell Structure
DOE R&D Accomplishments Database
Townes, C. H.; Foley, H. M.; Low, W.
1950-06-23
Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.
Birth delays skew developing world's fertility figures.
1999-09-01
This article explains that birth delays skew developing world's fertility figures. When successive groups of women who have delayed childbearing start having children, the rapid fertility decline stalls. Such change in the timing of childbearing skews the total fertility rate (TFR). Analysis of the tempo component of TFR trends in Taiwan suggests that tempo effects reduced its TFR by about 10% in the late 1970s and early 1990s and by about 19% in the late 1980s. In Colombia, on the basis of increasing mean maternal age at childbirth between the 1970s and the late 1980s, tempo distortions of the TFR during the most of the 1980s seem likely. Moreover, many developing countries are now experiencing rapid fertility declines that are in part attributable to tempo changes. These changes have accelerated past fertility transitions, but they also make these countries vulnerable to future stalls in fertility when the delays in childbearing end. Since fertility reductions caused by tempo effects lead to real declines in birth rates and hence in population growth, countries that wish to reduce birth rates can take actions that encourage women to delay marriage and the onset of childbearing.
Temperature-Compensated Clock Skew Adjustment
Castillo-Secilla, Jose María; Palomares, Jose Manuel; Olivares, Joaquín
2013-01-01
This work analyzes several drift compensation mechanisms in wireless sensor networks (WSN). Temperature is an environmental factor that greatly affects oscillators shipped in every WSN mote. This behavior creates the need of improving drift compensation mechanisms in synchronization protocols. Using the Flooding Time Synchronization Protocol (FTSP), this work demonstrates that crystal oscillators are affected by temperature variations. Thus, the influence of temperature provokes a low performance of FTSP in changing conditions of temperature. This article proposes an innovative correction factor that minimizes the impact of temperature in the clock skew. By means of this factor, two new mechanisms are proposed in this paper: the Adjusted Temperature (AT) and the Advanced Adjusted Temperature (A2T). These mechanisms have been combined with FTSP to produce AT-FTSP and A2T-FTSP Both have been tested in a network of TelosB motes running TinyOS. Results show that both AT-FTSP and A2T-FTSP improve the average synchronization errors compared to FTSP and other temperature-compensated protocols (Environment-Aware Clock Skew Estimation and Synchronization for WSN (EACS) and Temperature Compensated Time Synchronization (TCTS)). PMID:23966192
Removal of Axial Twist in RHIC Insertion Quadrupole Magnets
NASA Astrophysics Data System (ADS)
Cozzolino, J.; Anerella, M.; Jain, A.; Louie, W.; Muratore, P.
1997-05-01
The focusing triplets located on either side of the six interaction points of RHIC each consist of three 13cm aperture quadrupoles with magnetic lengths of 1.44m (Q1), 3.40m (Q2), and 2.10m (Q3). The field quality and alignment of these magnets are most critical to the performance of the accelerator. The maximum allowable axial twist of the cold mass, defined as the standard deviation in the quadrupole roll angle, is 0.5 mrad. This requirement has occasionally exceeded the capabilities of the assembly fixturing and the procedures used to complete the axial welding of the shell halves around the cold mass yoke. A corrective shell welding technique has been successfully employed to remove excessive axial twist of the 13cm quadrupoles. This ``custom straightening" method will be described along with the before and after mechanical inspection data. The magnetic results which confirm the untwisting procedure shall also be discussed.
Study the most favorable shapes of electrostatic quadrupole doublet lenses
NASA Astrophysics Data System (ADS)
Hussein, O. A.; Sise, O.
2017-02-01
The optical properties of an electrostatic quadrupole doublet lens with two different electrode shapes were studied with the aid of computer simulation. The optimal electrode voltages of the electrostatic quadrupole lenses which give the stigmatic image in both planes simultaneously were found for both concave cylindrical electrode shape and plan electrode shape of the operation mode: parallel to point focusing. The effect of electrode shape on the image properties was investigated, and the aberration figures were studied. The results showed that under the same operation condition and the geometrical dimensions, the changing of the electrode shape of the electrostatic quadrupole doublet lenses lead to important differences in the optical properties of the lenses and the characteristics of the systems.
Cracked shells under skew-symmetric loading
NASA Technical Reports Server (NTRS)
Lelale, F.
1982-01-01
A shell containing a through crack in one of the principal planes of curvature and under general skew-symmetric loading is considered. By employing a Reissner type shell theory which takes into account the effect of transverse shear strains, all boundary conditions on the crack surfaces are satisfied separately. Consequently, unlike those obtained from the classical shell theory, the angular distributions of the stress components around the crack tips are shown to be identical to the distributions obtained from the plane and antiplane elasticity solutions. Extensive results are given for axially and circumferentially cracked cylindrical shells, spherical shells, and toroidal shells under uniform inplane shearing, out of plane shearing, and torsion. The effect of orthotropy on the results is also studied.
Incorporating covariates in skewed functional data models.
Li, Meng; Staicu, Ana-Maria; Bondell, Howard D
2015-07-01
We introduce a class of covariate-adjusted skewed functional models (cSFM) designed for functional data exhibiting location-dependent marginal distributions. We propose a semi-parametric copula model for the pointwise marginal distributions, which are allowed to depend on covariates, and the functional dependence, which is assumed covariate invariant. The proposed cSFM framework provides a unifying platform for pointwise quantile estimation and trajectory prediction. We consider a computationally feasible procedure that handles densely as well as sparsely observed functional data. The methods are examined numerically using simulations and is applied to a new tractography study of multiple sclerosis. Furthermore, the methodology is implemented in the R package cSFM, which is publicly available on CRAN.
Focusing magnets for HIF based on racetracks
Martovetsky, N N; Manahan, R R
2000-09-11
Heavy Ion Fusion (HIF) is considered a promising path to a practical fusion reactor. A driver for a HIF reactor will require a large number of quadrupole arrays to focus heavy ion beams. A conceptual design, and trade off studies of the quadrupole array based on racetracks are presented. A comparison with a conventional shell magnet is given and advantages and disadvantages are discussed. A more detailed design of a single quadrupole for the High Current experiment (HCX) is presented and discussed.
A superconducting quadrupole magnet array for a heavy ion fusion driver
Caspi, S.; Bangerter, r.; Chow, K.; Faltens, A.; Gourley, S.; Hinkins, R.; Gupta, R.; Lee, E.; McInturff, A.; Scanlan, R.; Taylor, C.; Wolgast, D.
2000-06-27
A multi-channel quadrupole array has been proposed to increase beam intensity and reduce space charge effects in a Heavy Ion Fusion Driver. A single array unit composed of several quadrupole magnets, each with its own beam line, will be placed within a ferromagnetic accelerating core whose cost is directly affected by the array size. A large number of focusing arrays will be needed along the accelerating path. The use of a superconducting quadrupole magnet array will increase the field and reduce overall cost. We report here on the design of a compact 3 x 3 superconducting quadrupole magnet array. The overall array diameter and length including the cryostat is 900 x 700 mm. Each of the 9 quadrupole magnets has a 78 mm warm bore and an operating gradient of 50 T/m over an effective magnetic length of 320 mm.
Test of a NbTi Superconducting Quadrupole Magnet Based on Alternating Helical Windings
Caspi, S.; Trillaud, F.; Godeke, A.; Dietderich, D.; Ferracin, P.; Sabbi, G.; Giloux, C.; Perez, J. G.; Karppinen, M.
2009-08-16
It has been shown that by superposing two solenoid-like thin windings, that are oppositely skewed (tilted) with respect to the bore axis, the combined current density on the surface is cos({theta})-like and the resulting magnetic field in the bore is a pure dipole field. Following a previous test of such a superconducting dipole magnet, a quadrupole magnet was designed and built using similar principles. This paper describes the design, construction and test of a 75 mm bore 600 mm long superconducting quadrupole made with NbTi wire. The simplicity of the design, void of typical wedges, end-spacers and coil assembly, is especially suitable for future high field insert coils using Nb{sub 3}Sn as well as HTS wires. The 3 mm thick coil reached 46 T/m but did not achieve its current plateau.
A Method for Controlling Skew on Linked Surfaces
BENZLEY,STEVEN E.; KERR,ROBERT A.; MITCHELL,SCOTT A.; WHITE,DAVID R.
1999-09-27
A new method for lessening skew in mapped meshes is presented. This new method involves progressive subdivision of a surface into loops consisting of four sides. Using these loops, constraints can then be set on the curves of the surface, which will propagate interval assignments across the surface, allowing a mesh with a better skew metric to be generated.
Analysis of carbon dioxide concentration skewness at a rural site.
Pérez, Isidro A; Sánchez, M Luisa; García, M Ángeles; Ozores, Marta; Pardo, Nuria
2014-04-01
This paper provides evidence that symmetry of CO2 concentration distribution may indicate sources or dispersive processes. Skewness was calculated by different procedures with CO2 measured at a rural site using a Picarro G1301 analyser over a two-year period. The usual skewness coefficient was considered together with fourteen robust estimators. A noticeable contrast was obtained between day and night, and skewness decreased linearly with the logarithm of the height. One coefficient was selected from its satisfactory relationship with the median concentration in daily evolution. Three analyses based on the kernel smoothing method were conducted with this coefficient to investigate its response to yearly and daily evolutions, wind direction, and wind speed. Left-skewed distributions were linked to thermal turbulence during midday, especially in spring-summer, or with high wind speeds. Almost symmetric distributions were associated with sources, such as the Valladolid City plume reinforced with spring emissions and the lack of emissions in summer in the remaining directions. Finally, right-skewed distributions were related to low wind speeds and stable stratification at night, furthered by strong emissions in spring. Skewness intervals were proposed and their average median concentrations were calculated such that the relationship between skewness and concentration depends on the analysis performed. Since some skewness coefficients may also be negative, they provide better information about sources or dispersive processes than concentration.
Evolution of the derivative skewness for nonlinearly propagating waves.
Reichman, Brent O; Muhlestein, Michael B; Gee, Kent L; Neilsen, Tracianne B; Thomas, Derek C
2016-03-01
The skewness of the first time derivative of a pressure waveform, or derivative skewness, has been used previously to describe the presence of shock-like content in jet and rocket noise. Despite its use, a quantitative understanding of derivative skewness values has been lacking. In this paper, the derivative skewness for nonlinearly propagating waves is investigated using analytical, numerical, and experimental methods. Analytical expressions for the derivative skewness of an initially sinusoidal plane wave are developed and, along with numerical data, are used to describe its behavior in the preshock, sawtooth, and old-age regions. Analyses of common measurement issues show that the derivative skewness is relatively sensitive to the effects of a smaller sampling rate, but less sensitive to the presence of additive noise. In addition, the derivative skewness of nonlinearly propagating noise is found to reach greater values over a shorter length scale relative to sinusoidal signals. A minimum sampling rate is recommended for sinusoidal signals to accurately estimate derivative skewness values up to five, which serves as an approximate threshold indicating significant shock formation.
Learning a Novel Pattern through Balanced and Skewed Input
ERIC Educational Resources Information Center
McDonough, Kim; Trofimovich, Pavel
2013-01-01
This study compared the effectiveness of balanced and skewed input at facilitating the acquisition of the transitive construction in Esperanto, characterized by the accusative suffix "-n" and variable word order (SVO, OVS). Thai university students (N = 98) listened to 24 sentences under skewed (one noun with high token frequency) or…
How Small Is Big: Sample Size and Skewness.
Piovesana, Adina; Senior, Graeme
2016-09-21
Sample sizes of 50 have been cited as sufficient to obtain stable means and standard deviations in normative test data. The influence of skewness on this minimum number, however, has not been evaluated. Normative test data with varying levels of skewness were compiled for 12 measures from 7 tests collected as part of ongoing normative studies in Brisbane, Australia. Means and standard deviations were computed from sample sizes of 10 to 100 drawn with replacement from larger samples of 272 to 973 cases. The minimum sample size was determined by the number at which both mean and standard deviation estimates remained within the 90% confidence intervals surrounding the population estimates. Sample sizes of greater than 85 were found to generate stable means and standard deviations regardless of the level of skewness, with smaller samples required in skewed distributions. A formula was derived to compute recommended sample size at differing levels of skewness.
ERIC Educational Resources Information Center
Tabor, Josh
2010-01-01
On the 2009 AP[c] Statistics Exam, students were asked to create a statistic to measure skewness in a distribution. This paper explores several of the most popular student responses and evaluates which statistic performs best when sampling from various skewed populations. (Contains 8 figures, 3 tables, and 4 footnotes.)
LARP Long Quadrupole: A "Long" Step Toward an LHC
Giorgio Ambrosio
2016-07-12
The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960âs. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are âProof-of-Principleâ magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.
LARP Long Quadrupole: A "Long" Step Toward an LHC
Giorgio Ambrosio
2008-02-13
The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960’s. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are “Proof-of-Principle” magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.
First Test Results of the 150 mm Aperture IR Quadrupole Models for the High Luminosity LHC
Ambrosio, G.; Chlachidze, G.; Wanderer, P.; Ferracin, P.; Sabbi, G.
2016-10-06
The High Luminosity upgrade of the LHC at CERN will use large aperture (150 mm) quadrupole magnets to focus the beams at the interaction points. The high field in the coils requires Nb3Sn superconductor technology, which has been brought to maturity by the LHC Accelerator Re-search Program (LARP) over the last 10 years. The key design targets for the new IR quadrupoles were established in 2012, and fabrication of model magnets started in 2014. This paper discusses the results from the first single short coil test and from the first short quadrupole model test. Remaining challenges and plans to address them are also presented and discussed.
3D simulations of an electrostatic quadrupole injector
Grote, D.P. |; Friedman, A.; Yu, S.
1993-02-01
Analysis of the dynamics of a space charge dominated beam in a lattice of electrostatic focusing structures requires a full three-dimensional conic that includes self-consistent space charge fields and the fields from the complex conductor shapes. The existing WARP3d code, a particle simulation code which has been developed for heavy-ion fusion (HIF) applications contains machinery for handling particles in three-dimensional fields. A successive overrelaxation field solver with subgrid-scale placement of boundaries for rounded surface and four-fold symmetry has been added to the code. The electrostatic quadrupole (ESQ) injector for the ILSE accelerator facility being planned at Lawrence Berkeley Laboratory is shown as an application. The issue of concern is possible emittance degradation because the focusing voltages are a significant fraction of the particles` energy and because there are significant nonlinear fields arising from the shapes of the quadrupole structures.
Radio-frequency quadrupole resonator for linear accelerator
Moretti, A.
1982-10-19
An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.
7. William E. Barrett, Photographer, 1974. SKEWED VIEW SHOWING CHEAT ...
7. William E. Barrett, Photographer, 1974. SKEWED VIEW SHOWING CHEAT RIVER VALLEY, REMAINS OF 1887 PIER AND c. 1900 MASONRY ARCHES. - Baltimore & Ohio Railroad, Tray Run Viaduct, Spanning Tray Run, Rowlesburg, Preston County, WV
2. Skewed view of E elevation of sugar mill looking ...
2. Skewed view of E elevation of sugar mill looking NW. - Hacienda Azurarera Santa Elena, Sugar Mill Ruins, 1.44 miles North of PR Route 2 Bridge Over Rio De La Plata, Toa Baja, Toa Baja Municipio, PR
LOOKING WEST, BETWEEN READING DEPOT BRIDGE AND SKEW ARCH BRIDGE ...
LOOKING WEST, BETWEEN READING DEPOT BRIDGE AND SKEW ARCH BRIDGE (HAER No. PA-116). - Philadelphia & Reading Railroad, Reading Depot Bridge, North Sixth Street at Woodward Street, Reading, Berks County, PA
Skewed paternity and sex allocation in hermaphroditic plants and animals.
Greeff, J. M.; Nason, J. D.; Compton, S. G.
2001-01-01
Models predict a reduced allocation to sperm when females preferentially use one of two males' sperm and the males do not know who is favoured. An analogous discounting occurs in plants when their paternity success is skewed by random, non-heritable factors such as location in the population and pollinator behaviour. We present a model that shows that skewed paternity can affect the sex allocation of hermaphrodites, that is it leads to a female-biased investment. The model highlights the close links between local mate competition and sperm competition. We use paternity data from Ficus in order to illustrate that skews in paternity success can lead to a high degree of sibling gamete competition in an apparently open breeding system. Since skews in paternity are ubiquitous in hermaphroditic plants and animals these findings should apply broadly. PMID:11600078
Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices
ERIC Educational Resources Information Center
Glaister, P.
2008-01-01
The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.
4. From Skew Span to portal on span 1 looking ...
4. From Skew Span to portal on span 1 looking up grade toward the south end. - Monongahela Connecting Railroad Company, Hot Metal Bridge, Spanning Monongahela River at mile post 3.1, Pittsburgh, Allegheny County, PA
Sickle Cell Trait in Blacks Can Skew Diabetes Test Results
... page: https://medlineplus.gov/news/fullstory_163463.html Sickle Cell Trait in Blacks Can Skew Diabetes Test Results ... less accurate in black people who have the sickle cell anemia trait, a new study says. The test ...
Flow in Rotating Serpentine Coolant Passages With Skewed Trip Strips
NASA Technical Reports Server (NTRS)
Tse, David G.N.; Steuber, Gary
1996-01-01
Laser velocimetry was utilized to map the velocity field in serpentine turbine blade cooling passages with skewed trip strips. The measurements were obtained at Reynolds and Rotation numbers of 25,000 and 0.24 to assess the influence of trips, passage curvature and Coriolis force on the flow field. The interaction of the secondary flows induced by skewed trips with the passage rotation produces a swirling vortex and a corner recirculation zone. With trips skewed at +45 deg, the secondary flows remain unaltered as the cross-flow proceeds from the passage to the turn. However, the flow characteristics at these locations differ when trips are skewed at -45 deg. Changes in the flow structure are expected to augment heat transfer, in agreement with the heat transfer measurements of Johnson, et al. The present results show that trips are skewed at -45 deg in the outward flow passage and trips are skewed at +45 deg in the inward flow passage maximize heat transfer. Details of the present measurements were related to the heat transfer measurements of Johnson, et al. to relate fluid flow and heat transfer measurements.
Extension of EMA to address regional skew and low outliers
Griffis, V.W.; Stedinger, J.R.; Cohn, T.A.; Bizier, P.; DeBarry, P.
2003-01-01
The recently developed expected moments algorithm [EMA] (Cohn et al. 1997) does as well as MLEs at estimating LP3 flood quantiles using systematic and historical information. Needed extensions include use of a regional skewness estimator and its precision to be consistent with Bulletin 17B and to make use of such hydrologic information. Another issue addressed by Bulletin 17B is the treatment of low outliers. A Monte Carlo study illustrates the performance of an extended EMA estimator compared to estimators that employ the complete data set with and without use of regional skew, conditional probability adjustment from Bulletin 17B, and an estimator that uses probability plot regression to compute substitute values for low outliers. Estimators that use a regional skew all do better than estimators that fail to use an informative regional skewness estimator. For LP3 data, the low outlier rejection procedure results in no loss of overall accuracy, and the differences between the MSEs of the estimators that used an informative regional skew were generally negligible in the skew range of real interest.
Test results of LHC interaction regions quadrupoles produced by Fermilab
Bossert, R.; Carson, J.; Chichili, D.R.; Feher, S.; Kerby, J.; Lamm, M.J.; Nobrega, A.; Nicol, T.; Ogitsu, T.; Orris, D.; Page, T.; Peterson, T.; Rabehl, R.; Robotham, W.; Scanlan, R.; Schlabach, P.; Sylvester, C.; Strait, J.; Tartaglia, M.; Tompkins, J.C.; Velev, G.; /Fermilab
2004-10-01
The US-LHC Accelerator Project is responsible for the production of the Q2 optical elements of the final focus triplets in the LHC interaction regions. As part of this program Fermilab is in the process of manufacturing and testing cryostat assemblies (LQXB) containing two identical quadrupoles (MQXB) with a dipole corrector between them. The 5.5 m long Fermilab designed MQXB have a 70 mm aperture and operate in superfluid helium at 1.9 K with a peak field gradient of 215 T/m. This paper summarizes the test results of several production MQXB quadrupoles with emphasis on quench performance and alignment studies. Quench localization studies using quench antenna signals are also presented.
A new technique of beam energy resolution by using only quadrupole magnets
NASA Astrophysics Data System (ADS)
Sarma, P. R.
2003-08-01
In the standard technique of beam energy resolution one uses the property of momentum dispersion by dipole magnets. It is shown that one can, alternatively, use three quadrupole magnets to select the beam momentum or energy. The lengths and magnetic fields of the quadrupoles can be adjusted to focus the particles of the required energy and simultaneously defocus the particles of higher or lower energies. For obtaining a very high resolving power one can use such triplets in cascade. The resolving powers of these are multiplicative, whereas in the case of dipoles one can use just two bending magnets for roughly doubling the resolving power. This method is different from the technique used in quadrupole mass filters where RF field is used in quadrupoles.
NASA Astrophysics Data System (ADS)
Denner, Fabian; van Wachem, Berend G. M.
2015-10-01
Total variation diminishing (TVD) schemes are a widely applied group of monotonicity-preserving advection differencing schemes for partial differential equations in numerical heat transfer and computational fluid dynamics. These schemes are typically designed for one-dimensional problems or multidimensional problems on structured equidistant quadrilateral meshes. Practical applications, however, often involve complex geometries that cannot be represented by Cartesian meshes and, therefore, necessitate the application of unstructured meshes, which require a more sophisticated discretisation to account for their additional topological complexity. In principle, TVD schemes are applicable to unstructured meshes, however, not all the data required for TVD differencing is readily available on unstructured meshes, and the solution suffers from considerable numerical diffusion as a result of mesh skewness. In this article we analyse TVD differencing on unstructured three-dimensional meshes, focusing on the non-linearity of TVD differencing and the extrapolation of the virtual upwind node. Furthermore, we propose a novel monotonicity-preserving correction method for TVD schemes that significantly reduces numerical diffusion caused by mesh skewness. The presented numerical experiments demonstrate the importance of accounting for the non-linearity introduced by TVD differencing and of imposing carefully chosen limits on the extrapolated virtual upwind node, as well as the efficacy of the proposed method to correct mesh skewness.
On river-floodplain interaction and hydrograph skewness
NASA Astrophysics Data System (ADS)
Fleischmann, Ayan S.; Paiva, Rodrigo C. D.; Collischonn, Walter; Sorribas, Mino V.; Pontes, Paulo R. M.
2016-10-01
Understanding hydrological processes occurring within a basin by looking at its outlet hydrograph can improve and foster comprehension of ungauged regions. In this context, we present an extensive examination of the roles that floodplains play on driving hydrograph shapes. Observations of many river hydrographs with large floodplain influence are carried out and indicate that a negative skewness of the hydrographs is present among many of them. Through a series of numerical experiments and analytical reasoning, we show how the relationship between flood wave celerity and discharge in such systems is responsible for determining the hydrograph shapes. The more water inundates the floodplains upstream of the observed point, the more negatively skewed is the observed hydrograph. A case study is performed in the Amazon River Basin, where major rivers with large floodplain attenuation (e.g., Purus, Madeira, and Juruá) are identified with higher negative skewness in the respective hydrographs. Finally, different wetland types could be distinguished by using this feature, e.g., wetlands maintained by endogenous processes, from wetlands governed by overbank flow (along river floodplains). A metric of hydrograph skewness was developed to quantify this effect, based on the time derivative of discharge. Together with the skewness concept, it may be used in other studies concerning the relevance of floodplain attenuation in large, ungauged rivers, where remote sensing data (e.g., satellite altimetry) can be very useful.
QUADRUPOLE BEAM-BASED ALIGNMENT AT RHIC.
NIEDZIELA, J.; MONTAG, C.; SATOGATA, T.
2005-05-16
Successful implementation of a beam-based alignment algorithm, tailored to different types of quadrupoles at RHIC, provides significant benefits to machine operations for heavy ions and polarized protons. This algorithm was used to calibrate beam position monitor centers relative to interaction region quadrupoles to maximize aperture. This approach was also used to determine the optimal orbit through transition jump quadrupoles to minimize orbit changes during the transition jump for heavy ion acceleration. This paper provides background discussion and results from first measurements during the RHIC 2005 run.
Determining collective barrier operation skew in a parallel computer
Faraj, Daniel A.
2015-11-24
Determining collective barrier operation skew in a parallel computer that includes a number of compute nodes organized into an operational group includes: for each of the nodes until each node has been selected as a delayed node: selecting one of the nodes as a delayed node; entering, by each node other than the delayed node, a collective barrier operation; entering, after a delay by the delayed node, the collective barrier operation; receiving an exit signal from a root of the collective barrier operation; and measuring, for the delayed node, a barrier completion time. The barrier operation skew is calculated by: identifying, from the compute nodes' barrier completion times, a maximum barrier completion time and a minimum barrier completion time and calculating the barrier operation skew as the difference of the maximum and the minimum barrier completion time.
Thermal Analysis of the ILC Superconductin Quadrupole
Ross, Ian; /Rose-Hulman Inst., Terre Haute /SLAC
2006-09-13
Critical to a particle accelerator's functioning, superconducting magnets serve to focus and aim the particle beam. The Stanford Linear Accelerator Center (SLAC) has received a prototype superconducting quadrupole designed and built by the Centro de Investigaciones Energ{acute e}ticas, Medioambientales y Tecnol{acute o}gicas (CIEMAT) to be evaluated for the International Linear Collider (ILC) project. To ensure proper functioning of the magnet, the device must be maintained at cryogenic temperatures by use of a cooling system containing liquid nitrogen and liquid helium. The cool down period of a low temperature cryostat is critical to the success of an experiment, especially a prototype setup such as this one. The magnet and the dewar each contain unique heat leaks and material properties. These differences can lead to tremendous thermal stresses. The system was analyzed mathematically, leading to ideal liquid helium and liquid nitrogen flow rates during the magnet's cool-down to 4.2 K, along with a reasonable estimate of how long this cool-down will take. With a flow rate of ten gaseous liters of liquid nitrogen per minute, the nitrogen shield will take approximately five hours to cool down to 77 K. With a gaseous helium flow rate of sixty liters per minute, the magnet will take at least nineteen hours to cool down to a temperature of 4.2 K.
Clusterization and quadrupole deformation in nuclei
Cseh, J.; Algora, A.; Antonenko, N. V.; Jolos, R. V.; Scheid, W.; Darai, J.; Hess, P. O.
2006-04-26
We study the interrelation of the clusterization and quadrupole deformation of atomic nuclei, by applying cluster models. Both the energetic stability and the exclusion principle is investigated. Special attention is paid to the relative orientations of deformed clusters.
Nonuniform radiation damage in permanent magnet quadrupoles
Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.
2014-08-15
We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.
Skew flap for staged below-knee amputation in sepsis.
Matthews, Christopher O; Williams, Ian M; Lewis, Peter; McLain, A David; Twine, Christopher P
2016-04-01
Skew flap amputation was first described in the 1980s but was never as popular as the long posterior flap amputation. This report describes a staged below-knee amputation in sepsis, with pus throughout the leg and a lack of skin coverage. One benefit of skew flaps never previously published is the fact that the suture line is not directly over the tibia. Therefore, an open wound or incomplete skin coverage is not as important as in long posterior flaps where it often leads to bone exposure and revision amputation. These benefits were utilized in this case leading to stump healing.
Power and Skew Aware Point Diffusion Clock Network
NASA Astrophysics Data System (ADS)
Jung, Gunok; Kim, Chunghee; Chae, Kyoungkuk; Park, Giho; Park, Sung Bae
This letter presents point diffusion clock network (PDCN) with local clock tree synthesis (CTS) scheme. The clock network is implemented with ten times wider metal line space than typical mesh networks for low power and utilized to nine times smaller area CTS execution for minimized clock skew amount. The measurement results show that skew amount of PDCN with local CTS is reduced to 36% and latency is shrunk to 45% of the amount in a 4.81mm2 CortexA-8 core with 65nm Samsung process.
Integrally formed radio frequency quadrupole
Abbott, Steven R.
1989-01-01
An improved radio frequency quadrupole (10) is provided having an elongate housing (11) with an elongate central axis (12) and top, bottom and two side walls (13a-d) symmetrically disposed about the axis, and vanes (14a-d) formed integrally with the walls (13a-d), the vanes (14a-d) each having a cross-section at right angles to the central axis (12) which tapers inwardly toward the axis to form electrode tips (15a-d) spaced from each other by predetermined distances. Each of the four walls (13a-d), and the vanes (14a-d) integral therewith, is a separate structural element having a central lengthwise plane (16) passing through the tip of the vane, the walls (13a-d) having flat mounting surfaces (17, 18) at right angles to and parallel to the control plane (16), respectively, which are butted together to position the walls and vane tips relative to each other.
Miniature quadrupole mass spectrometer array
NASA Technical Reports Server (NTRS)
Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)
1997-01-01
The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.
Miniature quadrupole mass spectrometer array
NASA Technical Reports Server (NTRS)
Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)
1998-01-01
The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.
Permanent magnet edge-field quadrupole
Tatchyn, Roman O.
1997-01-01
Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.
Permanent magnet edge-field quadrupole
Tatchyn, R.O.
1997-01-21
Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.
Set Up and Test Results for a Vibrating Wire System for Quadrupole Fiducialization
Levashov, Michael Y.
2010-12-01
Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of a quadrupole. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing it. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). The following break up of error was suggested for the fiducialization steps: 10{micro}m for step 1 (finding the center), 20{micro}m for step 2 (finding the wire), and 10{micro}m for step 3 (tooling ball measurements). The purpose of this study is to investigate whether the vibrating wire system meets the requirements for LCLS. In particular, if it can reliably fiducialize a quadrupole magnetic center to within 25{micro}m in both vertical and horizontal directions. The behavior of individual system components is compared to the expected performance
Set Up and Test Results for a Vibrating Wire System for Quadrupole Fiducialization
Not Available
2010-11-29
Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of a quadrupole. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing it. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). The following break up of error was suggested for the fiducialization steps: 10{micro}m for step 1 (finding the center), 20{micro}m for step 2 (finding the wire), and 10{micro}m for step 3 (tooling ball measurements). The purpose of this study is to investigate whether the vibrating wire system meets the requirements for LCLS. In particular, if it can reliably fiducialize a quadrupole magnetic center to within 25{micro}m in both vertical and horizontal directions. The behavior of individual system components is compared to the expected performance
Evaluation of a novel design for an electrostatic quadrupole triplet ion beam lens
NASA Astrophysics Data System (ADS)
Burns, L. R.; Bouas, J. D.; Matteson, S.; Weathers, D. L.
2007-08-01
We describe the design and evaluation of an electrostatic quadrupole triplet lens constructed to focus ion beams of up to 200 keV in energy. The lens is very compact and incorporates a feature to induce octupole fields that can correct for spherical and other octupole-order aberrations. Two methods were used to evaluate the lens: observation of the focused beam spot on a specially fabricated target while systematically varying lens voltages, and the grid-shadow technique. The latter demonstrated that octupole-order aberrations were completely corrected in one direction when the lens quadrupoles were operated individually and excited to produce an appropriate octupole component of the electric field.
Evaluation of a Novel Design for an Electrostatic Quadrupole Triplet Ion Beam Lens
NASA Astrophysics Data System (ADS)
Burns, L. R.; Bouas, J. D.; Matteson, S.; Weathers, D. L.
2006-10-01
We describe the design and evaluation of an electrostatic quadrupole triplet lens constructed to focus ion beams of up to 200 keV in energy. The lens is very compact and incorporates a feature to induce octupole fields that can correct for spherical and other octupole-order aberrations. Two methods were used to evaluate the lens: observation of the focused beam spot on a specially fabricated target while systematically varying lens voltages, and the grid-shadow technique. The latter demonstrated that octupole-order aberrations were completely corrected in one direction when the lens quadrupoles were operated individually with appropriate octupole excitations.
3. VIEW SOUTHEAST VIEW OF EAST PORTAL SHOWING SKEW AND ...
3. VIEW SOUTHEAST- VIEW OF EAST PORTAL SHOWING SKEW AND PORTAL BRACING. - National Docks Branch Bridge N.D.2F, Spans former Central Railroad of New Jersey , west of New Jersey Turnpike, north of Communipaw Avenue near Johnson Avenue, Jersey City, Hudson County, NJ
8. Detail, skewed portal bracing at west portal, also showing ...
8. Detail, skewed portal bracing at west portal, also showing boxed endposts, latticed upper transverse and diagonal sway bracing, laced vertical members, view to northeast, 210mm lens. - Southern Pacific Railroad Shasta Route, Bridge No. 301.85, Milepost 301.85, Pollard Flat, Shasta County, CA
Uncertainty relations based on skew information with quantum memory
NASA Astrophysics Data System (ADS)
Ma, ZhiHao; Chen, ZhiHua; Fei, Shao-Ming
2017-01-01
We present a new uncertainty relation by defining a measure of uncertainty based on skew information. For bipartite systems, we establish uncertainty relations with the existence of a quantum memory. A general relation between quantum correlations and tight bounds of uncertainty has been presented.
Skewness and Comparability of School Based Continuous Assessment Scores
ERIC Educational Resources Information Center
Gbore, Lawrence Olu; Olabode, Abe Thomas; Olufemi, Adodo Sunday
2011-01-01
This study examined skewness as means of determining the nature of distribution of school based continuous assessment (SBCA) scores in selected subjects among Secondary Schools in Ondo State, Nigeria, to determine whether or not there is need for moderation of the SBCA Scores. This is an ex-post-facto research design involving no treatment and…
Making Skew-Resistant Fabrics For Composite Layups
NASA Technical Reports Server (NTRS)
Farley, Gary L.
1994-01-01
Fabrics used in curved composite-material structures prevented from skewing during composite layup by weaving them in modified process in which warp and fill yarns bonded together at their points of contact. (Bonding concept may prove similarly beneficial for braided and knitted fabrics.) In modified weaving process, adhesives prevent excessive shifting of warp and fill yarns with respect to each other.
Quadrupole-bound anions: efficacy of positive versus negative quadrupole moments.
Garrett, W R
2012-02-07
A pseudopotential method is utilized to study the critical stability of model anions formed by long-range quadrupolar molecular potentials. Results indicate that critical quadrupole moments of simple point-charge triads do not serve well as predictors of real quadrupole-bound anions of systems with negative moments.
Induced CMB quadrupole from pointing offsets
Moss, Adam; Scott, Douglas; Sigurdson, Kris E-mail: dscott@phas.ubc.ca
2011-01-01
Recent claims in the literature have suggested that the WMAP quadrupole is not primordial in origin, and arises from an aliasing of the much larger dipole field because of incorrect satellite pointing. We attempt to reproduce this result and delineate the key physics leading to the effect. We find that, even if real, the induced quadrupole would be smaller than the WMAP value. We discuss reasons why the WMAP data are unlikely to suffer from this particular systematic effect, including the implications for observations of point sources. Given this evidence against the reality of the effect, the similarity between the pointing-offset-induced signal and the actual quadrupole then appears to be quite puzzling. However, we find that the effect arises from a convolution between the gradient of the dipole field and anisotropic coverage of the scan direction at each pixel. There is something of a directional conspiracy here — the dipole signal lies close to the Ecliptic Plane, and its direction, together with the WMAP scan strategy, results in a strong coupling to the Y{sub 2,−1} component in Ecliptic co-ordinates. The dominant strength of this component in the measured quadrupole suggests that one should exercise increased caution in interpreting its estimated amplitude. The Planck satellite has a different scan strategy which does not so directly couple the dipole and quadrupole in this way and will soon provide an independent measurement.
Arc voltage distribution skewness as an indicator of electrode gap during vacuum arc remelting
Williamson, R.L.; Zanner, F.J.; Grose, S.M.
1998-01-13
The electrode gap of a VAR is monitored by determining the skewness of a distribution of gap voltage measurements. A decrease in skewness indicates an increase in gap and may be used to control the gap. 4 figs.
Arc voltage distribution skewness as an indicator of electrode gap during vacuum arc remelting
Williamson, Rodney L.; Zanner, Frank J.; Grose, Stephen M.
1998-01-01
The electrode gap of a VAR is monitored by determining the skewness of a distribution of gap voltage measurements. A decrease in skewness indicates an increase in gap and may be used to control the gap.
Present-day zonal wind influences projected Indian Ocean Dipole skewness
NASA Astrophysics Data System (ADS)
Ng, Benjamin; Cai, Wenju
2016-11-01
A prominent feature of the Indian Ocean Dipole (IOD) is its positive skewness, where positive phases tend to be stronger in amplitude than the negative phase. Positive IOD events are associated with devastating floods over parts of East Africa and India, while Australia and Indonesia experience dry conditions. Under greenhouse warming, climate models project a weakening of the positive IOD skewness, but their simulation of present-day skewness is too weak. Here we show that this bias and the projected skewness change are related to the simulation of the climatological zonal wind in the central equatorial Indian Ocean. In particular, models with overly weak present-day westerlies, which is a common model bias, generate overly weak present-day skewness and a smaller projected reduction in skewness. Improving the ability of models in simulating stronger westerly winds may lead to stronger present-day simulated skewness and a larger skewness reduction in a warmer climate.
Mills, Candice M; Grant, Meridith G
2009-09-01
The current experiment examines if and when children consider the possibility of relationships skewing judgments when evaluating judgments in different contexts. Eighty-seven 6-year-olds, 8-year-olds, 10-year-olds, and adults heard stories about judges who made decisions matching or mismatching possible relationship biases (e.g. a judge choosing a friend or an enemy as the winner) in contests with objective or subjective criteria. While even 6-year-olds distinguished between subjective and objective contests, neither children nor adults focused on the objectivity of the contest criteria when evaluating a judge's claims. Instead, by age 8, if not earlier, children focused on relationships, trusting judgments that mismatched someone's relationship biases and discounting judgments that matched someone's relationship biases. The findings also suggested that children are better at recognizing that a judgment may have been biased than predicting that one will be, and that they may understand that negative relationships may skew judgments before positive ones.
Resonance methods in quadrupole ion traps
NASA Astrophysics Data System (ADS)
Snyder, Dalton T.; Peng, Wen-Ping; Cooks, R. Graham
2017-01-01
The quadrupole ion trap is widely used in the chemical physics community for making measurements on dynamical systems, both intramolecular (e.g. ion fragmentation reactions) and intermolecular (e.g. ion/molecule reactions). In this review, we discuss linear and nonlinear resonances in quadrupole ion traps, an understanding of which is critical for operation of these devices and interpretation of the data which they provide. The effect of quadrupole field nonlinearity is addressed, with important implications for promoting fragmentation and achieving unique methods of mass scanning. Methods that depend on ion resonances (i.e. matching an external perturbation with an ion's induced frequency of motion) are discussed, including ion isolation, ion activation, and ion ejection.
The Large Quadrupole of Water Molecules
Niu, Shuqiang; Tan, Ming-Liang; Ichiye, Toshhiko
2011-04-07
Many quantum mechanical calculations indicate water molecules in the gas and liquid phase have much larger quadrupole moments than any of the common site models of water for computer simulations. Here, comparisons of multipoles from quantum mechanical/molecular mechanical (QM/MM) calculations at the MP2/aug-cc-pVQZ level on a B3LYP/aug-cc-pVQZ level geometry of a waterlike cluster and from various site models show that the increased square planar quadrupole can be attributed to the p-orbital character perpendicular to the molecular plane of the highest occupied molecular orbital as well as a slight shift of negative charge toward the hydrogens. The common site models do not account for the p-orbital type electron density and fitting partial charges of TIP4P- or TIP5P-type models to the QM/MM dipole and quadrupole give unreasonable higher moments. Furthermore, six partial charge sites are necessary to account reasonably for the large quadrupole, and polarizable site models will not remedy the problem unless they account for the p-orbital in the gas phase since the QM calculations show it is present there too. On the other hand, multipole models by definition can use the correct multipoles and the electrostatic potential from the QM/MM multipoles is much closer than that from the site models to the potential from the QM/MM electron density. Finally, Monte Carlo simulations show that increasing the quadrupole in the soft-sticky dipole-quadrupole-octupole multipole model gives radial distribution functions that are in good agreement with experiment
Universal relation between skewness and kurtosis in complex dynamics.
Cristelli, Matthieu; Zaccaria, Andrea; Pietronero, Luciano
2012-06-01
We identify an important correlation between skewness and kurtosis for a broad class of complex dynamic systems and present a specific analysis of earthquake and financial time series. Two regimes of non-Gaussianity can be identified: a parabolic one, which is common in various fields of physics, and a power law one, with exponent 4/3, which at the moment appears to be specific of earthquakes and financial markets. For this property we propose a model and an interpretation in terms of very rare events dominating the statistics independently on the nature of the events considered. The predicted scaling relation between skewness and kurtosis matches very well the experimental pattern of the second regime. Regarding price fluctuations, this situation characterizes a universal stylized fact.
Quantifying Correlations via the Wigner-Yanase-Dyson Skew Information
NASA Astrophysics Data System (ADS)
Fan, Yajing; Cao, Huaixin
2016-09-01
In this paper, based on a discussion about the Wigner-Yanase-Dyson (WYD) skew information, the measure F a, α ( ρ a b ) for correlations in terms of the WYD skew information is introduced and discussed. The following conclusions are obtained. For a classical-quantum state ρ a b , F a, α ( ρ a b )=0 if and only if ρ a b is a product state; F a, α ( ρ a b ) is locally unitary invariant and convex on the set of states with the fixed marginal ρ a ; F a, α ( ρ a b ) decreases under local random unitary operation on H b ; For a quantum-classical state ρ a b , F a, α ( ρ a b ) decreases under local operation on H b ; Lastly, F a, α ( ρ a b ) is computed for the pure states and the Bell-diagonal states, respectively.
Universal relation between skewness and kurtosis in complex dynamics
NASA Astrophysics Data System (ADS)
Cristelli, Matthieu; Zaccaria, Andrea; Pietronero, Luciano
2012-06-01
We identify an important correlation between skewness and kurtosis for a broad class of complex dynamic systems and present a specific analysis of earthquake and financial time series. Two regimes of non-Gaussianity can be identified: a parabolic one, which is common in various fields of physics, and a power law one, with exponent 4/3, which at the moment appears to be specific of earthquakes and financial markets. For this property we propose a model and an interpretation in terms of very rare events dominating the statistics independently on the nature of the events considered. The predicted scaling relation between skewness and kurtosis matches very well the experimental pattern of the second regime. Regarding price fluctuations, this situation characterizes a universal stylized fact.
NASA Astrophysics Data System (ADS)
Qin, Hong
2014-10-01
The dynamics of charged particles in general linear focusing lattices is analyzed using a generalized Courant-Snyder (CS) theory, which extends the original CS theory for one degree of freedom to higher dimensions. The general focusing lattices are allowed to include quadrupole, skew-quadrupole, solenoidal, and dipole components, as well as variation of beam energy and torsion of the fiducial orbit. The scalar envelope function is generalized into an envelope matrix, and the scalar envelope equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an envelope matrix equation. The phase advance is generalized into a 4D symplectic rotation, or an U(2) element. Other components of the original CS theory, such as the CS invariant, transfer matrix, and Twiss functions all have their counterparts in the generalized theory with remarkably similar expressions. The gauge group of the generalized theory is analyzed. If the gauge freedom is fixed with a desired symmetry, the generalized CS parametrization assumes the form of the modified Iwasawa decomposition, whose importance in phase space quantum mechanics and optics has been recently realized. It is shown that the spectral and structural stability properties of a general focusing lattice are uniquely determined by the generalized phase advance. For structural stability, the generalized CS theory developed enables application of the Krein-Moser theory to significantly simplify the theoretical and numerical analysis. The generalized CS theory provides an effective tool to study the coupled dynamics of high-intensity charged particle beams and to discover more optimized lattice designs in the larger parameter space of general focusing lattices. Research supported by the U.S. Department of Energy.
Skew and twist resistant hydrodynamic rotary shaft seal
Dietle, L.; Kalsi, M.S.
1999-02-23
A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland. 14 figs.
Skew and twist resistant hydrodynamic rotary shaft seal
Dietle, Lannie; Kalsi, Manmohan Singh
1999-01-01
A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which and cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland.
Jet crackle: skewness transport budget and a mechanistic source model
NASA Astrophysics Data System (ADS)
Buchta, David; Freund, Jonathan
2016-11-01
The sound from high-speed (supersonic) jets, such as on military aircraft, is distinctly different than that from lower-speed jets, such as on commercial airliners. Atop the already loud noise, a higher speed adds an intense, fricative, and intermittent character. The observed pressure wave patterns have strong peaks which are followed by relatively long shallows; notably, their pressure skewness is Sk >= 0 . 4 . Direct numerical simulation of free-shear-flow turbulence show that these skewed pressure waves occur immediately adjacent to the turbulence source for M >= 2 . 5 . Additionally, the near-field waves are seen to intersect and nonlinearly merge with other waves. Statistical analysis of terms in a pressure skewness transport equation show that starting just beyond δ99 the nonlinear wave mechanics that add to Sk are balanced by damping molecular effects, consistent with this aspect of the sound arising in the source region. A gas dynamics description is developed that neglects rotational turbulence dynamics and yet reproduces the key crackle features. At its core, this mechanism shows simply that nonlinear compressive effects lead directly to stronger compressions than expansions and thus Sk > 0 .
Caste load and the evolution of reproductive skew.
Holman, Luke
2014-01-01
Reproductive skew theory seeks to explain how reproduction is divided among group members in animal societies. Existing theory is framed almost entirely in terms of selection, though nonadaptive processes must also play some role in the evolution of reproductive skew. Here I propose that a genetic correlation between helper fecundity and breeder fecundity may frequently constrain the evolution of reproductive skew. This constraint is part of a wider phenomenon that I term "caste load," which is defined as the decline in mean fitness caused by caste-specific selection pressures, that is, differential selection on breeding and nonbreeding individuals. I elaborate the caste load hypothesis using quantitative and population genetic arguments and individual-based simulations. Although selection can sometimes erode genetic correlations and resolve caste load, this may be constrained when mutations have similar pleiotropic effects on breeder and helper traits. I document evidence for caste load, identify putative genomic adaptations to it, and suggest future research directions. The models highlight the value of considering adaptation within the boundaries imposed by genetic architecture and incidentally reaffirm that monogamy promotes the evolutionary transition to eusociality.
Validation of an Acoustic Impedance Prediction Model for Skewed Resonators
NASA Technical Reports Server (NTRS)
Howerton, Brian M.; Parrott, Tony L.
2009-01-01
An impedance prediction model was validated experimentally to determine the composite impedance of a series of high-aspect ratio slot resonators incorporating channel skew and sharp bends. Such structures are useful for packaging acoustic liners into constrained spaces for turbofan noise control applications. A formulation of the Zwikker-Kosten Transmission Line (ZKTL) model, incorporating the Richards correction for rectangular channels, is used to calculate the composite normalized impedance of a series of six multi-slot resonator arrays with constant channel length. Experimentally, acoustic data was acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3500 Hz at 120 and 140 dB OASPL. Normalized impedance was reduced using the Two-Microphone Method for the various combinations of channel skew and sharp 90o and 180o bends. Results show that the presence of skew and/or sharp bends does not significantly alter the impedance of a slot resonator as compared to a straight resonator of the same total channel length. ZKTL predicts the impedance of such resonators very well over the frequency range of interest. The model can be used to design arrays of slot resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.
Nuclear quadrupole resonance studies in semi-metallic structures
NASA Technical Reports Server (NTRS)
Murty, A. N.
1974-01-01
Both experimental and theoretical studies are presented on spectrum analysis of nuclear quadrupole resonance of antimony and arsenic tellurides. Numerical solutions for secular equations of the quadrupole interaction energy are also discussed.
Judd, Linda J.; Asquith, William H.; Slade, Raymond M.
1996-01-01
One technique to estimate generalized skew coefficients involved the use of regression equations developed for each of eight regions in Texas, and the other involved development of a statewide map of generalized skew coefficients. The weighted mean of the weighted mean standard errors of the regression equations for the eight regions is 0.36 log10 skew units, and the weighted mean standard error of the map is 0.35 log10 skew units. The technique based on the map is preferred for estimating generalized skew coefficients because of its smooth transition from one region of the State to another.
Lamontagne, Jonathan R.; Stedinger, Jery R.; Berenbrock, Charles; Veilleux, Andrea G.; Ferris, Justin C.; Knifong, Donna L.
2012-01-01
Flood-frequency information is important in the Central Valley region of California because of the high risk of catastrophic flooding. Most traditional flood-frequency studies focus on peak flows, but for the assessment of the adequacy of reservoirs, levees, other flood control structures, sustained flood flow (flood duration) frequency data are needed. This study focuses on rainfall or rain-on-snow floods, rather than the annual maximum, because rain events produce the largest floods in the region. A key to estimating flood-duration frequency is determining the regional skew for such data. Of the 50 sites used in this study to determine regional skew, 28 sites were considered to have little to no significant regulated flows, and for the 22 sites considered significantly regulated, unregulated daily flow data were synthesized by using reservoir storage changes and diversion records. The unregulated, annual maximum rainfall flood flows for selected durations (1-day, 3-day, 7-day, 15-day, and 30-day) for all 50 sites were furnished by the U.S. Army Corps of Engineers. Station skew was determined by using the expected moments algorithm program for fitting the Pearson Type 3 flood-frequency distribution to the logarithms of annual flood-duration data. Bayesian generalized least squares regression procedures used in earlier studies were modified to address problems caused by large cross correlations among concurrent rainfall floods in California and to address the extensive censoring of low outliers at some sites, by using the new expected moments algorithm for fitting the LP3 distribution to rainfall flood-duration data. To properly account for these problems and to develop suitable regional-skew regression models and regression diagnostics, a combination of ordinary least squares, weighted least squares, and Bayesian generalized least squares regressions were adopted. This new methodology determined that a nonlinear model relating regional skew to mean basin elevation
Closed orbit response to quadrupole strength variation
Wolski, Andrzej; Zimmermann, Frank
2004-01-20
We derive two formulae relating the variation in closed orbit in a storage ring to variations in quadrupole strength, neglecting nonlinear and dispersive effects. These formulae correct results previously reported [1,2,3]. We compare the results of the formulae applied to the ATF with simulations using MAD, and consider their application to beam-based alignment.
Thermal analysis of SC quadrupoles in accelerator interaction regions
Novitski, Igor; Zlobin, Alexander V.; /Fermilab
2006-09-01
This paper presents results of a thermal analysis and operation margin calculation performed for NbTi and Nb{sub 3}Sn low-beta quadrupoles in collider interaction regions. Results of the thermal analysis for NbTi quadrupoles are compared with the relevant experimental data. An approach to quench limit measurements for Nb{sub 3}Sn quadrupoles is discussed.
Skewness and kurtosis as indicators of non-Gaussianity in galactic foreground maps
Ben-David, Assaf; Jackson, Andrew D.; Hausegger, Sebastian von E-mail: s.vonhausegger@nbi.dk
2015-11-01
Observational cosmology is entering an era in which high precision will be required in both measurement and data analysis. Accuracy, however, can only be achieved with a thorough understanding of potential sources of contamination from foreground effects. Our primary focus will be on non-Gaussian effects in foregrounds. This issue will be crucial for coming experiments to determine B-mode polarization. We propose a novel method for investigating a data set in terms of skewness and kurtosis in locally defined regions that collectively cover the entire sky. The method is demonstrated on two sky maps: (i) the SMICA map of Cosmic Microwave Background fluctuations provided by the Planck Collaboration and (ii) a version of the Haslam map at 408 MHz that describes synchrotron radiation. We find that skewness and kurtosis can be evaluated in combination to reveal local physical information. In the present case, we demonstrate that the statistical properties of both maps in small local regions are predominantly Gaussian. This result was expected for the SMICA map. It is surprising that it also applies for the Haslam map given its evident large scale non-Gaussianity. The approach described here has a generality and flexibility that should make it useful in a variety of astrophysical and cosmological contexts.
Effect of Resonator Axis Skew on Normal Incidence Impedance
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Jones, Michael G.; Homeijer, Brian
2003-01-01
High by-pass turbofan engines have fewer fan blades and lower rotation speeds than their predecessors. Consequently, the noise suppression at the low frequency end of the noise spectra has become an increasing concern. This has led to a renewed emphasis on improving noise suppression efficiency of passive, duct liner treatments at the lower frequencies. For a variety of reasons, passive liners are comprised of locally-reacting, resonant absorbers. One reason for this design choice is to satisfy operational and economic requirements. The simplest liner design consists of a single layer of honeycomb core sandwiched between a porous facesheet and an impervious backing plate. These resonant absorbing structures are integrated into the nacelle wall and are very ef- ficient over a limited bandwidth centered on their resonance frequency. Increased noise suppression bandwidth and greater suppression at lower frequencies is typically achieved for conventional liners by increasing the liner depth and incorporating thin porous septa into the honeycomb core. However, constraints on liner depth in modern high by-pass engine nacelles severely limit the suppression bandwidth extension to lower frequencies. Also, current honeycomb core liners may not be suitable for irregular geometric volumes heretofore not considered. It is of interest, therefore, to find ways to circumvent liner depth restrictions and resonator cavity shape constraints. One way to increase effective liner depth is to skew the honeycomb core axis relative to the porous facesheet surface. Other possibilities are to alter resonator cavity shape, e.g. high aspect ratio, narrow channels that possibly include right angle bends, 180. channel fold-backs, and splayed channel walls to conform to irregular geometric constraints. These possibilities constitute the practical motivation for expanding impedance modeling capability to include unconventional resonator orientations and shapes. The work reported in this paper is
Skew And Twist Resistant Hydrodynamic Rotary Shaft Seal
Dietle, Lannie; Kalsi, Manmohan Singh
2000-03-14
A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which and cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland. Compared to prior art, this invention provides a dramatic reduction of seal and shaft wear in abrasive environments and provides a significant increase in seal life.
Correlating the skewness and kurtosis of baryon number distributions
NASA Astrophysics Data System (ADS)
Fu, Wei-jie; Pawlowski, Jan M.
2016-05-01
The skewness and the kurtosis of the baryon number distributions are computed within QCD-improved low energy effective models including quantum thermal and density fluctuations. The results are compared with the Beam Energy Scan experiment at RHIC. The theoretical results agree with the experimental measurements up to errors, for the collision energy √{s }≥19.6 GeV . For smaller collision energies a discrepancy between theoretical and experimental results develops. This discrepancy partially relates to the lack of precision of the current setup for small collision energies. It is outlined how this deficiency can be overcome.
NASA Astrophysics Data System (ADS)
Meier, J.; Bleile, A.; Ceballos Velasco, J.; Fischer, E.; Hess, G.; Macavei, J.; Spiller, P.
2015-12-01
The FAIR project (Facility for Antiproton and Ion Research) evolves and builds an international accelerator- and experimental facility for basic research activities in various fields of modern physics. Within the course of this project, integrated quadrupole doublet modules are in development. The quadrupole doublet modules provide a pair of superconducting main quadrupoles (focusing and defocusing), corrector magnets, cryogenic collimators and beam position monitors as integrated sets of ion-optical elements. Furthermore LHe cooled beam pipes and vacuum cold-warm transitions are used as ultra-high vacuum components for beam transportation. Superconducting bus bars are used for 13 kA current supply of the main quadrupole magnets. All components are integrated as one common cold mass into one cryostat. High temperature super conductor local current leads will be applied for the low current supply of corrector magnets. The quadrupole doublet modules will be operated in the SIS100 heavy ion accelerator, the core component of the FAIR project. A first version of a corrector magnet has already been manufactured at the Joint Institute for Nuclear Research (JINR), Russia, and is now ready for testing. The ion-optical lattice structure of SIS100 requires multiple configurations of named components. Eleven different configurations, organized in four categories, provide the required quadrupole doublet module setups. The high integration level of multiple ion-optical, mechanical and cryogenic functions, based on requirements of operation safety, is leading towards a sophisticated mechanical structure and cooling solution, to satisfy the demanding requirements on position preservation during thermal cycling. The mechanical and cryogenic design solutions will be discussed.
LARP Long Nb3Sn Quadrupole Design
Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Ferracin, P.; Ghosh, A.; Hafalia, R.; Hannaford, R.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmalzle, J.; Tartaglia, M.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A.V.
2008-06-01
A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb{sub 3}Sn conductor. The goal of these magnets is to be a proof of principle that Nb{sub 3}Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure.
LARP Long Nb3Sn Quadrupole Design.
Ambrosio,G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Felice, H.; Ferracin, P.; Ghosh, A.; Hafalia, A.R.; Hannaford, C.R.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmalzle, J.; Tartaglia, M.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A.V.
2007-08-27
A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb{sub 3}Sn conductor. The goal of these magnets is to be a proof of principle that Nb{sub 3}Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure.
LARP Long Nb3Sn Quadrupole Design
Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidze, G.; Dietderich, D.; Feher, S.; Felice, H.; Ferracin, P.; /Fermilab /Brookhaven /LBL, Berkeley /Texas A-M
2007-08-01
A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb3Sn conductor. The goal of these magnets is to be a proof of principle that Nb3Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure.
Quadrupole transitions revealed by Borrmann spectroscopy.
Pettifer, Robert F; Collins, Stephen P; Laundy, David
2008-07-10
The Borrmann effect-a dramatic increase in transparency to X-ray beams-is observed when X-rays satisfying Bragg's law diffract through a perfect crystal. The minimization of absorption seen in the Borrmann effect has been explained by noting that the electric field of the X-ray beam approaches zero amplitude at the crystal planes, thus avoiding the atoms. Here we show experimentally that under conditions of absorption suppression, the weaker electric quadrupole absorption transitions are effectively enhanced to such a degree that they can dominate the absorption spectrum. This effect can be exploited as an atomic spectroscopy technique; we show that quadrupole transitions give rise to additional structure at the L(1), L(2) and L(3) absorption edges of gadolinium in gadolinium gallium garnet, which mark the onset of excitations from 2s, 2p(1/2) and 2p(3/2) atomic core levels, respectively. Although the Borrmann effect served to underpin the development of the theory of X-ray diffraction, this is potentially the most important experimental application of the phenomenon since its first observation seven decades ago. Identifying quadrupole features in X-ray absorption spectroscopy is central to the interpretation of 'pre-edge' spectra, which are often taken to be indicators of local symmetry, valence and atomic environment. Quadrupolar absorption isolates states of different symmetries to that of the dominant dipole spectrum, and typically reveals orbitals that dominate the electronic ground-state properties of lanthanides and 3d transition metals, including magnetism. Results from our Borrmann spectroscopy technique feed into contemporary discussions regarding resonant X-ray diffraction and the nature of pre-edge lines identified by inelastic X-ray scattering. Furthermore, because the Borrmann effect has been observed in photonic materials, it seems likely that the quadrupole enhancement reported here will play an important role in modern optics.
Table of nuclear electric quadrupole moments
NASA Astrophysics Data System (ADS)
Stone, N. J.
2016-09-01
This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended moment value is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary EFG/moment reference is required and their use is specified. The literature search covers the period to mid-2015.
Tissue-specific patterns of allelically-skewed DNA methylation.
Marzi, Sarah J; Meaburn, Emma L; Dempster, Emma L; Lunnon, Katie; Paya-Cano, Jose L; Smith, Rebecca G; Volta, Manuela; Troakes, Claire; Schalkwyk, Leonard C; Mill, Jonathan
2016-01-01
While DNA methylation is usually thought to be symmetrical across both alleles, there are some notable exceptions. Genomic imprinting and X chromosome inactivation are two well-studied sources of allele-specific methylation (ASM), but recent research has indicated a more complex pattern in which genotypic variation can be associated with allelically-skewed DNA methylation in cis. Given the known heterogeneity of DNA methylation across tissues and cell types we explored inter- and intra-individual variation in ASM across several regions of the human brain and whole blood from multiple individuals. Consistent with previous studies, we find widespread ASM with > 4% of the ∼220,000 loci interrogated showing evidence of allelically-skewed DNA methylation. We identify ASM flanking known imprinted regions, and show that ASM sites are enriched in DNase I hypersensitivity sites and often located in an extended genomic context of intermediate DNA methylation. We also detect examples of genotype-driven ASM, some of which are tissue-specific. These findings contribute to our understanding of the nature of differential DNA methylation across tissues and have important implications for genetic studies of complex disease. As a resource to the community, ASM patterns across each of the tissues studied are available in a searchable online database: http://epigenetics.essex.ac.uk/ASMBrainBlood.
Pattern formation of underwater sand ripples with a skewed drive.
Bundgaard, F; Ellegaard, C; Scheibye-Knudsen, K; Bohr, T; Sams, T
2004-12-01
In this paper we present an experimental study of the dynamics of underwater sand ripples when a regular pattern of ripples is subjected to a skewed oscillatory flow, i.e., one not perpendicular to the direction of the ripple crests. Striking patterns with new, superposed ripples on top of the original ones occur very quickly with a characteristic angle, which is, in general, not perpendicular to the flow. A slower, more complex transition then follows, leading to the final state where the ripples are again perpendicular to the flow. We investigate the variation of the superposed pattern as a function of the direction, amplitude, and frequency of the drive, and as a function of the viscosity (by changing the temperature). We quantify the dynamics of the entire transition process and finally study the grain motion around idealized (solid) skewed ripples. This leads to a characteristic mean path of a single particle. The path has a shape close to a parallelogram, with no apparent connection to the pattern of real, superposed ripples. On the other hand, a thin layer of sand sprinkled on the solid ripples leads to qualitatively similar patterns.
Tissue-specific patterns of allelically-skewed DNA methylation
Marzi, Sarah J.; Meaburn, Emma L.; Dempster, Emma L.; Lunnon, Katie; Paya-Cano, Jose L.; Smith, Rebecca G.; Volta, Manuela; Troakes, Claire; Schalkwyk, Leonard C.; Mill, Jonathan
2016-01-01
ABSTRACT While DNA methylation is usually thought to be symmetrical across both alleles, there are some notable exceptions. Genomic imprinting and X chromosome inactivation are two well-studied sources of allele-specific methylation (ASM), but recent research has indicated a more complex pattern in which genotypic variation can be associated with allelically-skewed DNA methylation in cis. Given the known heterogeneity of DNA methylation across tissues and cell types we explored inter- and intra-individual variation in ASM across several regions of the human brain and whole blood from multiple individuals. Consistent with previous studies, we find widespread ASM with > 4% of the ∼220,000 loci interrogated showing evidence of allelically-skewed DNA methylation. We identify ASM flanking known imprinted regions, and show that ASM sites are enriched in DNase I hypersensitivity sites and often located in an extended genomic context of intermediate DNA methylation. We also detect examples of genotype-driven ASM, some of which are tissue-specific. These findings contribute to our understanding of the nature of differential DNA methylation across tissues and have important implications for genetic studies of complex disease. As a resource to the community, ASM patterns across each of the tissues studied are available in a searchable online database: http://epigenetics.essex.ac.uk/ASMBrainBlood. PMID:26786711
Free vibration analysis of skewed open circular cylindrical shells
NASA Astrophysics Data System (ADS)
Kandasamy, Selvakumar; Singh, Anand V.
2006-03-01
In this paper, a numerical study is presented for the free vibration of skewed open circular cylindrical deep shells. The formulation considers first-order shear deformation theory of shells and includes rotary inertia and shear deformation so that thin-to-moderately thick shells can be analyzed. A set of grid points, the number of which depends upon the orders of the polynomials chosen for the displacement and rotation components, on the middle surface of the shell is defined first. For a particular displacement component, the field functions are derived corresponding to each node from the above-mentioned set of points and are used in the Rayleigh-Ritz method to calculate frequencies and mode shapes. Convergence study with reference to the order of the polynomials used for the displacement fields was performed first. Numerical results obtained from the present method are compared with those from the finite element method and very good agreement is observed. Additional results are presented and discussed in this paper for skewed panels clamped at the curved edges and free at the straight parallel edges.
Approximate Median Regression for Complex Survey Data with Skewed Response
Fraser, Raphael André; Lipsitz, Stuart R.; Sinha, Debajyoti; Fitzmaurice, Garrett M.; Pan, Yi
2016-01-01
Summary The ready availability of public-use data from various large national complex surveys has immense potential for the assessment of population characteristics using regression models. Complex surveys can be used to identify risk factors for important diseases such as cancer. Existing statistical methods based on estimating equations and/or utilizing resampling methods are often not valid with survey data due to complex survey design features. That is, stratification, multistage sampling and weighting. In this paper, we accommodate these design features in the analysis of highly skewed response variables arising from large complex surveys. Specifically, we propose a double-transform-both-sides (DTBS) based estimating equations approach to estimate the median regression parameters of the highly skewed response; the DTBS approach applies the same Box-Cox type transformation twice to both the outcome and regression function. The usual sandwich variance estimate can be used in our approach, whereas a resampling approach would be needed for a pseudo-likelihood based on minimizing absolute deviations (MAD). Furthermore, the approach is relatively robust to the true underlying distribution, and has much smaller mean square error than a MAD approach. The method is motivated by an analysis of laboratory data on urinary iodine (UI) concentration from the National Health and Nutrition Examination Survey. PMID:27062562
Natural vibrations of shear deformable cantilevered skewed trapezoidal and triangular thick plates
NASA Astrophysics Data System (ADS)
McGee, O. G.; Butalia, T. S.
1992-12-01
The efficacy of higher-order shear deformable, C exp 0, continuous, Lagrangian isoparametric plate finite element analyses has been demonstrated on cantilevered skewed (parallelogram) thick plates. The present work extends the method to include skewed thick plates having trapezoidal and triangular planforms. Extensive and accurate nondimensional frequency tables and graphical charts are presented for a series of trapezoidal plates showing the effect of aspect ratio, chord ratio, thickness ratio, and skew angle. The need for the present higher-order shear deformable plate finite element method for skewed trapezoidal plate vibrations increases as the skew angle increases and as the aspect ratio, chord ratio, and thickness ratio decreases. Some theoretical and experimental data hitherto published for delta and skewed triangular cantilevered plates are compared with results obtained using the present finite element method.
Physics design of rod type proton Radio Frequency Quadrupole linac
NASA Astrophysics Data System (ADS)
Das, C.; Dechoudhury, S.; Pandey, H. K.; Naik, V.; Chakrabarti, A.
2017-02-01
A Radio Frequency Quadrupole (RFQ) linac delivering 800 keV, 5 mA protons has been designed. It is envisaged as first injector of the proton driver that will be used for production of proton-rich radioactive beams in the proposed ANURIB facility. The option of rod-type structure at frequency of 80 MHz has been chosen owing to ease of mechanical fabrications and to avoid detrimental nearby dipole modes present in vane type structure. Optimization of parameters has been carried out for a viable length and power of RFQ in order to avoid any infrastructural complexity. Conventional method of keeping focusing factor and vane voltage constant along the length of RFQ has been adopted. Results of detailed beam dynamics and RF structure design, space charge induced effects and corroborative particle tracking with realistic 3D fields of modulated vane has been presented.
Increased skewing of X chromosome inactivation in Rett syndrome patients and their mothers.
Knudsen, Gun Peggy S; Neilson, Tracey C S; Pedersen, June; Kerr, Alison; Schwartz, Marianne; Hulten, Maj; Bailey, Mark E S; Orstavik, Karen Helene
2006-11-01
Rett syndrome is a largely sporadic, X-linked neurological disorder with a characteristic phenotype, but which exhibits substantial phenotypic variability. This variability has been partly attributed to an effect of X chromosome inactivation (XCI). There have been conflicting reports regarding incidence of skewed X inactivation in Rett syndrome. In rare familial cases of Rett syndrome, favourably skewed X inactivation has been found in phenotypically normal carrier mothers. We have investigated the X inactivation pattern in DNA from blood and buccal cells of sporadic Rett patients (n=96) and their mothers (n=84). The mean degree of skewing in blood was higher in patients (70.7%) than controls (64.9%). Unexpectedly, the mothers of these patients also had a higher mean degree of skewing in blood (70.8%) than controls. In accordance with these findings, the frequency of skewed (XCI > or =80%) X inactivation in blood was also higher in both patients (25%) and mothers (30%) than in controls (11%). To test whether the Rett patients with skewed X inactivation were daughters of skewed mothers, 49 mother-daughter pairs were analysed. Of 14 patients with skewed X inactivation, only three had a mother with skewed X inactivation. Among patients, mildly affected cases were shown to be more skewed than more severely affected cases, and there was a trend towards preferential inactivation of the paternally inherited X chromosome in skewed cases. These findings, particularly the greater degree of X inactivation skewing in Rett syndrome patients, are of potential significance in the analysis of genotype-phenotype correlations in Rett syndrome.
Severe Skew Foot Deformity in a Patient With Freeman-Sheldon Syndrome
Kaissi, Ali Al; Klaushofer, Klaus; Grill, Franz
2011-01-01
We report on a 3-year-old boy with the full phenotypic features of Freeman Sheldon syndrome (FSS). Severe skew foot deformity has been recognized as additional skeletal abnormality. Parents were first degree cousins, raising the possibility of autosomal recessive pattern of inheritance. To the best of our knowledge this is the first report of severe skew foot deformity in a patient with (FSS). Keywords Freeman-Sheldon syndrome; Skew foot deformity; Metatarsus adductus PMID:22383916
Photoassociation of a cold-atom-molecule pair: Long-range quadrupole-quadrupole interactions
Lepers, M.; Dulieu, O.; Kokoouline, V.
2010-10-15
The general formalism of the multipolar expansion of electrostatic interactions is applied to the calculation of the potential energy between an excited atom (without fine structure) and a ground-state diatomic molecule at large mutual separations. Both partners exhibit a permanent quadrupole moment so that their mutual long-range interaction is dominated by a quadrupole-quadrupole term, which is attractive enough to bind trimers. Numerical results are given for an excited Cs(6{sup 2}P) atom and a ground-state Cs{sub 2} molecule. The prospects for achieving photoassociation of a cold-atom-dimer pair are thus discussed and found promising. The formalism can be generalized to the long-range interaction between molecules to investigate the formation of cold tetramers.
NASA Astrophysics Data System (ADS)
Liu, Yufang; Zhang, Weiguo; Fu, Junhui
2016-11-01
This paper presents the Binomial Markov-switching Multifractal (BMSM) model of asset returns with Skewed t innovations (BMSM-Skewed t for short), which considers the fat tails, skewness and multifractality in asset returns simultaneously. The parameters of BMSM-Skewed t model can be estimated by Maximum Likelihood (ML) methods, and volatility forecasting can be accomplished via Bayesian updating. In order to evaluate the performance of BMSM-Skewed t model, BMSM model with Normal innovations (BMSM-N), BMSM model with Student-t innovations (BMSM-t) and GARCH(1,1) models (GARCH-N, GARCH-t and GARCH-Skewed t) are chosen for comparison. Through empirical studies on Shanghai Stock Exchange Composite Index (SSEC), we find that for sample estimation, BMSM models outperform the GARCH(1,1) models through BIC and AIC rules, and BMSM-Skewed t performs the best among all the models due to its fat tails, skewness and multifractality. In addition, BMSM-Skewed t model dominates other models at most forecasting horizons for out-of-sample volatility forecasts in terms of MSE, MAE and SPA test.
O'Connell, Megan E; Tuokko, Holly; Kadlec, Helena
2011-04-01
Demographic corrections for cognitive tests should improve classification accuracy by reducing age or education biases, but empirical support has been equivocal. Using a simulation procedure, we show that creating moderate or extreme skewness in cognitive tests compromises the classification accuracy of demographic corrections, findings that appear replicated within clinical data for the few neuropsychological test scores with an extreme degree of skew. For most neuropsychological tests, the dementia classification accuracy of raw and demographically corrected scores was equivalent. These findings suggest that the dementia classification accuracy of demographic corrections is robust to slight degrees of skew (i.e., skewness <1.5).
Skewness and shock formation in laboratory-scale supersonic jet data.
Gee, Kent L; Neilsen, Tracianne B; Atchley, Anthony A
2013-06-01
Spatial properties of noise statistics near unheated, laboratory-scale supersonic jets yield insights into source characteristics and near-field shock formation. Primary findings are (1) waveforms with positive pressure skewness radiate from the source with a directivity upstream of maximum overall level and (2) skewness of the time derivative of the pressure waveforms increases significantly with range, indicating formation of shocks during propagation. These results corroborate findings of a previous study involving full-scale engine data. Further, a comparison of ideally and over-expanded laboratory data show that while derivative skewness maps are similar, waveform skewness maps are substantially different for the two cases.
Electron Cloud Generation and Trapping in a Quadrupole Magnet at the Los Alamos Proton Storage Ring
Macek, Robert J.; Browman, Andrew A.; Ledford, John E.; Borden, Michael J.; O'Hara, James F.; McCrady, Rodney C.; Rybarcyk, Lawrence J.; Spickermann, Thomas; Zaugg, Thomas J.; Pivi, Mauro T.F.; /SLAC
2008-03-17
Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR) have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the 'prompt' electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the 'swept' electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100 {micro}s. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole.
DESIGN OF A THIN QUADRUPOLE TO BE USED IN THE AGS SYNCHROTRON
TSOUPAS,N.; AHRENS, L.; ALFORQUE, R.; BAI, M.; BROWN, K.; COURANT, E.; ET AL.
2007-06-25
The Alternating Gradient Synchrotron (AGS) employs two partial helical snakes[l] to preserve the polarization of the proton beam during acceleration. In order to compensate for the focusing effect of the partial helical snakes on the beam optics in the AGS during acceleration of the beam, we introduced eight quadrupoles in straight sections of the AGS at the proximity of the partial snakes. At injection energies, the strength of each quad is set at a high value, and is ramped down to zero as the effect of the snakes diminishes by the square of beam's rigidity. Four of the eight compensation quadrupoles had to be placed in very short straight sections -30 cm in length, therefore the quadruples had be thin with an overall length of less than 30 cm. In this paper we will discus: (a) the mechanical and magnetic specifications of the ''thin'' quadrupole. (b) the method to minimize the strength of the dodecapole harmonic, (c) the method to optimize the thickness of the laminations that the magnet iron is made, (d) mechanical tolerances of the magnet, (e) comparison of the measured and calculated magnetic multipoles of the quadrupole.
LARP Long Quadrupole: A "Long" Step Toward an LHC Luminosity Upgrade with Nb3Sn Magnets
Ambrosio, Giorgio
2008-02-13
The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960's. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are 'Proof-of-Principle' magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.
Nuclear electric quadrupole interactions in liquids entrapped in cavities
NASA Astrophysics Data System (ADS)
Furman, Gregory B.; Meerovich, Victor M.; Sokolovsky, Vladimir L.
2016-12-01
Liquids entrapped in cavities and containing quadrupole nuclei are considered. The interaction of the quadrupole moment of a nucleus with the electric field gradient is studied. In such a system, molecules are in both rotational and translational Brownian motions which are described by the diffusion equation. Solving this equation, we show that the intra- and intermolecular nuclear quadrupole interactions are averaged to zero in cavities with the size larger than several angstroms.
Renormalized cumulants and velocity derivative skewness in Kolmogorov turbulence
NASA Astrophysics Data System (ADS)
Singha, Tapas; Dutta, Kishore; Nandy, Malay K.
2017-03-01
We apply a renormalized perturbative scheme to the Navier–Stokes equation for an incompressible isotropic turbulent velocity field. This allows us to obtain the renormalized expressions for second- and third-order cumulants of the velocity derivative directly from the corresponding Feynman diagrams. The resulting expressions are integrated numerically by excluding and including the dissipation range assuming Kolmogorov and Pao’s phenomenological expressions for the energy spectrum. The ensuing values for skewness are found to be S = ‑0.647 (when the dissipation range is excluded) and S=-0.682 (when the dissipation is included). These estimated values are compared with various experimental, numerical and theoretical results.
Cracked shells under skew-symmetric loading. [Reissner theory
NASA Technical Reports Server (NTRS)
Delale, F.
1981-01-01
The general problem of a shell containing a through crack in one of the principal planes of curvature and under general skew-symmetric loading is considered. By employing a Reissner type shell theory which takes into account the effect of transverse shear strains, all boundary conditions on the crack surfaces are satisfied separately. Consequently, unlike those obtained from the classical shell theory, the angular distributions of the stress components around the crack tips are shown to be identical to the distributions obtained from the plane and anti-plane elasticity solutions. Results are given for axially and circumferentially cracked cylindrical shells, spherical shells, and toroidal shells under uniform in-plane shearing, out of plane shearing, and torsion. The problem is formulated for specially orthostropic materials, therefore, the effect of orthotropy on the results is also studied.
Soft bounds on diffusion produce skewed distributions and Gompertz growth
NASA Astrophysics Data System (ADS)
Mandrà, Salvatore; Lagomarsino, Marco Cosentino; Gherardi, Marco
2014-09-01
Constraints can affect dramatically the behavior of diffusion processes. Recently, we analyzed a natural and a technological system and reported that they perform diffusion-like discrete steps displaying a peculiar constraint, whereby the increments of the diffusing variable are subject to configuration-dependent bounds. This work explores theoretically some of the revealing landmarks of such phenomenology, termed "soft bound." At long times, the system reaches a steady state irreversibly (i.e., violating detailed balance), characterized by a skewed "shoulder" in the density distribution, and by a net local probability flux, which has entropic origin. The largest point in the support of the distribution follows a saturating dynamics, expressed by the Gompertz law, in line with empirical observations. Finally, we propose a generic allometric scaling for the origin of soft bounds. These findings shed light on the impact on a system of such "scaling" constraint and on its possible generating mechanisms.
Soft bounds on diffusion produce skewed distributions and Gompertz growth.
Mandrà, Salvatore; Lagomarsino, Marco Cosentino; Gherardi, Marco
2014-09-01
Constraints can affect dramatically the behavior of diffusion processes. Recently, we analyzed a natural and a technological system and reported that they perform diffusion-like discrete steps displaying a peculiar constraint, whereby the increments of the diffusing variable are subject to configuration-dependent bounds. This work explores theoretically some of the revealing landmarks of such phenomenology, termed "soft bound." At long times, the system reaches a steady state irreversibly (i.e., violating detailed balance), characterized by a skewed "shoulder" in the density distribution, and by a net local probability flux, which has entropic origin. The largest point in the support of the distribution follows a saturating dynamics, expressed by the Gompertz law, in line with empirical observations. Finally, we propose a generic allometric scaling for the origin of soft bounds. These findings shed light on the impact on a system of such "scaling" constraint and on its possible generating mechanisms.
Noise reduction in negative-ion quadrupole mass spectrometry
Chastagner, Philippe
1993-01-01
A quadrupole mass spectrometer (QMS) system having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.
Noise reduction in negative-ion quadrupole mass spectrometry
Chastagner, P.
1993-04-20
A quadrupole mass spectrometer (QMS) system is described having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.
Magnetic mirror structure for testing shell-type quadrupole coils
Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, N.; Turrioni, D.; /Fermilab
2009-10-01
This paper presents magnetic and mechanical designs and analyses of the quadrupole mirror structure to test single shell-type quadrupole coils. Several quadrupole coils made of different Nb{sub 3}Sn strands, cable insulation and pole materials were tested using this structure at 4.5 and 1.9 K. The coils were instrumented with voltage taps, spot heaters, temperature sensors and strain gauges to study their mechanical and thermal properties and quench performance. The results of the quadrupole mirror model assembly and test are reported and discussed.
Ultra-High Energy Cosmic Rays: Composition, Early Air Shower Interactions, and Xmax Skewness
NASA Astrophysics Data System (ADS)
Stapleton, James
The composition of Ultra-High Energy Cosmic Rays (UHECRs) is still not completely understood, and must be inferred from Extended Air Shower (EAS), particle cascades which they initiate upon entering the atmosphere. The atmospheric depth at which the shower contains the maximum number of particles ( Xmax) is the most composition-sensitive property of the air shower, but its interpretation is hindered by intrinsic statistical fluctuations in EAS development which cause distinct compositions to produce overlapping Xmax distributions as well as our limited knowledge at these energies of hadronic physics which strongly impacts the Xmax distribution's shape. These issues ultimately necessitate a variety of complementary approaches to interpreting UHECR composition from Xmax data. The current work advances these approaches by connecting X max skewness to the uncertainties above. The study of X max has historically focused only on the mean and standard deviation of its distribution, but skewness is shown here to be strongly related to both the statistical fluctuations in EAS development as well as the least-understood hadronic cross-sections in the air shower. This leads into a treatment of the Exponentially-Modified Gaussian (EMG) distribution, whose little-known properties make it very useful for Xmax analysis and for data analysis in general. A powerful method emerges which uses only descriptive statistics in a robust check for energy-dependent changes in UHECR mass or EAS development. The application of these analyses to X max data provides tantalizing clues concerning issues of critical importance, such as the relationship between Xmax and the 'ankle' break in the UHECR energy spectrum, or the inferred properties of the UHECR mass distribution and its strong dependence on hadronic model systematics.
ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS
Chu Zhe; Lin, W. P.; Yang Xiaofeng E-mail: linwp@shao.ac.cn
2013-06-20
Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. We find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.
Precise calculations of the deuteron quadrupole moment
Gross, Franz L.
2016-06-01
Recently, two calculations of the deuteron quadrupole moment have have given predictions that agree with the measured value to within 1%, resolving a long-standing discrepancy. One of these uses the covariant spectator theory (CST) and the other chiral effective field theory (cEFT). In this talk I will first briefly review the foundations and history of the CST, and then compare these two calculations with emphasis on how the same physical processes are being described using very different language. The comparison of the two methods gives new insights into the dynamics of the low energy NN interaction.
Multi-Pass Quadrupole Mass Analyzer
NASA Technical Reports Server (NTRS)
Prestage, John D.
2013-01-01
Analysis of the composition of planetary atmospheres is one of the most important and fundamental measurements in planetary robotic exploration. Quadrupole mass analyzers (QMAs) are the primary tool used to execute these investigations, but reductions in size of these instruments has sacrificed mass resolving power so that the best present-day QMA devices are still large, expensive, and do not deliver performance of laboratory instruments. An ultra-high-resolution QMA was developed to resolve N2 +/CO+ by trapping ions in a linear trap quadrupole filter. Because N2 and CO are resolved, gas chromatography columns used to separate species before analysis are eliminated, greatly simplifying gas analysis instrumentation. For highest performance, the ion trap mode is used. High-resolution (or narrow-band) mass selection is carried out in the central region, but near the DC electrodes at each end, RF/DC field settings are adjusted to allow broadband ion passage. This is to prevent ion loss during ion reflection at each end. Ions are created inside the trap so that low-energy particles are selected by low-voltage settings on the end electrodes. This is beneficial to good mass resolution since low-energy particles traverse many cycles of the RF filtering fields. Through Monte Carlo simulations, it is shown that ions are reflected at each end many tens of times, each time being sent back through the central section of the quadrupole where ultrahigh mass filtering is carried out. An analyzer was produced with electrical length orders of magnitude longer than its physical length. Since the selector fields are sized as in conventional devices, the loss of sensitivity inherent in miniaturizing quadrupole instruments is avoided. The no-loss, multi-pass QMA architecture will improve mass resolution of planetary QMA instruments while reducing demands on the RF electronics for high-voltage/high-frequency production since ion transit time is no longer limited to a single pass. The
Nuclear quadrupole resonance echoes from hexamethylenetetramine.
Ota, Go; Itozaki, Hideo
2006-10-01
We investigated the echo phenomenon of nuclear quadrupole resonance (NQR) from hexamethylenetetramine (HMT). We detected the pure NQR echo signal of HMT with a short pulse interval. The intensity of the echo signal increased as the pulse interval time was decreased. We observed that a clean echo signal was generated even when the pulse interval was shorter than the decay time constant T(2)(*). Since the short interval time gives a strong echo, our result insists that shorter interval time is preferred for the NQR detection.
The Pipe-Quadrupole, an Alternative for High Gradient Interaction Region Quadrupole Designs
Oort, J.M. van; Scanlan, R.M.
1996-12-12
In the design of interaction region (IR) quadrupoles for high luminosity colliders such as the LHC or a possible upgrade of the Tevatron, the radiation heating of the coil windings is an important issue. Two obvious solutions to this problem can be chosen. The first is to reduce the heat load by added shielding, increased cooling with fins or using Nb{sub 3}Sn to increase the temperature margin. The second solution eliminates the conductor from the areas with the highest radiation intensity, which are located on the symmetry-axes of the midplanes of the coils. A novel quadrupole design is presented, in which the conductor is wound on four half-moon shaped supports, forming elongated toroid sections. The assembly of the four shapes yields a quadrupole field with an active flux return path, and a void in the high radiation area. This void can be occupied by a liquid helium cooling pipe to lower the temperature of the windings from the inside. The coil layout, harmonic optimization and mechanical design are shown, together with the calculated temperature rise for the radiation load of the LHC interaction region quadrupoles.
Torque ripple minimization in a doubly salient permanent magnet motors by skewing the rotor teeth
NASA Astrophysics Data System (ADS)
Sheth, N. K.; Sekharbabu, A. R. C.; Rajagopal, K. R.
2006-09-01
This paper presents the effects of skewing the rotor teeth on the performance of an 8/6 doubly salient permanent magnet motor using a simple method, which utilizes the results obtained from the 2-D FE analysis. The optimum skewing angle is obtained as 12-15° for the least ripple torque without much reduction in the back-emf.
Adiabatic formation of a matched-beam distribution for an alternating-gradient quadrupole lattice
Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.; Qin Hong
2009-12-15
The formation of a quasiequilibrium beam distribution matched to an alternating-gradient quadrupole focusing lattice by means of the adiabatic turn-on of the oscillating focusing field is studied numerically using particle-in-cell simulations. Quiescent beam propagation over several hundred lattice periods is demonstrated for a broad range of beam intensities and vacuum phase advances describing the strength of the oscillating focusing field. Properties of the matched-beam distribution are investigated. In particular, self-similar evolution of the beam density profile is observed over a wide range of system parameters. The numerical simulations are performed using the WARP particle-in-cell code.
Adiabatic Formation of a Matched-beam Distribution for an Alternating-gradient Quadrupole Lattice
Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.; Qin, Hong
2010-02-02
The formation of a quasiequilibrium beam distribution matched to an alternating-gradient quadrupole focusing lattice by means of the adiabatic turn-on of the oscillating focusing field is studied numerically using particle-in-cell simulations. Quiescent beam propagation over several hundred lattice periods is demonstrated for a broad range of beam intensities and vacuum phase advances describing the strength of the oscillating focusing field. Properties of the matched-beam distribution are investigated. In particular, self-similar evolution of the beam density profile is observed over a wide range of system parameters. The numerical simulations are performed using the WARP particle-in-cell code.
Magnetic quench antenna for MQXF quadrupoles
Marchevsky, Maxim; Sabbi, GianLuca; Prestemon, Soren; ...
2016-12-21
High-field MQXF-series quadrupoles are presently under development by LARP and CERN for the upcoming LHC luminosity upgrade. Quench training and protection studies on MQXF prototypes require a capability to accurately localize quenches and measure their propagation velocity in the magnet coils. The voltage tap technique commonly used for such purposes is not a convenient option for the 4.2-m-long MQXF-A prototype, nor can it be implemented in the production model. We have developed and tested a modular inductive magnetic antenna for quench localization. The base element of our quench antenna is a round-shaped printed circuit board containing two orthogonal pairs ofmore » flat coils integrated with low-noise preamplifiers. The elements are aligned axially and spaced equidistantly in 8-element sections using a supporting rod structure. The sections are installed in the warm bore of the magnet, and can be stacked together to adapt for the magnet length. We discuss the design, operational characteristics and preliminary qualification of the antenna. Lastly, axial quench localization capability with an accuracy of better than 2 cm has been validated during training test campaign of the MQXF-S1 quadrupole.« less
Magnetic quench antenna for MQXF quadrupoles
Marchevsky, Maxim; Sabbi, GianLuca; Prestemon, Soren; Strauss, Thomas; Stoynev, Stoyan; Chlachidze, Guram
2016-12-21
High-field MQXF-series quadrupoles are presently under development by LARP and CERN for the upcoming LHC luminosity upgrade. Quench training and protection studies on MQXF prototypes require a capability to accurately localize quenches and measure their propagation velocity in the magnet coils. The voltage tap technique commonly used for such purposes is not a convenient option for the 4.2-m-long MQXF-A prototype, nor can it be implemented in the production model. We have developed and tested a modular inductive magnetic antenna for quench localization. The base element of our quench antenna is a round-shaped printed circuit board containing two orthogonal pairs of flat coils integrated with low-noise preamplifiers. The elements are aligned axially and spaced equidistantly in 8-element sections using a supporting rod structure. The sections are installed in the warm bore of the magnet, and can be stacked together to adapt for the magnet length. We discuss the design, operational characteristics and preliminary qualification of the antenna. Lastly, axial quench localization capability with an accuracy of better than 2 cm has been validated during training test campaign of the MQXF-S1 quadrupole.
Explosives detection with quadrupole resonance analysis
NASA Astrophysics Data System (ADS)
Rayner, Timothy J.; Thorson, Benjamin D.; Beevor, Simon; West, Rebecca; Krauss, Ronald A.
1997-02-01
The increase in international terrorist activity over the past decade has necessitated the exploration of new technologies for the detection of plastic explosives. Quadrupole resonance analysis (QRA) has proven effective as a technique for detecting the presence of plastic, sheet, and military explosive compounds in small quantities, and can also be used to identify narcotics such as heroin and cocaine base. QRA is similar to the widely used magnetic resonance (MR) and magnetic resonance imaging (MRI) techniques, but has the considerable advantage that the item being inspected does not need to be immersed in a steady, homogeneous magnetic field. The target compounds are conclusively identified by their unique quadrupole resonance frequencies. Quantum magnetics has develop and introduced a product line of explosives and narcotics detection devices based upon QRA technology. The work presented here concerns a multi-compound QRA detection system designed to screen checked baggage, cargo, and sacks of mail at airports and other high-security facilities. The design philosophy and performance are discussed and supported by test results from field trials conducted in the United States and the United Kingdom. This detection system represents the current state of QRA technology for field use in both commercial and government sectors.
Consistent quadrupole-octupole collective model
NASA Astrophysics Data System (ADS)
Dobrowolski, A.; Mazurek, K.; Góźdź, A.
2016-11-01
Within this work we present a consistent approach to quadrupole-octupole collective vibrations coupled with the rotational motion. A realistic collective Hamiltonian with variable mass-parameter tensor and potential obtained through the macroscopic-microscopic Strutinsky-like method with particle-number-projected BCS (Bardeen-Cooper-Schrieffer) approach in full vibrational and rotational, nine-dimensional collective space is diagonalized in the basis of projected harmonic oscillator eigensolutions. This orthogonal basis of zero-, one-, two-, and three-phonon oscillator-like functions in vibrational part, coupled with the corresponding Wigner function is, in addition, symmetrized with respect to the so-called symmetrization group, appropriate to the collective space of the model. In the present model it is D4 group acting in the body-fixed frame. This symmetrization procedure is applied in order to provide the uniqueness of the Hamiltonian eigensolutions with respect to the laboratory coordinate system. The symmetrization is obtained using the projection onto the irreducible representation technique. The model generates the quadrupole ground-state spectrum as well as the lowest negative-parity spectrum in 156Gd nucleus. The interband and intraband B (E 1 ) and B (E 2 ) reduced transition probabilities are also calculated within those bands and compared with the recent experimental results for this nucleus. Such a collective approach is helpful in searching for the fingerprints of the possible high-rank symmetries (e.g., octahedral and tetrahedral) in nuclear collective bands.
Optimization of a magnetic disk drive actuator with small skew actuation
NASA Astrophysics Data System (ADS)
He, Zhimin; Ong, Eng Hong; Guo, Guoxiao
2002-05-01
Currently the utilization of the voice-coil motor for actuating read/write head elements in magnetic hard disk drives results in a skewed actuation, which necessitates an involved microjogging process and thus a complicated servo system. Furthermore, in perpendicular recording systems, a small skew actuation will relax the requirement on pole trimming. This article presents a magnetic hard disk drive actuator and suspension assembly with small skew actuation. In the present study, the distance from the actuator pivot to the read/write head is chosen so that the skew angle variation is minimized. After that, the suspension head is assembled to the actuator arm at a slant angle with respect to the actuator longitudinal direction to achieve an absolute small skew actuation. Finite element modeling and experimental measurements reveal that there are no significant changes of the actuator assembly dynamic performance with and without the slant angle.
Skewness of cloud droplet spectrum and an improved estimation for its relative dispersion
NASA Astrophysics Data System (ADS)
Liu, Yu; Lu, Chunsong; Li, Weiliang
2017-02-01
The relative dispersion of the cloud droplet spectrum is a very important parameter in describing and modeling cloud microphysical processes. Based on the definition of skewness as well as theoretical and data analyses, a linear fitting relationship ( α = 2.91 ɛ-0.59) between skewness ( α) and relative dispersion ( ɛ) is established and a new method is developed to estimate the relative dispersion of the cloud droplet spectrum. The new method does not depend on any assumption of a particular distribution for the cloud droplet spectrum and has broader applicability than the previous methods. Comparisons of the three methods for the relative dispersion with the observed data supported the following conclusions. (1) The skewness of the cloud droplet spectrum is asymmetrically distributed. An assumption of zero skewness in quantifying the relative dispersion inevitably results in relatively large deviations from the observations. Errors of the estimated relative dispersion due to the omission of the skewness term are not solely related to the skewness, but rather to the product of the skewness and relative dispersion. (2) The use of the assumption that the cloud droplet spectrum takes a gamma distribution is similar to the assumption that the skewness is twice the relative dispersion. This leads to a better accuracy in estimating the relative dispersion than that with zero skewness assumption. (3) Comparisons with observations show that the new method is more accurate than the one under gamma distribution assumption and is the best among all the three methods. (4) It is believed that finding a better correlation between the skewness and the relative dispersion would further reduce the deviations for the estimated relative dispersion.
Dymnikov, Alexander D.; Glass, Gary A.
2011-06-01
The focusing system is an essential part of any ion microbeam system and focusing of MeV ion beams is generally accomplished using quadrupole lenses. There are two types of quadrupole lenses requiring the application of either voltage or current to provide the excitation, but there is also the possibility of utilizing lenses constructed from permanent magnets. All of these lens types have different advantages and disadvantages. Most microprobes employ electromagnetic quadrupoles for focusing, however electrostatic lenses have several advantages with respect to electromagnetic lenses, including significantly smaller size, no hysteresis effects, no heating, the utilization of highly stable voltage supplies, focusing which is independent of ion mass, and construction from industrial grade materials. The main advantage of the permanent magnetic lens is that it does not require the application of external power which can significantly reduce the overall lifetime cost. In this presentation, the short probe-forming systems comprised from all these types of quadrupole lenses are compared and the smallest beam spot size and appropriate optimal parameters of these probe-forming systems are determined.
Monopole, Quadrupole and Pairing: a Shell Model View
NASA Astrophysics Data System (ADS)
Zuker, A. P.
The three main contributions to the nuclear Hamiltonian-monopole, quadrupole and pairing - are analyzed in a shell model context. The first has to be treated phenomenologically, while the other two can be reliably extracted from the realistic interactions. Due to simple scaling properties, the realistic quadrupole and pairing interactions eliminate the tendency to collapse of their conventional counterparts, while retaining their basic simplicity.
Differentially pumped dual linear quadrupole ion trap mass spectrometer
Owen, Benjamin C.; Kenttamaa, Hilkka I.
2016-11-15
The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.
Differentially pumped dual linear quadrupole ion trap mass spectrometer
Owen, Benjamin C.; Kenttamaa, Hilkka I.
2015-10-20
The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.
Synchrotron Tune Adjustment by Longitudinal Motion of Quadrupoles
NASA Astrophysics Data System (ADS)
Bertsche, K. J.
1996-05-01
Adjustment of the tune of a synchrotron is generally accomplished by globally varying the strength of quadrupoles, either in the main quadrupole bus or in a set of dedicated trim quadrupoles distributed around the ring. An alternate scheme for tune control involves varying the strengths of quadrupoles only within a local insert, thereby adjusting the phase advance across this insert to create a "phase trombone." In a synchrotron built of permanent magnets, such as the proposed Fermilab Recycler Ring, tune adjustment may also be accomplished by constructing a phase trombone in which the longitudinal position rather than strength of a number of quadrupoles is adjusted. Design philosophies and performance for such phase trombones will be presented. *Operated by Universities Research Association, Inc., under contract with the US. Department of Energy.
Double-photoionization of helium including quadrupole radiation effects
Colgan, James; Ludlow, J A; Lee, Teck - Ghee; Pindzola, M S; Robicheaux, F
2009-01-01
Non-perturbative time-dependent close-coupling calculations are carried out for the double photoionization of helium including both dipole and quadrupole radiation effects. At a photon energy of 800 eV, accessible at CUlTent synchrotron light sources, the quadrupole interaction contributes around 6% to the total integral double photoionization cross section. The pure quadrupole single energy differential cross section shows a local maxima at equal energy sharing, as opposed to the minimum found in the pure dipole single energy differential cross section. The sum of the pure dipole and pure quadrupole single energy differentials is insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the quadrupole interaction that may be experimentally observable.
NASA Astrophysics Data System (ADS)
Godfrey, B.; Majdalani, J.
2014-11-01
This study relies on computational fluid dynamics (CFD) tools to analyse a possible method for creating a stable quadrupole vortex within a simulated, circular-port, cylindrical rocket chamber. A model of the vortex generator is created in a SolidWorks CAD program and then the grid is generated using the Pointwise mesh generation software. The non-reactive flowfield is simulated using an open source computational program, Stanford University Unstructured (SU2). Subsequent analysis and visualization are performed using ParaView. The vortex generation approach that we employ consists of four tangentially injected monopole vortex generators that are arranged symmetrically with respect to the center of the chamber in such a way to produce a quadrupole vortex with a common downwash. The present investigation focuses on characterizing the flow dynamics so that future investigations can be undertaken with increasing levels of complexity. Our CFD simulations help to elucidate the onset of vortex filaments within the monopole tubes, and the evolution of quadrupole vortices downstream of the injection faceplate. Our results indicate that the quadrupole vortices produced using the present injection pattern can become quickly unstable to the extent of dissipating soon after being introduced into simulated rocket chamber. We conclude that a change in the geometrical configuration will be necessary to produce more stable quadrupoles.
Means for the focusing and acceleration of parallel beams of charged particles. [Patent application
Maschke, A.W.
1980-09-23
Apparatus for focusing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The array may be assembled from a single component which comprises a support plate containing uniform rows of poles. Each pole is separated by a hole through the plate designed to pass a beam. Two such plates may be positioned with their poles intermeshed to form a plurality of quadrupoles.
Means for the focusing and acceleration of parallel beams of charged particles
Maschke, Alfred W.
1982-09-21
Apparatus for focusing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The array may be assembled from a single component which comprises a support plate containing uniform rows of poles. Each pole is separated by a hole through the plate designed to pass a beam. Two such plates may be positioned with their poles intermeshed to form a plurality of quadrupoles.
Supersonic Quadrupole Noise Theory for High-Speed Helicopter Rotors
NASA Technical Reports Server (NTRS)
Farassat, F.; Brentner, Kenneth S.
1997-01-01
High-speed helicopter rotor impulsive noise prediction is an important problem of aeroacoustics. The deterministic quadrupoles have been shown to contribute significantly to high-speed impulsive (HSI) noise of rotors, particularly when the phenomenon of delocalization occurs. At high rotor-tip speeds, some of the quadrupole sources lie outside the sonic circle and move at supersonic speed. Brentner has given a formulation suitable for efficient prediction of quadrupole noise inside the sonic circle. In this paper, we give a simple formulation based on the acoustic analogy that is valid for both subsonic and supersonic quadrupole noise prediction. Like the formulation of Brentner, the model is exact for an observer in the far field and in the rotor plane and is approximate elsewhere. We give the full analytic derivation of this formulation in the paper. We present the method of implementation on a computer for supersonic quadrupoles using marching cubes for constructing the influence surface (Sigma surface) of an observer space- time variable (x; t). We then present several examples of noise prediction for both subsonic and supersonic quadrupoles. It is shown that in the case of transonic flow over rotor blades, the inclusion of the supersonic quadrupoles improves the prediction of the acoustic pressure signature. We show the equivalence of the new formulation to that of Brentner for subsonic quadrupoles. It is shown that the regions of high quadrupole source strength are primarily produced by the shock surface and the flow over the leading edge of the rotor. The primary role of the supersonic quadrupoles is to increase the width of a strong acoustic signal.
Skew redundant MEMS IMU calibration using a Kalman filter
NASA Astrophysics Data System (ADS)
Jafari, M.; Sahebjameyan, M.; Moshiri, B.; Najafabadi, T. A.
2015-10-01
In this paper, a novel calibration procedure for skew redundant inertial measurement units (SRIMUs) based on micro-electro mechanical systems (MEMS) is proposed. A general model of the SRIMU measurements is derived which contains the effects of bias, scale factor error and misalignments. For more accuracy, the effect of lever arms of the accelerometers to the center of the table are modeled and compensated in the calibration procedure. Two separate Kalman filters (KFs) are proposed to perform the estimation of error parameters for gyroscopes and accelerometers. The predictive error minimization (PEM) stochastic modeling method is used to simultaneously model the effect of bias instability and random walk noise on the calibration Kalman filters to diminish the biased estimations. The proposed procedure is simulated numerically and has expected experimental results. The calibration maneuvers are applied using a two-axis angle turntable in a way that the persistency of excitation (PE) condition for parameter estimation is met. For this purpose, a trapezoidal calibration profile is utilized to excite different deterministic error parameters of the accelerometers and a pulse profile is used for the gyroscopes. Furthermore, to evaluate the performance of the proposed KF calibration method, a conventional least squares (LS) calibration procedure is derived for the SRIMUs and the simulation and experimental results compare the functionality of the two proposed methods with each other.
Explosives detection by nuclear quadrupole resonance (NQR)
NASA Astrophysics Data System (ADS)
Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.; Krauss, Ronald A.
1994-10-01
Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a laboratory prototype NQR explosives detector which interrogates a volume of 300 liters (10 ft3). This paper presents abbreviated results from a demonstration of the laboratory prototype NQR explosives detector conducted at the Federal Aviation Administration Technical Center in May 1994 on RDX-based explosives.
Quadrupole resonance scanner for narcotics detection
NASA Astrophysics Data System (ADS)
Shaw, Julian D.; Moeller, C. R.; Magnuson, Erik E.; Sheldon, Alan G.
1994-10-01
Interest in non-invasive, non-hazardous, bulk detection technologies for narcotics interdiction has risen over the last few years. As part of our continuing research and development programs in detection of narcotics and explosives using sensitive magnetic measuring devices, we present the first commercially available prototype Quadrupole Resonance (QR) scanner for narcotics detection. The portable narcotics detection system was designed in modular form such that a single QR base system could be easily used with a variety of custom detection heads. The QR system presented in this paper is suitable for scanning items up to 61 X 35 X 13 cm in size, and was designed to scan mail packages and briefcase-sized items for the presence of narcotics. System tests have shown that detection sensitivity is comparable that obtained in laboratory systems.
Hybrid high gradient permanent magnet quadrupole
NASA Astrophysics Data System (ADS)
N'gotta, P.; Le Bec, G.; Chavanne, J.
2016-12-01
This paper presents an innovative compact permanent magnet quadrupole with a strong gradient for potential use in future light source lattices. Its magnetic structure includes simple mechanical parts, rectangular permanent magnet blocks and soft iron poles. It has a wide aperture in the horizontal plane to accommodate an x-ray beam port, a common constraint in storage ring-based light sources. This specificity introduces field quality deterioration because of the resulting truncation of the poles; a suitable field quality can be restored with an optimized pole shape. A 82 T /m prototype with a bore radius of 12 mm and a 10 mm vertical gap between poles has been constructed and magnetically characterized. Gradient inhomogeneities better than 10-3 in the good field region were obtained after the installation of special shims.
An improved integrally formed radio frequency quadrupole
Abbott, S.R.
1987-10-05
An improved radio frequency quadrupole is provided having an elongate housing with an elongate central axis and top, bottom and two side walls symmetrically disposed about the axis, and vanes formed integrally with the walls, the vanes each having a cross-section at right angles to the central axis which tapers inwardly toward the axis to form electrode tips spaced from each other by predetermined distances. Each of the four walls, and the vanes integral therewith, is a separate structural element having a central lengthwise plane passing through the tip of the vane, the walls having flat mounting surfaces at right angles to and parallel to the control plane, respectively, which are butted together to position the walls and vane tips relative to each other. 4 figs.
Atomic Quadrupole Moment Measurement Using Dynamic Decoupling.
Shaniv, R; Akerman, N; Ozeri, R
2016-04-08
We present a method that uses dynamic decoupling of a multilevel quantum probe to distinguish small frequency shifts that depend on m_{j}^{2}, where m_{j}^{2} is the angular momentum of level |j⟩ along the quantization axis, from large noisy shifts that are linear in m_{j}, such as those due to magnetic field noise. Using this method we measured the electric-quadrupole moment of the 4D_{5/2} level in ^{88}Sr^{+} to be 2.973_{-0.033}^{+0.026}ea_{0}^{2}. Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in ^{88}Sr^{+} based optical atomic clocks and verifies complicated many-body quantum calculations.
Quadrupole magnet for a rapid cycling synchrotron
Witte, H.; Berg, J. S.
2015-05-03
Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.
Roll measurement of Tevatron dipoles and quadrupoles
Volk, J.T.; Elementi, L.; Gollwitzer, K.; Jostlein, H.; Nobrega, F.; Shiltsev, V.; Stefanski, R.
2006-09-01
In 2003 a simple digital level system was developed to allow for rapid roll measurements of all dipoles and quadrupoles in the Tevatron. The system uses a Mitutoyo digital level and a PC running MS WINDOWS XP and LAB VIEW to acquire data on the upstream and downstream roll of each magnet. The system is sufficiently simple that all 1,000 magnets in the Tevatron can be measured in less than 3 days. The data can be quickly processed allowing for correction of rolled magnets by the Fermilab alignment group. Data will be presented showing the state of the Tevatron in 2003 and the changes in rolls as measured in each shutdown since then.
RADIATION RESISTANT HTS QUADRUPOLES FOR RIA.
GUPTA,R.; ANERELLA,M.; HARRISON,M.; ET AL.
2004-10-03
Extremely high radiation, levels with accumulated doses comparable to those in nuclear reactors than in accelerators, and very high heat loads ({approx}15 kw) make the quadrupole magnets in the fragment separator one of the most challenging elements of the proposed Rare Isotope Accelerator (RIA). Removing large heat loads, protecting the superconducting coils against quenching, the long term survivability of magnet components, and in particular, insulation that can retain its functionality in such a harsh environment, are the major challenges associated with such magnets. A magnet design based on commercially available high temperature superconductor (HTS) and stainless steel tape insulation has been developed. HTS will efficiently remove these large heat loads and stainless steel can tolerate these large radiation doses. Construction of a model magnet has been started with several coils already built and tested. This paper presents the basic magnet design, results of the coil tests, the status and the future plans. In addition, preliminary results of radiation calculations are also presented.
Log Pearson type 3 quantile estimators with regional skew information and low outlier adjustments
NASA Astrophysics Data System (ADS)
Griffis, V. W.; Stedinger, J. R.; Cohn, T. A.
2004-07-01
The recently developed expected moments algorithm (EMA) [, 1997] does as well as maximum likelihood estimations at estimating log-Pearson type 3 (LP3) flood quantiles using systematic and historical flood information. Needed extensions include use of a regional skewness estimator and its precision to be consistent with Bulletin 17B. Another issue addressed by Bulletin 17B is the treatment of low outliers. A Monte Carlo study compares the performance of Bulletin 17B using the entire sample with and without regional skew with estimators that use regional skew and censor low outliers, including an extended EMA estimator, the conditional probability adjustment (CPA) from Bulletin 17B, and an estimator that uses probability plot regression (PPR) to compute substitute values for low outliers. Estimators that neglect regional skew information do much worse than estimators that use an informative regional skewness estimator. For LP3 data the low outlier rejection procedure generally results in no loss of overall accuracy, and the differences between the MSEs of the estimators that used an informative regional skew are generally modest in the skewness range of real interest. Samples contaminated to model actual flood data demonstrate that estimators which give special treatment to low outliers significantly outperform estimators that make no such adjustment.
Log Pearson type 3 quantile estimators with regional skew information and low outlier adjustments
Griffis, V.W.; Stedinger, J.R.; Cohn, T.A.
2004-01-01
[1] The recently developed expected moments algorithm (EMA) [Cohn et al., 1997] does as well as maximum likelihood estimations at estimating log-Pearson type 3 (LP3) flood quantiles using systematic and historical flood information. Needed extensions include use of a regional skewness estimator and its precision to be consistent with Bulletin 17B. Another issue addressed by Bulletin 17B is the treatment of low outliers. A Monte Carlo study compares the performance of Bulletin 17B using the entire sample with and without regional skew with estimators that use regional skew and censor low outliers, including an extended EMA estimator, the conditional probability adjustment (CPA) from Bulletin 17B, and an estimator that uses probability plot regression (PPR) to compute substitute values for low outliers. Estimators that neglect regional skew information do much worse than estimators that use an informative regional skewness estimator. For LP3 data the low outlier rejection procedure generally results in no loss of overall accuracy, and the differences between the MSEs of the estimators that used an informative regional skew are generally modest in the skewness range of real interest. Samples contaminated to model actual flood data demonstrate that estimators which give special treatment to low outliers significantly outperform estimators that make no such adjustment.
Optimal platform skewing for Space Shuttle inertial measurement unit redundancy management
NASA Technical Reports Server (NTRS)
Rasmussen, M. C.
1980-01-01
Constraints are applied to a general quaternion which describes the skewing between platforms of the Space Shuttle IMU. Once a skewing is derived, the use of the failure magnitude to threshold ratio makes possible predictions of the identification sensitivities for various failure modes. This in turn simplifies analyses and identifies portions of the flight envelope where second failure coverage is lacking. The square root of 6 and square root of 2 skewings have been baselined for use during nominal entry; the realignment software will be used on orbit to reskew the IMUs to the optimal configuration.
Sensitivity of odd-harmonic amplitudes to open quotient and skewing quotient in glottal airflow.
Titze, Ingo R
2015-01-01
It is well known that a half-sinusoid has no odd harmonics other than the fundamental. If glottal flow in phonation were to approximate this exact waveshape, which is generally unlikely, some misperception of pitch and loss of vowel intelligibility would occur. The sensitivity of the glottal waveshape to this special shape is explored by systematically varying two parameters, open quotient and skewing quotient. Mild asymmetry (open quotient below 0.45 or above 0.55 and/or skewing quotient greater than 2.0) equalizes the odd-even harmonic series. Singers and speakers avoid the exact symmetry by skewing the flow pulse with source-filter interaction.
NASA Astrophysics Data System (ADS)
Ding, Song; Tian, GuiYun; Dobmann, Gerd; Wang, Ping
2017-01-01
Skewness of Magnetic Barkhausen Noise (MBN) signal is used as a new feature for applied stress determination. After experimental studies, skewness presents its ability for measuring applied tensile stress compared with conventional feature, meanwhile, a non-linear behavior of this new feature and an independence of the excitation conditions under compressive stress are found and discussed. Effective damping during domain wall motion influencing the asymmetric shape of the MBN statistical distribution function is discussed under compressive and tensile stress variation. Domain wall (DW) energy and distance between pinning edges of the DW are considered altering the characteristic relaxation time, which is the reason for the non-linear phenomenon of skewness.
Acoustic monopoles, dipoles, and quadrupoles: An experiment revisited
NASA Astrophysics Data System (ADS)
Russell, Daniel A.; Titlow, Joseph P.; Bemmen, Ya-Juan
1999-08-01
A simple and inexpensive demonstration of acoustic monopole, dipole, and quadrupole sources utilizes four 4-in. boxed loudspeakers and a homemade switch box. The switch box allows the speakers to be driven in any combination of phase relationships. Placing the speakers on a rotating stool allows students to measure directivity patterns for monopole, dipole, and quadrupole speaker combinations. Stacking the speakers in a square, all facing the same direction, allows students to aurally compare the frequency and amplitude dependence of sound radiation from monopoles, dipoles, and quadrupoles.
Emission of nuclear quadrupole resonance from polycrystalline hexamethylenetetramine.
Ota, G; Itozaki, H
2008-03-01
The angular dependence of the nuclear quadrupole resonance (NQR) signal intensity emitted from polycrystalline hexamethylenetetramine has been analytically investigated for all directions for non-contact detection of chemicals by nuclear quadrupole resonance. The field pattern of the NQR signal from a column sample was measured. The emitted patterns were the same as that from a united single magnetic dipole, which fitted well to the estimation based on quadrupole principle axis system. This result is helpful to design an antenna for NQR remote detection.
Skew in CG content near the transcription start site in Arabidopsis thaliana.
Tatarinova, Tatiana; Brover, Vyacheslav; Troukhan, Maxim; Alexandrov, Nickolai
2003-01-01
We have discovered a novel statistical feature of Arabidopsis thaliana genome that remarkably correlates with a position of transcription start site--CG skew peak. We hypothesize that the phenomenon can be explained by the higher mutability of unprotected cytosines.
A skewed PDF combustion model for jet diffusion flames. [Probability density function (PDF)
Abou-Ellail, M.M.M.; Salem, H. )
1990-11-01
A combustion model based on restricted chemical equilibrium is described. A transport equation for the skewness of the mixture fraction is derived. It contains two adjustable constants. The computed values of the mean mixture fraction (f) and its variance and skewness (g and s) for a jet diffusion methane flame are used to obtain the shape of a shewed pdf. The skewed pdf is split into a turbulent part (beta function) and a nonturbulent part (delta function) at f = 0. The contribution of each part is directly related to the values of f, g, and s. The inclusion of intermittency in the skewed pdf appreciably improves the numerical predictions obtained for a turbulent jet diffusion methane flame for which experimental data are available.
12. Underside of Skew SpanHot Metal system on right, toward ...
12. Underside of Skew Span-Hot Metal system on right, toward Rocker Bent. - Monongahela Connecting Railroad Company, Hot Metal Bridge, Spanning Monongahela River at mile post 3.1, Pittsburgh, Allegheny County, PA
Robustness of S1 statistic with Hodges-Lehmann for skewed distributions
NASA Astrophysics Data System (ADS)
Ahad, Nor Aishah; Yahaya, Sharipah Soaad Syed; Yin, Lee Ping
2016-10-01
Analysis of variance (ANOVA) is a common use parametric method to test the differences in means for more than two groups when the populations are normally distributed. ANOVA is highly inefficient under the influence of non- normal and heteroscedastic settings. When the assumptions are violated, researchers are looking for alternative such as Kruskal-Wallis under nonparametric or robust method. This study focused on flexible method, S1 statistic for comparing groups using median as the location estimator. S1 statistic was modified by substituting the median with Hodges-Lehmann and the default scale estimator with the variance of Hodges-Lehmann and MADn to produce two different test statistics for comparing groups. Bootstrap method was used for testing the hypotheses since the sampling distributions of these modified S1 statistics are unknown. The performance of the proposed statistic in terms of Type I error was measured and compared against the original S1 statistic, ANOVA and Kruskal-Wallis. The propose procedures show improvement compared to the original statistic especially under extremely skewed distribution.
An Adaptive Method for Reducing Clock Skew in an Accumulative Z-Axis Interconnect System
NASA Technical Reports Server (NTRS)
Bolotin, Gary; Boyce, Lee
1997-01-01
This paper will present several methods for adjusting clock skew variations that occur in a n accumulative z-axis interconnect system. In such a system, delay between modules in a function of their distance from one another. Clock distribution in a high-speed system, where clock skew must be kept to a minimum, becomes more challenging when module order is variable before design.
NASA Technical Reports Server (NTRS)
Majumdar, A. K.
1979-01-01
Expressions are derived for higher-order skewness and excess coefficients using central moments and cumulants up to 8th order. These coefficients are then calculated for three probability distributions: (1) Log-normal, (2) Rice-Nakagami, and (3) Gamma distributions. Curves are given to shown the variation of skewness with excess coefficients for these distributions. These curves are independent of the particular distribution parameters. This method is useful for studying fluctuating phenomena, which obey non-Gaussian statistics.
Quadrupole beam-based alignment in the RHIC interaction regions
Ziegler, J.; Satogata, T.
2011-03-28
Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements. BBA data has been collected over the past two runs for all three of the active experimental IRs at RHIC, updating results from the 2005 run which were taken with incorrectly installed offsets. The technique was successfully applied to expose a systematic misuse of the BPM survey offsets in the control system. This is likely to benefit polarized proton operations as polarization transmission through acceleration ramps depends on RMS orbit control in the arcs, but a quantitative understanding of its impact is still under active investigation. Data taking is ongoing as are refinements to the BBA technique aimed at reducing systematic errors and properly accounting for dispersive effects. Further development may focus on non-triplet BPMs such as those located near snakes, or arc quadrupoles that do not have individually shunted power supplies (a prerequisite for the current method) and as such, will require a modified procedure.
Quadrupole interactions: NMR, NQR, and in between from a single viewpoint.
Bain, Alex D
2017-03-01
Nuclear spins with quantum numbers >1/2 can interact with a static magnetic field, or a local electric field gradient, to produce quantized energy levels. If the magnetic field interaction dominates, we are doing nuclear magnetic resonance (NMR). If the interaction of the nuclear electric quadrupole with electric field gradients is much stronger, this is nuclear quadrupole resonance (NQR). The two are extremes of a continuum, as the ratio of one interaction to the other changes. In this work, we look at this continuum from a single, unified viewpoint based on a Liouville-space approach: the direct method. This method does not require explicit operators and their commutators, unlike Hamiltonian methods. We derive both the quadrupole-perturbed NMR solution and also the Zeeman-perturbed NQR results. Furthermore, we examine the polarization of these signals, because this is different between pure NMR and pure NQR spectroscopy. Spin 3/2 is the focus here, but the approach is perfectly general and can be applied to any spin. Copyright © 2016 John Wiley & Sons, Ltd.
Cryo-technical design aspects of the superconducting SIS100 quadrupole doublet modules
Meier, J. P.; Bleile, A.; Fischer, E.; Hess, G.; Macavei, J.; Spiller, P.
2014-01-29
The FAIR project was initiated to build an international accelerator and experimental facility for basic research activities in various fields of modern physics. The core component of the project will be the SIS100 heavy ion accelerator, producing heavy ion beams of uniquely high intensities and qualities. The superconducting main quadrupoles and corrector magnets are assembled within complex quadrupole doublet modules (QDMs), combining two superconducting quadrupole (focusing and defocusing), sextupole and steering magnets in one cryostat. In addition a cryo-catcher, a beam position monitor and a cold beam pipe will be integrated. In accordance with the magnet lattice structure, the QDM series for the SIS100 consists of four main families composed of eleven different configurations. The common technical feature of all configurations is a sophisticated common girder structure, mechanically integrating all functional components in one cold mass and being suspended in a corresponding cryostat system. The requirements to position preservation during thermal cycling are to be fulfilled by a precise and stable support of the functional elements, as well as by a reliable, reproducible and stable cold mass suspension system. The main design aspects of the QDMs will be discussed as a result of these requirements.
Effect of skew angle on second harmonic guided wave measurement in composite plates
NASA Astrophysics Data System (ADS)
Cho, Hwanjeong; Choi, Sungho; Lissenden, Cliff J.
2017-02-01
Waves propagating in anisotropic media are subject to skewing effects due to the media having directional wave speed dependence, which is characterized by slowness curves. Likewise, the generation of second harmonics is sensitive to micro-scale damage that is generally not detectable from linear features of ultrasonic waves. Here, the effect of skew angle on second harmonic guided wave measurement in a transversely isotropic lamina and a quasi-isotropic laminate are numerically studied. The strain energy density function for a nonlinear transversely isotropic material is formulated in terms of the Green-Lagrange strain invariants. The guided wave mode pairs for cumulative second harmonic generation in the plate are selected in accordance with the internal resonance criteria - i.e., phase matching and non-zero power flux. Moreover, the skew angle dispersion curves for the mode pairs are obtained from the semi-analytical finite element method using the derivative of the slowness curve. The skew angles of the primary and secondary wave modes are calculated and wave propagation simulations are carried out using COMSOL. Numerical simulations revealed that the effect of skew angle mismatch can be significant for second harmonic generation in anisotropic media. The importance of skew angle matching on cumulative second harmonic generation is emphasized and the accompanying issue of the selection of internally resonant mode pairs for both a unidirectional transversely isotropic lamina and a quasi-isotropic laminate is demonstrated.
Mapping of quantitative trait loci using the skew-normal distribution*
Fernandes, Elisabete; Pacheco, António; Penha-Gonçalves, Carlos
2007-01-01
In standard interval mapping (IM) of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. When this assumption of normality is violated, the most commonly adopted strategy is to use the previous model after data transformation. However, an appropriate transformation may not exist or may be difficult to find. Also this approach can raise interpretation issues. An interesting alternative is to consider a skew-normal mixture model in standard IM, and the resulting method is here denoted as skew-normal IM. This flexible model that includes the usual symmetric normal distribution as a special case is important, allowing continuous variation from normality to non-normality. In this paper we briefly introduce the main peculiarities of the skew-normal distribution. The maximum likelihood estimates of parameters of the skew-normal distribution are obtained by the expectation-maximization (EM) algorithm. The proposed model is illustrated with real data from an intercross experiment that shows a significant departure from the normality assumption. The performance of the skew-normal IM is assessed via stochastic simulation. The results indicate that the skew-normal IM has higher power for QTL detection and better precision of QTL location as compared to standard IM and nonparametric IM. PMID:17973340
Skewed X-chromosome inactivation in patients with esophageal carcinoma
2013-01-01
Abstract Skewed X-chromosome inactivation (SXCI) was found in some apparently healthy females mainly from Western countries. It has been linked to development of ovarian, breast and pulmonary carcinomas. The present study aimed to observe the SXCI frequencies in apparently healthy Chinese females and patients with esophageal carcinoma. DNA was extracted from the peripheral blood cells from 401 Chinese females without a detectable tumor and 143 female patients with esophageal carcinoma. Exon 1 of androgen receptor (AR) gene was amplified, and the products of different CAG alleles were resolved on denaturing polyacrylamide gels and visualized after silver staining. The corrected ratios (CR) of the products before and after HpaII digestion were calculated. As to the healthy females, when CR ≥ 3 was used as a criterion, SXCI was found in two (4.3%) of the 46 neonates, 13 (7.8%) of the 166 younger adults (16–50 years) and 37 (25.7%) of the 144 elderly females (51–96 years), with the frequency higher in the elderly subjects than in the two former groups (P < 0.05). When a more stringent criterion (CR ≥ 10) was used, SXCI was found in one (2.2%), two (1.2%) and 16 (11.1%) of the subjects in the three age groups, respectively, itsfrequency being higher in the elderly than in the younger age groups (P < 0.05). Occurrence of SXCI was detected in both the patients and controls at similar frequencies. However, the phenomenon, as defined as CR ≥ 3, was more frequent in the patients aging <40 years (35.7%) compared to the corresponding reference group (7.6%, P = 0.006). When CR ≥ 10 was adopted, the frequencies were 7.1% and 1.2%, respectively. Their difference did not attain statistical significance (P = 0. 217). SXCI also occurs in apparently healthy Chinese females, and is associated with age. It may be considered as a predisposing factor for the early development of esophageal carcinoma. Virtual slides The virtual slide(s) for this
Nuclear spin squeezing via electric quadrupole interaction
NASA Astrophysics Data System (ADS)
Aksu Korkmaz, Yaǧmur; Bulutay, Ceyhun
2016-01-01
Control over nuclear-spin fluctuations is essential for processes that rely on preserving the quantum state of an embedded system. For this purpose, squeezing is a viable alternative, so far that has not been properly exploited for the nuclear spins. Of particular relevance in solids is the electric quadrupole interaction (QI), which operates on nuclei having spin higher than 1/2. In its general form, QI involves an electric-field gradient (EFG) biaxiality term. Here, we show that as this EFG biaxiality increases, it enables continuous tuning of single-particle squeezing from the one-axis twisting to the two-axis countertwisting limits. A detailed analysis of QI squeezing is provided, exhibiting the intricate consequences of EFG biaxiality. The initial states over the Bloch sphere are mapped out to identify those favorable for fast initial squeezing, or for prolonged squeezings. Furthermore, the evolution of squeezing in the presence of a phase-damping channel and an external magnetic field are investigated. We observe that dephasing drives toward an antisqueezed terminal state, the degree of which increases with the spin angular momentum. Finally, QI squeezing in the limiting case of a two-dimensional EFG with a perpendicular magnetic field is discussed, which is of importance for two-dimensional materials, and the associated beat patterns in squeezing are revealed.
Dynamics of a charged drop in a quadrupole electric field
NASA Astrophysics Data System (ADS)
Das, Sudip; Mayya, Y. S.; Thaokar, Rochish
2015-07-01
Quadrupole electric fields are commonly employed for confining charged conducting drops in Paul traps for studying Rayleigh instability characteristics. We investigate the effect of these fields on the deformation and stability characteristics of a charged liquid drop, using the axisymmetric boundary integral method (BIM). Different combinations of the amount of charge and strength of the electric field give rise to different equilibrium shapes. Interestingly, unlike in the case of uniform fields, stable oblate equilibrium drop shapes are sustained in quadrupole fields. In a positive endcap configuration of the quadrupole setup a drop carrying a small negative charge displays a transition from oblate to prolate as the field strength increases. On the other hand, for the case of a highly charged drop, a shift in the Rayleigh critical charge is observed in the presence of a weak quadrupole field. The Rayleigh instability displays imperfect transcritical bifurcation characteristics with respect to imposed prolate and oblate perturbations. Results are of significance in i) interpreting deformation and the Rayleigh stability effects using Paul traps with quadrupole fields, ii) designing more efficient quadrupole-field-based technologies for emulsification of water in oil.
Peng, Shixiang; Chen, Jia; Ren, Haitao; Zhao, Jie; Xu, Yuan; Zhang, Tao; Zhang, Ailing; Xia, Wenlong; Gao, Shuli; Wang, Zhi; Luo, Yuting; Guo, Zhiyu; Chen, Jia'er
2014-02-01
A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 π mm mrad and the fraction of He+ is about 99%.
Peng, Shixiang Chen, Jia; Ren, Haitao; Zhao, Jie; Xu, Yuan; Zhang, Tao; Xia, Wenlong; Gao, Shuli; Wang, Zhi; Luo, Yuting; Guo, Zhiyu; Zhang, Ailing; Chen, Jia'er
2014-02-15
A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 π mm mrad and the fraction of He+ is about 99%.
Static performance investigation of a skewed-throat multiaxis thrust-vectoring nozzle concept
NASA Technical Reports Server (NTRS)
Wing, David J.
1994-01-01
The static performance of a jet exhaust nozzle which achieves multiaxis thrust vectoring by physically skewing the geometric throat has been characterized in the static test facility of the 16-Foot Transonic Tunnel at NASA Langley Research Center. The nozzle has an asymmetric internal geometry defined by four surfaces: a convergent-divergent upper surface with its ridge perpendicular to the nozzle centerline, a convergent-divergent lower surface with its ridge skewed relative to the nozzle centerline, an outwardly deflected sidewall, and a straight sidewall. The primary goal of the concept is to provide efficient yaw thrust vectoring by forcing the sonic plane (nozzle throat) to form at a yaw angle defined by the skewed ridge of the lower surface contour. A secondary goal is to provide multiaxis thrust vectoring by combining the skewed-throat yaw-vectoring concept with upper and lower pitch flap deflections. The geometric parameters varied in this investigation included lower surface ridge skew angle, nozzle expansion ratio (divergence angle), aspect ratio, pitch flap deflection angle, and sidewall deflection angle. Nozzle pressure ratio was varied from 2 to a high of 11.5 for some configurations. The results of the investigation indicate that efficient, substantial multiaxis thrust vectoring was achieved by the skewed-throat nozzle concept. However, certain control surface deflections destabilized the internal flow field, which resulted in substantial shifts in the position and orientation of the sonic plane and had an adverse effect on thrust-vectoring and weight flow characteristics. By increasing the expansion ratio, the location of the sonic plane was stabilized. The asymmetric design resulted in interdependent pitch and yaw thrust vectoring as well as nonzero thrust-vector angles with undeflected control surfaces. By skewing the ridges of both the upper and lower surface contours, the interdependency between pitch and yaw thrust vectoring may be eliminated
Iwashita, Y.; Mihara, T.; Kumada, M.; Spencer, C.; /SLAC
2006-02-06
A superstrong permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens for the International Linear Collider (ILC). Our prototype PMQ can produce variable strengths from 3.5T to 24.2T in 1.4T steps. The magnetic center of the PMQ must not move more than a few microns during a 20% strength change to enable a Beam-Based Alignment (BBA) process to work. Our PMQ can be mechanically adjusted to suppress the center movement from more than 30{micro}m to less than 10{micro}m during strength changes.
Skewness and transformations of Farnsworth-Munsell 100-hue test scores.
Dain, S J
1998-11-01
In the past, suggested transformations of Farnsworth-Munsell 100-Hue Test (FM 100-Hue) test scores distributions have been limited to a square root transformation. In this study, the choice of transformations of total error scores (TES) are considered by identifying a possible source of skewness. Several distributions of FM100-Hue Test TES were assessed for skewness (third moment). The error score (ES) distributions for the 85 individual caps in each of the populations were also analysed for skewness (Figs. 3 and 4). There is no single transformation which will normalise all TES distributions. The single cap ES distributions with low mean ES (such as those achieved normals and, for some regions of the test, by anomalous trichromats and dichromats) are symmetrical because most subjects can organise the cap perfectly (and could do even better given smaller colour differences). The distributions of ESs where the mean ES is in the moderate range (such as those achieved by diabetics) are skewed because some ESs at the lower end of the range represent performance which could also be better than the test allows. ES distributions with a high mean (such as random distributions and some regions of the test by congenital dichromats) are symmetrical being unaffected by the limitations of the test. TES distributions of diabetics are asymmetrical and comprise skewed cap ES distributions. A suggestion for a transformation is made.
Modeling absolute differences in life expectancy with a censored skew-normal regression approach.
Moser, André; Clough-Gorr, Kerri; Zwahlen, Marcel
2015-01-01
Parameter estimates from commonly used multivariable parametric survival regression models do not directly quantify differences in years of life expectancy. Gaussian linear regression models give results in terms of absolute mean differences, but are not appropriate in modeling life expectancy, because in many situations time to death has a negative skewed distribution. A regression approach using a skew-normal distribution would be an alternative to parametric survival models in the modeling of life expectancy, because parameter estimates can be interpreted in terms of survival time differences while allowing for skewness of the distribution. In this paper we show how to use the skew-normal regression so that censored and left-truncated observations are accounted for. With this we model differences in life expectancy using data from the Swiss National Cohort Study and from official life expectancy estimates and compare the results with those derived from commonly used survival regression models. We conclude that a censored skew-normal survival regression approach for left-truncated observations can be used to model differences in life expectancy across covariates of interest.
Generalized Skew Coefficients of Annual Peak Flows for Rural, Unregulated Streams in West Virginia
Atkins, John T.; Wiley, Jeffrey B.; Paybins, Katherine S.
2009-01-01
Generalized skew was determined from analysis of records from 147 streamflow-gaging stations in or near West Virginia. The analysis followed guidelines established by the Interagency Advisory Committee on Water Data described in Bulletin 17B, except that stations having 50 or more years of record were used instead of stations with the less restrictive recommendation of 25 or more years of record. The generalized-skew analysis included contouring, averaging, and regression of station skews. The best method was considered the one with the smallest mean square error (MSE). MSE is defined as the following quantity summed and divided by the number of peaks: the square of the difference of an individual logarithm (base 10) of peak flow less the mean of all individual logarithms of peak flow. Contouring of station skews was the best method for determining generalized skew for West Virginia, with a MSE of about 0.2174. This MSE is an improvement over the MSE of about 0.3025 for the national map presented in Bulletin 17B.
Algorithms to get the maximum operation frequency for skew-tolerant clocking schemes
NASA Astrophysics Data System (ADS)
Guerrero, D.; Bellido, M.; Juan, J.; Millan, A.; Ruiz, P.; Ostua, E.; Viejo, J.
2005-06-01
Nowadays it is not possible to neglect the delay of interconnection lines. The die size is rising very fast, and the delay of the interconnection lines grows quadrically with it. Also, the fact that the gate delay keeps getting smaller increases the importance of the delay of the interconnection lines. The delay of the clock lines is specially important: If the clock skew is underestimated and the clocking scheme is not properly designed, then the system may not work under any clock frequency. In this paper we evaluate the timing performance of three skew-tolerant clocking schemes. These schemes are the well known Master-Slave clocking scheme (MS) and two schemes developed by the authors: Parallel Alternating Latches Clocking Scheme (PALACS) and four-phase Parallel Alternating Latches Clocking Scheme (four-phase PALACS). To carry out these analysis, the authors introduce new algorithms to obtain the clock waveforms required by a synchronous sequential circuit. Separated algorithms were developed for every clocking scheme. The algorithms take a set of timing parameters as input and generate a chronogram of the circuit trying to minimise the clock period but ensuring the timing restrictions of the circuit are met for a given clock skew. Using these algorithms is it possible to draw a representation of the computation frequency as a function of the clock skew for every clock scheme. Once we have estimated the timing parameters and the skew, these representations can help us to choose the best clocking scheme for our design.
Eggert, Anne-Katrin; Otte, Tobias; Müller, Josef K
2008-11-07
Proximate mechanisms underlying reproductive skew are obscure in many animals that breed communally. Here, we address causes of reproductive skew in brood-parasitic associations of burying beetles (Nicrophorus vespilloides). Male and female burying beetles feed and defend their larvae on buried carcasses. When several females locate the same small carcass, they engage in violent physical altercations. The subordinate then acts as an intraspecific brood parasite, laying eggs, but not providing care. The dominant female largely monopolizes access to the carcass; she alone provides parental care and her share of the brood is much larger than the subordinate's. On larger carcasses, subordinates have greater access to the carcass than on small ones, and reproductive skew is reduced. Differential fecundity, ovicide and larvicide have been suggested as causes of skew on small carcasses. Here, we report the results of the experiments pertaining to the first two of these potential mechanisms. Ovicide did not significantly contribute to reproductive skew on small carcasses, but differential fecundity did. Fecundity differences were due to dominance status, not body size per se. Fecundity differences disappeared when supplemental food was available, suggesting that reduced access to the carcass limits fecundity by causing nutritional deficiencies. Supplemental food prevented such nutritional deficiencies and allowed subordinates to produce as many eggs as dominants. Apparently, aggressive behaviour by dominants functions in the context of reproductive competition, limiting subordinate reproduction by preventing food intake on the carcass.
Radio frequency focused interdigital linear accelerator
Swenson, Donald A.; Starling, W. Joel
2006-08-29
An interdigital (Wideroe) linear accelerator employing drift tubes, and associated support stems that couple to both the longitudinal and support stem electromagnetic fields of the linac, creating rf quadrupole fields along the axis of the linac to provide transverse focusing for the particle beam. Each drift tube comprises two separate electrodes operating at different electrical potentials as determined by cavity rf fields. Each electrode supports two fingers, pointing towards the opposite end of the drift tube, forming a four-finger geometry that produces an rf quadrupole field distribution along its axis. The fundamental periodicity of the structure is equal to one half of the particle wavelength .beta..lamda., where .beta. is the particle velocity in units of the velocity of light and .lamda. is the free space wavelength of the rf. Particles are accelerated in the gaps between drift tubes. The particle beam is focused in regions inside the drift tubes.
Gulyuz, Kerim; Stedwell, Corey N.; Wang Da; Polfer, Nick C.
2011-05-15
We present a laboratory-constructed mass spectrometer optimized for recording infrared multiple photon dissociation (IRMPD) spectra of mass-selected ions using a benchtop tunable infrared optical parametric oscillator/amplifier (OPO/A). The instrument is equipped with two ionization sources, an electrospray ionization source, as well as an electron ionization source for troubleshooting. This hybrid mass spectrometer is composed of a quadrupole mass filter for mass selection, a reduced pressure ({approx}10{sup -5} Torr) quadrupole ion trap (QIT) for OPO irradiation, and a reflectron time-of-flight drift tube for detecting the remaining precursor and photofragment ions. A helium gas pulse is introduced into the QIT to temporarily increase the pressure and hence enhance the trapping efficiency of axially injected ions. After a brief pump-down delay, the compact ion cloud is subjected to the focused output from the continuous wave OPO. In a recent study, we implemented this setup in the study of protonated tryptophan, TrpH{sup +}, as well as collision-induced dissociation products of this protonated amino acid [W. K. Mino, Jr., K. Gulyuz, D. Wang, C. N. Stedwell, and N. C. Polfer, J. Phys. Chem. Lett. 2, 299 (2011)]. Here, we give a more detailed account on the figures of merit of such IRMPD experiments. The appreciable photodissociation yields in these measurements demonstrate that IRMPD spectroscopy of covalently bound ions can be routinely carried out using benchtop OPO setups.
Theoretical investigation of flute modes in a magnetic quadrupole
Wu, H.S.
1988-01-01
This research developed theories and conducted numerical investigations of electrostatic flute modes in a plasma confined in a magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L{sub 0} for intermediate- and low-frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. The frequency is predicted to be inversely proportional to the wave number. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion bounce frequencies in a plasma confined to a magnetic quadrupole. Chapter VIII presents a summary of the research described.
Theoretical investigation of flute modes in a magnetic quadrupole
Wu, H.S.
1988-01-01
The objective of this research is to develop theories and conduct numerical investigations of electrostatic flute modes in a plasma confined in magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L{sub 0} for intermediate- and low frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion ounce frequencies in a plasma confined to a magnetic quadrupole. Two intermediate-frequency modes are predicted.
Detecting body cavity bombs with nuclear quadrupole resonance
NASA Astrophysics Data System (ADS)
Collins, Michael London
Nuclear Quadrupole Resonance (NQR) is a technology with great potential for detecting hidden explosives. Past NQR research has studied the detection of land mines and bombs concealed within luggage and packages. This thesis focuses on an NQR application that has received less attention and little or no publicly available research: detecting body cavity bombs (BCBs). BCBs include explosives that have been ingested, inserted into orifices, or surgically implanted. BCBs present a threat to aviation and secure facilities. They are extremely difficult to detect with the technology currently employed at security checkpoints. To evaluate whether or not NQR can be used to detect BCBs, a computational model is developed to assess how the dielectric properties of biological tissue affect the radio frequency magnetic field employed in NQR (0.5-5MHz). The relative permittivity of some biological tissue is very high (over 1,000 at 1MHz), making it conceivable that there is a significant effect on the electromagnetic field. To study this effect, the low-frequency approximation known as the Darwin model is employed. First, the electromagnetic field of a coil is calculated in free space. Second, a dielectric object or set of objects is introduced, and the free-space electric field is modified to accommodate the dielectric object ensuring that the relevant boundary conditions are obeyed. Finally, the magnetic field associated with the corrected electric field is calculated. This corrected magnetic field is evaluated with an NQR simulation to estimate the impact of dielectric tissue on NQR measurements. The effect of dielectric tissue is shown to be small, thus obviating a potential barrier to BCB detection. The NQR model presented may assist those designing excitation and detection coils for NQR. Some general coil design considerations and strategies are discussed.
Generation of time histories with a specified auto spectral density, skewness, and kurtosis
Smallwood, D.O.
1996-02-01
Some dynamic environments are characterized by time histories that are not Gaussian. A more accurate simulation of these environments can be generated if a realization of a non Gaussian time history can be reproduced which has a specified auto spectral density (also called power spectral density) and a specified skewness and kurtosis (not necessarily the skewness and kurtosis of a Gaussian time history). The mean square of the waveform is reproduced if the spectrum is reproduced. Modern waveform reproduction techniques can be used to reproduce the realized waveform on an electrodynamic or electrohydraulic shaker. A method is presented for the generation of realizations of zero mean non Gaussian random time histories with a specified auto spectral density, skewness, and kurtosis. Kurtosis, defined in this paper as E[{chi}{sup 4}]/E{sup 2}[{chi}{sup 2}], greater than 3 can be realized. Realizations of the random process are generated with a generalization of shot noise.
NASA Astrophysics Data System (ADS)
Fan, Ya-Jing; Cao, Huai-Xin; Meng, Hui-Xian; Chen, Liang
2016-12-01
The uncertainty principle in quantum mechanics is a fundamental relation with different forms, including Heisenberg's uncertainty relation and Schrödinger's uncertainty relation. In this paper, we prove a Schrödinger-type uncertainty relation in terms of generalized metric adjusted skew information and correlation measure by using operator monotone functions, which reads, U_ρ ^{(g,f)}(A)U_ρ ^{(g,f)}(B)≥ f(0)^2l/k| Corr_ρ ^{s(g,f)}(A,B)| ^2 for some operator monotone functions f and g, all n-dimensional observables A, B and a non-singular density matrix ρ . As applications, we derive some new uncertainty relations for Wigner-Yanase skew information and Wigner-Yanase-Dyson skew information.
Watermann, J.; McNamara, A.G. ); Sofko, G.J.; Koehler, J.A. )
1989-06-01
Some 7,700 radio aurora spectra obtained from a six link 50-MHz CW radar network set up on the Canadian prairies were analyzed with respect to the distributions of mean Doppler shift, spectral width and skewness. A comparison with recently published SABRE results obtained at 153 MHz shows substantial differences in the distributions which are probably due to different experimental and geophysical conditions. The spectra are mostly broad with mean Doppler shifts close to zero (type II spectra). The typical groupings of type I and type III spectra are clearly identified. All types appear to be in general much more symmetric than those recorded with SABRE, and the skewness is only weakly dependent on the sign of the mean Doppler shift. Its distribution peaks near zero and shows a weak positive correlation with the type II Doppler shifts while the mostly positive type I Doppler shifts are slightly negatively correlated with the skewness.
Modeling the effects of wave skewness and beach cusps on littoral sand transport
Haas, K.A.; Check, L.A.; Hanes, D.M.
2008-01-01
A process-based numerical modeling system is utilized for predicting littoral sand transport. The intent is to examine conditions slightly more complex than linear waves impinging upon a plane beach. Two factors that we examine are wave skewness and longshore varying bathymetry. An empirical model is used for calculating the skewed bottom wave orbital velocity. The advection of sediment due to the skewed wave velocity is larger and in the direction of the waves, opposite to the results with sinusoidal wave velocities, due to the increase in the bottom shear stress under the wave crests. The model system is also applied to bathymetry containing beach cusps. When the wave field has relatively weak longshore wave power, the currents and the littoral transport exhibit significant longshore variability, thereby altering the overall mean littoral transport.
Evolution of Quantitative Traits under a Migration-Selection Balance: When Does Skew Matter?
Débarre, Florence; Yeaman, Sam; Guillaume, Frédéric
2015-10-01
Quantitative-genetic models of differentiation under migration-selection balance often rely on the assumption of normally distributed genotypic and phenotypic values. When a population is subdivided into demes with selection toward different local optima, migration between demes may result in asymmetric, or skewed, local distributions. Using a simplified two-habitat model, we derive formulas without a priori assuming a Gaussian distribution of genotypic values, and we find expressions that naturally incorporate higher moments, such as skew. These formulas yield predictions of the expected divergence under migration-selection balance that are more accurate than models assuming Gaussian distributions, which illustrates the importance of incorporating these higher moments to assess the response to selection in heterogeneous environments. We further show with simulations that traits with loci of large effect display the largest skew in their distribution at migration-selection balance.
Effect of skewing the rotor teeth on the performance of doubly salient permanent magnet motors
NASA Astrophysics Data System (ADS)
Sheth, N. K.; Sekharbabu, A. R. C.; Rajagopal, K. R.
2006-04-01
This paper presents the effects of skewing the rotor teeth on the performance characteristics such as flux linkage, back emf, phase inductance, and reluctance torque of an 8/6 doubly salient permanent magnet motor using a simple method, which utilizes the results obtained from the two-dimensional finite element analysis. The optimum skewing angle is obtained as 12°-15° for the least ripple torque without much reduction in the back emf. Skewing the rotor teeth of an 8/6 doubly salient permanent magnet motor by 12°-15° will reduce the total harmonic distortion of the back emf profile to 29.69% from the original value of 44.69%. The reduction in the amplitude of the back emf in this case will be 18.79% only.
Julià, Olga; Vidal-Mas, Jaume; Panikov, Nicolai S; Vives-Rego, Josep
2010-01-01
We report a skew-Laplace statistical analysis of both flow cytometry scatters and cell size from microbial strains primarily grown in batch cultures, others in chemostat cultures and bacterial aquatic populations. Cytometry scatters best fit the skew-Laplace distribution while cell size as assessed by an electronic particle analyzer exhibited a moderate fitting. Unlike the cultures, the aquatic bacterial communities clearly do not fit to a skew-Laplace distribution. Due to its versatile nature, the skew-Laplace distribution approach offers an easy, efficient, and powerful tool for distribution of frequency analysis in tandem with the flow cytometric cell sorting.
Julià, Olga; Vidal-Mas, Jaume; Panikov, Nicolai S.; Vives-Rego, Josep
2010-01-01
We report a skew-Laplace statistical analysis of both flow cytometry scatters and cell size from microbial strains primarily grown in batch cultures, others in chemostat cultures and bacterial aquatic populations. Cytometry scatters best fit the skew-Laplace distribution while cell size as assessed by an electronic particle analyzer exhibited a moderate fitting. Unlike the cultures, the aquatic bacterial communities clearly do not fit to a skew-Laplace distribution. Due to its versatile nature, the skew-Laplace distribution approach offers an easy, efficient, and powerful tool for distribution of frequency analysis in tandem with the flow cytometric cell sorting. PMID:20592754
Stability of an aqueous quadrupole micro-trap
Park, Jae Hyun; Krstić, Predrag S.
2012-01-01
Recently demonstrated functionality of an aqueous quadrupole micro- or nano-trap opens a new avenue for applications of the Paul traps, like is confinement of a charged biomolecule which requires water environment for its chemical stability. Besides strong viscosity forces, motion of a charged particle in the aqueous trap is subject to dielectrophoretic and electrophoretic forces. In this study, we describe the general conditions for stability of a charged particle in an aqueous quadrupole trap. We find that for the typical micro-trap parameters, effects of both dielectrophoresis and electrophoresis significantly influence the trap stability. In particular, the aqueous quadrupole trap could play of a role of a synthetic virtual nanopore for the 3rd generation of DNA sequencing technology.
Stability of an aqueous quadrupole micro-trap
Park, Jae Hyun; Krstić, Predrag S.
2012-01-01
Recently demonstrated functionality of an aqueous quadrupole micro- or nano-trap opens a new avenue for applications of the Paul traps, like is confinement of a charged biomolecule which requires water environment for its chemical stability. Besides strong viscosity forces, motion of a charged particle in the aqueous trap is subject to dielectrophoretic and electrophoretic forces. In this study, we describe the general conditions for stability of a charged particle in an aqueous quadrupole trap. We find that for the typical micro-trap parameters, effects of both dielectrophoresis and electrophoresis significantly influence the trap stability. In particular, the aqueous quadrupole trap couldmore » play of a role of a synthetic virtual nanopore for the 3rd generation of DNA sequencing technology.« less
Variable-field permanent magnet quadrupole for the SSC
Barlow, D.B.; Kraus, R.H. Jr.; Martinez, R.P.; Meyer, R.E.
1993-10-01
A set of compact variable-field permanent-magnet quadrupoles have been designed, fabricated, and tested for use In the SSC linac matching section. The quadrupoles have 24 mm-diameter apertures and 40 mm-long poles. The hybrid (permanent-magnet and iron) design, uses a fixed core of magnet material (NdFeB) and iron (C-1006) surrounded by a rotating ring of the same magnet material and iron. The quadrupole gradient-length product can be smoothly varied from a minimum of 0.7 T up to a maximum, of 4.3 T by a 90{degrees} rotation of the outer ring of iron and magnet material.
Statistical thermodynamics of fluids with both dipole and quadrupole moments.
Benavides, Ana L; Delgado, Francisco J García; Gámez, Francisco; Lago, Santiago; Garzón, Benito
2011-06-21
New Gibbs ensemble simulation data for a polar fluid modeled by a square-well potential plus dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions are presented. This simulation data is used in order to assess the applicability of the multipolar square-well perturbation theory [A. L. Benavides, Y. Guevara, and F. del Río, Physica A 202, 420 (1994)] to systems where more than one term in the multipole expansion is relevant. It is found that this theory is able to reproduce qualitatively well the vapor-liquid phase diagram for different multipolar moment strengths, corresponding to typical values of real molecules, except in the critical region. Hence, this theory is used to model the behavior of substances with multiple chemical bonds such as carbon monoxide and nitrous oxide and we found that with a suitable choice of the values of the intermolecular parameters, the vapor-liquid equilibrium of these species is adequately estimated.
Cryogen free superconducting splittable quadrupole magnet for linear accelerators
Kashikhin, V.S.; Andreev, N.; Kerby, J.; Orlov, Y.; Solyak, N.; Tartaglia, M.; Velev, G.; /Fermilab
2011-09-01
A new superconducting quadrupole magnet for linear accelerators was fabricated at Fermilab. The magnet is designed to work inside a cryomodule in the space between SCRF cavities. SCRF cavities must be installed inside a very clean room adding issues to the magnet design, and fabrication. The designed magnet has a splittable along the vertical plane configuration and could be installed outside of the clean room around the beam pipe previously connected to neighboring cavities. For more convenient assembly and replacement a 'superferric' magnet configuration with four racetrack type coils was chosen. The magnet does not have a helium vessel and is conductively cooled from the cryomodule LHe supply pipe and a helium gas return pipe. The quadrupole generates 36 T integrated magnetic field gradient, has 600 mm effective length, and the peak gradient is 54 T/m. In this paper the quadrupole magnetic, mechanical, and thermal designs are presented, along with the magnet fabrication overview and first test results.
Study of a micro chamber quadrupole mass spectrometer
Wang Jinchan; Zhang Xiaobing; Mao Fuming; Xiao Mei; Cui Yunkang; Engelsen, Daniel den; Lei Wei
2008-03-15
The design of a micro chamber quadrupole mass spectrometer (MCQMS) having a small total volume of only 20 cm{sup 3}, including Faraday cup ion detector and ion source, is described. This MCQMS can resist a vacuum baking temperature of 400-500 deg. C. The quadrupole elements with a hyperbolic surface are made of a ceramic material and coated with a thin metal layer. The quadrupole mass filter has a field radius of 3 mm and a length of 100 mm. Prototypes of this new MCQMS can detect a minimum partial pressure of 10{sup -8} Pa, have a peak width of {delta}M=1 at 10% peak height from mass number 1 to 60, and show an excellent long-term stability. The new MCQMS is intended to be used in residual gas analyses of electron devices during a mutual pumping and baking process.
Multivariate skew- t approach to the design of accumulation risk scenarios for the flooding hazard
NASA Astrophysics Data System (ADS)
Ghizzoni, Tatiana; Roth, Giorgio; Rudari, Roberto
2010-10-01
The multivariate version of the skew- t distribution provides a powerful analytical description of the joint behavior of multivariate processes. It enjoys valuable properties: from the aptitude to model skewed as well as leptokurtic datasets to the availability of moments and likelihood analytical expressions. Moreover, it offers a wide range of extremal dependence strength, allowing for upper and lower tail dependence. The idea underneath this work is to employ the multivariate skew- t distribution to provide an estimation of the joint probability of flood events in a multi-site multi-basin approach. This constitutes the basis for the design and evaluation of flood hazard scenarios for large areas in terms of their intensity, extension and frequency, i.e. those information required by civil protection agencies to put in action mitigation strategies and by insurance companies to price the flooding risk and to evaluate portfolios. Performances of the skew- t distribution and the corresponding t copula function, introduced to represent the state of the art for multivariate simulations, are discussed with reference to the Tanaro Basin, North-western Italy. To enhance the characteristics of the correlation structure, three nested and non-nested gauging stations are selected with contributing areas from 1500 to 8000 km 2. A dataset of 76 trivariate flood events is extracted from a mean daily discharges database available for the time period from January 1995 to December 2003. Applications include the generation of multivariate skew- t and t copula samples and models' comparison through the principle of minimum cross-entropy, here revised for the application to multivariate samples. Copula and skew- t based scenario return period estimations are provided for the November 1994 flood event, i.e. the worst on record in the 1801-2001 period. Results are encouraging: the skew- t distribution seems able to describe the joint behavior, being close to the observations. Marginal
Conceptual design of a quadrupole magnet for eRHIC
Witte, H.; Berg, J. S.
2015-05-03
eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory, which would allow collisions of up to 21 GeV polarized electrons with a variety of species from the existing RHIC accelerator. eRHIC employs an Energy Recovery Linac (ERL) and an FFAG lattice for the arcs. The arcs require open-midplane quadrupole magnets of up to 30 T/m gradient of good field quality. In this paper we explore initial quadrupole magnet design concepts based on permanent magnetic material which allow to modify the gradient during operation.
Simultaneous quadrupole and octupole shape phase transitions in Thorium
NASA Astrophysics Data System (ADS)
Li, Z. P.; Song, B. Y.; Yao, J. M.; Vretenar, D.; Meng, J.
2013-11-01
The evolution of quadrupole and octupole shapes in Th isotopes is studied in the framework of nuclear Density Functional Theory. Constrained energy maps and observables calculated with microscopic collective Hamiltonians indicate the occurrence of a simultaneous quantum shape phase transition between spherical and quadrupole-deformed prolate shapes, and between non-octupole and octupole-deformed shapes, as functions of the neutron number. The nucleus 224Th is closest to the critical point of a double phase transition. A microscopic mechanism of this phenomenon is discussed in terms of the evolution of single-nucleon orbitals with deformation.
Simulation of nuclear quadrupole resonance for sensor probe optimization.
Shinohara, Junichiro; Sato-Akaba, Hideo; Itozaki, Hideo
2012-01-01
A simulation method to estimate the detection efficiency of nuclear quadrupole resonance (NQR) was proposed for optimizing a sensing probe operating at radio frequencies (RFs). It first calculates the transmitted magnetic field from the probe coil to the target sample. The nuclei make quadrupole resonance by it. We considered this nonlinear reaction to estimate NQR emission by the nuclei. Then the received NQR signal intensity from the sample at the probe coil. We calculated the efficiency by testing two different probe types (solenoid and gradiometer) and by changing the relative positions of the probe and sample. The simulation results were in good agreement with the experimental results.
Origin of low-energy quadrupole collectivity in vibrational nuclei.
Walz, C; Fujita, H; Krugmann, A; von Neumann-Cosel, P; Pietralla, N; Ponomarev, V Yu; Scheikh-Obeid, A; Wambach, J
2011-02-11
The coupling of the giant quadrupole resonance to valence-space configurations is shown to be the origin of the formation of low-lying quadrupole-collective structures in vibrational nuclei with symmetric and mixed-symmetric character with respect to the proton-neutron degree of freedom. For the first time experimental evidence for this picture is obtained from electron- and proton scattering experiments on the nucleus ^{92}Zr that are sensitive to the relative phase of valence-space amplitudes by quantum interference.
An introduction to quadrupole-time-of-flight mass spectrometry.
Chernushevich, I V; Loboda, A V; Thomson, B A
2001-08-01
A brief introduction is presented to the basic principles and application of a quadrupole-time-of-flight (TOF) tandem mass spectrometer. The main features of reflecting TOF instruments with orthogonal injection of ions are discussed. Their operation and performance are compared with those of triple quadrupoles with electrospray ionization and matrix-assisted laser desorption/ionization (MALDI) TOF mass spectrometers. Examples and recommendations are provided for all major operational modes: mass spectrometry (MS) and tandem MS (MS/MS), precursor ion scans and studies of non-covalent complexes. Basic algorithms for liquid chromatography/MS/MS automation are discussed and illustrated by two applications.
High and ulta-high gradient quadrupole magnets
Brunk, W.O.; Walz, D.R.
1985-05-01
Small bore conventional dc quadrupoles with apertures from 1 to 2.578cm were designed and prototypes built and measured. New fabrication techniques including the use of wire electric discharge milling (EDM) to economically generate the pole tip contours and aperture tolerances are described. Magnetic measurement data from a prototype of a 1cm aperture quadrupole with possible use in future e/sup +//e/sup -/ super colliders are presented. At a current of 400A, the lens achieved a gradient of 2.475 T/cm, and had an efficiency of 76.6%.
Evaluation of a Novel Design for an Electrostatic Quadrupole Triplet Ion Beam Lens
NASA Astrophysics Data System (ADS)
Burns, L. R.; Bouas, J. D.; Matteson, S.; Weathers, D. L.
2006-12-01
We describe the design and evaluation of an electrostatic quadrupole triplet lens constructed to focus ion beams of up to 200 keV in energy. The lens was built to be used in an apparatus for fundamental sputtering studies. These studies are motivated in part by a desire to understand the influence of low-energy physiochemical processes on surfaces and atmospheres exposed to the solar wind in the inner Solar System. The lens is very compact and incorporates a feature to induce octupole fields that can correct for spherical and other octupole-order aberrations. Two methods were used to evaluate the lens: observation of the focused beam spot on a specially fabricated target while systematically varying lens voltages, and the grid-shadow technique. The latter demonstrated that octupole-order aberrations were completely corrected in one direction when the lens quadrupoles were operated individually with appropriate octupole excitations. This research was made possible by a grant from the National Science Foundation through the Physics Research Experience for Undergraduates (REU) Program at the University of North Texas. Additionally, funding was provided by the Ronald E. McNair Post-baccalaureate Achievement Program at the University of North Texas.
Influence of pressure gradient on streamwise skewness factor in turbulent boundary layer
NASA Astrophysics Data System (ADS)
Dróżdż, Artur
2014-08-01
The paper shows an effect of favourable and adverse pressure gradients on turbulent boundary layer. The skewness factor of streamwise velocity component was chosen as a measure of the pressure gradient impact. It appears that skewness factor is an indicator of convection velocity of coherent structures, which is not always equal to the average flow velocity. The analysis has been performed based upon velocity profiles measured with hot-wire technique in turbulent boundary layer with pressure gradient corresponding to turbomachinery conditions. The results show that the skewness factor decreases in the flow region subjected to FPG and increases in the APG conditions. The changes of convection velocity and skewness factor are caused by influence of large-scale motion through the mechanism called amplitude modulation. The large-scale motion is less active in FPG and more active in APG, therefore in FPG the production of vortices is random (there are no high and low speed regions), while in the APG the large-scale motion drives the production of vortices. Namely, the vortices appear only in the high-speed regions, therefore have convection velocity higher than local mean velocity. The convection velocity affects directly the turbulent sweep and ejection events. The more flow is dominated by large-scale motion the higher values takes both the convection velocity of small-scale structures and sweep events induced by them.
Using social parasitism to test reproductive skew models in a primitively eusocial wasp
Green, Jonathan P.; Cant, Michael A.; Field, Jeremy
2014-01-01
Remarkable variation exists in the distribution of reproduction (skew) among members of cooperatively breeding groups, both within and between species. Reproductive skew theory has provided an important framework for understanding this variation. In the primitively eusocial Hymenoptera, two models have been routinely tested: concessions models, which assume complete control of reproduction by a dominant individual, and tug-of-war models, which assume on-going competition among group members over reproduction. Current data provide little support for either model, but uncertainty about the ability of individuals to detect genetic relatedness and difficulties in identifying traits conferring competitive ability mean that the relative importance of concessions versus tug-of-war remains unresolved. Here, we suggest that the use of social parasitism to generate meaningful variation in key social variables represents a valuable opportunity to explore the mechanisms underpinning reproductive skew within the social Hymenoptera. We present a direct test of concessions and tug-of-war models in the paper wasp Polistes dominulus by exploiting pronounced changes in relatedness and power structures that occur following replacement of the dominant by a congeneric social parasite. Comparisons of skew in parasitized and unparasitized colonies are consistent with a tug-of-war over reproduction within P. dominulus groups, but provide no evidence for reproductive concessions. PMID:24990668
On Some Confidence Intervals for Estimating the Mean of a Skewed Population
ERIC Educational Resources Information Center
Shi, W.; Kibria, B. M. Golam
2007-01-01
A number of methods are available in the literature to measure confidence intervals. Here, confidence intervals for estimating the population mean of a skewed distribution are considered. This note proposes two alternative confidence intervals, namely, Median t and Mad t, which are simple adjustments to the Student's t confidence interval. In…
Large-scale age-dependent skewed sex ratio in a sexually dimorphic avian scavenger.
Lambertucci, Sergio A; Carrete, Martina; Donázar, José Antonio; Hiraldo, Fernando
2012-01-01
Age-dependent skewed sex ratios have been observed in bird populations, with adult males generally outnumbering females. This trend is mainly driven by higher female mortality, sometimes associated with anthropogenic factors. Despite the large amount of work on bird sex ratios, research examining the spatial stability of adult sex ratios is extremely scarce. The Andean condor (Vultur gryphus) is the only bird of prey with strong sexual dimorphism favouring males (males are 30% heavier than females). By examining data from most of its South-American range, we show that while the juvenile sex ratio is balanced, or even female-skewed, the sex ratio becomes increasing male-skewed with age, with adult males outnumbering females by >20%, and, in some cases by four times more. This result is consistent across regions and independent of the nature of field data. Reasons for this are unknown but it can be hypothesized that the progressive disappearance of females may be associated with mortality caused by anthropogenic factors. This idea is supported by the asymmetric habitat use by the two sexes, with females scavenging in more humanized areas. Whatever the cause, male-skewed adult sex ratios imply that populations of this endangered scavenger face higher risks of extinction than previously believed.
Large-Scale Age-Dependent Skewed Sex Ratio in a Sexually Dimorphic Avian Scavenger
Lambertucci, Sergio A.; Carrete, Martina; Donázar, José Antonio; Hiraldo, Fernando
2012-01-01
Age-dependent skewed sex ratios have been observed in bird populations, with adult males generally outnumbering females. This trend is mainly driven by higher female mortality, sometimes associated with anthropogenic factors. Despite the large amount of work on bird sex ratios, research examining the spatial stability of adult sex ratios is extremely scarce. The Andean condor (Vultur gryphus) is the only bird of prey with strong sexual dimorphism favouring males (males are 30% heavier than females). By examining data from most of its South-American range, we show that while the juvenile sex ratio is balanced, or even female-skewed, the sex ratio becomes increasing male-skewed with age, with adult males outnumbering females by >20%, and, in some cases by four times more. This result is consistent across regions and independent of the nature of field data. Reasons for this are unknown but it can be hypothesized that the progressive disappearance of females may be associated with mortality caused by anthropogenic factors. This idea is supported by the asymmetric habitat use by the two sexes, with females scavenging in more humanized areas. Whatever the cause, male-skewed adult sex ratios imply that populations of this endangered scavenger face higher risks of extinction than previously believed. PMID:23029488
NASA Astrophysics Data System (ADS)
Dehghan, Mehdi; Hajarian, Masoud
2012-08-01
A matrix P is called a symmetric orthogonal if P = P T = P -1. A matrix X is said to be a generalised bisymmetric with respect to P if X = X T = PXP. It is obvious that any symmetric matrix is also a generalised bisymmetric matrix with respect to I (identity matrix). By extending the idea of the Jacobi and the Gauss-Seidel iterations, this article proposes two new iterative methods, respectively, for computing the generalised bisymmetric (containing symmetric solution as a special case) and skew-symmetric solutions of the generalised Sylvester matrix equation ? (including Sylvester and Lyapunov matrix equations as special cases) which is encountered in many systems and control applications. When the generalised Sylvester matrix equation has a unique generalised bisymmetric (skew-symmetric) solution, the first (second) iterative method converges to the generalised bisymmetric (skew-symmetric) solution of this matrix equation for any initial generalised bisymmetric (skew-symmetric) matrix. Finally, some numerical results are given to illustrate the effect of the theoretical results.
Lu, Xiaosun; Huang, Yangxin
2014-07-20
It is a common practice to analyze complex longitudinal data using nonlinear mixed-effects (NLME) models with normality assumption. The NLME models with normal distributions provide the most popular framework for modeling continuous longitudinal outcomes, assuming individuals are from a homogeneous population and relying on random-effects to accommodate inter-individual variation. However, the following two issues may standout: (i) normality assumption for model errors may cause lack of robustness and subsequently lead to invalid inference and unreasonable estimates, particularly, if the data exhibit skewness and (ii) a homogeneous population assumption may be unrealistically obscuring important features of between-subject and within-subject variations, which may result in unreliable modeling results. There has been relatively few studies concerning longitudinal data with both heterogeneity and skewness features. In the last two decades, the skew distributions have shown beneficial in dealing with asymmetric data in various applications. In this article, our objective is to address the simultaneous impact of both features arisen from longitudinal data by developing a flexible finite mixture of NLME models with skew distributions under Bayesian framework that allows estimates of both model parameters and class membership probabilities for longitudinal data. Simulation studies are conducted to assess the performance of the proposed models and methods, and a real example from an AIDS clinical trial illustrates the methodology by modeling the viral dynamics to compare potential models with different distribution specifications; the analysis results are reported.
The curious anomaly of skewed judgment distributions and systematic error in the wisdom of crowds.
Nash, Ulrik W
2014-01-01
Judgment distributions are often skewed and we know little about why. This paper explains the phenomenon of skewed judgment distributions by introducing the augmented quincunx (AQ) model of sequential and probabilistic cue categorization by neurons of judges. In the process of developing inferences about true values, when neurons categorize cues better than chance, and when the particular true value is extreme compared to what is typical and anchored upon, then populations of judges form skewed judgment distributions with high probability. Moreover, the collective error made by these people can be inferred from how skewed their judgment distributions are, and in what direction they tilt. This implies not just that judgment distributions are shaped by cues, but that judgment distributions are cues themselves for the wisdom of crowds. The AQ model also predicts that judgment variance correlates positively with collective error, thereby challenging what is commonly believed about how diversity and collective intelligence relate. Data from 3053 judgment surveys about US macroeconomic variables obtained from the Federal Reserve Bank of Philadelphia and the Wall Street Journal provide strong support, and implications are discussed with reference to three central ideas on collective intelligence, these being Galton's conjecture on the distribution of judgments, Muth's rational expectations hypothesis, and Page's diversity prediction theorem.
The Curious Anomaly of Skewed Judgment Distributions and Systematic Error in the Wisdom of Crowds
Nash, Ulrik W.
2014-01-01
Judgment distributions are often skewed and we know little about why. This paper explains the phenomenon of skewed judgment distributions by introducing the augmented quincunx (AQ) model of sequential and probabilistic cue categorization by neurons of judges. In the process of developing inferences about true values, when neurons categorize cues better than chance, and when the particular true value is extreme compared to what is typical and anchored upon, then populations of judges form skewed judgment distributions with high probability. Moreover, the collective error made by these people can be inferred from how skewed their judgment distributions are, and in what direction they tilt. This implies not just that judgment distributions are shaped by cues, but that judgment distributions are cues themselves for the wisdom of crowds. The AQ model also predicts that judgment variance correlates positively with collective error, thereby challenging what is commonly believed about how diversity and collective intelligence relate. Data from 3053 judgment surveys about US macroeconomic variables obtained from the Federal Reserve Bank of Philadelphia and the Wall Street Journal provide strong support, and implications are discussed with reference to three central ideas on collective intelligence, these being Galton's conjecture on the distribution of judgments, Muth's rational expectations hypothesis, and Page's diversity prediction theorem. PMID:25406078
Tan, Kun; An, Lei; Miao, Kai; Ren, Likun; Hou, Zhuocheng; Tao, Li; Zhang, Zhenni; Wang, Xiaodong; Xia, Wei; Liu, Jinghao; Wang, Zhuqing; Xi, Guangyin; Gao, Shuai; Sui, Linlin; Zhu, De-Sheng; Wang, Shumin; Wu, Zhonghong; Bach, Ingolf; Chen, Dong-bao; Tian, Jianhui
2016-01-01
Dynamic epigenetic reprogramming occurs during normal embryonic development at the preimplantation stage. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, the skewed sex ratio, an indicator of reproductive hazards, was reported in bovine and porcine embryos and even human IVF newborns. However, since the first case of sex skewing reported in 1991, the underlying mechanisms remain unclear. We reported herein that sex ratio is skewed in mouse IVF offspring, and this was a result of female-biased peri-implantation developmental defects that were originated from impaired imprinted X chromosome inactivation (iXCI) through reduced ring finger protein 12 (Rnf12)/X-inactive specific transcript (Xist) expression. Compensation of impaired iXCI by overexpression of Rnf12 to up-regulate Xist significantly rescued female-biased developmental defects and corrected sex ratio in IVF offspring. Moreover, supplementation of an epigenetic modulator retinoic acid in embryo culture medium up-regulated Rnf12/Xist expression, improved iXCI, and successfully redeemed the skewed sex ratio to nearly 50% in mouse IVF offspring. Thus, our data show that iXCI is one of the major epigenetic barriers for the developmental competence of female embryos during preimplantation stage, and targeting erroneous epigenetic modifications may provide a potential approach for preventing IVF-associated complications. PMID:26951653
Yue, Yang; Zhang, Bo; Wang, Qiang; Lofland, Rob; O'Neil, Jason; Anderson, Jon
2016-03-21
Dual-polarization quadrature amplitude modulation (DP-QAM) is one of the feasible paths towards 100-Gb/s, 400-Gb/s and 1-Tb/s optical fiber communications systems. For DP-QAM transmitter, the time mismatch between the in-phase and quadrature (IQ) or x-polarized and y-polarized (XY) tributary channels is known as the IQ or XY skew. Large uncompensated IQ or XY skew can significantly degrade the optical fiber communications system performance. Sometimes, time-interleaved return-to-zero (RZ) DP signal is preferred with lower nonlinear polarization scattering induced penalty. In this work, detection and alignment of DP-QAM transmitter IQ and XY skews using reconfigurable interference is experimentally demonstrated. For IQ skew detection, a total dynamic range of 26.4 dB is achieved with ~1-dB power change for 0.5-ps skew from well alignment. For XY skew detection, it shows 23.2-dB dynamic range, and ~1.5-dB power change is achieved for 1-ps XY skew. Fast detection algorithm for arbitrary skew is also proposed and experimentally verified. The scheme is compatible with different modulation formats, flexible data sequences, and variable waveforms.
Magnetic field data on Fermilab Energy-Saver quadrupoles
Schmidt, E.E.; Brown, B.C.; Cooper, W.E.; Fisk, H.E.; Gross, D.A.; Hanft, R.; Ohnuma, S.; Turkot, F.T.
1983-03-01
The Fermilab Energy Saver/Doubler (Tevatron) accelerator contains 216 superconducting quadrupole magnets. Before installation in the Tevatron ring, these magnets plus an additional number of spares were extensively tested at the Fermilab Magnet Test Facility (MTF). Details on the results of the tests are presented here.
A LIGA Fabricated Quadrupole Array for Mass Spectroscopy
NASA Technical Reports Server (NTRS)
Jackson, K.; Wiberg, D. V.; Hecht, M. H.; Orient, O. J.; Chutjian, A.; Yee, K.; Fuerstenau, S.; Brennen, R. A.; Hruby, J.; Bonivert, W.
1997-01-01
A linear array of nine quadrupoles was fabricated using the LIGA process. Pole heights ranging from 1 to 3 mm were fabricated using synchrotron X-ray exposures to form free standing polymethylmethacrylate (PMMA) molds into which copper, gold or nickel were electroplated.
Driving a quadrupole mass spectrometer via an isolating stage
NASA Technical Reports Server (NTRS)
Chutjian, Ara (Inventor); Aalami, Dean (Inventor); Darrach, Murray (Inventor); Orient, Otto (Inventor)
2002-01-01
Driving a quadrupole mass spectrometer includes obtaining an air core transformer with a primary and a secondary, matching the secondary to the mass spectrometer, and driving the primary based on first and second voltage levels. Driving of the primary is via an isolating stage that minimizes low level drive signal coupling.
Large energy-spread beam diagnostics through quadrupole scans
Frederico, Joel; Adli, Erik; Hogan, Mark; Raubenheimer, Tor
2012-12-21
The Facility for Advanced Accelerator and Experimental Tests (FACET) is a new user facility at the SLAC National Accelerator Laboratory, servicing next-generation accelerator experiments. The 1.5% RMS energy spread of the FACET beam causes large chromatic aberrations in optics. These aberrations necessitate updated quadrupole scan fits to remain accurate.
Large energy-spread beam diagnostics through quadrupole scans
Frederico, Joel; Adli, Erik; Hogan, Mark; Raubenheimer, Tor
2013-01-01
The Facility for Advanced Accelerator and Experimental Tests (FACET) is a new user facility at the SLAC National Accelerator Laboratory, servicing next-generation accelerator experiments. The 1.5% RMS energy spread of the FACET beam causes large chromatic aberrations in optics. These aberrations necessitate updated quadrupole scan fits to remain accurate.
NASA Astrophysics Data System (ADS)
Yue, Yang; Zhang, Bo; Wang, Qiang; Lofland, Rob; O'Neil, Jason; Anderson, Jon
2016-02-01
DP-QAM is one of the feasible paths towards 100Gbps, 400Gbps and 1Tbps optical communications systems. For DPQAM transmitter, the time mismatch between the XY tributary channels is known as the XY skew. Large uncompensated XY skew can significantly degrade the system performance. Sometimes, time-interleaved return-to-zero DP signal is preferred with lower nonlinear polarization scattering induced penalty. In this work, XY skew detection and alignment of dual-polarization optical quadrature amplitude transmitter using reconfigurable interference is experimentally demonstrated with >23-dB dynamic range. ~1.5-dB power change is achieved for 1-ps XY skew. Fast detecting scheme for arbitrary skew measurement is also experimentally verified. The scheme is compatible with different modulation formats, data sequences, and waveforms.
Reynolds, Pamela L; Bruno, John F
2012-01-01
Widespread overharvesting of top consumers of the world's ecosystems has "skewed" food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs), while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms) generally emerged in communities with greater predator to prey richness (the more top-rich food webs). These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions.
Reproductive skew and relatedness in social groups of European badgers, Meles meles.
Dugdale, Hannah L; Macdonald, David W; Pope, Lisa C; Johnson, Paul J; Burke, Terry
2008-04-01
Reproductive skew is a measure of the proportion of individuals of each sex that breed in a group and is a valuable measure for understanding the evolution and maintenance of sociality. Here, we provide the first quantification of reproductive skew within social groups of European badgers Meles meles, throughout an 18-year study in a high-density population. We used 22 microsatellite loci to analyse within-group relatedness and demonstrated that badger groups contained relatives. The average within-group relatedness was high (R = 0.20) and approximately one-third of within-group dyads were more likely to represent first-order kin than unrelated pairs. Adult females within groups had higher pairwise relatedness than adult males, due to the high frequency of extra-group paternities, rather than permanent physical dispersal. Spatial clustering of relatives occurred among neighbouring groups, which we suggest was due to the majority of extra-group paternities being attributable to neighbouring males. Reproductive skew was found among within-group candidate fathers (B = 0.26) and candidate mothers (B = 0.07), but not among breeding individuals; our power to detect skew in the latter was low. We use these results to evaluate reproductive skew models. Although badger society best fits the assumptions of the incomplete-control models, our results were not consistent with their predictions. We suggest that this may be due to female control of paternity, female-female reproductive suppression occurring only in years with high food availability resulting in competition over access to breeding sites, extra-group paternity masking the benefits of natal philopatry, and/or the inconsistent occurrence of hierarchies that are linear when established.
Wikberg, Eva C; Jack, Katharine M; Fedigan, Linda M; Campos, Fernando A; Yashima, Akiko S; Bergstrom, Mackenzie L; Hiwatashi, Tomohide; Kawamura, Shoji
2017-01-01
Reproductive skew in multimale groups may be determined by the need for alpha males to offer reproductive opportunities as staying incentives to subordinate males (concessions), by the relative fighting ability of the alpha male (tug-of-war) or by how easily females can be monopolized (priority-of-access). These models have rarely been investigated in species with exceptionally long male tenures, such as white-faced capuchins, where female mate choice for novel unrelated males may be important in shaping reproductive skew. We investigated reproductive skew in white-faced capuchins at Sector Santa Rosa, Costa Rica, using 20 years of demographic, behavioural and genetic data. Infant survival and alpha male reproductive success were highest in small multimale groups, which suggests that the presence of subordinate males can be beneficial to the alpha male, in line with the concession model's assumptions. None of the skew models predicted the observed degree of reproductive sharing, and the probability of an alpha male producing offspring was not affected by his relatedness to subordinate males, whether he resided with older subordinate males, whether he was prime aged, the number of males or females in the group or the number of infants conceived within the same month. Instead, the alpha male's probability of producing offspring decreased when he was the sire of the mother, was weak and lacked a well-established position and had a longer tenure. Because our data best supported the inbreeding avoidance hypothesis and female choice for strong novel mates, these hypotheses should be taken into account in future skew models.
Analysis of gamma-ray burst duration distribution using mixtures of skewed distributions
NASA Astrophysics Data System (ADS)
Tarnopolski, M.
2016-05-01
Two classes of gamma-ray bursts (GRBs) have been confidently identified thus far and are prescribed to different physical scenarios - neutron star-neutron star or neutron star-black hole mergers, and collapse of massive stars, for short and long GRBs, respectively. A third, intermediate in duration class, was suggested to be present in previous catalogues, such as Burst Alert and Transient Source Explorer (BATSE) and Swift, based on statistical tests regarding a mixture of two or three lognormal distributions of T90. However, this might possibly not be an adequate model. This paper investigates whether the distributions of log T90 from BATSE, Swift, and Fermi are described better by a mixture of skewed distributions rather than standard Gaussians. Mixtures of standard normal, skew-normal, sinh-arcsinh and alpha-skew-normal distributions are fitted using a maximum likelihood method. The preferred model is chosen based on the Akaike information criterion. It is found that mixtures of two skew-normal or two sinh-arcsinh distributions are more likely to describe the observed duration distribution of Fermi than a mixture of three standard Gaussians, and that mixtures of two sinh-arcsinh or two skew-normal distributions are models competing with the conventional three-Gaussian in the case of BATSE and Swift. Based on statistical reasoning, and it is shown that other phenomenological models may describe the observed Fermi, BATSE, and Swift duration distributions at least as well as a mixture of standard normal distributions, and the existence of a third (intermediate) class of GRBs in Fermi data is rejected.
Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer.
Gallien, Sebastien; Duriez, Elodie; Crone, Catharina; Kellmann, Markus; Moehring, Thomas; Domon, Bruno
2012-12-01
There is an immediate need for improved methods to systematically and precisely quantify large sets of peptides in complex biological samples. To date protein quantification in biological samples has been routinely performed on triple quadrupole instruments operated in selected reaction monitoring mode (SRM), and two major challenges remain. Firstly, the number of peptides to be included in one survey experiment needs to be increased to routinely reach several hundreds, and secondly, the degree of selectivity should be improved so as to reliably discriminate the targeted analytes from background interferences. High resolution and accurate mass (HR/AM) analysis on the recently developed Q-Exactive mass spectrometer can potentially address these issues. This instrument presents a unique configuration: it is constituted of an orbitrap mass analyzer equipped with a quadrupole mass filter as the front-end for precursor ion mass selection. This configuration enables new quantitative methods based on HR/AM measurements, including targeted analysis in MS mode (single ion monitoring) and in MS/MS mode (parallel reaction monitoring). The ability of the quadrupole to select a restricted m/z range allows one to overcome the dynamic range limitations associated with trapping devices, and the MS/MS mode provides an additional stage of selectivity. When applied to targeted protein quantification in urine samples and benchmarked with the reference SRM technique, the quadrupole-orbitrap instrument exhibits similar or better performance in terms of selectivity, dynamic range, and sensitivity. This high performance is further enhanced by leveraging the multiplexing capability of the instrument to design novel acquisition methods and apply them to large targeted proteomic studies for the first time, as demonstrated on 770 tryptic yeast peptides analyzed in one 60-min experiment. The increased quality of quadrupole-orbitrap data has the potential to improve existing protein
A final-focus magnet for PEP-II
Taylor, C.E.; Caspi, S.; Saho, N.
1994-10-17
A compact quadrupole magnet has been designed for the final-focus of the 3GeV {times} 9GeV PEP II B-factory collider being built at SLAC. The magnet system must fit within the particle detector, has no iron, and consists of four nested separately controlled magnets: a two-layer 11.95 T/m quadrupole; a horizontal dipole; a vertical dipole; and a 1.5T solenoid. The 1.1 m long magnet must produce a highly uniform quadrupole field in the 120 mm ID beam pipe. The cryostat is 140 mm ID. (warm), 314 mm OD, and approximately 1.5 m long. The very compact cryogenic suspension system using Ti alloy plates is designed to withstand large forces due to interaction between the field of the detector solenoid and the four nested magnets. Cryogenic services and magnet leads are provided through a single flexible transfer line approximately 4m long.
Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping
2017-01-17
The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.
Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping
2015-11-10
The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.
Design and performance of the PEP-II B-Factory HER QDA quadrupole magnet
Swan, J.; Behne, D.; Kendall, C.M.; Yamamoto, R.; Yokota, T.; Tanabe, J.
1997-10-01
The High Energy Ring (HER) in Stanford Linear Accelerator Center`s PEP-II B-Factory employs two high field quality quadrupole magnets, labeled QD4, for final horizontal beam de-focusing at a gradient of {approximately}75.65 kG/m. An asymmetric, septum quadrupole design is required for QD4. Due to space constraints, the magnetic field is shaped with both the iron and the coil. Each coil has fifteen conductors. A perturbation analysis was performed using the Poisson code in order to locate the ideal position of the individual conductors. Manufacturing and assembly tolerances of +/- 0.5 mm of each conductor were required to maintain an integrated field quality of multipole content of b{sub n}/b{sub 2}{le}0.0001 for n=3-15 at a radius of 59.0 mm. The steel core of the magnet is 1.425 m long and is comprised of 1.5 mm thick laminations. A cut out in the steel core is required to allow the Low Energy Ring beam to pass through the side of the magnet. A double shield is in place to allow the LER beam to remain field free. The pole tip shape is a simple hyperbola without any end contours. The design and performance of the QD4 magnet is presented.
Construction engineering of steel tub-girder bridge systems for skew effects
NASA Astrophysics Data System (ADS)
Jimenez Chong, Juan Manuel
Closed structural sections, such as those having circular, rectangular or trapezoidal shape, possess high rotational rigidity when compared to open sections such as I-girders. The high torsional rigidity of closed sections makes them ideal for use in highly curved bridges. In this case, the geometry of the bridge results in large torsional forces. Because of structural efficiency and economy reasons, most of these closed-section bridges consist of a trapezoidal cross-section, with a top concrete slab and bottom and side steel plates. The slab is cast after the steel is erected and thus a system of internal diaphragms and braces is necessary to stabilize the system during erection. During the steel erection and the early stages of the concrete deck placement, the section can be considered as quasi-closed as the top concrete flange has not been cast or is not yet effective. During steel erection, undetermined and/or large torsional forces and/or displacements may result in fit-up problems requiring large stresses to overcome. During concrete deck placement, the undetermined displacements can affect the control of the deck thickness and the final deck geometry, such as the alignment of deck joints and the matching of stages in phased constructions projects. Due to the interactions between their various components, the behavior of curved and skewed tub-girder bridges is significantly more complex than that of straight bridges. When skewed supports are used in tub-girders, the interaction of the girder bending rotations and the displacement constraints induced by the skewed support diaphragms causes twisting of the girders at the supports. These twist rotations introduce additional torques into the system. Both curvature and skew can cause design and construction difficulties, especially at the supports, where the corresponding steel dead load deflections and the large torsional stiffness of the girders may lead to large fit-up forces. Currently, the general
Wolf, Ruth E.; Adams, Monique
2015-01-01
Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.
A reciprocity law and the skew Pieri rule for the symplectic group
NASA Astrophysics Data System (ADS)
Howe, Roger; Lávička, Roman; Lee, Soo Teck; Souček, Vladimír
2017-03-01
We use the theory of skew duality to show that decomposing the tensor product of k irreducible representations of the symplectic group Sp2 m=Sp2 m(ℂ ) is equivalent to branching from Sp2n to Sp2 n1×⋯ ×Sp2 nk , where n ,n1,… ,nk are positive integers such that n =n1+⋯ +nk and the njs depend on m as well as the representations in the tensor product. Using this result and a work of Lepowsky, we obtain a skew Pieri rule for Sp2m, i.e., a description of the irreducible decomposition of the tensor product of an irreducible representation of the symplectic group Sp2m with a fundamental representation.
Dip and anisotropy effects on flow using a vertically skewed model grid.
Hoaglund, John R; Pollard, David
2003-01-01
Darcy flow equations relating vertical and bedding-parallel flow to vertical and bedding-parallel gradient components are derived for a skewed Cartesian grid in a vertical plane, correcting for structural dip given the principal hydraulic conductivities in bedding-parallel and bedding-orthogonal directions. Incorrect-minus-correct flow error results are presented for ranges of structural dip (0 < or = theta < or = 90) and gradient directions (0 < or = phi < or = 360). The equations can be coded into ground water models (e.g., MODFLOW) that can use a skewed Cartesian coordinate system to simulate flow in structural terrain with deformed bedding planes. Models modified with these equations will require input arrays of strike and dip, and a solver that can handle off-diagonal hydraulic conductivity terms.
Remaining useful life prediction for an adaptive skew-Wiener process model
NASA Astrophysics Data System (ADS)
Huang, Zeyi; Xu, Zhengguo; Ke, Xiaojie; Wang, Wenhai; Sun, Youxian
2017-03-01
Predicting the remaining useful life for operational devices plays a critical role in prognostics and health management. As the models based on the stochastic processes are widely used for characterizing the degradation trajectory, an adaptive skew-Wiener model, which is much more flexible than traditional stochastic process models, is proposed to model the degradation drift of industrial devices. To make full use of the prior knowledge and the historical information, an on-line filtering algorithm is proposed for state estimation, a two-stage algorithm is adopted to estimate unknown parameters as well. For remaining useful life prediction, a novel result is presented with an explicit form based on the closed skew normal distribution. Finally, sufficient Monte Carlo simulations and an application for ball bearings in rotating electrical machines are used to validate our approach.
Higher reproductive skew among birds than mammals in cooperatively breeding species.
Raihani, Nichola J; Clutton-Brock, Tim H
2010-10-23
While competition for limited breeding positions is a common feature of group life, species vary widely in the extent to which reproduction is shared among females ('reproductive skew'). In recent years, there has been considerable debate over the mechanisms that generate variation in reproductive skew, with most evidence suggesting that subordinates breed when dominants are unable to prevent them from doing so. Here, we suggest that viviparity reduces the ability of dominant females to control subordinate reproduction and that, as a result, dominant female birds are more able than their mammal counterparts to prevent subordinates from breeding. Empirical data support this assertion. This perspective may increase our understanding of how cooperative groups form and are stabilized in nature.
Verbruggen, Frederick; Chambers, Christopher D; Logan, Gordon D
2013-03-01
The stop-signal paradigm is a popular method for examining response inhibition and impulse control in psychology, cognitive neuroscience, and clinical domains because it allows the estimation of the covert latency of the stop process: the stop-signal reaction time (SSRT). In three sets of simulations, we examined to what extent SSRTs that were estimated with the popular mean and integration methods were influenced by the skew of the reaction time distribution and the gradual slowing of the response latencies. We found that the mean method consistently overestimated SSRT. The integration method tended to underestimate SSRT when response latencies gradually increased. This underestimation bias was absent when SSRTs were estimated with the integration method for smaller blocks of trials. Thus, skewing and response slowing can lead to spurious inhibitory differences. We recommend that the mean method of estimating SSRT be abandoned in favor of the integration method.
Optimization Of Mean-Semivariance-Skewness Portfolio Selection Model In Fuzzy Random Environment
NASA Astrophysics Data System (ADS)
Chatterjee, Amitava; Bhattacharyya, Rupak; Mukherjee, Supratim; Kar, Samarjit
2010-10-01
The purpose of the paper is to construct a mean-semivariance-skewness portfolio selection model in fuzzy random environment. The objective is to maximize the skewness with predefined maximum risk tolerance and minimum expected return. Here the security returns in the objectives and constraints are assumed to be fuzzy random variables in nature and then the vagueness of the fuzzy random variables in the objectives and constraints are transformed into fuzzy variables which are similar to trapezoidal numbers. The newly formed fuzzy model is then converted into a deterministic optimization model. The feasibility and effectiveness of the proposed method is verified by numerical example extracted from Bombay Stock Exchange (BSE). The exact parameters of fuzzy membership function and probability density function are obtained through fuzzy random simulating the past dates.
Homoclinic snaking in plane Couette flow: bending, skewing, and finite-size effects
NASA Astrophysics Data System (ADS)
Gibson, John; Schneider, Tobias
2016-11-01
Invariant solutions of shear flows have recently been extended from spatially periodic solutions in minimal flow units to spatially localized solutions on extended domains. One set of spanwise-localized solutions of plane Couette flow exhibits homoclinic snaking, a process by which steady-state solutions grow additional structure smoothly at their fronts when continued parametrically. In this talk, we present a numerical study of the snaking solutions, generalizing beyond the fixed streamwise wavelength of previous studies. We find a number of new solution features, including bending, skewing, and finite-size effects. We establish the parameter regions over which snaking occurs and show that the finite-size effects of the traveling-wave solution are due to a coupling between its fronts and interior that results from its shift-reflect symmetry. A new winding solution of plane Couette flow is derived from a strongly-skewed localized equilibrium.
Research on the optimal structure configuration of dither RLG used in skewed redundant INS
NASA Astrophysics Data System (ADS)
Gao, Chunfeng; Wang, Qi; Wei, Guo; Long, Xingwu
2016-05-01
The actual combat effectiveness of weapon equipment is restricted by the performance of Inertial Navigation System (INS), especially in high reliability required situations such as fighter, satellite and submarine. Through the use of skewed sensor geometries, redundant technique has been applied to reduce the cost and improve the reliability of the INS. In this paper, the structure configuration and the inertial sensor characteristics of Skewed Redundant Strapdown Inertial Navigation System (SRSINS) using dithered Ring Laser Gyroscope (RLG) are analyzed. For the dither coupling effects of the dither gyro, the system measurement errors can be amplified either the individual gyro dither frequency is near one another or the structure of the SRSINS is unreasonable. Based on the characteristics of RLG, the research on coupled vibration of dithered RLG in SRSINS is carried out. On the principle of optimal navigation performance, optimal reliability and optimal cost-effectiveness, the comprehensive evaluation scheme of the inertial sensor configuration of SRINS is given.
Tang, An-Min; Tang, Nian-Sheng
2015-02-28
We propose a semiparametric multivariate skew-normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited model is that we relax the commonly used normality assumption for random effects and within-subject error by using a centered Dirichlet process prior to specify the random effects distribution and using a multivariate skew-normal distribution to specify the within-subject error distribution and model trajectory functions of longitudinal responses semiparametrically. A Bayesian approach is proposed to simultaneously obtain Bayesian estimates of unknown parameters, random effects and nonparametric functions by combining the Gibbs sampler and the Metropolis-Hastings algorithm. Particularly, a Bayesian local influence approach is developed to assess the effect of minor perturbations to within-subject measurement error and random effects. Several simulation studies and an example are presented to illustrate the proposed methodologies.
Truck loading positions for maximum live load girder moment in skewed integral bridges
NASA Astrophysics Data System (ADS)
Yalcin, O. Fatih
2015-12-01
In this study, the effect of the longitudinal and transverse truck positions on the distribution of live load moment among the girders of skewed integral abutment bridges (SIBs) is investigated. For this purpose, three dimensional finite element models (FEMs) of several single-span SIBs are built and analyzed. In the analyses, bridges with various skew angles under all possible single and double truck loading positions both in longitudinal and transverse directions are considered. An automated analysis procedure managed by a visual basic program is developed to obtain the structural models and apply the wheel loads of trucks. The finite element analyses (FEA) results are then used to find the most critical loading cases of single truck and adjacent two trucks for the live load moment in the girders of SIBs. The results revealed that, the trucks should be placed nearby the midline of the bridge deck in a diagonal manner.
Changing skewness: an early warning signal of regime shifts in ecosystems.
Guttal, Vishwesha; Jayaprakash, Ciriyam
2008-05-01
Empirical evidence for large-scale abrupt changes in ecosystems such as lakes and vegetation of semi-arid regions is growing. Such changes, called regime shifts, can lead to degradation of ecological services. We study simple ecological models that show a catastrophic transition as a control parameter is varied and propose a novel early warning signal that exploits two ubiquitous features of ecological systems: nonlinearity and large external fluctuations. Either reduced resilience or increased external fluctuations can tip ecosystems to an alternative stable state. It is shown that changes in asymmetry in the distribution of time series data, quantified by changing skewness, is a model-independent and reliable early warning signal for both routes to regime shifts. Furthermore, using model simulations that mimic field measurements and a simple analysis of real data from abrupt climate change in the Sahara, we study the feasibility of skewness calculations using data available from routine monitoring.
Olfactory learning skews mushroom body output pathways to steer behavioral choice in Drosophila
Owald, David; Waddell, Scott
2015-01-01
Learning permits animals to attach meaning and context to sensory stimuli. How this information is coded in neural networks in the brain, and appropriately retrieved and utilized to guide behavior, is poorly understood. In the fruit fly olfactory memories of particular value are represented within sparse populations of odor-activated Kenyon cells (KCs) in the mushroom body ensemble. During learning reinforcing dopaminergic neurons skew the mushroom body network by driving zonally restricted plasticity at synaptic junctions between the KCs and subsets of the overall small collection of mushroom body output neurons. Reactivation of this skewed KC-output neuron network retrieves memory of odor valence and guides appropriate approach or avoidance behavior. PMID:26496148
Diabatization based on the dipole and quadrupole: The DQ method
Hoyer, Chad E.; Xu, Xuefei; Ma, Dongxia; Gagliardi, Laura E-mail: truhlar@umn.edu; Truhlar, Donald G. E-mail: truhlar@umn.edu
2014-09-21
In this work, we present a method, called the DQ scheme (where D and Q stand for dipole and quadrupole, respectively), for transforming a set of adiabatic electronic states to diabatic states by using the dipole and quadrupole moments to determine the transformation coefficients. It is more broadly applicable than methods based only on the dipole moment; for example, it is not restricted to electron transfer reactions, and it works with any electronic structure method and for molecules with and without symmetry, and it is convenient in not requiring orbital transformations. We illustrate this method by prototype applications to two cases, LiH and phenol, for which we compare the results to those obtained by the fourfold-way diabatization scheme.
Performance of An Adjustable Strength Permanent Magnet Quadrupole
Gottschalk, S.C.; DeHart, T.E.; Kangas, K.W.; Spencer, C.M.; Volk, J.T.; /Fermilab
2006-03-01
An adjustable strength permanent magnet quadrupole suitable for use in Next Linear Collider has been built and tested. The pole length is 42cm, aperture diameter 13mm, peak pole tip strength 1.03Tesla and peak integrated gradient * length (GL) is 68.7 Tesla. This paper describes measurements of strength, magnetic CL and field quality made using an air bearing rotating coil system. The magnetic CL stability during -20% strength adjustment proposed for beam based alignment was < 0.2 microns. Strength hysteresis was negligible. Thermal expansion of quadrupole and measurement parts caused a repeatable and easily compensated change in the vertical magnetic CL. Calibration procedures as well as CL measurements made over a wider tuning range of 100% to 20% in strength useful for a wide range of applications will be described. The impact of eddy currents in the steel poles on the magnetic field during strength adjustments will be reported.
Chlorine Nuclear Quadrupole Hyperfine Structure in the Vinyl - Chloride Complex
NASA Astrophysics Data System (ADS)
Leung, Helen O.; Marshall, Mark D.; Messinger, Joseph P.
2015-06-01
The microwave spectrum of the vinyl chloride--hydrogen chloride complex, presented at last year's symposium, is greatly complicated by the presence of two chlorine nuclei as well as an observed, but not fully explained tunneling motion. Indeed, although it was possible at that time to demonstrate conclusively that the complex is nonplanar, the chlorine nuclear quadrupole hyperfine splitting in the rotational spectrum resisted analysis. With higher resolution, Balle-Flygare Fourier transform microwave spectra, the hyperfine structure has been more fully resolved, but appears to be perturbed for some rotational transitions. It appears that knowledge of the quadrupole coupling constants will provide essential information regarding the structure of the complex, specifically the location of the hydrogen atom in HCl. Our progress towards obtaining values for these constants will be presented.
Quadrupole association and dissociation of hydrogen in the early Universe
NASA Astrophysics Data System (ADS)
Forrey, Robert C.
2016-10-01
Radiative association and photodissociation rates are calculated for quadrupole transitions of H2. A complete set of bound and unbound states are included in a self-consistent master equation to obtain steady-state concentrations for a dilute system of hydrogen atoms and molecules. Phenomenological rate constants computed from the steady-state concentrations satisfy detailed balance for any combination of matter and radiation temperature. Simple formulas are derived for expressing the steady-state distributions in terms of equilibrium distributions. The rate constant for radiative association is found to be generally small for all temperature combinations. The photodissociation rate constant for quadrupole transitions is found to dominate the rate constants for other H2 photodestruction mechanisms for {T}{{R}} ≤slant 3000 K. Implications for the formation and destruction of H2 in the early Universe are discussed.
Diabatization based on the dipole and quadrupole: The DQ method
NASA Astrophysics Data System (ADS)
Hoyer, Chad E.; Xu, Xuefei; Ma, Dongxia; Gagliardi, Laura; Truhlar, Donald G.
2014-09-01
In this work, we present a method, called the DQ scheme (where D and Q stand for dipole and quadrupole, respectively), for transforming a set of adiabatic electronic states to diabatic states by using the dipole and quadrupole moments to determine the transformation coefficients. It is more broadly applicable than methods based only on the dipole moment; for example, it is not restricted to electron transfer reactions, and it works with any electronic structure method and for molecules with and without symmetry, and it is convenient in not requiring orbital transformations. We illustrate this method by prototype applications to two cases, LiH and phenol, for which we compare the results to those obtained by the fourfold-way diabatization scheme.
Development and Test of TQC models, LARP Technological Quadrupole Magnets
Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Nobrega, F.; Novitski, I.; Orris, D.; Tartaglia, M.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hafalia, A.R.; Sabbi, G.
2008-06-01
In support of the development of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the development and test of TQC01b, the second TQC model, and the experience during construction of TQE02 and TQC02, subsequent models in the series. ANSYS analysis of the mechanical structure, its underlying assumptions, and changes based on experience with TQC01 are presented and discussed. Construction experience, in-process measurements, and modifications to the assembly since TQC01 are described. The test results presented here include magnet strain and quench performance during training of TQC01b, as well as quench studies of current ramp rate dependence.
ELECTRON TRAPPING IN WIGGLER AND QUADRUPOLE MAGNETS OF CESRTA
Wang, Lanfa; Huang, Xiaobiao; Pivi, Mauro; /SLAC
2010-08-25
The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D [1]. One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in the wiggler and quadrupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with long lifetime in a quadrupole magnet due to the mirror field trapping mechanism and photoelectrons produced in the wiggler zero field zone have long lifetime due to their complicated trajectory.
Measuring skewness of red blood cell deformability distribution by laser ektacytometry
Nikitin, S Yu; Priezzhev, A V; Lugovtsov, A E; Ustinov, V D
2014-08-31
An algorithm is proposed for measuring the parameters of red blood cell deformability distribution based on laser diffractometry of red blood cells in shear flow (ektacytometry). The algorithm is tested on specially prepared samples of rat blood. In these experiments we succeeded in measuring the mean deformability, deformability variance and skewness of red blood cell deformability distribution with errors of 10%, 15% and 35%, respectively. (laser biophotonics)
Cloud Fingerprinting: Using Clock Skews To Determine Co Location Of Virtual Machines
2016-09-01
aspect of our life, the sheer quantity of data and applications has grown at an exponential rate. In response, cloud computing has quickly become the...cheap prices while still gaining significant profits. In fact, current forecasts show continual growth in this market over the next ten years [2...packets with exponentially -distributed delay values. Both of these models are used to establish performance envelopes for the skew estimators. However, as
Reynolds, Pamela L.; Bruno, John F.
2012-01-01
Widespread overharvesting of top consumers of the world’s ecosystems has “skewed” food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs), while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms) generally emerged in communities with greater predator to prey richness (the more top-rich food webs). These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions. PMID:22693549
Efficient skew-angle cladding-pumped tunable narrow-linewidth Yb-doped fiber laser.
Jelger, Pär; Laurell, Fredrik
2007-12-15
A skew-angle cladding-pumped tunable Yb-doped fiber laser is presented. The laser was tunable over more than 30 nm, from 1022 to 1055 nm, by employing a volume Bragg grating in a retroreflector configuration as one of the cavity delimiters. Output powers in excess of 4.3 W were recorded with a spectral bandwidth of 5 GHz and an M(2) value below 1.3 over the whole tuning range.
Quadrupole Ion/Neutral Mass Spectrometer for Space Shuttle Applications.
1986-04-07
fCon linue on reverse if neeec’O ond ientify by block number) _ A Quadrupole Ion/Neutral Mass Spectrometer (QINMS) was developed for the fourth flight...The charging of spacecraft surfaces, Rev. Geophys. and Space Phys. 19:577-616. 16. Paul , W., Rheinhard, H. P., and von Zahn, U. (1958) Das elektrische...massenfilter als massenspektrometer und isotopentrenner, Z. Ph sik 152:143-182. Paul , W., and Steinwedel, H. (1953) Z. Naturforsch 8a:448. Paul , W
Magnetic performance of new Fermilab high gradient quadrupoles
Hanft, R.; Brown, B.C.; Carson, J.A.; Gourlay, S.A.; Lamm, M.J.; McInturff, A.D.; Mokhtarani, A.; Riddiford, A.
1991-05-01
For the Fermilab Tevatron low beta insertions installed in 1990--1991 as part of a luminosity upgrade there were built approximately 35 superconducting cold iron quadrupoles utilizing a two layer cos 2{theta} coil geometry with 76 mm diameter aperature. The field harmonics and strengths of these magnets obtained by measurement at cryogenic conditions are presented. Evidence for a longitudinal periodic structure in the remnant field is shown. 6 refs., 2 figs., 3 tabs.
Free vibration of composite skewed cylindrical shell panel by finite element method
NASA Astrophysics Data System (ADS)
Haldar, Salil
2008-03-01
In this paper a composite triangular shallow shell element has been used for free vibration analysis of laminated composite skewed cylindrical shell panels. In the present element first-order shear deformation theory has been incorporated by taking transverse displacement and bending rotations as independent field variables. The interpolation function used to approximate transverse displacement is one order higher than for bending rotations. This has made the element free from locking in shear. Two types of mass lumping schemes have been recommended. In one of the mass lumping scheme the effect of rotary inertia has been incorporated in the element formulations. Free vibration of skewed composite cylindrical shell panels having different thickness to radius ratios ( h/R=0.01-0.2), length to radius ratios ( L/R), number of layers and fiber orientation angles have been analyzed following the shallow shell method. The results for few examples obtained in the present analysis have compared with the published results. Some new results of composite skewed cylindrical shell panels have been presented which are expected to be useful to future research in this direction.
Oliva, Michele; Dunand, Christophe
2007-01-01
Arabidopsis seedlings growing on inclined agar surfaces exhibit characteristic root behaviours called 'waving' and 'skewing': the former consists of a series of undulations, whereas the latter is a deviation from the direction of gravity. Even though the precise basis of these growth patterns is not well understood, both gravity and the contact between the medium and the root are considered to be the major players that result in these processes. The influence of these forces on root surface-dependent behaviours can be verified by growing seedlings at different gel pitches: plants growing on vertical plates present roots with slight waving and skewing when compared with seedlings grown on plates held at minor angles of < 90 degrees . However, other factors are thought to modulate root growth on agar; for instance, it has been demonstrated that the presence and concentration of certain compounds in the medium (such as sucrose) and of drugs able to modify the plant cell cytoskeleton also affect skewing and waving. The recent discovery of an active role of ethylene on surface-dependent root behaviour, and the finding of new mutants showing anomalous growth, pave the way for a more detailed description of these phenomena.
A Bayesian estimate of the concordance correlation coefficient with skewed data.
Feng, Dai; Baumgartner, Richard; Svetnik, Vladimir
2015-01-01
Concordance correlation coefficient (CCC) is one of the most popular scaled indices used to evaluate agreement. Most commonly, it is used under the assumption that data is normally distributed. This assumption, however, does not apply to skewed data sets. While methods for the estimation of the CCC of skewed data sets have been introduced and studied, the Bayesian approach and its comparison with the previous methods has been lacking. In this study, we propose a Bayesian method for the estimation of the CCC of skewed data sets and compare it with the best method previously investigated. The proposed method has certain advantages. It tends to outperform the best method studied before when the variation of the data is mainly from the random subject effect instead of error. Furthermore, it allows for greater flexibility in application by enabling incorporation of missing data, confounding covariates, and replications, which was not considered previously. The superiority of this new approach is demonstrated using simulation as well as real-life biomarker data sets used in an electroencephalography clinical study. The implementation of the Bayesian method is accessible through the Comprehensive R Archive Network.
Deflection and stress analysis of stiffened orthotropic skew panels under uniform transverse loading
NASA Astrophysics Data System (ADS)
Tripathy, A. K.; Pang, Su-Seng
Skew plates with different orientations behave in a manner quite different from those of rectangular plates. An analysis has been carried out for the deflections and stresses of plates with various skew angles subjected to uniformly distributed tranverse loads. It has been thought that the excess deflection at the rear tip of a cantilever plate can be reduced by applying stiffeners along the length of the plate. These stiffeners can also reduce the stresses at the root drastically. The skin-stringer connections in aircraft can be treated as a problem of this type. An investigation has been carried out on the stress and deflection characteristics of stiffened parallelogramic plates with different skew angles. The numerical solution with assumed displacement function was developed using a finite element analysis. Experiments using aluminum and Scotchply composite laminates were conducted to verify the results. Cantilever and simply supported boundary conditions were included in the analysis, and an optimized angular stiffener for a particular swept-back panel was achieved.
Coalescence times and FST under a skewed offspring distribution among individuals in a population.
Eldon, Bjarki; Wakeley, John
2009-02-01
Estimates of gene flow between subpopulations based on F(ST) (or N(ST)) are shown to be confounded by the reproduction parameters of a model of skewed offspring distribution. Genetic evidence of population subdivision can be observed even when gene flow is very high, if the offspring distribution is skewed. A skewed offspring distribution arises when individuals can have very many offspring with some probability. This leads to high probability of identity by descent within subpopulations and results in genetic heterogeneity between subpopulations even when Nm is very large. Thus, we consider a limiting model in which the rates of coalescence and migration can be much higher than for a Wright-Fisher population. We derive the densities of pairwise coalescence times and expressions for F(ST) and other statistics under both the finite island model and a many-demes limit model. The results can explain the observed genetic heterogeneity among subpopulations of certain marine organisms despite substantial gene flow.
Townsend, Andrea K.; Clark, Anne B.; McGowan, Kevin J.; Lovette, Irby J.
2009-01-01
Understanding the benefits of cooperative breeding for group members of different social and demographic classes requires knowledge of their reproductive partitioning and genetic relatedness. From 2004-2007, we examined parentage as a function of relatedness and social interactions among members of 21 American crow (Corvus brachyrhynchos) family groups. Paired female breeders monopolized maternity of all offspring in their broods, whereas paired male breeders sired 82.7% of offspring, within-group auxiliary males sired 6.9% of offspring, and extragroup males sired 10.4% of offspring. Although adult females had fewer opportunities for direct reproduction as auxiliaries than males, they appeared to have earlier opportunities for independent breeding. These different opportunities for direct reproduction probably contributed to the male biased adult auxiliary sex ratio. Patterns of reproductive partitioning and conflict among males were most consistent with a synthetic reproductive skew model, in which auxiliaries struggled with breeders for a limited reproductive share, beyond which breeders could evict them. Counter to a frequent assumption of reproductive skew models, female breeders appeared to influence paternity, although their interests might have agreed with the interests of their paired males. Unusual among cooperative breeders, close inbreeding and incest occurred in this population. Incest avoidance between potential breeders did not significantly affect reproductive skew. PMID:20126287
Buffeting response of long-span cable-supported bridges under skew winds. Part 1: theory
NASA Astrophysics Data System (ADS)
Zhu, L. D.; Xu, Y. L.
2005-03-01
A finite-element-based framework for buffeting analysis of long-span cable-supported bridges under skew winds is developed in the frequency domain utilizing the linear quasi-steady theory and the strip theory of aerodynamics in conjunction with the pseudo excitation method. A set of universal expressions for six components of buffeting forces is first derived in association with oblique cross-sections of bridge components, in which the buffeting forces are formed with respect to the wind coordinate system and then converted to those with respect to the structural coordinate system. Skew mean wind and three orthogonal components of velocity fluctuations can thus be easily handled without any further decomposition. The coherence between velocity fluctuations of wind turbulence at any two arbitrary spatial points is considered in the global wind coordinate system rather than in the global structural coordinate system. Aeroelastic stiffness and damping matrices due to self-excited forces are then taken into consideration in terms of the 18 flutter derivatives with respect to the oblique cross-sections. The pseudo-excitation method is finally employed to solve efficiently the fully coupled 3D buffeting problem of long-span cable-supported bridges under skew winds with the effects of multi-modes and spatial modes, inter-mode coupling and aerodynamic coupling, and the interaction among major bridge components being naturally included.
Transverse beam emittance measurement using quadrupole variation at KIRAMS-430
NASA Astrophysics Data System (ADS)
An, Dong Hyun; Hahn, Garam; Park, Chawon
2015-02-01
In order to produce a 430 MeV/u carbon ion (12 C 6+) beam for medical therapy, the Korea Institute of Radiological & Medical Sciences (KIRAMS) has carried out the development of a superconducting isochronous cyclotron, the KIRAMS-430. At the extraction of the cyclotron, an Energy Selection System (ESS) is located to modulate the fixed beam energy and to drive the ion beam through High Energy Beam Transport (HEBT) into the treatment room. The beam emittance at the ion beamline is to be measured to provide information on designing a beam with high quality. The well-known quadrupole variation method was used to determine the feasibility of measuring the transverse beam emittance. The beam size measured at the beam profile monitor (BPM) is to be utilized and the transformation of beam by transfer matrix is to be applied being taken under various transport condition of varying quadrupole magnetic strength. Two different methods where beam optics are based on the linear matrix formalism and particle tracking with a 3-D magnetic field distribution obtained by using OPERA3D TOSCA, are applied to transport the beam. The fittings for the transformation parameters are used to estimate the transverse emittance and the twiss parameters at the entrance of the quadrupole in the ESS. Including several systematic studies, we conclude that within the uncertainty the estimated emittances are consistent with the ones calculated by using Monte Carlo simulations.
The exact calculation of quadrupole sources for some incompressible flows
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.
1988-01-01
This paper is concerned with the application of the acoustic analogy of Lighthill to the acoustic and aerodynamic problems associated with moving bodies. The Ffowcs Williams-Hawkings equation, which is an interpretation of the acoustic analogy for sound generation by moving bodies, manipulates the source terms into surface and volume sources. Quite often in practice the volume sources, or quadrupoles, are neglected for various reasons. Recently, Farassat, Long and others have attempted to use the FW-H equation with the quadrupole source and neglected to solve for the surface pressure on the body. The purpose of this paper is to examine the contribution of the quadrupole source to the acoustic pressure and body surface pressure for some problems for which the exact solution is known. The inviscid, incompressible, 2-D flow, calculated using the velocity potential, is used to calculate the individual contributions of the various surface and volume source terms in the FW-H equation. The relative importance of each of the sources is then assessed.
Quadrupole Magnetic Sorting of Porcine Islets of Langerhans
Shenkman, Rustin M.; Chalmers, Jeffrey J.; Hering, Bernhard J.; Kirchhof, Nicole
2009-01-01
Islet transplantation is emerging as a treatment option for selected patients with type 1 diabetes. Inconsistent isolation, purification, and recovery of large numbers of high-quality islets remain substantial impediments to progress in the field. Removing islets as soon as they are liberated from the pancreas during digestion and circumventing the need for density gradient purification is likely to result in substantially increased viable islet yields by minimizing exposure to proteolytic enzymes, reactive oxygen intermediates, and mechanical stress associated with centrifugation. This study capitalized on the hypervascularity of islets compared with acinar tissue to explore their preferential enrichment with magnetic beads to enable immediate separation in a magnetic field utilizing a quadrupole magnetic sorting. The results demonstrate that (1) preferential enrichment of porcine islets is achievable, but homogeneous bead distribution within the pancreas is difficult to achieve with current protocols; (2) greater than 70% of islets in the dissociated pancreatic tissue were recovered by quadrupole magnetic sorting, but their purity was low; and (3) infused islets purified by density gradients and subsequently passed through quadrupole magnetic sorting had similar potency as uninfused islets. These results demonstrate proof of concept and define the steps for implementation of this technology in pig and human islet isolation. PMID:19505179
Quadrupole Splitting Distribution of Fe2+ in Synthetic Trioctahedral Micas
NASA Astrophysics Data System (ADS)
Redhammer, G. J.; Amthauer, G.; Lottermoser, W.; Roth, G.
2002-06-01
About 80 different synthetic trioctahedral micas {K}[Fe2+ 3- x Me x ]
Statistical thermodynamics of fluids with both dipole and quadrupole moments
NASA Astrophysics Data System (ADS)
Benavides, Ana L.; García Delgado, Francisco J.; Gámez, Francisco; Lago, Santiago; Garzón, Benito
2011-06-01
New Gibbs ensemble simulation data for a polar fluid modeled by a square-well potential plus dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions are presented. This simulation data is used in order to assess the applicability of the multipolar square-well perturbation theory [A. L. Benavides, Y. Guevara, and F. del Río, Physica A 202, 420 (1994), 10.1016/0378-4371(94)90469-3] to systems where more than one term in the multipole expansion is relevant. It is found that this theory is able to reproduce qualitatively well the vapor-liquid phase diagram for different multipolar moment strengths, corresponding to typical values of real molecules, except in the critical region. Hence, this theory is used to model the behavior of substances with multiple chemical bonds such as carbon monoxide and nitrous oxide and we found that with a suitable choice of the values of the intermolecular parameters, the vapor-liquid equilibrium of these species is adequately estimated.
CMB quadrupole suppression. II. The early fast roll stage
NASA Astrophysics Data System (ADS)
Boyanovsky, D.; de Vega, H. J.; Sanchez, N. G.
2006-12-01
Within the effective field theory of inflation, an initialization of the classical dynamics of the inflaton with approximate equipartition between the kinetic and potential energy of the inflaton leads to a brief fast roll stage that precedes the slow roll regime. The fast roll stage leads to an attractive potential in the wave equations for the mode functions of curvature and tensor perturbations. The evolution of the inflationary perturbations is equivalent to the scattering by this potential and a useful dictionary between the scattering data and observables is established. Implementing methods from scattering theory we prove that this attractive potential leads to a suppression of the quadrupole moment for CMB and B-mode angular power spectra. The scale of the potential is determined by the Hubble parameter during slow roll. Within the effective field theory of inflation at the grand unification (GUT) energy scale we find that if inflation lasts a total number of e-folds Ntot˜59, there is a 10% 20% suppression of the CMB quadrupole and about 2% 4% suppression of the tensor quadrupole. The suppression of higher multipoles is smaller, falling off as 1/l2. The suppression is much smaller for Ntot>59, therefore if the observable suppression originates in the fast roll stage, there is the upper bound Ntot˜59.
Position Stability Monitoring of THEthe LCLS Undulator Quadrupoles
Nuhn, Heinz Dieter; Gassner, Georg; Peters, Franz; /SLAC
2012-03-26
X-ray FELs demand that the positions of undulator components be stable to less than 1 {mu}m per day. Simultaneously, the undulator length increases significantly in order to saturate at x-ray wavelengths. To minimize the impact of the outside environment, the Linac Coherent Light Source (LCLS) undulator is placed underground, but reliable data about ground motion inside such a tunnel was not available in the required stability range during the planning phase. Therefore, a new position monitor system had been developed and installed with the LCLS undulator. This system is capable of measuring x, y, roll, pitch and yaw of each of the 33 undulator quadrupoles with respect to stretched wires. Instrument resolution is about 10 nm and instrument drift is negligible. Position data of individual quadrupoles can be correlated along the entire 132-m long undulator. The system has been under continuous operation since 2009. This report describes long term experiences with the running system and the observed positional stability of the undulator quadrupoles.
First tests of a superconducting RFQ (rf quadrupole) structure
Delayen, J.R.; Shepard, K.W.
1990-01-01
High surface electric fields have been obtained in the first tests of a superconducting rf quadrupole device. The rf quadrupole fields were generated between niobium vanes 6.5 cm in length, with an edge radius of 2 mm, and with a beam aperture of 6 mm diameter. In tests at 4.2 K, the 64 MHz device operated cw at peak surface electric fields of 128 MV/m. Virtually no electron loading was observed at fields below 100 MV/m. It was possible to operate at surface fields of 210 MV/m in pulses of 1 msec duration using a 2.5 kW rf source. For the vane geometry tested, more than 10 square centimeters of surface support a field greater than 90% of the peak field. The present result indicates that electric fields greater than 100 MV/m can be obtained over an appreciable area, sufficient for some accelerator applications. It also shows that superconducting rf technology may provide an extended range of options for rf quadrupole design.
Strong focusing influence on high gain FEL characteristics
Smirnov, A.; Varfolomeev, A.
1995-12-31
The use of intrinsic alternating focusing in a linac-driven FEL with planar undulator is considered numerically. The analysis is done on the basis of TDA code for soft X-ray FEL with FD lattice implementing focusing of quadrupole and periodic sextupole type. The influence of the focusing (type and phase advance) on FEL performance and the reasons of difference in FEL performance for focusing of two kinds are analyzed. A possibility of some kind of beam conditioning for intrinsic focusing is discussed.
Magnetic analysis of the Nb$$_3$$Sn low-beta quadrupole for the high luminosity LHC
Bermudez, Susana Izquierdo; Ambrosio, G.; Chlachidze, G.; ...
2017-01-10
As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build 150 mm aperture Nb3Sn quadrupoles for the LHC interaction regions. A first series of 1.5 m long coils were fabricated, assembled and tested in the first short model. This paper presents the magnetic analysis, comparing magnetic field measurements with the expectations and the field quality requirements. The analysis is focused on the geometrical harmonics, iron saturation effect and cold-warm correlation. Three dimensional effects such as the variability of the field harmonics along the magnet axis andmore » the contribution of the coil ends are also discussed. Furthemore, we present the influence of the conductor magnetization and the dynamic effects.« less
Gallien, Sebastien; Domon, Bruno
2014-08-01
High resolution/accurate mass hybrid mass spectrometers have considerably advanced shotgun proteomics and the recent introduction of fast sequencing capabilities has expanded its use for targeted approaches. More specifically, the quadrupole-orbitrap instrument has a unique configuration and its new features enable a wide range of experiments. An overview of the analytical capabilities of this instrument is presented, with a focus on its application to quantitative analyses. The high resolution, the trapping capability and the versatility of the instrument have allowed quantitative proteomic workflows to be redefined and new data acquisition schemes to be developed. The initial proteomic applications have shown an improvement of the analytical performance. However, as quantification relies on ion trapping, instead of ion beam, further refinement of the technique can be expected.
Electron beam final focus system for Thomson scattering at ELBE
NASA Astrophysics Data System (ADS)
Krämer, J. M.; Budde, M.; Bødker, F.; Irman, A.; Jochmann, A.; Kristensen, J. P.; Lehnert, U.; Michel, P.; Schramm, U.
2016-09-01
The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and divergences of about 10 mrad using the FFS.
NASA Technical Reports Server (NTRS)
Weick, Fred E; Harris, Thomas A
1934-01-01
This report covers the sixth of a series of investigations in which various lateral control devices are compared with particular reference to their effectiveness at high angles of attack. The present report deals with flap-type ailerons hinged about axes having an angle with respect to the leading and trailing edges of the wing. Tests were made on four different skewed ailerons, including two different angles of skew and two sizes of ailerons. At the high angles of attack, all the skewed ailerons tested were slightly inferior with respect to rolling and yawing moments to straight ailerons having the same span and average chord. Computations indicate that the skewed ailerons are also inferior with respect to hinge moments.
Observations of intra-wave suspended sediment transport under acceleration-skewed oscillatory flow
NASA Astrophysics Data System (ADS)
Ruessink, G.; Michallet, H.; Hurther, D.; Silva, P.
2008-12-01
In the nearshore, waves transform from skewed shoaling waves to asymmetric breaking waves. Velocity skewness, such as found beneath Stokes second-order waves, generally results in a net onshore sediment transport. Recent numerical studies and limited experimental laboratory data have demonstrated the potential importance of acceleration skewness to onshore sediment transport beneath asymmetric, 'saw- tooth' waves. Here, we investigate new full-scale laboratory tunnel experiments under sheetflow conditions in which regular oscillatory sawtooh flow with varying degrees of acceleration skewness and velocity skewness were generated over a mobile bed. In all experiments the velocity amplitude was 1.2 m/s, the wave period was 7 s, and the bed was composed of well-sorted, fine to medium sand (d50 = 200~μm). In several experiments a counter-current of 0.4 m/s was imposed to imitate undertow. We deployed (1) a 2-MHz Acoustical Doppler Velocimeter Profiler (ADVP) to obtain vertical profiles of (phase-averaged) horizontal and vertical oscillatory and turbulent flow with a temporal and vertical resolution of 50 Hz and 3 mm, respectively, and (2) a triple-frequency Acoustical Backscatter Sensor to obtain vertical profiles of (phase-averaged) suspended sediment concentration with a temporal and vertical resolution of 10 Hz and 5 mm, respectively. Under waves with acceleration skewness only, we observed two concentration peaks, which at the top of the sheetflow layer were approximately in phase with the free-stream velocity. As the concentration peak following the rapid acceleration towards maximum onshore flow was slightly larger than the concentration peak under maximum offshore flow, the depth-integrated and wave-averaged suspended transport was directed onshore. While most sediment stirred during the onshore flow phase had settled back to the bed before flow reversal, some sediment stirred during the offshore flow phase persisted into the onshore flow phase, thus providing
NASA Technical Reports Server (NTRS)
Snyder, Robert S.
2001-01-01
Electrophoretic focusing is a new method of continuous flow electrophoresis that introduces precision flow control to achieve high resolution separations. The electric field is applied perpendicular to an incoming sample lamina and buffer but also perpendicular to the broad faces of the thin rectangular chamber. A uniform fluid cross-flow then enters and exits the separation chamber through the same broad faces which are porous. A balance is achieved by adjusting either the electric field or the cross-flow so the desired sample fraction with its specific migration velocity encounters an opposing flow of the same velocity. Applying an electric field transverse to the incoming sample lamina and opposing this field with a carefully configured buffer flow, a sample constituent can be selected and focused into a narrow stream for subsequent analysis. Monotonically changing either electric field or buffer cross-flow will yield a scan of all constituents of the sample. Stopping the scan increases the collection time for minor constituents to improve their analysis. Using the high voltage gradients and/or cross-flow to rapidly deflect extraneous sample through the porous screens and into either of the side (purge) chambers, the selected sample is focused in the center plane of the separation chamber and collected without contact or interaction with the separation chamber walls. Results will be presented on the separation of a range of materials including dyes, proteins, and monodisperse polystyrene latexes. Sources of sample dispersion inherent in other electrokinetic techniques will be shown to be negligible for a variety of sample concentrations, buffer properties and operating conditions.
Orstavik, K.H.; Orstavik, R.E.; Eiklid, K.; Tranebjaerg, L.
1996-07-12
A new X-linked recessive deafness syndrome was recently reported and mapped to Xq22 (Mohr-Tranebjaeerg syndrome). In addition to deafness, the patients had visual impairment, dystonia, fractures, and mental deterioration. The female carriers did not have any significant manifestations of the syndrome. We examined X chromosome inactivation in 8 obligate and 12 possible carriers by using a polymerase chain reaction analysis of the methylation-dependent amplification of the polymorphic triplet repeat at the androgen receptor locus. Seven of 8 obligate carriers and 1 of 5 carriers by linkage analysis had an extremely skewed pattern in blood DNA not found in 30 normal females. The X inactivation pattern in fibroblast DNA from 2 of the carriers with the extremely skewed pattern was also skewed but to a lesser degree than in blood DNA. One obligate carrier had a random X inactivation pattern in both blood and fibroblast DNA. A selection mechanism for the skewed pattern is therefore not likely. The extremely skewed X inactivation in 8 females of 3 generations in this family may be caused by a single gene that influences skewing of X chromosome inactivation. 22 refs., 2 figs., 1 tab.
Godler, David E; Inaba, Yoshimi; Schwartz, Charles E; Bui, Quang M; Shi, Elva Z; Li, Xin; Herlihy, Amy S; Skinner, Cindy; Hagerman, Randi J; Francis, David; Amor, David J; Metcalfe, Sylvia A; Hopper, John L; Slater, Howard R
2015-07-01
Methylation of the fragile X mental retardation 1 (FMR1) exon 1/intron 1 boundary positioned fragile X related epigenetic element 2 (FREE2), reveals skewed X-chromosome inactivation (XCI) in fragile X syndrome full mutation (FM: CGG > 200) females. XCI skewing has been also linked to abnormal X-linked gene expression with the broader clinical impact for sex chromosome aneuploidies (SCAs). In this study, 10 FREE2 CpG sites were targeted using methylation specific quantitative melt analysis (MS-QMA), including 3 sites that could not be analysed with previously used EpiTYPER system. The method was applied for detection of skewed XCI in FM females and in different types of SCA. We tested venous blood and saliva DNA collected from 107 controls (CGG < 40), and 148 FM and 90 SCA individuals. MS-QMA identified: (i) most SCAs if combined with a Y chromosome test; (ii) locus-specific XCI skewing towards the hypomethylated state in FM females; and (iii) skewed XCI towards the hypermethylated state in SCA with 3 or more X chromosomes, and in 5% of the 47,XXY individuals. MS-QMA output also showed significant correlation with the EpiTYPER reference method in FM males and females (P < 0.0001) and SCAs (P < 0.05). In conclusion, we demonstrate use of MS-QMA to quantify skewed XCI in two applications with diagnostic utility.
Bose-Einstein condensation in an electro-pneumatically transformed quadrupole-Ioffe magnetic trap
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Sarkar, Sumit; Verma, Gunjan; Vishwakarma, Chetan; Noaman, Md; Rapol, Umakant
2015-02-01
We report a novel approach for preparing a Bose-Einstein condensate (BEC) of 87Rb atoms using an electro-pneumatically driven transfer of atoms into a quadrupole-Ioffe magnetic trap (QUIC trap). More than 5 × {{10}8} atoms from a magneto-optical trap are loaded into a spherical quadrupole trap and then transferred into an Ioffe trap by moving the Ioffe coil towards the center of the quadrupole coil thereby changing the distance between the quadrupole trap center and the Ioffe coil. The transfer efficiency is more than 80%. This approach is different from the conventional approach of loading the atoms into a QUIC trap wherein the spherical quadrupole trap is transformed into a QUIC trap by changing the currents in the quadrupole and the Ioffe coils. The phase space density is then increased by forced rf evaporative cooling to achieve Bose-Einstein condensation of more than 105 atoms.
Testing of Nb3Sn quadrupole coils using magnetic mirror structure
Zlobin, A.V.; Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; Tartaglia, M.; Tompkins, J.C.; /Fermilab
2009-07-01
This paper describes the design and parameters of a quadrupole mirror structure for testing the mechanical, thermal and quench performance of single shell-type superconducting quadrupole coils at field, current and force levels similar to that of real magnet. The concept was experimentally verified by testing two quadrupole coils, previously used in quadrupole models, in the developed mirror structure in the temperature range from 4.5 to 1.9 K. The coils were instrumented with voltage taps, heaters, and strain gauges to monitor their mechanical and thermal properties and quench performance. A new quadrupole coil made of improved Nb{sub 3}Sn RRP-108/127 strand and cable insulation based on E-glass tape was also tested using this structure. The fabrication and test results of the quadrupole mirror models are reported and discussed.
Ab initio calculation of the deuterium quadrupole coupling in liquid water
NASA Astrophysics Data System (ADS)
Eggenberger, Rolf; Gerber, Stefan; Huber, Hanspeter; Searles, Debra; Welker, Marc
1992-10-01
The quadrupole coupling constant and asymmetry parameter for the deuteron in liquid heavy water was determined using purely theoretical methods. Molecular-dynamics simulations with the ab initio potential-energy surface of Lie and Clementi were used to generate snapshots of the liquid. The electric-field gradient at the deuteron was then calculated for these configurations and averaged to obtain the liquid quadrupole coupling constant. At 300 K a quadrupole coupling constant of 256±5 kHz and an asymmetry parameter of 0.164±0.003 were obtained. The temperature dependence of the quadrupole coupling constant was investigated.
Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach
Feinberg, B.
1995-02-01
Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.
Progress in the Development of Superconducting Quadrupoles forHeavy-ion Fusion
Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, R.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.
2002-08-19
The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.
Progress in the development of superconducting quadrupoles for heavy ion fusion
Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, B.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.
2002-05-24
The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.
Design, development, and acceleration trials of radio-frequency quadrupole
Rao, S. V. L. S. Jain, Piyush; Pande, Rajni; Roy, Shweta; Mathew, Jose V.; Kumar, Rajesh; Pande, Manjiri; Krishnagopal, S.; Gupta, S. K.; Singh, P.
2014-04-15
A deuteron radio frequency quadrupole (RFQ) accelerator has been designed, fabricated, and tested at BARC, which will be used for neutron generation. The RFQ operates at a frequency of 350 MHz and needs an inter-vane voltage of 44 kV to accelerate the deuteron beam to 400 keV within a length of 1.03 m. The error analysis shows that the offset of two opposite vanes in the same direction by 100 μm leads to a change in resonant frequency by 1.3 MHz and a significant change of fields in the quadrants (∼±40% with respect to average field). From the 3D analysis, we have observed that the unwanted dipole mode frequencies are very near to the quadrupole mode frequency which will make structure sensitive to the perturbations. In order to move the dipole modes away from the quadrupole modes, we have used the dipole stabilizer rods. The 5 wire transmission line theory was used to study the perturbative analysis of the RFQ and based on this a computer program has been written to tune the cavity to get required field distribution. Based on these studies, a 1.03 m long RFQ made of OFE copper has been fabricated and tested. Even though the RFQ was designed for deuteron (D{sup +}) beam, we tested it by accelerating both the proton (H{sup +}) and D{sup +} beams. The RFQ was operated in pulsed mode and accelerated both H{sup +} and D{sup +} beams to designed values of 200 and 400 keV, respectively. The measured parameters are in good agreement with the designed values validating our simulations and fabrication processes. In this paper, simulations, RF measurements, and beam commissioning results are presented.
Finding the Magnetic Center of a Quadrupole to High Resolution
Fischer, G.E.; Cobb, J.K.; Jenson, D.R.; /SLAC
2005-08-12
In a companion pro, collposal it is proposed to align quadrupoles of a transport line to within transverse tolerances of 5 to 10 micrometers. Such a proposal is meaningful only if the effective magnetic center of such lenses can in fact be repeatably located with respect to some external mechanical tooling to comparable accuracy. It is the purpose of this note to describe some new methods and procedures that will accomplish this aim. It will be shown that these methods are capable of yielding greater sensitivity than the more traditional methods used in the past. The notion of the ''nodal'' point is exploited.
Operational aspects of the Main Injector large aperture quadrupole (WQB)
Chou, W.; Bartelson, L.; Brown, B.; Capista, D.; Crisp, J.; DiMarco, J.; Fitzgerald, J.; Glass, H.; Harding, D.; Johnson, D.; Kashikhin, V.; /Fermilab
2007-06-01
A two-year Large Aperture Quadrupole (WQB) Project was completed in the summer of 2006 at Fermilab. [1] Nine WQBs were designed, fabricated and bench-tested by the Technical Division. Seven of them were installed in the Main Injector and the other two for spares. They perform well. The aperture increase meets the design goal and the perturbation to the lattice is minimal. The machine acceptance in the injection and extraction regions is increased from 40{pi} to 60{pi} mm-mrad. This paper gives a brief report of the operation and performance of these magnets. Details can be found in Ref [2].
Microwave spectrum, molecular structure, and quadrupole coupling of vinyl chloroformate
NASA Astrophysics Data System (ADS)
Bimler, Jonathan; Broadbent, Stacy; Utzat, Karissa A.; Bohn, Robert K.; Restrepo, Albeiro; Harvey Michels, H.; True, Nancy S.
2012-09-01
Vinyl chloroformate is confirmed to have the planar structure reported in an earlier study [1]. Our study uses much higher resolution microwave rotational spectra and ab initio calculations have been extended to a higher level. Naturally abundant isotopologs with single substitution of 37Cl, 13C, and 18O isotopes have also been measured and a substitution structure obtained. The quadrupole coupling constants of the 35Cl and 37Cl isotopologs have been determined. The potential energy profiles of internal rotation about the Odbnd Csbnd Osbnd C and Csbnd Osbnd Cdbnd C dihedral angles have been calculated.
Nuclear quadrupole resonance studies project. [spectrometer design and spectrum analysis
NASA Technical Reports Server (NTRS)
Murty, A. N.
1978-01-01
The participation of undergraduates in nuclear quadrupole resonance research at Grambling University was made possible by NASA grants. Expanded laboratory capabilities include (1) facilities for high and low temperature generation and measurement; (2) facilities for radio frequency generation and measurement with the modern spectrum analyzers, precision frequency counters and standard signal generators; (3) vacuum and glass blowing facilities; and (4) miscellaneous electronic and machine shop facilities. Experiments carried out over a five year period are described and their results analyzed. Theoretical studies on solid state crystalline electrostatic fields, field gradients, and antishielding factors are included.
Novel integrated design framework for radio frequency quadrupoles
NASA Astrophysics Data System (ADS)
Jolly, Simon; Easton, Matthew; Lawrie, Scott; Letchford, Alan; Pozimski, Jürgen; Savage, Peter
2014-01-01
A novel design framework for Radio Frequency Quadrupoles (RFQs), developed as part of the design of the FETS RFQ, is presented. This framework integrates several previously disparate steps in the design of RFQs, including the beam dynamics design, mechanical design, electromagnetic, thermal and mechanical modelling and beam dynamics simulations. Each stage of the design process is described in detail, including the various software options and reasons for the final software suite selected. Results are given for each of these steps, describing how each stage affects the overall design process, with an emphasis on the resulting design choices for the FETS RFQ.
Miniature quadrupole mass spectrometer having a cold cathode ionization source
Felter, Thomas E.
2002-01-01
An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.
2-MV electrostatic quadrupole injector for heavy-ion fusion
Bieniosek, F.M.; Celata, C.M.; Henestroza, E.; Kwan, J.W.; Prost, L.; Seidl, P.A.
2004-11-10
High current and low emittance are principal requirements for heavy-ion injection into a linac driver for inertial fusion energy. An electrostatic quadrupole (ESQ) injector is capable of providing these high charge density and low emittance beams. We have modified the existing 2-MV Injector to reduce beam emittance and to double the pulse length. We characterize the beam delivered by the modified injector to the High Current Transport Experiment (HCX) and the effects of finite rise time of the extraction voltage pulse in the diode on the beam head. We demonstrate techniques for mitigating aberrations and reducing beam emittance growth in the injector.
Quadrupole Splitting Distributions in Grandidierite and Kornerupine from Antarctica
NASA Astrophysics Data System (ADS)
Zhe, Li; Laixi, Tong; Xiaohan, Liu; Liudong, Ren; Mingzhi, Jin; Milan, Liu
2000-12-01
The Mössbauer spectra of grandidierite and kornerupine at 298 and 90 K were measured. The quadrupole splitting distributions from the Mössbauer spectra were obtained by using the Voigt-based method, and the assignments for QSDs in the Mössbauer spectra of both minerals are presented. Site occupancies of iron in the crystal structures of two minerals were determined, and the chemical formulas of grandidierite and kornerupine were rewritten based on the relative absorption areas and Mössbauer fraction f for Fe3+ and Fe2+.
Nb{sub 3}Sn ARC quadrupole magnets for VLHC
Vadim V. Kashikhin and Alexander V. Zlobin
2001-07-30
Superconducting quadrupoles with a field gradient of 400-450 T/m for a future Very Large Hadron Collider (VLHC) are being studied at Fermilab. To reach the target field gradient in a 40-50 mm aperture, Nb{sub 3}Sn superconductor is used at an operating temperature of 4.2 K. Two cases with different magnet functions, beam separation distances and coil arrangements have been analyzed and optimized in order to provide the required field quality and magnet parameters.
Optimized Superconducting Quadrupole Arrays for Multiple Beam Transport
Meinke, Rainer, B.; Goodzeit, Carl, L.; Ball, Millicent, J.
2005-09-20
This research project advanced the development of reliable, cost-effective arrays of superconducting quadrupole magnets for use in multi-beam inertial fusion accelerators. The field in each array cell must be identical and meet stringent requirements for field quality and strength. An optimized compact array design using flat double-layer pancake coils was developed. Analytical studies of edge termination methods showed that it is feasible to meet the requirements for field uniformity in all cells and elimination of stray external field in several ways: active methods that involve placement of field compensating coils on the periphery of the array or a passive method that involves use of iron shielding.
Heat transfer in rotating serpentine passages with trips skewed to the flow
NASA Technical Reports Server (NTRS)
Johnson, B. V.; Wagner, J. H.; Steuber, G. D.; Yeh, F. C.
1992-01-01
Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multi-pass, heat transfer model with both radially inward and outward flow. Trip strips, skewed at 45 deg to the flow direction, were machined on the leading and trailing surfaces of the radial coolant passages. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature, rotation number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from similar stationary and rotating models with smooth walls and with trip strips normal to the flow direction. The heat transfer coefficients on surfaces, where the heat transfer decreased with rotation and buoyancy, decreased to as low as 40 percent of the value without rotation. However, the maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels previously obtained with the smooth wall models. It was concluded that (1) both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips, (2) the effects of rotation are markedly different depending upon the flow direction, and (3) the heat transfer with skewed trip strips is less sensitive to buoyancy than the heat transfer in models with either smooth or normal trips. Therefore, skewed trip strips rather than normal trip strips are recommended and geometry-specific tests are required for accurate design information.
Extrinsic spin Hall effect induced by resonant skew scattering in graphene.
Ferreira, Aires; Rappoport, Tatiana G; Cazalilla, Miguel A; Castro Neto, A H
2014-02-14
We show that the extrinsic spin Hall effect can be engineered in monolayer graphene by decoration with small doses of adatoms, molecules, or nanoparticles originating local spin-orbit perturbations. The analysis of the single impurity scattering problem shows that intrinsic and Rashba spin-orbit local couplings enhance the spin Hall effect via skew scattering of charge carriers in the resonant regime. The solution of the transport equations for a random ensemble of spin-orbit impurities reveals that giant spin Hall currents are within the reach of the current state of the art in device fabrication. The spin Hall effect is robust with respect to thermal fluctuations and disorder averaging.
Measuring Skew in Average Surface Roughness as a Function of Surface Preparation
NASA Technical Reports Server (NTRS)
Stahl, Mark
2015-01-01
Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces polishing time, saves money and allows the science requirements to be better defined. This study characterized statistics of average surface roughness as a function of polishing time. Average surface roughness was measured at 81 locations using a Zygo white light interferometer at regular intervals during the polishing process. Each data set was fit to a normal and Largest Extreme Value (LEV) distribution; then tested for goodness of fit. We show that the skew in the average data changes as a function of polishing time.
Measuring Skew in Average Surface Roughness as a Function of Surface Preparation
NASA Technical Reports Server (NTRS)
Stahl, Mark T.
2015-01-01
Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces grinding saving both time and money and allows the science requirements to be better defined. In this study various materials are polished from a fine grind to a fine polish. Each sample's RMS surface roughness is measured at 81 locations in a 9x9 square grid using a Zygo white light interferometer at regular intervals during the polishing process. Each data set is fit with various standard distributions and tested for goodness of fit. We show that the skew in the RMS data changes as a function of polishing time.
A variational Bayesian approach for inverse problems with skew-t error distributions
NASA Astrophysics Data System (ADS)
Guha, Nilabja; Wu, Xiaoqing; Efendiev, Yalchin; Jin, Bangti; Mallick, Bani K.
2015-11-01
In this work, we develop a novel robust Bayesian approach to inverse problems with data errors following a skew-t distribution. A hierarchical Bayesian model is developed in the inverse problem setup. The Bayesian approach contains a natural mechanism for regularization in the form of a prior distribution, and a LASSO type prior distribution is used to strongly induce sparseness. We propose a variational type algorithm by minimizing the Kullback-Leibler divergence between the true posterior distribution and a separable approximation. The proposed method is illustrated on several two-dimensional linear and nonlinear inverse problems, e.g. Cauchy problem and permeability estimation problem.
The Universal Patient Centeredness Questionnaire: scaling approaches to reduce positive skew
Bjertnaes, Oyvind; Iversen, Hilde Hestad; Garratt, Andrew M
2016-01-01
Purpose Surveys of patients’ experiences typically show results that are indicative of positive experiences. Unbalanced response scales have reduced positive skew for responses to items within the Universal Patient Centeredness Questionnaire (UPC-Q). The objective of this study was to compare the unbalanced response scale with another unbalanced approach to scaling to assess whether the positive skew might be further reduced. Patients and methods The UPC-Q was included in a patient experience survey conducted at the ward level at six hospitals in Norway in 2015. The postal survey included two reminders to nonrespondents. For patients in the first month of inclusion, UPC-Q items had standard scaling: poor, fairly good, good, very good, and excellent. For patients in the second month, the scaling was more positive: poor, good, very good, exceptionally good, and excellent. The effect of scaling on UPC-Q scores was tested with independent samples t-tests and multilevel linear regression analysis, the latter controlling for the hierarchical structure of data and known predictors of patient-reported experiences. Results The response rate was 54.6% (n=4,970). Significantly lower scores were found for all items of the more positively worded scale: UPC-Q total score difference was 7.9 (P<0.001), on a scale from 0 to 100 where 100 is the best possible score. Differences between the four items of the UPC-Q ranged from 7.1 (P<0.001) to 10.4 (P<0.001). Multivariate multilevel regression analysis confirmed the difference between the response groups, after controlling for other background variables; UPC-Q total score difference estimate was 8.3 (P<0.001). Conclusion The more positively worded scaling significantly lowered the mean scores, potentially increasing the sensitivity of the UPC-Q to identify differences over time and between providers. However, none of the groups exhibited large positive skew and ceiling effects, implying that such effects might not be a big
Emergence of heavy-tailed skew distributions from the heat equation
NASA Astrophysics Data System (ADS)
Choi, ByoungSeon; Kang, Hyuk; Choi, M. Y.
2017-03-01
It is well known that the symmetric Gaussian function, called the fundamental solution, serves as the Green's function of the heat equation. In reality, on the other hand, distribution functions obtained empirically often differ from the Gaussian function. This study presents a new solution of the heat equation, satisfying localized initial conditions like the Gaussian fundamental solution. The new solution corresponds to a hetero-mixture distribution, which generalizes the Gaussian distribution function to a skewed and heavy-tailed distribution, and thus provides a candidate for the empirical distribution functions.
On the Complex Symmetric and Skew-Symmetric Operators with a Simple Spectrum
NASA Astrophysics Data System (ADS)
Zagorodnyuk, Sergey M.
2011-02-01
In this paper we obtain necessary and sufficient conditions for a linear bounded operator in a Hilbert space H to have a three-diagonal complex symmetric matrix with non-zero elements on the first sub-diagonal in an orthonormal basis in H. It is shown that a set of all such operators is a proper subset of a set of all complex symmetric operators with a simple spectrum. Similar necessary and sufficient conditions are obtained for a linear bounded operator in H to have a three-diagonal complex skew-symmetric matrix with non-zero elements on the first sub-diagonal in an orthonormal basis in H.
The quadrupole moments of Cd and Zn isotopes - an apology
NASA Astrophysics Data System (ADS)
Haas, H.; Barbosa, M. B.; Correia, J. G.
2016-12-01
In 2010 we presented an update of the nuclear quadrupole moments (Q) for the Cd and Zn isotopes, based essentially on straightforward density functional (DF) calculations (H. Haas and J.G. Correia, Hyperfine Interact 198, 133-137 (2010)). It has been apparent for some years that the standard DF procedure obviously fails, however, to reproduce the known electric-field gradient (EFG) for various systems, typical cases being Cu2O, As and Sb, and the solid halogens. Recently a cure for this deficiency has been found in the hybrid DF technique. This method is now applied to solid Cd and Zn, and the resultant quadrupole moments are about 15 % smaller than in our earlier report. Also nuclear systematics, using the recently revised values of Q for the long-lived 11/2 isomers in111Cd to129Cd, together with earlier PAD data for107,109Cd, leads to the same conclusion. In addition, EFG calculations for the cadmium dimethyl molecule further support the new values: Q(111Cd, 5/2+) = .683(20) b, Q(67Zn, gs) = .132(5) b. This implies, that the value for the atomic EFG in the 3it {P}1 state of Zn must be revised, as it has been for Cd.
Adjustable permanent quadrupoles for the next linear collider
James T. Volk et al.
2001-06-22
The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 138 Tesla, with a maximum gradient of 141 Tesla per meter, an adjustment range of +0 to {minus}20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20% adjustment. In an effort to reduce costs and increase reliability, several designs using hybrid permanent magnets have been developed. Four different prototypes have been built. All magnets have iron poles and use Samarium Cobalt to provide the magnetic fields. Two use rotating permanent magnetic material to vary the gradient, one uses a sliding shunt to vary the gradient and the fourth uses counter rotating magnets. Preliminary data on gradient strength, temperature stability, and magnetic center position stability are presented. These data are compared to an equivalent electromagnetic prototype.
Nuclear electric quadrupole moment of potassium from the molecular method
NASA Astrophysics Data System (ADS)
Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade; Visscher, Lucas
2015-03-01
The current standard nuclear quadrupole moments (NQMs) of the 39K , 40K , and 41K isotopes have recently been contested by Singh and co-workers on the basis of their atomic computational data [Singh et al., Phys. Rev. A 86, 032509 (2012), 10.1103/PhysRevA.86.032509]. Thus we performed relativistic calculations of electric field gradients at the potassium nuclei in three diatomic molecules (KF, KCl, and KBr) and combined these values with accurate experimental nuclear quadrupole coupling constants to provide an independent assessment of these NQMs. Our most accurate results, obtained by treating electron correlation with coupled cluster theory, employing a four-component Hamiltonian that includes the Gaunt two-electron correction, and with an incremented relativistic basis set of quadruple-ζ quality, yield Q (39K)=60.3 (6 ) , Q (40K)=-75.0 (8 ) , and Q (41K)=73.4 (7 ) mb . These values are in better agreement with the results obtained by Singh et al. and indicate that the standard NQMs should be revised.
High Reliability Prototype Quadrupole for the Next Linear Collider
Spencer, Cherrill M
2001-01-04
The Next Linear Collider (NLC) will require over 5600 magnets, each of which must be highly reliable and/or quickly repairable in order that the NLC reach its 85% overall availability goal. A multidiscipline engineering team was assembled at SLAC to develop a more reliable electromagnet design than historically had been achieved at SLAC. This team carried out a Failure Mode and Effects Analysis (FMEA) on a standard SLAC quadrupole magnet system. They overcame a number of longstanding design prejudices, producing 10 major design changes. This paper describes how a prototype magnet was constructed and the extensive testing carried out on it to prove full functionality with an improvement in reliability. The magnet's fabrication cost will be compared to the cost of a magnet with the same requirements made in the historic SLAC way. The NLC will use over 1600 of these 12.7 mm bore quadrupoles with a range of integrated strengths from 0.6 to 132 Tesla, a maximum gradient of 135 Tesla per meter, an adjustment range of 0 to -20% and core lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20% adjustment. A magnetic measurement set-up has been developed that can measure sub-micron shifts of a magnetic center. The prototype satisfied the center shift requirement over the full range of integrated strengths.
High Reliability Prototype Quadrupole for the Next Linear Collider
NASA Astrophysics Data System (ADS)
Spencer, C. M.
2001-01-01
The Next Linear Collider (NLC) will require over 5600 magnets, each of which must be highly reliable and/or quickly repairable in order that the NLC reach its 85/ overall availability goal. A multidiscipline engineering team was assembled at SLAC to develop a more reliable electromagnet design than historically had been achieved at SLAC. This team carried out a Failure Mode and Effects Analysis (FMEA) on a standard SLAC quadrupole magnet system. They overcame a number of longstanding design prejudices, producing 10 major design changes. This paper describes how a prototype magnet was constructed and the extensive testing carried out on it to prove full functionality with an improvement in reliability. The magnet's fabrication cost will be compared to the cost of a magnet with the same requirements made in the historic SLAC way. The NLC will use over 1600 of these 12.7 mm bore quadrupoles with a range of integrated strengths from 0.6 to 132 Tesla, a maximum gradient of 135 Tesla per meter, an adjustment range of 0 to -20/ and core lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20/ adjustment. A magnetic measurement set-up has been developed that can measure sub-micron shifts of a magnetic center. The prototype satisfied the center shift requirement over the full range of integrated strengths.
Precision Magnet Measurements for X-Band Accelerator Quadrupole Triplets
Marsh, R A; Anderson, S G; Armstrong, J P
2012-05-16
An X-band test station is being developed at LLNL to investigate accelerator optimization for future upgrades to mono-energetic gamma-ray (MEGa-Ray) technology at LLNL. Beamline magnets will include an emittance compensation solenoid, windowpane steering dipoles, and quadrupole magnets. Demanding tolerances have been placed on the alignment of these magnets, which directly affects the electron bunch beam quality. A magnet mapping system has been established at LLNL in order to ensure the delivered magnets match their field specification, and the mountings are aligned and capable of reaching the specified alignment tolerances. The magnet measurement system will be described which uses a 3-axis Lakeshore gauss probe mounted on a 3-axis translation stage. Alignment accuracy and precision will be discussed, as well as centering measurements and analysis. The dependence on data analysis over direct multi-pole measurement allows a significant improvement in useful alignment information. Detailed analysis of measurements on the beamline quadrupoles will be discussed, including multi-pole content both from alignment of the magnets, and the intrinsic level of multi-pole magnetic field.
Low-frequency nuclear quadrupole resonance with a dc SQUID
Chang, J.W.
1991-07-01
Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs.
Heavy ion plasma confinement in an RF quadrupole trap
NASA Technical Reports Server (NTRS)
Schermann, J.; Major, F. G.
1971-01-01
The confinement of an electron free plasma in a pure quadrupole RF electric trap was considered. The ultimate goal was to produce a large density of mercury ions, in order to realize a trapped ion frequency standard using the hyperfine resonance of 199 Hg(+) at 40.7 GHz. An attempt was made to obtain an iodine plasma consisting of equal numbers of positive and negative ions of atomic iodine, the positive iodine ions, being susceptible to charge-exchange with mercury atoms, will produce the desired mercury ions. The experiment showed that the photoproduction of ions pairs in iodine using the necessary UV radiation occurs with a small cross-section, making it difficult to demonstrate the feasibility of space charge neutralization in a quadrupole trap. For this reason it was considered expedient to choose thallium iodide, which has a more favorable absorption spectrum (in the region of 2000 to 2100 A). The results indicate that, although the ionic recombination is a serious limiting factor, a considerable improvement can be obtained in practice for the density of trapped ions, with a considerable advantage in lifetimes for spectroscopic purposes. The ion pair formation by photoionization is briefly reviewed.
Random sampling of skewed distributions implies Taylor’s power law of fluctuation scaling
Cohen, Joel E.; Xu, Meng
2015-01-01
Taylor’s law (TL), a widely verified quantitative pattern in ecology and other sciences, describes the variance in a species’ population density (or other nonnegative quantity) as a power-law function of the mean density (or other nonnegative quantity): Approximately, variance = a(mean)b, a > 0. Multiple mechanisms have been proposed to explain and interpret TL. Here, we show analytically that observations randomly sampled in blocks from any skewed frequency distribution with four finite moments give rise to TL. We do not claim this is the only way TL arises. We give approximate formulae for the TL parameters and their uncertainty. In computer simulations and an empirical example using basal area densities of red oak trees from Black Rock Forest, our formulae agree with the estimates obtained by least-squares regression. Our results show that the correlated sampling variation of the mean and variance of skewed distributions is statistically sufficient to explain TL under random sampling, without the intervention of any biological or behavioral mechanisms. This finding connects TL with the underlying distribution of population density (or other nonnegative quantity) and provides a baseline against which more complex mechanisms of TL can be compared. PMID:25852144
Weighted skewness and kurtosis unbiased by sample size and Gaussian uncertainties
NASA Astrophysics Data System (ADS)
Rimoldini, Lorenzo
2014-07-01
Central moments and cumulants are often employed to characterize the distribution of data. The skewness and kurtosis are particularly useful for the detection of outliers, the assessment of departures from normally distributed data, automated classification techniques and other applications. Estimators of higher order moments that are robust against outliers are more stable but might miss characteristic features of the data, as in the case of astronomical time series exhibiting brief events like stellar bursts or eclipses of binary systems, while weighting can help identify reliable measurements from uncertain or spurious outliers. Furthermore, noise is an unavoidable part of most measurements and their uncertainties need to be taken properly into account during the data analysis or biases are likely to emerge in the results, including basic descriptive statistics. This work provides unbiased estimates of the weighted skewness and kurtosis moments and cumulants, corrected for biases due to sample size and Gaussian noise, under the assumption of independent data. A comparison of biased and unbiased weighted estimators is illustrated with simulations as a function of sample size and signal-to-noise ratio, employing different data distributions and weighting schemes related to measurement uncertainties and the sampling of the signal. Detailed derivations and figures of simulation results are presented in the Appendices available online.
Fuel cell plates with skewed process channels for uniform distribution of stack compression load
Granata, Jr., Samuel J.; Woodle, Boyd M.
1989-01-01
An electrochemical fuel cell includes an anode electrode, a cathode electrode, an electrolyte matrix sandwiched between electrodes, and a pair of plates above and below the electrodes. The plate above the electrodes has a lower surface with a first group of process gas flow channels formed thereon and the plate below the electrodes has an upper surface with a second group of process gas flow channels formed thereon. The channels of each group extend generally parallel to one another. The improvement comprises the process gas flow channels on the lower surface of the plate above the anode electrode and the process gas flow channels on the upper surface of the plate below the cathode electrode being skewed in opposite directions such that contact areas of the surfaces of the plates through the electrodes are formed in crisscross arrangements. Also, the plates have at least one groove in areas of the surfaces thereof where the channels are absent for holding process gas and increasing electrochemical activity of the fuel cell. The groove in each plate surface intersects with the process channels therein. Also, the opposite surfaces of a bipolar plate for a fuel cell contain first and second arrangements of process gas flow channels in the respective surfaces which are skewed the same amount in opposite directions relative to the longitudinal centerline of the plate.
Comment on "Universal relation between skewness and kurtosis in complex dynamics"
NASA Astrophysics Data System (ADS)
Celikoglu, Ahmet; Tirnakli, Ugur
2015-12-01
In a recent paper [M. Cristelli, A. Zaccaria, and L. Pietronero, Phys. Rev. E 85, 066108 (2012), 10.1103/PhysRevE.85.066108], the authors analyzed the relation between skewness and kurtosis for complex dynamical systems, and they identified two power-law regimes of non-Gaussianity, one of which scales with an exponent of 2 and the other with 4 /3 . They concluded that the observed relation is a universal fact in complex dynamical systems. In this Comment, we test the proposed universal relation between skewness and kurtosis with a large number of synthetic data, and we show that in fact it is not a universal relation and originates only due to the small number of data points in the datasets considered. The proposed relation is tested using a family of non-Gaussian distribution known as q -Gaussians. We show that this relation disappears for sufficiently large datasets provided that the fourth moment of the distribution is finite. We find that kurtosis saturates to a single value, which is of course different from the Gaussian case (K =3 ), as the number of data is increased, and this indicates that the kurtosis will converge to a finite single value if all moments of the distribution up to fourth are finite. The converged kurtosis value for the finite fourth-moment distributions and the number of data points needed to reach this value depend on the deviation of the original distribution from the Gaussian case.
Experimental and modeling study of the flow over a skewed bump
NASA Astrophysics Data System (ADS)
Ching, David S.; Elkins, Christopher J.; Eaton, John K.
2016-11-01
Three-dimensional separated flows can be very sensitive to geometry and inlet conditions, such that a small change in the geometry or the upstream boundary layer could cause the flow structure to change drastically. This study examines the geometric sensitivity of a skewed bump with axis ratio 4/3 by changing the angle of the bump with respect to the flow. The three-dimensional, three-component mean velocity field was acquired using Magnetic Resonance Velocimetry (MRV) for several bump angles. The flow is dominated by large coherent vortices in the wake. For a symmetric case, two counter-rotating vortices exist in the wake, but when the bump is skewed relative to the oncoming flow one vortex structure is much stronger and overwhelms the other vortex. A comparison to RANS simulations found that the RANS simulations predict the velocity fields with reasonable accuracy within the separation bubble, but are very inaccurate downstream of reattachment. Using a time-resolved MRV sequence, the shedding frequency of the wake was determined for two bump angles. Hot-wire anemometry confirmed the shedding frequencies found from the MRV data and observed that the shedding frequency is sensitive to the bump angle at low bump angles, but is insensitive at high bump angles. Funding provided by the Office of Naval Research.
Maximum Parsimony and the Skewness Test: A Simulation Study of the Limits of Applicability
Määttä, Jussi; Roos, Teemu
2016-01-01
The maximum parsimony (MP) method for inferring phylogenies is widely used, but little is known about its limitations in non-asymptotic situations. This study employs large-scale computations with simulated phylogenetic data to estimate the probability that MP succeeds in finding the true phylogeny for up to twelve taxa and 256 characters. The set of candidate phylogenies are taken to be unrooted binary trees; for each simulated data set, the tree lengths of all (2n − 5)!! candidates are computed to evaluate quantities related to the performance of MP, such as the probability of finding the true phylogeny, the probability that the tree with the shortest length is unique, the probability that the true phylogeny has the shortest tree length, and the expected inverse of the number of trees sharing the shortest length. The tree length distributions are also used to evaluate and extend the skewness test of Hillis for distinguishing between random and phylogenetic data. The results indicate, for example, that the critical point after which MP achieves a success probability of at least 0.9 is roughly around 128 characters. The skewness test is found to perform well on simulated data and the study extends its scope to up to twelve taxa. PMID:27035667
Using Skewness and the First-Digit Phenomenon to Identify Dynamical Transitions in Cardiac Models
Seenivasan, Pavithraa; Easwaran, Soumya; Sridhar, Seshan; Sinha, Sitabhra
2016-01-01
Disruptions in the normal rhythmic functioning of the heart, termed as arrhythmia, often result from qualitative changes in the excitation dynamics of the organ. The transitions between different types of arrhythmia are accompanied by alterations in the spatiotemporal pattern of electrical activity that can be measured by observing the time-intervals between successive excitations of different regions of the cardiac tissue. Using biophysically detailed models of cardiac activity we show that the distribution of these time-intervals exhibit a systematic change in their skewness during such dynamical transitions. Further, the leading digits of the normalized intervals appear to fit Benford's law better at these transition points. This raises the possibility of using these observations to design a clinical indicator for identifying changes in the nature of arrhythmia. More importantly, our results reveal an intriguing relation between the changing skewness of a distribution and its agreement with Benford's law, both of which have been independently proposed earlier as indicators of regime shift in dynamical systems. PMID:26793114
Homoclinic snaking in plane Couette flow: bending, skewing and finite-size effects
NASA Astrophysics Data System (ADS)
Gibson, J. F.; Schneider, T. M.
2016-05-01
Invariant solutions of shear flows have recently been extended from spatially periodic solutions in minimal flow units to spatially localized solutions on extended domains. One set of spanwise-localized solutions of plane Couette flow exhibits homoclinic snaking, a process by which steady-state solutions grow additional structure smoothly at their fronts when continued parametrically. Homoclinic snaking is well understood mathematically in the context of the one-dimensional Swift-Hohenberg equation. Consequently, the snaking solutions of plane Couette flow form a promising connection between the largely phenomenological study of laminar-turbulent patterns in viscous shear flows and the mathematically well-developed field of pattern-formation theory. In this paper we present a numerical study of the snaking solutions, generalizing beyond the fixed streamwise wavelength of previous studies. We find a number of new solution features, including bending, skewing, and finite-size effects. We show that the finite-size effects result from the shift-reflect symmetry of the traveling wave and establish the parameter regions over which snaking occurs. A new winding solution of plane Couette flow is derived from a strongly skewed localized equilibrium.
About the infinite dimensional skew and obliquely reflected Ornstein-Uhlenbeck process
NASA Astrophysics Data System (ADS)
Röckner, Michael; Trutnau, Gerald
2015-12-01
Based on an integration by parts formula for closed and convex subsets Γ of a separable real Hilbert space H with respect to a Gaussian measure, we first construct and identify the infinite dimensional analogue of the obliquely reflected Ornstein-Uhlenbeck process (perturbed by a bounded drift B) by means of a Skorokhod type decomposition. The variable oblique reflection at a reflection point of the boundary ∂Γ is uniquely described through a reflection angle and a direction in the tangent space (more precisely through an element of the orthogonal complement of the normal vector) at the reflection point. In case of normal reflection at the boundary of a regular convex set and under some monotonicity condition on B, we prove the existence and uniqueness of a strong solution to the corresponding SDE. Subsequently, we consider an increasing sequence (Γαk)k∈ℤ of closed and convex subsets of H and the skew reflection problem at the boundaries of this sequence. We present concrete examples and obtain as a special case the infinite dimensional analogue of the p-skew reflected Ornstein-Uhlenbeck process.
Hölder properties of perturbed skew products and Fubini regained
NASA Astrophysics Data System (ADS)
Ilyashenko, Yu; Negut, A.
2012-08-01
In 2006, Gorodetski proved that central fibres of perturbed skew products are Hölder continuous with respect to the base point. In this paper, we give an explicit estimate of this Hölder exponent. Moreover, we extend Gorodetski's result from the case when the fibre maps are close to the identity to a much wider class of maps that satisfy the so-called modified dominated splitting condition. In many cases (for example, in the case of skew products over the solenoid or over linear Anosov diffeomorphisms of the torus), the Hölder exponent is close to 1. This allows one to overcome the so-called Fubini nightmare, in some sense. Namely, we prove that the union of central fibres that are strongly atypical from the point of view of ergodic theory, has Lebesgue measure zero despite the lack of absolute continuity of the holonomy map for the central foliation. This result is based on a new kind of ergodic theorem, which we call special. To prove our main result, we revisit the theory of Hirsch, Pugh and Shub, and estimate the contraction constant of the graph transform map.
Chen, Jichun; Bryant, Mark A.; Dent, James J.; Sun, Yu; Desierto, Marie J.; Young, Neal S.
2015-01-01
A deletion of telomerase RNA component (Terc−/−) in C57BL/6 (B6) mice resulted in hematopoietic lineage skewing with increased neutrophils and CD11b+ myeloid cells and decreased red blood cells and CD45R+ B lymphocytes when animals reach ages older than 12 months. There was no decline in bone marrow (BM) c-Kit+Sca-1+Lin− (KSL) cells in old Terc−/− mice, and the lineage skewing phenomenon was not transferred when BM cells from old Terc−/− donors were transplanted into young B6 recipients. Necropsy and histological examinations found minimal to no change in the lung, spleen and liver but detected severe epithelia degeneration, ulceration and infection in small and large intestines, leading to enteritis, typhlitis and colitis in old Terc−/− mice. In a mouse model of dextran-sulfate-sodium-induced typhlitis and colitis, development of intestinal pathology was associated with increases in neutrophils and CD11b+ myeloid cells and a decrease in CD45R+ B cells, similar to those observed in old Terc−/− mice. Treatment of 11–13 month old Terc−/− mice with antibiotic trimethoprim-sulfa water reduced neutrophils and myeloid cells and increased B lymphocytes in the blood, indicating that mitigation of intestinal infection and inflammation could alleviate hematological abnormalities in old Terc−/− animals. PMID:26523501
Chen, Jichun; Bryant, Mark A; Dent, James J; Sun, Yu; Desierto, Marie J; Young, Neal S
2015-12-01
A deletion of a telomerase RNA component (Terc(-/-)) in C57BL/6 (B6) mice resulted in hematopoietic lineage skewing with increased neutrophils and CD11b(+) myeloid cells and decreased red blood cells and CD45R(+) B lymphocytes when animals reach ages older than 12 months. There was no decline in bone marrow (BM) c-Kit(+)Sca-1(+)Lin(-) (KSL) cells in old Terc(-/-) mice, and the lineage skewing phenomenon was not transferred when BM cells from old Terc(-/-) donors were transplanted into young B6 recipients. Necropsy and histological examinations found minimal to no change in the lung, spleen and liver but detected severe epithelia degeneration, ulceration and infection in small and large intestines, leading to enteritis, typhlitis and colitis in old Terc(-/-) mice. In a mouse model of dextran-sulfate-sodium-induced typhlitis and colitis, development of intestinal pathology was associated with increases in neutrophils and CD11b(+) myeloid cells and a decrease in CD45R(+) B cells, similar to those observed in old Terc(-/-) mice. Treatment of 11-13 month old Terc(-/-) mice with antibiotic trimethoprim-sulfa water reduced neutrophils and myeloid cells and increased B lymphocytes in the blood, indicating that mitigation of intestinal infection and inflammation could alleviate hematological abnormalities in old Terc(-/-) animals.
Héroux, Julie; Moodie, Erica E. M.; Strumpf, Erin; Coyle, Natalie; Tousignant, Pierre; Diop, Mamadou
2017-01-01
Evaluating the impacts of clinical or policy interventions on health care utilization requires addressing methodological challenges for causal inference while also analyzing highly skewed data. We examine the impact of registering with a Family Medicine Group (FMG), an integrated primary care model in Quebec, on hospitalization and emergency department visits using propensity scores to adjust for baseline characteristics and marginal structural models to account for time-varying exposure. We also evaluate the performance of different marginal structural GLMs in the presence of highly skewed data and conduct a simulation study to determine the robustness of different GLMs to distributional model mis-specification. Although the simulations found that the zero-inflated Poisson likelihood performed the best overall, the negative binomial likelihood gave the best fit for both outcomes in the real dataset. Our results suggest that registration to a FMG for all three years caused a small reduction in the number of emergency room visits, and no significant change in the number of hospitalizations in the final year. PMID:24167024
NASA Astrophysics Data System (ADS)
Ziman, Timothy; Gu, Bo; Maekawa, Sadamichi
2017-01-01
The spin Hall effect is affected by the Coulomb interaction as well as spin-spin correlations in metals. Here we examine the enhancement in the effect caused by resonant skew scattering induced by electron correlations. For single-impurity scattering, local Coulomb correlations may significantly change the observed spin Hall angle. There may be additional effects because of the special atomic environment close to a surface — extra degeneracies compared to the bulk, enhanced correlations that move the relative d- or f-levels, and interference effects coming from the lower local dimension. Our results may explain the very large spin Hall angle observed in CuBi alloys. We discuss the impact on the spin Hall effect from cooperative effects, firstly in an itinerant ferromagnet where there is an anomaly near the Curie temperature originating from high-order spin fluctuations. The second case considered is a metallic spin glass, where exchange via slowly fluctuating magnetic moments may lead to the precession of an injected spin current. This decreases the net spin-charge conversion from skew scattering at temperatures below a value three or four times the freezing temperature.
Analyzing Fish Condition Factor Index Through Skew-Gaussian Information Theory Quantifiers
NASA Astrophysics Data System (ADS)
Contreras-Reyes, Javier E.
2016-06-01
Biological-fishery indicators have been widely studied. As such the condition factor (CF) index, which interprets the fatness level of a certain species based on length and weight, has been investigated, too. However, CF has been studied without considering its temporal features and distribution. In this paper, we analyze the CF time series via skew-gaussian distributions that consider the asymmetry produced by extreme events. This index is characterized by a threshold autoregressive model and corresponds to a stationary process depending on the shape parameter of the skew-gaussian distribution. Then we use the Jensen-Shannon (JS) distance to compare CF by length classes. This distance has mathematical advantages over other divergences such as Kullback-Leibler and Jeffrey’s, and the triangular inequality property. Our results are applied to a biological catalogue of anchovy (Engraulis ringens) from the northern coast of Chile, for the period 1990-2010 that consider monthly CF time series by length classes and sex. We find that for high values of shape parameter, JS distance tends to be more sensible to detect discrepancies than Jeffrey’s divergence. In addition, the body condition of male anchovies with higher lengths coincides with the ending of the moderate-strong El Niño event 91-92 and for both males and females, the smaller lengths coincide with the beginning of the strong El Niño event 97-98.
Sardeshmukh, Prashant D.
2015-03-15
The probability distributions of large-scale atmospheric and oceanic variables are generally skewed and heavy-tailed. We argue that their distinctive departures from Gaussianity arise fundamentally from the fact that in a quadratically nonlinear system with a quadratic invariant, the coupling coefficients between system components are not constant but depend linearly on the system state in a distinctive way. In particular, the skewness arises from a tendency of the system trajectory to linger near states of weak coupling. We show that the salient features of the observed non-Gaussianity can be captured in the simplest such nonlinear 2-component system. If the system is stochastically forced and linearly damped, with one component damped much more strongly than the other, then the strongly damped fast component becomes effectively decoupled from the weakly damped slow component, and its impact on the slow component can be approximated as a stochastic noise forcing plus an augmented nonlinear damping. In the limit of large time-scale separation, the nonlinear augmentation of the damping becomes small, and the noise forcing can be approximated as an additive noise plus a correlated additive and multiplicative noise (CAM noise) forcing. Much of the diversity of observed large-scale atmospheric and oceanic probability distributions can be interpreted in this minimal framework.
Heat transfer in rotating serpentine passages with trips skewed to the flow
NASA Technical Reports Server (NTRS)
Johnson, B. V.; Wagner, J. H.; Steuber, G. D.; Yeh, F. C.
1992-01-01
Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multi-pass heat transfer model with both radially inward and outward flow. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature, rotation number, Reynolds number, and radius-to-passage hydraulic diameter ratio. Results were correlated and compared to previous results from similar stationary and rotating models with smooth walls and with trip strips normal to the flow direction. It was concluded that (1) both Coriolis and buoyancy must be considered in turbine blade cooling designs with trip strips, (2) the effects of rotation are markedly different depending upon the flow direction, and (3) the heat transfer with skewed trip strips is less sensitive to buoyancy than the heat transfer models with either smooth or normal trips. Therefore, skewed trip strips rather than normal trip strips are recommended and geometry-specific tests are required for accurate design.
Zolal, Amir; Juratli, Tareq A; Linn, Jennifer; Podlesek, Dino; Sitoci Ficici, Kerim Hakan; Kitzler, Hagen H; Schackert, Gabriele; Sobottka, Stephan B; Rieger, Bernhard; Krex, Dietmar
2016-05-01
Objective To determine the value of apparent diffusion coefficient (ADC) histogram parameters for the prediction of individual survival in patients undergoing surgery for recurrent glioblastoma (GBM) in a retrospective cohort study. Methods Thirty-one patients who underwent surgery for first recurrence of a known GBM between 2008 and 2012 were included. The following parameters were collected: age, sex, enhancing tumor size, mean ADC, median ADC, ADC skewness, ADC kurtosis and fifth percentile of the ADC histogram, initial progression free survival (PFS), extent of second resection and further adjuvant treatment. The association of these parameters with survival and PFS after second surgery was analyzed using log-rank test and Cox regression. Results Using log-rank test, ADC histogram skewness of the enhancing tumor was significantly associated with both survival (p = 0.001) and PFS after second surgery (p = 0.005). Further parameters associated with prolonged survival after second surgery were: gross total resection at second surgery (p = 0.026), tumor size (0.040) and third surgery (p = 0.003). In the multivariate Cox analysis, ADC histogram skewness was shown to be an independent prognostic factor for survival after second surgery. Conclusion ADC histogram skewness of the enhancing lesion, enhancing lesion size, third surgery, as well as gross total resection have been shown to be associated with survival following the second surgery. ADC histogram skewness was an independent prognostic factor for survival in the multivariate analysis.
Gentilini, Davide; Garagnani, Paolo; Pisoni, Serena; Bacalini, Maria Giulia; Calzari, Luciano; Mari, Daniela; Vitale, Giovanni; Franceschi, Claudio; Di Blasio, Anna Maria
2015-08-01
In this study we applied a new analytical strategy to investigate the relations between stochastic epigenetic mutations (SEMs) and aging. We analysed methylation levels through the Infinium HumanMethylation27 and HumanMethylation450 BeadChips in a population of 178 subjects ranging from 3 to 106 years. For each CpG probe, epimutated subjects were identified as the extreme outliers with methylation level exceeding three times interquartile ranges the first quartile (Q1-(3 x IQR)) or the third quartile (Q3+(3 x IQR)). We demonstrated that the number of SEMs was low in childhood and increased exponentially during aging. Using the HUMARA method, skewing of X chromosome inactivation (XCI) was evaluated in heterozygotes women. Multivariate analysis indicated a significant correlation between log(SEMs) and degree of XCI skewing after adjustment for age (β = 0.41; confidence interval: 0.14, 0.68; p-value = 0.0053). The PATH analysis tested the complete model containing the variables: skewing of XCI, age, log(SEMs) and overall CpG methylation. After adjusting for the number of epimutations we failed to confirm the well reported correlation between skewing of XCI and aging. This evidence might suggest that the known correlation between XCI skewing and aging could not be a direct association but mediated by the number of SEMs.
Buffeting response of long-span cable-supported bridges under skew winds. Part 2: case study
NASA Astrophysics Data System (ADS)
Xu, Y. L.; Zhu, L. D.
2005-03-01
The finite-element-based framework for buffeting analysis of long-span cable-supported bridges under skew winds has been presented in Part 1 of this paper. The framework is now applied to the Tsing Ma Suspension Bridge in Hong Kong as a case study. The wind velocities and bridge responses measured by the Wind and Structural Health Monitoring System (WASHMS) of the bridge during Typhoon Sam in 1999 are first analyzed to find the skew wind characteristics surrounding the bridge, the modal damping ratios and acceleration responses of the bridge. The buffeting responses of the bridge under skew winds during Typhoon Sam are then computed using the wind characteristics and modal damping ratios measured from the field and the aerodynamic coefficients and flutter derivatives of the bridge deck and tower measured from the wind tunnel under skew winds. The computed acceleration responses of the bridge deck and cable are finally compared with the responses measured from the field. The comparison is found to be satisfactory in general and the case study forms a good practical demonstration for the verification of the proposed method for buffeting analysis of long-span cable-supported bridges under skew winds.
Measuring the Magnetic Center Behavior of an ILC Superconducting Quadrupole Prototype
Spencer, Cherrill M.; Adolphsen, Chris; Berndt, Martin; Jensen, David R.; Rogers, Ron; Sheppard, John C.; Lorant, Steve St; Weber, Thomas B.; Weisend, John, II; Brueck, Heinrich; Toral, Fernando; /Madrid, CIEMAT
2011-02-07
The main linacs of the proposed International Linear Collider (ILC) consist of superconducting cavities operated at 2K. The accelerating cavities are contained in a contiguous series of cryogenic modules that also house the main linac quadrupoles, thus the quadrupoles also need to be superconducting. In an early ILC design, these magnets are about 0.6 m long, have cos (2{theta}) coils, and operate at constant field gradients up to 60 T/m. In order to preserve the small beam emittances in the ILC linacs, the e+ and e- beams need to traverse the quadrupoles near their magnetic centers. A quadrupole shunting technique is used to measure the quadrupole alignment with the beams; this process requires the magnetic centers move by no more than about 5 micrometers when their strength is changed. To determine if such tight stability is achievable in a superconducting quadrupole, we at SLAC measured the magnetic center motions in a prototype ILC quadrupole built at CIEMAT in Spain. A rotating coil technique was used with a better than 0.1 micrometer precision in the relative field center position, and less than a 2 micrometer systematic error over 30 minutes. This paper describes the warm-bore cryomodule that houses the quadrupole in its Helium vessel, the magnetic center measurement system, the measured center data and strength and harmonics magnetic data.
Kellö, Vladimir
2015-01-22
Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.
Miniature micromachined quadrupole mass spectrometer array and method of making the same
NASA Technical Reports Server (NTRS)
Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)
2000-01-01
The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.
Miniature micromachined quadrupole mass spectrometer array and method of making the same
NASA Technical Reports Server (NTRS)
Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)
2001-01-01
The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.
Miniature micromachined quadrupole mass spectrometer array and method of making the same
NASA Technical Reports Server (NTRS)
Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)
2001-01-01
The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and aligrnent for use in a final quadrupole mass spectrometer device.
Miniature micromachined quadrupole mass spectrometer array and method of making the same
NASA Technical Reports Server (NTRS)
Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)
2000-01-01
The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.
Miniature micromachined quadrupole mass spectrometer array and method of making the same
NASA Technical Reports Server (NTRS)
Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)
2001-01-01
The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.
Miniature micromachined quadrupole mass spectrometer array and method of making the same
NASA Technical Reports Server (NTRS)
Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)
2002-01-01
The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.
Smits, Iris A M; Timmerman, Marieke E; Stegeman, Alwin
2016-05-01
Maximum likelihood estimation of the linear factor model for continuous items assumes normally distributed item scores. We consider deviations from normality by means of a skew-normally distributed factor model or a quadratic factor model. We show that the item distributions under a skew-normal factor are equivalent to those under a quadratic model up to third-order moments. The reverse only holds if the quadratic loadings are equal to each other and within certain bounds. We illustrate that observed data which follow any skew-normal factor model can be so well approximated with the quadratic factor model that the models are empirically indistinguishable, and that the reverse does not hold in general. The choice between the two models to account for deviations of normality is illustrated by an empirical example from clinical psychology.
NASA Technical Reports Server (NTRS)
Farassat, F.; Brentner, Kenneth S.
1991-01-01
It is presently noted that, for an observer in or near the plane containing a helicopter rotor disk, and in the far field, part of the volume quadrupole sources, and the blade and wake surface quadrupole sources, completely cancel out. This suggests a novel quadrupole source description for the Ffowcs Williams-Hawkings equation which retain quadrupoles with axes parallel to the rotor disk; in this case, the volume and shock surface sourse terms are dominant.
Skart: A skewness- and autoregression-adjusted batch-means procedure for simulation analysis
NASA Astrophysics Data System (ADS)
Tafazzoli Yazdi, Ali
We discuss Skart, an automated batch-means procedure for constructing a skewness- and autoregression-adjusted confidence interval (CI) for the steady-state mean of a simulation output process in either discrete time (i.e., observation-based statistics) or continuous time (i.e., time-persistent statistics). Skart is a sequential procedure designed to deliver a CI that satisfies user-specified requirements concerning not only the CI's coverage probability but also the absolute or relative precision provided by its half-length. Skart exploits separate adjustments to the half-length of the classical batchmeans CI so as to account for the effects on the distribution of the underlying Student's t-statistic that arise from skewness (nonnormality) and autocorrelation of the batch means. The skewness adjustment is based on a modified Cornish-Fisher expansion for the classical batch-means Student's t -ratio, and the autocorrelation adjustment is based on an autoregressive approximation to the batch-means process for sufficiently large batch sizes. Skart also delivers a point estimator for the steady-state mean that is approximately free of initialization bias. The duration of the associated warm-up period (i.e., the statistics clearing time) is based on iteratively applying von Neumann's randomness test to spaced batch means with progressively increasing batch sizes and interbatch spacer sizes. In an experimental performance evaluation involving a wide range of test processes, Skart compared favorably with other simulation analysis methods---namely, its predecessors ASAP3, WASSP, and SBatch as well as ABATCH, LBATCH, the Heidelberger-Welch procedure, and the Law-Carson procedure. Specifically, Skart exhibited competitive sampling efficiency and substantially closer conformance to the given CI coverage probabilities than the other procedures. Also presented is a nonsequential version of Skart, called N-Skart, in which the user supplies a single simulation-generated series of
On quadrupole and octupole gravitational radiation in the ANK formalism
NASA Astrophysics Data System (ADS)
Kozameh, Carlos N.; Ortega, R. G.; Rojas, T. A.
2017-04-01
Following the approach of Adamo-Newman-Kozameh (ANK) we derive the equations of motion for the center of mass and intrinsic angular moment for isolated sources of gravitational waves in axially symmetric spacetimes. The original ANK formulation is generalized so that the angular momentum coincides with the Komar integral for a rotational Killing symmetry. This is done using the Winicour-Tamburino Linkages which yields the mass dipole-angular momentum tensor for the isolated sources. The ANK formalism then provides a complex worldline in a fiducial flat space to define the notions of center of mass and spin. The equations of motion are derived and then used to analyse a very simple astrophysical process where only quadrupole and octupole contributions are included. The results are then compared with those coming from the post newtonian approximation.
Uranus' (3-0) H2 quadrupole line profiles
NASA Astrophysics Data System (ADS)
Trafton, L.
1987-04-01
Spectra of Uranus' S3(0) and S3(1) H2 quadrupole lines, obtained during the 1978-1980 apparitions, are analyzed, and are found to require the presence of a deep cloud. Modifications of the Baines and Bergstralh (1986) standard model, including an additional haze layer above the 16-km-am H2 level which contains strongly absorbing particles, are needed to fit the observations. For a Rayleigh phase function, such a haze (uniformly mixed with the gas above this level) would have an absorption optical depth of 0.16 and a single scattering particle albedo of 0.30. This modification would imply a fraction of normal H2 equal to 0.25 + or - 0.10, in agreement with the Baines and Bergstralh standard model.
Investigation of a quadrupole ultra-high vacuum ion pump
NASA Technical Reports Server (NTRS)
Schwarz, H. J.
1974-01-01
The new nonmagnetic ion pump resembles the quadrupole ionization gage. The dimensions are larger, and hyperbolically shaped electrodes replace the four rods. Their surfaces follow y sq. = 36 + x sq. (x, y in centimeters). The electrodes, 55 cm long, are positioned lengthwise in a tube. At one end a cathode emits electrons; at the other end a narrowly wound flat spiral of tungsten clad with titanium on cathode potential can be heated for titanium evaporation. Electrons accelerated by a dc potential of the surface electrodes oscillate between the ends on rotational trajectories, if a high frequency potential superimposed on the dc potential is properly adjusted. Pumping speeds (4-100 liter/sec) for different gases at different peak voltages (1000-3000V) at corresponding frequencies (57-100 MHz), and at different pressures 0.00001 to the minus 9 power Torr were observed. The lowest pressure reached was below 10 to the minus 10 power Torr.
Thermal noise in aqueous quadrupole micro- and nano-traps
Park, Jae; Krstić, Predrag S.
2012-01-01
Recent simulations and experiments with aqueous quadrupole micro-traps have confirmed a possibility for control and localization of motion of a charged particle in a water environment, also predicting a possibility of further reduction of the trap size to tens of nano-meters for trapping charged bio-molecules and DNA segments. We study the random thermal noise due to Brownian motion in water which significantly influences the trapping of particles in an aqueous environment. We derive the exact, closed-form expressions for the thermal fluctuations of position and velocity of a trapped particle and thoroughly examine the properties of the rms for the fluctuations as functions of the system parameters and time. The instantaneous signal transferring mechanism between the velocity and position fluctuations could not be achieved in the previous phase-average approaches.
Thermal noise in aqueous quadrupole micro- and nano-traps
Park, Jae; Krstić, Predrag S.
2012-01-01
Recent simulations and experiments with aqueous quadrupole micro-traps have confirmed a possibility for control and localization of motion of a charged particle in a water environment, also predicting a possibility of further reduction of the trap size to tens of nano-meters for trapping charged bio-molecules and DNA segments. We study the random thermal noise due to Brownian motion in water which significantly influences the trapping of particles in an aqueous environment. We derive the exact, closed-form expressions for the thermal fluctuations of position and velocity of a trapped particle and thoroughly examine the properties of the rms for the fluctuationsmore » as functions of the system parameters and time. The instantaneous signal transferring mechanism between the velocity and position fluctuations could not be achieved in the previous phase-average approaches.« less
Jentschura, U. D.; Milstein, A. I.; Terekhov, I. S.; Boie, H.; Scheit, H.; Schwalm, D.
2008-01-15
We present a quasiclassical theory of {alpha} decay accompanied by bremsstrahlung with a special emphasis on the case of {sup 210}Po, with the aim of finding a unified description that incorporates both the radiation during the tunneling through the Coulomb wall and the finite energy E{sub {gamma}} of the radiated photon up to E{sub {gamma}}{approx}Q{sub {alpha}}/{radical}({eta}), where Q{sub {alpha}} is the {alpha}-decay Q-value and {eta} is the Sommerfeld parameter. The corrections with respect to previous quasiclassical investigations are found to be substantial, and excellent agreement with a full quantum mechanical treatment is achieved. Furthermore, we find that a dipole-quadrupole interference significantly changes the {alpha}-{gamma} angular correlation. We obtain good agreement between our theoretical predictions and experimental results.
Covariant spectator theory of np scattering: Deuteron quadrupole moment
Gross, Franz
2015-01-26
The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently frommore » XEFT predictions to order N3LO.« less
Covariant spectator theory of np scattering: Deuteron quadrupole moment
Gross, Franz
2015-01-26
The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently from _{X}EFT predictions to order N^{3}LO.
Nuclear quadrupole resonance detection of explosives: an overview
NASA Astrophysics Data System (ADS)
Miller, Joel B.
2011-06-01
Nuclear Quadrupole Resonance (NQR) is a spectroscopic technique closely related to Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). These techniques, and NQR in particular, induce signals from the material being interrogated that are very specific to the chemical and physical structure of the material, but are relatively insensitive to the physical form of the material. NQR explosives detection exploits this specificity to detect explosive materials, in contrast to other well known techniques that are designed to detect explosive devices. The past two decades have seen a large research and development effort in NQR explosives detection in the United States aimed at transportation security and military applications. Here, I will briefly describe the physical basis for NQR before discussing NQR developments over the past decade, with particular emphasis on landmine detection and the use of NQR in combating IED's. Potential future directions for NQR research and development are discussed.
Quadrupole collectivity in neutron-rich Fe and Cr isotopes.
Crawford, H L; Clark, R M; Fallon, P; Macchiavelli, A O; Baugher, T; Bazin, D; Beausang, C W; Berryman, J S; Bleuel, D L; Campbell, C M; Cromaz, M; de Angelis, G; Gade, A; Hughes, R O; Lee, I Y; Lenzi, S M; Nowacki, F; Paschalis, S; Petri, M; Poves, A; Ratkiewicz, A; Ross, T J; Sahin, E; Weisshaar, D; Wimmer, K; Winkler, R
2013-06-14
Intermediate-energy Coulomb excitation measurements are performed on the N ≥ 40 neutron-rich nuclei (66,68)Fe and (64)Cr. The reduced transition matrix elements providing a direct measure of the quadrupole collectivity B(E2;2(1)(+) → 0(1)(+)) are determined for the first time in (68)Fe(42) and (64)Cr(40) and confirm a previous recoil distance method lifetime measurement in (66)Fe(40). The results are compared to state-of-the-art large-scale shell-model calculations within the full fpgd neutron orbital model space using the Lenzi-Nowacki-Poves-Sieja effective interaction and confirm the results of the calculations that show these nuclei are well deformed.
Microscopic analysis of quadrupole-octupole shape evolution
NASA Astrophysics Data System (ADS)
Nomura, Kosuke
2015-05-01
We analyze the quadrupole-octupole collective states based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the sdf interacting boson model (IBM), that is, onto the energy expectation value in the boson coherent state, the Hamiltonian parameters are determined. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in large sets of nuclei characteristic for octupole deformation and collectivity. Consistently with the empirical trend, the microscopic calculation based on the systematics of β2 - β3 energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for β3-soft potentials.
Plasma-beam traps and radiofrequency quadrupole beam coolers.
Maggiore, M; Cavenago, M; Comunian, M; Chirulotto, F; Galatà, A; De Lazzari, M; Porcellato, A M; Roncolato, C; Stark, S; Caruso, A; Longhitano, A; Cavaliere, F; Maero, G; Paroli, B; Pozzoli, R; Romé, M
2014-02-01
Two linear trap devices for particle beam manipulation (including emittance reduction, cooling, control of instabilities, dust dynamics, and non-neutral plasmas) are here presented, namely, a radiofrequency quadrupole (RFQ) beam cooler and a compact Penning trap with a dust injector. Both beam dynamics studies by means of dedicated codes including the interaction of the ions with a buffer gas (up to 3 Pa pressure), and the electromagnetic design of the RFQ beam cooler are reported. The compact multipurpose Penning trap is aimed to the study of multispecies charged particle samples, primarily electron beams interacting with a background gas and/or a micrometric dust contaminant. Using a 0.9 T solenoid and an electrode stack where both static and RF electric fields can be applied, both beam transport and confinement operations will be available. The design of the apparatus is presented.
Plasma-beam traps and radiofrequency quadrupole beam coolers
Maggiore, M. Cavenago, M.; Comunian, M.; Chirulotto, F.; Galatà, A.; De Lazzari, M.; Porcellato, A. M.; Roncolato, C.; Stark, S.; Caruso, A.; Longhitano, A.; Cavaliere, F.; Maero, G.; Paroli, B.; Pozzoli, R.; Romé, M.
2014-02-15
Two linear trap devices for particle beam manipulation (including emittance reduction, cooling, control of instabilities, dust dynamics, and non-neutral plasmas) are here presented, namely, a radiofrequency quadrupole (RFQ) beam cooler and a compact Penning trap with a dust injector. Both beam dynamics studies by means of dedicated codes including the interaction of the ions with a buffer gas (up to 3 Pa pressure), and the electromagnetic design of the RFQ beam cooler are reported. The compact multipurpose Penning trap is aimed to the study of multispecies charged particle samples, primarily electron beams interacting with a background gas and/or a micrometric dust contaminant. Using a 0.9 T solenoid and an electrode stack where both static and RF electric fields can be applied, both beam transport and confinement operations will be available. The design of the apparatus is presented.
Optimal filtering in multipulse sequences for nuclear quadrupole resonance detection
NASA Astrophysics Data System (ADS)
Osokin, D. Ya.; Khusnutdinov, R. R.; Mozzhukhin, G. V.; Rameev, B. Z.
2014-05-01
The application of the multipulse sequences in nuclear quadrupole resonance (NQR) detection of explosive and narcotic substances has been studied. Various approaches to increase the signal to noise ratio (SNR) of signal detection are considered. We discussed two modifications of the phase-alternated multiple-pulse sequence (PAMS): the 180° pulse sequence with a preparatory pulse and the 90° pulse sequence. The advantages of optimal filtering to detect NQR in the case of the coherent steady-state precession have been analyzed. It has been shown that this technique is effective in filtering high-frequency and low-frequency noise and increasing the reliability of NQR detection. Our analysis also shows the PAMS with 180° pulses is more effective than PSL sequence from point of view of the application of optimal filtering procedure to the steady-state NQR signal.
Tranchida, Peter Q; Maimone, Mariarosa; Franchina, Flavio A; Bjerk, Thiago Rodrigues; Zini, Cláudia Alcaraz; Purcaro, Giorgia; Mondello, Luigi
2016-03-25
The present research is based on the development and use of a flow-modulation (FM) comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC×GC-qMS) method for the determination of recently-highlighted (by the Scientific Committee on Consumer Safety) fragrance allergens (54) in cosmetics. FM GC×GC-qMS conditions were finely tuned to generate flow conditions (≈7 mL min(-1)) compatible with the qMS system used. Six-point calibration curves, over the range 1, 5, 10, 20, 50, 100 mg L(-1), were constructed for the 54 target allergens, with satisfactory linearity observed in all cases. Absolute quantification was performed by using extracted ions; target analyte identification was performed through measurement of ion ratios (qualifier/quantifier), full-scan MS database matching and the use of linear retention indices. Additional analytical figures of merit subjected to measurement were intra-day repeatability, accuracy at the 25 and 5 mg L(-1) levels, and limits of detection and quantification. The number of data points per peak, along with mass spectral skewing, was also subjected to evaluation. Finally, the FM GC×GC-qMS method was used not only for the quantification of target allergens in five commercial perfumes, but also for general qualitative profiling.
Kerr Effect from Diffractive Skew Scattering in Chiral px±i py Superconductors
NASA Astrophysics Data System (ADS)
König, Elio J.; Levchenko, Alex
2017-01-01
We calculate the temperature dependent anomalous ac Hall conductance σH(Ω ,T ) for a two-dimensional chiral p -wave superconductor. This quantity determines the polar Kerr effect, as it was observed in Sr2RuO4 [J. Xia et al., Phys. Rev. Lett. 97, 167002 (2006)]. We concentrate on a single band model with an arbitrary isotropic dispersion relation subjected to rare, weak impurities treated in the Born approximation. As we explicitly show by detailed computation, previously omitted contributions to the extrinsic part of an anomalous Hall response, physically originating from diffractive skew scattering on quantum impurity complexes, appear to the leading order in the impurity concentration. By direct comparison with published results from the literature we demonstrate the relevance of our findings for the interpretation of the Kerr effect measurements in superconductors.
Wigner-Yanase skew information and entanglement generation in quantum measurement
NASA Astrophysics Data System (ADS)
Banik, Manik; Deb, Prasenjit; Bhattacharya, Samyadeb
2017-04-01
The first step of quantum measurement procedure is known as premeasurement, during which correlation is established between the system and the measurement apparatus. Such correlation may be classical or nonclassical in nature. One compelling nonclassical correlation is entanglement, a useful resource for various quantum information theoretic protocols. Quantifying the amount of entanglement, generated during quantum measurement, therefore, seeks importance from practical ground, and this is the central issue of the present paper. Interestingly, for a two-level quantum system, we obtain that the amount of entanglement, measured in term of negativity, generated in premeasurement process can be quantified by two factors: skew information, which quantifies the uncertainty in the measurement of an observable not commuting with some conserved quantity of the system, and mixedness parameter of the system's initial state.
Flight demonstration of redundancy management algorithms for a skewed array of inertial sensors
NASA Technical Reports Server (NTRS)
Morrell, F. R.; Bailey, M. L.; Motyka, P. R.
1988-01-01
Flight test results for two fault-tolerance algorithms developed for a redundant strapdown inertial measurement unit consisting of four 2-DOF gyros and accelerometers mounted on the faces of a semioctahedron are presented. Although both algorithms provided timely detection and isolation of flight control level failures, the generalized likelihood test algorithm provided more timely detection and isolation of low-level sensor failures than the edge vector test algorithm. The generalized likelihood test produced a false isolation for the case of a dual low-level failure applied to the sensitive axes of an accelerometer. Both of the algorithms were shown to provide dual fail-operational performance for the skewed array of inertial sensors.
A cylindrical shell with an axial crack under skew-symmetric loading.
NASA Technical Reports Server (NTRS)
Yuceoglu, U.; Erdogan, F.
1973-01-01
The skew-symmetric problem for a cylindrical shell containing an axial crack is considered. It is assumed that the material has a special orthotropy - namely, that the shear modulus may be evaluated from the measured Young's moduli and Poisson ratios and is not an independent material constant. The problem is solved within the confines of an eighth-order linearized shallow shell theory. As numerical examples, the torsion of an isotropic cylinder and that of a specially orthotropic cylinder (titanium) are considered. The membrane and bending components of the stress intensity factor are calculated and are given as functions of a dimensionless shell parameter. In the torsion problem for the axially cracked cylinder the bending effects appear to be much more significant than that found for the circumferentially cracked cylindrical shell. Also, as the shell parameter increases, unlike the results found in the pressurized shell, the bending stresses around crack ends do not change sign.
Obliterable of graphics and correction of skew using Hough transform for mobile captured documents
NASA Astrophysics Data System (ADS)
Chethan, H. K.; Kumar, G. Hemantha
2011-10-01
CBDA is an emerging field in Computer Vision and Pattern Recognition. In recent technology camera are incorporated to several electronic equipments and are very interesting and thus playing a vital role by replacing scanner with hand held imaging devices like Digital Cameras, Mobile phones and gaming devices attached with these camera. The goal of the work is to remove graphics from the document which plays a vital role in recognition of characters from the mobile captured documents. In this paper we have proposed a novel method for separating or removal of graphics like logos, animations other than the text from the document and method to reduce noise and finally textual content skew is estimated and corrected using Hough Transform. The experimental results show the efficacy compared to the result of well known existing methods.
Dynamics of a Skew Tent Map in the Nonlinear Frobenius-Perron Equation
NASA Astrophysics Data System (ADS)
Katsuragi, Daisuke
Return maps of the mean field in globally coupled map lattices (GCML) with a large system size were compared with those at the limit in a large system size. We adopted a nonlinear Frobenius-Perron equation (NFPE) for the limit in the large system size, and used a skew tent map as a chaotic map to simplify calculations in the NFPE. The return maps of the mean field for direct numerical calculations in the GCML usually fluctuate from those for numerical calculations in the NFPE. However, at some coupling strengths, there are totally different return maps between the GCML and the NFPE. We show that this strongly depends on the initial conditions at some coupling strengths.
Higher reproductive skew among birds than mammals in cooperatively breeding species
Raihani, Nichola J.; Clutton-Brock, Tim H.
2010-01-01
While competition for limited breeding positions is a common feature of group life, species vary widely in the extent to which reproduction is shared among females (‘reproductive skew’). In recent years, there has been considerable debate over the mechanisms that generate variation in reproductive skew, with most evidence suggesting that subordinates breed when dominants are unable to prevent them from doing so. Here, we suggest that viviparity reduces the ability of dominant females to control subordinate reproduction and that, as a result, dominant female birds are more able than their mammal counterparts to prevent subordinates from breeding. Empirical data support this assertion. This perspective may increase our understanding of how cooperative groups form and are stabilized in nature. PMID:20236970
Foldnes, Njål; Olsson, Ulf Henning
2016-01-01
We present and investigate a simple way to generate nonnormal data using linear combinations of independent generator (IG) variables. The simulated data have prespecified univariate skewness and kurtosis and a given covariance matrix. In contrast to the widely used Vale-Maurelli (VM) transform, the obtained data are shown to have a non-Gaussian copula. We analytically obtain asymptotic robustness conditions for the IG distribution. We show empirically that popular test statistics in covariance analysis tend to reject true models more often under the IG transform than under the VM transform. This implies that overly optimistic evaluations of estimators and fit statistics in covariance structure analysis may be tempered by including the IG transform for nonnormal data generation. We provide an implementation of the IG transform in the R environment.
A Novel Generalized Normal Distribution for Human Longevity and other Negatively Skewed Data
Robertson, Henry T.; Allison, David B.
2012-01-01
Negatively skewed data arise occasionally in statistical practice; perhaps the most familiar example is the distribution of human longevity. Although other generalizations of the normal distribution exist, we demonstrate a new alternative that apparently fits human longevity data better. We propose an alternative approach of a normal distribution whose scale parameter is conditioned on attained age. This approach is consistent with previous findings that longevity conditioned on survival to the modal age behaves like a normal distribution. We derive such a distribution and demonstrate its accuracy in modeling human longevity data from life tables. The new distribution is characterized by 1. An intuitively straightforward genesis; 2. Closed forms for the pdf, cdf, mode, quantile, and hazard functions; and 3. Accessibility to non-statisticians, based on its close relationship to the normal distribution. PMID:22623974
Separation of variables in anisotropic models and non-skew-symmetric elliptic r-matrix
NASA Astrophysics Data System (ADS)
Skrypnyk, Taras
2016-11-01
We solve a problem of separation of variables for the classical integrable hamiltonian systems possessing Lax matrices satisfying linear Poisson brackets with the non-skew-symmetric, non-dynamical elliptic so(3)⊗ so(3) -valued classical r-matrix. Using the corresponding Lax matrices, we present a general form of the "separating functions" B(u) and A(u) that generate the coordinates and the momenta of separation for the associated models. We consider several examples and perform the separation of variables for the classical anisotropic Euler's top, Steklov-Lyapunov model of the motion of anisotropic rigid body in the liquid, two-spin generalized Gaudin model and "spin" generalization of Steklov-Lyapunov model.
Xiao, Gang; Wang, Xuanjun; Sheng, Jun; Lu, Shengjun; Yu, Xuezhong; Wu, Jennifer D
2015-02-20
Expression of surface NKG2D ligand MIC on tumor cells is deemed to stimulate NK and co-stimulate CD8 T cell anti-tumor immunity. Human cancer cells however frequently adopt a proteinase-mediated shedding strategy to generate soluble MIC (sMIC) to circumvent host immunity. High levels of sMIC have been shown to correlate with advanced disease stages in cancer patients. The underlying mechanism is currently understood as systemic downregulation of NKG2D expression on CD8 T and NK cells and perturbing NK cell periphery maintenance. Herein we report a novel mechanism by which sMIC poses immune suppressive effect on host immunity and tumor microenvironment. We demonstrate that sMIC facilitates expansion of myeloid-derived suppressor cells (MDSCs) and skews macrophages to the more immune suppressive alternative phenotype through activation of STAT3. These findings further endorse that sMIC is an important therapeutic target for cancer immunotherapy.
A missing model in reproductive skew theory: the bordered tug-of-war.
Reeve, Hudson Kern; Shen, Sheng-Feng
2006-05-30
Models of reproductive skew can be classified into two groups: transactional models, in which group members yield shares of reproduction to each other in return for cooperation, and tug-of-war models, in which group members invest group resources in a tug-of-war over their respective reproductive shares. We synthesize these two models to yield a "bordered tug-of-war" model in which the internal tug-of-war is limited ("bordered") by the requirement that group members must achieve a certain amount of reproduction lest they pursue a noncooperative option leading to group breakup. Previous attempts to synthesize these two models did not allow for the fact that the tug-of-war will affect group output, which in turn feeds back on the reproductive payments required by group members to remain cooperative. The bordered tug-of-war model, which does not assume complete reproductive control by any individual and allows for conflict within groups, predicts that the degree of within-group selfishness will increase as the noncooperative options become less attractive, e.g., as ecological constraints on solitary breeding increase. When the noncooperative option involves fighting for the group resource (e.g., territory) and leaving if the fight is lost, the subordinate's overall share of reproduction is predicted to be independent of its relatedness to the dominant and to increase the greater its probability of winning the fight, the less the value of the territory, and the greater its personal payoff for leaving. The unique predictions of the bordered tug-of-war model may fit skew data from a number of species, including meerkats, lions, and wood mice.
Skewing the T-cell repertoire by combined DNA vaccination, host conditioning, and adoptive transfer.
Jorritsma, Annelies; Bins, Adriaan D; Schumacher, Ton N M; Haanen, John B A G
2008-04-01
Approaches for T-cell-based immunotherapy that have shown substantial effects in clinical trials are generally based on the adoptive transfer of high numbers of antigen-specific cells, and the success of these approaches is thought to rely on the high magnitude of the tumor-specific T-cell responses that are induced. In this study, we aimed to develop strategies that also yield a T-cell repertoire that is highly skewed toward tumor recognition but do not rely on ex vivo generation of tumor-specific T cells. To this end, the tumor-specific T-cell repertoire was first expanded by DNA vaccination and then infused into irradiated recipients. Subsequent vaccination of the recipient mice with the same antigen resulted in peak CD8(+) T-cell responses of approximately 50%. These high T-cell responses required the presence of antigen-experienced tumor-specific T cells within the graft because only mice that received cells of previously vaccinated donor mice developed effective responses. Tumor-bearing mice treated with this combined therapy showed a significant delay in tumor outgrowth, compared with mice treated by irradiation or vaccination alone. Furthermore, this antitumor effect was accompanied by an increased accumulation of activated and antigen-specific T cells within the tumor. In summary, the combination of DNA vaccination with host conditioning and adoptive transfer generates a marked, but transient, skewing of the T-cell repertoire toward tumor recognition. This strategy does not require ex vivo expansion of cells to generate effective antitumor immunity and may therefore easily be translated to clinical application.
Low paternity skew and the influence of maternal kin in an egalitarian, patrilocal primate
Strier, Karen B.; Chaves, Paulo B.; Mendes, Sérgio L.; Fagundes, Valéria; Di Fiore, Anthony
2011-01-01
Levels of reproductive skew vary in wild primates living in multimale groups depending on the degree to which high-ranking males monopolize access to females. Still, the factors affecting paternity in egalitarian societies remain unexplored. We combine unique behavioral, life history, and genetic data to evaluate the distribution of paternity in the northern muriqui (Brachyteles hypoxanthus), a species known for its affiliative, nonhierarchical relationships. We genotyped 67 individuals (22 infants born over a 3-y period, their 21 mothers, and all 24 possible sires) at 17 microsatellite marker loci and assigned paternity to all infants. None of the 13 fathers were close maternal relatives of females with which they sired infants, and the most successful male sired a much lower percentage of infants (18%) than reported for the most successful males in other species. Our findings of inbreeding avoidance and low male reproductive skew are consistent with the muriqui's observed social and sexual behavior, but the long delay (≥2.08 y) between the onset of male sexual behavior and the age at which males first sire young is unexpected. The allocation of paternity implicates individual male life histories and access to maternal kin as key factors influencing variation in paternal—and grandmaternal—fitness. The apparent importance of lifelong maternal investment in coresident sons resonates with other recent examinations of maternal influences on offspring reproduction. This importance also extends the implications of the “grandmother hypothesis” in human evolution to include the possible influence of mothers and other maternal kin on male reproductive success in patrilocal societies. PMID:22065786
Th1-skewed tissue responses to a mycolyl glycolipid in mycobacteria-infected rhesus macaques
Morita, Daisuke; Miyamoto, Ayumi; Hattori, Yuki; Komori, Takaya; Nakamura, Takashi; Igarashi, Tatsuhiko; Harashima, Hideyoshi; Sugita, Masahiko
2013-11-08
Highlights: •Glucose monomycolate (GMM) is a marker glycolipid for active tuberculosis. •Tissue responses to GMM involved up-regulation of Th1-attracting chemokines. •Th1-skewed local responses were mounted at the GMM-injected tissue. -- Abstract: Trehalose 6,6′-dimycolate (TDM) is a major glycolipid of the cell wall of mycobacteria with remarkable adjuvant functions. To avoid detection by the host innate immune system, invading mycobacteria down-regulate the expression of TDM by utilizing host-derived glucose as a competitive substrate for their mycolyltransferases; however, this enzymatic reaction results in the concomitant biosynthesis of glucose monomycolate (GMM) which is recognized by the acquired immune system. GMM-specific, CD1-restricted T cell responses have been detected in the peripheral blood of infected human subjects and monkeys as well as in secondary lymphoid organs of small animals, such as guinea pigs and human CD1-transgenic mice. Nevertheless, it remains to be determined how tissues respond at the site where GMM is produced. Here we found that rhesus macaques vaccinated with Mycobacterium bovis bacillus Calmette–Guerin mounted a chemokine response in GMM-challenged skin that was favorable for recruiting T helper (Th)1 T cells. Indeed, the expression of interferon-γ, but not Th2 or Th17 cytokines, was prominent in the GMM-injected tissue. The GMM-elicited tissue response was also associated with the expression of monocyte/macrophage-attracting CC chemokines, such as CCL2, CCL4 and CCL8. Furthermore, the skin response to GMM involved the up-regulated expression of granulysin and perforin. Given that GMM is produced primarily by pathogenic mycobacteria proliferating within the host, the Th1-skewed tissue response to GMM may function efficiently at the site of infection.
NASA Astrophysics Data System (ADS)
Horner-Johnson, Benjamin C.; Gordon, Richard G.
2010-09-01
We test the fixed hot spot and fixed spin axis hypotheses through a paleomagnetic investigation of the skewness of crossings of magnetic anomaly 12r (32 Ma B.P.) between the Galapagos and Clarion fracture zones on the Pacific plate. We focus on this region for three reasons. First, numerical experiments show that these crossings, of all those available from the Pacific plate, should contain the most information about the location of the 32 Ma B.P. paleomagnetic pole for the Pacific plate. Second, many of the available crossings are from vector aeromagnetic profiles, which have superior signal-to-noise ratios. Third, the rate of seafloor spreading recorded in these crossings exceeds the threshold (half rate of 50 mm a-1) above which anomalous skewness is negligible. The new pole (83.5°N, 44.6°E) has compact 95% confidence limits (ellipse with major semiaxis length of 3.1° toward 84° clockwise from north and minor semiaxis length of 1.2°) and is not subject to the biases inherent in other methods for estimating Pacific plate paleomagnetic poles. The pole differs significantly by ≈5° from the pole predicted if the Pacific hot spots have been fixed with respect to the spin axis, thus demonstrating, for the first time from paleomagnetic data, that Pacific hot spots have moved relative to the spin axis since the formation of the elbow in the Hawaiian-Emperor chain. The pole is consistent, however, with previously published paleomagnetic poles in a reference frame fixed relative to Indo-Atlantic hot spots. Thus, the new results require no motion between Pacific and Indo-Atlantic hot spots since 32 Ma B.P. Instead, superimposed on whatever motion occurs between hot spots, as expected for true polar wander.
Allen, Lloyd A.
1996-10-17
The focus of this dissertation is the use of a twin quadrupole inductively coupled plasma mass spectrometer (ICP-MS) for the simultaneous detection of two m/z values. The twin quadrupole ICP-MS is used with laser ablation sample introduction in both the steady state (10 Hz) and single pulse modes. Steady state signals are highly correlated and the majority of flicker noise cancels when the ratio is calculated. Using a copper sample, the isotope ratio ^{63}Cu^{+}/^{65}Cu^{+} is measured with a relative standard deviation (RSD) of 0.26%. Transient signals for single laser pulses are also obtained. Copper isotope ratio measurements for several laser pulses are measured with an RSD of 0.85%. Laser ablation (LA) is used with steel samples to assess the ability of the twin quadrupole ICP-MS to eliminate flicker noise of minor components of steel samples. Isotopic and internal standard ratios are measured in the first part of this work. The isotope ratio ^{52}Cr^{+}/^{53}Cr^{+} (Cr present at 1.31 %) can be measured with an RSD of 0.06 % to 0.1 %. For internal standard elements, RSDs improve from 1.9 % in the Cr^{+} signal to 0.12% for the ratio of ^{51}V^{+} to ^{52}Cr^{+}. In the second part of this work, one mass spectrometer is scanned while the second channel measures an individual m/z value. When the ratio of these two signals is calculated, the peak shapes in the mass spectrum are improved significantly. Pulses of analyte and matrix ions from individual drops are measured simultaneously using the twin quadrupole ICP-MS with monodisperse dried microparticulate injection (MDMI). At modest Pb concentrations (500 ppm), a shoulder on the leading edge of the Li^{+} signal becomes apparent. Space charge effects are consistent with the disturbances seen.
On transition strengths of E1, E2, & E3 in the regions of mixed quadrupole-octupole collectivity
NASA Astrophysics Data System (ADS)
Rasmussen, John; Luo, Y. X.; Hamilton, Joseph; Ramayya, A. V.; Donangelo, Raul
2010-11-01
We review the main highlights of experiment and theory for the lowest three electric multipolarities, B(E1), B(E2), and B(E3), for nuclei where quadrupole and octupole collectivity may both occur. The principal regions of interest are around 6 to 12 protons and 6 to 12 neutrons beyond the doubly-closed shell nuclei ^132Sn and ^208Pb. We examine microscopic theoretical calculationsootnotetextW. Zhang et al., Phys. Rev. C 81, 034302 (2010) and references therein. in which deformations are driven by Nilsson orbitals near the Fermi energy. We also focus attention on recent experimentalootnotetextP.E. Garrett et al., Phys. Rev. Letts. 103, 062501 (2009) studies of ^152Sm, where the ground band and associated K=1^- band are mirrored by another 0^+ and 1^- band about 0.7 MeV higher in energy. We suggest that a monopole pairing force alone is insufficient to cause this mirroring, and monopole-plus-quadrupole pairing or a more realistic nucleon-nucleon force is needed.
Development of MQXF: The Nb3Sn low-β quadrupole for the HiLumi LHC
Ferracin, P.; G. Ambrosio; Anerella, M.; ...
2015-12-18
The High Luminosity (HiLumi) Large Hadron Collider (LHC) project has, as the main objective, to increase the LHC peak luminosity by a factor five and the integrated luminosity by a factor ten. This goal will be achieved mainly with a new interaction region layout, which will allow a stronger focusing of the colliding beams. The target will be to reduce the beam size in the interaction points by a factor of two, which requires doubling the aperture of the low-β (or inner triplet) quadrupole magnets. The use of Nb3Sn superconducting material and, as a result, the possibility of operating atmore » magnetic field levels in the windings higher than 11 T will limit the increase in length of these quadrupoles, called MQXF, to acceptable levels. After the initial design phase, where the key parameters were chosen and the magnet's conceptual design finalized, the MQXF project, a joint effort between the U.S. LHC Accelerator Research Program and the Conseil Europeen pour la Recherche Nucleaire (CERN), has now entered the construction and test phase of the short models. Concurrently, the preparation for the development of the full-length prototypes has been initiated. Lastly, this paper will provide an overview of the project status, describing and reporting on the performance of the superconducting material, the lessons learnt during the fabrication of superconducting coils and support structure, and the fine tuning of the magnet design in view of the start of the prototyping phase.« less
Electron Cloud Generation And Trapping in a Quadrupole Magnet at the Los Alamos PSR
Macek, R.J.; Browman, A.A.; Ledford, J.E.; Borden, M.J.; O'Hara, J.F.; McCrady, R.C.; Rybarcyk, L.J.; Spickermann, T.; Zaugg, T.J.; Pivi, M.T.F.; /SLAC
2007-11-14
A diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies with this diagnostic show that the electron flux striking the wall in the quadrupole is comparable to or larger than in an adjacent drift. In addition, the trapped electron signal, obtained using the sweeping feature of diagnostic, was larger than expected and decayed very slowly with an exponential time constant of 50 to 100 {micro}s. Experimental results were also obtained which suggest that a significant fraction of the electrons observed in the adjacent drift space were seeded by electrons ejected from the quadrupole.
Electric quadrupole transition probabilities and line strengths of Ti{sup 11+}
Gökçe, Yasin; Çelik, Gültekin; Yıldız, Murat
2014-07-15
Electric quadrupole transition probabilities and line strengths have been calculated using the weakest bound electron potential model for sodium-like titanium, considering many transition arrays. We employed numerical Coulomb approximation and non-relativistic Hartree–Fock wavefunctions for the expectation values of radii in determination of parameters of the model. The necessary energy values have been taken from experimental data in the literature. The calculated electric quadrupole line strengths have been compared with available data in the literature and good agreement has been obtained. Moreover, some electric quadrupole transition probability and line strength values not existing in the literature for some highly excited levels have been obtained using this method.
Nb3Sn Quadrupoles in the LHC IR Phase I Upgrade
Zlobin,A.; Johnstone, J.; Kashikhin, V.; Mokhov, N.; Rakhno, I.; deMaria, R.; Peggs, S.; Robert-Demolaize, F.; Wanderer, P.
2008-06-23
After a number of years of operation at nominal parameters, the LHC will be upgraded for higher luminosity. This paper discusses the possibility of using a limited number of Nb{sub 3}Sn quadrupoles for hybrid optics layouts for the LHC Phase I luminosity upgrades with both NbTi and Nb{sub 3}Sn quadrupoles. Magnet parameters and issues related to using Nb{sub 3}Sn quadrupoles including aperture, gradient, magnetic length, field quality, operation margin, et cetera are discussed.
Nb3Sn quadrupoles in the LHC IR Phase I upgrade
Zlobin, A.V.; Johnstone, J.A.; Kashikhin, V.V.; Mokhov, N.V.; Rakhno, I.L.; de Maria, R.; Peggs, S.; Robert-Demolaize, G.; Wanderer, P.; /Brookhaven
2008-06-01
After a number of years of operation at nominal parameters, the LHC will be upgraded to a higher luminosity. This paper discusses the possibility of using a limited number of Nb{sub 3}Sn quadrupoles for hybrid optics layouts for the LHC Phase I luminosity upgrades with both NbTi and Nb{sub 3}Sn quadrupoles. Magnet parameters and issues related to using Nb{sub 3}Sn quadrupoles including aperture, gradient, magnetic length, field quality, operation margin, et cetera are discussed.
NASA Astrophysics Data System (ADS)
Pipień, M.
2008-09-01
We present the results of an application of Bayesian inference in testing the relation between risk and return on the financial instruments. On the basis of the Intertemporal Capital Asset Pricing Model, proposed by Merton we built a general sampling distribution suitable in analysing this relationship. The most important feature of our assumptions is that the skewness of the conditional distribution of returns is used as an alternative source of relation between risk and return. This general specification relates to Skewed Generalized Autoregressive Conditionally Heteroscedastic-in-Mean model. In order to make conditional distribution of financial returns skewed we considered the unified approach based on the inverse probability integral transformation. In particular, we applied hidden truncation mechanism, inverse scale factors, order statistics concept, Beta and Bernstein distribution transformations and also a constructive method. Based on the daily excess returns on the Warsaw Stock Exchange Index we checked the empirical importance of the conditional skewness assumption on the relation between risk and return on the Warsaw Stock Market. We present posterior probabilities of all competing specifications as well as the posterior analysis of the positive sign of the tested relationship.
ERIC Educational Resources Information Center
Cooper, David
2015-01-01
The paper looks closely at student enrolment trends through a case study of South African "race" enrolment data, including some hypotheses about how student social class has influenced these trends. First, data on 1988-1998 enrolments showing a "skewed revolution" in student africanisation are summarised. Then, using 2000-2012…
Ibbotson, Paul
2013-01-01
We use the Google Ngram database, a corpus of 5,195,769 digitized books containing ~4% of all books ever published, to test three ideas that are hypothesized to account for linguistic generalizations: verbal semantics, pre-emption and skew. Using 828,813 tokens of un-forms as a test case for these mechanisms, we found verbal semantics was a good predictor of the frequency of un-forms in the English language over the past 200 years—both in terms of how the frequency changed over time and their frequency rank. We did not find strong evidence for the direct competition of un-forms and their top pre-emptors, however the skew of the un-construction competitors was inversely correlated with the acceptability of the un-form. We suggest a cognitive explanation for this, namely, that the more the set of relevant pre-emptors is skewed then the more easily it is retrieved from memory. This suggests that it is not just the frequency of pre-emptive forms that must be taken into account when trying to explain usage patterns but their skew as well. PMID:24399991
NASA Astrophysics Data System (ADS)
Sawetsakulanond, Budhapon; Kinnares, Vijit
This paper presents analysis and investigation of the skew effect on behavior and performance of a three-phase, 220/380V, 8.7/5.0A, Δ/Y connected, 4 poles, 2.2kW self-excited induction generator (SEIG) with different angles rotor skewing. A 2D finite element analysis (2D-FEA) is used to consider core loss, flux density and circuit parameters. Analysis of excitation capacitor values for the SEIG based on a steady-state equivalent circuit model including rotor skew effect is given. Skewed rotor slots with angle of 0° (non-skew), 5° and 10° for the SEIGs are employed. Testing and performance comparisons under steady-state operation with a pure resistive load have been conducted. Obtained results can be guidelines and recommendations for development of effective wind induction generators.
Veilleux, Andrea G.; Stedinger, Jery R.; Eash, David A.
2012-01-01
This paper summarizes methodological advances in regional log-space skewness analyses that support flood-frequency analysis with the log Pearson Type III (LP3) distribution. A Bayesian Weighted Least Squares/Generalized Least Squares (B-WLS/B-GLS) methodology that relates observed skewness coefficient estimators to basin characteristics in conjunction with diagnostic statistics represents an extension of the previously developed B-GLS methodology. B-WLS/B-GLS has been shown to be effective in two California studies. B-WLS/B-GLS uses B-WLS to generate stable estimators of model parameters and B-GLS to estimate the precision of those B-WLS regression parameters, as well as the precision of the model. The study described here employs this methodology to develop a regional skewness model for the State of Iowa. To provide cost effective peak-flow data for smaller drainage basins in Iowa, the U.S. Geological Survey operates a large network of crest stage gages (CSGs) that only record flow values above an identified recording threshold (thus producing a censored data record). CSGs are different from continuous-record gages, which record almost all flow values and have been used in previous B-GLS and B-WLS/B-GLS regional skewness studies. The complexity of analyzing a large CSG network is addressed by using the B-WLS/B-GLS framework along with the Expected Moments Algorithm (EMA). Because EMA allows for the censoring of low outliers, as well as the use of estimated interval discharges for missing, censored, and historic data, it complicates the calculations of effective record length (and effective concurrent record length) used to describe the precision of sample estimators because the peak discharges are no longer solely represented by single values. Thus new record length calculations were developed. The regional skewness analysis for the State of Iowa illustrates the value of the new B-WLS/BGLS methodology with these new extensions.
Mynard, Jonathan P; Steinman, David A
2013-05-01
Given evidence that fully developed axisymmetric flow may be the exception rather than the rule, even in nominally straight arteries, maximum velocity (V(max)) can lie outside the Doppler sample volume (SV). The link between V(max) and derived quantities, such as volume flow (Q), may therefore be more complex than commonly thought. We performed idealized virtual Doppler ultrasound on data from image-based computational fluid dynamics (CFD) models of the normal human carotid artery and investigated how velocity profile skewing and choice of sample volume affected V(max) waveforms and derived Q variables, considering common assumptions about velocity profile shape (i.e., Poiseuille or Womersley). Severe velocity profile skewing caused substantial errors in V(max) waveforms when using a small, centered SV, although peak V(max) was reliably detected; errors with a long SV covering the vessel diameter were orientation dependent but lower overall. Cycle-averaged Q calculated from V(max) was typically within ±15%, although substantial skewing and use of a small SV caused 10%-25% underestimation. Peak Q derived from Womersley's theory was generally accurate to within ±10%. V(max) pulsatility and resistance indexes differed from Q-based values, although the Q-based resistance index could be predicted reliably. Skewing introduced significant error into V(max)-derived Q waveforms, particularly during mid-to-late systole. Our findings suggest that errors in the V(max) and Q waveforms related to velocity profile skewing and use of a small SV, or orientation-dependent errors for a long SV, could limit their use in wave analysis or for constructing characteristic or patient-specific flow boundary conditions for model studies.
Proton beam studies with a 1.25 MeV, cw radio frequency quadrupole linac
Bolme, G.O.; Hardek, T.W.; Hansborough, L.D.
1998-12-31
A high-current, cw linear accelerator has been proposed as a spallation neutron source driver for tritium production. Key features of this accelerator are high current (100 mA), low emittance-growth beam propagation, cw operation, high efficiency, and minimal maintenance downtime. A 268 MHz, cw radio frequency quadrupole (RFQ) LINAC section and klystrode based rf system were obtained from the Chalk River Laboratories and were previously installed at LANL to support systems development and advanced studies in support of cw, proton accelerators. A variation of the Low Energy Demonstration Accelerator (LEDA) proton injector, modified to operate at 50 keV, was mated to the RFQ and was operated to support advance developments for the Accelerator Production of Tritium (APT) program. High current, proton beam studies were completed which focused on the details of injector-RFQ integration, development of beam diagnostics, development of operations procedures, and personnel and equipment safety systems integration. This development led to acceleration of up to 100 mA proton beam.
MULTIPOLE GRAVITATIONAL LENSING AND HIGH-ORDER PERTURBATIONS ON THE QUADRUPOLE LENS
Chu, Z.; Lin, W. P.; Li, G. L.; Kang, X. E-mail: linwp@shao.ac.cn
2013-03-10
An arbitrary surface mass density of the gravitational lens can be decomposed into multipole components. We simulate the ray tracing for the multipolar mass distribution of the generalized Singular Isothermal Sphere model based on deflection angles, which are analytically calculated. The magnification patterns in the source plane are then derived from an inverse shooting technique. As has been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses this kind of overlapping caustics, the image numbers change by {+-}4, rather than {+-}2. There are two kinds of caustic images. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4, and 5 mode components and found that one, two, and three butterfly or swallowtail singularities can be produced, respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails make contact, then eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.
Development of a quadrupole trap apparatus for UHV measurements of levitated graphene
NASA Astrophysics Data System (ADS)
Coppock, Joyce; Nagornykh, Pavel; McAdams, Ian; Kane, Bruce
2015-03-01
Completely decoupling graphene from any substrate opens up new possibilities for measurement of its electrical and mechanical properties as well as the exploration of novel methods of crystal growth and fabrication of 2D materials. We levitate a charged micron-scale few-layer graphene-like flake in an electrical AC quadrupole trap and induce rotation using a circularly polarized laser beam. We aim to achieve an ultra-high vacuum (UHV) environment (<10-9 Torr), which will allow us to conduct experiments on graphene lattice stretching (via rotation at frequencies greater than 100 MHz), to perform thermodynamic measurements on the particles as they are heated by the laser, and to avoid chemical contamination of the particles. Measurements of particles in UHV require two technologies: (1) the reliable capture of particles and their introduction into a UHV environment, and (2) a center-of-mass cooling method to prevent particle loss. This talk will focus on the first challenge. We will discuss improvements to the sample preparation and to the trapping procedure, describe a method of transferring particles from the initial capture trap to a second trap in a UHV chamber, and present a model of the trap potential. Finally, we will discuss preliminary work on the deposition of particles onto a conducting substrate after they have been cooled and oriented parallel to the substrate.
Suppression of Quadrupole and Octupole Modes in Red Giants Observed by Kepler *
NASA Astrophysics Data System (ADS)
Stello, Dennis; Cantiello, Matteo; Fuller, Jim; Garcia, Rafael A.; Huber, Daniel
2016-03-01
An exciting new theoretical result shows that observing suppression of dipole oscillation modes in red giant stars can be used to detect strong magnetic fields in the stellar cores. A fundamental facet of the theory is that nearly all the mode energy leaking into the core is trapped by the magnetic greenhouse effect. This results in clear predictions for how the mode visibility changes as a star evolves up the red giant branch, and how that depends on stellar mass, spherical degree, and mode lifetime. Here, we investigate the validity of these predictions with a focus on the visibility of different spherical degrees. We find that mode suppression weakens for higher degree modes with a reduction in the quadrupole mode visibility of up to 49%, and no detectable suppression of octupole modes, in agreement with theory. We find evidence for the influence of increasing mode lifetimes on the visibilities along the red giant branch, in agreement with previous independent observations. These results support the theory that strong internal magnetic fields cause suppression of non-radial modes in red giants. We also find preliminary evidence that stars with suppressed dipole modes on average have slightly lower metallicity than normal stars.
Obtaining 3-150 MeV Focused Particle Microbeams
Dymnikov, Alexander D.
2003-08-26
The number of nuclear microprobe setups is growing steadily and its potential in research fields such as biomedicine, material science and geology is being established. The most existing microprobe lenses can focus a proton beam up to energy of 30 MeV. The studies reported here deal with magnetic quadrupole systems such as Russian Separated Quadruplet for obtaining 3-150 MeV proton microbeams. For a given magnetic field in the quarupole lenses optimal parameters of microprobes for different energies of protons are obtained. The smallest beam spot size and appropriate geometry of the focusing and matching slit systems have been found for three different emittances.
NASA Astrophysics Data System (ADS)
Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.
2016-08-01
We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.
Geib, Timon; Sleno, Lekha; Hall, Rabea A; Stokes, Caroline S; Volmer, Dietrich A
2016-08-01
We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease. Graphical Abstract ᅟ.
Jäger, C; Kunath, G; Losso, P; Scheler, G
1993-04-01
27Al Satellite transition spectroscopy (SATRAS) has been used to extract both the quadrupole interaction and its distribution width from MAS spectra of glasses. Using this method a measurement at a single magnetic field strength allows one to obtain the true chemical shifts and the quadrupole interaction (and its distributions) with high accuracy, including quantification of the results. In contrast to earlier investigations the central transition MAS lineshapes can be described without assumptions and give correct relative proportions of differently coordinated Al species in glasses. The distribution model for the quadrupole interaction and the resulting MAS lineshapes are discussed in detail including a description of the experimental requirements. Experimental results of 27Al SATRAS spectra of a ternary Al2O3-B2O3-P2O5 glass exhibiting 4-, 5-, and 6-coordinated aluminum species clearly prove different mean values and distribution widths for the quadrupole interaction in the various AlOx polyhedra.
A modified quadrupole mass spectrometer with custom RF link rods driver for remote operation
NASA Technical Reports Server (NTRS)
Tashbar, P. W.; Nisen, D. B.; Moore, W. W., Jr.
1973-01-01
A commercial quadrupole residual gas analyzer system has been upgraded for operation at extended cable lengths. Operation inside a vacuum chamber for the standard quadrupole nude head is limited to approximately 2 m from its externally located rf/dc generator because of the detuning of the rf oscillator circuits by the coaxial cable reactance. The advance of long distance remote operation inside a vacuum chamber for distances of 45 and 60 m was made possible without altering the quadrupole's rf/dc generator circuit by employing an rf link to drive the quadrupole rods. Applications of the system have been accomplished for in situ space simulation thermal/vacuum testing of sophisticated payloads.
The use of the pairing-quadrupole connections in PQM for application in nuclear systems
NASA Astrophysics Data System (ADS)
Drumev, K. P.; Georgieva, A. I.
2016-03-01
Within the algebraic realization of the Pairing-plus-Quadrupole Model /PQM/ in the framework of the Elliott's SU(3) Model,we present some particular applications for realistic nuclear systems. The probability distribution of the SU(3) basis states within the isovector, isoscalar and total pairing eigenstates is obtained through a numerical diagonalization of the PQM Hamiltonian in each limit. This allows the investigation of the interplay between the pairing and quadrupole interactions in the Hamiltonian of the PQM, containing all of them as limiting cases. The relative strengths of the dynamically symmetric quadrupole-quadrupole interaction with the considered types of pairing interactions are investigated systematically for systems like the 20Ne.
Field quality measurements and abalysis of the LARP technology quadrupole models
Bossert, R.; Chlachidze, G.; DiMarco, J.; Kashikhin, V.V.; Lamm, M.; Schlabach, P.; Tartaglia, M.; Tompkins, J.C.; Velev, G.V.; Zlobin, A.V.; Caspi, S.; /Fermilab /LBL, Berkeley
2007-08-01
One of the US-LHC accelerator research program goals is to develop and prove the design and technology of Nb{sub 3}Sn quadrupoles for an upgrade of the LHC Interaction Region (IR) inner triplets. Four 1-m long technology quadrupole models with a 90 mm bore and field gradient of 200 T/m based on similar coils and different mechanical structures have been developed. In this paper, we present the field quality measurements of the first several models performed at room temperature as well as at superfluid helium temperature in a wide field range. The measured field harmonics are compared to the calculated ones. The field quality of Nb{sub 3}Sn quadrupole models is compared with the NbTi quadrupoles recently produced at Fermilab for the first generation LHC IRs.
Field Quality Measurements and Analysis of the LARP Technology Quadrupole Models
Chlachidze, G.; DiMarco, J.; Kashikhin, V.V.; Lamm, M.; Schlabach, P.; Tartaglia, M.; Tompkins, J.C.; Velev, G.V.; Zlobin, A.V.; Caspi, S.; Ferracin, P.; Sabbi, G.I.; Bossert, R.
2008-06-01
One of the US-LHC accelerator research program goals is to develop and prove the design and technology of Nb{sub 3}Sn quadrupoles for an upgrade of the LHC Interaction Region (IR) inner triplets. Four 1-m long technology quadrupole models with a 90 mm bore and field gradient of 200 T/m based on similar coils and different mechanical structures have been developed. In this paper, we present the field quality measurements of the first several models performed at room temperature as well as at superfluid helium temperature in a wide field range. The measured field harmonics are compared to the calculated ones. The field quality of Nb{sub 3}Sn quadrupole models is compared with the NbTi quadrupoles recently produced at Fermilab for the first generation LHC IRs.
NPIP: A skew line needle configuration optimization system for HDR brachytherapy
Siauw, Timmy; Cunha, Adam; Berenson, Dmitry; Atamtuerk, Alper; Hsu, I-Chow; Goldberg, Ken; Pouliot, Jean
2012-07-15
Purpose: In this study, the authors introduce skew line needle configurations for high dose rate (HDR) brachytherapy and needle planning by integer program (NPIP), a computational method for generating these configurations. NPIP generates needle configurations that are specific to the anatomy of the patient, avoid critical structures near the penile bulb and other healthy structures, and avoid needle collisions inside the body. Methods: NPIP consisted of three major components: a method for generating a set of candidate needles, a needle selection component that chose a candidate needle subset to be inserted, and a dose planner for verifying that the final needle configuration could meet dose objectives. NPIP was used to compute needle configurations for prostate cancer data sets from patients previously treated at our clinic. NPIP took two user-parameters: a number of candidate needles, and needle coverage radius, {delta}. The candidate needle set consisted of 5000 needles, and a range of {delta} values was used to compute different needle configurations for each patient. Dose plans were computed for each needle configuration. The number of needles generated and dosimetry were analyzed and compared to the physician implant. Results: NPIP computed at least one needle configuration for every patient that met dose objectives, avoided healthy structures and needle collisions, and used as many or fewer needles than standard practice. These needle configurations corresponded to a narrow range of {delta} values, which could be used as default values if this system is used in practice. The average end-to-end runtime for this implementation of NPIP was 286 s, but there was a wide variation from case to case. Conclusions: The authors have shown that NPIP can automatically generate skew line needle configurations with the aforementioned properties, and that given the correct input parameters, NPIP can generate needle configurations which meet dose objectives and use as many
Effects of Coulomb quadrupole excitation in heavy-ion reactions
NASA Astrophysics Data System (ADS)
Cheoun, Myung-Ki; Choi, K. S.; Kim, K. S.; Kim, T. H.; So, W. Y.
2016-09-01
For 12C + 184W, 18O + 184W, and 20Ne + 208Pb systems, we investigate the suppression of the ratios P E = σ el/ σ RU by using the Coulomb quadrupole excitation (CQE) potentials. In order to explain the effect of the CQE potentials, we first use a well-known Love's CQE potential, and reproduce the experimental P E data well by using this potential. We also introduce a simple CQE potential written as W CQE( r) = - W P / r n , which is much simpler than the conventional Love's potential, to investigate the suppression of the P E ratios. Using this potential, we perform a χ2 analysis to find the adjustable parameter n, then, we find that the best fit parameters n ≈ 5 is close to the lowest order term, 1/ r 5. Consequently, we find that using the simple CQE potential explains the experimental P E data and that the ratio P E depends on the n values sensitively.
Miniature mass spectrometer systems based on a microengineered quadrupole filter.
Malcolm, Andrew; Wright, Steven; Syms, Richard R A; Dash, Neil; Schwab, Marc-André; Finlay, Alan
2010-03-01
Two miniature mass spectrometer systems based on a microengineered quadrupole mass filter have been developed. One of the instruments has a footprint of 27 cm x 20 cm and is intended for laboratory use when space is at a premium. The other is portable and intended for use in the field. It is battery powered, weighs 14.9 kg, and is housed in a rugged case. This is the first example of a portable mass spectrometer incorporating an analyzer fabricated using microelectromechanical systems (MEMS) techniques. The starting material for construction of the filters is a bonded silicon on insulator substrate, which is selectively etched using batch processing techniques to form coupling optics and springs that accurately hold 0.5 mm diameter stainless steel rods in the required geometry. Assembled filters measure 35 mm x 6 mm x 1.5 mm and are mounted, together with an ion source and channeltron detector, in small, interchangeable cartridges, which plug into a 220 cm(3) vacuum chamber. Recovery from accidental contamination or when servicing is required can be achieved within 5-10 min, as the cartridge is easily exchanged with a spare. A potential application to environmental monitoring has been investigated. The headspace above water spiked with dibutyl mercaptan was sampled with a solid phase microextraction (SPME) fiber, which was then injected directly into the vacuum chamber of the mass spectrometer. Using this method, the limit of detection was found to be approximately 5 ppm for a 15 s sampling period.
Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes
NASA Astrophysics Data System (ADS)
Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.
2006-05-01
Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.
On the formation of the South Pacific quadrupole mode
NASA Astrophysics Data System (ADS)
Zheng, Jian; Wang, Faming
2016-08-01
The formation process of the South Pacific (SP) quadrupole (SPQ) mode was investigated in this study based on observations and reanalysis data. The SPQ is the dominant mode of the sea surface temperature (SST)-surface wind covariability in the SP after removing the ENSO-related signals. The positive phase of the SPQ is characterized by a warm SST anomaly (SSTA) west of the South American coast, a cool SSTA in its southwest, a positive SSTA southeast of New Zealand, and a negative SSTA off the southeast coast of Australia, overlain by cyclonic wind anomalies. The anomalous cyclonic winds weaken the mean southeast trade winds in the southeast SP and the westerlies in the high latitudes of the SP, increasing the SSTAs at the two positive poles through decreased evaporation and latent heat flux (LHF) loss. The southeast wind anomalies advect dry and cold air to the negative pole in the central SP, which reduces the SSTA there by increasing the LHF loss. Off the southeast coast of Australia, the southwest wind anomalies induce equatorward Ekman currents and advect cold water. The resulting oceanic horizontal advection is the main contributor to the negative SSTAs there. In addition to the above processes, cloud cover change can enhance the initial SSTAs in the southeast SP by affecting shortwave radiation. The decay of the SPQ is mainly due to LHF changes.
Hybrid permanent magnet quadrupoles for the Recycler Ring at Fermilab
Brown, B.C.; Pruss, S.M.; Foster, G.W.; Glass, H.D.; Harding, D.J.; Jackson, G.R.; May, M.R.; Nicol, T.H.; Ostiguy, J.-F.; Schlabach, R.; Volk, J.T.
1997-10-01
Hybrid Permanent Magnet Quadrupoles are used in several applications for the Fermilab Recycler Ring and associated beam transfer lines. Most of these magnets use a 0.6096 m long iron shell and provide integrated gradients up to 1.4 T-m/m with an iron pole tip radius of 41.6 mm. A 58.4 mm pole radius design is also required. Bricks of 25. 4 mm thick strontium ferrite supply the flux to the back of the pole to produce the desired gradients (0.6 to 2.75 T/m). For temperature compensation, Ni-Fe alloy strips are interspersed between ferrite bricks to subtract flux in a temperature dependent fashion. Adjustments of the permeance of each pole using iron between the pole and the flux return shell permits the matching of pole potentials. Magnetic potentials of the poles are adjusted to the desired value to achieve the prescribed strength and field uniformity based on rotating coil harmonic measurements. Procurement, fabrication, pole potential adjustment, and measured fields will be reported.
Characterization of the ELIMED prototype permanent magnet quadrupole system
NASA Astrophysics Data System (ADS)
Russo, A. D.; Schillaci, F.; Pommarel, L.; Romano, F.; Amato, A.; Amico, A. G.; Calanna, A.; Cirrone, G. A. P.; Costa, M.; Cuttone, G.; Amato, C.; De Luca, G.; Flacco, F. A.; Gallo, G.; Giove, D.; Grmek, A.; La Rosa, G.; Leanza, R.; Maggiore, M.; Malka, V.; Milluzzo, G.; Petringa, G.; Pipek, J.; Scuderi, V.; Vauzour, B.; Zappalà, E.
2017-01-01
The system described in this work is meant to be a prototype of a more performing one that will be installed at ELI-Beamlines in Prague for the collection of ions produced after the interaction Laser-target, [1]. It has been realized by the researchers of INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) and SIGMAPHI, a French company, using a system of Permanent Magnet Quadrupoles (PMQs), [2]. The final system that will be installed in Prague is designed for protons and carbons up to 60 MeV/u, around 10 times more than the energies involved in the present work. The prototype, shown in this work, has been tested in collaboration with the SAPHIR experimental facility group at LOA (Laboratoire d'Optique Appliqueé) in Paris using a 200 TW Ti:Sapphire laser system. The purpose of this work is to validate the design and the performances of this large and compact bore system and to characterize the beam produced after the interaction laser-target and its features. Moreover, the optics simulations have been compared with a real beam shape on a GAFChromic film. The procedure used during the experimental campaign and the most relevant results are reported here demonstrating a good agreement with the simulations and a good control on the beam optics.
A graphical approach to radio frequency quadrupole design
NASA Astrophysics Data System (ADS)
Turemen, G.; Unel, G.; Yasatekin, B.
2015-07-01
The design of a radio frequency quadrupole, an important section of all ion accelerators, and the calculation of its beam dynamics properties can be achieved using the existing computational tools. These programs, originally designed in 1980s, show effects of aging in their user interfaces and in their output. The authors believe there is room for improvement in both design techniques using a graphical approach and in the amount of analytical calculations before going into CPU burning finite element analysis techniques. Additionally an emphasis on the graphical method of controlling the evolution of the relevant parameters using the drag-to-change paradigm is bound to be beneficial to the designer. A computer code, named DEMIRCI, has been written in C++ to demonstrate these ideas. This tool has been used in the design of Turkish Atomic Energy Authority (TAEK)'s 1.5 MeV proton beamline at Saraykoy Nuclear Research and Training Center (SANAEM). DEMIRCI starts with a simple analytical model, calculates the RFQ behavior and produces 3D design files that can be fed to a milling machine. The paper discusses the experience gained during design process of SANAEM Project Prometheus (SPP) RFQ and underlines some of DEMIRCI's capabilities.
Electric Quadrupole Transition Measurements of Hydrogen Molecule with High Precision
NASA Astrophysics Data System (ADS)
Cheng, Cun-Feng; Wang, Jin; Tan, Yan; Liu, An-Wen; Hu, Shui-Ming
2013-06-01
Molecular hydrogen is the most fundamental, and the only neutral molecule expected to be both calculated and measured with extremely high accuracy. High-precision measurements of its spectroscopy, especially the levels at the electric ground state, play an important role in the examination of precise quantum chemistry calculations and some fundamental physical constants. In the infrared region, H_2, being a homonuclear diatomic molecule, only has very weak electric quadrupole transitions. We established a new spectroscopy approach with ultra-high precision and sensitivity as well, based on a laser-locked cavity ring-down spectrometer. An equivalent absorption path-length of thousands of kilometers and a frequency precision of 10^{-5} cm^{-1} have been achieved. Ro-vibrational spectra of the second overtone of H_2 have been recorded. The obtained results will provide a direct examination of the high-accuracy quantum theory. It also shades light on the determination of fundamental physical constants such as the electron/proton mass ratio in a molecular system.
Modal response of 4-rod type radio frequency quadrupole linac.
Chatterjee, Avik; Mahapatra, Abhijit; Mondal, Manas; Chakrabarti, Alok
2009-10-01
This paper deals with the analysis and experimental study of natural frequencies of vibration of a 4-rod type radio frequency quadrupole (RFQ) linear accelerator. The eigenvalue analysis of the structure has been done both analytically (multispan beam concept) as well as using blocked Lanczos eigenvalue finite element solver with an ability to extract the rigid body modes. This has been done in the mechanical design phase to find the level of agreement between the output of simplified analytical analysis results and the output of a commercial finite element method (FEM) solver, since a full scale RFQ structure is too complex to handle analytically. Experimental validation of the analysis results has been done on the physical 1.7 m RFQ at the installation site. The experimental data obtained were later analyzed and found to be in close agreement with the predicted frequencies in the lower frequency ranges. It gets more and more deviated in the higher frequency ranges. Also some frequencies were observed during experimentation, which were not found in the finite element analysis results. The source of those frequencies are to be further investigated as it may play a predominant role in the design high quality factor beam line cavities for higher operational efficiency.
Polarization enhanced Nuclear Quadrupole Resonance with an atomic magnetometer
NASA Astrophysics Data System (ADS)
Malone, Michael W.; Barrall, Geoffrey A.; Espy, Michelle A.; Monti, Mark C.; Alexson, Dimitri A.; Okamitsu, Jeffrey K.
2016-05-01
Nuclear Quadrupole Resonance (NQR) has been demonstrated for the detection of 14-N in explosive compounds. Application of a material specific radio-frequency (RF) pulse excites a response typically detected with a wire- wound antenna. NQR is non-contact and material specific, however fields produced by NQR are typically very weak, making demonstration of practical utility challenging. For certain materials, the NQR signal can be increased by transferring polarization from hydrogen nuclei to nitrogen nuclei using external magnetic fields. This polarization enhancement (PE) can enhance the NQR signal by an order of magnitude or more. Atomic magnetometers (AM) have been shown to improve detection sensitivity beyond a conventional antenna by a similar amount. AM sensors are immune to piezo-electric effects that hamper conventional NQR, and can be combined to form a gradiometer for effective RF noise cancellation. In principle, combining polarization enhancement with atomic magnetometer detection should yield improvement in signal-to-noise ratio that is the product of the two methods, 100-fold or more over conventional NQR. However both methods are even more exotic than traditional NQR, and have never been combined due to challenges in operating a large magnetic field and ultra-sensitive magnetic field sensor in proximity. Here we present NQR with and without PE with an atomic magnetometer, demonstrating signal enhancement greater than 20-fold for ammonium nitrate. We also demonstrate PE for PETN using a traditional coil for detection with an enhancement factor of 10. Experimental methods and future applications are discussed.
"Fast Excitation" CID in Quadrupole Ion Trap Mass Spectrometer
Murrell, J.; Despeyroux, D.; Lammert, Stephen {Steve} A; Stephenson Jr, James {Jim} L; Goeringer, Doug
2003-01-01
Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. ''Fast excitation'' CID deposits (as determined by the intensity ratio of the a{sub 4}/b{sub 4} ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with ''fast excitation'' CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for ''fast excitation'' CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H){sup 17+} of horse heart myoglobin is also shown to illustrate the application of ''fast excitation'' CID to proteins.
Modal response of 4-rod type radio frequency quadrupole linac
Chatterjee, Avik; Mahapatra, Abhijit; Mondal, Manas; Chakrabarti, Alok
2009-10-15
This paper deals with the analysis and experimental study of natural frequencies of vibration of a 4-rod type radio frequency quadrupole (RFQ) linear accelerator. The eigenvalue analysis of the structure has been done both analytically (multispan beam concept) as well as using blocked Lanczos eigenvalue finite element solver with an ability to extract the rigid body modes. This has been done in the mechanical design phase to find the level of agreement between the output of simplified analytical analysis results and the output of a commercial finite element method (FEM) solver, since a full scale RFQ structure is too complex to handle analytically. Experimental validation of the analysis results has been done on the physical 1.7 m RFQ at the installation site. The experimental data obtained were later analyzed and found to be in close agreement with the predicted frequencies in the lower frequency ranges. It gets more and more deviated in the higher frequency ranges. Also some frequencies were observed during experimentation, which were not found in the finite element analysis results. The source of those frequencies are to be further investigated as it may play a predominant role in the design high quality factor beam line cavities for higher operational efficiency.
Hyperfine and nuclear quadrupole coupling in chlorine and fluorine dioxides
NASA Astrophysics Data System (ADS)
Fernández, Berta; Christiansen, Ove; Jørgensen, Poul; Byberg, Jørgen; Gauss, Jürgen; Ruud, Kenneth
1997-02-01
The hyperfine and nuclear quadrupole coupling tensors have been calculated for the two chlorine dioxide isomers OClO and ClOO and for fluorine dioxide FOO. The coupled-cluster singles and doubles (CCSD) approach with a perturbative treatment of triple excitations [CCSD(T)] has been used and basis saturation has been investigated. For the symmetric isomer OClO close agreement is obtained with the accurate and detailed experimental data. For FOO a geometry optimization as well as a comparison of calculated and experimental hyperfine coupling tensors suggest a shorter F-O bond length than that obtained experimentally. For the isomer ClOO, calculations have been carried out at the theoretical equilibrium geometry determined by Peterson and Werner and at the geometry proposed by Byberg for the matrix isolated molecule. The hyperfine coupling tensors obtained at these two geometries are substantially different, but the estimated accuracy of the calculations is not high enough to allow a determination of the geometry of ClOO from the hyperfine data.
Negative coupling and coupling phase dispersion in a silicon quadrupole micro-racetrack resonator.
Bachman, Daniel; Tsay, Alan; Van, Vien
2015-07-27
We report the first experimental study of the effects of coupling phase dispersion on the spectral response of a two-dimensionally coupled quadrupole micro-racetrack resonator. Negative coupling in the system is observed to manifest itself in the sharp stop band transition and deep extinction in the pseudo-elliptic filter response of the quadrupole. The results demonstrate the feasibility of realizing advanced silicon microring devices based on the 2D coupling topology with general complex coupling coefficients.
Low-field permanent magnet quadrupoles in a new relativistic-klystron two-beam accelerator design
Yu, S.; Sessler, A.
1995-02-01
Permanent magnets play a central role in the new relativistic klystron two-beam-accelerator design. The two key goals of this new design, low cost and the suppression of beam break-up instability are both intimately tied to the permanent magnet quadrupole focusing system. A recently completed systems study by a joint LBL-LLNL team concludes that a power source for a 1 TeV center-of-mass Next Linear Collider based on the new TBA design can be as low as $1 billion, and the efficiency (wall plug to rf) is estimated to be 36%. End-to-end simulations of longitudinal and transverse beam dynamics show that the drive beam is stable over the entire TBA unit.
NASA Astrophysics Data System (ADS)
Mani, S.; Jang, J. I.; Ketterson, J. B.
2010-09-01
Employing a modified Z-scan technique at 2 K, we monitor not only the fundamental (ω) but also the frequency-doubled (2ω) and tripled (3ω) Z-scan responses in Cu2O when the input laser frequency ω is tuned to the two-photon quadrupole polariton resonance. The Z-scan response at ω allows us to accurately estimate the absolute number of polaritons generated via two-photon absorption. A striking dip is observed near the 2ω Z-scan focus which basically arises from Auger-type recombination of polaritons. Under high excitation levels, the 3ω Z-scan shows strong third harmonic generation. Based on the nonlinear optical parameters determined, we estimate the experimental polariton density achievable and propose a direction for polariton-based Bose-Einstein condensation in Cu2O .
Titarchuk, Lev; Laurent, Philippe E-mail: plaurent@cea.fr
2009-08-01
We perform the analysis of the iron K{sub {alpha}} lines detected in three sources representing three types of accreting compact sources: cataclysmic variable (CV) GK Per, neutron star (NS) Serpens X-1, and black hole (BH) GX 339-4. We find, using data from Epic-PN Camera onboard XMM-Newton observatory, that the iron K{sub {alpha}} emission line in GK Per has a noticeable red-skewed profile. We compare the GK Per asymmetric line with the red-skewed lines observed by XMM-Newton in Serpens X-1 and GX 339-4. The observation of the K{sub {alpha}} emission with red-skewed features in CV GK Per cannot be related to the redshift effects of General Relativity (GR). Therefore, if the mechanism of the K{sub {alpha}}-line formation is the same in CVs, NSs, and BHs then it is evident that the GR effects would be ruled out as a cause of red skewness of K{sub {alpha}} line. The line reprocessing in an outflowing wind has been recently suggested as an alternative model for a broad red-shifted iron line formation. In the framework of the outflow scenario the red-skewed iron line is formed in the strong extended wind due to its illumination by the radiation emanating from the innermost part of the accreting material. The outflow is a common phenomenon for CVs, NSs, and BHs. In this paper, we demonstrate that the asymmetric shapes of the lines detected from these CV, NS, and BH sources are well described with the wind (outflow) model. Furthermore we find by analyzing Rossi X-Ray Timing Explorer(RXTE) observations that when the strong red-skewed iron line is observed in GX 339-4 the high-frequency variability is strongly suppressed. While this fact is hard to reconcile with the relativistic models, it is consistent with the outflowing gas washing out high-frequency modulations of the radiation presumably originated in the innermost part of the source.
DISCOVERY OF RED-SKEWED K {sub {alpha}} IRON LINE IN Cyg X-2 WITH SUZAKU
Shaposhnikov, Nikolai E-mail: Lev.Titarchuk@nrl.navy.mil E-mail: plaurent@cea.fr
2009-07-10
We report on the Suzaku observation of neutron star (NS) low-mass X-ray binary Cygnus X-2 which reveals a presence of the iron K {sub {alpha}} emission line. The line profile shows a significant red wing. This discovery increases the number of NS sources where red-skewed iron lines were observed and strongly suggests that this phenomenon is common not only in black holes but also in other types of accreting compact objects. We examine the line profile in terms of models which attribute its production to the relativistic effects due to reflection of X-ray radiation from a cold accretion disk and also as a result of the line formation in the extended wind/outflow configuration. Both models are able to adequately represent the observed line profile. We consider the results of line modeling in the context of subsecond variability. While we were unable to conclusively disqualify one of the models, we find that the wind paradigm has several advantages over the relativistic disk reflection model.
The male handicap: male-biased mortality explains skewed sex ratios in brown trout embryos
Labbé, L.
2016-01-01
Juvenile sex ratios are often assumed to be equal for many species with genetic sex determination, but this has rarely been tested in fish embryos due to their small size and absence of sex-specific markers. We artificially crossed three populations of brown trout and used a recently developed genetic marker for sexing the offspring of both pure and hybrid crosses. Sex ratios (SR = proportion of males) varied widely one month after hatching ranging from 0.15 to 0.90 (mean = 0.39 ± 0.03). Families with high survival tended to produce balanced or male-biased sex ratios, but SR was significantly female-biased when survival was low, suggesting that males sustain higher mortality during development. No difference in SR was found between pure and hybrid families, but the existence of sire × dam interactions suggests that genetic incompatibility may play a role in determining sex ratios. Our findings have implications for animal breeding and conservation because skewed sex ratios will tend to reduce effective population size and bias selection estimates. PMID:27928001
Zinc Induces Dendritic Cell Tolerogenic Phenotype and Skews Regulatory T Cell-Th17 Balance.
George, Mariam Mathew; Subramanian Vignesh, Kavitha; Landero Figueroa, Julio A; Caruso, Joseph A; Deepe, George S
2016-09-01
Zinc (Zn) is an essential metal for development and maintenance of both the innate and adaptive compartments of the immune system. Zn homeostasis impacts maturation of dendritic cells (DCs) that are important in shaping T cell responses. The mechanisms by which Zn regulates the tolerogenic phenotype of DCs remain largely unknown. In this study, we investigated the effect of Zn on DC phenotype and the generation of Foxp3(+) regulatory T cells (Tregs) using a model of Histoplasma capsulatum fungal infection. Exposure of bone marrow-derived DCs to Zn in vitro induced a tolerogenic phenotype by diminishing surface MHC class II (MHCII) and promoting the tolerogenic markers, programmed death-ligand (PD-L)1, PD-L2, and the tryptophan degrading enzyme, IDO. Zn triggered tryptophan degradation by IDO and kynurenine production by DCs and strongly suppressed the proinflammatory response to stimulation by TLR ligands. In vivo, Zn supplementation and subsequent H. capsulatum infection supressed MHCII on DCs, enhanced PD-L1 and PD-L2 expression on MHCII(lo) DCs, and skewed the Treg-Th17 balance in favor of Foxp3(+) Tregs while decreasing Th17 cells. Thus, Zn shapes the tolerogenic potential of DCs in vitro and in vivo and promotes Tregs during fungal infection.
Bacterial clearance reverses a skewed T-cell repertoire induced by Salmonella infection.
Leyva-Rangel, Jessica P; de Los Angeles Hernández-Cueto, Maria; Galan-Enriquez, Carlos-Samuel; López-Medina, Marcela; Ortiz-Navarrete, Vianney
2015-09-01
Salmonella typhimurium invades the spleen, liver, and peripheral lymph nodes and has recently been detected in the bone marrow and thymus, resulting in a reduced thymic size and a decline in the total number of thymic cells. A specific deletion of the double-positive cell subset has been characterized, yet the export of mature T cells to the periphery remains normal. We analyzed Salmonella pathogenesis regarding thymic structure and the T-cell maturation process. We demonstrate that, despite alterations in the thymic structure, T-cell development is maintained during Salmonella infection, allowing the selection of single-positive T-cell clones expressing particular T-cell receptor beta chains (TCR-Vβ). Moreover, the treatment of infected mice with an antibiotic restored the normal thymic architecture and thymocyte subset distribution. Additionally, the frequency of TCR-Vβ usage after treatment was comparable to that in non-infected mice. However, bacteria were still recovered from the thymus after 1 month of treatment. Our data reveal that a skewed T-cell developmental process is present in the Salmonella-infected thymus that alters the TCR-Vβ usage frequency. Likewise, the post-treatment persistence of Salmonella reveals a novel function of the thymus as a potential reservoir for this infectious agent.
Application of derivative matrices of skew rays to design of compound dispersion prisms.
Lin, Psang Dain
2016-09-01
Numerous optimization methods have been developed in recent decades for optical system design. However, these methods rely heavily on ray tracing and finite difference techniques to estimate the derivative matrices of the rays. Consequently, the accuracy of the results obtained from these methods is critically dependent on the incremental step size used in the tuning stage. To overcome this limitation, the present study proposes a comprehensive methodology for the design of compound dispersion prisms based on the first- and second-order derivative matrices of skew rays. The proposed method facilitates the analysis and design of prisms with respect to arbitrary system variables and provides an ideal basis for automatic prism design applications. Four illustrative examples are given. It is shown that the optical quantities required to evaluate the prism performance can be extracted directly from the proposed derivative matrices. In addition, it is shown in this study that the single-element 3D prism can have the same deviation angle and spectral dispersion as the 2D compound prism.
NASA Astrophysics Data System (ADS)
Tang, S. L.; Antonia, R. A.; Djenidi, L.; Danaila, L.; Zhou, Y.
2016-09-01
The transport equation for the mean scalar dissipation rate ɛ ¯ θ is derived by applying the limit at small separations to the generalized form of Yaglom's equation in two types of flows, those dominated mainly by a decay of energy in the streamwise direction and those which are forced, through a continuous injection of energy at large scales. In grid turbulence, the imbalance between the production of ɛ ¯ θ due to stretching of the temperature field and the destruction of ɛ ¯ θ by the thermal diffusivity is governed by the streamwise advection of ɛ ¯ θ by the mean velocity. This imbalance is intrinsically different from that in stationary forced periodic box turbulence (or SFPBT), which is virtually negligible. In essence, the different types of imbalance represent different constraints imposed by the large-scale motion on the relation between the so-called mixed velocity-temperature derivative skewness ST and the scalar enstrophy destruction coefficient Gθ in different flows, thus resulting in non-universal approaches of ST towards a constant value as Reλ increases. The data for ST collected in grid turbulence and in SFPBT indicate that the magnitude of ST is bounded, this limit being close to 0.5.
The Impact of male reproductive skew on kin structure and sociality in multi-male groups.
Widdig, Anja
2013-01-01
Patterns of within-group relatedness are expected to affect the prospects for cooperation among group members through kin selection. It has long been established that dispersal patterns determine the availability of kin and there is ample evidence of matrilineal kin biases in social behavior across primate species. However, in 1979, Jeanne Altmann(1) suggested that mating patterns also influence the structure of within-group relatedness; high male reproductive skew and the frequent replacement of breeding males leads to relatively high levels of paternal relatedness and age-structured paternal sibships within groups. As a consequence of frequent replacement of breeding males, relatedness among offspring of a given female will be reduced to the half- rather than full-sibling level. Depending on the number of sires and degree of relatedness among mothers, members of the same birth cohort may be as closely related as maternal siblings. If animals are able to recognize their paternal kin and exhibit biases in favor of them, this may influence the distribution of cooperation and the intensity of competition within groups of primates. Here, I summarize the evidence that serves as the basis for Altmann's predictions and review evidence regarding whether or not the availability of paternal kin also leads to paternal kin bias among primates.
Gluten-containing grains skew gluten assessment in oats due to sample grind non-homogeneity.
Fritz, Ronald D; Chen, Yumin; Contreras, Veronica
2017-02-01
Oats are easily contaminated with gluten-rich kernels of wheat, rye and barley. These contaminants are like gluten 'pills', shown here to skew gluten analysis results. Using R-Biopharm R5 ELISA, we quantified gluten in gluten-free oatmeal servings from an in-market survey. For samples with a 5-20ppm reading on a first test, replicate analyses provided results ranging <5ppm to >160ppm. This suggests sample grinding may inadequately disperse gluten to allow a single accurate gluten assessment. To ascertain this, and characterize the distribution of 0.25-g gluten test results for kernel contaminated oats, twelve 50g samples of pure oats, each spiked with a wheat kernel, showed that 0.25g test results followed log-normal-like distributions. With this, we estimate probabilities of mis-assessment for a 'single measure/sample' relative to the <20ppm regulatory threshold, and derive an equation relating the probability of mis-assessment to sample average gluten content.
Ancient human disturbances may be skewing our understanding of Amazonian forests.
McMichael, Crystal N H; Matthews-Bird, Frazer; Farfan-Rios, William; Feeley, Kenneth J
2017-01-17
Although the Amazon rainforest houses much of Earth's biodiversity and plays a major role in the global carbon budget, estimates of tree biodiversity originate from fewer than 1,000 forest inventory plots, and estimates of carbon dynamics are derived from fewer than 200 recensus plots. It is well documented that the pre-European inhabitants of Amazonia actively transformed and modified the forest in many regions before their population collapse around 1491 AD; however, the impacts of these ancient disturbances remain entirely unaccounted for in the many highly influential studies using Amazonian forest plots. Here we examine whether Amazonian forest inventory plot locations are spatially biased toward areas with high probability of ancient human impacts. Our analyses reveal that forest inventory plots, and especially forest recensus plots, in all regions of Amazonia are located disproportionately near archaeological evidence and in areas likely to have ancient human impacts. Furthermore, regions of the Amazon that are relatively oversampled with inventory plots also contain the highest values of predicted ancient human impacts. Given the long lifespan of Amazonian trees, many forest inventory and recensus sites may still be recovering from past disturbances, potentially skewing our interpretations of forest dynamics and our understanding of how these forests are responding to global change. Empirical data on the human history of forest inventory sites are crucial for determining how past disturbances affect modern patterns of forest composition and carbon flux in Amazonian forests.
A Timing Estimation Method Based-on Skewness Analysis in Vehicular Wireless Networks
Cui, Xuerong; Li, Juan; Wu, Chunlei; Liu, Jian-Hang
2015-01-01
Vehicle positioning technology has drawn more and more attention in vehicular wireless networks to reduce transportation time and traffic accidents. Nowadays, global navigation satellite systems (GNSS) are widely used in land vehicle positioning, but most of them are lack precision and reliability in situations where their signals are blocked. Positioning systems base-on short range wireless communication are another effective way that can be used in vehicle positioning or vehicle ranging. IEEE 802.11p is a new real-time short range wireless communication standard for vehicles, so a new method is proposed to estimate the time delay or ranges between vehicles based on the IEEE 802.11p standard which includes three main steps: cross-correlation between the received signal and the short preamble, summing up the correlated results in groups, and finding the maximum peak using a dynamic threshold based on the skewness analysis. With the range between each vehicle or road-side infrastructure, the position of neighboring vehicles can be estimated correctly. Simulation results were presented in the International Telecommunications Union (ITU) vehicular multipath channel, which show that the proposed method provides better precision than some well-known timing estimation techniques, especially in low signal to noise ratio (SNR) environments. PMID:26580628
Properties of the Subantarctic Front and Polar Front from the skewness of sea level anomaly
NASA Astrophysics Data System (ADS)
Shao, Andrew E.; Gille, Sarah T.; Mecking, Sabine; Thompson, LuAnne
2015-07-01
The region of the Southern Ocean that encompasses the Subantarctic Front (SAF) to the north and the Polar Front (PF) to the south contains most of the transport of the Antarctic Circumpolar Current. Here skewness of sea level anomaly (SLA) from 1992 to 2013 is coupled with a meandering Gaussian jetw model to estimate the mean position, meridional width, and the percent variance that each front contributes to total SLA variability. The SAF and PF have comparable widths (85 km) in the circumpolar average, but their widths differ significantly in the East Pacific Basin (85 and 60 km, respectively). Interannual variability in the positions of the SAF and PF are also estimated using annual subsets of the SLA data from 1993 to 2012. The PF position has enhanced variability near strong topographic features such as the Kerguelen Plateau, the Campbell Plateau east of New Zealand, and downstream of Drake Passage. Neither the SAF nor the PF showed a robust meridional trend over the 20 year period. The Southern Annular Mode was significantly correlated with basin-averaged SAF and PF positions in the East Pacific and with the PF south of Australia. A correlation between the PF and the basin-scale wind stress curl anomaly was also found in the western extratropical Pacific but not in other basins.
NASA Technical Reports Server (NTRS)
Eberlein, A. J.; Lahm, T. G.
1976-01-01
The degree to which flight-critical failures in a strapdown laser gyro tetrad sensor assembly can be isolated in short-haul aircraft after a failure occurrence has been detected by the skewed sensor failure-detection voting logic is investigated along with the degree to which a failure in the tetrad computer can be detected and isolated at the computer level, assuming a dual-redundant computer configuration. The tetrad system was mechanized with two two-axis inertial navigation channels (INCs), each containing two gyro/accelerometer axes, computer, control circuitry, and input/output circuitry. Gyro/accelerometer data is crossfed between the two INCs to enable each computer to independently perform the navigation task. Computer calculations are synchronized between the computers so that calculated quantities are identical and may be compared. Fail-safe performance (identification of the first failure) is accomplished with a probability approaching 100 percent of the time, while fail-operational performance (identification and isolation of the first failure) is achieved 93 to 96 percent of the time.
Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis.
Takeda, Yukiji; Costa, Sandra; Delamarre, Estelle; Roncal, Carmen; Leite de Oliveira, Rodrigo; Squadrito, Mario Leonardo; Finisguerra, Veronica; Deschoemaeker, Sofie; Bruyère, Françoise; Wenes, Mathias; Hamm, Alexander; Serneels, Jens; Magat, Julie; Bhattacharyya, Tapan; Anisimov, Andrey; Jordan, Benedicte F; Alitalo, Kari; Maxwell, Patrick; Gallez, Bernard; Zhuang, Zhen W; Saito, Yoshihiko; Simons, Michael; De Palma, Michele; Mazzone, Massimiliano
2011-10-09
PHD2 serves as an oxygen sensor that rescues blood supply by regulating vessel formation and shape in case of oxygen shortage. However, it is unknown whether PHD2 can influence arteriogenesis. Here we studied the role of PHD2 in collateral artery growth by using hindlimb ischaemia as a model, a process that compensates for the lack of blood flow in case of major arterial occlusion. We show that Phd2 (also known as Egln1) haplodeficient (Phd2(+/-)) mice displayed preformed collateral arteries that preserved limb perfusion and prevented tissue necrosis in ischaemia. Improved arteriogenesis in Phd2(+/-) mice was due to an expansion of tissue-resident, M2-like macrophages and their increased release of arteriogenic factors, leading to enhanced smooth muscle cell (SMC) recruitment and growth. Both chronic and acute deletion of one Phd2 allele in macrophages was sufficient to skew their polarization towards a pro-arteriogenic phenotype. Mechanistically, collateral vessel preconditioning relied on the activation of canonical NF-κB pathway in Phd2(+/-) macrophages. These results unravel how PHD2 regulates arteriogenesis and artery homeostasis by controlling a specific differentiation state in macrophages and suggest new treatment options for ischaemic disorders.
White, Jonah
2011-01-01
Objectives. Few studies have considered the sociohistorical intersection of environmental injustice and gentrification; a gap addressed by this case study of Seattle, Washington. This study explored the advantages of integrating air toxic risk screening with gentrification research to enhance proximity and health equity analysis methodologies. It was hypothesized that Seattle's industrial air toxic exposure risk was unevenly dispersed, that gentrification stratified the city's neighborhoods, and that the inequities of both converged. Methods. Spatial characterizations of air toxic pollution risk exposures from 1990 to 2007 were combined with longitudinal cluster analysis of census block groups in Seattle, Washington, from 1990 to 2000. Results. A cluster of air toxic exposure inequality and socioeconomic inequity converged in 1 area of south central Seattle. Minority and working class residents were more concentrated in the same neighborhoods near Seattle's worst industrial pollution risks. Conclusions. Not all pollution was distributed equally in a dynamic urban landscape. Using techniques to examine skewed riskscapes and socioeconomic urban geographies provided a foundation for future research on the connections among environmental health hazard sources, socially vulnerable neighborhoods, and health inequity. PMID:21836115
Tumour cell conditioned medium reveals greater M2 skewing of macrophages in the absence of properdin
Al‐Rayahi, Izzat A.M.; Browning, Michael J.
2017-01-01
Abstract Introduction The tumour microenvironment is shaped by the interaction of immune, non immune, and tumour cells present in close proximity. Tumour cells direct the development of a locally immune suppressed state, affecting the activity of anti tumour T cells and preparing the escape phase of tumour development. Macrophages in the tumour typically develop into so‐called tumour associated macrophages with a distinct profile of activities which lead to a reduction in inflammation and antigen presentation. The direct impact of tumour cell conditioned medium on the activity profile of macrophages in dependence of their complement component expression has not yet been investigated. Methods In our in vitro study, macrophages differentiated from bone marrows of properdin deficient and wildtype mice were stimulated with conditioned medium of a syngeneic tumour cell line, B16F10, a mouse melanoma subline. Results In comparison with macrophages from wildtype mice, those from congenic properdin deficient mice showed skewing towards M2 profile, encompassing mRNA expression for genes involved in arginine metabolism, production of type 2 cytokines, and relatively lower surface expression of molecules needed for antigen presentation. Conclusions These data suggest that properdin insufficiency promotes a tumour environment that helps the tumour evade the immune response. PMID:28250926
Viruses-to-mobile genetic elements skew in the deep Atlantis II brine pool sediments
Adel, Mustafa; Elbehery, Ali H. A.; Aziz, Sherry K.; Aziz, Ramy K.; Grossart, Hans-Peter; Siam, Rania
2016-01-01
The central rift of the Red Sea has 25 brine pools with different physical and geochemical characteristics. Atlantis II (ATIID), Discovery Deeps (DD) and Chain Deep (CD) are characterized by high salinity, temperature and metal content. Several studies reported microbial communities in these brine pools, but few studies addressed the brine pool sediments. Therefore, sediment cores were collected from ATIID, DD, CD brine pools and an adjacent brine-influenced site. Sixteen different lithologic sediment sections were subjected to shotgun DNA pyrosequencing to generate 1.47 billion base pairs (1.47 × 109 bp). We generated sediment-specific reads and attempted to annotate all reads. We report the phylogenetic and biochemical uniqueness of the deepest ATIID sulfur-rich brine pool sediments. In contrary to all other sediment sections, bacteria dominate the deepest ATIID sulfur-rich brine pool sediments. This decrease in virus-to-bacteria ratio in selected sections and depth coincided with an overrepresentation of mobile genetic elements. Skewing in the composition of viruses-to-mobile genetic elements may uniquely contribute to the distinct microbial consortium in sediments in proximity to hydrothermally active vents of the Red Sea and possibly in their surroundings, through differential horizontal gene transfer. PMID:27596223