Professional Ethics of Software Engineers: An Ethical Framework.
Lurie, Yotam; Mark, Shlomo
2016-04-01
The purpose of this article is to propose an ethical framework for software engineers that connects software developers' ethical responsibilities directly to their professional standards. The implementation of such an ethical framework can overcome the traditional dichotomy between professional skills and ethical skills, which plagues the engineering professions, by proposing an approach to the fundamental tasks of the practitioner, i.e., software development, in which the professional standards are intrinsically connected to the ethical responsibilities. In so doing, the ethical framework improves the practitioner's professionalism and ethics. We call this approach Ethical-Driven Software Development (EDSD), as an approach to software development. EDSD manifests the advantages of an ethical framework as an alternative to the all too familiar approach in professional ethics that advocates "stand-alone codes of ethics". We believe that one outcome of this synergy between professional and ethical skills is simply better engineers. Moreover, since there are often different software solutions, which the engineer can provide to an issue at stake, the ethical framework provides a guiding principle, within the process of software development, that helps the engineer evaluate the advantages and disadvantages of different software solutions. It does not and cannot affect the end-product in and of-itself. However, it can and should, make the software engineer more conscious and aware of the ethical ramifications of certain engineering decisions within the process.
Software engineering as an engineering discipline
NASA Technical Reports Server (NTRS)
Berard, Edward V.
1988-01-01
The following topics are discussed in the context of software engineering: early use of the term; the 1968 NATO conference; Barry Boehm's definition; four requirements fo software engineering; and additional criteria for software engineering. Additionally, the four major requirements for software engineering--computer science, mathematics, engineering disciplines, and excellent communication skills--are discussed. The presentation is given in vugraph form.
Wang, Xiaofeng; Abrahamsson, Pekka
2014-01-01
For more than thirty years, it has been claimed that a way to improve software developers’ productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states—emotions and moods—deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint. PMID:24688866
Graziotin, Daniel; Wang, Xiaofeng; Abrahamsson, Pekka
2014-01-01
For more than thirty years, it has been claimed that a way to improve software developers' productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states-emotions and moods-deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint.
Developing Engineering and Science Process Skills Using Design Software in an Elementary Education
NASA Astrophysics Data System (ADS)
Fusco, Christopher
This paper examines the development of process skills through an engineering design approach to instruction in an elementary lesson that combines Science, Technology, Engineering, and Math (STEM). The study took place with 25 fifth graders in a public, suburban school district. Students worked in groups of five to design and construct model bridges based on research involving bridge building design software. The assessment was framed around individual student success as well as overall group processing skills. These skills were assessed through an engineering design packet rubric (student work), student surveys of learning gains, observation field notes, and pre- and post-assessment data. The results indicate that students can successfully utilize design software to inform constructions of model bridges, develop science process skills through problem based learning, and understand academic concepts through a design project. The final result of this study shows that design engineering is effective for developing cooperative learning skills. The study suggests that an engineering program offered as an elective or as part of the mandatory curriculum could be beneficial for developing students' critical thinking, inter- and intra-personal skills, along with an increased their understanding and awareness for scientific phenomena. In conclusion, combining a design approach to instruction with STEM can increase efficiency in these areas, generate meaningful learning, and influence student attitudes throughout their education.
A Knowledge Engineering Approach to Analysis and Evaluation of Construction Schedules
1990-02-01
software engineering discipline focusing on constructing KBSs. It is an incremental and cyclical process that requires the interaction of a domain expert(s...the U.S. Army Coips of Engineers ; and (3) the project management software developer, represented by Pinnell Engineering , Inc. Since the primary...the programming skills necessary to convert the raw knowledge intn a form a computer can understand. knowledge engineering : The software engineering
The Effects of Development Team Skill on Software Product Quality
NASA Technical Reports Server (NTRS)
Beaver, Justin M.; Schiavone, Guy A.
2006-01-01
This paper provides an analysis of the effect of the skill/experience of the software development team on the quality of the final software product. A method for the assessment of software development team skill and experience is proposed, and was derived from a workforce management tool currently in use by the National Aeronautics and Space Administration. Using data from 26 smallscale software development projects, the team skill measures are correlated to 5 software product quality metrics from the ISO/IEC 9126 Software Engineering Product Quality standard. in the analysis of the results, development team skill is found to be a significant factor in the adequacy of the design and implementation. In addition, the results imply that inexperienced software developers are tasked with responsibilities ill-suited to their skill level, and thus have a significant adverse effect on the quality of the software product. Keywords: software quality, development skill, software metrics
The effects of computer-aided design software on engineering students' spatial visualisation skills
NASA Astrophysics Data System (ADS)
Kösa, Temel; Karakuş, Fatih
2018-03-01
The purpose of this study was to determine the influence of computer-aided design (CAD) software-based instruction on the spatial visualisation skills of freshman engineering students in a computer-aided engineering drawing course. A quasi-experimental design was applied, using the Purdue Spatial Visualization Test-Visualization of Rotations (PSVT:R) for both the pre- and the post-test. The participants were 116 freshman students in the first year of their undergraduate programme in the Department of Mechanical Engineering at a university in Turkey. A total of 72 students comprised the experimental group; they were instructed with CAD-based activities in an engineering drawing course. The control group consisted of 44 students who did not attend this course. The results of the study showed that a CAD-based engineering drawing course had a positive effect on developing engineering students' spatial visualisation skills. Additionally, the results of the study showed that spatial visualisation skills can be a predictor for success in a computer-aided engineering drawing course.
The Effects of Computer-Aided Design Software on Engineering Students' Spatial Visualisation Skills
ERIC Educational Resources Information Center
Kösa, Temel; Karakus, Fatih
2018-01-01
The purpose of this study was to determine the influence of computer-aided design (CAD) software-based instruction on the spatial visualisation skills of freshman engineering students in a computer-aided engineering drawing course. A quasi-experimental design was applied, using the Purdue Spatial Visualization Test-Visualization of Rotations…
The Many Faces of a Software Engineer in a Research Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinovici, Maria C.; Kirkham, Harold
2013-10-14
The ability to gather, analyze and make decisions based on real world data is changing nearly every field of human endeavor. These changes are particularly challenging for software engineers working in a scientific community, designing and developing large, complex systems. To avoid the creation of a communications gap (almost a language barrier), the software engineers should possess an ‘adaptive’ skill. In the science and engineering research community, the software engineers must be responsible for more than creating mechanisms for storing and analyzing data. They must also develop a fundamental scientific and engineering understanding of the data. This paper looks atmore » the many faces that a software engineer should have: developer, domain expert, business analyst, security expert, project manager, tester, user experience professional, etc. Observations made during work on a power-systems scientific software development are analyzed and extended to describe more generic software development projects.« less
The need for scientific software engineering in the pharmaceutical industry
NASA Astrophysics Data System (ADS)
Luty, Brock; Rose, Peter W.
2017-03-01
Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.
The need for scientific software engineering in the pharmaceutical industry.
Luty, Brock; Rose, Peter W
2017-03-01
Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.
Lawlor, Brendan; Walsh, Paul
2015-01-01
There is a lack of software engineering skills in bioinformatic contexts. We discuss the consequences of this lack, examine existing explanations and remedies to the problem, point out their shortcomings, and propose alternatives. Previous analyses of the problem have tended to treat the use of software in scientific contexts as categorically different from the general application of software engineering in commercial settings. In contrast, we describe bioinformatic software engineering as a specialization of general software engineering, and examine how it should be practiced. Specifically, we highlight the difference between programming and software engineering, list elements of the latter and present the results of a survey of bioinformatic practitioners which quantifies the extent to which those elements are employed in bioinformatics. We propose that the ideal way to bring engineering values into research projects is to bring engineers themselves. We identify the role of Bioinformatic Engineer and describe how such a role would work within bioinformatic research teams. We conclude by recommending an educational emphasis on cross-training software engineers into life sciences, and propose research on Domain Specific Languages to facilitate collaboration between engineers and bioinformaticians.
Lawlor, Brendan; Walsh, Paul
2015-01-01
There is a lack of software engineering skills in bioinformatic contexts. We discuss the consequences of this lack, examine existing explanations and remedies to the problem, point out their shortcomings, and propose alternatives. Previous analyses of the problem have tended to treat the use of software in scientific contexts as categorically different from the general application of software engineering in commercial settings. In contrast, we describe bioinformatic software engineering as a specialization of general software engineering, and examine how it should be practiced. Specifically, we highlight the difference between programming and software engineering, list elements of the latter and present the results of a survey of bioinformatic practitioners which quantifies the extent to which those elements are employed in bioinformatics. We propose that the ideal way to bring engineering values into research projects is to bring engineers themselves. We identify the role of Bioinformatic Engineer and describe how such a role would work within bioinformatic research teams. We conclude by recommending an educational emphasis on cross-training software engineers into life sciences, and propose research on Domain Specific Languages to facilitate collaboration between engineers and bioinformaticians. PMID:25996054
Socio-Cultural Challenges in Global Software Engineering Education
ERIC Educational Resources Information Center
Hoda, Rashina; Babar, Muhammad Ali; Shastri, Yogeshwar; Yaqoob, Humaa
2017-01-01
Global software engineering education (GSEE) is aimed at providing software engineering (SE) students with knowledge, skills, and understanding of working in globally distributed arrangements so they can be prepared for the global SE (GSE) paradigm. It is important to understand the challenges involved in GSEE for improving the quality and…
Experiences with Integrating Simulation into a Software Engineering Curriculum
ERIC Educational Resources Information Center
Bollin, Andreas; Hochmuller, Elke; Mittermeir, Roland; Samuelis, Ladislav
2012-01-01
Software Engineering education must account for a broad spectrum of knowledge and skills software engineers will be required to apply throughout their professional life. Covering all the topics in depth within a university setting is infeasible due to curricular constraints as well as due to the inherent differences between educational…
The Impact of Software on Associate Degree Programs in Electronic Engineering Technology.
ERIC Educational Resources Information Center
Hata, David M.
1986-01-01
Assesses the range and extent of computer assisted instruction software available in electronic engineering technology education. Examines the need for software skills in four areas: (1) high-level languages; (2) assembly language; (3) computer-aided engineering; and (4) computer-aided instruction. Outlines strategies for the future in three…
NASA Astrophysics Data System (ADS)
Kholis, Nur; Syariffuddien Zuhrie, Muhamad; Rahmadian, Reza
2018-04-01
Demands the competence (competence) needs of the industry today is a competent workforce to the field of work. However, during this lecture material Digital Engineering (Especially Digital Electronics Basics and Digital Circuit Basics) is limited to the delivery of verbal form of lectures (classical method) is dominated by the Lecturer (Teacher Centered). Though the subject of Digital Engineering requires learning tools and is required understanding of electronic circuits, digital electronics and high logic circuits so that learners can apply in the world of work. One effort to make it happen is by creating an online teaching module and educational aids (Kit) with the help of Proteus software that can improve the skills of learners. This study aims to innovate online teaching modules plus kits in Proteus-assisted digital engineering courses through hybrid learning approaches to improve the skills of learners. The process of innovation is done by considering the skills and mastery of the technology of students (students) Department of Electrical Engineering - Faculty of Engineering – Universitas Negeri Surabaya to produce quality graduates Use of online module plus Proteus software assisted kit through hybrid learning approach. In general, aims to obtain adequate results with affordable cost of investment, user friendly, attractive and interactive (easily adapted to the development of Information and Communication Technology). With the right design, implementation and operation, both in the form of software both in the form of Online Teaching Module, offline teaching module, Kit (Educational Viewer), and e-learning learning content (both online and off line), the use of the three tools of the expenditure will be able to adjust the standard needs of Information and Communication Technology world, both nationally and internationally.
Fostering soft skills in project-oriented learning within an agile atmosphere
NASA Astrophysics Data System (ADS)
Chassidim, Hadas; Almog, Dani; Mark, Shlomo
2018-07-01
The project-oriented and Agile approaches have motivated a new generation of software engineers. Within the academic curriculum, the issue of whether students are being sufficiently prepared for the future has been raised. The objective of this work is to present the project-oriented environment as an influential factor that software engineering profession requires, using the second year course 'Software Development and Management in Agile Approach' as a case-study. This course combines academic topics, self-learned and soft skills implementation, the call for creativity, and the recognition of updated technologies and dynamic circumstances. The results of a survey that evaluated the perceived value of the course showed that the highest contribution of our environment was in the effectiveness of the team-work and the overall development process of the project.
A Discussion of the Software Quality Assurance Role
NASA Technical Reports Server (NTRS)
Kandt, Ronald Kirk
2010-01-01
The basic idea underlying this paper is that the conventional understanding of the role of a Software Quality Assurance (SQA) engineer is unduly limited. This is because few have asked who the customers of a SQA engineer are. Once you do this, you can better define what tasks a SQA engineer should perform, as well as identify the knowledge and skills that such a person should have. The consequence of doing this is that a SQA engineer can provide greater value to his or her customers. It is the position of this paper that a SQA engineer providing significant value to his or her customers must not only assume the role of an auditor, but also that of a software and systems engineer. This is because software engineers and their managers particularly value contributions that directly impact products and their development. These ideas are summarized as lessons learned, based on my experience at Jet Propulsion Laboratory (JPL).
Distance Learning and Skill Acquisition in Engineering Sciences: Present State and Prospects
ERIC Educational Resources Information Center
Potkonjak, Veljko; Jovanovic, Kosta; Holland, Owen; Uhomoibhi, James
2013-01-01
Purpose: The purpose of this paper is to present an improved concept of software-based laboratory exercises, namely a Virtual Laboratory for Engineering Sciences (VLES). Design/methodology/approach: The implementation of distance learning and e-learning in engineering sciences (such as Mechanical and Electrical Engineering) is still far behind…
A Novel Approach for Collaborative Pair Programming
ERIC Educational Resources Information Center
Goel, Sanjay; Kathuria, Vanshi
2010-01-01
The majority of an engineer's time in the software industry is spent working with other programmers. Agile methods of software development like eXtreme Programming strongly rely upon practices like daily meetings and pair programming. Hence, the need to learn the skill of working collaboratively is of primary importance for software developers.…
A report on NASA software engineering and Ada training requirements
NASA Technical Reports Server (NTRS)
Legrand, Sue; Freedman, Glenn B.; Svabek, L.
1987-01-01
NASA's software engineering and Ada skill base are assessed and information that may result in new models for software engineering, Ada training plans, and curricula are provided. A quantitative assessment which reflects the requirements for software engineering and Ada training across NASA is provided. A recommended implementation plan including a suggested curriculum with associated duration per course and suggested means of delivery is also provided. The distinction between education and training is made. Although it was directed to focus on NASA's need for the latter, the key relationships to software engineering education are also identified. A rationale and strategy for implementing a life cycle education and training program are detailed in support of improved software engineering practices and the transition to Ada.
Large-scale visualization projects for teaching software engineering.
Müller, Christoph; Reina, Guido; Burch, Michael; Weiskopf, Daniel
2012-01-01
The University of Stuttgart's software engineering major complements the traditional computer science major with more practice-oriented education. Two-semester software projects in various application areas offered by the university's different computer science institutes are a successful building block in the curriculum. With this realistic, complex project setting, students experience the practice of software engineering, including software development processes, technologies, and soft skills. In particular, visualization-based projects are popular with students. Such projects offer them the opportunity to gain profound knowledge that would hardly be possible with only regular lectures and homework assignments.
The MDE Diploma: First International Postgraduate Specialization in Model-Driven Engineering
ERIC Educational Resources Information Center
Cabot, Jordi; Tisi, Massimo
2011-01-01
Model-Driven Engineering (MDE) is changing the way we build, operate, and maintain our software-intensive systems. Several projects using MDE practices are reporting significant improvements in quality and performance but, to be able to handle these projects, software engineers need a set of technical and interpersonal skills that are currently…
Fostering Soft Skills in Project-Oriented Learning within an Agile Atmosphere
ERIC Educational Resources Information Center
Chassidim, Hadas; Almog, Dani; Mark, Shlomo
2018-01-01
The project-oriented and Agile approaches have motivated a new generation of software engineers. Within the academic curriculum, the issue of whether students are being sufficiently prepared for the future has been raised. The objective of this work is to present the project-oriented environment as an influential factor that software engineering…
Software Development in the Water Sciences: a view from the divide (Invited)
NASA Astrophysics Data System (ADS)
Miles, B.; Band, L. E.
2013-12-01
While training in statistical methods is an important part of many earth scientists' training, these scientists often learn the bulk of their software development skills in an ad hoc, just-in-time manner. Yet to carry out contemporary research scientists are spending more and more time developing software. Here I present perspectives - as an earth sciences graduate student with professional software engineering experience - on the challenges scientists face adopting software engineering practices, with an emphasis on areas of the science software development lifecycle that could benefit most from improved engineering. This work builds on experience gained as part of the NSF-funded Water Science Software Institute (WSSI) conceptualization award (NSF Award # 1216817). Throughout 2013, the WSSI team held a series of software scoping and development sprints with the goals of: (1) adding features to better model green infrastructure within the Regional Hydro-Ecological Simulation System (RHESSys); and (2) infusing test-driven agile software development practices into the processes employed by the RHESSys team. The goal of efforts such as the WSSI is to ensure that investments by current and future scientists in software engineering training will enable transformative science by improving both scientific reproducibility and researcher productivity. Experience with the WSSI indicates: (1) the potential for achieving this goal; and (2) while scientists are willing to adopt some software engineering practices, transformative science will require continued collaboration between domain scientists and cyberinfrastructure experts for the foreseeable future.
Software Writing Skills for Your Research - Lessons Learned from Workshops in the Geosciences
NASA Astrophysics Data System (ADS)
Hammitzsch, Martin
2016-04-01
Findings presented in scientific papers are based on data and software. Once in a while they come along with data - but not commonly with software. However, the software used to gain findings plays a crucial role in the scientific work. Nevertheless, software is rarely seen publishable. Thus researchers may not reproduce the findings without the software which is in conflict with the principle of reproducibility in sciences. For both, the writing of publishable software and the reproducibility issue, the quality of software is of utmost importance. For many programming scientists the treatment of source code, e.g. with code design, version control, documentation, and testing is associated with additional work that is not covered in the primary research task. This includes the adoption of processes following the software development life cycle. However, the adoption of software engineering rules and best practices has to be recognized and accepted as part of the scientific performance. Most scientists have little incentive to improve code and do not publish code because software engineering habits are rarely practised by researchers or students. Software engineering skills are not passed on to followers as for paper writing skill. Thus it is often felt that the software or code produced is not publishable. The quality of software and its source code has a decisive influence on the quality of research results obtained and their traceability. So establishing best practices from software engineering to serve scientific needs is crucial for the success of scientific software. Even though scientists use existing software and code, i.e., from open source software repositories, only few contribute their code back into the repositories. So writing and opening code for Open Science means that subsequent users are able to run the code, e.g. by the provision of sufficient documentation, sample data sets, tests and comments which in turn can be proven by adequate and qualified reviews. This assumes that scientist learn to write and release code and software as they learn to write and publish papers. Having this in mind, software could be valued and assessed as a contribution to science. But this requires the relevant skills that can be passed to colleagues and followers. Therefore, the GFZ German Research Centre for Geosciences performed three workshops in 2015 to address the passing of software writing skills to young scientists, the next generation of researchers in the Earth, planetary and space sciences. Experiences in running these workshops and the lessons learned will be summarized in this presentation. The workshops have received support and funding by Software Carpentry, a volunteer organization whose goal is to make scientists more productive, and their work more reliable, by teaching them basic computing skills, and by FOSTER (Facilitate Open Science Training for European Research), a two-year, EU-Funded (FP7) project, whose goal to produce a European-wide training programme that will help to incorporate Open Access approaches into existing research methodologies and to integrate Open Science principles and practice in the current research workflow by targeting the young researchers and other stakeholders.
Lessons learned in transitioning to an open systems environment
NASA Technical Reports Server (NTRS)
Boland, Dillard E.; Green, David S.; Steger, Warren L.
1994-01-01
Software development organizations, both commercial and governmental, are undergoing rapid change spurred by developments in the computing industry. To stay competitive, these organizations must adopt new technologies, skills, and practices quickly. Yet even for an organization with a well-developed set of software engineering models and processes, transitioning to a new technology can be expensive and risky. Current industry trends are leading away from traditional mainframe environments and toward the workstation-based, open systems world. This paper presents the experiences of software engineers on three recent projects that pioneered open systems development for NASA's Flight Dynamics Division of the Goddard Space Flight Center (GSFC).
ERIC Educational Resources Information Center
Mukala, Patrick; Cerone, Antonio; Turini, Franco
2017-01-01
Free\\Libre Open Source Software (FLOSS) environments are increasingly dubbed as learning environments where practical software engineering skills can be acquired. Numerous studies have extensively investigated how knowledge is acquired in these environments through a collaborative learning model that define a learning process. Such a learning…
ERIC Educational Resources Information Center
Zhang, Xihui
2010-01-01
Java is an object-oriented programming language. From a software engineering perspective, object-oriented design and programming is used at the architectural design, and structured design and programming is used at the detailed design within methods. As such, structured programming skills are fundamental to more advanced object-oriented…
Become a Star: Teaching the Process of Design and Implementation of an Intelligent System
ERIC Educational Resources Information Center
Venables, Anne; Tan, Grace
2005-01-01
Teaching future knowledge engineers, the necessary skills for designing and implementing intelligent software solutions required by business, industry and research today, is a very tall order. These skills are not easily taught in traditional undergraduate computer science lectures; nor are the practical experiences easily reinforced in laboratory…
Teaching Software Engineering by Means of Computer-Game Development: Challenges and Opportunities
ERIC Educational Resources Information Center
Cagiltay, Nergiz Ercil
2007-01-01
Software-engineering education programs are intended to prepare students for a field that involves rapidly changing conditions and expectations. Thus, there is always a danger that the skills and the knowledge provided may soon become obsolete. This paper describes results and draws on experiences from the implementation of a computer…
From, by, and for the OSSD: Software Engineering Education Using an Open Source Software Approach
ERIC Educational Resources Information Center
Huang, Kun; Dong, Yifei; Ge, Xun
2006-01-01
Computing is a complex, multidisciplinary field that requires a range of professional proficiencies. Computing students are expected to develop in-depth knowledge and skills, integrate and apply their knowledge flexibly to solve complex problems, and work successfully in teams. However, many students who graduate with degrees in computing fail to…
ERIC Educational Resources Information Center
Pieterse, Vreda; Thompson, Lisa
2010-01-01
The acquisition of effective teamwork skills is crucial in all disciplines. Using an interpretive approach, this study investigates collaboration and co-operation in teams of software engineering students. Teams whose members were both homogeneous and heterogeneous in terms of their members' academic abilities, skills and goals were identified and…
29 CFR 541.401 - Computer manufacture and repair.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., the use of computers and computer software programs (e.g., engineers, drafters and others skilled in computer-aided design software), but who are not primarily engaged in computer systems analysis and...
29 CFR 541.401 - Computer manufacture and repair.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., the use of computers and computer software programs (e.g., engineers, drafters and others skilled in computer-aided design software), but who are not primarily engaged in computer systems analysis and...
29 CFR 541.401 - Computer manufacture and repair.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., the use of computers and computer software programs (e.g., engineers, drafters and others skilled in computer-aided design software), but who are not primarily engaged in computer systems analysis and...
29 CFR 541.401 - Computer manufacture and repair.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., the use of computers and computer software programs (e.g., engineers, drafters and others skilled in computer-aided design software), but who are not primarily engaged in computer systems analysis and...
The Company Approach to Software Engineering Project Courses
ERIC Educational Resources Information Center
Broman, D.; Sandahl, K.; Abu Baker, M.
2012-01-01
Teaching larger software engineering project courses at the end of a computing curriculum is a way for students to learn some aspects of real-world jobs in industry. Such courses, often referred to as capstone courses, are effective for learning how to apply the skills they have acquired in, for example, design, test, and configuration management.…
The Hidden Job Requirements for a Software Engineer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinovici, Maria C.; Kirkham, Harold; Glass, Kevin A.
In a world increasingly operated by computers, where innovation depends on software, the software engineer’s role is changing continuously and gaining new dimensions. In commercial software development as well as scientific research environments, the way software developers are perceived is changing, because they are more important to the business than ever before. Nowadays, their job requires skills extending beyond the regular job description posted by HR, and more is expected. To advance and thrive in their new roles, the software engineers must embrace change, and practice the themes of the new era (integration, collaboration and optimization). The challenges may bemore » somehow intimidating for freshly graduated software engineers. Through this paper the authors hope to set them on a path for success, by helping them relinquish their fear of the unknown.« less
A streamlined software environment for situated skills
NASA Technical Reports Server (NTRS)
Yu, Sophia T.; Slack, Marc G.; Miller, David P.
1994-01-01
This paper documents a powerful set of software tools used for developing situated skills. These situated skills form the reactive level of a three-tiered intelligent agent architecture. The architecture is designed to allow these skills to be manipulated by a task level engine which is monitoring the current situation and selecting skills necessary for the current task. The idea is to coordinate the dynamic activations and deactivations of these situated skills in order to configure the reactive layer for the task at hand. The heart of the skills environment is a data flow mechanism which pipelines the currently active skills for execution. A front end graphical interface serves as a debugging facility during skill development and testing. We are able to integrate skills developed in different languages into the skills environment. The power of the skills environment lies in the amount of time it saves for the programmer to develop code for the reactive layer of a robot.
NASA Astrophysics Data System (ADS)
Lamont, L. A.; Chaar, L.; Toms, C.
2010-03-01
Interactive learning is beneficial to students in that it allows the continual development and testing of many skills. An interactive approach enables students to improve their technical capabilities, as well as developing both verbal and written communicative ability. Problem solving and communication skills are vital for engineering students; in the workplace they will be required to communicate with people of varying technical abilities and from different linguistic and engineering backgrounds. In this paper, a case study is presented that discusses how the traditional method of teaching control systems can be improved. 'Control systems' is a complex engineering topic requiring students to process an extended amount of mathematical formulae. MATLAB software, which enables students to interactively compare a range of possible combinations and analyse the optimal solution, is used to this end. It was found that students became more enthusiastic and interested when given ownership of their learning objectives. As well as improving the students' technical knowledge, other important engineering skills are also improved by introducing an interactive method of teaching.
29 CFR 541.401 - Computer manufacture and repair.
Code of Federal Regulations, 2011 CFR
2011-07-01
... DEFINING AND DELIMITING THE EXEMPTIONS FOR EXECUTIVE, ADMINISTRATIVE, PROFESSIONAL, COMPUTER AND OUTSIDE..., the use of computers and computer software programs (e.g., engineers, drafters and others skilled in computer-aided design software), but who are not primarily engaged in computer systems analysis and...
NASA Technical Reports Server (NTRS)
Berard, Edward V.
1986-01-01
An increasing number of programmers have attempted to change their image. They have made it plain that they wish not only to be taken seriously, but they also wish to be regarded as professionals. Many programmers now wish to referred to as software engineers. If programmers wish to be considered professionals in every sense of the word, two obstacles must be overcome: the inability to think of software as a product, and the idea that little or no skill is required to create and handle software throughout its life cycle. The steps to be taken toward professionalization are outlined along with recommendations.
ERIC Educational Resources Information Center
Chung, Gregory K. W. K.
This study examined a civil engineering capstone course that embedded a sophisticated simulation-based task within instruction. Students (n=28) were required to conduct a hazardous waste site investigation using simulation software designed specifically for the course (Interactive Site Investigation Software) (ISIS). The software simulated…
Demanded competences in the agricultural engineering sector in Spain
NASA Astrophysics Data System (ADS)
Perdigones, A.; García, J. L.; Benavente, R. M.; Tarquis, A. M.
2009-04-01
An engineering education should prepare students, i.e., emerging engineers, to use problem-solving processes that combine creativity and imagination with rigour and discipline. The emphasis on training engineers may be best placed on answering the needs of industry; indeed, many proposals are now being made to try to reduce the gap between the educational and industrial communities. Training in the use of certain skills or competences may be one way of better preparing engineering undergraduates for eventual employment in industry. However, industry's needs in this respect must first be known. The aim of this work was to determine which skills are used by practising agricultural engineers with the aim of incorporating training in their use into our department's teaching curriculum. Three surveys were undertaken to determine which skills are demanded by agricultural engineers in their professional activities in Spain. Surveys were carried out by the Department of Rural Engineering, Technical University of Madrid (Spain), analysing two related degrees (agricultural engineer with a duration of the study plan of three and five years, respectively) during the courses 2006/07 and 2007/08. The first survey determined the competences acquired by the students along their academic studies (371 students interviewed). The second survey determined the skills demanded by the enterprises of the agricultural sector (50 enterprises interviewed). The third survey determined the skills demanded by the agricultural engineers working in the sector (70 engineers interviewed), specifically asking about the computer programs used by practising agricultural engineers. Surveys showed important differences between the competences demanded by the enterprises and the competences acquired by the students at the university. Enterprises mainly demanded general competences (team working, time organizing, and skills with computer programs) and were less interested in specific technical skills (engineering, economy, biological competences). These differences suggest it might be a good idea to increase the amount of time devoted to the skills demanded by the enterprises. The software packages most commonly used by practising engineers were Microsoft Office / Excel (used by 79% of respondents) and CAD (56%), as well as budgeting (27%), statistical (21%), engineering (15%) and GIS (13%) programs. As a result of this survey our university department opened an additional computer suite in order to provide students practical experience in the use of the demanded competences. The results of this survey underline the importance of competence training in this and perhaps other fields of engineering.
The Future of Digital Working: Knowledge Migration and Learning
ERIC Educational Resources Information Center
Malcolm, Irene
2014-01-01
Against the backdrop of intensified migration linked to globalisation, this article considers the implications of knowledge migration for future digital workers. It draws empirically on a socio-material analysis of the international software localisation industry. Localisers' work requires linguistic, cultural and software engineering skills to…
Spacecraft Avionics Software Development Then and Now: Different but the Same
NASA Technical Reports Server (NTRS)
Mangieri, Mark L.; Garman, John (Jack); Vice, Jason
2012-01-01
NASA has always been in the business of balancing new technologies and techniques to achieve human space travel objectives. NASA s historic Software Production Facility (SPF) was developed to serve complex avionics software solutions during an era dominated by mainframes, tape drives, and lower level programming languages. These systems have proven themselves resilient enough to serve the Shuttle Orbiter Avionics life cycle for decades. The SPF and its predecessor the Software Development Lab (SDL) at NASA s Johnson Space Center (JSC) hosted flight software (FSW) engineering, development, simulation, and test. It was active from the beginning of Shuttle Orbiter development in 1972 through the end of the shuttle program in the summer of 2011 almost 40 years. NASA s Kedalion engineering analysis lab is on the forefront of validating and using many contemporary avionics HW/SW development and integration techniques, which represent new paradigms to NASA s heritage culture in avionics software engineering. Kedalion has validated many of the Orion project s HW/SW engineering techniques borrowed from the adjacent commercial aircraft avionics environment, inserting new techniques and skills into the Multi-Purpose Crew Vehicle (MPCV) Orion program. Using contemporary agile techniques, COTS products, early rapid prototyping, in-house expertise and tools, and customer collaboration, NASA has adopted a cost effective paradigm that is currently serving Orion effectively. This paper will explore and contrast differences in technology employed over the years of NASA s space program, due largely to technological advances in hardware and software systems, while acknowledging that the basic software engineering and integration paradigms share many similarities.
Theory and Practice Meets in Industrial Process Design -Educational Perspective-
NASA Astrophysics Data System (ADS)
Aramo-Immonen, Heli; Toikka, Tarja
Software engineer should see himself as a business process designer in enterprise resource planning system (ERP) re-engineering project. Software engineers and managers should have design dialogue. The objective of this paper is to discuss the motives to study the design research in connection of management education in order to envision and understand the soft human issues in the management context. Second goal is to develop means of practicing social skills between designers and managers. This article explores the affective components of design thinking in industrial management domain. In the conceptual part of this paper are discussed concepts of network and project economy, creativity, communication, use of metaphors, and design thinking. Finally is introduced empirical research plan and first empirical results from design method experiments among the multi-disciplined groups of the master-level students of industrial engineering and management and software engineering.
An Approach to Assess Knowledge and Skills in Risk Management through Project-Based Learning
ERIC Educational Resources Information Center
Galvao, Tulio Acacio Bandeira; Neto, Francisco Milton Mendes; Campos, Marcos Tullyo; Junior, Edson de Lima Cosme
2012-01-01
The increasing demand for Software Engineering professionals, particularly Project Managers, and popularization of the Web as a catalyst of human relations have made this platform interesting for training this type of professional. The authors have observed the widespread use of games as an attractive instrument in the process of teaching and…
Canary: An NLP Platform for Clinicians and Researchers.
Malmasi, Shervin; Sandor, Nicolae L; Hosomura, Naoshi; Goldberg, Matt; Skentzos, Stephen; Turchin, Alexander
2017-05-03
Information Extraction methods can help discover critical knowledge buried in the vast repositories of unstructured clinical data. However, these methods are underutilized in clinical research, potentially due to the absence of free software geared towards clinicians with little technical expertise. The skills required for developing/using such software constitute a major barrier for medical researchers wishing to employ these methods. To address this, we have developed Canary, a free and open-source solution designed for users without natural language processing (NLP) or software engineering experience. It was designed to be fast and work out of the box via a user-friendly graphical interface.
Automated Test Environment for a Real-Time Control System
NASA Technical Reports Server (NTRS)
Hall, Ronald O.
1994-01-01
An automated environment with hardware-in-the-loop has been developed by Rocketdyne Huntsville for test of a real-time control system. The target system of application is the man-rated real-time system which controls the Space Shuttle Main Engines (SSME). The primary use of the environment is software verification and validation, but it is also useful for evaluation and analysis of SSME avionics hardware and mathematical engine models. It provides a test bed for the integration of software and hardware. The principles and skills upon which it operates may be applied to other target systems, such as those requiring hardware-in-the-loop simulation and control system development. Potential applications are in problem domains demanding highly reliable software systems requiring testing to formal requirements and verifying successful transition to/from off-nominal system states.
Automatic thermographic image defect detection of composites
NASA Astrophysics Data System (ADS)
Luo, Bin; Liebenberg, Bjorn; Raymont, Jeff; Santospirito, SP
2011-05-01
Detecting defects, and especially reliably measuring defect sizes, are critical objectives in automatic NDT defect detection applications. In this work, the Sentence software is proposed for the analysis of pulsed thermography and near IR images of composite materials. Furthermore, the Sentence software delivers an end-to-end, user friendly platform for engineers to perform complete manual inspections, as well as tools that allow senior engineers to develop inspection templates and profiles, reducing the requisite thermographic skill level of the operating engineer. Finally, the Sentence software can also offer complete independence of operator decisions by the fully automated "Beep on Defect" detection functionality. The end-to-end automatic inspection system includes sub-systems for defining a panel profile, generating an inspection plan, controlling a robot-arm and capturing thermographic images to detect defects. A statistical model has been built to analyze the entire image, evaluate grey-scale ranges, import sentencing criteria and automatically detect impact damage defects. A full width half maximum algorithm has been used to quantify the flaw sizes. The identified defects are imported into the sentencing engine which then sentences (automatically compares analysis results against acceptance criteria) the inspection by comparing the most significant defect or group of defects against the inspection standards.
NASA Astrophysics Data System (ADS)
Lin, YuanFang; Zheng, XiaoDong; Huang, YuJia
2017-08-01
Curriculum design and simulation courses are bridges to connect specialty theories, engineering practice and experimental skills. In order to help students to have the computer aided optical system design ability adapting to developments of the times, a professional optical software-Advanced System of Analysis Program (ASAP) was used in the research teaching of curriculum design and simulation courses. The ASAP tutorials conducting, exercises both complementing and supplementing the lectures, hands-on practice in class, autonomous learning and independent design after class were bridged organically, to guide students "learning while doing, learning by doing", paying more attention to the process instead of the results. Several years of teaching practice of curriculum design and simulation courses shows that, project-based learning meets society needs of training personnel with knowledge, ability and quality. Students have obtained not only skills of using professional software, but also skills of finding and proposing questions in engineering practice, the scientific method of analyzing and solving questions with specialty knowledge, in addition, autonomous learning ability, teamwork spirit and innovation consciousness, still scientific attitude of facing failure and scientific spirit of admitting deficiency in the process of independent design and exploration.
Building quality into medical product software design.
Mallory, S R
1993-01-01
The software engineering and quality assurance disciplines are a requisite to the design of safe and effective software-based medical devices. It is in the areas of software methodology and process that the most beneficial application of these disciplines to software development can be made. Software is a product of complex operations and methodologies and is not amenable to the traditional electromechanical quality assurance processes. Software quality must be built in by the developers, with the software verification and validation engineers acting as the independent instruments for ensuring compliance with performance objectives and with development and maintenance standards. The implementation of a software quality assurance program is a complex process involving management support, organizational changes, and new skill sets, but the benefits are profound. Its rewards provide safe, reliable, cost-effective, maintainable, and manageable software, which may significantly speed the regulatory review process and therefore potentially shorten the overall time to market. The use of a trial project can greatly facilitate the learning process associated with the first-time application of a software quality assurance program.
Warning: Projects May Be Closer than They Appear
NASA Technical Reports Server (NTRS)
Africa, Colby
2004-01-01
I had been working for two years as the technical product manager for a large software company, when their partner company gave me a call. They needed good software engineers to customize a new version of software, and they thought I was their guy. They told me what they wanted to do to the software, and they even showed me some prototypes. Their idea was to take the basic software tool that the large company was producing and make it more accessible to the customer. They would do this by building in flexibility based on user skill level and organizational maturity. I thought that was a fascinating approach, and I bought into it in a big way. I decided to leave my job and join up with the smaller company as their director of software engineering.
Developing Systems Engineering Skills Through NASA Summer Intern Project
NASA Technical Reports Server (NTRS)
Bhasin, Kul; Barritt, Brian; Golden, Bert; Knoblock, Eric; Matthews, Seth; Warner, Joe
2010-01-01
During the Formulation phases of the NASA Project Life Cycle, communication systems engineers are responsible for designing space communication links and analyzing their performance to ensure that the proposed communication architecture is capable of satisfying high-level mission requirements. Senior engineers with extensive experience in communications systems perform these activities. However, the increasing complexity of space systems coupled with the current shortage of communications systems engineers has led to an urgent need for expedited training of new systems engineers. A pilot program, in which college-bound high school and undergraduate students studying various engineering disciplines are immersed in NASA s systems engineering practices, was conceived out of this need. This rapid summerlong training approach is feasible because of the availability of advanced software and technology tools and the students inherent ability to operate such tools. During this pilot internship program, a team of college-level and recently-hired engineers configured and utilized various software applications in the design and analysis of communication links for a plausible lunar sortie mission. The approach taken was to first design the direct-to-Earth communication links for the lunar mission elements, then to design the links between lunar surface and lunar orbital elements. Based on the data obtained from these software applications, an integrated communication system design was realized and the students gained valuable systems engineering knowledge. This paper describes this approach to rapidly training college-bound high school and undergraduate engineering students from various disciplines in NASA s systems engineering practices and tools. A summary of the potential use of NASA s emerging systems engineering internship program in broader applications is also described.
NASA Astrophysics Data System (ADS)
Semushin, I. V.; Tsyganova, J. V.; Ugarov, V. V.; Afanasova, A. I.
2018-05-01
Russian higher education institutions' tradition of teaching large-enrolled classes is impairing student striving for individual prominence, one-upmanship, and hopes for originality. Intending to converting these drawbacks into benefits, a Project-Centred Education Model (PCEM) has been introduced to deliver Computational Mathematics and Information Science courses. The model combines a Frontal Competitive Approach and a Project-Driven Learning (PDL) framework. The PDL framework has been developed by stating and solving three design problems: (i) enhance the diversity of project assignments on specific computation methods algorithmic approaches, (ii) balance similarity and dissimilarity of the project assignments, and (iii) develop a software assessment tool suitable for evaluating the technological maturity of students' project deliverables and thus reducing instructor's workload and possible overlook. The positive experience accumulated over 15 years shows that implementing the PCEM keeps students motivated to strive for success in rising to higher levels of their computational and software engineering skills.
Marshall Space Flight Center Ground Systems Development and Integration
NASA Technical Reports Server (NTRS)
Wade, Gina
2016-01-01
Ground Systems Development and Integration performs a variety of tasks in support of the Mission Operations Laboratory (MOL) and other Center and Agency projects. These tasks include various systems engineering processes such as performing system requirements development, system architecture design, integration, verification and validation, software development, and sustaining engineering of mission operations systems that has evolved the Huntsville Operations Support Center (HOSC) into a leader in remote operations for current and future NASA space projects. The group is also responsible for developing and managing telemetry and command configuration and calibration databases. Personnel are responsible for maintaining and enhancing their disciplinary skills in the areas of project management, software engineering, software development, software process improvement, telecommunications, networking, and systems management. Domain expertise in the ground systems area is also maintained and includes detailed proficiency in the areas of real-time telemetry systems, command systems, voice, video, data networks, and mission planning systems.
Developing Data System Engineers
NASA Astrophysics Data System (ADS)
Behnke, J.; Byrnes, J. B.; Kobler, B.
2011-12-01
In the early days of general computer systems for science data processing, staff members working on NASA's data systems would most often be hired as mathematicians. Computer engineering was very often filled by those with electrical engineering degrees. Today, the Goddard Space Flight Center has special position descriptions for data scientists or as they are more commonly called: data systems engineers. These staff members are required to have very diverse skills, hence the need for a generalized position description. There is always a need for data systems engineers to develop, maintain and operate the complex data systems for Earth and space science missions. Today's data systems engineers however are not just mathematicians, they are computer programmers, GIS experts, software engineers, visualization experts, etc... They represent many different degree fields. To put together distributed systems like the NASA Earth Observing Data and Information System (EOSDIS), staff are required from many different fields. Sometimes, the skilled professional is not available and must be developed in-house. This paper will address the various skills and jobs for data systems engineers at NASA. Further it explores how to develop staff to become data scientists.
Teaching Media Design by Using Scrum. A Qualitative Study within a Media Informatics Elective Course
ERIC Educational Resources Information Center
Herrmann, Ines; Münster, Sander; Tietz, Vincent; Uhlemann, Rainer
2017-01-01
Cross-disciplinary skills are today's key skills for media informatics students to gain employment after graduation. However, such problem-based learning projects almost never take place due to organizational struggles. The authors suggest Scrum, a framework that is increasingly used in software engineering, as a solution for the challenges. Scrum…
ERIC Educational Resources Information Center
Güven, Bülent; Kosa, Temel
2008-01-01
Geometry is the study of shape and space. Without spatial ability, students cannot fully appreciate the natural world. Spatial ability is also very important for work in various fields such as computer graphics, engineering, architecture, and cartography. A number of studies have demonstrated that technology has an important potential to develop…
Hydrology for Engineers, Geologists, and Environmental Professionals
NASA Astrophysics Data System (ADS)
Ince, Simon
For people who are involved in the applied aspects of hydrology, it is refreshing to find a textbook that begins with a meaningful disclaimer, albeit in fine print on the back side of the frontispiece:“The present book and the accompanying software have been written according to the latest techniques in scientific hydrology. However, hydrology is at best an inexact science. A good book and a good computer software by themselves do not guarantee accurate or even realistic predictions. Acceptable results in the applications of hydrologic methods to engineering and environmental problems depend to a greater extend (sic) on the skills, logical assumptions, and practical experience of the user, and on the quantity and quality of long-term hydrologic data available. Neither the author nor the publisher assumes any responsibility or any liability, explicitly or implicitly, on the results or the consequences of using the information contained in this book or its accompanying software.”
Pharmacist Computer Skills and Needs Assessment Survey
Jewesson, Peter J
2004-01-01
Background To use technology effectively for the advancement of patient care, pharmacists must possess a variety of computer skills. We recently introduced a novel applied informatics program in this Canadian hospital clinical service unit to enhance the informatics skills of our members. Objective This study was conducted to gain a better understanding of the baseline computer skills and needs of our hospital pharmacists immediately prior to the implementation of an applied informatics program. Methods In May 2001, an 84-question written survey was distributed by mail to 106 practicing hospital pharmacists in our multi-site, 1500-bed, acute-adult-tertiary care Canadian teaching hospital in Vancouver, British Columbia. Results Fifty-eight surveys (55% of total) were returned within the two-week study period. The survey responses reflected the opinions of licensed BSc and PharmD hospital pharmacists with a broad range of pharmacy practice experience. Most respondents had home access to personal computers, and regularly used computers in the work environment for drug distribution, information management, and communication purposes. Few respondents reported experience with handheld computers. Software use experience varied according to application. Although patient-care information software and e-mail were commonly used, experience with spreadsheet, statistical, and presentation software was negligible. The respondents were familiar with Internet search engines, and these were reported to be the most common method of seeking clinical information online. Although many respondents rated themselves as being generally computer literate and not particularly anxious about using computers, the majority believed they required more training to reach their desired level of computer literacy. Lack of familiarity with computer-related terms was prevalent. Self-reported basic computer skill was typically at a moderate level, and varied depending on the task. Specifically, respondents rated their ability to manipulate files, use software help features, and install software as low, but rated their ability to access and navigate the Internet as high. Respondents were generally aware of what online resources were available to them and Clinical Pharmacology was the most commonly employed reference. In terms of anticipated needs, most pharmacists believed they needed to upgrade their computer skills. Medical database and Internet searching skills were identified as those in greatest need of improvement. Conclusions Most pharmacists believed they needed to upgrade their computer skills. Medical database and Internet searching skills were identified as those in greatest need of improvement for the purposes of improving practice effectiveness. PMID:15111277
Spaceport Command and Control System Software Development
NASA Technical Reports Server (NTRS)
Mahlin, Jonathan Nicholas
2017-01-01
There is an immense challenge in organizing personnel across a large agency such as NASA, or even over a subset of that, like a center's Engineering directorate. Workforce inefficiencies and challenges are bound to grow over time without oversight and management. It is also not always possible to hire new employees to fill workforce gaps, therefore available resources must be utilized more efficiently. The goal of this internship was to develop software that improves organizational efficiency by aiding managers, making employee information viewable and editable in an intuitive manner. This semester I created an application for managers that aids in optimizing allocation of employee resources for a single division with the possibility of scaling upwards. My duties this semester consisted of developing frontend and backend software to complete this task. The application provides user-friendly information displays and documentation of the workforce to allow NASA to track diligently track the status and skills of its workforce. This tool should be able to prove that current employees are being effectively utilized and if new hires are necessary to fulfill skill gaps.
Dynamic Staffing and Rescheduling in Software Project Management: A Hybrid Approach.
Ge, Yujia; Xu, Bin
2016-01-01
Resource allocation could be influenced by various dynamic elements, such as the skills of engineers and the growth of skills, which requires managers to find an effective and efficient tool to support their staffing decision-making processes. Rescheduling happens commonly and frequently during the project execution. Control options have to be made when new resources are added or tasks are changed. In this paper we propose a software project staffing model considering dynamic elements of staff productivity with a Genetic Algorithm (GA) and Hill Climbing (HC) based optimizer. Since a newly generated reschedule dramatically different from the initial schedule could cause an obvious shifting cost increase, our rescheduling strategies consider both efficiency and stability. The results of real world case studies and extensive simulation experiments show that our proposed method is effective and could achieve comparable performance to other heuristic algorithms in most cases.
Dynamic Staffing and Rescheduling in Software Project Management: A Hybrid Approach
Ge, Yujia; Xu, Bin
2016-01-01
Resource allocation could be influenced by various dynamic elements, such as the skills of engineers and the growth of skills, which requires managers to find an effective and efficient tool to support their staffing decision-making processes. Rescheduling happens commonly and frequently during the project execution. Control options have to be made when new resources are added or tasks are changed. In this paper we propose a software project staffing model considering dynamic elements of staff productivity with a Genetic Algorithm (GA) and Hill Climbing (HC) based optimizer. Since a newly generated reschedule dramatically different from the initial schedule could cause an obvious shifting cost increase, our rescheduling strategies consider both efficiency and stability. The results of real world case studies and extensive simulation experiments show that our proposed method is effective and could achieve comparable performance to other heuristic algorithms in most cases. PMID:27285420
NASA Astrophysics Data System (ADS)
Fulker, D. W.; Gallagher, J. H. R.
2015-12-01
OPeNDAP's Hyrax data server is an open-source framework fostering interoperability via easily-deployed Web services. Compatible with solutions listed in the (PA001) session description—federation, rigid standards and brokering/mediation—the framework can support tight or loose coupling, even with dependence on community-contributed software. Hyrax is a Web-services framework with a middleware-like design and a handler-style architecture that together reduce the interoperability challenge (for N datatypes and M user contexts) to an O(N+M) problem, similar to brokering. Combined with an open-source ethos, this reduction makes Hyrax a community tool for gaining interoperability. E.g., in its response to the Big Earth Data Initiative (BEDI), NASA references OPeNDAP-based interoperability. Assuming its suitability, the question becomes: how sustainable is OPeNDAP, a small not-for-profit that produces open-source software, i.e., has no software-sales? In other words, if geoscience interoperability depends on OPeNDAP and similar organizations, are those entities in turn sustainable? Jim Collins (in Good to Great) highlights three questions that successful companies can answer (paraphrased here): What is your passion? Where is your world-class excellence? What drives your economic engine? We attempt to shed light on OPeNDAP sustainability by examining these. Passion: OPeNDAP has a focused passion for improving the effectiveness of scientific data sharing and use, as deeply-cooperative community endeavors. Excellence: OPeNDAP has few peers in remote, scientific data access. Skills include computer science with experience in data science, (operational, secure) Web services, and software design (for servers and clients, where the latter vary from Web pages to standalone apps and end-user programs). Economic Engine: OPeNDAP is an engineering services organization more than a product company, despite software being key to OPeNDAP's reputation. In essence, provision of engineering expertise, via contracts and grants, is the economic engine. Hence sustainability, as needed to address global grand challenges in geoscience, depends on agencies' and others' abilities and willingness to offer grants and let contracts for continually upgrading open-source software from OPeNDAP and others.
5 CFR 551.210 - Computer employees.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., creation or modification of computer programs related to machine operating systems; or (4) A combination of...) Computer systems analysts, computer programmers, software engineers, or other similarly skilled workers in... consist of: (1) The application of systems analysis techniques and procedures, including consulting with...
5 CFR 551.210 - Computer employees.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., creation or modification of computer programs related to machine operating systems; or (4) A combination of...) Computer systems analysts, computer programmers, software engineers, or other similarly skilled workers in... consist of: (1) The application of systems analysis techniques and procedures, including consulting with...
5 CFR 551.210 - Computer employees.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., creation or modification of computer programs related to machine operating systems; or (4) A combination of...) Computer systems analysts, computer programmers, software engineers, or other similarly skilled workers in... consist of: (1) The application of systems analysis techniques and procedures, including consulting with...
5 CFR 551.210 - Computer employees.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., creation or modification of computer programs related to machine operating systems; or (4) A combination of...) Computer systems analysts, computer programmers, software engineers, or other similarly skilled workers in... consist of: (1) The application of systems analysis techniques and procedures, including consulting with...
Managing Process Improvement: A Guidebook for Implementing Change Version 01.00.06
1993-12-01
and Competitive Position. Cambridge, 1982 Massachusetts: Massachusetts Institute of Technology. Egan, Gerard Change-Agent Skills B: Managing ... Innovation & Change. San 1988 Diego, California: Pfeiffer & Company. Fowler, Priscilla, and Software Engineering Group Guide. CMU/SEI-90-TR-24. Stan Rifkin
29 CFR 541.400 - General rule for computer employees.
Code of Federal Regulations, 2011 CFR
2011-07-01
... machine operating systems; or (4) A combination of the aforementioned duties, the performance of which... systems analysts, computer programmers, software engineers or other similarly skilled workers in the... computer employees whose primary duty consists of: (1) The application of systems analysis techniques and...
29 CFR 541.400 - General rule for computer employees.
Code of Federal Regulations, 2010 CFR
2010-07-01
... machine operating systems; or (4) A combination of the aforementioned duties, the performance of which... systems analysts, computer programmers, software engineers or other similarly skilled workers in the... computer employees whose primary duty consists of: (1) The application of systems analysis techniques and...
29 CFR 541.400 - General rule for computer employees.
Code of Federal Regulations, 2013 CFR
2013-07-01
... machine operating systems; or (4) A combination of the aforementioned duties, the performance of which... systems analysts, computer programmers, software engineers or other similarly skilled workers in the... computer employees whose primary duty consists of: (1) The application of systems analysis techniques and...
29 CFR 541.400 - General rule for computer employees.
Code of Federal Regulations, 2012 CFR
2012-07-01
... machine operating systems; or (4) A combination of the aforementioned duties, the performance of which... systems analysts, computer programmers, software engineers or other similarly skilled workers in the... computer employees whose primary duty consists of: (1) The application of systems analysis techniques and...
29 CFR 541.400 - General rule for computer employees.
Code of Federal Regulations, 2014 CFR
2014-07-01
... machine operating systems; or (4) A combination of the aforementioned duties, the performance of which... systems analysts, computer programmers, software engineers or other similarly skilled workers in the... computer employees whose primary duty consists of: (1) The application of systems analysis techniques and...
NASA Astrophysics Data System (ADS)
Yang, Eunice
2016-02-01
This paper discusses the use of a free mobile engineering application (app) called Autodesk® ForceEffect™ to provide students assistance with spatial visualization of forces and more practice in solving/visualizing statics problems compared to the traditional pencil-and-paper method. ForceEffect analyzes static rigid-body systems using free-body diagrams (FBDs) and provides solutions in real time. It is a cost-free software that is available for download on the Internet. The software is supported on the iOS™, Android™, and Google Chrome™ platforms. It is easy to use and the learning curve is approximately two hours using the tutorial provided within the app. The use of ForceEffect has the ability to provide students different problem modalities (textbook, real-world, and design) to help them acquire and improve on skills that are needed to solve force equilibrium problems. Although this paper focuses on the engineering mechanics statics course, the technology discussed is also relevant to the introductory physics course.
Computer-Aided Software Engineering - An approach to real-time software development
NASA Technical Reports Server (NTRS)
Walker, Carrie K.; Turkovich, John J.
1989-01-01
A new software engineering discipline is Computer-Aided Software Engineering (CASE), a technology aimed at automating the software development process. This paper explores the development of CASE technology, particularly in the area of real-time/scientific/engineering software, and a history of CASE is given. The proposed software development environment for the Advanced Launch System (ALS CASE) is described as an example of an advanced software development system for real-time/scientific/engineering (RT/SE) software. The Automated Programming Subsystem of ALS CASE automatically generates executable code and corresponding documentation from a suitably formatted specification of the software requirements. Software requirements are interactively specified in the form of engineering block diagrams. Several demonstrations of the Automated Programming Subsystem are discussed.
2015-04-01
report is to examine how a computer forensic investigator/incident handler, without specialised computer memory or software reverse engineering skills ...The skills amassed by incident handlers and investigators alike while using Volatility to examine Windows memory images will be of some help...bin/pulseaudio --start --log-target=syslog 1362 1000 1000 nautilus 1366 1000 1000 /usr/lib/pulseaudio/pulse/gconf- helper 1370 1000 1000 nm-applet
2015-06-01
examine how a computer forensic investigator/incident handler, without specialised computer memory or software reverse engineering skills , can successfully...memory images and malware, this new series of reports will be directed at those who must analyse Linux malware-infected memory images. The skills ...disable 1287 1000 1000 /usr/lib/policykit-1-gnome/polkit-gnome-authentication- agent-1 1310 1000 1000 /usr/lib/pulseaudio/pulse/gconf- helper 1350
Proceedings of the Seventeenth Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1992-01-01
Proceedings of the Seventeenth Annual Software Engineering Workshop are presented. The software Engineering Laboratory (SEL) is an organization sponsored by NASA/Goddard Space Flight Center and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. Topics covered include: the Software Engineering Laboratory; process measurement; software reuse; software quality; lessons learned; and is Ada dying.
Better software, better research: the challenge of preserving your research and your reputation
NASA Astrophysics Data System (ADS)
Chue Hong, N.
2017-12-01
Software is fundamental to research. From short, thrown-together temporary scripts, through an abundance of complex spreadsheets analysing collected data, to the hundreds of software engineers and millions of lines of code behind international efforts such as the Large Hadron Collider and the Square Kilometre Array, software has made an invaluable contribution to advancing our research knowledge. Within the earth and space sciences, data is being generated, collected, processed and analysed in ever greater amounts and detail. However the pace of this improvement leads to challenges around the persistence of research outputs and artefacts. A specific challenge in this field is that often experiments and measurements cannot be repeated, yet the infrastructure used to manage, store and process this data must be continually updated and developed: constant change just to stay still. The UK-based Software Sustainability Institute (SSI) aims to improve research software sustainability, working with researchers, funders, research software engineers, managers, and other stakeholders across the research spectrum. In this talk, I will present lessons learned and good practice based on the work of the Institute and its collaborators. I will summarise some of the work that is being done to improve the integration of infrastructure for managing research outputs, including around software citation and reward, extending data management plans, and improving researcher skills: "better software, better research". Ultimately, being a modern researcher in the geosciences requires you to efficiently balance the pursuit of new knowledge with making your work reusable and reproducible. And as scientists are placed under greater scrutiny about whether others can trust their results, the preservation of your artefacts has a key role in the preservation of your reputation.
Introducing Risk Management Techniques Within Project Based Software Engineering Courses
NASA Astrophysics Data System (ADS)
Port, Daniel; Boehm, Barry
2002-03-01
In 1996, USC switched its core two-semester software engineering course from a hypothetical-project, homework-and-exam course based on the Bloom taxonomy of educational objectives (knowledge, comprehension, application, analysis, synthesis, and evaluation). The revised course is a real-client team-project course based on the CRESST model of learning objectives (content understanding, problem solving, collaboration, communication, and self-regulation). We used the CRESST cognitive demands analysis to determine the necessary student skills required for software risk management and the other major project activities, and have been refining the approach over the last 5 years of experience, including revised versions for one-semester undergraduate and graduate project course at Columbia. This paper summarizes our experiences in evolving the risk management aspects of the project course. These have helped us mature more general techniques such as risk-driven specifications, domain-specific simplifier and complicator lists, and the schedule as an independent variable (SAIV) process model. The largely positive results in terms of review of pass / fail rates, client evaluations, product adoption rates, and hiring manager feedback are summarized as well.
Software engineering as an engineering discipline
NASA Technical Reports Server (NTRS)
Gibbs, Norman
1988-01-01
The goals of the Software Engineering Institute's Education Program are as follows: to increase the number of highly qualified software engineers--new software engineers and existing practitioners; and to be the leading center of expertise for software engineering education and training. A discussion of these goals is presented in vugraph form.
NASA Technical Reports Server (NTRS)
Morusiewicz, Linda; Valett, Jon
1992-01-01
This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) the Software Engineering Laboratory; (2) the Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.
Annotated bibliography of Software Engineering Laboratory literature
NASA Technical Reports Server (NTRS)
Morusiewicz, Linda; Valett, Jon
1993-01-01
This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. Nearly 200 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: the Software Engineering Laboratory; the Software Engineering Laboratory: software development documents; software tools; software models; software measurement; technology evaluations; Ada technology; and data collection. This document contains an index of these publications classified by individual author.
Integrated learning in practical machine element design course: a case study of V-pulley design
NASA Astrophysics Data System (ADS)
Tantrabandit, Manop
2014-06-01
To achieve an effective integrated learning in Machine Element Design course, it is of importance to bridge the basic knowledge and skills of element designs. The multiple core learning leads the pathway which consists of two main parts. The first part involves teaching documents of which the contents are number of V-groove formulae, standard of V-grooved pulleys, and parallel key dimension's formulae. The second part relates to the subjects that the students have studied prior to participating in this integrated learning course, namely Material Selection, Manufacturing Process, Applied Engineering Drawing, CAD (Computer Aided Design) animation software. Moreover, an intensive cooperation between a lecturer and students is another key factor to fulfill the success of integrated learning. Last but not least, the students need to share their knowledge within the group and among the other groups aiming to gain knowledge of and skills in 1) the application of CAD-software to build up manufacture part drawings, 2) assembly drawing, 3) simulation to verify the strength of loaded pulley by method of Finite Element Analysis (FEA), 4) the software to create animation of mounting and dismounting of a pulley to a shaft, and 5) an instruction manual. The end product of this integrated learning, as a result of the above 1 to 5 knowledge and skills obtained, the participating students can create an assembly derived from manufacture part drawings and a video presentation with bilingual (English-Thai) audio description of Vpulley with datum diameter of 250 mm, 4 grooves, and type of groove: SPA.
NASA Technical Reports Server (NTRS)
1995-01-01
The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.
Software Engineering Laboratory Series: Collected Software Engineering Papers. Volume 15
NASA Technical Reports Server (NTRS)
1997-01-01
The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.
Software Engineering Laboratory Series: Collected Software Engineering Papers. Volume 14
NASA Technical Reports Server (NTRS)
1996-01-01
The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.
Software Engineering Laboratory Series: Collected Software Engineering Papers. Volume 13
NASA Technical Reports Server (NTRS)
1995-01-01
The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.
Annotated bibliography of software engineering laboratory literature
NASA Technical Reports Server (NTRS)
Kistler, David; Bristow, John; Smith, Don
1994-01-01
This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. Nearly 200 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) The Software Engineering Laboratory; (2) The Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.
NASA Technical Reports Server (NTRS)
1996-01-01
The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.
NASA Technical Reports Server (NTRS)
1997-01-01
The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.
CASE: A Configurable Argumentation Support Engine
ERIC Educational Resources Information Center
Scheuer, O.; McLaren, B. M.
2013-01-01
One of the main challenges in tapping the full potential of modern educational software is to devise mechanisms to automatically analyze and adaptively support students' problem solving and learning. A number of such approaches have been developed to teach argumentation skills in domains as diverse as science, the Law, and ethics. Yet,…
Intelligent tutoring systems for systems engineering methodologies
NASA Technical Reports Server (NTRS)
Meyer, Richard J.; Toland, Joel; Decker, Louis
1991-01-01
The general goal is to provide the technology required to build systems that can provide intelligent tutoring in IDEF (Integrated Computer Aided Manufacturing Definition Method) modeling. The following subject areas are covered: intelligent tutoring systems for systems analysis methodologies; IDEF tutor architecture and components; developing cognitive skills for IDEF modeling; experimental software; and PC based prototype.
The Development of Computational Thinking in a High School Chemistry Course
ERIC Educational Resources Information Center
Matsumoto, Paul S.; Cao, Jiankang
2017-01-01
Computational thinking is a component of the Science and Engineering Practices in the Next Generation Science Standards, which were adopted by some states. We describe the activities in a high school chemistry course that may develop students' computational thinking skills by primarily using Excel, a widely available spreadsheet software. These…
ERIC Educational Resources Information Center
Semushin, I. V.; Tsyganova, J. V.; Ugarov, V. V.; Afanasova, A. I.
2018-01-01
Russian higher education institutions' tradition of teaching large-enrolled classes is impairing student striving for individual prominence, one-upmanship, and hopes for originality. Intending to converting these drawbacks into benefits, a Project-Centred Education Model (PCEM) has been introduced to deliver Computational Mathematics and…
RGG: A general GUI Framework for R scripts
Visne, Ilhami; Dilaveroglu, Erkan; Vierlinger, Klemens; Lauss, Martin; Yildiz, Ahmet; Weinhaeusel, Andreas; Noehammer, Christa; Leisch, Friedrich; Kriegner, Albert
2009-01-01
Background R is the leading open source statistics software with a vast number of biostatistical and bioinformatical analysis packages. To exploit the advantages of R, extensive scripting/programming skills are required. Results We have developed a software tool called R GUI Generator (RGG) which enables the easy generation of Graphical User Interfaces (GUIs) for the programming language R by adding a few Extensible Markup Language (XML) – tags. RGG consists of an XML-based GUI definition language and a Java-based GUI engine. GUIs are generated in runtime from defined GUI tags that are embedded into the R script. User-GUI input is returned to the R code and replaces the XML-tags. RGG files can be developed using any text editor. The current version of RGG is available as a stand-alone software (RGGRunner) and as a plug-in for JGR. Conclusion RGG is a general GUI framework for R that has the potential to introduce R statistics (R packages, built-in functions and scripts) to users with limited programming skills and helps to bridge the gap between R developers and GUI-dependent users. RGG aims to abstract the GUI development from individual GUI toolkits by using an XML-based GUI definition language. Thus RGG can be easily integrated in any software. The RGG project further includes the development of a web-based repository for RGG-GUIs. RGG is an open source project licensed under the Lesser General Public License (LGPL) and can be downloaded freely at PMID:19254356
Annotated bibliography of Software Engineering Laboratory literature
NASA Technical Reports Server (NTRS)
Morusiewicz, Linda; Valett, Jon D.
1991-01-01
An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. All materials have been grouped into eight general subject areas for easy reference: The Software Engineering Laboratory; The Software Engineering Laboratory: Software Development Documents; Software Tools; Software Models; Software Measurement; Technology Evaluations; Ada Technology; and Data Collection. Subject and author indexes further classify these documents by specific topic and individual author.
Software engineering and the role of Ada: Executive seminar
NASA Technical Reports Server (NTRS)
Freedman, Glenn B.
1987-01-01
The objective was to introduce the basic terminology and concepts of software engineering and Ada. The life cycle model is reviewed. The application of the goals and principles of software engineering is applied. An introductory understanding of the features of the Ada language is gained. Topics addressed include: the software crises; the mandate of the Space Station Program; software life cycle model; software engineering; and Ada under the software engineering umbrella.
Agent-based models of cellular systems.
Cannata, Nicola; Corradini, Flavio; Merelli, Emanuela; Tesei, Luca
2013-01-01
Software agents are particularly suitable for engineering models and simulations of cellular systems. In a very natural and intuitive manner, individual software components are therein delegated to reproduce "in silico" the behavior of individual components of alive systems at a given level of resolution. Individuals' actions and interactions among individuals allow complex collective behavior to emerge. In this chapter we first introduce the readers to software agents and multi-agent systems, reviewing the evolution of agent-based modeling of biomolecular systems in the last decade. We then describe the main tools, platforms, and methodologies available for programming societies of agents, possibly profiting also of toolkits that do not require advanced programming skills.
NASA Technical Reports Server (NTRS)
Davis, Kirsch; Bankieris, Derek
2016-01-01
As an intern project for NASA Johnson Space Center (JSC), my job was to familiarize myself and operate a Robotics Operating System (ROS). The project outcome converted existing software assets into ROS using nodes, enabling a robotic Hexapod to communicate to be functional and controlled by an existing PlayStation 3 (PS3) controller. Existing control algorithms and current libraries have no ROS capabilities within the Hexapod C++ source code when the internship started, but that has changed throughout my internship. Conversion of C++ codes to ROS enabled existing code to be compatible with ROS, and is now controlled using an existing PS3 controller. Furthermore, my job description was to design ROS messages and script programs that enabled assets to participate in the ROS ecosystem by subscribing and publishing messages. Software programming source code is written in directories using C++. Testing of software assets included compiling code within the Linux environment using a terminal. The terminal ran the code from a directory. Several problems occurred while compiling code and the code would not compile. So modifying code to where C++ can read the source code were made. Once the code was compiled and ran, the code was uploaded to Hexapod and then controlled by a PS3 controller. The project outcome has the Hexapod fully functional and compatible with ROS and operates using the PlayStation 3 controller. In addition, an open source software (IDE) Arduino board will be integrated into the ecosystem with designing circuitry on a breadboard to add additional behavior with push buttons, potentiometers and other simple elements in the electrical circuitry. Other projects with the Arduino will be a GPS module, digital clock that will run off 22 satellites to show accurate real time using a GPS signal and an internal patch antenna to communicate with satellites. In addition, this internship experience has led me to pursue myself to learn coding more efficiently and effectively to write, subscribe and publish my own source code in different programming languages. With some familiarity with software programming, it will enhance my skills in the electrical engineering field. In contrast, my experience here at JSC with the Simulation and Graphics Branch (ER7) has led me to take my coding skill to be more proficient to increase my knowledge in software programming, and also enhancing my skills in ROS. This knowledge will be taken back to my university to implement coding in a school project that will use source coding and ROS to work on the PR2 robot which is controlled by ROS software. My skills learned here will be used to integrate messages to subscribe and publish ROS messages to a PR2 robot. The PR2 robot will be controlled by an existing PS3 controller by changing C++ coding to subscribe and publish messages to ROS. Overall the skills that were obtained here will not be lost, but increased.
A top-down approach in control engineering third-level teaching: The case of hydrogen-generation
NASA Astrophysics Data System (ADS)
Setiawan, Eko; Habibi, M. Afnan; Fall, Cheikh; Hodaka, Ichijo
2017-09-01
This paper presents a top-down approach in control engineering third-level teaching. The paper shows the control engineering solution for the issue of practical implementation in order to motivate students. The proposed strategy only focuses on one technique of control engineering to lead student correctly. The proposed teaching steps are 1) defining the problem, 2) listing of acquired knowledge or required skill, 3) selecting of one control engineering technique, 4) arrangement the order of teaching: problem introduction, implementation of control engineering technique, explanation of system block diagram, model derivation, controller design, and 5) enrichment knowledge by the other control techniques. The approach presented highlights hardware implementation and the use of software simulation as a self-learning tool for students.
Software development environments: Status and trends
NASA Technical Reports Server (NTRS)
Duffel, Larry E.
1988-01-01
Currently software engineers are the essential integrating factors tying several components together. The components consist of process, methods, computers, tools, support environments, and software engineers. The engineers today empower the tools versus the tools empowering the engineers. Some of the issues in software engineering are quality, managing the software engineering process, and productivity. A strategy to accomplish this is to promote the evolution of software engineering from an ad hoc, labor intensive activity to a managed, technology supported discipline. This strategy may be implemented by putting the process under management control, adopting appropriate methods, inserting the technology that provides automated support for the process and methods, collecting automated tools into an integrated environment and educating the personnel.
Managing the Software Development Process
NASA Technical Reports Server (NTRS)
Lubelczky, Jeffrey T.; Parra, Amy
1999-01-01
The goal of any software development project is to produce a product that is delivered on time, within the allocated budget, and with the capabilities expected by the customer and unfortunately, this goal is rarely achieved. However, a properly managed project in a mature software engineering environment can consistently achieve this goal. In this paper we provide an introduction to three project success factors, a properly managed project, a competent project manager, and a mature software engineering environment. We will also present an overview of the benefits of a mature software engineering environment based on 24 years of data from the Software Engineering Lab, and suggest some first steps that an organization can take to begin benefiting from this environment. The depth and breadth of software engineering exceeds this paper, various references are cited with a goal of raising awareness and encouraging further investigation into software engineering and project management practices.
Enabling drug discovery project decisions with integrated computational chemistry and informatics
NASA Astrophysics Data System (ADS)
Tsui, Vickie; Ortwine, Daniel F.; Blaney, Jeffrey M.
2017-03-01
Computational chemistry/informatics scientists and software engineers in Genentech Small Molecule Drug Discovery collaborate with experimental scientists in a therapeutic project-centric environment. Our mission is to enable and improve pre-clinical drug discovery design and decisions. Our goal is to deliver timely data, analysis, and modeling to our therapeutic project teams using best-in-class software tools. We describe our strategy, the organization of our group, and our approaches to reach this goal. We conclude with a summary of the interdisciplinary skills required for computational scientists and recommendations for their training.
Software Development for EECU Platform of Turbofan Engine
NASA Astrophysics Data System (ADS)
Kim, Bo Gyoung; Kwak, Dohyup; Kim, Byunghyun; Choi, Hee ju; Kong, Changduk
2017-04-01
The turbofan engine operation consists of a number of hardware and software. The engine is controlled by Electronic Engine Control Unit (EECU). In order to control the engine, EECU communicates with an aircraft system, Actuator Drive Unit (ADU), Engine Power Unit (EPU) and sensors on the engine. This paper tried to investigate the process form starting to taking-off and aims to design the EECU software mode and defined communication data format. The software is implemented according to the designed software mode.
Experiences with Efficient Methodologies for Teaching Computer Programming to Geoscientists
ERIC Educational Resources Information Center
Jacobs, Christian T.; Gorman, Gerard J.; Rees, Huw E.; Craig, Lorraine E.
2016-01-01
Computer programming was once thought of as a skill required only by professional software developers. But today, given the ubiquitous nature of computation and data science it is quickly becoming necessary for all scientists and engineers to have at least a basic knowledge of how to program. Teaching how to program, particularly to those students…
In the soft-to-hard technical spectrum: Where is software engineering?
NASA Technical Reports Server (NTRS)
Leibfried, Theodore F.; Macdonald, Robert B.
1992-01-01
In the computer journals and tabloids, there have been a plethora of articles written about the software engineering field. But while advocates of the need for an engineering approach to software development, it is impressive how many authors have treated the subject of software engineering without adequately addressing the fundamentals of what engineering as a discipline consists of. A discussion is presented of the various related facets of this issue in a logical framework to advance the thesis that the software development process is necessarily an engineering process. The purpose is to examine more of the details of the issue of whether or not the design and development of software for digital computer processing systems should be both viewed and treated as a legitimate field of professional engineering. Also, the type of academic and professional level education programs that would be required to support a software engineering discipline is examined.
Annotated bibliography of software engineering laboratory literature
NASA Technical Reports Server (NTRS)
Groves, Paula; Valett, Jon
1990-01-01
An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: the Software Engineering Laboratory; the Software Engineering Laboratory-software development documents; software tools; software models; software measurement; technology evaluations; Ada technology; and data collection. Subject and author indexes further classify these documents by specific topic and individual author.
Using Compilers to Enhance Cryptographic Product Development
NASA Astrophysics Data System (ADS)
Bangerter, E.; Barbosa, M.; Bernstein, D.; Damgård, I.; Page, D.; Pagter, J. I.; Sadeghi, A.-R.; Sovio, S.
Developing high-quality software is hard in the general case, and it is significantly more challenging in the case of cryptographic software. A high degree of new skill and understanding must be learnt and applied without error to avoid vulnerability and inefficiency. This is often beyond the financial, manpower or intellectual resources avail-able. In this paper we present the motivation for the European funded CACE (Computer Aided Cryptography Engineering) project The main objective of CACE is to provide engineers (with limited or no expertise in cryptography) with a toolbox that allows them to generate robust and efficient implementations of cryptographic primitives. We also present some preliminary results already obtained in the early stages of this project, and discuss the relevance of the project as perceived by stakeholders in the mobile device arena.
Project Management Software for Distributed Industrial Companies
NASA Astrophysics Data System (ADS)
Dobrojević, M.; Medjo, B.; Rakin, M.; Sedmak, A.
This paper gives an overview of the development of a new software solution for project management, intended mainly to use in industrial environment. The main concern of the proposed solution is application in everyday engineering practice in various, mainly distributed industrial companies. Having this in mind, special care has been devoted to development of appropriate tools for tracking, storing and analysis of the information about the project, and in-time delivering to the right team members or other responsible persons. The proposed solution is Internet-based and uses LAMP/WAMP (Linux or Windows - Apache - MySQL - PHP) platform, because of its stability, versatility, open source technology and simple maintenance. Modular structure of the software makes it easy for customization according to client specific needs, with a very short implementation period. Its main advantages are simple usage, quick implementation, easy system maintenance, short training and only basic computer skills needed for operators.
Programming Makes Software; Support Makes Users
NASA Astrophysics Data System (ADS)
Batcheller, A. L.
2010-12-01
Skilled software engineers may build fantastic software for climate modeling, yet fail to achieve their project’s objectives. Software support and related activities are just as critical as writing software. This study followed three different software projects in the climate sciences, using interviews, observation, and document analysis to examine the value added by support work. Supporting the project and interacting with users was a key task for software developers, who often spent 50% of their time on it. Such support work most often involved replying to questions on an email list, but also included talking to users on teleconference calls and in person. Software support increased adoption by building the software’s reputation and showing individuals how the software can meet their needs. In the process of providing support, developers often learned new of requirements as users reported features they desire and bugs they found. As software matures and gains widespread use, support work often increases. In fact, such increases can be one signal that the software has achieved broad acceptance. Maturing projects also find demand for instructional classes, online tutorials and detailed examples of how to use the software. The importance of support highlights the fact that building software systems involves both social and technical aspects. Yes, we need to build the software, but we also need to “build” the users and practices that can take advantage of it.
Experimentation in software engineering
NASA Technical Reports Server (NTRS)
Basili, V. R.; Selby, R. W.; Hutchens, D. H.
1986-01-01
Experimentation in software engineering supports the advancement of the field through an iterative learning process. In this paper, a framework for analyzing most of the experimental work performed in software engineering over the past several years is presented. A variety of experiments in the framework is described and their contribution to the software engineering discipline is discussed. Some useful recommendations for the application of the experimental process in software engineering are included.
The TAME Project: Towards improvement-oriented software environments
NASA Technical Reports Server (NTRS)
Basili, Victor R.; Rombach, H. Dieter
1988-01-01
Experience from a dozen years of analyzing software engineering processes and products is summarized as a set of software engineering and measurement principles that argue for software engineering process models that integrate sound planning and analysis into the construction process. In the TAME (Tailoring A Measurement Environment) project at the University of Maryland, such an improvement-oriented software engineering process model was developed that uses the goal/question/metric paradigm to integrate the constructive and analytic aspects of software development. The model provides a mechanism for formalizing the characterization and planning tasks, controlling and improving projects based on quantitative analysis, learning in a deeper and more systematic way about the software process and product, and feeding the appropriate experience back into the current and future projects. The TAME system is an instantiation of the TAME software engineering process model as an ISEE (integrated software engineering environment). The first in a series of TAME system prototypes has been developed. An assessment of experience with this first limited prototype is presented including a reassessment of its initial architecture.
Software engineering from a Langley perspective
NASA Technical Reports Server (NTRS)
Voigt, Susan
1994-01-01
A brief introduction to software engineering is presented. The talk is divided into four sections beginning with the question 'What is software engineering', followed by a brief history of the progression of software engineering at the Langley Research Center in the context of an expanding computing environment. Several basic concepts and terms are introduced, including software development life cycles and maturity levels. Finally, comments are offered on what software engineering means for the Langley Research Center and where to find more information on the subject.
Teaching Agile Software Engineering Using Problem-Based Learning
ERIC Educational Resources Information Center
El-Khalili, Nuha H.
2013-01-01
Many studies have reported the utilization of Problem-Based Learning (PBL) in teaching Software Engineering courses. However, these studies have different views of the effectiveness of PBL. This paper presents the design of an Advanced Software Engineering course for undergraduate Software Engineering students that uses PBL to teach them Agile…
NASA Astrophysics Data System (ADS)
Seagroves, S.; Hunter, L.
2010-12-01
The Akamai Workforce Initiative (AWI) is an interdisciplinary effort to improve science/engineering education in the state of Hawai'i, and to train a diverse population of local students in the skills needed for a high-tech economy. In 2009, the AWI undertook a survey of industry partners on Maui and the Big Island of Hawai'i to develop an engineering technology skills framework that will guide curriculum development at the U. of Hawai'i - Maui (formerly Maui Community College). This engineering skills framework builds directly on past engineering-education developments within the Center for Adaptive Optics Professional Development Program, and draws on curriculum development frameworks and engineering skills standards from the literature. Coupling that previous work with reviews of past Akamai Internship projects and information from previous conversations with the local high-tech community led to a structured-interview format where engineers and managers could contribute meaningful commentary to this framework. By incorporating these local high-tech companies' needs for entry-level engineers and technicians, a skills framework emerges that is unique and illuminating. Two surprising features arise in this framework: (1) "technician-like" skills of making existing technology work are on similar footing with "engineer-like" skills of creating new technology; in fact, both engineers and technicians at these workplaces use both sets of skills; and (2) project management skills are emphasized by employers even for entry-level positions.
Data systems and computer science: Software Engineering Program
NASA Technical Reports Server (NTRS)
Zygielbaum, Arthur I.
1991-01-01
An external review of the Integrated Technology Plan for the Civil Space Program is presented. This review is specifically concerned with the Software Engineering Program. The goals of the Software Engineering Program are as follows: (1) improve NASA's ability to manage development, operation, and maintenance of complex software systems; (2) decrease NASA's cost and risk in engineering complex software systems; and (3) provide technology to assure safety and reliability of software in mission critical applications.
Annotated bibliography of Software Engineering Laboratory (SEL) literature
NASA Technical Reports Server (NTRS)
Card, D.
1982-01-01
An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is presented. More than 75 publications are summarized. An index of these publications by subject is also included. These publications cover many areas of software engineering and range from research reports to software documentation.
Annotated bibliography of software engineering laboratory literature
NASA Technical Reports Server (NTRS)
Buhler, Melanie; Valett, Jon
1989-01-01
An annotated bibliography is presented of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. The bibliography was updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials were grouped into eight general subject areas for easy reference: (1) The Software Engineering Laboratory; (2) The Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. Subject and author indexes further classify these documents by specific topic and individual author.
Using Dynamic Geometry and Computer Algebra Systems in Problem Based Courses for Future Engineers
ERIC Educational Resources Information Center
Tomiczková, Svetlana; Lávicka, Miroslav
2015-01-01
It is a modern trend today when formulating the curriculum of a geometric course at the technical universities to start from a real-life problem originated in technical praxis and subsequently to define which geometric theories and which skills are necessary for its solving. Nowadays, interactive and dynamic geometry software plays a more and more…
ERIC Educational Resources Information Center
Shacham, Mordechai; Cutlip, Michael B.; Brauner, Neima
2009-01-01
A continuing challenge to the undergraduate chemical engineering curriculum is the time-effective incorporation and use of computer-based tools throughout the educational program. Computing skills in academia and industry require some proficiency in programming and effective use of software packages for solving 1) single-model, single-algorithm…
Software Engineering for Human Spaceflight
NASA Technical Reports Server (NTRS)
Fredrickson, Steven E.
2014-01-01
The Spacecraft Software Engineering Branch of NASA Johnson Space Center (JSC) provides world-class products, leadership, and technical expertise in software engineering, processes, technology, and systems management for human spaceflight. The branch contributes to major NASA programs (e.g. ISS, MPCV/Orion) with in-house software development and prime contractor oversight, and maintains the JSC Engineering Directorate CMMI rating for flight software development. Software engineering teams work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements. They seek to infuse automation and autonomy into missions, and apply new technologies to flight processor and computational architectures. This presentation will provide an overview of key software-related projects, software methodologies and tools, and technology pursuits of interest to the JSC Spacecraft Software Engineering Branch.
The research and practice of spacecraft software engineering
NASA Astrophysics Data System (ADS)
Chen, Chengxin; Wang, Jinghua; Xu, Xiaoguang
2017-06-01
In order to ensure the safety and reliability of spacecraft software products, it is necessary to execute engineering management. Firstly, the paper introduces the problems of unsystematic planning, uncertain classified management and uncontinuous improved mechanism in domestic and foreign spacecraft software engineering management. Then, it proposes a solution for software engineering management based on system-integrated ideology in the perspective of spacecraft system. Finally, a application result of spacecraft is given as an example. The research can provides a reference for executing spacecraft software engineering management and improving software product quality.
Adaptation of abbreviated mathematics anxiety rating scale for engineering students
NASA Astrophysics Data System (ADS)
Nordin, Sayed Kushairi Sayed; Samat, Khairul Fadzli; Sultan, Al Amin Mohamed; Halim, Bushra Abdul; Ismail, Siti Fatimah; Mafazi, Nurul Wirdah
2015-05-01
Mathematics is an essential and fundamental tool used by engineers to analyse and solve problems in their field. Due to this, most engineering education programs involve a concentration of study in mathematics courses whereby engineering students have to take mathematics courses such as numerical methods, differential equations and calculus in the first two years and continue to do so until the completion of the sequence. However, the students struggled and had difficulties in learning courses that require mathematical abilities. Hence, this study presents the factors that caused mathematics anxiety among engineering students using Abbreviated Mathematics Anxiety Rating Scale (AMARS) through 95 students of Universiti Teknikal Malaysia Melaka (UTeM). From 25 items in AMARS, principal component analysis (PCA) suggested that there are four mathematics anxiety factors, namely experiences of learning mathematics, cognitive skills, mathematics evaluation anxiety and students' perception on mathematics. Minitab 16 software was used to analyse the nonparametric statistics. Kruskal-Wallis Test indicated that there is a significant difference in the experience of learning mathematics and mathematics evaluation anxiety among races. The Chi-Square Test of Independence revealed that the experience of learning mathematics, cognitive skills and mathematics evaluation anxiety depend on the results of their SPM additional mathematics. Based on this study, it is recommended to address the anxiety problems among engineering students at the early stage of studying in the university. Thus, lecturers should play their part by ensuring a positive classroom environment which encourages students to study mathematics without fear.
Annotated bibliography of Software Engineering Laboratory literature
NASA Technical Reports Server (NTRS)
1985-01-01
An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is presented. More than 100 publications are summarized. These publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials are grouped into five general subject areas for easy reference: (1) the software engineering laboratory; (2) software tools; (3) models and measures; (4) technology evaluations; and (5) data collection. An index further classifies these documents by specific topic.
ISEES: an institute for sustainable software to accelerate environmental science
NASA Astrophysics Data System (ADS)
Jones, M. B.; Schildhauer, M.; Fox, P. A.
2013-12-01
Software is essential to the full science lifecycle, spanning data acquisition, processing, quality assessment, data integration, analysis, modeling, and visualization. Software runs our meteorological sensor systems, our data loggers, and our ocean gliders. Every aspect of science is impacted by, and improved by, software. Scientific advances ranging from modeling climate change to the sequencing of the human genome have been rendered possible in the last few decades due to the massive improvements in the capabilities of computers to process data through software. This pivotal role of software in science is broadly acknowledged, while simultaneously being systematically undervalued through minimal investments in maintenance and innovation. As a community, we need to embrace the creation, use, and maintenance of software within science, and address problems such as code complexity, openness,reproducibility, and accessibility. We also need to fully develop new skills and practices in software engineering as a core competency in our earth science disciplines, starting with undergraduate and graduate education and extending into university and agency professional positions. The Institute for Sustainable Earth and Environmental Software (ISEES) is being envisioned as a community-driven activity that can facilitate and galvanize activites around scientific software in an analogous way to synthesis centers such as NCEAS and NESCent that have stimulated massive advances in ecology and evolution. We will describe the results of six workshops (Science Drivers, Software Lifecycles, Software Components, Workforce Development and Training, Sustainability and Governance, and Community Engagement) that have been held in 2013 to envision such an institute. We will present community recommendations from these workshops and our strategic vision for how ISEES will address the technical issues in the software lifecycle, sustainability of the whole software ecosystem, and the critical issue of computational training for the scientific community. Process for envisioning ISEES.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.
1995-01-01
Studies indicate that communications and information-related activities take up a substantial portion of an engineer's work week; therefore, effective communications and information use skills are one of the key engineering competencies that recent graduates of engineering programs are expected to possess. Feedback from industry rates communications and information use skills of entry-level engineers low. Missing from current discussions of communications and information use skills and competencies for engineering students is a clear explanation from the professional engineering community about what constitutes 'acceptable and desirable communications and information norms' within that community. To gather adequate and generalizable data about communications and information skills instruction and to provide a student perspective on the communications skills of engineers, we undertook a national study of aerospace engineering students in March 1993. The study included questions about the importance of certain communications and information skills to professional success, the instruction students had received in these skills, and perceived helpfulness of the instruction. Selected results from the study study are reported in this paper.
Proceedings of the Fifteenth Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1990-01-01
The Software Engineering Laboratory (SEL) is an organization sponsored by GSFC and created for the purpose of investigating the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are: (1) to understand the software development process in the GSFC environment; (2) to measure the effect of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. Fifteen papers were presented at the Fifteenth Annual Software Engineering Workshop in five sessions: (1) SEL at age fifteen; (2) process improvement; (3) measurement; (4) reuse; and (5) process assessment. The sessions were followed by two panel discussions: (1) experiences in implementing an effective measurement program; and (2) software engineering in the 1980's. A summary of the presentations and panel discussions is given.
Software Analyzes Complex Systems in Real Time
NASA Technical Reports Server (NTRS)
2008-01-01
Expert system software programs, also known as knowledge-based systems, are computer programs that emulate the knowledge and analytical skills of one or more human experts, related to a specific subject. SHINE (Spacecraft Health Inference Engine) is one such program, a software inference engine (expert system) designed by NASA for the purpose of monitoring, analyzing, and diagnosing both real-time and non-real-time systems. It was developed to meet many of the Agency s demanding and rigorous artificial intelligence goals for current and future needs. NASA developed the sophisticated and reusable software based on the experience and requirements of its Jet Propulsion Laboratory s (JPL) Artificial Intelligence Research Group in developing expert systems for space flight operations specifically, the diagnosis of spacecraft health. It was designed to be efficient enough to operate in demanding real time and in limited hardware environments, and to be utilized by non-expert systems applications written in conventional programming languages. The technology is currently used in several ongoing NASA applications, including the Mars Exploration Rovers and the Spacecraft Health Automatic Reasoning Pilot (SHARP) program for the diagnosis of telecommunication anomalies during the Neptune Voyager Encounter. It is also finding applications outside of the Space Agency.
Software engineering as an engineering discipline
NASA Technical Reports Server (NTRS)
Freedman, Glenn B.
1988-01-01
The purpose of this panel is to explore the emerging field of software engineering from a variety of perspectives: university programs; industry training and definition; government development; and technology transfer. In doing this, the panel will address the issues of distinctions among software engineering, computer science, and computer hardware engineering as they relate to the challenges of large, complex systems.
ERIC Educational Resources Information Center
Ge, Xun; Huang, Kun; Dong, Yifei
2010-01-01
A semester-long ethnography study was carried out to investigate project-based learning in a graduate software engineering course through the implementation of an Open-Source Software Development (OSSD) learning environment, which featured authentic projects, learning community, cognitive apprenticeship, and technology affordances. The study…
Microcomputers and the Improvement of Revision Skills.
ERIC Educational Resources Information Center
Balajthy, Ernest; And Others
1987-01-01
Discusses use of word processing software as an effective tool in writing and revision instruction, and describes the role of the teacher. Examples of exercises that encourage revision and of software designed to teach effective revision skills are reviewed. (MBR)
Intelligent Agents for Design and Synthesis Environments: My Summary
NASA Technical Reports Server (NTRS)
Norvig, Peter
1999-01-01
This presentation gives a summary of intelligent agents for design synthesis environments. We'll start with the conclusions, and work backwards to justify them. First, an important assumption is that agents (whatever they are) are good for software engineering. This is especially true for software that operates in an uncertain, changing environment. The "real world" of physical artifacts is like that: uncertain in what we can measure, changing in that things are always breaking down, and we must interact with non-software entities. The second point is that software engineering techniques can contribute to good design. There may have been a time when we wanted to build simple artifacts containing little or no software. But modern aircraft and spacecraft are complex, and rely on a great deal of software. So better software engineering leads to better designed artifacts, especially when we are designing a series of related artifacts and can amortize the costs of software development. The third point is that agents are especially useful for design tasks, above and beyond their general usefulness for software engineering, and the usefulness of software engineering to design.
Developing Elementary Math and Science Process Skills Through Engineering Design Instruction
NASA Astrophysics Data System (ADS)
Strong, Matthew G.
This paper examines how elementary students can develop math and science process skills through an engineering design approach to instruction. The performance and development of individual process skills overall and by gender were also examined. The study, preceded by a pilot, took place in a grade four extracurricular engineering design program in a public, suburban school district. Students worked in pairs and small groups to design and construct airplane models from styrofoam, paper clips, and toothpicks. The development and performance of process skills were assessed through a student survey of learning gains, an engineering design packet rubric (student work), observation field notes, and focus group notes. The results indicate that students can significantly develop process skills, that female students may develop process skills through engineering design better than male students, and that engineering design is most helpful for developing the measuring, suggesting improvements, and observing process skills. The study suggests that a more regular engineering design program or curriculum could be beneficial for students' math and science abilities both in this school and for the elementary field as a whole.
Comparison of Spatial Skills of Students Entering Different Engineering Majors
ERIC Educational Resources Information Center
Veurink, N.; Sorby, S. A.
2012-01-01
Spatial skills have been shown to be important to success in an engineering curriculum, and some question if poor spatial skills prevent students from entering STEM fields or if students with weak spatial skills avoid engineering disciplines believed to highly spatially-oriented. Veurink and Hamlin (2011) found that freshmen students entering…
Miñano, Rafael; Uruburu, Ángel; Moreno-Romero, Ana; Pérez-López, Diego
2017-02-01
This paper presents an experience in developing professional ethics by an approach that integrates knowledge, teaching methodologies and assessment coherently. It has been implemented for students in both the Software Engineering and Computer Engineering degree programs of the Technical University of Madrid, in which professional ethics is studied as a part of a required course. Our contribution of this paper is a model for formative assessment that clarifies the learning goals, enhances the results, simplifies the scoring and can be replicated in other contexts. A quasi-experimental study that involves many of the students of the required course has been developed. To test the effectiveness of the teaching process, the analysis of ethical dilemmas and the use of deontological codes have been integrated, and a scoring rubric has been designed. Currently, this model is also being used to develop skills related to social responsibility and sustainability for undergraduate and postgraduate students of diverse academic context.
SmartSIM - a virtual reality simulator for laparoscopy training using a generic physics engine.
Khan, Zohaib Amjad; Kamal, Nabeel; Hameed, Asad; Mahmood, Amama; Zainab, Rida; Sadia, Bushra; Mansoor, Shamyl Bin; Hasan, Osman
2017-09-01
Virtual reality (VR) training simulators have started playing a vital role in enhancing surgical skills, such as hand-eye coordination in laparoscopy, and practicing surgical scenarios that cannot be easily created using physical models. We describe a new VR simulator for basic training in laparoscopy, i.e. SmartSIM, which has been developed using a generic open-source physics engine called the simulation open framework architecture (SOFA). This paper describes the systems perspective of SmartSIM including design details of both hardware and software components, while highlighting the critical design decisions. Some of the distinguishing features of SmartSIM include: (i) an easy-to-fabricate custom-built hardware interface; (ii) use of a generic physics engine to facilitate wider accessibility of our work and flexibility in terms of using various graphical modelling algorithms and their implementations; and (iii) an intelligent and smart evaluation mechanism that facilitates unsupervised and independent learning. Copyright © 2016 John Wiley & Sons, Ltd.
The winding road to being a code monkey
NASA Astrophysics Data System (ADS)
Sarahan, Michael
2017-09-01
I am now a software engineer at a company that provides data analytics services, and helps support the open source data science community. I have been a computer nerd for a very long time, but it was my CEU experience at Texas A&M with Sherry Yennello (2003-2005) that helped me put my nerd skills to productive use. My project then was simulation of pulse shape discrimination electronics, and it was an excellent introduction to core computational concerns, such as digitization: when you see a line on the screen, that's not really how the computer sees it. I wandered in graduate school through a chemistry program into using electron microscopes. My programming interest got me into image and signal processing, which led naturally to jobs in analyzing data, and also in acquiring data. Throughout, it was always difficult just to make software work. I got pretty good at making it work. That's what I do for a living now - package software so that it is easy for other people to do great science with.
A software engineering approach to expert system design and verification
NASA Technical Reports Server (NTRS)
Bochsler, Daniel C.; Goodwin, Mary Ann
1988-01-01
Software engineering design and verification methods for developing expert systems are not yet well defined. Integration of expert system technology into software production environments will require effective software engineering methodologies to support the entire life cycle of expert systems. The software engineering methods used to design and verify an expert system, RENEX, is discussed. RENEX demonstrates autonomous rendezvous and proximity operations, including replanning trajectory events and subsystem fault detection, onboard a space vehicle during flight. The RENEX designers utilized a number of software engineering methodologies to deal with the complex problems inherent in this system. An overview is presented of the methods utilized. Details of the verification process receive special emphasis. The benefits and weaknesses of the methods for supporting the development life cycle of expert systems are evaluated, and recommendations are made based on the overall experiences with the methods.
Proceedings of the 19th Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1994-01-01
The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are: (1) to understand the software development process in the GSFC environment; (2) to measure the effects of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that include this document.
Automating Software Design Metrics.
1984-02-01
INTRODUCTION 1 ", ... 0..1 1.2 HISTORICAL PERSPECTIVE High quality software is of interest to both the software engineering com- munity and its users. As...contributions of many other software engineering efforts, most notably [MCC 77] and [Boe 83b], which have defined and refined a framework for quantifying...AUTOMATION OF DESIGN METRICS Software metrics can be useful within the context of an integrated soft- ware engineering environment. The purpose of this
ERIC Educational Resources Information Center
Duggan, Louise
2014-01-01
Generic skills are considered as key essential skills which are required by all individuals in the engineering profession and are considered vital for success. Integrating generic skills into engineering education is a key concern for universities and colleges involved in delivering such courses. The accreditation criteria for engineering…
The Effective Use of Professional Software in an Undergraduate Mining Engineering Curriculum
ERIC Educational Resources Information Center
Kecojevic, Vladislav; Bise, Christopher; Haight, Joel
2005-01-01
The use of professional software is an integral part of a student's education in the mining engineering curriculum at The Pennsylvania State University. Even though mining engineering represents a limited market across U.S. educational institutions, the goal still exists for using this type of software to enrich the learning environment with…
1989-07-11
LITERATURE CITED [Boeh73] Boehm, Barry W., "Software and its Impact: A Quantitative Assessment," Datamation, 19, 5, (May 1973), pp 48-59. [Boeh76...Boehm, Barry W., "Software Engineering," IEEE Transactions on Computers, C-25, 12, (December 1976), pp 1226-1241. [Boeh81a] Boehm, Barry W., Software...Engineering Economics, Prentice-Hall, Inc., Englewood Cliffs, NJ, (1981). [Boeh8lb] Boehm, Barry W., "An Experiment in Small Scale Application Software
ERIC Educational Resources Information Center
Zhu, Mengxiao; Zhang, Mo
2017-01-01
In this paper, we examine the student group discussion processes in a scenario-based assessment of engineering professional skills called Engineering Professional Skills Assessment (EPSA). In the assessment, the students were evaluated through a discussion on a scenario related to an engineering problem with no clear-cut solution. We applied…
Requirements Engineering in Building Climate Science Software
ERIC Educational Resources Information Center
Batcheller, Archer L.
2011-01-01
Software has an important role in supporting scientific work. This dissertation studies teams that build scientific software, focusing on the way that they determine what the software should do. These requirements engineering processes are investigated through three case studies of climate science software projects. The Earth System Modeling…
Software Certification - Coding, Code, and Coders
NASA Technical Reports Server (NTRS)
Havelund, Klaus; Holzmann, Gerard J.
2011-01-01
We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.
Software Engineering Education: Some Important Dimensions
ERIC Educational Resources Information Center
Mishra, Alok; Cagiltay, Nergiz Ercil; Kilic, Ozkan
2007-01-01
Software engineering education has been emerging as an independent and mature discipline. Accordingly, various studies are being done to provide guidelines for curriculum design. The main focus of these guidelines is around core and foundation courses. This paper summarizes the current problems of software engineering education programs. It also…
Questioning the Role of Requirements Engineering in the Causes of Safety-Critical Software Failures
NASA Technical Reports Server (NTRS)
Johnson, C. W.; Holloway, C. M.
2006-01-01
Many software failures stem from inadequate requirements engineering. This view has been supported both by detailed accident investigations and by a number of empirical studies; however, such investigations can be misleading. It is often difficult to distinguish between failures in requirements engineering and problems elsewhere in the software development lifecycle. Further pitfalls arise from the assumption that inadequate requirements engineering is a cause of all software related accidents for which the system fails to meet its requirements. This paper identifies some of the problems that have arisen from an undue focus on the role of requirements engineering in the causes of major accidents. The intention is to provoke further debate within the emerging field of forensic software engineering.
EngineSim: Turbojet Engine Simulator Adapted for High School Classroom Use
NASA Technical Reports Server (NTRS)
Petersen, Ruth A.
2001-01-01
EngineSim is an interactive educational computer program that allows users to explore the effect of engine operation on total aircraft performance. The software is supported by a basic propulsion web site called the Beginner's Guide to Propulsion, which includes educator-created, web-based activities for the classroom use of EngineSim. In addition, educators can schedule videoconferencing workshops in which EngineSim's creator demonstrates the software and discusses its use in the educational setting. This software is a product of NASA Glenn Research Center's Learning Technologies Project, an educational outreach initiative within the High Performance Computing and Communications Program.
An Engineering Context for Software Engineering
2008-09-01
medium in which I can plant the ideas from this dissertation. I have also written a book on requirements development that is used at NPS by myself and...Addison-Wesley, Anniversary ed., 1995. [Bry00] Bryant, A., “Metaphor, Myth, and Mimicry : The Bases of Software Engineering,” Annals of Software
A Reconfigurable Simulation-Based Test System for Automatically Assessing Software Operating Skills
ERIC Educational Resources Information Center
Su, Jun-Ming; Lin, Huan-Yu
2015-01-01
In recent years, software operating skills, the ability in computer literacy to solve problems using specific software, has become much more important. A great deal of research has also proven that students' software operating skills can be efficiently improved by practicing customized virtual and simulated examinations. However, constructing…
A Simulated Learning Environment for Teaching Medicine Dispensing Skills
Styles, Kim; Sewell, Keith; Trinder, Peta; Marriott, Jennifer; Maher, Sheryl; Naidu, Som
2016-01-01
Objective. To develop an authentic simulation of the professional practice dispensary context for students to develop their dispensing skills in a risk-free environment. Design. A development team used an Agile software development method to create MyDispense, a web-based simulation. Modeled on virtual learning environments elements, the software employed widely available standards-based technologies to create a virtual community pharmacy environment. Assessment. First-year pharmacy students who used the software in their tutorials, were, at the end of the second semester, surveyed on their prior dispensing experience and their perceptions of MyDispense as a tool to learn dispensing skills. Conclusion. The dispensary simulation is an effective tool for helping students develop dispensing competency and knowledge in a safe environment. PMID:26941437
Integrating Innovation Skills in an Introductory Engineering Design-Build Course
ERIC Educational Resources Information Center
Liebenberg, Leon; Mathews, Edward Henry
2012-01-01
Modern engineering curricula have started to emphasize design, mostly in the form of design-build experiences. Apart from instilling important problem-solving skills, such pedagogical frameworks address the critical social skill aspects of engineering education due to their team-based, project-based nature. However, it is required of the…
NASA Astrophysics Data System (ADS)
Bucks, Gregory Warren
Computers have become an integral part of how engineers complete their work, allowing them to collect and analyze data, model potential solutions and aiding in production through automation and robotics. In addition, computers are essential elements of the products themselves, from tennis shoes to construction materials. An understanding of how computers function, both at the hardware and software level, is essential for the next generation of engineers. Despite the need for engineers to develop a strong background in computing, little opportunity is given for engineering students to develop these skills. Learning to program is widely seen as a difficult task, requiring students to develop not only an understanding of specific concepts, but also a way of thinking. In addition, students are forced to learn a new tool, in the form of the programming environment employed, along with these concepts and thought processes. Because of this, many students will not develop a sufficient proficiency in programming, even after progressing through the traditional introductory programming sequence. This is a significant problem, especially in the engineering disciplines, where very few students receive more than one or two semesters' worth of instruction in an already crowded engineering curriculum. To address these issues, new pedagogical techniques must be investigated in an effort to enhance the ability of engineering students to develop strong computing skills. However, these efforts are hindered by the lack of published assessment instruments available for probing an individual's understanding of programming concepts across programming languages. Traditionally, programming knowledge has been assessed by producing written code in a specific language. This can be an effective method, but does not lend itself well to comparing the pedagogical impact of different programming environments, languages or paradigms. This dissertation presents a phenomenographic research study exploring the different ways of understanding held by individuals of two programming concepts: conditional structures and repetition structures. This work lays the foundation for the development of language independent assessment instruments, which can ultimately be used to assess the pedagogical implications of various programming environments.
The community FabLab platform: applications and implications in biomedical engineering.
Stephenson, Makeda K; Dow, Douglas E
2014-01-01
Skill development in science, technology, engineering and math (STEM) education present one of the most formidable challenges of modern society. The Community FabLab platform presents a viable solution. Each FabLab contains a suite of modern computer numerical control (CNC) equipment, electronics and computing hardware and design, programming, computer aided design (CAD) and computer aided machining (CAM) software. FabLabs are community and educational resources and open to the public. Development of STEM based workforce skills such as digital fabrication and advanced manufacturing can be enhanced using this platform. Particularly notable is the potential of the FabLab platform in STEM education. The active learning environment engages and supports a diversity of learners, while the iterative learning that is supported by the FabLab rapid prototyping platform facilitates depth of understanding, creativity, innovation and mastery. The product and project based learning that occurs in FabLabs develops in the student a personal sense of accomplishment, self-awareness, command of the material and technology. This helps build the interest and confidence necessary to excel in STEM and throughout life. Finally the introduction and use of relevant technologies at every stage of the education process ensures technical familiarity and a broad knowledge base needed for work in STEM based fields. Biomedical engineering education strives to cultivate broad technical adeptness, creativity, interdisciplinary thought, and an ability to form deep conceptual understanding of complex systems. The FabLab platform is well designed to enhance biomedical engineering education.
The Use of Computer Software to Teach High Technology Skills to Vocational Students.
ERIC Educational Resources Information Center
Farmer, Edgar I.
A study examined the type of computer software that is best suited to teach high technology skills to vocational students. During the study, 50 manufacturers of computer software and hardware were sent questionnaires designed to gather data concerning their recommendations in regard to: software to teach high technology skills to vocational…
ERIC Educational Resources Information Center
Cankaya, Serkan; Kuzu, Abdullah
2018-01-01
Mobile skill teaching software has been developed for the parents of the children with intellectual disability to be used in teaching daily life skills. The purpose of this research is to investigate the effectiveness of the mobile skill teaching software developed for the use of the parents of the children with intellectual disability. In…
Software Engineering Guidebook
NASA Technical Reports Server (NTRS)
Connell, John; Wenneson, Greg
1993-01-01
The Software Engineering Guidebook describes SEPG (Software Engineering Process Group) supported processes and techniques for engineering quality software in NASA environments. Three process models are supported: structured, object-oriented, and evolutionary rapid-prototyping. The guidebook covers software life-cycles, engineering, assurance, and configuration management. The guidebook is written for managers and engineers who manage, develop, enhance, and/or maintain software under the Computer Software Services Contract.
NASA Technical Reports Server (NTRS)
Trevino, Luis; Brown, Terry; Crumbley, R. T. (Technical Monitor)
2001-01-01
The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to improve overall vehicle system safety, reliability, and rocket engine performance by development of a qualitative and reliable engine control system (QRECS). Specifically, this will be addressed by enhancing rocket engine control using SCT, innovative data mining tools, and sound software engineering practices used in Marshall's Flight Software Group (FSG). The principle goals for addressing the issue of quality are to improve software management, software development time, software maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control methodologies, but to provide alternative design choices for control, implementation, performance, and sustaining engineering, all relative to addressing the issue of reliability. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion (system level), software engineering for embedded flight software systems, and soft computing technologies (i.e., neural networks, fuzzy logic, data mining, and Bayesian belief networks); some of which are briefed in this paper. For this effort, the targeted demonstration rocket engine testbed is the MC-1 engine (formerly FASTRAC) which is simulated with hardware and software in the Marshall Avionics & Software Testbed (MAST) laboratory that currently resides at NASA's Marshall Space Flight Center, building 4476, and is managed by the Avionics Department. A brief plan of action for design, development, implementation, and testing a Phase One effort for QRECS is given, along with expected results. Phase One will focus on development of a Smart Start Engine Module and a Mainstage Engine Module for proper engine start and mainstage engine operations. The overall intent is to demonstrate that by employing soft computing technologies, the quality and reliability of the overall scheme to engine controller development is further improved and vehicle safety is further insured. The final product that this paper proposes is an approach to development of an alternative low cost engine controller that would be capable of performing in unique vision spacecraft vehicles requiring low cost advanced avionics architectures for autonomous operations from engine pre-start to engine shutdown.
An Ontology for Software Engineering Education
ERIC Educational Resources Information Center
Ling, Thong Chee; Jusoh, Yusmadi Yah; Adbullah, Rusli; Alwi, Nor Hayati
2013-01-01
Software agents communicate using ontology. It is important to build an ontology for specific domain such as Software Engineering Education. Building an ontology from scratch is not only hard, but also incur much time and cost. This study aims to propose an ontology through adaptation of the existing ontology which is originally built based on a…
ERIC Educational Resources Information Center
Özyurt, Özcan
2015-01-01
Problem solving is an indispensable part of engineering. Improving critical thinking dispositions for solving engineering problems is one of the objectives of engineering education. In this sense, knowing critical thinking and problem solving skills of engineering students is of importance for engineering education. This study aims to determine…
ERIC Educational Resources Information Center
Bekki, Jennifer M.; Bernstein, Bianca; Fabert, Natalie; Gildar, Natalie; Way, Amy
2014-01-01
Interpersonal problem solving skills allow engineers to prevent interpersonal difficulties more effectively and to manage conflict, both of which are critical to successful participation on teams. This research provides evidence that the "Career"WISE online learning environment can improve those skills among women in engineering graduate…
ERIC Educational Resources Information Center
Llorens, Ariadna; Berbegal-Mirabent, Jasmina; Llinàs-Audet, Xavier
2017-01-01
Engineering education is facing new challenges to effectively provide the appropriate skills to future engineering professionals according to market demands. This study proposes a model based on active learning methods, which is expected to facilitate the acquisition of the professional skills most highly valued in the information and…
Open-source, community-driven microfluidics with Metafluidics.
Kong, David S; Thorsen, Todd A; Babb, Jonathan; Wick, Scott T; Gam, Jeremy J; Weiss, Ron; Carr, Peter A
2017-06-07
Microfluidic devices have the potential to automate and miniaturize biological experiments, but open-source sharing of device designs has lagged behind sharing of other resources such as software. Synthetic biologists have used microfluidics for DNA assembly, cell-free expression, and cell culture, but a combination of expense, device complexity, and reliance on custom set-ups hampers their widespread adoption. We present Metafluidics, an open-source, community-driven repository that hosts digital design files, assembly specifications, and open-source software to enable users to build, configure, and operate a microfluidic device. We use Metafluidics to share designs and fabrication instructions for both a microfluidic ring-mixer device and a 32-channel tabletop microfluidic controller. This device and controller are applied to build genetic circuits using standard DNA assembly methods including ligation, Gateway, Gibson, and Golden Gate. Metafluidics is intended to enable a broad community of engineers, DIY enthusiasts, and other nontraditional participants with limited fabrication skills to contribute to microfluidic research.
Engineering design skills coverage in K-12 engineering program curriculum materials in the USA
NASA Astrophysics Data System (ADS)
Chabalengula, Vivien M.; Mumba, Frackson
2017-11-01
The current K-12 Science Education framework and Next Generation Science Standards (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed curriculum materials that are being used in K-12 settings. However, little is known about the nature and extent to which engineering design skills outlined in NGSS are addressed in these K-12 engineering education programme curriculum materials. We analysed nine K-12 engineering education programmes for the nature and extent of engineering design skills coverage. Results show that developing possible solutions and actual designing of prototypes were the highly covered engineering design skills; specification of clear goals, criteria, and constraints received medium coverage; defining and identifying an engineering problem; optimising the design solution; and demonstrating how a prototype works, and making iterations to improve designs were lowly covered. These trends were similar across grade levels and across discipline-specific curriculum materials. These results have implications on engineering design-integrated science teaching and learning in K-12 settings.
NASA Technical Reports Server (NTRS)
Moseley, Warren
1989-01-01
The early stages of a research program designed to establish an experimental research platform for software engineering are described. Major emphasis is placed on Computer Assisted Software Engineering (CASE). The Poor Man's CASE Tool is based on the Apple Macintosh system, employing available software including Focal Point II, Hypercard, XRefText, and Macproject. These programs are functional in themselves, but through advanced linking are available for operation from within the tool being developed. The research platform is intended to merge software engineering technology with artificial intelligence (AI). In the first prototype of the PMCT, however, the sections of AI are not included. CASE tools assist the software engineer in planning goals, routes to those goals, and ways to measure progress. The method described allows software to be synthesized instead of being written or built.
NASA Technical Reports Server (NTRS)
Condon, Steven; Hendrick, Robert; Stark, Michael E.; Steger, Warren
1997-01-01
The Flight Dynamics Division (FDD) of NASA's Goddard Space Flight Center (GSFC) recently embarked on a far-reaching revision of its process for developing and maintaining satellite support software. The new process relies on an object-oriented software development method supported by a domain specific library of generalized components. This Generalized Support Software (GSS) Domain Engineering Process is currently in use at the NASA GSFC Software Engineering Laboratory (SEL). The key facets of the GSS process are (1) an architecture for rapid deployment of FDD applications, (2) a reuse asset library for FDD classes, and (3) a paradigm shift from developing software to configuring software for mission support. This paper describes the GSS architecture and process, results of fielding the first applications, lessons learned, and future directions
Myokit: A simple interface to cardiac cellular electrophysiology.
Clerx, Michael; Collins, Pieter; de Lange, Enno; Volders, Paul G A
2016-01-01
Myokit is a new powerful and versatile software tool for modeling and simulation of cardiac cellular electrophysiology. Myokit consists of an easy-to-read modeling language, a graphical user interface, single and multi-cell simulation engines and a library of advanced analysis tools accessible through a Python interface. Models can be loaded from Myokit's native file format or imported from CellML. Model export is provided to C, MATLAB, CellML, CUDA and OpenCL. Patch-clamp data can be imported and used to estimate model parameters. In this paper, we review existing tools to simulate the cardiac cellular action potential to find that current tools do not cater specifically to model development and that there is a gap between easy-to-use but limited software and powerful tools that require strong programming skills from their users. We then describe Myokit's capabilities, focusing on its model description language, simulation engines and import/export facilities in detail. Using three examples, we show how Myokit can be used for clinically relevant investigations, multi-model testing and parameter estimation in Markov models, all with minimal programming effort from the user. This way, Myokit bridges a gap between performance, versatility and user-friendliness. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Kamthan, Pankaj
2007-01-01
Open Source Software (OSS) has introduced a new dimension in software community. As the development and use of OSS becomes prominent, the question of its integration in education arises. In this paper, the following practices fundamental to projects and processes in software engineering are examined from an OSS perspective: project management;…
NASA Technical Reports Server (NTRS)
Fulton, R. E.
1980-01-01
To respond to national needs for improved productivity in engineering design and manufacturing, a NASA supported joint industry/government project is underway denoted Integrated Programs for Aerospace-Vehicle Design (IPAD). The objective is to improve engineering productivity through better use of computer technology. It focuses on development of technology and associated software for integrated company-wide management of engineering information. The project has been underway since 1976 under the guidance of an Industry Technical Advisory Board (ITAB) composed of representatives of major engineering and computer companies and in close collaboration with the Air Force Integrated Computer-Aided Manufacturing (ICAM) program. Results to date on the IPAD project include an in-depth documentation of a representative design process for a large engineering project, the definition and design of computer-aided design software needed to support that process, and the release of prototype software to integrate selected design functions. Ongoing work concentrates on development of prototype software to manage engineering information, and initial software is nearing release.
NASA Astrophysics Data System (ADS)
Brambilla, Marco; Ceri, Stefano; Valle, Emanuele Della; Facca, Federico M.; Tziviskou, Christina
Although Semantic Web Services are expected to produce a revolution in the development of Web-based systems, very few enterprise-wide design experiences are available; one of the main reasons is the lack of sound Software Engineering methods and tools for the deployment of Semantic Web applications. In this chapter, we present an approach to software development for the Semantic Web based on classical Software Engineering methods (i.e., formal business process development, computer-aided and component-based software design, and automatic code generation) and on semantic methods and tools (i.e., ontology engineering, semantic service annotation and discovery).
An Architecture, System Engineering, and Acquisition Approach for Space System Software Resiliency
NASA Astrophysics Data System (ADS)
Phillips, Dewanne Marie
Software intensive space systems can harbor defects and vulnerabilities that may enable external adversaries or malicious insiders to disrupt or disable system functions, risking mission compromise or loss. Mitigating this risk demands a sustained focus on the security and resiliency of the system architecture including software, hardware, and other components. Robust software engineering practices contribute to the foundation of a resilient system so that the system "can take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". Software resiliency must be a priority and addressed early in the life cycle development to contribute a secure and dependable space system. Those who develop, implement, and operate software intensive space systems must determine the factors and systems engineering practices to address when investing in software resiliency. This dissertation offers methodical approaches for improving space system resiliency through software architecture design, system engineering, increased software security, thereby reducing the risk of latent software defects and vulnerabilities. By providing greater attention to the early life cycle phases of development, we can alter the engineering process to help detect, eliminate, and avoid vulnerabilities before space systems are delivered. To achieve this objective, this dissertation will identify knowledge, techniques, and tools that engineers and managers can utilize to help them recognize how vulnerabilities are produced and discovered so that they can learn to circumvent them in future efforts. We conducted a systematic review of existing architectural practices, standards, security and coding practices, various threats, defects, and vulnerabilities that impact space systems from hundreds of relevant publications and interviews of subject matter experts. We expanded on the system-level body of knowledge for resiliency and identified a new software architecture framework and acquisition methodology to improve the resiliency of space systems from a software perspective with an emphasis on the early phases of the systems engineering life cycle. This methodology involves seven steps: 1) Define technical resiliency requirements, 1a) Identify standards/policy for software resiliency, 2) Develop a request for proposal (RFP)/statement of work (SOW) for resilient space systems software, 3) Define software resiliency goals for space systems, 4) Establish software resiliency quality attributes, 5) Perform architectural tradeoffs and identify risks, 6) Conduct architecture assessments as part of the procurement process, and 7) Ascertain space system software architecture resiliency metrics. Data illustrates that software vulnerabilities can lead to opportunities for malicious cyber activities, which could degrade the space mission capability for the user community. Reducing the number of vulnerabilities by improving architecture and software system engineering practices can contribute to making space systems more resilient. Since cyber-attacks are enabled by shortfalls in software, robust software engineering practices and an architectural design are foundational to resiliency, which is a quality that allows the system to "take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". To achieve software resiliency for space systems, acquirers and suppliers must identify relevant factors and systems engineering practices to apply across the lifecycle, in software requirements analysis, architecture development, design, implementation, verification and validation, and maintenance phases.
Surgeon Training in Telerobotic Surgery via a Hardware-in-the-Loop Simulator
Alemzadeh, Homa; Chen, Daniel; Kalbarczyk, Zbigniew; Iyer, Ravishankar K.; Kesavadas, Thenkurussi
2017-01-01
This work presents a software and hardware framework for a telerobotic surgery safety and motor skill training simulator. The aims are at providing trainees a comprehensive simulator for acquiring essential skills to perform telerobotic surgery. Existing commercial robotic surgery simulators lack features for safety training and optimal motion planning, which are critical factors in ensuring patient safety and efficiency in operation. In this work, we propose a hardware-in-the-loop simulator directly introducing these two features. The proposed simulator is built upon the Raven-II™ open source surgical robot, integrated with a physics engine and a safety hazard injection engine. Also, a Fast Marching Tree-based motion planning algorithm is used to help trainee learn the optimal instrument motion patterns. The main contributions of this work are (1) reproducing safety hazards events, related to da Vinci™ system, reported to the FDA MAUDE database, with a novel haptic feedback strategy to provide feedback to the operator when the underlying dynamics differ from the real robot's states so that the operator will be aware and can mitigate the negative impact of the safety-critical events, and (2) using motion planner to generate semioptimal path in an interactive robotic surgery training environment. PMID:29065635
Software Past, Present, and Future: Views from Government, Industry and Academia
NASA Technical Reports Server (NTRS)
Holcomb, Lee; Page, Jerry; Evangelist, Michael
2000-01-01
Views from the NASA CIO NASA Software Engineering Workshop on software development from the past, present, and future are presented. The topics include: 1) Software Past; 2) Software Present; 3) NASA's Largest Software Challenges; 4) 8330 Software Projects in Industry Standish Groups 1994 Report; 5) Software Future; 6) Capability Maturity Model (CMM): Software Engineering Institute (SEI) levels; 7) System Engineering Quality Also Part of the Problem; 8) University Environment Trends Will Increase the Problem in Software Engineering; and 9) NASA Software Engineering Goals.
1997-12-01
Watts Humphrey and is described in his book A Discipline for Software Engineering [ Humphrey 95]. Its intended use is to guide the planning and...Pat; Humphrey , Watts S .; Khajenoori, Soheil; Macke, Susan; & Matvya, Annette. "Introducing the Personal Software Process: Three Industry Case... Humphrey 95] Humphrey , Watts S . A Discipline for Software Engineering. Reading, Ma.: Addison-Wesley, 1995. [Mauchly 40] Mauchly, J.W. "Significance
Success Factors for Using Case Method in Teaching and Learning Software Engineering
ERIC Educational Resources Information Center
Razali, Rozilawati; Zainal, Dzulaiha Aryanee Putri
2013-01-01
The Case Method (CM) has long been used effectively in Social Science education. Its potential use in Applied Science such as Software Engineering (SE) however has yet to be further explored. SE is an engineering discipline that concerns the principles, methods and tools used throughout the software development lifecycle. In CM, subjects are…
2012-08-01
Software Engineering Institute, a federally funded research and development center. Any opinions, findings and conclusions or recommendations...CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF...required for any other external and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at permission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amai, W.; Espinoza, J. Jr.; Fletcher, D.R.
1997-06-01
This Software Requirements Specification (SRS) describes the features to be provided by the software for the GIS-T/ISTEA Pooled Fund Study Phase C Linear Referencing Engine project. This document conforms to the recommendations of IEEE Standard 830-1984, IEEE Guide to Software Requirements Specification (Institute of Electrical and Electronics Engineers, Inc., 1984). The software specified in this SRS is a proof-of-concept implementation of the Linear Referencing Engine as described in the GIS-T/ISTEA pooled Fund Study Phase B Summary, specifically Sheet 13 of the Phase B object model. The software allows an operator to convert between two linear referencing methods and a datummore » network.« less
NASA Astrophysics Data System (ADS)
Llorens, Ariadna; Berbegal-Mirabent, Jasmina; Llinàs-Audet, Xavier
2017-07-01
Engineering education is facing new challenges to effectively provide the appropriate skills to future engineering professionals according to market demands. This study proposes a model based on active learning methods, which is expected to facilitate the acquisition of the professional skills most highly valued in the information and communications technology (ICT) market. The theoretical foundations of the study are based on the specific literature on active learning methodologies. The Delphi method is used to establish the fit between learning methods and generic skills required by the ICT sector. An innovative proposition is therefore presented that groups the required skills in relation to the teaching method that best develops them. The qualitative research suggests that a combination of project-based learning and the learning contract is sufficient to ensure a satisfactory skills level for this profile of engineers.
Software Trends and Trendsetters: How They're Shaping an Industry.
ERIC Educational Resources Information Center
McGinty, Tony; And Others
1987-01-01
Discusses trends in educational software and the effects of new developments on publishers and on the computer industry. Marketing prospects for software are examined, and recent advances are highlighted, including integrated learning systems, skill-based software, software tied to textbooks, networking, and freeware. (LRW)
Prediction of Software Reliability using Bio Inspired Soft Computing Techniques.
Diwaker, Chander; Tomar, Pradeep; Poonia, Ramesh C; Singh, Vijander
2018-04-10
A lot of models have been made for predicting software reliability. The reliability models are restricted to using particular types of methodologies and restricted number of parameters. There are a number of techniques and methodologies that may be used for reliability prediction. There is need to focus on parameters consideration while estimating reliability. The reliability of a system may increase or decreases depending on the selection of different parameters used. Thus there is need to identify factors that heavily affecting the reliability of the system. In present days, reusability is mostly used in the various area of research. Reusability is the basis of Component-Based System (CBS). The cost, time and human skill can be saved using Component-Based Software Engineering (CBSE) concepts. CBSE metrics may be used to assess those techniques which are more suitable for estimating system reliability. Soft computing is used for small as well as large-scale problems where it is difficult to find accurate results due to uncertainty or randomness. Several possibilities are available to apply soft computing techniques in medicine related problems. Clinical science of medicine using fuzzy-logic, neural network methodology significantly while basic science of medicine using neural-networks-genetic algorithm most frequently and preferably. There is unavoidable interest shown by medical scientists to use the various soft computing methodologies in genetics, physiology, radiology, cardiology and neurology discipline. CBSE boost users to reuse the past and existing software for making new products to provide quality with a saving of time, memory space, and money. This paper focused on assessment of commonly used soft computing technique like Genetic Algorithm (GA), Neural-Network (NN), Fuzzy Logic, Support Vector Machine (SVM), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC). This paper presents working of soft computing techniques and assessment of soft computing techniques to predict reliability. The parameter considered while estimating and prediction of reliability are also discussed. This study can be used in estimation and prediction of the reliability of various instruments used in the medical system, software engineering, computer engineering and mechanical engineering also. These concepts can be applied to both software and hardware, to predict the reliability using CBSE.
Visualization Skills: A Prerequisite to Advanced Solid Modeling
ERIC Educational Resources Information Center
Gow, George
2007-01-01
Many educators believe that solid modeling software has made teaching two- and three-dimensional visualization skills obsolete. They claim that the visual tools built into the solid modeling software serve as a replacement for the CAD operator's personal visualization skills. They also claim that because solid modeling software can produce…
14 CFR 63.39 - Skill requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... simulator, or in an approved flight engineer training device, show that he can satisfactorily perform... CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.39 Skill requirements. (a) An applicant for a flight engineer certificate with a class rating must pass a practical test on the duties of...
14 CFR 63.39 - Skill requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... simulator, or in an approved flight engineer training device, show that he can satisfactorily perform... CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.39 Skill requirements. (a) An applicant for a flight engineer certificate with a class rating must pass a practical test on the duties of...
Increasing the reliability of ecological models using modern software engineering techniques
Robert M. Scheller; Brian R. Sturtevant; Eric J. Gustafson; Brendan C. Ward; David J. Mladenoff
2009-01-01
Modern software development techniques are largely unknown to ecologists. Typically, ecological models and other software tools are developed for limited research purposes, and additional capabilities are added later, usually in an ad hoc manner. Modern software engineering techniques can substantially increase scientific rigor and confidence in ecological models and...
ERIC Educational Resources Information Center
Chen, Chung-Yang; Hong, Ya-Chun; Chen, Pei-Chi
2014-01-01
Software development relies heavily on teamwork; determining how to streamline this collaborative development is an essential training subject in computer and software engineering education. A team process known as the meetings-flow (MF) approach has recently been introduced in software capstone projects in engineering programs at various…
A Knowledge-Based and Model-Driven Requirements Engineering Approach to Conceptual Satellite Design
NASA Astrophysics Data System (ADS)
Dos Santos, Walter A.; Leonor, Bruno B. F.; Stephany, Stephan
Satellite systems are becoming even more complex, making technical issues a significant cost driver. The increasing complexity of these systems makes requirements engineering activities both more important and difficult. Additionally, today's competitive pressures and other market forces drive manufacturing companies to improve the efficiency with which they design and manufacture space products and systems. This imposes a heavy burden on systems-of-systems engineering skills and particularly on requirements engineering which is an important phase in a system's life cycle. When this is poorly performed, various problems may occur, such as failures, cost overruns and delays. One solution is to underpin the preliminary conceptual satellite design with computer-based information reuse and integration to deal with the interdisciplinary nature of this problem domain. This can be attained by taking a model-driven engineering approach (MDE), in which models are the main artifacts during system development. MDE is an emergent approach that tries to address system complexity by the intense use of models. This work outlines the use of SysML (Systems Modeling Language) and a novel knowledge-based software tool, named SatBudgets, to deal with these and other challenges confronted during the conceptual phase of a university satellite system, called ITASAT, currently being developed by INPE and some Brazilian universities.
NASA Astrophysics Data System (ADS)
Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan
A relevant initiative from the software engineering community called Model Driven Engineering (MDE) is being developed in parallel with the Semantic Web (Mellor et al. 2003a). The MDE approach to software development suggests that one should first develop a model of the system under study, which is then transformed into the real thing (i.e., an executable software entity). The most important research initiative in this area is the Model Driven Architecture (MDA), which is Model Driven Architecture being developed under the umbrella of the Object Management Group (OMG). This chapter describes the basic concepts of this software engineering effort.
Object oriented development of engineering software using CLIPS
NASA Technical Reports Server (NTRS)
Yoon, C. John
1991-01-01
Engineering applications involve numeric complexity and manipulations of a large amount of data. Traditionally, numeric computation has been the concern in developing an engineering software. As engineering application software became larger and more complex, management of resources such as data, rather than the numeric complexity, has become the major software design problem. Object oriented design and implementation methodologies can improve the reliability, flexibility, and maintainability of the resulting software; however, some tasks are better solved with the traditional procedural paradigm. The C Language Integrated Production System (CLIPS), with deffunction and defgeneric constructs, supports the procedural paradigm. The natural blending of object oriented and procedural paradigms has been cited as the reason for the popularity of the C++ language. The CLIPS Object Oriented Language's (COOL) object oriented features are more versatile than C++'s. A software design methodology based on object oriented and procedural approaches appropriate for engineering software, and to be implemented in CLIPS was outlined. A method for sensor placement for Space Station Freedom is being implemented in COOL as a sample problem.
A self-referential HOWTO on release engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galassi, Mark C.
Release engineering is a fundamental part of the software development cycle: it is the point at which quality control is exercised and bug fixes are integrated. The way in which software is released also gives the end user her first experience of a software package, while in scientific computing release engineering can guarantee reproducibility. For these reasons and others, the release process is a good indicator of the maturity and organization of a development team. Software teams often do not put in place a release process at the beginning. This is unfortunate because the team does not have early andmore » continuous execution of test suites, and it does not exercise the software in the same conditions as the end users. I describe an approach to release engineering based on the software tools developed and used by the GNU project, together with several specific proposals related to packaging and distribution. I do this in a step-by-step manner, demonstrating how this very paper is written and built using proper release engineering methods. Because many aspects of release engineering are not exercised in the building of the paper, the accompanying software repository also contains examples of software libraries.« less
Development of a comprehensive software engineering environment
NASA Technical Reports Server (NTRS)
Hartrum, Thomas C.; Lamont, Gary B.
1987-01-01
The generation of a set of tools for software lifecycle is a recurring theme in the software engineering literature. The development of such tools and their integration into a software development environment is a difficult task because of the magnitude (number of variables) and the complexity (combinatorics) of the software lifecycle process. An initial development of a global approach was initiated in 1982 as the Software Development Workbench (SDW). Continuing efforts focus on tool development, tool integration, human interfacing, data dictionaries, and testing algorithms. Current efforts are emphasizing natural language interfaces, expert system software development associates and distributed environments with Ada as the target language. The current implementation of the SDW is on a VAX-11/780. Other software development tools are being networked through engineering workstations.
Technology transfer in software engineering
NASA Technical Reports Server (NTRS)
Bishop, Peter C.
1989-01-01
The University of Houston-Clear Lake is the prime contractor for the AdaNET Research Project under the direction of NASA Johnson Space Center. AdaNET was established to promote the principles of software engineering to the software development industry. AdaNET will contain not only environments and tools, but also concepts, principles, models, standards, guidelines and practices. Initially, AdaNET will serve clients from the U.S. government and private industry who are working in software development. It will seek new clients from those who have not yet adopted the principles and practices of software engineering. Some of the goals of AdaNET are to become known as an objective, authoritative source of new software engineering information and parts, to provide easy access to information and parts, and to keep abreast of innovations in the field.
Software engineering and Ada (Trademark) training: An implementation model for NASA
NASA Technical Reports Server (NTRS)
Legrand, Sue; Freedman, Glenn
1988-01-01
The choice of Ada for software engineering for projects such as the Space Station has resulted in government and industrial groups considering training programs that help workers become familiar with both a software culture and the intricacies of a new computer language. The questions of how much time it takes to learn software engineering with Ada, how much an organization should invest in such training, and how the training should be structured are considered. Software engineering is an emerging, dynamic discipline. It is defined by the author as the establishment and application of sound engineering environments, tools, methods, models, principles, and concepts combined with appropriate standards, guidelines, and practices to support computing which is correct, modifiable, reliable and safe, efficient, and understandable throughout the life cycle of the application. Neither the training programs needed, nor the content of such programs, have been well established. This study addresses the requirements for training for NASA personnel and recommends an implementation plan. A curriculum and a means of delivery are recommended. It is further suggested that a knowledgeable programmer may be able to learn Ada in 5 days, but that it takes 6 to 9 months to evolve into a software engineer who uses the language correctly and effectively. The curriculum and implementation plan can be adapted for each NASA Center according to the needs dictated by each project.
CPAs in Mississippi: Communication Skills and Software Needed by Entry-Level Accountants
ERIC Educational Resources Information Center
Bunn, Phyllis C.; Barfit, Laurie A.; Cooper, Jan
2005-01-01
The purpose of this paper was to determine what communication skills are considered most important by employers in the accounting profession as well as to determine the general office, income tax, and bookkeeping software packages used by CPA firms in Mississippi. The data was collected by means of an electronic five-point Likert-type survey…
Reliability Engineering for Service Oriented Architectures
2013-02-01
Common Object Request Broker Architecture Ecosystem In software , an ecosystem is a set of applications and/or services that grad- ually build up over time...Enterprise Service Bus Foreign In an SOA context: Any SOA, service or software which the owners of the calling software do not have control of, either...SOA Service Oriented Architecture SRE Software Reliability Engineering System Mode Many systems exhibit different modes of operation. E.g. the cockpit
Hoffmann, Michael; Borenstein, Jason
2014-03-01
As a committee of the National Academy of Engineering recognized, ethics education should foster the ability of students to analyze complex decision situations and ill-structured problems. Building on the NAE's insights, we report about an innovative teaching approach that has two main features: first, it places the emphasis on deliberation and on self-directed, problem-based learning in small groups of students; and second, it focuses on understanding ill-structured problems. The first innovation is motivated by an abundance of scholarly research that supports the value of deliberative learning practices. The second results from a critique of the traditional case-study approach in engineering ethics. A key problem with standard cases is that they are usually described in such a fashion that renders the ethical problem as being too obvious and simplistic. The practitioner, by contrast, may face problems that are ill-structured. In the collaborative learning environment described here, groups of students use interactive and web-based argument visualization software called "AGORA-net: Participate - Deliberate!". The function of the software is to structure communication and problem solving in small groups. Students are confronted with the task of identifying possible stakeholder positions and reconstructing their legitimacy by constructing justifications for these positions in the form of graphically represented argument maps. The argument maps are then presented in class so that these stakeholder positions and their respective justifications become visible and can be brought into a reasoned dialogue. Argument mapping provides an opportunity for students to collaborate in teams and to develop critical thinking and argumentation skills.
Proposing an Evidence-Based Strategy for Software Requirements Engineering.
Lindoerfer, Doris; Mansmann, Ulrich
2016-01-01
This paper discusses an evidence-based approach to software requirements engineering. The approach is called evidence-based, since it uses publications on the specific problem as a surrogate for stakeholder interests, to formulate risks and testing experiences. This complements the idea that agile software development models are more relevant, in which requirements and solutions evolve through collaboration between self-organizing cross-functional teams. The strategy is exemplified and applied to the development of a Software Requirements list used to develop software systems for patient registries.
ETICS: the international software engineering service for the grid
NASA Astrophysics Data System (ADS)
Meglio, A. D.; Bégin, M.-E.; Couvares, P.; Ronchieri, E.; Takacs, E.
2008-07-01
The ETICS system is a distributed software configuration, build and test system designed to fulfil the needs of improving the quality, reliability and interoperability of distributed software in general and grid software in particular. The ETICS project is a consortium of five partners (CERN, INFN, Engineering Ingegneria Informatica, 4D Soft and the University of Wisconsin-Madison). The ETICS service consists of a build and test job execution system based on the Metronome software and an integrated set of web services and software engineering tools to design, maintain and control build and test scenarios. The ETICS system allows taking into account complex dependencies among applications and middleware components and provides a rich environment to perform static and dynamic analysis of the software and execute deployment, system and interoperability tests. This paper gives an overview of the system architecture and functionality set and then describes how the EC-funded EGEE, DILIGENT and OMII-Europe projects are using the software engineering services to build, validate and distribute their software. Finally a number of significant use and test cases will be described to show how ETICS can be used in particular to perform interoperability tests of grid middleware using the grid itself.
1983-05-01
observed end-of-course scores for tasks .- trained to criterion. e MGA software was calibrated to provide retention estimates at two levels of...exceed the MGA estimates. Thirty-five out of forty, or 87.5,o0 of the tasks met this expectation. . * For these first trial data, MGA software predicts...Objective: The objective of this effort was to perform an operational test of the capability of MGA Skill Training and Retention (STAR©) software to
Avoiding Human Error in Mission Operations: Cassini Flight Experience
NASA Technical Reports Server (NTRS)
Burk, Thomas A.
2012-01-01
Operating spacecraft is a never-ending challenge and the risk of human error is ever- present. Many missions have been significantly affected by human error on the part of ground controllers. The Cassini mission at Saturn has not been immune to human error, but Cassini operations engineers use tools and follow processes that find and correct most human errors before they reach the spacecraft. What is needed are skilled engineers with good technical knowledge, good interpersonal communications, quality ground software, regular peer reviews, up-to-date procedures, as well as careful attention to detail and the discipline to test and verify all commands that will be sent to the spacecraft. Two areas of special concern are changes to flight software and response to in-flight anomalies. The Cassini team has a lot of practical experience in all these areas and they have found that well-trained engineers with good tools who follow clear procedures can catch most errors before they get into command sequences to be sent to the spacecraft. Finally, having a robust and fault-tolerant spacecraft that allows ground controllers excellent visibility of its condition is the most important way to ensure human error does not compromise the mission.
Automated Reuse of Scientific Subroutine Libraries through Deductive Synthesis
NASA Technical Reports Server (NTRS)
Lowry, Michael R.; Pressburger, Thomas; VanBaalen, Jeffrey; Roach, Steven
1997-01-01
Systematic software construction offers the potential of elevating software engineering from an art-form to an engineering discipline. The desired result is more predictable software development leading to better quality and more maintainable software. However, the overhead costs associated with the formalisms, mathematics, and methods of systematic software construction have largely precluded their adoption in real-world software development. In fact, many mainstream software development organizations, such as Microsoft, still maintain a predominantly oral culture for software development projects; which is far removed from a formalism-based culture for software development. An exception is the limited domain of safety-critical software, where the high-assuiance inherent in systematic software construction justifies the additional cost. We believe that systematic software construction will only be adopted by mainstream software development organization when the overhead costs have been greatly reduced. Two approaches to cost mitigation are reuse (amortizing costs over many applications) and automation. For the last four years, NASA Ames has funded the Amphion project, whose objective is to automate software reuse through techniques from systematic software construction. In particular, deductive program synthesis (i.e., program extraction from proofs) is used to derive a composition of software components (e.g., subroutines) that correctly implements a specification. The construction of reuse libraries of software components is the standard software engineering solution for improving software development productivity and quality.
A database for propagation models
NASA Technical Reports Server (NTRS)
Kantak, Anil V.; Suwitra, Krisjani; Le, Choung
1993-01-01
The NASA Propagation Program supports academic research that models various propagation phenomena in the space research frequency bands. NASA supports such research via school and institutions prominent in the field. The products of such efforts are particularly useful for researchers in the field of propagation phenomena and telecommunications systems engineers. The systems engineer usually needs a few propagation parameter values for a system design. Published literature on the subject, such as the Cunsultative Committee for International Radio (CCIR) publications, may help somewhat, but often times, the parameter values given in such publications use a particular set of conditions which may not quite include the requirements of the system design. The systems engineer must resort to programming the propagation phenomena model of interest and to obtain the parameter values to be used in the project. Furthermore, the researcher in the propagation field must then program the propagation models either to substantiate the model or to generate a new model. The researcher or the systems engineer must either be a skillful computer programmer or hire a programmer, which of course increases the cost of the effort. An increase in cost due to the inevitable programming effort may seem particularly inappropriate if the data generated by the experiment is to be used to substantiate the already well-established models, or a slight variation thereof. To help researchers and the systems engineers, it was recommended by the participants of NASA Propagation Experimenters (NAPEX) 15 held in London, Ontario, Canada on 28-29 June 1991, that propagation software should be constructed which will contain models and prediction methods of most propagation phenomenon. Moreover, the software should be flexible enough for the user to make slight changes to the models without expending a substantial effort in programming.
Lindoerfer, Doris; Mansmann, Ulrich
2017-07-01
Patient registries are instrumental for medical research. Often their structures are complex and their implementations use composite software systems to meet the wide spectrum of challenges. Commercial and open-source systems are available for registry implementation, but many research groups develop their own systems. Methodological approaches in the selection of software as well as the construction of proprietary systems are needed. We propose an evidence-based checklist, summarizing essential items for patient registry software systems (CIPROS), to accelerate the requirements engineering process. Requirements engineering activities for software systems follow traditional software requirements elicitation methods, general software requirements specification (SRS) templates, and standards. We performed a multistep procedure to develop a specific evidence-based CIPROS checklist: (1) A systematic literature review to build a comprehensive collection of technical concepts, (2) a qualitative content analysis to define a catalogue of relevant criteria, and (3) a checklist to construct a minimal appraisal standard. CIPROS is based on 64 publications and covers twelve sections with a total of 72 items. CIPROS also defines software requirements. Comparing CIPROS with traditional software requirements elicitation methods, SRS templates and standards show a broad consensus but differences in issues regarding registry-specific aspects. Using an evidence-based approach to requirements engineering for registry software adds aspects to the traditional methods and accelerates the software engineering process for registry software. The method we used to construct CIPROS serves as a potential template for creating evidence-based checklists in other fields. The CIPROS list supports developers in assessing requirements for existing systems and formulating requirements for their own systems, while strengthening the reporting of patient registry software system descriptions. It may be a first step to create standards for patient registry software system assessments. Copyright © 2017 Elsevier Inc. All rights reserved.
DOT National Transportation Integrated Search
2009-08-25
In cooperation with the California Department of Transportation, Montana State University's Western Transportation Institute has developed the WeatherShare Phase II system by applying Systems Engineering and Software Engineering processes. The system...
Naming in a Programming Support Environment.
1984-02-01
and Control, 1974. 10. T. E. Cheatham. An Overview of the Harvard Program Development System. I; Software Engineering Environments, H. Hunke, Ed.. North...Holland Publishing Compary, 1981, pp. 253-266. 11. T. E. Cheatham. Comparing Programming Support Environments. In Software Engineering Environments...Company. 1981. Third Edition 16. F. DeRemer and H Kron Programming -inthe Large Versus Programming -in-theSmall. IEEE Transactions on Software Engineering
Data and Analysis Center for Software: An IAC in Transition.
1983-06-01
reviewed and is approved for publication. * APPROVEDt Proj ect Engineer . JOHN J. MARCINIAK, Colonel, USAF Chief, Command and Control Division . FOR THE CO...SUPPLEMENTARY NOTES RADC Project Engineer : John Palaimo (COEE) It. KEY WORDS (Conilnuo n rever*e aide if necessary and identify by block numober...Software Engineering Software Technology Information Analysis Center Database Scientific and Technical Information 20. ABSTRACT (Continue on reverse side It
Interoperability in the e-Government Context
2012-01-01
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. Any opinions...Hanscom AFB, MA 01731-2125 NO WARRANTY THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS... Software Engineering Institute at permission@sei.cmu.edu. * These restrictions do not apply to U.S. government entities. CMU/SEI-2011-TN-014 | i Table
Proceedings of the Eighteenth Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1993-01-01
The workshop provided a forum for software practitioners from around the world to exchange information on the measurement, use, and evaluation of software methods, models, and tools. This year, approximately 450 people attended the workshop, which consisted of six sessions on the following topics: the Software Engineering Laboratory, measurement, technology assessment, advanced concepts, process, and software engineering issues in NASA. Three presentations were given in each of the topic areas. The content of those presentations and the research papers detailing the work reported are included in these proceedings. The workshop concluded with a tutorial session on how to start an Experience Factory.
1999-12-01
applications, it should be understood that the invention is not limited thereto. Those having - 9 - Navy Case No. 79694 ordinary skill in the art and access...processing. It should also be mentioned that Tecplot is a commercial plotting software package produced by Amtec Engineering, Inc. The following...conditions) 7. Ch (base on edge conditions) -43- 10 Navy Case No. 79694 8. Ch (base on reference conditions) 9 . Momentum thickness 10. Displacement
Evaluative Assessment for NASA/GSFC Equal Opportunity Programs Office Sponsored Programs
NASA Technical Reports Server (NTRS)
Jarrell, H. Judith
1995-01-01
The purpose of PREP (Pre-College Minority Engineering Program) is to upgrade skills of minority students who have shown an interest in pursuing academic degrees in electrical engineering. The goal is to upgrade skills needed for successful completion of the rigorous curriculum leading to a Bachelor of Science degree in engineering through a comprehensive upgrade of academic, study and interpersonal skills.
Zdravkovski, Zoran
2014-01-01
The development and availability of personal computers and software as well as printing techniques in the last twenty years have made a profound change in the publication of scientific journals. Additionally, the Internet in the last decade has revolutionized the publication process to the point of changing the basic paradigm of printed journals. The Macedonian Journal of Chemistry and Chemical Engineering in its 40-year history has adopted and adapted to all these transformations. In order to keep up with the inevitable changes, as editor-in-chief I felt my responsibility was to introduce an electronic editorial managing of the journal. The choice was between commercial and open source platforms, and because of the limited funding of the journal we chose the latter. We decided on Open Journal Systems, which provided online submission and management of all content, had flexible configuration--requirements, sections, review process, etc., had options for comprehensive indexing, offered various reading tools, had email notification and commenting ability for readers, had an option for thesis abstracts and was installed locally. However, since there is limited support it requires a moderate computer knowledge/skills and effort in order to set up. Overall, it is an excellent editorial platform and a convenient solution for journals with a low budget or journals that do not want to spend their resources on commercial platforms or simply support the idea of open source software.
An information model for use in software management estimation and prediction
NASA Technical Reports Server (NTRS)
Li, Ningda R.; Zelkowitz, Marvin V.
1993-01-01
This paper describes the use of cluster analysis for determining the information model within collected software engineering development data at the NASA/GSFC Software Engineering Laboratory. We describe the Software Management Environment tool that allows managers to predict development attributes during early phases of a software project and the modifications we propose to allow it to develop dynamic models for better predictions of these attributes.
CrossTalk: The Journal of Defense Software Engineering. Volume 18, Number 9
2005-09-01
2004. 12. Humphrey , Watts . Introduction to the Personal Software Process SM. Addison- Wesley 1997. 13. Humphrey , Watts . Introduction to the Team...Personal Software ProcessSM (PSPSM)is a software development process orig- inated by Watts Humphrey at the Software Engineering Institute (SEI) in the...meets its commitments and bring a sense of control and predictability into an apparently chaotic project.u References 1. Humphrey , Watts . Coaching
Incorporating Critical Thinking into an Engineering Undergraduate Learning Environment
ERIC Educational Resources Information Center
Adair, Desmond; Jaeger, Martin
2016-01-01
Critical thinking extends to all aspects of professional engineering, especially in technical development, and, since the introduction of the ABET 2000 criteria, there has been an increased emphasis in engineering education on the development of critical thinking skills. What is hoped for is that the students obtain critical thinking skills to…
Case Study: Meeting the Demand for Skilled Precision Engineers
ERIC Educational Resources Information Center
Sansom, Chris; Shore, Paul
2008-01-01
Purpose: This paper aims to demonstrate how science and engineering graduates can be recruited and trained to Masters level in precision engineering as an aid to reducing the skills shortage of mechanical engineers in UK industry. Design/methodology/approach: The paper describes a partnership between three UK academic institutions and industry,…
Soft Skills in Pedagogical Practices with Different Curriculum for Engineering Education
NASA Astrophysics Data System (ADS)
Mohamad, M. M.; Yee, M. H.; Tee, T. K.; Mukhtar, M. Ibrahim; Ahmad, A.
2017-08-01
The rapid growth of the economy in Malaysia is a benchmark for the country’s progress. The demand for skilled worker has started to increase from year to year resulted in the implementation of reforms and necessary skills will be applied to each of the graduates who will step into the nature of work. Therefore, a study was conducted to identify the level of soft skills among students in higher education institutions. The study was conducted at the Universiti Tun Hussein Onn Malaysia (UTHM) and involved 302 samples of final year students from Faculty of Civil Engineering, Faculty of Mechanical Engineering and the Faculty of Electrical Engineering. There are several types of soft skills have been viewed on the students such as creative thinking skills, teamwork skills, communication skills, decision-making skills, interpersonal skills and leadership skills. The analysis results show that all of the soft skills are on the high level. Furthermore, the results of ANOVA showed a significant difference in soft skills mastery among Civil Engineering students and Mechanical Engineering students. As a conclusion, the overall level of soft skills mastery among Faculty of Civil Engineering, Faculty of Mechanical Engineering and the Faculty of Electrical Engineering students is on the high level. The soft skills elements are very important in order to produce skills workers that suitable with the industry.
Requirements: Towards an understanding on why software projects fail
NASA Astrophysics Data System (ADS)
Hussain, Azham; Mkpojiogu, Emmanuel O. C.
2016-08-01
Requirement engineering is at the foundation of every successful software project. There are many reasons for software project failures; however, poorly engineered requirements process contributes immensely to the reason why software projects fail. Software project failure is usually costly and risky and could also be life threatening. Projects that undermine requirements engineering suffer or are likely to suffer from failures, challenges and other attending risks. The cost of project failures and overruns when estimated is very huge. Furthermore, software project failures or overruns pose a challenge in today's competitive market environment. It affects the company's image, goodwill, and revenue drive and decreases the perceived satisfaction of customers and clients. In this paper, requirements engineering was discussed. Its role in software projects success was elaborated. The place of software requirements process in relation to software project failure was explored and examined. Also, project success and failure factors were also discussed with emphasis placed on requirements factors as they play a major role in software projects' challenges, successes and failures. The paper relied on secondary data and empirical statistics to explore and examine factors responsible for the successes, challenges and failures of software projects in large, medium and small scaled software companies.
ERIC Educational Resources Information Center
Rush, S. Craig
2014-01-01
This article draws on the author's experience using qualitative video and audio analysis, most notably through use of the Transana qualitative video and audio analysis software program, as an alternative method for teaching IQ administration skills to students in a graduate psychology program. Qualitative video and audio analysis may be useful for…
NASA Technical Reports Server (NTRS)
Fridge, Ernest M., III; Hiott, Jim; Golej, Jim; Plumb, Allan
1993-01-01
Today's software systems generally use obsolete technology, are not integrated properly with other software systems, and are difficult and costly to maintain. The discipline of reverse engineering is becoming prominent as organizations try to move their systems up to more modern and maintainable technology in a cost effective manner. The Johnson Space Center (JSC) created a significant set of tools to develop and maintain FORTRAN and C code during development of the space shuttle. This tool set forms the basis for an integrated environment to reengineer existing code into modern software engineering structures which are then easier and less costly to maintain and which allow a fairly straightforward translation into other target languages. The environment will support these structures and practices even in areas where the language definition and compilers do not enforce good software engineering. The knowledge and data captured using the reverse engineering tools is passed to standard forward engineering tools to redesign or perform major upgrades to software systems in a much more cost effective manner than using older technologies. The latest release of the environment was in Feb. 1992.
NASA Astrophysics Data System (ADS)
Knobbs, C. G.; Grayson, D. J.
2012-06-01
There is mounting evidence to show that engineers need more than technical skills to succeed in industry. This paper describes a curriculum innovation in which so-called 'soft' skills, specifically inter-personal and intra-personal skills, were integrated into a final year mining engineering course. The instructional approach was designed to promote independent learning and to develop non-technical skills, essential for students on the threshold of becoming practising engineers. Three psychometric tests were administered at the beginning of the course to make students aware of their own and their classmates' characteristics. Substantial prescribed reading assignments preceded weekly group discussions. Several projects during the course required team work skills and application of content knowledge to real-world contexts. Results obtained from students' reflection papers, assignments related to 'soft' skills and end of course evaluations suggest that students' appreciation of the need for these skills, as well as their own perceived competence, increased during the course. Their ability to function as independent learners also increased.
NASA Technical Reports Server (NTRS)
Fridge, Ernest M., III
1991-01-01
Today's software systems generally use obsolete technology, are not integrated properly with other software systems, and are difficult and costly to maintain. The discipline of reverse engineering is becoming prominent as organizations try to move their systems up to more modern and maintainable technology in a cost effective manner. JSC created a significant set of tools to develop and maintain FORTRAN and C code during development of the Space Shuttle. This tool set forms the basis for an integrated environment to re-engineer existing code into modern software engineering structures which are then easier and less costly to maintain and which allow a fairly straightforward translation into other target languages. The environment will support these structures and practices even in areas where the language definition and compilers do not enforce good software engineering. The knowledge and data captured using the reverse engineering tools is passed to standard forward engineering tools to redesign or perform major upgrades to software systems in a much more cost effective manner than using older technologies. A beta vision of the environment was released in Mar. 1991. The commercial potential for such re-engineering tools is very great. CASE TRENDS magazine reported it to be the primary concern of over four hundred of the top MIS executives.
NASA Astrophysics Data System (ADS)
Yildirim, Tuba Pinar
A focus of engineering education is to prepare future engineers with problem solving, design and modeling skills. In engineering education, the former two skill areas have received copious attention making their way into the ABET criteria. Modeling, a representation containing the essential structure of an event in the real world, is a fundamental function of engineering, and an important academic skill that students develop during their undergraduate education. Yet the modeling process remains under-investigated, particularly in engineering, even though there is an increasing emphasis on modeling in engineering schools (Frey 2003). Research on modeling requires a deep understanding of multiple perspectives, that of cognition, affect, and knowledge expansion. In this dissertation, the relationship between engineering modeling skills and students' cognitive backgrounds including self-efficacy, epistemic beliefs and metacognition is investigated using model-eliciting activities (MEAs). Data were collected from sophomore students at two time periods, as well as senior engineering students. The impact of each cognitive construct on change in modeling skills was measured using a growth curve model at the sophomore level, and ordinary least squares regression at the senior level. Findings of this dissertation suggest that self-efficacy, through its direct and indirect (moderation or interaction term with time) impact, influences the growth of modeling abilities of an engineering student. When sophomore and senior modeling abilities are compared, the difference can be explained by varying self-efficacy levels. Epistemology influences modeling skill development such that the more sophisticated the student beliefs are, the higher the level of modeling ability students can attain, after controlling for the effects of conceptual learning, gender and GPA. This suggests that development of modeling ability may be constrained by the naivete of one's personal epistemology. Finally, metacognition, or 'thinking about thinking', has an impact on the development of modeling strategies of students, when the impacts of four metacognitive dimensions are considered: awareness, planning, cognitive strategy and self-checking. Students who are better at self-checking show higher growth in their modeling abilities over the course of a year, compared to students who are less proficient at self-checking. The growth in modeling abilities is also moderated by the cognitive strategy and planning skills of the student. After some experience with modeling is attained, students who have enhanced skills in these two metacognitive dimensions are observed to do better in modeling. Therefore, inherent metacognitive abilities of students can positively affect the growth of modeling ability.
A Multidimensional Software Engineering Course
ERIC Educational Resources Information Center
Barzilay, O.; Hazzan, O.; Yehudai, A.
2009-01-01
Software engineering (SE) is a multidimensional field that involves activities in various areas and disciplines, such as computer science, project management, and system engineering. Though modern SE curricula include designated courses that address these various subjects, an advanced summary course that synthesizes them is still missing. Such a…
Developing Avionics Hardware and Software for Rocket Engine Testing
NASA Technical Reports Server (NTRS)
Aberg, Bryce Robert
2014-01-01
My summer was spent working as an intern at Kennedy Space Center in the Propulsion Avionics Branch of the NASA Engineering Directorate Avionics Division. The work that I was involved with was part of Rocket University's Project Neo, a small scale liquid rocket engine test bed. I began by learning about the layout of Neo in order to more fully understand what was required of me. I then developed software in LabView to gather and scale data from two flowmeters and integrated that code into the main control software. Next, I developed more LabView code to control an igniter circuit and integrated that into the main software, as well. Throughout the internship, I performed work that mechanics and technicians would do in order to maintain and assemble the engine.
Predictive validity of five cognitive skills tests among women receiving engineering training
NASA Astrophysics Data System (ADS)
Wittig, Michele Andrisin; Hennix Sasse, Sharon; Giacomi, Jean
This article addresses two sets of theoretical and practical issues related to increasing the percentage of women engineers. First, the measurement of women's aptitude for and changes in skills during engineering training was assessed. Five cognitive skills tests were administered in a one-group pretest-posttest design to 24 baccalaureate women enrolled in an eleven-month engineering training course. Significant increases in skills were shown on three of the five assessments. Scores on a mathematics anxiety scale and a measure of conservation of horizontality are also reported. Second, the relationship of academic and demographic information and cognitive skills to degree of success in the program is reported. Pretraining spatial visualization scores predicted posttraining GPA group membership. The results are compared and contrasted with those of studies of male undergraduates. Implications are drawn concerning the ways in which evaluations of such programs can contribute to our understanding of the changes in skills that occur with training in engineering and of the factors that predict success in such programs.
Type Safe Extensible Programming
NASA Astrophysics Data System (ADS)
Chae, Wonseok
2009-10-01
Software products evolve over time. Sometimes they evolve by adding new features, and sometimes by either fixing bugs or replacing outdated implementations with new ones. When software engineers fail to anticipate such evolution during development, they will eventually be forced to re-architect or re-build from scratch. Therefore, it has been common practice to prepare for changes so that software products are extensible over their lifetimes. However, making software extensible is challenging because it is difficult to anticipate successive changes and to provide adequate abstraction mechanisms over potential changes. Such extensibility mechanisms, furthermore, should not compromise any existing functionality during extension. Software engineers would benefit from a tool that provides a way to add extensions in a reliable way. It is natural to expect programming languages to serve this role. Extensible programming is one effort to address these issues. In this thesis, we present type safe extensible programming using the MLPolyR language. MLPolyR is an ML-like functional language whose type system provides type-safe extensibility mechanisms at several levels. After presenting the language, we will show how these extensibility mechanisms can be put to good use in the context of product line engineering. Product line engineering is an emerging software engineering paradigm that aims to manage variations, which originate from successive changes in software.
NASA Astrophysics Data System (ADS)
Presti, Giovambattista; Messina, Concetta; Mongelli, Francesca; Sireci, Maria Josè; Collotta, Mario
2017-11-01
Relational Frame Theory is a post-skinnerian theory of language and cognition based on more than thirty years of basic and applied research. It defines language and cognitive skills as an operant repertoire of responses to arbitrarily related stimuli specific, as far as is now known, of the human species. RFT has been proved useful in addressing cognitive barriers to human action in psychotherapy and also improving children skills in reading, IQ testing, and in metaphoric and categorical repertoires. We present a frame of action where RFT can be used in programming software to help autistic children to develop cognitive skills within a developmental vision.
Software engineering methodologies and tools
NASA Technical Reports Server (NTRS)
Wilcox, Lawrence M.
1993-01-01
Over the years many engineering disciplines have developed, including chemical, electronic, etc. Common to all engineering disciplines is the use of rigor, models, metrics, and predefined methodologies. Recently, a new engineering discipline has appeared on the scene, called software engineering. For over thirty years computer software has been developed and the track record has not been good. Software development projects often miss schedules, are over budget, do not give the user what is wanted, and produce defects. One estimate is there are one to three defects per 1000 lines of deployed code. More and more systems are requiring larger and more complex software for support. As this requirement grows, the software development problems grow exponentially. It is believed that software quality can be improved by applying engineering principles. Another compelling reason to bring the engineering disciplines to software development is productivity. It has been estimated that productivity of producing software has only increased one to two percent a year in the last thirty years. Ironically, the computer and its software have contributed significantly to the industry-wide productivity, but computer professionals have done a poor job of using the computer to do their job. Engineering disciplines and methodologies are now emerging supported by software tools that address the problems of software development. This paper addresses some of the current software engineering methodologies as a backdrop for the general evaluation of computer assisted software engineering (CASE) tools from actual installation of and experimentation with some specific tools.
Education of Sustainability Engineers
NASA Astrophysics Data System (ADS)
Oleschko, K.; Perrier, E.; Tarquis, A. M.
2010-05-01
It's not the same to educate the sustainable engineers as to prepare the engineers of Sustainability. In the latter case all existing methods of inventive creativity (Altshuller, 1988) should be introduced in the teaching and research processes in order to create a culture of innovation at a group. The Theory of Inventing Problem Solving (TRIZ) is based on the pioneer works of Genrich Altshuller (1988) and his associated. Altshuller reviewed over 2 million patents beginning in 1946 (Orlov, 2006) and developed the Laws of Evolution of Technological Systems; An Algorithm for Inventive Problem Solving (ARIZ); forty typical Techniques for Overcoming System Conflicts (TOSC); a system of 76 Standard Approaches to Inventive Problems (Standards) etc. (Fey and Rivin, 1997). Nowadays, "a theory and constructive instrument package for the controlled synthesis of ideas and the focused transformation of the object to be improved" (Orlov, 2006) are used with high efficacy as the teaching and thinking inventive problem-solving methods in some high schools (Barak and Mesika, 2006; Sokoi et al., 2008) as well as a framework for research (Moehrle, 2005) in construction industry (Zhang et al., 2009); chemical engineering (Cortes Robles et al., 2008) etc. In 2005 US Congress passed the innovation act with the intent of increasing research investment (Gupta, 2007), while China had included inventive principles of TRIZ in strategy and decision making structure design (Kai Yang, 2010). The integrating of TRIZ into eco-innovation diminishes the common conflicts between technology and environment (Chang and Chen, 2004). In our presentation we show discuss some examples of future patents elaborated by the master degree students of Queretaro University, Faculty of Engineering, Mexico using TRIZ methods. References 1. Altshuller, G., 1988. Creativity as an Exact Science. Gordon and Breach, New York. 2. Chang, Hsiang-Tang and Chen, Jahau Lewis, 2004. The conflict-problem-solving CAD software integrating TRIZ into eco-innovation. Advances in Engineering Software, 35: 553-566. 3. Cortes Robles, G., Negny, S. and Le Lann, J.M., 2008. Case-based reasoning and TRIZ: A coupling for innovative conception in Chemical Engineering. Chemical Engineering and Processing: Process Intensification, 48 (1): 239-249. 4. Gupta, P., 2007. Real Innovation Commentary. http://www. RealInnovation.com. 5. Kai Yang, 2010. Inventive principles of TRIZ with Chinás 36 strategies. TRIZ J., 1-20. 6. Moehrle, M. G., 2005. What is TRIZ? From conceptual basics to a framework for research. Social Science research Network, http://papers.ssrn.com/sol13/papers.cfm?abstract_id=674062. 7. Orlov, M., 2006. Inventive Thinking through TRIZ. A practical Guide, Springer, Berlin, 351. 8. Zhang, X., Mao, X. and AbouRizk, S.M, 2009. Developing a knowledge management system for improved value engineering practices in the construction industry. Automation in Construction, 18 (6): 777-789. 9. Sokol, A., Oget, D., Sonntag, M. and Khomenko, N., 2008. The development of inventive thinking skills in the upper secondary language classroom. Thinking Skills and Creativity, 3 (1): 34-46.
Software IV and V Research Priorities and Applied Program Accomplishments Within NASA
NASA Technical Reports Server (NTRS)
Blazy, Louis J.
2000-01-01
The mission of this research is to be world-class creators and facilitators of innovative, intelligent, high performance, reliable information technologies that enable NASA missions to (1) increase software safety and quality through error avoidance, early detection and resolution of errors, by utilizing and applying empirically based software engineering best practices; (2) ensure customer software risks are identified and/or that requirements are met and/or exceeded; (3) research, develop, apply, verify, and publish software technologies for competitive advantage and the advancement of science; and (4) facilitate the transfer of science and engineering data, methods, and practices to NASA, educational institutions, state agencies, and commercial organizations. The goals are to become a national Center Of Excellence (COE) in software and system independent verification and validation, and to become an international leading force in the field of software engineering for improving the safety, quality, reliability, and cost performance of software systems. This project addresses the following problems: Ensure safety of NASA missions, ensure requirements are met, minimize programmatic and technological risks of software development and operations, improve software quality, reduce costs and time to delivery, and improve the science of software engineering
Implementing large projects in software engineering courses
NASA Astrophysics Data System (ADS)
Coppit, David
2006-03-01
In software engineering education, large projects are widely recognized as a useful way of exposing students to the real-world difficulties of team software development. But large projects are difficult to put into practice. First, educators rarely have additional time to manage software projects. Second, classrooms have inherent limitations that threaten the realism of large projects. Third, quantitative evaluation of individuals who work in groups is notoriously difficult. As a result, many software engineering courses compromise the project experience by reducing the team sizes, project scope, and risk. In this paper, we present an approach to teaching a one-semester software engineering course in which 20 to 30 students work together to construct a moderately sized (15KLOC) software system. The approach combines carefully coordinated lectures and homeworks, a hierarchical project management structure, modern communication technologies, and a web-based project tracking and individual assessment system. Our approach provides a more realistic project experience for the students, without incurring significant additional overhead for the instructor. We present our experiences using the approach the last 2 years for the software engineering course at The College of William and Mary. Although the approach has some weaknesses, we believe that they are strongly outweighed by the pedagogical benefits.
Burckley, Elizabeth; Tincani, Matt; Guld Fisher, Amanda
2015-04-01
To evaluate the iPad 2™ with Book Creator™ software to provide visual cues and video prompting to teach shopping skills in the community to a young adult with an autism spectrum disorder and intellectual disability. A multiple probe across settings design was used to assess effects of the intervention on the participant's independence with following a shopping list in a grocery store across three community locations. Visual cues and video prompting substantially increased the participant's shopping skills within two of the three community locations, skill increases maintained after the intervention was withdrawn, and shopping skills generalized to two untaught shopping items. Social validity surveys suggested that the participant's parent and staff favorably viewed the goals, procedures, and outcomes of intervention. The iPad 2™ with Book Creator™ software may be an effective way to teach independent shopping skills in the community; additional replications are needed.
NASA Technical Reports Server (NTRS)
Waligora, Sharon; Bailey, John; Stark, Mike
1995-01-01
The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are (1) to understand the software development process in the GSFC environment; (2) to measure the effects of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.
Software Engineering Research/Developer Collaborations in 2005
NASA Technical Reports Server (NTRS)
Pressburger, Tom
2006-01-01
In CY 2005, three collaborations between software engineering technology providers and NASA software development personnel deployed three software engineering technologies on NASA development projects (a different technology on each project). The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report. Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Also included is an acronym list.
Proceedings of the Twenty-Fourth Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
2000-01-01
On December 1 and 2, the Software Engineering Laboratory (SEL), a consortium composed of NASA/Goddard, the University of Maryland, and CSC, held the 24th Software Engineering Workshop (SEW), the last of the millennium. Approximately 240 people attended the 2-day workshop. Day 1 was composed of four sessions: International Influence of the Software Engineering Laboratory; Object Oriented Testing and Reading; Software Process Improvement; and Space Software. For the first session, three internationally known software process experts discussed the influence of the SEL with respect to software engineering research. In the Space Software session, prominent representatives from three different NASA sites- GSFC's Marti Szczur, the Jet Propulsion Laboratory's Rick Doyle, and the Ames Research Center IV&V Facility's Lou Blazy- discussed the future of space software in their respective centers. At the end of the first day, the SEW sponsored a reception at the GSFC Visitors' Center. Day 2 also provided four sessions: Using the Experience Factory; A panel discussion entitled "Software Past, Present, and Future: Views from Government, Industry, and Academia"; Inspections; and COTS. The day started with an excellent talk by CSC's Frank McGarry on "Attaining Level 5 in CMM Process Maturity." Session 2, the panel discussion on software, featured NASA Chief Information Officer Lee Holcomb (Government), our own Jerry Page (Industry), and Mike Evangelist of the National Science Foundation (Academia). Each presented his perspective on the most important developments in software in the past 10 years, in the present, and in the future.
Software Engineering Improvement Activities/Plan
NASA Technical Reports Server (NTRS)
2003-01-01
bd Systems personnel accomplished the technical responsibilities for this reporting period, as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14). Work accomplishments included development, evaluation, and enhancement of a software cost model, performing literature search and evaluation of software tools available for code analysis and requirements analysis, and participating in other relevant software engineering activities. Monthly reports were submitted. This support was provided to the Flight Software Group/ED 1 4 in accomplishing the software engineering improvement engineering activities of the Marshall Space Flight Center (MSFC) Software Engineering Improvement Plan.
Addressing South Africa's Engineering Skills Gaps
ERIC Educational Resources Information Center
Hall, Jonathan; Sandelands, Eric
2009-01-01
Purpose: This paper aims to provide a case study of how engineering skills gaps are being addressed by Murray & Roberts in South Africa. Design/methodology/approach: The paper focuses on skills challenges in South Africa from a reflective practitioner perspective, exploring a case example from an industry leader. Findings: The paper explores…
ERIC Educational Resources Information Center
Wood, Eileen; Gottardo, Alexandra; Grant, Amy; Evans, Mary Ann; Phillips, Linda; Savage, Robert
2012-01-01
As computers become an increasingly ubiquitous part of young children's lives there is a need to examine how best to harness digital technologies to promote learning in early childhood education contexts. The development of emergent literacy skills is 1 domain for which numerous software programs are available for young learners. In this study, we…
NASA Technical Reports Server (NTRS)
Bekele, Gete
2002-01-01
This document explores the use of advanced computer technologies with an emphasis on object-oriented design to be applied in the development of software for a rocket engine to improve vehicle safety and reliability. The primary focus is on phase one of this project, the smart start sequence module. The objectives are: 1) To use current sound software engineering practices, object-orientation; 2) To improve on software development time, maintenance, execution and management; 3) To provide an alternate design choice for control, implementation, and performance.
NASA Astrophysics Data System (ADS)
Ramadi, Eric; Ramadi, Serge; Nasr, Karim
2016-01-01
This study explored gaps between industry expectations and perceptions of engineering graduates' skill sets in the Middle East and North Africa (MENA) region. This study measured the importance that managers of engineers placed on 36 skills relevant to engineers. Also measured was managers' satisfaction with engineering graduates' skill sets. Importance and satisfaction were used to calculate skill gaps for each skill. A principal components analysis was then performed, consolidating the 36 skills into 8 categories. The means of importance, satisfaction, and skill gaps were ranked to determine the areas in which graduates needed improvement. Results showed significant gaps between managers' expectations of and satisfaction with all 36 skills. The areas in which managers felt that graduates needed most improvement were communication, time management, and continuous learning. Managers reported that recent engineering graduates exhibited low overall preparedness for employment. These findings may help to inform curricular reform in engineering education.
Framework Support For Knowledge-Based Software Development
NASA Astrophysics Data System (ADS)
Huseth, Steve
1988-03-01
The advent of personal engineering workstations has brought substantial information processing power to the individual programmer. Advanced tools and environment capabilities supporting the software lifecycle are just beginning to become generally available. However, many of these tools are addressing only part of the software development problem by focusing on rapid construction of self-contained programs by a small group of talented engineers. Additional capabilities are required to support the development of large programming systems where a high degree of coordination and communication is required among large numbers of software engineers, hardware engineers, and managers. A major player in realizing these capabilities is the framework supporting the software development environment. In this paper we discuss our research toward a Knowledge-Based Software Assistant (KBSA) framework. We propose the development of an advanced framework containing a distributed knowledge base that can support the data representation needs of tools, provide environmental support for the formalization and control of the software development process, and offer a highly interactive and consistent user interface.
Enabling performance skills: Assessment in engineering education
NASA Astrophysics Data System (ADS)
Ferrone, Jenny Kristina
Current reform in engineering education is part of a national trend emphasizing student learning as well as accountability in instruction. Assessing student performance to demonstrate accountability has become a necessity in academia. In newly adopted criterion proposed by the Accreditation Board for Engineering and Technology (ABET), undergraduates are expected to demonstrate proficiency in outcomes considered essential for graduating engineers. The case study was designed as a formative evaluation of freshman engineering students to assess the perceived effectiveness of performance skills in a design laboratory environment. The mixed methodology used both quantitative and qualitative approaches to assess students' performance skills and congruency among the respondents, based on individual, team, and faculty perceptions of team effectiveness in three ABET areas: Communications Skills. Design Skills, and Teamwork. The findings of the research were used to address future use of the assessment tool and process. The results of the study found statistically significant differences in perceptions of Teamwork Skills (p < .05). When groups composed of students and professors were compared, professors were less likely to perceive student's teaming skills as effective. The study indicated the need to: (1) improve non-technical performance skills, such as teamwork, among freshman engineering students; (2) incorporate feedback into the learning process; (3) strengthen the assessment process with a follow-up plan that specifically targets performance skill deficiencies, and (4) integrate the assessment instrument and practice with ongoing curriculum development. The findings generated by this study provides engineering departments engaged in assessment activity, opportunity to reflect, refine, and develop their programs as it continues. It also extends research on ABET competencies of engineering students in an under-investigated topic of factors correlated with team processes, behavior, and student learning.
2010-02-01
through software -as-a- service ( SaaS ) (Nitu 2009, Sedayao 2008). In practice, an organization’s initial SOA implementation almost never attempts to cover...004 Nitu. "Configurability in SaaS ( Software as a Service ) Applications." Proceedings of the 2nd An- nual Conference on India Software Engineering...and evolution of service -oriented systems. In 2007, the Software Engineering Institute started assembling a SOA Research Agenda based on a
An empirical study of software design practices
NASA Technical Reports Server (NTRS)
Card, David N.; Church, Victor E.; Agresti, William W.
1986-01-01
Software engineers have developed a large body of software design theory and folklore, much of which was never validated. The results of an empirical study of software design practices in one specific environment are presented. The practices examined affect module size, module strength, data coupling, descendant span, unreferenced variables, and software reuse. Measures characteristic of these practices were extracted from 887 FORTRAN modules developed for five flight dynamics software projects monitored by the Software Engineering Laboratory (SEL). The relationship of these measures to cost and fault rate was analyzed using a contingency table procedure. The results show that some recommended design practices, despite their intuitive appeal, are ineffective in this environment, whereas others are very effective.
Virtual reality as a new trend in mechanical and electrical engineering education
NASA Astrophysics Data System (ADS)
Kamińska, Dorota; Sapiński, Tomasz; Aitken, Nicola; Rocca, Andreas Della; Barańska, Maja; Wietsma, Remco
2017-12-01
In their daily practice, academics frequently face lack of access to modern equipment and devices, which are currently in use on the market. Moreover, many students have problems with understanding issues connected to mechanical and electrical engineering due to the complexity, necessity of abstract thinking and the fact that those concepts are not fully tangible. Many studies indicate that virtual reality can be successfully used as a training tool in various domains, such as development, health-care, the military or school education. In this paper, an interactive training strategy for mechanical and electrical engineering education shall be proposed. The prototype of the software consists of a simple interface, meaning it is easy for comprehension and use. Additionally, the main part of the prototype allows the user to virtually manipulate a 3D object that should be analyzed and studied. Initial studies indicate that the use of virtual reality can contribute to improving the quality and efficiency of higher education, as well as qualifications, competencies and the skills of graduates, and increase their competitiveness in the labour market.
Teaching Problem-Solving Skills to Nuclear Engineering Students
ERIC Educational Resources Information Center
Waller, E.; Kaye, M. H.
2012-01-01
Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and…
SAGA: A project to automate the management of software production systems
NASA Technical Reports Server (NTRS)
Campbell, Roy H.; Beckman-Davies, C. S.; Benzinger, L.; Beshers, G.; Laliberte, D.; Render, H.; Sum, R.; Smith, W.; Terwilliger, R.
1986-01-01
Research into software development is required to reduce its production cost and to improve its quality. Modern software systems, such as the embedded software required for NASA's space station initiative, stretch current software engineering techniques. The requirements to build large, reliable, and maintainable software systems increases with time. Much theoretical and practical research is in progress to improve software engineering techniques. One such technique is to build a software system or environment which directly supports the software engineering process, i.e., the SAGA project, comprising the research necessary to design and build a software development which automates the software engineering process. Progress under SAGA is described.
Enhancing Non-Technical Skills by a Multidisciplinary Engineering Summer School
ERIC Educational Resources Information Center
Larsen, Peter Gorm; Kristiansen, Erik Lasse; Bennedsen, Jens; Bjerge, Kim
2017-01-01
In general engineering studies focus on the technical skills in their own discipline. However, in their subsequent industrial careers, a significant portion of their time needs to be devoted to non-technical skills. In addition, in an increasingly globalised world collaboration in teams across cultures and disciplines is paramount to the creation…
Software Engineering Technology Infusion Within NASA
NASA Technical Reports Server (NTRS)
Zelkowitz, Marvin V.
1996-01-01
Abstract technology transfer is of crucial concern to both government and industry today. In this paper, several software engineering technologies used within NASA are studied, and the mechanisms, schedules, and efforts at transferring these technologies are investigated. The goals of this study are: 1) to understand the difference between technology transfer (the adoption of a new method by large segments of an industry) as an industry-wide phenomenon and the adoption of a new technology by an individual organization (called technology infusion); and 2) to see if software engineering technology transfer differs from other engineering disciplines. While there is great interest today in developing technology transfer models for industry, it is the technology infusion process that actually causes changes in the current state of the practice.
2017-10-01
ENGINEERING CENTER GRAIN EVALUATION SOFTWARE TO NUMERICALLY PREDICT LINEAR BURN REGRESSION FOR SOLID PROPELLANT GRAIN GEOMETRIES Brian...author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation...U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER GRAIN EVALUATION SOFTWARE TO NUMERICALLY PREDICT LINEAR BURN REGRESSION FOR SOLID
Infusing Software Engineering Technology into Practice at NASA
NASA Technical Reports Server (NTRS)
Pressburger, Thomas; Feather, Martin S.; Hinchey, Michael; Markosia, Lawrence
2006-01-01
We present an ongoing effort of the NASA Software Engineering Initiative to encourage the use of advanced software engineering technology on NASA projects. Technology infusion is in general a difficult process yet this effort seems to have found a modest approach that is successful for some types of technologies. We outline the process and describe the experience of the technology infusions that occurred over a two year period. We also present some lessons from the experiences.
A Model-Driven Co-Design Framework for Fusing Control and Scheduling Viewpoints.
Sundharam, Sakthivel Manikandan; Navet, Nicolas; Altmeyer, Sebastian; Havet, Lionel
2018-02-20
Model-Driven Engineering (MDE) is widely applied in the industry to develop new software functions and integrate them into the existing run-time environment of a Cyber-Physical System (CPS). The design of a software component involves designers from various viewpoints such as control theory, software engineering, safety, etc. In practice, while a designer from one discipline focuses on the core aspects of his field (for instance, a control engineer concentrates on designing a stable controller), he neglects or considers less importantly the other engineering aspects (for instance, real-time software engineering or energy efficiency). This may cause some of the functional and non-functional requirements not to be met satisfactorily. In this work, we present a co-design framework based on timing tolerance contract to address such design gaps between control and real-time software engineering. The framework consists of three steps: controller design, verified by jitter margin analysis along with co-simulation, software design verified by a novel schedulability analysis, and the run-time verification by monitoring the execution of the models on target. This framework builds on CPAL (Cyber-Physical Action Language), an MDE design environment based on model-interpretation, which enforces a timing-realistic behavior in simulation through timing and scheduling annotations. The application of our framework is exemplified in the design of an automotive cruise control system.
A Model-Driven Co-Design Framework for Fusing Control and Scheduling Viewpoints
Navet, Nicolas; Havet, Lionel
2018-01-01
Model-Driven Engineering (MDE) is widely applied in the industry to develop new software functions and integrate them into the existing run-time environment of a Cyber-Physical System (CPS). The design of a software component involves designers from various viewpoints such as control theory, software engineering, safety, etc. In practice, while a designer from one discipline focuses on the core aspects of his field (for instance, a control engineer concentrates on designing a stable controller), he neglects or considers less importantly the other engineering aspects (for instance, real-time software engineering or energy efficiency). This may cause some of the functional and non-functional requirements not to be met satisfactorily. In this work, we present a co-design framework based on timing tolerance contract to address such design gaps between control and real-time software engineering. The framework consists of three steps: controller design, verified by jitter margin analysis along with co-simulation, software design verified by a novel schedulability analysis, and the run-time verification by monitoring the execution of the models on target. This framework builds on CPAL (Cyber-Physical Action Language), an MDE design environment based on model-interpretation, which enforces a timing-realistic behavior in simulation through timing and scheduling annotations. The application of our framework is exemplified in the design of an automotive cruise control system. PMID:29461489
Testing Scientific Software: A Systematic Literature Review.
Kanewala, Upulee; Bieman, James M
2014-10-01
Scientific software plays an important role in critical decision making, for example making weather predictions based on climate models, and computation of evidence for research publications. Recently, scientists have had to retract publications due to errors caused by software faults. Systematic testing can identify such faults in code. This study aims to identify specific challenges, proposed solutions, and unsolved problems faced when testing scientific software. We conducted a systematic literature survey to identify and analyze relevant literature. We identified 62 studies that provided relevant information about testing scientific software. We found that challenges faced when testing scientific software fall into two main categories: (1) testing challenges that occur due to characteristics of scientific software such as oracle problems and (2) testing challenges that occur due to cultural differences between scientists and the software engineering community such as viewing the code and the model that it implements as inseparable entities. In addition, we identified methods to potentially overcome these challenges and their limitations. Finally we describe unsolved challenges and how software engineering researchers and practitioners can help to overcome them. Scientific software presents special challenges for testing. Specifically, cultural differences between scientist developers and software engineers, along with the characteristics of the scientific software make testing more difficult. Existing techniques such as code clone detection can help to improve the testing process. Software engineers should consider special challenges posed by scientific software such as oracle problems when developing testing techniques.
Mental Models of Software Forecasting
NASA Technical Reports Server (NTRS)
Hihn, J.; Griesel, A.; Bruno, K.; Fouser, T.; Tausworthe, R.
1993-01-01
The majority of software engineers resist the use of the currently available cost models. One problem is that the mathematical and statistical models that are currently available do not correspond with the mental models of the software engineers. In an earlier JPL funded study (Hihn and Habib-agahi, 1991) it was found that software engineers prefer to use analogical or analogy-like techniques to derive size and cost estimates, whereas curren CER's hide any analogy in the regression equations. In addition, the currently available models depend upon information which is not available during early planning when the most important forecasts must be made.
NASA Technical Reports Server (NTRS)
Rowell, Lawrence F.; Davis, John S.
1989-01-01
The Environment for Application Software Integration and Execution (EASIE) provides a methodology and a set of software utility programs to ease the task of coordinating engineering design and analysis codes. EASIE was designed to meet the needs of conceptual design engineers that face the task of integrating many stand-alone engineering analysis programs. Using EASIE, programs are integrated through a relational database management system. Volume 1, Executive Overview, gives an overview of the functions provided by EASIE and describes their use. Three operational design systems based upon the EASIE software are briefly described.
Lange, Alissa A; Mulhern, Gerry; Wylie, Judith
2009-01-01
The present study investigated the effects of using an assistive software homophone tool on the assisted proofreading performance and unassisted basic skills of secondary-level students with reading difficulties. Students aged 13 to 15 years proofread passages for homophonic errors under three conditions: with the homophone tool, with homophones highlighted only, or with no help. The group using the homophone tool significantly outperformed the other two groups on assisted proofreading and outperformed the others on unassisted spelling, although not significantly. Remedial (unassisted) improvements in automaticity of word recognition, homophone proofreading, and basic reading were found over all groups. Results elucidate the differential contributions of each function of the homophone tool and suggest that with the proper training, assistive software can help not only students with diagnosed disabilities but also those with generally weak reading skills.
Bringing the Unidata IDV to the Cloud
NASA Astrophysics Data System (ADS)
Fisher, W. I.; Oxelson Ganter, J.
2015-12-01
Maintaining software compatibility across new computing environments and the associated underlying hardware is a common problem for software engineers and scientific programmers. While traditional software engineering provides a suite of tools and methodologies which may mitigate this issue, they are typically ignored by developers lacking a background in software engineering. Causing further problems, these methodologies are best applied at the start of project; trying to apply them to an existing, mature project can require an immense effort. Visualization software is particularly vulnerable to this problem, given the inherent dependency on particular graphics hardware and software API's. As a result of these issues, there exists a large body of software which is simultaneously critical to the scientists who are dependent upon it, and yet increasingly difficult to maintain.The solution to this problem was partially provided with the advent of Cloud Computing; Application Streaming. This technology allows a program to run entirely on a remote virtual machine while still allowing for interactivity and dynamic visualizations, with little-to-no re-engineering required. When coupled with containerization technology such as Docker, we are able to easily bring the same visualization software to a desktop, a netbook, a smartphone, and the next generation of hardware, whatever it may be.Unidata has been able to harness Application Streaming to provide a tablet-compatible version of our visualization software, the Integrated Data Viewer (IDV). This work will examine the challenges associated with adapting the IDV to an application streaming platform, and include a brief discussion of the underlying technologies involved.
Proceedings of Tenth Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1985-01-01
Papers are presented on the following topics: measurement of software technology, recent studies of the Software Engineering Lab, software management tools, expert systems, error seeding as a program validation technique, software quality assurance, software engineering environments (including knowledge-based environments), the Distributed Computing Design System, and various Ada experiments.
Learning to consult with computers.
Liaw, S T; Marty, J J
2001-07-01
To develop and evaluate a strategy to teach skills and issues associated with computers in the consultation. An overview lecture plus a workshop before and a workshop after practice placements, during the 10-week general practice (GP) term in the 5th year of the University of Melbourne medical course. Pre- and post-intervention study using a mix of qualitative and quantitative methods within a strategic evaluation framework. Self-reported attitudes and skills with clinical applications before, during and after the intervention. Most students had significant general computer experience but little in the medical area. They found the workshops relevant, interesting and easy to follow. The role-play approach facilitated students' learning of relevant communication and consulting skills and an appreciation of issues associated with using the information technology tools in simulated clinical situations to augment and complement their consulting skills. The workshops and exposure to GP systems were associated with an increase in the use of clinical software, more realistic expectations of existing clinical and medical record software and an understanding of the barriers to the use of computers in the consultation. The educational intervention assisted students to develop and express an understanding of the importance of consulting and communication skills in teaching and learning about medical informatics tools, hardware and software design, workplace issues and the impact of clinical computer systems on the consultation and patient care.
Overview of the Integrated Programs for Aerospace Vehicle Design (IPAD) project
NASA Technical Reports Server (NTRS)
Venneri, S. L.
1983-01-01
To respond to national needs for improved productivity in engineering design and manufacturing, a NASA supported joint industry/government project is underway denoted Integrated Programs for Aerospace Vehicle Design (IPAD). The objective is to improve engineering productivity through better use of computer technology. It focuses on development of data base management technology and associated software for integrated company wide management of engineering and manufacturing information. Results to date on the IPAD project include an in depth documentation of a representative design process for a large engineering project, the definition and design of computer aided design software needed to support that process, and the release of prototype software to manage engineering information. This paper provides an overview of the IPAD project and summarizes progress to date and future plans.
Software Engineering Education Directory
1990-04-01
and Engineering (CMSC 735) Codes: GPEV2 * Textiooks: IEEE Tutoria on Models and Metrics for Software Management and Engameeing by Basi, Victor R...Software Engineering (Comp 227) Codes: GPRY5 Textbooks: IEEE Tutoria on Software Design Techniques by Freeman, Peter and Wasserman, Anthony 1. Software
ERIC Educational Resources Information Center
Lawrence, Virginia
No longer just a user of commercial software, the 21st century teacher is a designer of interactive software based on theories of learning. This software, a comprehensive study of straightline equations, enhances conceptual understanding, sketching, graphic interpretive and word problem solving skills as well as making connections to real-life and…
RESEARCH AND DESIGN ABOUT VERSATILE 3D-CAD ENGINE FOR CONSTRUCTION
NASA Astrophysics Data System (ADS)
Tanaka, Shigenori; Kubota, Satoshi; Kitagawa, Etsuji; Monobe, Kantaro; Nakamura, Kenji
In the construction field of Japan, it is an important subject to build the environment where 3D-CAD data is used for CALS/EC, information construction, and an improvement in productivity. However, in the construction field, 3D-CAD software does not exist under the present circumstances. Then, in order to support development of domestic 3D-CAD software, it is required to develop a 3D-CAD engine. In this research, in order to familiarize the 3D-CAD software at low cost and quickly and build the environment where the 3D-CAD software is utilizable, investigation for designing a 3D-CAD engine is proposed. The target for investigation are the use scene of 3D-CAD, the seeds which accompany 3D-CAD, a standardization trend, existing products, IT component engineering. Based on results of the investigation, the functional requirements for the 3D-CAD engine for the construction field were concluded.
The Software Engineering Laboratory: An operational software experience factory
NASA Technical Reports Server (NTRS)
Basili, Victor R.; Caldiera, Gianluigi; Mcgarry, Frank; Pajerski, Rose; Page, Gerald; Waligora, Sharon
1992-01-01
For 15 years, the Software Engineering Laboratory (SEL) has been carrying out studies and experiments for the purpose of understanding, assessing, and improving software and software processes within a production software development environment at NASA/GSFC. The SEL comprises three major organizations: (1) NASA/GSFC, Flight Dynamics Division; (2) University of Maryland, Department of Computer Science; and (3) Computer Sciences Corporation, Flight Dynamics Technology Group. These organizations have jointly carried out several hundred software studies, producing hundreds of reports, papers, and documents, all of which describe some aspect of the software engineering technology that was analyzed in the flight dynamics environment at NASA. The studies range from small, controlled experiments (such as analyzing the effectiveness of code reading versus that of functional testing) to large, multiple project studies (such as assessing the impacts of Ada on a production environment). The organization's driving goal is to improve the software process continually, so that sustained improvement may be observed in the resulting products. This paper discusses the SEL as a functioning example of an operational software experience factory and summarizes the characteristics of and major lessons learned from 15 years of SEL operations.
ERIC Educational Resources Information Center
Ramadi, Eric; Ramadi, Serge; Nasr, Karim
2016-01-01
This study explored gaps between industry expectations and perceptions of engineering graduates' skill sets in the Middle East and North Africa (MENA) region. This study measured the importance that managers of engineers placed on 36 skills relevant to engineers. Also measured was managers' satisfaction with engineering graduates' skill sets.…
ERIC Educational Resources Information Center
Grant, Amy; Wood, Eileen; Gottardo, Alexandra; Evans, Mary Ann; Phillips, Linda; Savage, Robert
2012-01-01
The current study developed a taxonomy of reading skills and compared this taxonomy with skills being trained in 30 commercially available software programs designed to teach emergent literacy or literacy-specific skills for children in preschool, kindergarten, and Grade 1. Outcomes suggest that, although some skills are being trained in a…
ERIC Educational Resources Information Center
Valentine, Andrew; Belski, Iouri; Hamilton, Margaret
2017-01-01
Problem-solving is a key engineering skill, yet is an area in which engineering graduates underperform. This paper investigates the potential of using web-based tools to teach students problem-solving techniques without the need to make use of class time. An idea generation experiment involving 90 students was designed. Students were surveyed…
Teaching Interview Skills to Undergraduate Engineers: An Emerging Area of Library Instruction
ERIC Educational Resources Information Center
Nelson, Megan Sapp
2009-01-01
Librarianship is one of a limited number of disciplines that deliberately learn and practice the art of the interview. For engineering librarians, this gives expertise and a role in teaching professional skills that are increasingly expected in the engineering profession. The reference interview and design interview have many similarities. Some…
Modeling software systems by domains
NASA Technical Reports Server (NTRS)
Dippolito, Richard; Lee, Kenneth
1992-01-01
The Software Architectures Engineering (SAE) Project at the Software Engineering Institute (SEI) has developed engineering modeling techniques that both reduce the complexity of software for domain-specific computer systems and result in systems that are easier to build and maintain. These techniques allow maximum freedom for system developers to apply their domain expertise to software. We have applied these techniques to several types of applications, including training simulators operating in real time, engineering simulators operating in non-real time, and real-time embedded computer systems. Our modeling techniques result in software that mirrors both the complexity of the application and the domain knowledge requirements. We submit that the proper measure of software complexity reflects neither the number of software component units nor the code count, but the locus of and amount of domain knowledge. As a result of using these techniques, domain knowledge is isolated by fields of engineering expertise and removed from the concern of the software engineer. In this paper, we will describe kinds of domain expertise, describe engineering by domains, and provide relevant examples of software developed for simulator applications using the techniques.
The Cooperate Assistive Teamwork Environment for Software Description Languages.
Groenda, Henning; Seifermann, Stephan; Müller, Karin; Jaworek, Gerhard
2015-01-01
Versatile description languages such as the Unified Modeling Language (UML) are commonly used in software engineering across different application domains in theory and practice. They often use graphical notations and leverage visual memory for expressing complex relations. Those notations are hard to access for people with visual impairment and impede their smooth inclusion in an engineering team. Existing approaches provide textual notations but require manual synchronization between the notations. This paper presents requirements for an accessible and language-aware team work environment as well as our plan for the assistive implementation of Cooperate. An industrial software engineering team consisting of people with and without visual impairment will evaluate the implementation.
Automated real-time software development
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Walker, Carrie K.; Turkovich, John J.
1993-01-01
A Computer-Aided Software Engineering (CASE) system has been developed at the Charles Stark Draper Laboratory (CSDL) under the direction of the NASA Langley Research Center. The CSDL CASE tool provides an automated method of generating source code and hard copy documentation from functional application engineering specifications. The goal is to significantly reduce the cost of developing and maintaining real-time scientific and engineering software while increasing system reliability. This paper describes CSDL CASE and discusses demonstrations that used the tool to automatically generate real-time application code.
1991-09-01
level are, by necessity, designed to be accomplished by one or a few students in the course of a single academic term. Moreover, the software is seldom...that are covered in Computer Science curricula today, but with more of an engineering structure added. A stronger engineering design component is...ing, and sound software design principles found throughout Ada, and they are unambiguously specified. These are not features which were grafted onto a
2016 KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrington, David Bradley; Waters, Jiajia
Los Alamos National Laboratory and its collaborators are facilitating engine modeling by improving accuracy and robustness of the modeling, and improving the robustness of software. We also continue to improve the physical modeling methods. We are developing and implementing new mathematical algorithms, those that represent the physics within an engine. We provide software that others may use directly or that they may alter with various models e.g., sophisticated chemical kinetics, different turbulent closure methods or other fuel injection and spray systems.
Modular Rocket Engine Control Software (MRECS)
NASA Technical Reports Server (NTRS)
Tarrant, C.; Crook, J.
1998-01-01
The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for advanced engine control systems that will result in lower software maintenance (operations) costs. It effectively accommodates software requirement changes that occur due to hardware technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives, benefits, and status of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishments are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software architecture, reuse software, and reduced software reverification time related to software changes. MRECS was recently modified to support a Space Shuttle Main Engine (SSME) hot-fire test. Cold Flow and Flight Readiness Testing were completed before the test was cancelled. Currently, the program is focused on supporting NASA MSFC in accomplishing development testing of the Fastrac Engine, part of NASA's Low Cost Technologies (LCT) Program. MRECS will be used for all engine development testing.
Engineering and Software Engineering
NASA Astrophysics Data System (ADS)
Jackson, Michael
The phrase ‘software engineering' has many meanings. One central meaning is the reliable development of dependable computer-based systems, especially those for critical applications. This is not a solved problem. Failures in software development have played a large part in many fatalities and in huge economic losses. While some of these failures may be attributable to programming errors in the narrowest sense—a program's failure to satisfy a given formal specification—there is good reason to think that most of them have other roots. These roots are located in the problem of software engineering rather than in the problem of program correctness. The famous 1968 conference was motivated by the belief that software development should be based on “the types of theoretical foundations and practical disciplines that are traditional in the established branches of engineering.” Yet after forty years of currency the phrase ‘software engineering' still denotes no more than a vague and largely unfulfilled aspiration. Two major causes of this disappointment are immediately clear. First, too many areas of software development are inadequately specialised, and consequently have not developed the repertoires of normal designs that are the indispensable basis of reliable engineering success. Second, the relationship between structural design and formal analytical techniques for software has rarely been one of fruitful synergy: too often it has defined a boundary between competing dogmas, at which mutual distrust and incomprehension deprive both sides of advantages that should be within their grasp. This paper discusses these causes and their effects. Whether the common practice of software development will eventually satisfy the broad aspiration of 1968 is hard to predict; but an understanding of past failure is surely a prerequisite of future success.
Building Safer Systems With SpecTRM
NASA Technical Reports Server (NTRS)
2003-01-01
System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.System safety, an integral component in software development, often poses a challenge to engineers designing computer-based systems. While the relaxed constraints on software design allow for increased power and flexibility, this flexibility introduces more possibilities for error. As a result, system engineers must identify the design constraints necessary to maintain safety and ensure that the system and software design enforces them. Safeware Engineering Corporation, of Seattle, Washington, provides the information, tools, and techniques to accomplish this task with its Specification Tools and Requirements Methodology (SpecTRM). NASA assisted in developing this engineering toolset by awarding the company several Small Business Innovation Research (SBIR) contracts with Ames Research Center and Langley Research Center. The technology benefits NASA through its applications for Space Station rendezvous and docking. SpecTRM aids system and software engineers in developing specifications for large, complex safety critical systems. The product enables engineers to find errors early in development so that they can be fixed with the lowest cost and impact on the system design. SpecTRM traces both the requirements and design rationale (including safety constraints) throughout the system design and documentation, allowing engineers to build required system properties into the design from the beginning, rather than emphasizing assessment at the end of the development process when changes are limited and costly.
Closing the loop on improvement: Packaging experience in the Software Engineering Laboratory
NASA Technical Reports Server (NTRS)
Waligora, Sharon R.; Landis, Linda C.; Doland, Jerry T.
1994-01-01
As part of its award-winning software process improvement program, the Software Engineering Laboratory (SEL) has developed an effective method for packaging organizational best practices based on real project experience into useful handbooks and training courses. This paper shares the SEL's experience over the past 12 years creating and updating software process handbooks and training courses. It provides cost models and guidelines for successful experience packaging derived from SEL experience.
Software Engineering Frameworks: Textbooks vs. Student Perceptions
ERIC Educational Resources Information Center
McMaster, Kirby; Hadfield, Steven; Wolthuis, Stuart; Sambasivam, Samuel
2012-01-01
This research examines the frameworks used by Computer Science and Information Systems students at the conclusion of their first semester of study of Software Engineering. A questionnaire listing 64 Software Engineering concepts was given to students upon completion of their first Software Engineering course. This survey was given to samples of…
Requirements model for an e-Health awareness portal
NASA Astrophysics Data System (ADS)
Hussain, Azham; Mkpojiogu, Emmanuel O. C.; Nawi, Mohd Nasrun M.
2016-08-01
Requirements engineering is at the heart and foundation of software engineering process. Poor quality requirements inevitably lead to poor quality software solutions. Also, poor requirement modeling is tantamount to designing a poor quality product. So, quality assured requirements development collaborates fine with usable products in giving the software product the needed quality it demands. In the light of the foregoing, the requirements for an e-Ebola Awareness Portal were modeled with a good attention given to these software engineering concerns. The requirements for the e-Health Awareness Portal are modeled as a contribution to the fight against Ebola and helps in the fulfillment of the United Nation's Millennium Development Goal No. 6. In this study requirements were modeled using UML 2.0 modeling technique.
Perceptions of the software skills of graduates by employers in the financial services industry
NASA Astrophysics Data System (ADS)
Kyng, Tim; Tickle, Leonie; Wood, Leigh N.
2013-12-01
Software, particularly spreadsheet software, is ubiquitous in the financial services workplace. Yet little is known about the extent to which universities should, and do, prepare graduates for this aspect of the modern workplace. We have investigated this issue through a survey of financial services employers of graduates, the results of which are reported in this paper, as well as surveys of university graduates and academics, reported previously. Financial services employers rate software skills as important, would like their employees to be more highly skilled in the use of such software, and tend to prefer 'on-the-job' training rather than university training for statistical, database and specialized actuarial/financial software. There is a perception among graduates that employers do not provide adequate formal workplace training in the use of technical software.
Towards a controlled vocabulary on software engineering education
NASA Astrophysics Data System (ADS)
Pizard, Sebastián; Vallespir, Diego
2017-11-01
Software engineering is the discipline that develops all the aspects of the production of software. Although there are guidelines about what topics to include in a software engineering curricula, it is usually unclear which are the best methods to teach them. In any science discipline the construction of a classification schema is a common approach to understand a thematic area. This study examines previous publications in software engineering education to obtain a first controlled vocabulary (a more formal definition of a classification schema) in the field. Publications from 1988 to 2014 were collected and processed using automatic clustering techniques and the outcomes were analysed manually. The result is an initial controlled vocabulary with a taxonomy form with 43 concepts that were identified as the most used in the research publications. We present the classification of the concepts in three facets: 'what to teach', 'how to teach' and 'where to teach' and the evolution of concepts over time.
Performing Verification and Validation in Reuse-Based Software Engineering
NASA Technical Reports Server (NTRS)
Addy, Edward A.
1999-01-01
The implementation of reuse-based software engineering not only introduces new activities to the software development process, such as domain analysis and domain modeling, it also impacts other aspects of software engineering. Other areas of software engineering that are affected include Configuration Management, Testing, Quality Control, and Verification and Validation (V&V). Activities in each of these areas must be adapted to address the entire domain or product line rather than a specific application system. This paper discusses changes and enhancements to the V&V process, in order to adapt V&V to reuse-based software engineering.
Middlesex Community College Software Technical Writing Program.
ERIC Educational Resources Information Center
Middlesex Community Coll., Bedford, MA.
This document describes the Software Technical Writing Program at Middlesex Community College (Massachusetts). The program is a "hands-on" course designed to develop job-related skills in three major areas: technical writing, software, and professional skills. The program was originally designed in cooperation with the Massachusetts High…
Development of the Free-space Optical Communications Analysis Software (FOCAS)
NASA Technical Reports Server (NTRS)
Jeganathan, M.; Mecherle, G.; Lesh, J.
1998-01-01
The Free-space Optical Communications Analysis Software (FOCAS) was developed at the Jet Propulsion Laboratory (JPL) to provide mission planners, systems engineers and communications engineers with an easy to use tool to analyze optical communications link.
Testing Scientific Software: A Systematic Literature Review
Kanewala, Upulee; Bieman, James M.
2014-01-01
Context Scientific software plays an important role in critical decision making, for example making weather predictions based on climate models, and computation of evidence for research publications. Recently, scientists have had to retract publications due to errors caused by software faults. Systematic testing can identify such faults in code. Objective This study aims to identify specific challenges, proposed solutions, and unsolved problems faced when testing scientific software. Method We conducted a systematic literature survey to identify and analyze relevant literature. We identified 62 studies that provided relevant information about testing scientific software. Results We found that challenges faced when testing scientific software fall into two main categories: (1) testing challenges that occur due to characteristics of scientific software such as oracle problems and (2) testing challenges that occur due to cultural differences between scientists and the software engineering community such as viewing the code and the model that it implements as inseparable entities. In addition, we identified methods to potentially overcome these challenges and their limitations. Finally we describe unsolved challenges and how software engineering researchers and practitioners can help to overcome them. Conclusions Scientific software presents special challenges for testing. Specifically, cultural differences between scientist developers and software engineers, along with the characteristics of the scientific software make testing more difficult. Existing techniques such as code clone detection can help to improve the testing process. Software engineers should consider special challenges posed by scientific software such as oracle problems when developing testing techniques. PMID:25125798
Software Management Environment (SME): Components and algorithms
NASA Technical Reports Server (NTRS)
Hendrick, Robert; Kistler, David; Valett, Jon
1994-01-01
This document presents the components and algorithms of the Software Management Environment (SME), a management tool developed for the Software Engineering Branch (Code 552) of the Flight Dynamics Division (FDD) of the Goddard Space Flight Center (GSFC). The SME provides an integrated set of visually oriented experienced-based tools that can assist software development managers in managing and planning software development projects. This document describes and illustrates the analysis functions that underlie the SME's project monitoring, estimation, and planning tools. 'SME Components and Algorithms' is a companion reference to 'SME Concepts and Architecture' and 'Software Engineering Laboratory (SEL) Relationships, Models, and Management Rules.'
An Empirical Study on Students' Ability to Comprehend Design Patterns
ERIC Educational Resources Information Center
Chatzigeorgiou, Alexander; Tsantalis, Nikolaos; Deligiannis, Ignatios
2008-01-01
Design patterns have become a widely acknowledged software engineering practice and therefore have been incorporated in the curricula of most computer science departments. This paper presents an observational study on students' ability to understand and apply design patterns. Within the context of a postgraduate software engineering course,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartlett, Roscoe A; Heroux, Dr. Michael A; Willenbring, James
2012-01-01
Software lifecycles are becoming an increasingly important issue for computational science & engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process--respecting the competing needs of research vs. production--cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for many CSE software projects thatmore » are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willenbring, James M.; Bartlett, Roscoe Ainsworth; Heroux, Michael Allen
2012-01-01
Software lifecycles are becoming an increasingly important issue for computational science and engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process - respecting the competing needs of research vs. production - cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for manymore » CSE software projects that are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Here, we advocate three to four phases or maturity levels that address the appropriate handling of many issues associated with the transition from research to production software. The goals of this lifecycle model are to better communicate maturity levels with customers and to help to identify and promote Software Engineering (SE) practices that will help to improve productivity and produce better software. An important collection of software in this domain is Trilinos, which is used as the motivation and the initial target for this lifecycle model. However, many other related and similar CSE (and non-CSE) software projects can also make good use of this lifecycle model, especially those that use the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.« less
Collected software engineering papers, volume 2
NASA Technical Reports Server (NTRS)
1983-01-01
Topics addressed include: summaries of the software engineering laboratory (SEL) organization, operation, and research activities; results of specific research projects in the areas of resource models and software measures; and strategies for data collection for software engineering research.
The Need for V&V in Reuse-Based Software Engineering
NASA Technical Reports Server (NTRS)
Addy, Edward A.
1997-01-01
V&V is currently performed during application development for many systems, especially safety-critical and mission-critical systems. The V&V process is intended to discover errors, especially errors related to entire' domain or product line rather than a critical processing, as early as possible during the development process. The system application provides the context under which the software artifacts are validated. engineering. This paper describes a framework that extends V&V from an individual application system to a product line of systems that are developed within an architecture-based software engineering environment. This framework includes the activities of traditional application-level V&V, and extends these activities into the transition between domain engineering and application engineering. The framework includes descriptions of the types of activities to be performed during each of the life-cycle phases, and provides motivation for activities.
Proceedings of the Eighth Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1983-01-01
The four major topics of discussion included: the NASA Software Engineering Laboratory, software testing, human factors in software engineering and software quality assessment. As in the past years, there were 12 position papers presented (3 for each topic) followed by questions and very heavy participation by the general audience.
Use of Soft Computing Technologies For Rocket Engine Control
NASA Technical Reports Server (NTRS)
Trevino, Luis C.; Olcmen, Semih; Polites, Michael
2003-01-01
The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to further improve overall engine system reliability and performance. Specifically, this will be presented by enhancing rocket engine control and engine health management (EHM) using SCT coupled with conventional control technologies, and sound software engineering practices used in Marshall s Flight Software Group. The principle goals are to improve software management, software development time and maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control and EHM methodologies, but to provide alternative design choices for control, EHM, implementation, performance, and sustaining engineering. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion, software engineering for embedded systems, and soft computing technologies (i.e., neural networks, fuzzy logic, and Bayesian belief networks), much of which is presented in this paper. The first targeted demonstration rocket engine platform is the MC-1 (formerly FASTRAC Engine) which is simulated with hardware and software in the Marshall Avionics & Software Testbed laboratory that
ERIC Educational Resources Information Center
Skorinko, Jeanine L.; Doyle, James K.; Tryggvason, Gretar
2012-01-01
It has long been recognized that engineers need a variety of skills, including technical and social, to succeed professionally. Attempts to include social skills (i.e., communication, teamwork, and leadership) in engineering education are relatively recent (i.e., within the last decade). Thus, the current study investigates whether social goals…
A Web-Based Learning System for Software Test Professionals
ERIC Educational Resources Information Center
Wang, Minhong; Jia, Haiyang; Sugumaran, V.; Ran, Weijia; Liao, Jian
2011-01-01
Fierce competition, globalization, and technology innovation have forced software companies to search for new ways to improve competitive advantage. Web-based learning is increasingly being used by software companies as an emergent approach for enhancing the skills of knowledge workers. However, the current practice of Web-based learning is…
1986-05-07
Cycle? Moderator: Christine M. Anderson Dennis D. Doe Manager of Engineering Software and Artificial Intelligence Boeing Aerospace Company In... intelligence systems development pro- cess affect the life cycle? Artificial intelligence developers seem to be the last haven for people who don’t...of Engineering Software and Artificial Intelligence at the Boeing Aerospace Company. In this capacity, Mr. Doe is the focal point for software
A Candidate Strategy for the Software Engineering Institute
1983-03-15
Strategy For The Software Engineering I Institute InstiuteG PL4FOPRMING ONG. REPORT NUMBER 7. AUTNOR(,) S. CONTRACT OR GRANT NUMUERfaj The DoD Joint Service...interface standards, STARS, APSE, training, state-of-the-practice, mission critical systems, software technology, hardware. 20. ABSTRACT fCantinue an , vape ...CLASSIFIrCATION OFr THIS PACE (When Data 211111104, A.•.. A CANDIDATE STRATEGY FOR THE SOFTWARE ENGINEEERING INSTITUTE Aoocession For DTIC TAB u t l It J oil
Tracking the Integration of Library Skills in the Curriculum.
ERIC Educational Resources Information Center
Gill, Suzanne L.
2003-01-01
Describes the use of IMSeries software, a relational database capable of implementing curriculum design, in an elementary school. Topics include Big6 research skills; tracking the scope and sequence of curriculum; tying library skills to curricular disciplines; information literacy; and examples of a lesson unit and assessment strategy. (LRW)
Index of Workplace & Adult Basic Skills Software.
ERIC Educational Resources Information Center
Askov, Eunice N.; Clark, Cindy Jo
This index of workplace and adult basic skills computer software includes 108 listings. Each listing is described according to the following classifications: (1) teacher/tutor tools (customizable or mini-authoring systems); (2) assessment and skills; (3) content; (4) instruction method; (5) system requirements; and (6) name, address, and phone…
CAD/CAM silicone simulator for teaching cheiloplasty: description of the technique.
Zheng, Y; Lu, B; Zhang, J; Wu, G
2015-02-01
Techniques of virtual simulation have been used to teach junior surgeons how to do a cheiloplasty, but still do not meet the trainees' demands. We describe a CAD/CAM silicone simulator, which we made using several maxillofacial prosthetic techniques. An optical scanning system was used to collect the data about the cleft lip. Reverse engineering software was then used to build the virtual model, and this was processed in wax by machine. The definitive simulator was made with prosthetic silicone and extrinsic colourants. The surgical trainees practised the basic skills of cheiloplasty on the simulator, and proved its worth. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
English for Specific Purposes: Teaching English for Science and Technology
NASA Astrophysics Data System (ADS)
Musikhin, I. A.
2016-06-01
In the era of globalization, English communication for scientists and engineers whose native language is not English has become as important as their major related abilities. The paper describes the results of a four-year experience in the development of English for specific purpose manuals in the field of photogrammetry, interferometry, and GNSS technologies, as well as key teaching methods and didactic approaches used in class and out-of-class activities. The focus of the present study is to provide a detailed description of the development and systematic updating of a relevant manual, aimed at professional language training of learners. The findings of the study reflect the importance of an ESP course for scientists and engineers: conducting a needs analysis for carrying out a specific search of relevant and reliable authentic materials, defining proper teaching methods, software and didactic approaches used in the educational process to develop the language skills necessary to be active and contributive players in the competitive world.
A Bibliography of Externally Published Works by the SEI Engineering Techniques Program
1992-08-01
media, and virtual reality * model- based engineering * programming languages * reuse * software architectures * software engineering as a discipline...Knowledge- Based Engineering Environments." IEEE Expert 3, 2 (May 1988): 18-23, 26-32. Audience: Practitioner [Klein89b] Klein, D.V. "Comparison of...Terms with Software Reuse Terminology: A Model- Based Approach." ACM SIGSOFT Software Engineering Notes 16, 2 (April 1991): 45-51. Audience: Practitioner
Using the Science Process Skills to Investigate Animals and Animal Habitats
NASA Astrophysics Data System (ADS)
Braithwaite, Saisha
This study explored how a STEM (science, technology, engineering, and math) engineer design challenge allowed students to analyze the characteristics of animals and animal habitats. This study was conducted in a kindergarten class within an urban school district. The class has 25 students while the study focuses on six students. The group consists of three boys and three girls. In this study, the students used the science process skills to observe, classify, infer, and make predictions about animals and habitats. In the engineer design, students created an established habitat and built their own animal that can survive in that habitat. The study analyzed how students used process skills to engage with the habitats and animals. The students successfully used the science process skills in this study. The results showed that students gained more content knowledge when they used multiple process skills within a lesson. The study shows that developing lessons using the science process skills improves students' ability to demonstrate their knowledge of animals and their habitats.
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Pressburger, Thomas; Markosian, Lawrence; Feather, Martin S.
2006-01-01
New processes, methods and tools are constantly appearing in the field of software engineering. Many of these augur great potential in improving software development processes, resulting in higher quality software with greater levels of assurance. However, there are a number of obstacles that impede their infusion into software development practices. These are the recurring obstacles common to many forms of research. Practitioners cannot readily identify the emerging techniques that may most benefit them, and cannot afford to risk time and effort in evaluating and experimenting with them while there is still uncertainty about whether they will have payoff in this particular context. Similarly, researchers cannot readily identify those practitioners whose problems would be amenable to their techniques and lack the feedback from practical applications necessary to help them to evolve their techniques to make them more likely to be successful. This paper describes an ongoing effort conducted by a software engineering research infusion team, and the NASA Research Infusion Initiative, established by NASA s Software Engineering Initiative, to overcome these obstacles.
Changing the Engineering Student Culture with Respect to Academic Integrity and Ethics.
VanDeGrift, Tammy; Dillon, Heather; Camp, Loreal
2017-08-01
Engineers create airplanes, buildings, medical devices, and software, amongst many other things. Engineers abide by a professional code of ethics to uphold people's safety and the reputation of the profession. Likewise, students abide by a code of academic integrity while learning the knowledge and necessary skills to prepare them for the engineering and computing professions. This paper reports on studies designed to improve the engineering student culture with respect to academic integrity and ethics. To understand the existing culture at a university in the USA, a survey based on a national survey about cheating was administered to students. The incidences of self-reported cheating and incidences of not reporting others who cheat show the culture is similar to other institutions. Two interventions were designed and tested in an introduction to an engineering course: two case studies that students discussed in teams and the whole class, and a letter of recommendation assignment in which students wrote about themselves (character, strengths, examples of ethical decisions) three years into the future. Students were surveyed after the two interventions. Results show that first-year engineering students appreciate having a code of academic integrity and they want to earn their degree without cheating, yet less than half of the students would report on another cheating student. The letter of recommendation assignment had some impact on getting students to think about ethics, their character, and their actions. Future work in changing the student culture will continue in both a top-down (course interventions) and bottom-up (student-driven interventions) manner.
ESP for Engineers: A Reassessment.
ERIC Educational Resources Information Center
Yin, Koh Moy
1988-01-01
Many foreign engineering undergraduates already have adequate English skills for the technical part of their academic and professional purposes, but still have problems with communication and interactive skills. Conventional ESP courses may not meet their needs, so an alternate program is proposed. (Author/LMO)
A Knowledge-Based System Developer for aerospace applications
NASA Technical Reports Server (NTRS)
Shi, George Z.; Wu, Kewei; Fensky, Connie S.; Lo, Ching F.
1993-01-01
A prototype Knowledge-Based System Developer (KBSD) has been developed for aerospace applications by utilizing artificial intelligence technology. The KBSD directly acquires knowledge from domain experts through a graphical interface then builds expert systems from that knowledge. This raises the state of the art of knowledge acquisition/expert system technology to a new level by lessening the need for skilled knowledge engineers. The feasibility, applicability , and efficiency of the proposed concept was established, making a continuation which would develop the prototype to a full-scale general-purpose knowledge-based system developer justifiable. The KBSD has great commercial potential. It will provide a marketable software shell which alleviates the need for knowledge engineers and increase productivity in the workplace. The KBSD will therefore make knowledge-based systems available to a large portion of industry.
STS Case Study Development Support
NASA Technical Reports Server (NTRS)
Rosa de Jesus, Dan A.; Johnson, Grace K.
2013-01-01
The Shuttle Case Study Collection (SCSC) has been developed using lessons learned documented by NASA engineers, analysts, and contractors. The SCSC provides educators with a new tool to teach real-world engineering processes with the goal of providing unique educational materials that enhance critical thinking, decision-making and problem-solving skills. During this third phase of the project, responsibilities included: the revision of the Hyper Text Markup Language (HTML) source code to ensure all pages follow World Wide Web Consortium (W3C) standards, and the addition and edition of website content, including text, documents, and images. Basic HTML knowledge was required, as was basic knowledge of photo editing software, and training to learn how to use NASA's Content Management System for website design. The outcome of this project was its release to the public.
The HAL 9000 Space Operating System Real-Time Planning Engine Design and Operations Requirements
NASA Technical Reports Server (NTRS)
Stetson, Howard; Watson, Michael D.; Shaughnessy, Ray
2012-01-01
In support of future deep space manned missions, an autonomous/automated vehicle, providing crew autonomy and an autonomous response planning system, will be required due to the light time delays in communication. Vehicle capabilities as a whole must provide for tactical response to vehicle system failures and space environmental effects induced failures, for risk mitigation of permanent loss of communication with Earth, and for assured crew return capabilities. The complexity of human rated space systems and the limited crew sizes and crew skills mix drive the need for a robust autonomous capability on-board the vehicle. The HAL 9000 Space Operating System[2] designed for such missions and space craft includes the first distributed real-time planning / re-planning system. This paper will detail the software architecture of the multiple planning engine system, and the interface design for plan changes, approval and implementation that is performed autonomously. Operations scenarios will be defined for analysis of the planning engines operations and its requirements for nominal / off nominal activities. An assessment of the distributed realtime re-planning system, in the defined operations environment, will be provided as well as findings as it pertains to the vehicle, crew, and mission control requirements needed for implementation.
Incorporating Manual and Autonomous Code Generation
NASA Technical Reports Server (NTRS)
McComas, David
1998-01-01
Code can be generated manually or using code-generated software tools, but how do you interpret the two? This article looks at a design methodology that combines object-oriented design with autonomic code generation for attitude control flight software. Recent improvements in space flight computers are allowing software engineers to spend more time engineering the applications software. The application developed was the attitude control flight software for an astronomical satellite called the Microwave Anisotropy Probe (MAP). The MAP flight system is being designed, developed, and integrated at NASA's Goddard Space Flight Center. The MAP controls engineers are using Integrated Systems Inc.'s MATRIXx for their controls analysis. In addition to providing a graphical analysis for an environment, MATRIXx includes an autonomic code generation facility called AutoCode. This article examines the forces that shaped the final design and describes three highlights of the design process: (1) Defining the manual to autonomic code interface; (2) Applying object-oriented design to the manual flight code; (3) Implementing the object-oriented design in C.
ERIC Educational Resources Information Center
Serna, Alejandra García; Vega, José Luis Arcos; García, Juan José Sevilla; Ruiz, María Amparo Oliveros
2018-01-01
We present an analysis regarding generic skills on engineering program offered in a public state university in Mexico (UABC). The university implemented a new educational model changing rigid programs to flexible programs based on competencies. The goal is to determine generic skills related to the four pillars of learning: learning to do,…
Publishing Platform for Scientific Software - Lessons Learned
NASA Astrophysics Data System (ADS)
Hammitzsch, Martin; Fritzsch, Bernadette; Reusser, Dominik; Brembs, Björn; Deinzer, Gernot; Loewe, Peter; Fenner, Martin; van Edig, Xenia; Bertelmann, Roland; Pampel, Heinz; Klump, Jens; Wächter, Joachim
2015-04-01
Scientific software has become an indispensable commodity for the production, processing and analysis of empirical data but also for modelling and simulation of complex processes. Software has a significant influence on the quality of research results. For strengthening the recognition of the academic performance of scientific software development, for increasing its visibility and for promoting the reproducibility of research results, concepts for the publication of scientific software have to be developed, tested, evaluated, and then transferred into operations. For this, the publication and citability of scientific software have to fulfil scientific criteria by means of defined processes and the use of persistent identifiers, similar to data publications. The SciForge project is addressing these challenges. Based on interviews a blueprint for a scientific software publishing platform and a systematic implementation plan has been designed. In addition, the potential of journals, software repositories and persistent identifiers have been evaluated to improve the publication and dissemination of reusable software solutions. It is important that procedures for publishing software as well as methods and tools for software engineering are reflected in the architecture of the platform, in order to improve the quality of the software and the results of research. In addition, it is necessary to work continuously on improving specific conditions that promote the adoption and sustainable utilization of scientific software publications. Among others, this would include policies for the development and publication of scientific software in the institutions but also policies for establishing the necessary competencies and skills of scientists and IT personnel. To implement the concepts developed in SciForge a combined bottom-up / top-down approach is considered that will be implemented in parallel in different scientific domains, e.g. in earth sciences, climate research and the life sciences. Based on the developed blueprints a scientific software publishing platform will be iteratively implemented, tested, and evaluated. Thus the platform should be developed continuously on the basis of gained experiences and results. The platform services will be extended one by one corresponding to the requirements of the communities. Thus the implemented platform for the publication of scientific software can be improved and stabilized incrementally as a tool with software, science, publishing, and user oriented features.
Advances in knowledge-based software engineering
NASA Technical Reports Server (NTRS)
Truszkowski, Walt
1991-01-01
The underlying hypothesis of this work is that a rigorous and comprehensive software reuse methodology can bring about a more effective and efficient utilization of constrained resources in the development of large-scale software systems by both government and industry. It is also believed that correct use of this type of software engineering methodology can significantly contribute to the higher levels of reliability that will be required of future operational systems. An overview and discussion of current research in the development and application of two systems that support a rigorous reuse paradigm are presented: the Knowledge-Based Software Engineering Environment (KBSEE) and the Knowledge Acquisition fo the Preservation of Tradeoffs and Underlying Rationales (KAPTUR) systems. Emphasis is on a presentation of operational scenarios which highlight the major functional capabilities of the two systems.
Separating essentials from incidentals: an execution architecture for real-time control systems
NASA Technical Reports Server (NTRS)
Dvorak, Daniel; Reinholtz, Kirk
2004-01-01
This paper describes an execution architecture that makes such systems far more analyzable and verifiable by aggressive separation of concerns. The architecture separates two key software concerns: transformations of global state, as defined in pure functions; and sequencing/timing of transformations, as performed by an engine that enforces four prime invariants. The important advantage of this architecture, besides facilitating verification, is that it encourages formal specification of systems in a vocabulary that brings systems engineering closer to software engineering.
V&V Within Reuse-Based Software Engineering
NASA Technical Reports Server (NTRS)
Addy, Edward A.
1996-01-01
Verification and Validation (V&V) is used to increase the level of assurance of critical software, particularly that of safety-critical and mission-critical software. V&V is a systems engineering discipline that evaluates the software in a systems context, and is currently applied during the development of a specific application system. In order to bring the effectiveness of V&V to bear within reuse-based software engineering, V&V must be incorporated within the domain engineering process.
Engineering Complex Embedded Systems with State Analysis and the Mission Data System
NASA Technical Reports Server (NTRS)
Ingham, Michel D.; Rasmussen, Robert D.; Bennett, Matthew B.; Moncada, Alex C.
2004-01-01
It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer s intent, potentially leading to software errors. This problem is addressed by a systems engineering methodology called State Analysis, which provides a process for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using State Analysis and how these requirements inform the design of the system software, using representative spacecraft examples.
Robotic Mission to Mars: Hands-on, minds-on, web-based learning
NASA Astrophysics Data System (ADS)
Mathers, Naomi; Goktogen, Ali; Rankin, John; Anderson, Marion
2012-11-01
Problem-based learning has been demonstrated as an effective methodology for developing analytical skills and critical thinking. The use of scenario-based learning incorporates problem-based learning whilst encouraging students to collaborate with their colleagues and dynamically adapt to their environment. This increased interaction stimulates a deeper understanding and the generation of new knowledge. The Victorian Space Science Education Centre (VSSEC) uses scenario-based learning in its Mission to Mars, Mission to the Orbiting Space Laboratory and Primary Expedition to the M.A.R.S. Base programs. These programs utilize methodologies such as hands-on applications, immersive-learning, integrated technologies, critical thinking and mentoring to engage students in Science, Technology, Engineering and Mathematics (STEM) and highlight potential career paths in science and engineering. The immersive nature of the programs demands specialist environments such as a simulated Mars environment, Mission Control and Space Laboratory, thus restricting these programs to a physical location and limiting student access to the programs. To move beyond these limitations, VSSEC worked with its university partners to develop a web-based mission that delivered the benefits of scenario-based learning within a school environment. The Robotic Mission to Mars allows students to remotely control a real rover, developed by the Australian Centre for Field Robotics (ACFR), on the VSSEC Mars surface. After completing a pre-mission training program and site selection activity, students take on the roles of scientists and engineers in Mission Control to complete a mission and collect data for further analysis. Mission Control is established using software developed by the ACRI Games Technology Lab at La Trobe University using the principles of serious gaming. The software allows students to control the rover, monitor its systems and collect scientific data for analysis. This program encourages students to work scientifically and explores the interaction between scientists and engineers. This paper presents the development of the program, including the involvement of university students in the development of the rover, the software, and the collation of the scientific data. It also presents the results of the trial phase of this program including the impact on student engagement and learning outcomes.
Dragonfly: strengthening programming skills by building a game engine from scratch
NASA Astrophysics Data System (ADS)
Claypool, Mark
2013-06-01
Computer game development has been shown to be an effective hook for motivating students to learn both introductory and advanced computer science topics. While games can be made from scratch, to simplify the programming required game development often uses game engines that handle complicated or frequently used components of the game. These game engines present the opportunity to strengthen programming skills and expose students to a range of fundamental computer science topics. While educational efforts have been effective in using game engines to improve computer science education, there have been no published papers describing and evaluating students building a game engine from scratch as part of their course work. This paper presents the Dragonfly-approach in which students build a fully functional game engine from scratch and make a game using their engine as part of a junior-level course. Details on the programming projects are presented, as well as an evaluation of the results from two offerings that used Dragonfly. Student performance on the projects as well as student assessments demonstrates the efficacy of having students build a game engine from scratch in strengthening their programming skills.
A Framework for Performing Verification and Validation in Reuse Based Software Engineering
NASA Technical Reports Server (NTRS)
Addy, Edward A.
1997-01-01
Verification and Validation (V&V) is currently performed during application development for many systems, especially safety-critical and mission- critical systems. The V&V process is intended to discover errors, especially errors related to critical processing, as early as possible during the development process. The system application provides the context under which the software artifacts are validated. This paper describes a framework that extends V&V from an individual application system to a product line of systems that are developed within an architecture-based software engineering environment. This framework includes the activities of traditional application-level V&V, and extends these activities into domain engineering and into the transition between domain engineering and application engineering. The framework includes descriptions of the types of activities to be performed during each of the life-cycle phases, and provides motivation for the activities.
Research on Visualization Design Method in the Field of New Media Software Engineering
NASA Astrophysics Data System (ADS)
Deqiang, Hu
2018-03-01
In the new period of increasingly developed science and technology, with the increasingly fierce competition in the market and the increasing demand of the masses, new design and application methods have emerged in the field of new media software engineering, that is, the visualization design method. Applying the visualization design method to the field of new media software engineering can not only improve the actual operation efficiency of new media software engineering but more importantly the quality of software development can be enhanced by means of certain media of communication and transformation; on this basis, the progress and development of new media software engineering in China are also continuously promoted. Therefore, the application of visualization design method in the field of new media software engineering is analysed concretely in this article from the perspective of the overview of visualization design methods and on the basis of systematic analysis of the basic technology.
The Cloud-Based Integrated Data Viewer (IDV)
NASA Astrophysics Data System (ADS)
Fisher, Ward
2015-04-01
Maintaining software compatibility across new computing environments and the associated underlying hardware is a common problem for software engineers and scientific programmers. While there are a suite of tools and methodologies used in traditional software engineering environments to mitigate this issue, they are typically ignored by developers lacking a background in software engineering. The result is a large body of software which is simultaneously critical and difficult to maintain. Visualization software is particularly vulnerable to this problem, given the inherent dependency on particular graphics hardware and software API's. The advent of cloud computing has provided a solution to this problem, which was not previously practical on a large scale; Application Streaming. This technology allows a program to run entirely on a remote virtual machine while still allowing for interactivity and dynamic visualizations, with little-to-no re-engineering required. Through application streaming we are able to bring the same visualization to a desktop, a netbook, a smartphone, and the next generation of hardware, whatever it may be. Unidata has been able to harness Application Streaming to provide a tablet-compatible version of our visualization software, the Integrated Data Viewer (IDV). This work will examine the challenges associated with adapting the IDV to an application streaming platform, and include a brief discussion of the underlying technologies involved. We will also discuss the differences between local software and software-as-a-service.
Educating the engineers of 2020: An outcomes-based typology of engineering undergraduates
NASA Astrophysics Data System (ADS)
Knight, David B.
Members of government and industry have called for greater emphasis within U.S. colleges and universities on producing engineers who can enter and advance a more competitive, globally connected workforce. Looking toward this future, engineers will need to exhibit strong analytical skills as in the past, but they also will need to be proficient in a cadre of new abilities to compete. This study examines, in combination, an array of knowledge and skills aligned with the National Academy of Engineering's "engineer of 2020." The study has two major goals. The first is to develop a typology of engineering students based on the learning outcomes associated with the engineer of E2020. The second is to understand the educational experiences that distinguish these groups of students who resemble, more or less, the engineer of 2020. This approach acknowledges that engineering graduates need a complex skill set to succeed in the new global economy; it is the combination of skills associated with the engineer of 2020, not the individual skills in isolation, which will ensure graduates can respond to workforce needs of the future. To date, research on student outcomes has studied learning outcomes independent of one another rather than investigating student learning holistically. The study uses student data from the Prototype to production: Processes and conditions for preparing the Engineer of 2020 study, sponsored by the National Science Foundation (NSF EEC-0550608). Engineering students from a nationally representative sample of engineering programs in the United States answered a survey that collected information on their pre-college academic preparation and sociodemographic characteristics, their curricular and co-curricular experiences in their engineering programs, and their self-ratings of their engineering-related competencies. Only data on engineering students in their senior year (n=2,422) were utilized in analyses. Analyses were conducted in multiple phases for each of five engineering disciplines in the data set (biomedical/bioengineering, chemical, civil, electrical, and mechanical engineering). First, cluster analyses produced typologies (or groupings) of engineering seniors (one for each of five engineering disciplines studied and an "all engineering" analysis) based on nine self-reported learning outcomes, including fundamental skills, design skills, contextual awareness, interdisciplinary competence, and professional skills. Second, profiles of pre-college characteristics as well as student experiences in college were developed for each discipline and the five disciplines combined. Using analyses of variance, Chi-square analyses, and multinomial logistic regression, this phase also identified differences in student characteristics and college experiences between clusters of students reporting high proficiencies on the array of outcomes and students in other clusters. This second phase informed the third phase, which produced parsimonious models that used pre-college characteristics and student experience variables to predict cluster membership. As a whole, the findings demonstrate that analyses that include the full array of E2020 learning outcomes produce meaningful typologies that distinguish between groupings of students in different engineering fields. Findings demonstrate that a subset of students - the engineers of 2020 - report high skills and abilities on the full array of learning outcomes. These are the graduates sought by both the federal government and industry who most closely resemble the engineers of 2020. In addition, distinctive curricular and co-curricular experiences distinguish this E2020 group of students in each engineering discipline from other groupings of students in that same discipline. These findings have valuable implications for practice because they identify an array of discipline-specific, in- and out-of-class learning experiences that appear to promote the development of this multi-dimensional set of outcomes. Overall, however, greater curricular emphases on broad and systems perspectives in the engineering curriculum most consistently set apart the students who report high proficiencies on the E2020 outcomes. The findings also indicate that strategies for improving undergraduate engineering outcomes should be tailored by engineering discipline. The study contributes to both practice and research by developing a technique that can be used to create an outcomes-based typology that can be applied to any set of learning outcomes. Graphical representations of results consolidate large quantities of information into an easily accessible format so that findings can guide both practitioners and policymakers who seek to improve this multi-dimensional set of undergraduate engineering learning outcomes. Future directions for research, including operationalizing organizational contexts influencing E2020 learning outcomes as well as anticipated career trajectories of students across the typology, are also discussed.
State analysis requirements database for engineering complex embedded systems
NASA Technical Reports Server (NTRS)
Bennett, Matthew B.; Rasmussen, Robert D.; Ingham, Michel D.
2004-01-01
It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer's intent, potentially leading to software errors. This problem is addressed by a systems engineering tool called the State Analysis Database, which provides a tool for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using the State Analysis Database.
Successful Use of CALL Software: An Investigation from the User's Perspective
ERIC Educational Resources Information Center
Scagnoli, Norma; Yontz, Ruth; Choo, Jinhee
2014-01-01
This study explores the use and implementation of computer-assisted language learning (CALL) software in graduate professional education. The investigation looked into self-reported information on graduate students' use of ESL (English as a Second Language) software to improve language skills and their competencies in professional English…
Collected software engineering papers, volume 9
NASA Technical Reports Server (NTRS)
1991-01-01
This document is a collection of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) from November 1990 through October 1991. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. This is the ninth such volume of technical papers produced by the SEL. Although these papers cover several topics related to software engineering, they do not encompass the entire scope of SEL activities and interests. For the convenience of this presentation, the eight papers contained here are grouped into three major categories: (1) software models studies; (2) software measurement studies; and (3) Ada technology studies. The first category presents studies on reuse models, including a software reuse model applied to maintenance and a model for an organization to support software reuse. The second category includes experimental research methods and software measurement techniques. The third category presents object-oriented approaches using Ada and object-oriented features proposed for Ada. The SEL is actively working to understand and improve the software development process at GSFC.
A Return to Innovative Engineering Design, Critical Thinking and Systems Engineering
NASA Technical Reports Server (NTRS)
Camarda, Charles J.
2007-01-01
I believe we are facing a critical time where innovative engineering design is of paramount importance to the success of our aerospace industry. However, the very qualities and attributes necessary for enhancing, educating, and mentoring a creative spirit are in decline in important areas. The importance of creativity and innovation in this country was emphasized by a special edition of the Harvard Business Review OnPoint entitled: "The Creative Company" which compiled a series of past and present articles on the subject of creativity and innovation and stressed its importance to our national economy. There is also a recognition of a lack of engineering, critical thinking and problem-solving skills in our education systems and a trend toward trying to enhance those skills by developing K-12 educational programs such as Project Lead the Way, "Science for All Americans", Benchmarks 2061 , etc. In addition, with respect to spacecraft development, we have a growing need for young to mid-level engineers with appropriate experience and skills in spacecraft design, development, analysis, testing, and systems engineering. As the Director of Engineering at NASA's Johnson Space Center, I realized that sustaining engineering support of an operational human spacecraft such as the Space Shuttle is decidedly different than engineering design and development skills necessary for designing a new spacecraft such as the Crew Exploration Vehicle of the Constellation Program. We learned a very important lesson post Columbia in that the Space Shuttle is truly an experimental and not an operational vehicle and the strict adherence to developed rules and processes and chains of command of an inherently bureaucratic organizational structure will not protect us from a host of known unknowns let alone unknown unknowns. There are no strict rules, processes, or procedures for understanding anomalous results of an experiment, anomalies with an experimental spacecraft like Shuttle, or in the conceptual design of a spacecraft. Engineering design is as much an art as it is a science. The critical thinking skills necessary to uncover lurking problems in an experimental design and creatively develop solutions are some of the same skills necessary to design a new spacecraft. Thus, I believe engineers unfamiliar with or removed from design and development need time to transition and develop the required skill set to be effective spacecraft designers. I believe the creative process necessary in design can be enhanced and even taught as early as grades K-12 and should continue to be nurtured and developed at the university level and beyond. I am going to present a strategy for developing learning teams to address complex multidisciplinary problems and to creatively develop solutions to those problems rapidly at minimal cost. I will frame a real problem, the development of on-orbit thermal protection system repair of the Space Shuttle, and step through the series of skills necessary to enhance the creative process. The case study I will illustrate is based on a real project, the R&D Reinforced Carbon-Carbon (RCC) Repair Team's development of on-orbit repair concepts for damaged Space Shuttle RCC nose cap and/or leading edges.
Avoid problems during distillation column startups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sloley, A.W.
1996-07-01
The startup of a distillation column is the end product of the design process. Indeed, startup is the culmination of the theory and practice of designing the column to meet the process objectives. The author will direct most of this discussion towards column revamps due to their inherent complexity; however, the points apply equally to new columns, as well. The most important question that must be answered prior to a startup is how will the distillation system changes affect initial startup, process control of the system, and normal day-to-day operations? How will the operators run the system? Steady-state distillation-column simulationsmore » alone cannot provide an authoritative answer and, indeed, engineers` over-reliance on software too often has led them to ignore many practical aspects. Computer modeling, while an important engineering tool, is not reality. Distillation columns are real functioning pieces of equipment that require practical skills to successfully modify. They are not steady-state solutions that result from converged computer simulations. Early planning, coupled with thorough inspections and comprehensive reviews of instrumentation and procedures, can play a key role in assuring smooth startups.« less
Designing, Implementing and Maintaining a First Year Project Course in Electrical Engineering
ERIC Educational Resources Information Center
Lillieskold, J.; Ostlund, S.
2008-01-01
Being a modern electrical engineer does not only require state of the art skills in areas such as transfer and processing of information, electronics, systems engineering, and biomedical electrical engineering; it also requires generic engineering skills such as oral and written communication, team building, interpersonal skills, and the ability…
The Institute for Software Engineering.
ERIC Educational Resources Information Center
Inselbert, Armond
1982-01-01
The Institute for Software Engineering, a data processing education, publishing and consulting organization with offices and members worldwide, is described. The goal of the Institute is to assist data processing management and staff in providing the service levels required to support an organization's business needs. (Author/MLW)
ERIC Educational Resources Information Center
Council of Ontario Universities, Toronto.
This report analyzes the role of the Task Force on Labour Market Issues of the Council of Ontario Universities in meeting industry skill needs, focusing particularly on three sectors: biotechnology, culture, and software/information technology. Also included are the findings of an earlier study on the skill needs and training requirements in the…
ERIC Educational Resources Information Center
Martin, Vance S.
2011-01-01
As this and previous editions of "New Directions for Community Colleges" have argued, digital skills are necessary. Our future economy will be based on them, but there is no consensus on which skills to teach. Many talk about Web 2.0 skills, familiarity with software, and critical thinking skills, yet few mention the potential of video games in…
STS-51 pad abort. OV103-engine 2033 (ME-2) fuel flowmeter sensor open circuit
NASA Technical Reports Server (NTRS)
1993-01-01
The STS-51 initial launch attempt of Discovery (OV-103) was terminated on KSC launch pad 39B on 12 Aug. 1993 at 9:12 AM E.S.T. due to a sensor redundancy failure in the liquid hydrogen system of ME-2 (Engine 2033). The event description and time line are summarized. Propellant loading was initiated on 12 Aug. 1993 at 12:00 AM EST. All space shuttle main engine (SSME) chill parameters and Launch Commit Criteria (LCC) were nominal. At engine start plus 1.34 seconds a Failure Identification (FID) was posted against Engine 2033 for exceeding the 1800 spin intra-channel (A1-A2) Fuel Flowrate sensor channel qualification limit. The engine was shut down at 1.50 seconds followed by Engines 2032 and 2030. All shut down sequences were nominal and the mission was safely aborted. SSME Avionics hardware and software performed nominally during the incident. A review of vehicle data table (VDT) data and controller software logic revealed no failure indications other than the single FID 111-101, Fuel Flowrate Intra-Channel Test Channel A disqualification. Software logic was executed according to requirements and there was no anomalous controller software operation. Immediately following the abort, a Rocketdyne/NASA failure investigation team was assembled. The team successfully isolated the failure cause to an open circuit in a Fuel Flowrate Sensor. This type of failure has occurred eight previous times in ground testing. The sensor had performed acceptably on three previous flights of the engine and SSME flight history shows 684 combined fuel flow rate sensor channel flights without failure. The disqualification of an Engine 2 (SSME No. 2033) Fuel Flowrate sensor channel was a result of an instrumentation failure and not engine performance. All other engine operations were nominal. This disqualification resulted in an engine shutdown and safe sequential shutdown of all three engines prior to ignition of the solid boosters.
Applying Scientific Skills to the Business World
NASA Astrophysics Data System (ADS)
Murry, Stefan
According to executive search firm Spencer Stuart, one third of Fortune 500 CEOs have undergraduate degrees in engineering or one of the physical sciences, versus 11 percent of such CEOs with degrees in business administration. Yet outside the boardroom, scientists leading businesses are often regarded as a curiosity, as if the skills that are believed by many to be essential to success in business somehow differ fundamentally from those developed by an education in engineering or science. This talk will focus on the skills necessary to succeed in business generally, and more specifically as an entrepreneur. We will explore the overlap between these skills and those that are developed by an education in engineering and science. We will also examine some of the common misperceptions held by scientists about the business world as well as the way scientists are often (mis)-perceived by the business community.
Impacts of software and its engineering on the carbon footprint of ICT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kern, Eva, E-mail: e.kern@umwelt-campus.de; Dick, Markus, E-mail: sustainablesoftwareblog@gmail.com; Naumann, Stefan, E-mail: s.naumann@umwelt-campus.de
2015-04-15
The energy consumption of information and communication technology (ICT) is still increasing. Even though several solutions regarding the hardware side of Green IT exist, the software contribution to Green IT is not well investigated. The carbon footprint is one way to rate the environmental impacts of ICT. In order to get an impression of the induced CO{sub 2} emissions of software, we will present a calculation method for the carbon footprint of a software product over its life cycle. We also offer an approach on how to integrate some aspects of carbon footprint calculation into software development processes and discussmore » impacts and tools regarding this calculation method. We thus show the relevance of energy measurements and the attention to impacts on the carbon footprint by software within Green Software Engineering.« less
2010-04-01
for decoupled parallel development Ref: Barry Boehm 12 Impacts of Technological Changes in the Cyber Environment on Software/Systems Engineering... Pressman , R.S., Software Engineering: A Practitioner’s Approach, 13 Impacts of Technological Changes in the Cyber Environment on Software/Systems
Enhancing Collaborative Learning through Group Intelligence Software
NASA Astrophysics Data System (ADS)
Tan, Yin Leng; Macaulay, Linda A.
Employers increasingly demand not only academic excellence from graduates but also excellent interpersonal skills and the ability to work collaboratively in teams. This paper discusses the role of Group Intelligence software in helping to develop these higher order skills in the context of an enquiry based learning (EBL) project. The software supports teams in generating ideas, categorizing, prioritizing, voting and multi-criteria decision making and automatically generates a report of each team session. Students worked in a Group Intelligence lab designed to support both face to face and computer-mediated communication and employers provided feedback at two key points in the year long team project. Evaluation of the effectiveness of Group Intelligence software in collaborative learning was based on five key concepts of creativity, participation, productivity, engagement and understanding.
Software And Systems Engineering Risk Management
2010-04-01
RSKM 2004 COSO Enterprise RSKM Framework 2006 ISO/IEC 16085 Risk Management Process 2008 ISO/IEC 12207 Software Lifecycle Processes 2009 ISO/IEC...1 Software And Systems Engineering Risk Management John Walz VP Technical and Conferences Activities, IEEE Computer Society Vice-Chair Planning...Software & Systems Engineering Standards Committee, IEEE Computer Society US TAG to ISO TMB Risk Management Working Group Systems and Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirby, M.J.; Kramer, S.R.; Pittard, G.T.
Jason Consultants International, Inc., under the sponsorship of the Gas Research Institute (GRI), has developed guidelines, procedures and software, which are described in this paper, for the installation of polyethylene gas pipe using guided horizontal drilling. Jason was aided in this development by two key subcontractors; Maurer Engineering who wrote the software and NICOR Technologies who reviewed the software and guidelines from a utility perspective. This program resulted in the development of commerically viable software for utilities, contractors, engineering firms, and others involved with the installation of pipes using guided horizontal drilling. The software is an interactive design tool thatmore » allows the user to enter ground elevation data, alignment information and pipe data. The software aides the engineer in designing a drill path and provides plan and profile views along with tabular data for pipe depth and surface profile. Finally, the software calculates installation loads and pipe stresses, compares these values against pipe manufacturer`s recommendations, and provides this information graphically and in tabular form. 5 refs., 18 figs., 2 tabs.« less
Data collection procedures for the Software Engineering Laboratory (SEL) database
NASA Technical Reports Server (NTRS)
Heller, Gerard; Valett, Jon; Wild, Mary
1992-01-01
This document is a guidebook to collecting software engineering data on software development and maintenance efforts, as practiced in the Software Engineering Laboratory (SEL). It supersedes the document entitled Data Collection Procedures for the Rehosted SEL Database, number SEL-87-008 in the SEL series, which was published in October 1987. It presents procedures to be followed on software development and maintenance projects in the Flight Dynamics Division (FDD) of Goddard Space Flight Center (GSFC) for collecting data in support of SEL software engineering research activities. These procedures include detailed instructions for the completion and submission of SEL data collection forms.
Modular Rocket Engine Control Software (MRECS)
NASA Technical Reports Server (NTRS)
Tarrant, Charlie; Crook, Jerry
1997-01-01
The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for a generic, advanced engine control system that will result in lower software maintenance (operations) costs. It effectively accommodates software requirements changes that occur due to hardware. technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives and benefits of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishment are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software, architecture, reuse software, and reduced software reverification time related to software changes. Currently, the program is focused on supporting MSFC in accomplishing a Space Shuttle Main Engine (SSME) hot-fire test at Stennis Space Center and the Low Cost Boost Technology (LCBT) Program.
Software Engineering Improvement Plan
NASA Technical Reports Server (NTRS)
2006-01-01
In performance of this task order, bd Systems personnel provided support to the Flight Software Branch and the Software Working Group through multiple tasks related to software engineering improvement and to activities of the independent Technical Authority (iTA) Discipline Technical Warrant Holder (DTWH) for software engineering. To ensure that the products, comments, and recommendations complied with customer requirements and the statement of work, bd Systems personnel maintained close coordination with the customer. These personnel performed work in areas such as update of agency requirements and directives database, software effort estimation, software problem reports, a web-based process asset library, miscellaneous documentation review, software system requirements, issue tracking software survey, systems engineering NPR, and project-related reviews. This report contains a summary of the work performed and the accomplishments in each of these areas.
Evolutionary Systems Design: Recognizing Changes in Security and Survivability Risks
2006-09-01
Unlimited distribution subject to the copyright. Technical Note CMU/SEI-2006-TN-027 The Software Engineering Institute is a federally...CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF...created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Integrating MPI and deduplication engines: a software architecture roadmap.
Baksi, Dibyendu
2009-03-01
The objective of this paper is to clarify the major concepts related to architecture and design of patient identity management software systems so that an implementor looking to solve a specific integration problem in the context of a Master Patient Index (MPI) and a deduplication engine can address the relevant issues. The ideas presented are illustrated in the context of a reference use case from Integrating the Health Enterprise Patient Identifier Cross-referencing (IHE PIX) profile. Sound software engineering principles using the latest design paradigm of model driven architecture (MDA) are applied to define different views of the architecture. The main contribution of the paper is a clear software architecture roadmap for implementors of patient identity management systems. Conceptual design in terms of static and dynamic views of the interfaces is provided as an example of platform independent model. This makes the roadmap applicable to any specific solutions of MPI, deduplication library or software platform. Stakeholders in need of integration of MPIs and deduplication engines can evaluate vendor specific solutions and software platform technologies in terms of fundamental concepts and can make informed decisions that preserve investment. This also allows freedom from vendor lock-in and the ability to kick-start integration efforts based on a solid architecture.
The software-cycle model for re-engineering and reuse
NASA Technical Reports Server (NTRS)
Bailey, John W.; Basili, Victor R.
1992-01-01
This paper reports on the progress of a study which will contribute to our ability to perform high-level, component-based programming by describing means to obtain useful components, methods for the configuration and integration of those components, and an underlying economic model of the costs and benefits associated with this approach to reuse. One goal of the study is to develop and demonstrate methods to recover reusable components from domain-specific software through a combination of tools, to perform the identification, extraction, and re-engineering of components, and domain experts, to direct the applications of those tools. A second goal of the study is to enable the reuse of those components by identifying techniques for configuring and recombining the re-engineered software. This component-recovery or software-cycle model addresses not only the selection and re-engineering of components, but also their recombination into new programs. Once a model of reuse activities has been developed, the quantification of the costs and benefits of various reuse options will enable the development of an adaptable economic model of reuse, which is the principal goal of the overall study. This paper reports on the conception of the software-cycle model and on several supporting techniques of software recovery, measurement, and reuse which will lead to the development of the desired economic model.
Supporting Early Math--Rationales and Requirements for High Quality Software
ERIC Educational Resources Information Center
Haake, Magnus; Husain, Layla; Gulz, Agneta
2015-01-01
There is substantial evidence that preschooler's performance in early math is highly correlated to math performance throughout school as well as academic skills in general. One way to help children attain early math skills is by using targeted educational software and the paper discusses potential gains of using such software to support early math…
Industry and Academic Consortium for Computer Based Subsurface Geology Laboratory
NASA Astrophysics Data System (ADS)
Brown, A. L.; Nunn, J. A.; Sears, S. O.
2008-12-01
Twenty two licenses for Petrel Software acquired through a grant from Schlumberger are being used to redesign the laboratory portion of Subsurface Geology at Louisiana State University. The course redesign is a cooperative effort between LSU's Geology and Geophysics and Petroleum Engineering Departments and Schlumberger's Technical Training Division. In spring 2008, two laboratory sections were taught with 22 students in each section. The class contained geology majors, petroleum engineering majors, and geology graduate students. Limited enrollments and 3 hour labs make it possible to incorporate hands-on visualization, animation, manipulation of data and images, and access to geological data available online. 24/7 access to the laboratory and step by step instructions for Petrel exercises strongly promoted peer instruction and individual learning. Goals of the course redesign include: enhancing visualization of earth materials; strengthening student's ability to acquire, manage, and interpret multifaceted geological information; fostering critical thinking, the scientific method; improving student communication skills; providing cross training between geologists and engineers and increasing the quantity, quality, and diversity of students pursuing Earth Science and Petroleum Engineering careers. IT resources available in the laboratory provide students with sophisticated visualization tools, allowing them to switch between 2-D and 3-D reconstructions more seamlessly, and enabling them to manipulate larger integrated data-sets, thus permitting more time for critical thinking and hypothesis testing. IT resources also enable faculty and students to simultaneously work with the software to visually interrogate a 3D data set and immediately test hypothesis formulated in class. Preliminary evaluation of class results indicate that students found MS-Windows based Petrel easy to learn. By the end of the semester, students were able to not only map horizons and faults using seismic and well data but also compute volumetrics. Exam results indicated that while students could complete sophisticated exercises using the software, their understanding of key concepts such as conservation of volume in a palinspastic reconstruction or association of structures with a particular stress regime was limited. Future classes will incorporate more paper and pencil exercises to illustrate basic concepts. The equipment, software, and exercises developed will be used in additional upper level undergraduate and graduate classes.
Women Working in Engineering and Science
NASA Technical Reports Server (NTRS)
Luna, Bernadette; Kliss, Mark (Technical Monitor)
1998-01-01
The presentation will focus on topics of interest to young women pursuing an engineering or scientific career, such as intrinsic personality traits of most engineers, average salaries for the various types of engineers, appropriate preparation classes at the high school and undergraduate levels, gaining experience through internships, summer jobs and graduate school, skills necessary but not always included in engineering curricula (i.e., multimedia, computer skills, communication skills), the work environment, balancing family and career, and sexual harassment. Specific examples from the speaker's own experience in NASA's Space Life Sciences Program will be used to illustrate the above topics. In particular, projects from Extravehicular Activity and Protective Systems research and Regenerative Life Support research will be used as examples of real world problem-solving to enable human exploration of the solar system.
Applying formal methods and object-oriented analysis to existing flight software
NASA Technical Reports Server (NTRS)
Cheng, Betty H. C.; Auernheimer, Brent
1993-01-01
Correctness is paramount for safety-critical software control systems. Critical software failures in medical radiation treatment, communications, and defense are familiar to the public. The significant quantity of software malfunctions regularly reported to the software engineering community, the laws concerning liability, and a recent NRC Aeronautics and Space Engineering Board report additionally motivate the use of error-reducing and defect detection software development techniques. The benefits of formal methods in requirements driven software development ('forward engineering') is well documented. One advantage of rigorously engineering software is that formal notations are precise, verifiable, and facilitate automated processing. This paper describes the application of formal methods to reverse engineering, where formal specifications are developed for a portion of the shuttle on-orbit digital autopilot (DAP). Three objectives of the project were to: demonstrate the use of formal methods on a shuttle application, facilitate the incorporation and validation of new requirements for the system, and verify the safety-critical properties to be exhibited by the software.
1988-06-01
Based Software Engineering Project Course .............. 83 SSoftware Engineering, Software Engineering Concepts: The Importance of Object-Based...quality assurance, and independent system testing . The Chief Programmer is responsible for all software development activities, including prototyping...during the Requirements Analysis phase, the Preliminary Design, the Detailed Design, Coding and Unit Testing , CSC Integration and Testing , and informal
Multidisciplinary and Active/Collaborative Approaches in Teaching Requirements Engineering
ERIC Educational Resources Information Center
Rosca, Daniela
2005-01-01
The requirements engineering course is a core component of the curriculum for the Master's in Software Engineering programme, at Monmouth University (MU). It covers the process, methods and tools specific to this area, together with the corresponding software quality issues. The need to produce software engineers with strong teamwork and…
Encourage student learning of hydraulic matters by the use of Arduino platform
NASA Astrophysics Data System (ADS)
Rodriguez Sinobas, Leonor; Granja García, Javier; Sánchez Calvo, Raúl
2014-05-01
Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use hardware and software. It's intended for several purposes to anyone interested in creating interactive objects or environments. The hydraulic matters teach at the Agricultural Engineering School at the Technical University of Madrid deal with practical issues regarding the measurement of variables such as pressure, discharge, temperature and soil water content. Most of the data loggers available in the market for these variables at expensive and not always affordable. On the other hand, current students are eager to manage new technological devices thus, their skills could be oriented not only to the application of an electronic platform as Arduino to build low cost data loggers for different purposes, but to encourage their learning in the hydraulic matters improving their self esteem
Computer systems and software engineering
NASA Technical Reports Server (NTRS)
Mckay, Charles W.
1988-01-01
The High Technologies Laboratory (HTL) was established in the fall of 1982 at the University of Houston Clear Lake. Research conducted at the High Tech Lab is focused upon computer systems and software engineering. There is a strong emphasis on the interrelationship of these areas of technology and the United States' space program. In Jan. of 1987, NASA Headquarters announced the formation of its first research center dedicated to software engineering. Operated by the High Tech Lab, the Software Engineering Research Center (SERC) was formed at the University of Houston Clear Lake. The High Tech Lab/Software Engineering Research Center promotes cooperative research among government, industry, and academia to advance the edge-of-knowledge and the state-of-the-practice in key topics of computer systems and software engineering which are critical to NASA. The center also recommends appropriate actions, guidelines, standards, and policies to NASA in matters pertinent to the center's research. Results of the research conducted at the High Tech Lab/Software Engineering Research Center have given direction to many decisions made by NASA concerning the Space Station Program.
Functional specifications for AI software tools for electric power applications. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faught, W.S.
1985-08-01
The principle barrier to the introduction of artificial intelligence (AI) technology to the electric power industry has not been a lack of interest or appropriate problems, for the industry abounds in both. Like most others, however, the electric power industry lacks the personnel - knowledge engineers - with the special combination of training and skills AI programming demands. Conversely, very few AI specialists are conversant with electric power industry problems and applications. The recent availability of sophisticated AI programming environments is doing much to alleviate this shortage. These products provide a set of powerful and usable software tools that enablemore » even non-AI scientists to rapidly develop AI applications. The purpose of this project was to develop functional specifications for programming tools that, when integrated with existing general-purpose knowledge engineering tools, would expedite the production of AI applications for the electric power industry. Twelve potential applications, representative of major problem domains within the nuclear power industry, were analyzed in order to identify those tools that would be of greatest value in application development. Eight tools were specified, including facilities for power plant modeling, data base inquiry, simulation and machine-machine interface.« less
Collaborative Approach in Software Engineering Education: An Interdisciplinary Case
ERIC Educational Resources Information Center
Vicente, Aileen Joan; Tan, Tiffany Adelaine; Yu, Alvin Ray
2018-01-01
Aim/Purpose: This study was aimed at enhancing students' learning of software engineering methods. A collaboration between the Computer Science, Business Management, and Product Design programs was formed to work on actual projects with real clients. This interdisciplinary form of collaboration simulates the realities of a diverse Software…
Towards a Controlled Vocabulary on Software Engineering Education
ERIC Educational Resources Information Center
Pizard, Sebastián; Vallespir, Diego
2017-01-01
Software engineering is the discipline that develops all the aspects of the production of software. Although there are guidelines about what topics to include in a software engineering curricula, it is usually unclear which are the best methods to teach them. In any science discipline the construction of a classification schema is a common…
AADL and Model-based Engineering
2014-10-20
and MBE Feiler, Oct 20, 2014 © 2014 Carnegie Mellon University We Rely on Software for Safe Aircraft Operation Embedded software systems ...D eveloper Compute Platform Runtime Architecture Application Software Embedded SW System Engineer Data Stream Characteristics Latency...confusion Hardware Engineer Why do system level failures still occur despite fault tolerance techniques being deployed in systems ? Embedded software
NASA software documentation standard software engineering program
NASA Technical Reports Server (NTRS)
1991-01-01
The NASA Software Documentation Standard (hereinafter referred to as Standard) can be applied to the documentation of all NASA software. This Standard is limited to documentation format and content requirements. It does not mandate specific management, engineering, or assurance standards or techniques. This Standard defines the format and content of documentation for software acquisition, development, and sustaining engineering. Format requirements address where information shall be recorded and content requirements address what information shall be recorded. This Standard provides a framework to allow consistency of documentation across NASA and visibility into the completeness of project documentation. This basic framework consists of four major sections (or volumes). The Management Plan contains all planning and business aspects of a software project, including engineering and assurance planning. The Product Specification contains all technical engineering information, including software requirements and design. The Assurance and Test Procedures contains all technical assurance information, including Test, Quality Assurance (QA), and Verification and Validation (V&V). The Management, Engineering, and Assurance Reports is the library and/or listing of all project reports.
NASA Astrophysics Data System (ADS)
Othman, Wan Nor Afiqah Wan; Abdullah, Aziman
2018-04-01
This preliminary study was conducted to address the issue of academic planning skills among new university student. Due to lack of proper measurement mechanism for awareness and readiness among students, this study proposes Metacognitive Awareness Inventory (MAI) to assess the connection between student self-efficacy and college readiness. Qualitative and quantitative approach were used by provide an online self-assessment for new student of Faculty of Computer Systems & Software Engineering (FSKKP) and analyse the data respectively. The possible relationships between MAI and College Readiness Item (CRI) in self-assessment has been evaluated. The sample size of 368 respondents from UMP are responding to the online self-assessment. The initial finding shows most student (71%) of the respondent lack of skills in planning. We manage to use Pearson Product-moment correlation coefficient to find the significant relationship between MAI and CRI. Thus, we found that College Readiness provide sufficient evidence that there is a significant correlation with most of MAI items. The findings also indicated not much difference was found between gender in terms of self-efficacy level. This paper suggests the MAI and CRI is a reliable and valid scale to respond the planning skills issues among new university students.
Improving Software Engineering on NASA Projects
NASA Technical Reports Server (NTRS)
Crumbley, Tim; Kelly, John C.
2010-01-01
Software Engineering Initiative: Reduces risk of software failure -Increases mission safety. More predictable software cost estimates and delivery schedules. Smarter buyer of contracted out software. More defects found and removed earlier. Reduces duplication of efforts between projects. Increases ability to meet the challenges of evolving software technology.
Developing sustainable software solutions for bioinformatics by the “ Butterfly” paradigm
Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas
2014-01-01
Software design and sustainable software engineering are essential for the long-term development of bioinformatics software. Typical challenges in an academic environment are short-term contracts, island solutions, pragmatic approaches and loose documentation. Upcoming new challenges are big data, complex data sets, software compatibility and rapid changes in data representation. Our approach to cope with these challenges consists of iterative intertwined cycles of development (“ Butterfly” paradigm) for key steps in scientific software engineering. User feedback is valued as well as software planning in a sustainable and interoperable way. Tool usage should be easy and intuitive. A middleware supports a user-friendly Graphical User Interface (GUI) as well as a database/tool development independently. We validated the approach of our own software development and compared the different design paradigms in various software solutions. PMID:25383181
Developing Research Skills for Civil Engineers: A Library Contribution.
ERIC Educational Resources Information Center
Bruce, C. S.; Brameld, G. H.
1990-01-01
A library instruction program has been instituted in civil engineering at the Queensland University of Technology (Australia) in an effort to improve the research skills of fourth year students working on research projects. Students with extended library instruction were found to have better information-seeking behavior than others. (Author/MSE)
Using Role-Playing Games to Broaden Engineering Education
ERIC Educational Resources Information Center
McConville, Jennifer R.; Rauch, Sebastien; Helgegren, Ida; Kain, Jaan-Henrik
2017-01-01
Purpose: In today's complex society, there is an increasing demand to include a wider set of skills in engineering curricula, especially skills related to policy, society and sustainable development. Role-playing and gaming are active learning tools, which are useful for learning relationships between technology and society, problem solving in…
NASA Technical Reports Server (NTRS)
Uber, James G.
1988-01-01
Software itself is not hazardous, but since software and hardware share common interfaces there is an opportunity for software to create hazards. Further, these software systems are complex, and proven methods for the design, analysis, and measurement of software safety are not yet available. Some past software failures, future NASA software trends, software engineering methods, and tools and techniques for various software safety analyses are reviewed. Recommendations to NASA are made based on this review.
Software engineering processes for Class D missions
NASA Astrophysics Data System (ADS)
Killough, Ronnie; Rose, Debi
2013-09-01
Software engineering processes are often seen as anathemas; thoughts of CMMI key process areas and NPR 7150.2A compliance matrices can motivate a software developer to consider other career fields. However, with adequate definition, common-sense application, and an appropriate level of built-in flexibility, software engineering processes provide a critical framework in which to conduct a successful software development project. One problem is that current models seem to be built around an underlying assumption of "bigness," and assume that all elements of the process are applicable to all software projects regardless of size and tolerance for risk. This is best illustrated in NASA's NPR 7150.2A in which, aside from some special provisions for manned missions, the software processes are to be applied based solely on the criticality of the software to the mission, completely agnostic of the mission class itself. That is, the processes applicable to a Class A mission (high priority, very low risk tolerance, very high national significance) are precisely the same as those applicable to a Class D mission (low priority, high risk tolerance, low national significance). This paper will propose changes to NPR 7150.2A, taking mission class into consideration, and discuss how some of these changes are being piloted for a current Class D mission—the Cyclone Global Navigation Satellite System (CYGNSS).
Computerised Accounting Software; A Curriculum That Enhances an Accounting Programme
ERIC Educational Resources Information Center
Machera, Robert P.; Machera, Precious C.
2017-01-01
There has been an outcry in commerce and industry about students who fail to perform in the accounting department due to lack of "practical accounting skills". It is from this background that the researchers were motivated to investigate the impact of a Computerised Accounting Software Curriculum that enhances an Accounting Programme. At…
Are women engineers in Lebanon prepared for the challenges of an engineering profession?
NASA Astrophysics Data System (ADS)
Baytiyeh, Hoda
2013-08-01
This study investigates the status of women engineers in the Middle East, considering women engineers in Lebanon as a case study. The author investigated the following questions: What are the influences behind females' decisions to choose engineering as their major course of study? What are the motives behind this decision? What are the perceptions of females regarding the essential skills for a successful engineering career? An online survey consisting of Likert-scale items was completed by 327 female engineers who graduated from universities in Lebanon and now work in various locations around the world. A genuine interest in the field appeared to be the main influence in the participants' decisions to choose engineering profession. The potential for professional growth was the leading motivator for choosing engineering. Although participants reported that they possessed adequate theoretical knowledge and technical skills before graduation, in the actual practice of engineering, they noted weaknesses in creativity and innovation.
ERIC Educational Resources Information Center
Prvinchandar, Sunita; Ayub, Ahmad Fauzi Mohd
2014-01-01
This study compared the effectiveness of two types of computer software for improving the English writing skills of pupils in a Malaysian primary school. Sixty students who participated in the seven-week training course were divided into two groups, with the experimental group using the StyleWriter software and the control group using the…
QUICK - An interactive software environment for engineering design
NASA Technical Reports Server (NTRS)
Skinner, David L.
1989-01-01
QUICK, an interactive software environment for engineering design, provides a programmable FORTRAN-like calculator interface to a wide range of data structures as well as both built-in and user created functions. QUICK also provides direct access to the operating systems of eight different machine architectures. The evolution of QUICK and a brief overview of the current version are presented.
Information use skills in the engineering programme accreditation criteria of four countries
NASA Astrophysics Data System (ADS)
Bradley, Cara
2014-01-01
The need for twenty-first century information skills in engineering practice, combined with the importance for engineering programmes to meet accreditation requirements, suggests that it may be worthwhile to explore the potential for closer alignment between librarians and their work with information literacy competencies to assist in meeting accreditation standards and graduating students with high-level information skills. This article explores whether and how information use skills are reflected in engineering programme accreditation standards of four countries: Canada, the USA, the UK, and Australia. Results indicate that there is significant overlap between the information use skills required of students by engineering accreditation processes and librarians' efforts to develop information literacy competencies in students, despite differences in terms used to describe these skills. Increased collaboration between engineering faculty and librarians has the potential to raise student information literacy levels and fulfil the information use-related requirements of accreditation processes.
Rosser, James C; Fleming, Jeffrey P; Legare, Timothy B; Choi, Katherine M; Nakagiri, Jamie; Griffith, Elliot
2017-12-22
To design and develop a distance learning (DL) system for the transference of laparoscopic surgery knowledge and skill constructed from off-the-shelf materials and commercially available software. Minimally invasive surgery offers significant benefits over traditional surgical procedures, but adoption rates for many procedures are low. Skill and confidence deficits are two of the culprits. DL combined with simulation training and telementoring may address these issues with scale. The system must be built to meet the instruction requirements of a proven laparoscopic skills course (Top Gun). Thus, the rapid sharing of multimedia educational materials, secure two-way audio/visual communications, and annotation and recording capabilities are requirements for success. These requirements are more in line with telementoring missions than standard distance learning efforts. A DL system with telementor, classroom, and laboratory stations was created. The telementor station consists of a desktop computer and headset with microphone. For the classroom station, a laptop is connected to a digital projector that displays the remote instructor and content. A tripod-mounted webcam provides classroom visualization and a Bluetooth® wireless speaker establishes audio. For the laboratory station, a laptop with universal serial bus (USB) expander is combined with a tabletop laparoscopic skills trainer, a headset with microphone, two webcams and a Bluetooth® speaker. The cameras are mounted on a standard tripod and an adjustable gooseneck camera mount clamp to provide an internal and external view of the training area. Internet meeting software provides audio/visual communications including transmission of educational materials. A DL system was created using off-the-shelf materials and commercially available software. It will allow investigations to evaluate the effectiveness of laparoscopic surgery knowledge and skill transfer utilizing DL techniques.
Distributed Engine Control Empirical/Analytical Verification Tools
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan; Hettler, Eric; Yedavalli, Rama; Mitra, Sayan
2013-01-01
NASA's vision for an intelligent engine will be realized with the development of a truly distributed control system featuring highly reliable, modular, and dependable components capable of both surviving the harsh engine operating environment and decentralized functionality. A set of control system verification tools was developed and applied to a C-MAPSS40K engine model, and metrics were established to assess the stability and performance of these control systems on the same platform. A software tool was developed that allows designers to assemble easily a distributed control system in software and immediately assess the overall impacts of the system on the target (simulated) platform, allowing control system designers to converge rapidly on acceptable architectures with consideration to all required hardware elements. The software developed in this program will be installed on a distributed hardware-in-the-loop (DHIL) simulation tool to assist NASA and the Distributed Engine Control Working Group (DECWG) in integrating DCS (distributed engine control systems) components onto existing and next-generation engines.The distributed engine control simulator blockset for MATLAB/Simulink and hardware simulator provides the capability to simulate virtual subcomponents, as well as swap actual subcomponents for hardware-in-the-loop (HIL) analysis. Subcomponents can be the communication network, smart sensor or actuator nodes, or a centralized control system. The distributed engine control blockset for MATLAB/Simulink is a software development tool. The software includes an engine simulation, a communication network simulation, control algorithms, and analysis algorithms set up in a modular environment for rapid simulation of different network architectures; the hardware consists of an embedded device running parts of the CMAPSS engine simulator and controlled through Simulink. The distributed engine control simulation, evaluation, and analysis technology provides unique capabilities to study the effects of a given change to the control system in the context of the distributed paradigm. The simulation tool can support treatment of all components within the control system, both virtual and real; these include communication data network, smart sensor and actuator nodes, centralized control system (FADEC full authority digital engine control), and the aircraft engine itself. The DECsim tool can allow simulation-based prototyping of control laws, control architectures, and decentralization strategies before hardware is integrated into the system. With the configuration specified, the simulator allows a variety of key factors to be systematically assessed. Such factors include control system performance, reliability, weight, and bandwidth utilization.
NASA Technical Reports Server (NTRS)
1989-01-01
At their March 1988 meeting, members of the National Aeronautics and Space Administration (NASA) Information Resources Management (IRM) Council expressed concern that NASA may not have the infrastructure necessary to support the use of Ada for major NASA software projects. Members also observed that the agency has no coordinated strategy for applying its experiences with Ada to subsequent projects (Hinners, 27 June 1988). To deal with these problems, the IRM Council chair appointed an intercenter Ada and Software Management Assessment Working Group (ASMAWG). They prepared a report (McGarry et al., March 1989) entitled, 'Ada and Software Management in NASA: Findings and Recommendations'. That report presented a series of recommendations intended to enable NASA to develop better software at lower cost through the use of Ada and other state-of-the-art software engineering technologies. The purpose here is to describe the steps (called objectives) by which this goal may be achieved, to identify the NASA officials or organizations responsible for carrying out the steps, and to define a schedule for doing so. This document sets forth four goals: adopt agency-wide software standards and policies; use Ada as the programming language for all mission software; establish an infrastructure to support software engineering, including the use of Ada, and to leverage the agency's software experience; and build the agency's knowledge base in Ada and software engineering. A schedule for achieving the objectives and goals is given.
Design Optimization Toolkit: Users' Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilo Valentin, Miguel Alejandro
The Design Optimization Toolkit (DOTk) is a stand-alone C++ software package intended to solve complex design optimization problems. DOTk software package provides a range of solution methods that are suited for gradient/nongradient-based optimization, large scale constrained optimization, and topology optimization. DOTk was design to have a flexible user interface to allow easy access to DOTk solution methods from external engineering software packages. This inherent flexibility makes DOTk barely intrusive to other engineering software packages. As part of this inherent flexibility, DOTk software package provides an easy-to-use MATLAB interface that enables users to call DOTk solution methods directly from the MATLABmore » command window.« less
Software technology insertion: A study of success factors
NASA Technical Reports Server (NTRS)
Lydon, Tom
1990-01-01
Managing software development in large organizations has become increasingly difficult due to increasing technical complexity, stricter government standards, a shortage of experienced software engineers, competitive pressure for improved productivity and quality, the need to co-develop hardware and software together, and the rapid changes in both hardware and software technology. The 'software factory' approach to software development minimizes risks while maximizing productivity and quality through standardization, automation, and training. However, in practice, this approach is relatively inflexible when adopting new software technologies. The methods that a large multi-project software engineering organization can use to increase the likelihood of successful software technology insertion (STI), especially in a standardized engineering environment, are described.
Selected Core Thinking Skills and Cognitive Strategy of an Expert and Novice Engineer
ERIC Educational Resources Information Center
Dixon, Raymond A.
2011-01-01
This exploratory study highlights certain differences in the way an expert and a novice engineer used their analyzing and generating skills while solving a fairly ill-structured design problem. The expert tends to use more inferences and elaboration when solving the design problem and the novice tend to use analysis that is focused on the…
Ada education in a software life-cycle context
NASA Technical Reports Server (NTRS)
Clough, Anne J.
1986-01-01
Some of the experience gained from a comprehensive educational program undertaken at The Charles Stark Draper Lab. to introduce the Ada language and to transition modern software engineering technology into the development of Ada and non-Ada applications is described. Initially, a core group, which included manager, engineers and programmers, received training in Ada. An Ada Office was established to assume the major responsibility for training, evaluation, acquisition and benchmarking of tools, and consultation on Ada projects. As a first step in this process, and in-house educational program was undertaken to introduce Ada to the Laboratory. Later, a software engineering course was added to the educational program as the need to address issues spanning the entire software life cycle became evident. Educational efforts to date are summarized, with an emphasis on the educational approach adopted. Finally, lessons learned in administering this program are addressed.
Knowledge-based assistance in costing the space station DMS
NASA Technical Reports Server (NTRS)
Henson, Troy; Rone, Kyle
1988-01-01
The Software Cost Engineering (SCE) methodology developed over the last two decades at IBM Systems Integration Division (SID) in Houston is utilized to cost the NASA Space Station Data Management System (DMS). An ongoing project to capture this methodology, which is built on a foundation of experiences and lessons learned, has resulted in the development of an internal-use-only, PC-based prototype that integrates algorithmic tools with knowledge-based decision support assistants. This prototype Software Cost Engineering Automation Tool (SCEAT) is being employed to assist in the DMS costing exercises. At the same time, DMS costing serves as a forcing function and provides a platform for the continuing, iterative development, calibration, and validation and verification of SCEAT. The data that forms the cost engineering database is derived from more than 15 years of development of NASA Space Shuttle software, ranging from low criticality, low complexity support tools to highly complex and highly critical onboard software.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Hecht, Laura M.; Barclay, Rebecca O.; Kennedy, John M.
1994-01-01
This report describes similarities and differences between undergraduate and graduate aerospace engineering and science students in the context of two general aspects of the educational experience. First, we explore the extent to which students differ regarding the factors that lead to the choice of becoming an aerospace engineer or a scientist, current satisfaction with that choice, and career-related goals and objectives. Second, we look at the technical communication skills, practices, habits, and training of aerospace engineering and science students. The reported data were obtained from a survey of students enrolled in aerospace engineering and science programs at universities in India, Japan, Russia, and the United Kingdom. The surveys were undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. Data are reported for the following categories: student demographics; skill importance, skill training, and skill helpfulness; collaborative writing; computer and information technology use and importance, use of electronic networks; use and importance of libraries and library services; use and importance of information sources and products; use of foreign language technical reports; and foreign language (reading and speaking) skills.
Virtual Collaborative Environments for System of Systems Engineering and Applications for ISAT
NASA Technical Reports Server (NTRS)
Dryer, David A.
2002-01-01
This paper describes an system of systems or metasystems approach and models developed to help prepare engineering organizations for distributed engineering environments. These changes in engineering enterprises include competition in increasingly global environments; new partnering opportunities caused by advances in information and communication technologies, and virtual collaboration issues associated with dispersed teams. To help address challenges and needs in this environment, a framework is proposed that can be customized and adapted for NASA to assist in improved engineering activities conducted in distributed, enhanced engineering environments. The approach is designed to prepare engineers for such distributed collaborative environments by learning and applying e-engineering methods and tools to a real-world engineering development scenario. The approach consists of two phases: an e-engineering basics phase and e-engineering application phase. The e-engineering basics phase addresses skills required for e-engineering. The e-engineering application phase applies these skills in a distributed collaborative environment to system development projects.
2005-01-01
developed a partnership with the Defense Acquisition University to in- tegrate DISA’s systems engineering processes, software , and network...in place, with processes being implemented: deployment management; systems engineering ; software engineering ; configuration man- agement; test and...CSS systems engineering is a transition partner with Carnegie Mellon University’s Software Engineering Insti- tute and its work on the capability
Global Engineering Teams--A Programme Promoting Teamwork in Engineering Design and Manufacturing
ERIC Educational Resources Information Center
Oladiran, M. T.; Uziak, J.; Eisenberg, M.; Scheffer, C.
2011-01-01
Engineering graduates are expected to possess various competencies categorised into hard and soft skills. The hard skills are acquired through specific coursework, but the soft skills are often treated perfunctorily. Global Engineering Teams (GET) is a programme that promotes project-oriented tasks in virtual student teams working in collaboration…
What's Happening in the Software Engineering Laboratory?
NASA Technical Reports Server (NTRS)
Pajerski, Rose; Green, Scott; Smith, Donald
1995-01-01
Since 1976 the Software Engineering Laboratory (SEL) has been dedicated to understanding and improving the way in which one NASA organization the Flight Dynamics Division (FDD) at Goddard Space Flight Center, develops, maintains, and manages complex flight dynamics systems. This paper presents an overview of recent activities and studies in SEL, using as a framework the SEL's organizational goals and experience based software improvement approach. It focuses on two SEL experience areas : (1) the evolution of the measurement program and (2) an analysis of three generations of Cleanroom experiments.
Shuttle avionics software trials, tribulations and success
NASA Technical Reports Server (NTRS)
Henderson, O. L.
1985-01-01
The early problems and the solutions developed to provide the required quality software needed to support the space shuttle engine development program are described. The decision to use a programmable digital control system on the space shuttle engine was primarily based upon the need for a flexible control system capable of supporting the total engine mission on a large complex pump fed engine. The mission definition included all control phases from ground checkout through post shutdown propellant dumping. The flexibility of the controller through reprogrammable software allowed the system to respond to the technical challenges and innovation required to develop both the engine and controller hardware. This same flexibility, however, placed a severe strain on the capability of the software development and verification organization. The overall development program required that the software facility accommodate significant growth in both the software requirements and the number of software packages delivered. This challenge was met by reorganization and evolution in the process of developing and verifying software.
Shaping Software Engineering Curricula Using Open Source Communities: A Case Study
ERIC Educational Resources Information Center
Bowring, James; Burke, Quinn
2016-01-01
This paper documents four years of a novel approach to teaching a two-course sequence in software engineering as part of the ABET-accredited computer science curriculum at the College of Charleston. This approach is team-based and centers on learning software engineering in the context of open source software projects. In the first course, teams…
Proceedings of the Thirteenth Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1988-01-01
Topics covered in the workshop included studies and experiments conducted in the Software Engineering Laboratory (SEL), a cooperative effort of NASA Goddard Space Flight Center, the University of Maryland, and Computer Sciences Corporation; software models; software products; and software tools.
M.U.S.T. 2007 Summer Research Project at NASA's KSC MILA Facility
NASA Technical Reports Server (NTRS)
PintoRey, Christian R.
2007-01-01
The summer research activity at Kennedy Space Center (KSC) aims to introduce the student to the basic principles in their field of study. While at KSC, a specific research project awaits the student to complete. As an Aeronautical Engineering student, my assigned project is to assist the cognizant engineer, Mr. Troy Hamilton, in the six engineering phases for replacing the Ponce De Leon (PDL)4.3M Antenna Control Unit (ACU). Although the project mainly requires the attention of two engineers and two students, it also involves the participation of many colleagues at various points during the course of the engineering change (EC). Since the PDL 4.3M ACU engineering change makes both hardware and software changes, it calls upon the expertise of a Hardware Engineer as well as a Software Engineer. As students, Mr. Jeremy Bresette and I have worked side by side with the engineers, gaining invaluable experience. We work in two teams, the hardware team and the software team, On certain tasks, we assist the engineers, while on others we assume their roles. By diligently working in this fashion, we are learning how to communicate effectively as professionals, despite the fact that we are studying different engineering fields. This project has been a great fit for my field of study, as it has highly improved my awareness of the many critical tasks involved in carrying out an engineering project.
Infusing Software Assurance Research Techniques into Use
NASA Technical Reports Server (NTRS)
Pressburger, Thomas; DiVito, Ben; Feather, Martin S.; Hinchey, Michael; Markosian, Lawrence; Trevino, Luis C.
2006-01-01
Research in the software engineering community continues to lead to new development techniques that encompass processes, methods and tools. However, a number of obstacles impede their infusion into software development practices. These are the recurring obstacles common to many forms of research. Practitioners cannot readily identify the emerging techniques that may benefit them, and cannot afford to risk time and effort evaluating and trying one out while there remains uncertainty about whether it will work for them. Researchers cannot readily identify the practitioners whose problems would be amenable to their techniques, and, lacking feedback from practical applications, are hard-pressed to gauge the where and in what ways to evolve their techniques to make them more likely to be successful. This paper describes an ongoing effort conducted by a software engineering research infusion team established by NASA s Software Engineering Initiative to overcome these obstacles. .
NASA Astrophysics Data System (ADS)
Drachova-Strang, Svetlana V.
As computing becomes ubiquitous, software correctness has a fundamental role in ensuring the safety and security of the systems we build. To design and develop software correctly according to their formal contracts, CS students, the future software practitioners, need to learn a critical set of skills that are necessary and sufficient for reasoning about software correctness. This dissertation presents a systematic approach to both introducing these reasoning skills into the curriculum, and assessing how well the students have learned them. Specifically, it introduces a comprehensive Reasoning Concept Inventory (RCI) that captures the fine details of basic reasoning skills that are ideally learned across the undergraduate curriculum to reason about software correctness, to develop high quality software, and to understand why software works as specified. The RCI forms the basis for developing learning outcomes that help educators to assess the adequacy of current techniques and pinpoint necessary improvements. This dissertation contains results from experimentation and assessment over the past few years in multiple CS courses. The results show that the finer principles of mathematical reasoning of software correctness can be taught effectively and continuously improved with the help of the RCI using suitable teaching practices, and supporting methods and tools.
Flight evaluation of modifications to a digital electronic engine control system in an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Myers, L. P.; Zeller, J. R.
1983-01-01
The third phase of a flight evaluation of a digital electronic engine control system in an F-15 has recently been completed. It was found that digital electronic engine control software logic changes and augmentor hardware improvements resulted in significant improvements in engine operation. For intermediate to maximum power throttle transients, an increase in altitude capability of up to 8000 ft was found, and for idle to maximum transients, an increase of up to 4000 ft was found. A nozzle instability noted in earlier flight testing was investigated on a test engine at NASA Lewis Research Center, a digital electronic engine control software logic change was developed and evaluated, and no instability occurred in the Phase 3 flight evaluation. The backup control airstart modification was evaluated, and gave an improvement of airstart capability by reducing the minimum airspeed for successful airstarts by 50 to 75 knots.
A portable, inexpensive, wireless vital signs monitoring system.
Kaputa, David; Price, David; Enderle, John D
2010-01-01
The University of Connecticut, Department of Biomedical Engineering has developed a device to be used by patients to collect physiological data outside of a medical facility. This device facilitates modes of data collection that would be expensive, inconvenient, or impossible to obtain by traditional means within the medical facility. Data can be collected on specific days, at specific times, during specific activities, or while traveling. The device uses biosensors to obtain information such as pulse oximetry (SpO2), heart rate, electrocardiogram (ECG), non-invasive blood pressure (NIBP), and weight which are sent via Bluetooth to an interactive monitoring device. The data can then be downloaded to an electronic storage device or transmitted to a company server, physician's office, or hospital. The data collection software is usable on any computer device with Bluetooth capability, thereby removing the need for special hardware for the monitoring device and reducing the total cost of the system. The modular biosensors can be added or removed as needed without changing the monitoring device software. The user is prompted by easy-to-follow instructions written in non-technical language. Additional features, such as screens with large buttons and large text, allow for use by those with limited vision or limited motor skills.
Educational Encounters of the Third Kind.
Génova, Gonzalo; González, M Rosario
2017-12-01
An engineer who becomes an educator in a school of software engineering has the mission to teach how to design and construct software systems, therein applying his or her knowledge and expertise. However, due to their engineering background, engineers may forget that educating a person is not the same as designing a machine, since a machine has a well-defined goal, whilst a person is capable to self-propose his or her own objectives. The ethical implications are clear: educating a free person must leave space for creativity and self-determination in his or her own discovery of the way towards personal and professional fulfillment, which cannot consist only in achieving goals selected by others. We present here an argument that is applicable to most fields of engineering. However, the dis-analogy between educating students and programming robots may have a particular appeal to software engineers and computer scientists. We think the consideration of three different stages in the educational process may be useful to engineers when they act as educators. We claim that the three stages (instructing, training and mentoring) are essential to engineering education. In particular, education is incomplete if the third stage is not reached. Moreover, mentoring (the third stage aimed at developing creativity and self-determination) is incompatible with an educational assessment framework that considers the goals of the engineer are always given by others. In our view, then, an integral education is not only beyond programming the behavior of students, but also beyond having them reach those given goals.
Software Users Manual (SUM): Extended Testability Analysis (ETA) Tool
NASA Technical Reports Server (NTRS)
Maul, William A.; Fulton, Christopher E.
2011-01-01
This software user manual describes the implementation and use the Extended Testability Analysis (ETA) Tool. The ETA Tool is a software program that augments the analysis and reporting capabilities of a commercial-off-the-shelf (COTS) testability analysis software package called the Testability Engineering And Maintenance System (TEAMS) Designer. An initial diagnostic assessment is performed by the TEAMS Designer software using a qualitative, directed-graph model of the system being analyzed. The ETA Tool utilizes system design information captured within the diagnostic model and testability analysis output from the TEAMS Designer software to create a series of six reports for various system engineering needs. The ETA Tool allows the user to perform additional studies on the testability analysis results by determining the detection sensitivity to the loss of certain sensors or tests. The ETA Tool was developed to support design and development of the NASA Ares I Crew Launch Vehicle. The diagnostic analysis provided by the ETA Tool was proven to be valuable system engineering output that provided consistency in the verification of system engineering requirements. This software user manual provides a description of each output report generated by the ETA Tool. The manual also describes the example diagnostic model and supporting documentation - also provided with the ETA Tool software release package - that were used to generate the reports presented in the manual
ERIC Educational Resources Information Center
Stanley, Milt
1986-01-01
Defines desktop publishing, describes microcomputer developments and software tools that make it possible, and discusses its use as an instructional tool to improve writing skills. Reasons why students' work should be published, examples of what to publish, and types of software and hardware to facilitate publishing are reviewed. (MBR)
Averting Denver Airports on a Chip
NASA Technical Reports Server (NTRS)
Sullivan, Kevin J.
1995-01-01
As a result of recent advances in software engineering capabilities, we are now in a more stable environment. De-facto hardware and software standards are emerging. Work on software architecture and design patterns signals a consensus on the importance of early system-level design decisions, and agreements on the uses of certain paradigmatic software structures. We now routinely build systems that would have been risky or infeasible a few years ago. Unfortunately, technological developments threaten to destabilize software design again. Systems designed around novel computing and peripheral devices will spark ambitious new projects that will stress current software design and engineering capabilities. Micro-electro-mechanical systems (MEMS) and related technologies provide the physical basis for new systems with the potential to produce this kind of destabilizing effect. One important response to anticipated software engineering and design difficulties is carefully directed engineering-scientific research. Two specific problems meriting substantial research attention are: A lack of sufficient means to build software systems by generating, extending, specializing, and integrating large-scale reusable components; and a lack of adequate computational and analytic tools to extend and aid engineers in maintaining intellectual control over complex software designs.
1988-05-01
obtained from Dr. Barry Boehm’s Software 5650, Contract No. F19628-86-C-O001, Engineering Economics [1] and from T. J. ESD/MITRE Software Center Acquisition...of References 1. Boehm, Barry W., SoJtware Engineering 3. Halstead, M. H., Elements of SoJhtare Economics, Englewood Cliffs, New Science, New York...1983, pp. 639-648. 35 35 - Bibliography Beizer, B., Software System Testing and Pressman , Roger S., Software Engineering:QualtyO Assurance, New York: Van
SOFTWARE ENGINEERING INSTITUTE (SEI)
The Software Engineering Institute (SEI) is a federally funded research and development center established in 1984 by the U.S. Department of Defense and operated by Carnegie Mellon University. SEI has a broad charter to provide leadership in the practice of software engineering t...
7 Processes that Enable NASA Software Engineering Technologies: Value-Added Process Engineering
NASA Technical Reports Server (NTRS)
Housch, Helen; Godfrey, Sally
2011-01-01
The presentation reviews Agency process requirements and the purpose, benefits, and experiences or seven software engineering processes. The processes include: product integration, configuration management, verification, software assurance, measurement and analysis, requirements management, and planning and monitoring.
NASA Technical Reports Server (NTRS)
1989-01-01
001 is an integrated tool suited for automatically developing ultra reliable models, simulations and software systems. Developed and marketed by Hamilton Technologies, Inc. (HTI), it has been applied in engineering, manufacturing, banking and software tools development. The software provides the ability to simplify the complex. A system developed with 001 can be a prototype or fully developed with production quality code. It is free of interface errors, consistent, logically complete and has no data or control flow errors. Systems can be designed, developed and maintained with maximum productivity. Margaret Hamilton, President of Hamilton Technologies, also directed the research and development of USE.IT, an earlier product which was the first computer aided software engineering product in the industry to concentrate on automatically supporting the development of an ultrareliable system throughout its life cycle. Both products originated in NASA technology developed under a Johnson Space Center contract.
ERIC Educational Resources Information Center
Kyng, Timothy; Tickle, Leonie; Wood, Leigh
2013-01-01
Software may be used in university teaching both to enhance student learning of discipline-content knowledge and skills, and to equip students with capabilities that will be useful in their future careers. Although research has indicated that software may be used as an effective way of engaging students and enhancing learning in certain scenarios,…
2009-11-01
interest of scientific and technical information exchange. This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a...an interesting conti- nuum between how many different requirements a program must satisfy: the more complex and diverse the requirements, the more... Gender differences in approaches to end-user software development have also been reported in debugging feature usage [1] and in end-user web programming
Can I Trust This Software Package? An Exercise in Validation of Computational Results
ERIC Educational Resources Information Center
Shacham, Mordechai; Brauner, Neima; Ashurst, W. Robert; Cutlip, Michael B.
2008-01-01
Mathematical software packages such as Polymath, MATLAB, and Mathcad are currently widely used for engineering problem solving. Applications of several of these packages to typical chemical engineering problems have been demonstrated by Cutlip, et al. The main characteristic of these packages is that they provide a "problem-solving environment…
Application of Plagiarism Screening Software in the Chemical Engineering Curriculum
ERIC Educational Resources Information Center
Cooper, Matthew E.; Bullard, Lisa G.
2014-01-01
Plagiarism is an area of increasing concern for written ChE assignments, such as laboratory and design reports, due to ease of access to text and other materials via the internet. This study examines the application of plagiarism screening software to four courses in a university chemical engineering curriculum. The effectiveness of plagiarism…
Using Articulate Virtual Laboratories in Teaching Energy Conversion at the U.S. Naval Academy.
ERIC Educational Resources Information Center
Wu, C.
1998-01-01
The Mechanical Engineering Department at the U.S. Naval Academy is currently evaluating a new teaching method which uses computer software. Utilizing the thermodynamic-based software CyclePad, Intelligent Computer Aided Instruction is incorporated in an advanced energy conversion course for Mechanical Engineering students. The CyclePad software…
PBL-SEE: An Authentic Assessment Model for PBL-Based Software Engineering Education
ERIC Educational Resources Information Center
dos Santos, Simone C.
2017-01-01
The problem-based learning (PBL) approach has been successfully applied to teaching software engineering thanks to its principles of group work, learning by solving real problems, and learning environments that match the market realities. However, the lack of well-defined methodologies and processes for implementing the PBL approach represents a…
NASA Astrophysics Data System (ADS)
Hussain, I. S.; Azlee Hamid, Fazrena
2017-08-01
Technical skills are one of the attributes, an engineering student must attain by the time of graduation, as per recommended by Engineering Accreditation Council (EAC). This paper describes the development of technical skills, Programme Outcome (PO) number 5, in students taking the Bachelor of Electrical Power Engineering (BEPE) programme in Universiti Tenaga Nasional (UNITEN). Seven courses are identified to address the technical skills development. The course outcomes (CO) of the courses are designed to instill the relevant technical skills with suitable laboratory activities. Formative and summative assessments are carried out to gauge students’ acquisition of the skills. Finally, to measure the attainment of the technical skills, key course concept is used. The concept has been implemented since 2013, focusing on improvement of the programme instead of the cohort. From the PO attainment analysis method, three different levels of PO attainment can be calculated: from the programme level, down to the course and student levels. In this paper, the attainment of the courses mapped to PO5 is measured. It is shown that Power Electronics course, which is the key course for PO5, has a strong attainment at above 90%. PO5 of other six courses are also achieved. As a conclusion, by embracing outcome-based education (OBE), the BEPE programme has a sound method to develop technical psychomotor skills in the degree students.
ERIC Educational Resources Information Center
IEEE Conference on Software Engineering Education and Training, Proceedings (MS), 2012
2012-01-01
The Conference on Software Engineering Education and Training (CSEE&T) is the premier international peer-reviewed conference, sponsored by the Institute of Electrical and Electronics Engineers, Inc. (IEEE) Computer Society, which addresses all major areas related to software engineering education, training, and professionalism. This year, as…
NASA Astrophysics Data System (ADS)
Kyng, Timothy; Tickle, Leonie; Wood, Leigh
2013-03-01
Software may be used in university teaching both to enhance student learning of discipline-content knowledge and skills, and to equip students with capabilities that will be useful in their future careers. Although research has indicated that software may be used as an effective way of engaging students and enhancing learning in certain scenarios, relatively little is known about academic practices with regard to the use of software more generally or about the extent to which this software is subsequently used by graduates in the workplace. This article reports on the results of a survey of academics in quantitative and financial disciplines, which is part of a broader study also encompassing recent graduates and employers. Results indicate that a variety of software packages are in widespread use in university programmes in quantitative and financial disciplines. Most surveyed academics believe that the use of software enhances learning and enables students to solve otherwise intractable problems. A majority also rate spreadsheet skills in particular as very important for the employability of graduates. A better understanding of the use of software in university teaching points the way to how curricula can be revised to enhance learning and prepare graduates for professional work.
Training in software used by practising engineers should be included in university curricula
NASA Astrophysics Data System (ADS)
Silveira, A.; Perdigones, A.; García, J. L.
2009-04-01
Deally, an engineering education should prepare students, i.e., emerging engineers, to use problem-solving processes that synergistically combine creativity and imagination with rigour and discipline. Recently, pressures on curricula have resulted in the development of software-specific courses, often to the detriment of the understanding of theory [1]. However, it is also true that there is a demand for information technology courses by students other than computer science majors [2]. The emphasis on training engineers may be best placed on answering the needs of industry; indeed, many proposals are now being made to try to reduce the gap between the educational and industrial communities [3]. Training in the use of certain computer programs may be one way of better preparing engineering undergraduates for eventual employment in industry. However, industry's needs in this respect must first be known. The aim of this work was to determine which computer programs are used by practising agricultural engineers with the aim of incorporating training in their use into our department's teaching curriculum. The results showed that 72% of their working hours involved the use computer programs. The software packages most commonly used were Microsoft Office (used by 79% of respondents) and CAD (56%), as well as budgeting (27%), statistical (21%), engineering (15%) and GIS (13%) programs. As a result of this survey our university department opened an additional computer suite in order to provide students practical experience in the use of Microsoft Excel, budgeting and engineering software. The results of this survey underline the importance of computer software training in this and perhaps other fields of engineering. [1] D. J. Moore, and D. R. Voltmer, "Curriculum for an engineering renaissance," IEEE Trans. Educ., vol. 46, pp. 452-455, Nov. 2003. [2] N. Kock, R. Aiken, and C. Sandas, "Using complex IT in specific domains: developing and assessing a course for nonmajors," IEEE Trans. Educ., vol. 45, pp. 50- 56, Feb. 2002. [3] I. Vélez, and J. F. Sevillano, "A course to train digital hardware designers for industry," IEEE Trans. Educ., vol. 50, pp. 236-243, Aug. 2007. Acknowledgement: This work was supported in part by the Universidad Politécnica de Madrid, Spain.
ERIC Educational Resources Information Center
Kösa, Temel
2016-01-01
The purpose of this study was to investigate the effects of using dynamic geometry software on preservice mathematics teachers' spatial visualization skills and to determine whether spatial visualization skills can be a predictor of success in learning analytic geometry of space. The study used a quasi-experimental design with a control group.…
Some Future Software Engineering Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Boehm, Barry
This paper provides an update and extension of a 2006 paper, “Some Future Trends and Implications for Systems and Software Engineering Processes,” Systems Engineering, Spring 2006. Some of its challenges and opportunities are similar, such as the need to simultaneously achieve high levels of both agility and assurance. Others have emerged as increasingly important, such as the challenges of dealing with ultralarge volumes of data, with multicore chips, and with software as a service. The paper is organized around eight relatively surprise-free trends and two “wild cards” whose trends and implications are harder to foresee. The eight surprise-free trends are:
NASA Technical Reports Server (NTRS)
Howard, Ayanna
2005-01-01
The Fuzzy Logic Engine is a software package that enables users to embed fuzzy-logic modules into their application programs. Fuzzy logic is useful as a means of formulating human expert knowledge and translating it into software to solve problems. Fuzzy logic provides flexibility for modeling relationships between input and output information and is distinguished by its robustness with respect to noise and variations in system parameters. In addition, linguistic fuzzy sets and conditional statements allow systems to make decisions based on imprecise and incomplete information. The user of the Fuzzy Logic Engine need not be an expert in fuzzy logic: it suffices to have a basic understanding of how linguistic rules can be applied to the user's problem. The Fuzzy Logic Engine is divided into two modules: (1) a graphical-interface software tool for creating linguistic fuzzy sets and conditional statements and (2) a fuzzy-logic software library for embedding fuzzy processing capability into current application programs. The graphical- interface tool was developed using the Tcl/Tk programming language. The fuzzy-logic software library was written in the C programming language.
Sharing Research Models: Using Software Engineering Practices for Facilitation
Bryant, Stephanie P.; Solano, Eric; Cantor, Susanna; Cooley, Philip C.; Wagener, Diane K.
2011-01-01
Increasingly, researchers are turning to computational models to understand the interplay of important variables on systems’ behaviors. Although researchers may develop models that meet the needs of their investigation, application limitations—such as nonintuitive user interface features and data input specifications—may limit the sharing of these tools with other research groups. By removing these barriers, other research groups that perform related work can leverage these work products to expedite their own investigations. The use of software engineering practices can enable managed application production and shared research artifacts among multiple research groups by promoting consistent models, reducing redundant effort, encouraging rigorous peer review, and facilitating research collaborations that are supported by a common toolset. This report discusses three established software engineering practices— the iterative software development process, object-oriented methodology, and Unified Modeling Language—and the applicability of these practices to computational model development. Our efforts to modify the MIDAS TranStat application to make it more user-friendly are presented as an example of how computational models that are based on research and developed using software engineering practices can benefit a broader audience of researchers. PMID:21687780
Modelling of diesel engine fuelled with biodiesel using engine simulation software
NASA Astrophysics Data System (ADS)
Said, Mohd Farid Muhamad; Said, Mazlan; Aziz, Azhar Abdul
2012-06-01
This paper is about modelling of a diesel engine that operates using biodiesel fuels. The model is used to simulate or predict the performance and combustion of the engine by simplified the geometry of engine component in the software. The model is produced using one-dimensional (1D) engine simulation software called GT-Power. The fuel properties library in the software is expanded to include palm oil based biodiesel fuels. Experimental works are performed to investigate the effect of biodiesel fuels on the heat release profiles and the engine performance curves. The model is validated with experimental data and good agreement is observed. The simulation results show that combustion characteristics and engine performances differ when biodiesel fuels are used instead of no. 2 diesel fuel.
Milestones in Software Engineering and Knowledge Engineering History: A Comparative Review
del Águila, Isabel M.; Palma, José; Túnez, Samuel
2014-01-01
We present a review of the historical evolution of software engineering, intertwining it with the history of knowledge engineering because “those who cannot remember the past are condemned to repeat it.” This retrospective represents a further step forward to understanding the current state of both types of engineerings; history has also positive experiences; some of them we would like to remember and to repeat. Two types of engineerings had parallel and divergent evolutions but following a similar pattern. We also define a set of milestones that represent a convergence or divergence of the software development methodologies. These milestones do not appear at the same time in software engineering and knowledge engineering, so lessons learned in one discipline can help in the evolution of the other one. PMID:24624046
Milestones in software engineering and knowledge engineering history: a comparative review.
del Águila, Isabel M; Palma, José; Túnez, Samuel
2014-01-01
We present a review of the historical evolution of software engineering, intertwining it with the history of knowledge engineering because "those who cannot remember the past are condemned to repeat it." This retrospective represents a further step forward to understanding the current state of both types of engineerings; history has also positive experiences; some of them we would like to remember and to repeat. Two types of engineerings had parallel and divergent evolutions but following a similar pattern. We also define a set of milestones that represent a convergence or divergence of the software development methodologies. These milestones do not appear at the same time in software engineering and knowledge engineering, so lessons learned in one discipline can help in the evolution of the other one.
Consolidated View on Space Software Engineering Problems - An Empirical Study
NASA Astrophysics Data System (ADS)
Silva, N.; Vieira, M.; Ricci, D.; Cotroneo, D.
2015-09-01
Independent software verification and validation (ISVV) has been a key process for engineering quality assessment for decades, and is considered in several international standards. The “European Space Agency (ESA) ISVV Guide” is used for the European Space market to drive the ISVV tasks and plans, and to select applicable tasks and techniques. Software artefacts have room for improvement due to the amount if issues found during ISVV tasks. This article presents the analysis of the results of a large set of ISVV issues originated from three different ESA missions-amounting to more than 1000 issues. The study presents the main types, triggers and impacts related to the ISVV issues found and sets the path for a global software engineering improvement based on the most common deficiencies identified for space projects.
NASA Technical Reports Server (NTRS)
Eckhardt, Dave E., Jr.; Jipping, Michael J.; Wild, Chris J.; Zeil, Steven J.; Roberts, Cathy C.
1993-01-01
A study of computer engineering tool integration using the Portable Common Tool Environment (PCTE) Public Interface Standard is presented. Over a 10-week time frame, three existing software products were encapsulated to work in the Emeraude environment, an implementation of the PCTE version 1.5 standard. The software products used were a computer-aided software engineering (CASE) design tool, a software reuse tool, and a computer architecture design and analysis tool. The tool set was then demonstrated to work in a coordinated design process in the Emeraude environment. The project and the features of PCTE used are described, experience with the use of Emeraude environment over the project time frame is summarized, and several related areas for future research are summarized.
Critical Thinking Disposition: The Effects of Infusion Approach in Engineering Drawing
ERIC Educational Resources Information Center
Darby, Norazlinda Mohd; Rashid, Abdullah Mat
2017-01-01
Critical Thinking Disposition is known as an important factor that drives a student to use Higher Order Thinking Skills (HOTS) in order to solve engineering drawing problems. Infusing them while teaching the subject may enhance students' disposition and higher order thinking skills. However, no research has been done in critical thinking…
ERIC Educational Resources Information Center
Wells, John G.
2016-01-01
Though not empirically established as an efficacious pedagogy for promoting higher order thinking skills, technological/engineering design-based learning in K-12 STEM education is increasingly embraced as a core instructional method for integrative STEM learning that promotes the development of student critical thinking skills (Honey, Pearson,…
An Online Support Site for Preparation of Oral Presentations in Science and Engineering
ERIC Educational Resources Information Center
Kunioshi, Nilson; Noguchi, Judy; Hayashi, Hiroko; Tojo, Kazuko
2012-01-01
Oral communication skills are essential for engineers today and, as they are included in accreditation criteria of educational programmes, their teaching and evaluation deserve attention. However, concrete aspects as to what should be taught and evaluated in relation to oral communication skills have not been sufficiently established. In this…
"Star Power" for Teaching Professional Skills to Engineering Students
ERIC Educational Resources Information Center
Goh, Suk Meng
2012-01-01
The objective of this study is to evaluate the potential of a game called "Star Power" to teach professional skills to mechanical engineering undergraduates. The game was conducted as an activity in a final year Professional Practice unit. A survey in the form of a questionnaire was administered to participating students in the following…
Effective Engineering Presentations through Teaching Visual Literacy Skills.
ERIC Educational Resources Information Center
Kerns, H. Dan; And Others
This paper describes a faculty resource team in the Bradley University (Illinois) Department of Industrial Engineering that works with student project teams in an effort to improve their visualization and oral presentation skills. Students use state of the art technology to develop and display their visuals. In addition to technology, students are…
Cognitive Apprenticeship and the Supervision of Science and Engineering Research Assistants
ERIC Educational Resources Information Center
Maher, Michelle A.; Gilmore, Joanna A.; Feldon, David F.; Davis, Telesia E.
2013-01-01
We explore and critically reflect on the research development of eight science or engineering doctoral students serving as research assistants over the course of an academic year. We use a cognitive apprenticeship framework, assumed to explain doctoral students' skill development, to interpret narratives of skill development for students and their…
An Online Graduate Requirements Engineering Course
ERIC Educational Resources Information Center
Kilicay-Ergin, N.; Laplante, P. A.
2013-01-01
Requirements engineering is one of the fundamental knowledge areas in software and systems engineering graduate curricula. Recent changes in educational delivery and student demographics have created new challenges for requirements engineering education. In particular, there is an increasing demand for online education for working professionals.…
FY 2002 Report on Software Visualization Techniques for IV and V
NASA Technical Reports Server (NTRS)
Fotta, Michael E.
2002-01-01
One of the major challenges software engineers often face in performing IV&V is developing an understanding of a system created by a development team they have not been part of. As budgets shrink and software increases in complexity, this challenge will become even greater as these software engineers face increased time and resource constraints. This research will determine which current aspects of providing this understanding (e.g., code inspections, use of control graphs, use of adjacency matrices, requirements traceability) are critical to the performing IV&V and amenable to visualization techniques. We will then develop state-of-the-art software visualization techniques to facilitate the use of these aspects to understand software and perform IV&V.
Consistent Evolution of Software Artifacts and Non-Functional Models
2014-11-14
induce bad software performance)? 15. SUBJECT TERMS EOARD, Nano particles, Photo-Acoustic Sensors, Model-Driven Engineering ( MDE ), Software Performance...Università degli Studi dell’Aquila, Via Vetoio, 67100 L’Aquila, Italy Email: vittorio.cortellessa@univaq.it Web : http: // www. di. univaq. it/ cortelle/ Phone...Model-Driven Engineering ( MDE ), Software Performance Engineering (SPE), Change Propagation, Performance Antipatterns. For sake of readability of the
The Effect of AOP on Software Engineering, with Particular Attention to OIF and Event Quantification
NASA Technical Reports Server (NTRS)
Havelund, Klaus; Filman, Robert; Korsmeyer, David (Technical Monitor)
2003-01-01
We consider the impact of Aspect-Oriented Programming on Software Engineering, and, in particular, analyze two AOP systems, one of which does component wrapping and the other, quantification over events, for their software engineering effects.
Second Generation Product Line Engineering Takes Hold in the DoD
2014-01-01
Feature- Oriented Domain Analysis ( FODA ) Feasibility Study” (CMU/SEI-90- TR-021, ADA235785). Pittsburgh, PA: Software Engineering Institute...software product line engineering and software architecture documentation and analysis . Clements is co-author of three practitioner-oriented books about
The Influence of Motor Skills on Measurement Accuracy
NASA Astrophysics Data System (ADS)
Brychta, Petr; Sadílek, Marek; Brychta, Josef
2016-10-01
This innovative study trying to do interdisciplinary interface at first view different ways fields: kinantropology and mechanical engineering. A motor skill is described as an action which involves the movement of muscles in a body. Gross motor skills permit functions as a running, jumping, walking, punching, lifting and throwing a ball, maintaining a body balance, coordinating etc. Fine motor skills captures smaller neuromuscular actions, such as holding an object between the thumb and a finger. In mechanical inspection, the accuracy of measurement is most important aspect. The accuracy of measurement to some extent is also dependent upon the sense of sight or sense of touch associated with fine motor skills. It is therefore clear that the level of motor skills will affect the precision and accuracy of measurement in metrology. Aim of this study is literature review to find out fine motor skills level of individuals and determine the potential effect of different fine motor skill performance on precision and accuracy of mechanical engineering measuring.
A proven approach for more effective software development and maintenance
NASA Technical Reports Server (NTRS)
Pajerski, Rose; Hall, Dana; Sinclair, Craig
1994-01-01
Modern space flight mission operations and associated ground data systems are increasingly dependent upon reliable, quality software. Critical functions such as command load preparation, health and status monitoring, communications link scheduling and conflict resolution, and transparent gateway protocol conversion are routinely performed by software. Given budget constraints and the ever increasing capabilities of processor technology, the next generation of control centers and data systems will be even more dependent upon software across all aspects of performance. A key challenge now is to implement improved engineering, management, and assurance processes for the development and maintenance of that software; processes that cost less, yield higher quality products, and that self-correct for continual improvement evolution. The NASA Goddard Space Flight Center has a unique experience base that can be readily tapped to help solve the software challenge. Over the past eighteen years, the Software Engineering Laboratory within the code 500 Flight Dynamics Division has evolved a software development and maintenance methodology that accommodates the unique characteristics of an organization while optimizing and continually improving the organization's software capabilities. This methodology relies upon measurement, analysis, and feedback much analogous to that of control loop systems. It is an approach with a time-tested track record proven through repeated applications across a broad range of operational software development and maintenance projects. This paper describes the software improvement methodology employed by the Software Engineering Laboratory, and how it has been exploited within the Flight Dynamics Division with GSFC Code 500. Examples of specific improvement in the software itself and its processes are presented to illustrate the effectiveness of the methodology. Finally, the initial findings are given when this methodology was applied across the mission operations and ground data systems software domains throughout Code 500.
Collected Software Engineering Papers, Volume 10
NASA Technical Reports Server (NTRS)
1992-01-01
This document is a collection of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) from Oct. 1991 - Nov. 1992. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. Although these papers cover several topics related to software engineering, they do not encompass the entire scope of SEL activities and interests. Additional information about the SEL and its research efforts may be obtained from the sources listed in the bibliography at the end of this document. For the convenience of this presentation, the 11 papers contained here are grouped into 5 major sections: (1) the Software Engineering Laboratory; (2) software tools studies; (3) software models studies; (4) software measurement studies; and (5) Ada technology studies.
Implementing Software Safety in the NASA Environment
NASA Technical Reports Server (NTRS)
Wetherholt, Martha S.; Radley, Charles F.
1994-01-01
Until recently, NASA did not consider allowing computers total control of flight systems. Human operators, via hardware, have constituted the ultimate safety control. In an attempt to reduce costs, NASA has come to rely more and more heavily on computers and software to control space missions. (For example. software is now planned to control most of the operational functions of the International Space Station.) Thus the need for systematic software safety programs has become crucial for mission success. Concurrent engineering principles dictate that safety should be designed into software up front, not tested into the software after the fact. 'Cost of Quality' studies have statistics and metrics to prove the value of building quality and safety into the development cycle. Unfortunately, most software engineers are not familiar with designing for safety, and most safety engineers are not software experts. Software written to specifications which have not been safety analyzed is a major source of computer related accidents. Safer software is achieved step by step throughout the system and software life cycle. It is a process that includes requirements definition, hazard analyses, formal software inspections, safety analyses, testing, and maintenance. The greatest emphasis is placed on clearly and completely defining system and software requirements, including safety and reliability requirements. Unfortunately, development and review of requirements are the weakest link in the process. While some of the more academic methods, e.g. mathematical models, may help bring about safer software, this paper proposes the use of currently approved software methodologies, and sound software and assurance practices to show how, to a large degree, safety can be designed into software from the start. NASA's approach today is to first conduct a preliminary system hazard analysis (PHA) during the concept and planning phase of a project. This determines the overall hazard potential of the system to be built. Shortly thereafter, as the system requirements are being defined, the second iteration of hazard analyses takes place, the systems hazard analysis (SHA). During the systems requirements phase, decisions are made as to what functions of the system will be the responsibility of software. This is the most critical time to affect the safety of the software. From this point, software safety analyses as well as software engineering practices are the main focus for assuring safe software. While many of the steps proposed in this paper seem like just sound engineering practices, they are the best technical and most cost effective means to assure safe software within a safe system.
A Matrix Approach to Software Process Definition
NASA Technical Reports Server (NTRS)
Schultz, David; Bachman, Judith; Landis, Linda; Stark, Mike; Godfrey, Sally; Morisio, Maurizio; Powers, Edward I. (Technical Monitor)
2000-01-01
The Software Engineering Laboratory (SEL) is currently engaged in a Methodology and Metrics program for the Information Systems Center (ISC) at Goddard Space Flight Center (GSFC). This paper addresses the Methodology portion of the program. The purpose of the Methodology effort is to assist a software team lead in selecting and tailoring a software development or maintenance process for a specific GSFC project. It is intended that this process will also be compliant with both ISO 9001 and the Software Engineering Institute's Capability Maturity Model (CMM). Under the Methodology program, we have defined four standard ISO-compliant software processes for the ISC, and three tailoring criteria that team leads can use to categorize their projects. The team lead would select a process and appropriate tailoring factors, from which a software process tailored to the specific project could be generated. Our objective in the Methodology program is to present software process information in a structured fashion, to make it easy for a team lead to characterize the type of software engineering to be performed, and to apply tailoring parameters to search for an appropriate software process description. This will enable the team lead to follow a proven, effective software process and also satisfy NASA's requirement for compliance with ISO 9001 and the anticipated requirement for CMM assessment. This work is also intended to support the deployment of sound software processes across the ISC.
Use of an Automatic Problem Generator to Teach Basic Skills in a First Course in Assembly Language.
ERIC Educational Resources Information Center
Benander, Alan; And Others
1989-01-01
Discussion of the use of computer aided instruction (CAI) and instructional software in college level courses highlights an automatic problem generator, AUTOGEN, that was written for computer science students learning assembly language. Design of the software is explained, and student responses are reported. (nine references) (LRW)
Teaching Computer Skills to Beginners: What and How?
ERIC Educational Resources Information Center
Dunsworth, Qi; Martin, Florence; Igoe, Ann
2004-01-01
This report describes an evaluation of Computer Literacy, which is an undergraduate general studies course, offered by College of Education at a large southwestern university. The purpose of this course is to provide knowledge about computer and computing, and application skills in using Microsoft Office software. The course is coordinated by a…
NASA Technical Reports Server (NTRS)
Bruce, E. A.
1980-01-01
The software developed by the IPAD project, a new and very powerful tool for the implementation of integrated Computer Aided Design (CAD) systems in the aerospace engineering community, is discussed. The IPAD software is a tool and, as such, can be well applied or misapplied in any particular environment. The many benefits of an integrated CAD system are well documented, but there are few such systems in existence, especially in the mechanical engineering disciplines, and therefore little available experience to guide the implementor.
Parallel computers - Estimate errors caused by imprecise data
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik; Bernat, Andrew; Villa, Elsa; Mariscal, Yvonne
1991-01-01
A new approach to the problem of estimating errors caused by imprecise data is proposed in the context of software engineering. A software device is used to produce an ideal solution to the problem, when the computer is capable of computing errors of arbitrary programs. The software engineering aspect of this problem is to describe a device for computing the error estimates in software terms and then to provide precise numbers with error estimates to the user. The feasibility of the program capable of computing both some quantity and its error estimate in the range of possible measurement errors is demonstrated.
NASA Astrophysics Data System (ADS)
Tajudin, Nor'ain Mohd.; Saad, Noor Shah; Rahman, Nurulhuda Abd; Yahaya, Asmayati; Alimon, Hasimah; Dollah, Mohd. Uzi; Abd Karim, Mohd. Mustaman
2012-05-01
The objectives of this quantitative survey research were (1) to establish the level of scientific reasoning (SR) skills among science, mathematics and engineering (SME) undergraduates in Malaysian Institute of Higher Learning (IHL); (b) to identify the types of instructional methods in teaching SME at universities; and (c) to map instructional methods employed to the level of SR skills among the undergraduates. There were six universities according to zone involved in this study using the stratification random sampling technique. For each university, the faculties that involved were faculties which have degree students in science, mathematics and engineering programme. A total of 975 students were participated in this study. There were two instruments used in this study namely, the Lawson Scientific Reasoning Skills Test and the Lecturers' Teaching Style Survey. The descriptive statistics and the inferential statistics such as mean, t-test and Pearson correlation were used to analyze the data. Findings of the study showed that most students had concrete level of scientific reasoning skills where the overall mean was 3.23. The expert and delegator were dominant lecturers' teaching styles according to students' perception. In addition, there was no correlation between lecturers' teaching style and the level of scientific reasoning skills. Thus, this study cannot map the dominant lecturers' teaching style to the level of scientific reasoning skills of Science, Mathematics and Engineering undergraduates in Malaysian Public Institute of Higher Learning. Nevertheless, this study gave some indications that the expert and delegator teaching styles were not contributed to the development of students' scientific reasoning skills. This study can be used as a baseline for Science, Mathematics and Engineering undergraduates' level of scientific reasoning skills in Malaysian Public Institute of Higher Learning. Overall, this study also opens an endless source of other researchers to investigate more areas on scientific reasoning skills so that the potential instructional model can be developed to enhance students' level of scientific reasoning skills in Malaysian Public Institute of Higher Learning.
User's Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)
NASA Technical Reports Server (NTRS)
Frederick, Dean K.; DeCastro, Jonathan A.; Litt, Jonathan S.
2007-01-01
This report is a Users Guide for the NASA-developed Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) software, which is a transient simulation of a large commercial turbofan engine (up to 90,000-lb thrust) with a realistic engine control system. The software supports easy access to health, control, and engine parameters through a graphical user interface (GUI). C-MAPSS provides the user with a graphical turbofan engine simulation environment in which advanced algorithms can be implemented and tested. C-MAPSS can run user-specified transient simulations, and it can generate state-space linear models of the nonlinear engine model at an operating point. The code has a number of GUI screens that allow point-and-click operation, and have editable fields for user-specified input. The software includes an atmospheric model which allows simulation of engine operation at altitudes from sea level to 40,000 ft, Mach numbers from 0 to 0.90, and ambient temperatures from -60 to 103 F. The package also includes a power-management system that allows the engine to be operated over a wide range of thrust levels throughout the full range of flight conditions.
UNIX Writer's Workbench: Software for Streamlined Communication.
ERIC Educational Resources Information Center
Frase, Lawrence T; Diel, Mary
1986-01-01
Discusses computer editing and describes the capacities and features of an integrated software package, Writer's Workbench. Suggests ways in which this program can be used to improve writing skills. Reviews the effects of this program on technical users, college students, and high school students. (ML)
Evan Weaver Photo of Evan Weaver Evan Weaver Researcher III-Software Engineering Evan.Weaver , he works as a software engineer developing whole-building energy modeling tools. Prior to joining NREL, he worked in the biomedical industry as a software engineer, specializing in graphical user
NASA Technical Reports Server (NTRS)
Modesitt, Kenneth L.
1990-01-01
A prediction was made that the terms expert systems and knowledge acquisition would begin to disappear over the next several years. This is not because they are falling into disuse; it is rather that practitioners are realizing that they are valuable adjuncts to software engineering, in terms of problem domains addressed, user acceptance, and in development methodologies. A specific problem was discussed, that of constructing an automated test analysis system for the Space Shuttle Main Engine. In this domain, knowledge acquisition was part of requirements systems analysis, and was performed with the aid of a powerful inductive ESBT in conjunction with a computer aided software engineering (CASE) tool. The original prediction is not a very risky one -- it has already been accomplished.
A Software Tool for Integrated Optical Design Analysis
NASA Technical Reports Server (NTRS)
Moore, Jim; Troy, Ed; DePlachett, Charles; Montgomery, Edward (Technical Monitor)
2001-01-01
Design of large precision optical systems requires multi-disciplinary analysis, modeling, and design. Thermal, structural and optical characteristics of the hardware must be accurately understood in order to design a system capable of accomplishing the performance requirements. The interactions between each of the disciplines become stronger as systems are designed lighter weight for space applications. This coupling dictates a concurrent engineering design approach. In the past, integrated modeling tools have been developed that attempt to integrate all of the complex analysis within the framework of a single model. This often results in modeling simplifications and it requires engineering specialist to learn new applications. The software described in this presentation addresses the concurrent engineering task using a different approach. The software tool, Integrated Optical Design Analysis (IODA), uses data fusion technology to enable a cross discipline team of engineering experts to concurrently design an optical system using their standard validated engineering design tools.
The educational effectiveness of computer-based instruction
NASA Astrophysics Data System (ADS)
Renshaw, Carl E.; Taylor, Holly A.
2000-07-01
Although numerous studies have shown that computer-based education is effective for enhancing rote memorization, the impact of these tools on higher-order cognitive skills, such as critical thinking, is less clear. Existing methods for evaluating educational effectiveness, such as surveys, quizzes and pre- or post-interviews, may not be effective for evaluating impact on critical thinking skills because students are not always aware of the effects the software has on their thought processes. We review an alternative evaluation strategy whereby the student's mastery of a specific cognitive skill is directly assessed both before and after participating in a computer-based exercise. Methodologies for assessing cognitive skill are based on recent advances in the fields of cognitive science. Results from two studies show that computer-based exercises can positively impact the higher-order cognitive skills of some students. However, a given exercise will not impact all students equally. This suggests that further work is needed to understand how and why CAI software is more or less effective within a given population.
Human Engineering Modeling and Performance Lab Study Project
NASA Technical Reports Server (NTRS)
Oliva-Buisson, Yvette J.
2014-01-01
The HEMAP (Human Engineering Modeling and Performance) Lab is a joint effort between the Industrial and Human Engineering group and the KAVE (Kennedy Advanced Visualiations Environment) group. The lab consists of sixteen camera system that is used to capture human motions and operational tasks, through te use of a Velcro suit equipped with sensors, and then simulate these tasks in an ergonomic software package know as Jac, The Jack software is able to identify the potential risk hazards.
Glossary of Software Engineering Laboratory terms
NASA Technical Reports Server (NTRS)
1983-01-01
A glossary of terms used in the Software Engineering Laboratory (SEL) is given. The terms are defined within the context of the software development environment for flight dynamics at the Goddard Space Flight Center. A concise reference for clarifying the language employed in SEL documents and data collection forms is given. Basic software engineering concepts are explained and standard definitions for use by SEL personnel are established.
Software Reporting Metrics. Revision 2.
1985-11-01
MITRE Corporation and ESD. Some of the data has been obtained from Dr. Barry Boehm’s Software Engineering Economics (Ref. 1). Thanks are also given to...data level control management " SP = structured programming Barry W. Boehm, Software Engineering Economics, &©1981, p. 122. Reprinted by permission of...investigated and implemented in future prototypes. 43 REFERENCES For further reading: " 1. Boehm, Barry W. Software Engineering Economics; Englewood
Toward Reusable Graphics Components in Ada
1993-03-01
Then alternatives for obtaining well- engineered reusable software components were examined. Finally, the alternatives were analyzed, and the most...reusable software components. Chapter 4 describes detailed design and implementation strategies in building a well- engineered reusable set of components in...study. 2.2 The Object-Oriented Paradigm 2.2.1 The Need for Object-Oriented Techniques. Among software engineers the software crisis is a well known
Process improvement as an investment: Measuring its worth
NASA Technical Reports Server (NTRS)
Mcgarry, Frank; Jeletic, Kellyann
1993-01-01
This paper discusses return on investment (ROI) generated from software process improvement programs. It details the steps needed to compute ROI and compares these steps from the perspective of two process improvement approaches: the widely known Software Engineering Institute's capability maturity model and the approach employed by NASA's Software Engineering Laboratory (SEL). The paper then describes the specific investments made in the SEL over the past 18 years and discusses the improvements gained from this investment by the production organization in the SEL.
Global engineering teams - a programme promoting teamwork in engineering design and manufacturing
NASA Astrophysics Data System (ADS)
Oladiran, M. T.; Uziak, J.; Eisenberg, M.; Scheffer, C.
2011-05-01
Engineering graduates are expected to possess various competencies categorised into hard and soft skills. The hard skills are acquired through specific coursework, but the soft skills are often treated perfunctorily. Global Engineering Teams (GET) is a programme that promotes project-oriented tasks in virtual student teams working in collaboration with industry partners. Teamwork is a major success factor for GET as students always work in groups of varying sizes. A questionnaire-based survey of the 2008 cohort of GET students was conducted to assess teamwork, communication and conflict resolution among group members. The results confirmed that deliverables are readily achieved in teams and communication was open. A challenge of using virtual teams is the availability of high-speed Internet access. The GET programme shows that it is possible to deliver engineering design and manufacturing via industry/university collaboration. The programme also facilitates multidisciplinary teamwork at an international level.
NASA Astrophysics Data System (ADS)
Valentine, Andrew; Belski, Iouri; Hamilton, Margaret
2017-11-01
Problem-solving is a key engineering skill, yet is an area in which engineering graduates underperform. This paper investigates the potential of using web-based tools to teach students problem-solving techniques without the need to make use of class time. An idea generation experiment involving 90 students was designed. Students were surveyed about their study habits and reported they use electronic-based materials more than paper-based materials while studying, suggesting students may engage with web-based tools. Students then generated solutions to a problem task using either a paper-based template or an equivalent web interface. Students who used the web-based approach performed as well as students who used the paper-based approach, suggesting the technique can be successfully adopted and taught online. Web-based tools may therefore be adopted as supplementary material in a range of engineering courses as a way to increase students' options for enhancing problem-solving skills.
Software Requirements Specification for an Ammunition Management System
1986-09-01
thesis takes the form of a software requirements specification. Such a specification, according to Pressman [Ref. 7], establishes a complete...defined by Pressman , is depicted in Figure 1.1. 11 Figure 1.1 Generalized Software Life Cycle The common thread which binds the various phases together...application of software engineering principles requires an established methodology. This methodology, according to Pressman [Ref. 8:p. 151 is an
NASA Astrophysics Data System (ADS)
Mathers, Naomi; Pakakis, Michael; Christie, Ian
2011-09-01
The Victorian Space Science Education Centre (VSSEC) scenario-based programs, including the Mission to Mars and Mission to the Orbiting Space Laboratory, utilize methodologies such as hands-on applications, immersive learning, integrated technologies, critical thinking and mentoring. The use of a scenario provides a real-life context and purpose to what students might otherwise consider disjointed information. These programs engage students in the areas of maths and science, and highlight potential career paths in science and engineering. The introduction of a scenario-based program for primary students engages students in maths and science at a younger age, addressing the issues of basic numeracy and science literacy, thus laying the foundation for stronger senior science initiatives. Primary students absorb more information within the context of the scenario, and presenting information they can see, hear, touch and smell creates a memorable learning and sensory experience. The mission also supports development of teacher skills in the delivery of hands-on science and helps build their confidence to teach science. The Primary Mission to the Mars Base gives primary school students access to an environment and equipment not available in schools. Students wear flight suits for the duration of the program to immerse them in the experience of being an astronaut. Astronauts work in the VSSEC Space Laboratory, which is transformed into a Mars base for the primary program, to conduct experiments in areas such as robotics, human physiology, microbiology, nanotechnology and environmental science. Specialist mission control software has been developed by La Trobe University Centre for Games Technology to provide age appropriate Information and Communication Technology (ICT) based problem solving and support the concept of a mission. Students in Mission Control observe the astronauts working in the space laboratory and talk to them via the AV system. This interactive environment promotes high order thinking skills such as problem solving, team work, communication skills and leadership. To promote the teaching of science in the classroom, and prepare the students for their mission, the program includes a pre-visit program. These classroom-based lessons model best practice in effective science teaching and learning to support the development of confident primary science teachers.
NASA Technical Reports Server (NTRS)
1983-01-01
Reporting software programs provide formatted listings and summary reports of the Software Engineering Laboratory (SEL) data base contents. The operating procedures and system information for 18 different reporting software programs are described. Sample output reports from each program are provided.
Computer-based learning of spelling skills in children with and without dyslexia.
Kast, Monika; Baschera, Gian-Marco; Gross, Markus; Jäncke, Lutz; Meyer, Martin
2011-12-01
Our spelling training software recodes words into multisensory representations comprising visual and auditory codes. These codes represent information about letters and syllables of a word. An enhanced version, developed for this study, contains an additional phonological code and an improved word selection controller relying on a phoneme-based student model. We investigated the spelling behavior of children by means of learning curves based on log-file data of the previous and the enhanced software version. First, we compared the learning progress of children with dyslexia working either with the previous software (n = 28) or the adapted version (n = 37). Second, we investigated the spelling behavior of children with dyslexia (n = 37) and matched children without dyslexia (n = 25). To gain deeper insight into which factors are relevant for acquiring spelling skills, we analyzed the influence of cognitive abilities, such as attention functions and verbal memory skills, on the learning behavior. All investigations of the learning process are based on learning curve analyses of the collected log-file data. The results evidenced that those children with dyslexia benefit significantly from the additional phonological cue and the corresponding phoneme-based student model. Actually, children with dyslexia improve their spelling skills to the same extent as children without dyslexia and were able to memorize phoneme to grapheme correspondence when given the correct support and adequate training. In addition, children with low attention functions benefit from the structured learning environment. Generally, our data showed that memory sources are supportive cognitive functions for acquiring spelling skills and for using the information cues of a multi-modal learning environment.
NASA Astrophysics Data System (ADS)
2000-03-01
Delcam, a manufacturing software developer, has supplied substantial funding towards a UK Government initiative intended to revolutionize the study of design and technology in schools. The computer-aided design software for schools (CAD-CAM) programme will give students a bridge into industry by enabling them to employ video links with engineers at companies such as British Aerospace and Rolls Royce. They will then be able to convert their virtual reality designs into a finished product. When the revised National Curriculum comes into effect this year, CAD-CAM will become compulsory from Key Stage 3, reflecting the greater focus on work-related learning, as well as the added importance being given to Information and Communications Technology (ICT) within the curriculum. Under the new scheme, schools can use a range of software designed in the UK (currently used for such items as jet aircraft and Formula One racing cars), which is being made available free of charge. The Design and Technology Association is monitoring the programme and the schools taking part have had to propose targets, focused on curriculum innovation, pupil outcomes and staff development. Still on the theme of design is the `Young Foresight' project launched in January and inviting 13 to 14 year-olds to tackle the challenges of the future through designing a new product for the world of 2020. The aim here is to encourage creativity, enterprise and innovation among young people by giving them an idea of what is involved in the design and development of a successful product. The students will be supported by mentors drawn from the local business community and there will be related BBC schools television programmes early in March with classroom resources, teacher training and an interactive website. The first phase of the initiative, based on 100 schools from across England and Wales, should be completed by autumn 2000, with phase 2 for 3000 schools over a three-year period incorporating a further nine programmes reflecting the work of the national Foresight Panels. The national Foresight programme is about preparing for the future by identifying market drivers, threats and opportunities and using that knowledge to inform the decisions that need to be taken today. Details can be viewed at www.foresight.gov.uk And for those with any remaining untapped ingenuity, the deadline is fast approaching for this year's `Young Engineer for Britain' competition. Young people, either individually or in teams of up to four, are invited to demonstrate their engineering skills in an event with a total prize value of over £65 000. The individual winner takes away a personal prize of £2500 plus a trophy, and their school receives an additional £2500 for engineering teaching equipment. Entry details can be obtained from Young Engineers for Britain, Engineering Council, 10 Maltravers Street, London WC2R 3ER and the closing date is 28 April 2000 .
NASA Technical Reports Server (NTRS)
1983-01-01
The structure and functions of each reporting software program for the Software Engineering Laboratory data base are described. Baseline diagrams, module descriptions, and listings of program generation files are included.
Software engineering standards and practices
NASA Technical Reports Server (NTRS)
Durachka, R. W.
1981-01-01
Guidelines are presented for the preparation of a software development plan. The various phases of a software development project are discussed throughout its life cycle including a general description of the software engineering standards and practices to be followed during each phase.
Issues in Software Engineering of Relevance to Instructional Design
ERIC Educational Resources Information Center
Douglas, Ian
2006-01-01
Software engineering is popularly misconceived as being an upmarket term for programming. In a way, this is akin to characterizing instructional design as the process of creating PowerPoint slides. In both these areas, the construction of systems, whether they are learning or computer systems, is only one part of a systematic process. The most…
Enhancing non-technical skills by a multidisciplinary engineering summer school
NASA Astrophysics Data System (ADS)
Larsen, Peter Gorm; Kristiansen, Erik Lasse; Bennedsen, Jens; Bjerge, Kim
2017-11-01
In general engineering studies focus on the technical skills in their own discipline. However, in their subsequent industrial careers, a significant portion of their time needs to be devoted to non-technical skills. In addition, in an increasingly globalised world collaboration in teams across cultures and disciplines is paramount to the creation of new and innovative products. In order to enhance the non-technical skills for groups of engineering students a series of innovation courses has been arranged and delivered in close collaboration with an industrial company (Bang & Olufsen). These courses have been organised as summer schools called 'Conceptual Design and Development of Innovative Products' (CD-DIP) and delivered outside the usual educational environment. In order to explore the impact of this single course, we have conducted a study among the students participating from 2007 to 2013. This has been carried out both qualitatively using interviews with selected students as well as quantitatively using a survey. The results are outstanding in demonstrating that the non-technical skills obtained in this single course have been of high value for a large portion of the students' subsequent professional life.
ClassCompass: A Software Design Mentoring System
ERIC Educational Resources Information Center
Coelho, Wesley; Murphy, Gail
2007-01-01
Becoming a quality software developer requires practice under the guidance of an expert mentor. Unfortunately, in most academic environments, there are not enough experts to provide any significant design mentoring for software engineering students. To address this problem, we present a collaborative software design tool intended to maximize an…
Engineering visualization utilizing advanced animation
NASA Technical Reports Server (NTRS)
Sabionski, Gunter R.; Robinson, Thomas L., Jr.
1989-01-01
Engineering visualization is the use of computer graphics to depict engineering analysis and simulation in visual form from project planning through documentation. Graphics displays let engineers see data represented dynamically which permits the quick evaluation of results. The current state of graphics hardware and software generally allows the creation of two types of 3D graphics. The use of animated video as an engineering visualization tool is presented. The engineering, animation, and videography aspects of animated video production are each discussed. Specific issues include the integration of staffing expertise, hardware, software, and the various production processes. A detailed explanation of the animation process reveals the capabilities of this unique engineering visualization method. Automation of animation and video production processes are covered and future directions are proposed.
Reaction time and anticipatory skill of athletes in open and closed skill-dominated sport.
Nuri, Leila; Shadmehr, Azadeh; Ghotbi, Nastaran; Attarbashi Moghadam, Behrouz
2013-01-01
In sports, reaction time and anticipatory skill are critical aspects of perceptual abilities. To date, no study has compared reaction time and anticipatory skill of athletes from open and closed skill-dominated sport. Accordingly, the present study investigated whether a difference exists in sensory-cognitive skills between these two different sport domains. Eleven volleyball players and 11 sprinters participated in this experiment. Reaction time and anticipatory skill of both groups were recorded by a custom-made software called SART (speed anticipation and reaction time test). This software consists of six sensory-cognitive tests that evaluate visual choice reaction time, visual complex choice reaction time, auditory choice reaction time, auditory complex choice reaction time, and anticipatory skill of the high speed and low speed of the ball. For each variable, an independent t-test was performed. Results suggested that sprinters were better in both auditory reaction times (P<0.001 for both tests) and volleyball players were better in both anticipatory skill tests (P = 0.007 and P = 0.04 for anticipatory skill of the high speed and low speed of the ball, respectively). However, no significant differences were found in both visual choice reaction time tests (P > 0.05 for both visual reaction time tests). It is concluded that athletes have greater sensory-cognitive skills related to their specific sport domain either open or closed.
Díaz-Zuccarini, V.; Narracott, A.J.; Burriesci, G.; Zervides, C.; Rafiroiu, D.; Jones, D.; Hose, D.R.; Lawford, P.V.
2009-01-01
This paper describes the use of diverse software tools in cardiovascular applications. These tools were primarily developed in the field of engineering and the applications presented push the boundaries of the software to address events related to venous and arterial valve closure, exploration of dynamic boundary conditions or the inclusion of multi-scale boundary conditions from protein to organ levels. The future of cardiovascular research and the challenges that modellers and clinicians face from validation to clinical uptake are discussed from an end-user perspective. PMID:19487202
Díaz-Zuccarini, V; Narracott, A J; Burriesci, G; Zervides, C; Rafiroiu, D; Jones, D; Hose, D R; Lawford, P V
2009-07-13
This paper describes the use of diverse software tools in cardiovascular applications. These tools were primarily developed in the field of engineering and the applications presented push the boundaries of the software to address events related to venous and arterial valve closure, exploration of dynamic boundary conditions or the inclusion of multi-scale boundary conditions from protein to organ levels. The future of cardiovascular research and the challenges that modellers and clinicians face from validation to clinical uptake are discussed from an end-user perspective.
Army/NASA small turboshaft engine digital controls research program
NASA Technical Reports Server (NTRS)
Sellers, J. F.; Baez, A. N.
1981-01-01
The emphasis of a program to conduct digital controls research for small turboshaft engines is on engine test evaluation of advanced control logic using a flexible microprocessor based digital control system designed specifically for research on advanced control logic. Control software is stored in programmable memory. New control algorithms may be stored in a floppy disk and loaded directly into memory. This feature facilitates comparative evaluation of different advanced control modes. The central processor in the digital control is an Intel 8086 16 bit microprocessor. Control software is programmed in assembly language. Software checkout is accomplished prior to engine test by connecting the digital control to a real time hybrid computer simulation of the engine. The engine currently installed in the facility has a hydromechanical control modified to allow electrohydraulic fuel metering and VG actuation by the digital control. Simulation results are presented which show that the modern control reduces the transient rotor speed droop caused by unanticipated load changes such as cyclic pitch or wind gust transients.
Tired of Teaching Software Applications?
ERIC Educational Resources Information Center
Lippert, Susan K.; Granger, Mary J.
Many university business schools have an instructor-led course introducing computer software application packages. This course is often required for all undergraduates and is a prerequisite to other courses, such as accounting, finance, marketing, and operations management. Knowledge and skills gained in this course should enable students not only…
Experiences in Digital Circuit Design Courses: A Self-Study Platform for Learning Support
ERIC Educational Resources Information Center
Bañeres, David; Clarisó, Robert; Jorba, Josep; Serra, Montse
2014-01-01
The synthesis of digital circuits is a basic skill in all the bachelor programmes around the ICT area of knowledge, such as Computer Science, Telecommunication Engineering or Electrical Engineering. An important hindrance in the learning process of this skill is that the existing educational tools for the design of circuits do not allow the…
ERIC Educational Resources Information Center
Marshall, Matthew M.; Carrano, Andres L.; Dannels, Wendy A.
2016-01-01
Individuals who are deaf and hard-of-hearing (DHH) are underrepresented in science, technology, engineering, and mathematics (STEM) professions, and this may be due in part to their level of preparation in the development and retention of mathematical and problem-solving skills. An approach was developed that incorporates experiential learning and…
ERIC Educational Resources Information Center
Fries, Ryan; Cross, Brad; Zhou, Jianpeng; Verbais, Chad
2017-01-01
Because many engineering programs use capstone design courses and value strong communication abilities, authors sought to identify how student written communication skills changed because of industry-sponsored capstone design projects. A student exit survey was collected at the end of the capstone design course during faculty-led projects and…
Towards a mature measurement environment: Creating a software engineering research environment
NASA Technical Reports Server (NTRS)
Basili, Victor R.
1990-01-01
Software engineering researchers are building tools, defining methods, and models; however, there are problems with the nature and style of the research. The research is typically bottom-up, done in isolation so the pieces cannot be easily logically or physically integrated. A great deal of the research is essentially the packaging of a particular piece of technology with little indication of how the work would be integrated with other prices of research. The research is not aimed at solving the real problems of software engineering, i.e., the development and maintenance of quality systems in a productive manner. The research results are not evaluated or analyzed via experimentation or refined and tailored to the application environment. Thus, it cannot be easily transferred into practice. Because of these limitations we have not been able to understand the components of the discipline as a coherent whole and the relationships between various models of the process and product. What is needed is a top down experimental, evolutionary framework in which research can be focused, logically and physically integrated to produce quality software productively, and evaluated and tailored to the application environment. This implies the need for experimentation, which in turn implies the need for a laboratory that is associated with the artifact we are studying. This laboratory can only exist in an environment where software is being built, i.e., as part of a real software development and maintenance organization. Thus, we propose that Software Engineering Laboratory (SEL) type activities exist in all organizations to support software engineering research. We describe the SEL from a researcher's point of view, and discuss the corporate and government benefits of the SEL. The discussion focuses on the benefits to the research community.
WFF TOPEX Software Documentation Overview, May 1999. Volume 2
NASA Technical Reports Server (NTRS)
Brooks, Ronald L.; Lee, Jeffrey
2003-01-01
This document provides an overview'of software development activities and the resulting products and procedures developed by the TOPEX Software Development Team (SWDT) at Wallops Flight Facility, in support of the WFF TOPEX Engineering Assessment and Verification efforts.
Pawlik, Aleksandra; van Gelder, Celia W.G.; Nenadic, Aleksandra; Palagi, Patricia M.; Korpelainen, Eija; Lijnzaad, Philip; Marek, Diana; Sansone, Susanna-Assunta; Hancock, John; Goble, Carole
2017-01-01
Quality training in computational skills for life scientists is essential to allow them to deliver robust, reproducible and cutting-edge research. A pan-European bioinformatics programme, ELIXIR, has adopted a well-established and progressive programme of computational lab and data skills training from Software and Data Carpentry, aimed at increasing the number of skilled life scientists and building a sustainable training community in this field. This article describes the Pilot action, which introduced the Carpentry training model to the ELIXIR community. PMID:28781745
Pawlik, Aleksandra; van Gelder, Celia W G; Nenadic, Aleksandra; Palagi, Patricia M; Korpelainen, Eija; Lijnzaad, Philip; Marek, Diana; Sansone, Susanna-Assunta; Hancock, John; Goble, Carole
2017-01-01
Quality training in computational skills for life scientists is essential to allow them to deliver robust, reproducible and cutting-edge research. A pan-European bioinformatics programme, ELIXIR, has adopted a well-established and progressive programme of computational lab and data skills training from Software and Data Carpentry, aimed at increasing the number of skilled life scientists and building a sustainable training community in this field. This article describes the Pilot action, which introduced the Carpentry training model to the ELIXIR community.
Improvement of Engineering Students' Communication Skills in English through Extensive Reading
NASA Astrophysics Data System (ADS)
Nishizawa, Hitoshi; Yoshioka, Takayoshi; Itoh, Kazuaki
The students' communication skills in English have improved after introducing Extensive Reading courses into the curriculum of Electrical and Electronic Engineering Department. The students' average TOEIC scores, which used to be far lower than the ones of students in other educational institutions, have increased in recent two years. The students who used to avoid learning English have welcomed extensive reading of graded readers for foreign learners and books for native children of English. This is because the extensive reading causes less stress and it is enjoyable. The students who have read more than 0.2 million words of English texts have faster reading speed and more confidence in reading. They seem to change their reading style from English-to-Japanese translation (and comprehension in Japanese) to direct comprehension in English. Their listening comprehension is also improved. Extensive reading is an effective educational method to improve English communication skills of engineering students, and it also becomes a useful method of continuous education for engineers in need of improving their skills.
Learning from Fellow Engineering Students Who Have Current Professional Experience
ERIC Educational Resources Information Center
Davies, John W.; Rutherford, Ursula
2012-01-01
This paper presents an investigation of how experience-led content in an engineering degree can be strengthened by creating opportunities for engineering students to benefit from the knowledge, skills and resources of students with current professional experience. Students who study civil engineering part-time at Coventry University (while also…
Selection of software for mechanical engineering undergraduates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheah, C. T.; Yin, C. S.; Halim, T.
A major problem with the undergraduate mechanical course is the limited exposure of students to software packages coupled with the long learning curve on the existing software packages. This work proposes the use of appropriate software packages for the entire mechanical engineering curriculum to ensure students get sufficient exposure real life design problems. A variety of software packages are highlighted as being suitable for undergraduate work in mechanical engineering, e.g. simultaneous non-linear equations; uncertainty analysis; 3-D modeling software with the FEA; analysis tools for the solution of problems in thermodynamics, fluid mechanics, mechanical system design, and solid mechanics.
CCS-MIP: Low cost Customizable Control Centre
NASA Technical Reports Server (NTRS)
Labezin, Christian; Vielcanet, Pierre
1994-01-01
The positioning and station keeping of French national satellites are among the main missions of CNES French Space Agency CNES. The related experience and skills of the Toulouse Space Centre are reknown and often required at international level for a wide range of missions. CISI, a software engineering company, has been contributing during the last 20 years to the development of the French space programs, particularly in the field of space missions ground control segments. The CCS-MIP system, presented here, is a satellite positioning and station-keeping system designed to answer the CNES multi-mission needs, easily adaptable for a wide range of applications.
ERIC Educational Resources Information Center
Fisher, Dara R.; Bagiati, Aikaterini; Sarma, Sanjay
2017-01-01
As nations have sought to keep pace with rapid technological innovation, governments have renewed their focus on science, technology, engineering, and mathematics (STEM) education, with emphasis on developing both technical and non-technical skills in STEM students. This article examines which engineering-relevant skills may be developed by…
Empowering Engineering Students through Employability Skills
ERIC Educational Resources Information Center
Kaushal, Urvashi
2016-01-01
A professional course program like engineering strives to get the maximum number of its students placed through campus interviews. While communication skills have been added in all the engineering courses with the aim to improve their performance in placement, the syllabus mostly concentrates on the development of four language skills. The…
ERIC Educational Resources Information Center
Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.
Instructional materials are provided for a small gas engine course. A list of objectives appears first, followed by a list of internal parts and skills/competencies related to those parts for engine work, ignition and electrical systems, fuel system, crankcase lubrication system, arc welding skills, and gas welding skills. Outlines are provided…
Proceedings of the Ninth Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1984-01-01
Experiences in measurement, utilization, and evaluation of software methodologies, models, and tools are discussed. NASA's involvement in ever larger and more complex systems, like the space station project, provides a motive for the support of software engineering research and the exchange of ideas in such forums. The topics of current SEL research are software error studies, experiments with software development, and software tools.
FMT (Flight Software Memory Tracker) For Cassini Spacecraft-Software Engineering Using JAVA
NASA Technical Reports Server (NTRS)
Kan, Edwin P.; Uffelman, Hal; Wax, Allan H.
1997-01-01
The software engineering design of the Flight Software Memory Tracker (FMT) Tool is discussed in this paper. FMT is a ground analysis software set, consisting of utilities and procedures, designed to track the flight software, i.e., images of memory load and updatable parameters of the computers on-board Cassini spacecraft. FMT is implemented in Java.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert
2005-01-01
The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management andmore » software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.« less
Proceedings of the 14th Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1989-01-01
Several software related topics are presented. Topics covered include studies and experiment at the Software Engineering Laboratory at the Goddard Space Flight Center, predicting project success from the Software Project Management Process, software environments, testing in a reuse environment, domain directed reuse, and classification tree analysis using the Amadeus measurement and empirical analysis.
ERIC Educational Resources Information Center
Mitchell, Susan Marie
2012-01-01
Uncontrollable costs, schedule overruns, and poor end product quality continue to plague the software engineering field. Innovations formulated with the expectation to minimize or eliminate cost, schedule, and quality problems have generally fallen into one of three categories: programming paradigms, software tools, and software process…
NASA Technical Reports Server (NTRS)
1990-01-01
Papers presented at RICIS Software Engineering Symposium are compiled. The following subject areas are covered: flight critical software; management of real-time Ada; software reuse; megaprogramming software; Ada net; POSIX and Ada integration in the Space Station Freedom Program; and assessment of formal methods for trustworthy computer systems.
Retention, Success, and Satisfaction of Engineering Students Based on the First-Year Experience
ERIC Educational Resources Information Center
Prendergast, Lydia Q.
2013-01-01
A project-based course for first-year engineering students, called Engineering Exploration, was created an implemented with the goals of increasing retention, providing professional skills, increasing interest about engineering, and to aide in choosing an engineering major. Over 100 students have taken the course since its inception in Fall 2009.…
NASA Astrophysics Data System (ADS)
Noor, Ahmed K.
2013-12-01
Some of the recent attempts for improving and transforming engineering education are reviewed. The attempts aim at providing the entry level engineers with the skills needed to address the challenges of future large-scale complex systems and projects. Some of the frontier sectors and future challenges for engineers are outlined. The major characteristics of the coming intelligence convergence era (the post-information age) are identified. These include the prevalence of smart devices and environments, the widespread applications of anticipatory computing and predictive / prescriptive analytics, as well as a symbiotic relationship between humans and machines. Devices and machines will be able to learn from, and with, humans in a natural collaborative way. The recent game changers in learnscapes (learning paradigms, technologies, platforms, spaces, and environments) that can significantly impact engineering education in the coming era are identified. Among these are open educational resources, knowledge-rich classrooms, immersive interactive 3D learning, augmented reality, reverse instruction / flipped classroom, gamification, robots in the classroom, and adaptive personalized learning. Significant transformative changes in, and mass customization of, learning are envisioned to emerge from the synergistic combination of the game changers and other technologies. The realization of the aforementioned vision requires the development of a new multidisciplinary framework of emergent engineering for relating innovation, complexity and cybernetics, within the future learning environments. The framework can be used to treat engineering education as a complex adaptive system, with dynamically interacting and communicating components (instructors, individual, small, and large groups of learners). The emergent behavior resulting from the interactions can produce progressively better, and continuously improving, learning environment. As a first step towards the realization of the vision, intelligent adaptive cyber-physical ecosystems need to be developed to facilitate collaboration between the various stakeholders of engineering education, and to accelerate the development of a skilled engineering workforce. The major components of the ecosystems include integrated knowledge discovery and exploitation facilities, blended learning and research spaces, novel ultra-intelligent software agents, multimodal and autonomous interfaces, and networked cognitive and tele-presence robots.
2009-04-09
technical faculty for the Master in Software Engineering program at CMU. Grace holds a B.Sc. in Systems Engineering and an Executive MBA from Icesi...University in Cali, Colombia ; and a Master in Software Engineering from Carnegie Mellon University. 3 Version 1.7.3—SEI Webinar—April 2009 © 2009 Carnegie...Resources and Training SMART Report • http://www.sei.cmu.edu/publications/documents/08.reports/08tn008.html Public Courses • Migration of Legacy
STS-55 pad abort: Engine 2011 oxidizer preburner augmented spark igniter check valve leak
NASA Technical Reports Server (NTRS)
1993-01-01
The STS-55 initial launch attempt of Columbia (OV102) was terminated on KSC launch pad A March 22, 1993 at 9:51 AM E.S.T. due to violation of an ME-3 (Engine 2011) Launch Commit Criteria (LCC) limit exceedance. The event description and timeline are summarized. Propellant loading was initiated on 22 March, 1993 at 1:15 AM EST. All SSME chill parameters and launch commit criteria (LCC) were nominal. At engine start plus 1.44 seconds, a Failure Identification (FID) was posted against Engine 2011 for exceeding the 50 psia Oxidizer Preburner (OPB) purge pressure redline. The engine was shut down at 1.50 seconds followed by Engines 2034 and 2030. All shut down sequences were nominal and the mission was safely aborted. The OPB purge pressure redline violation and the abort profile/overlay for all three engines are depicted. SSME Avionics hardware and software performed nominally during the incident. A review of vehicle data table (VDT) data and controller software logic revealed no failure indications other than the single FID 013-414, OPB purge pressure redline exceeded. Software logic was executed according to requirements and there was no anomalous controller software operation. Immediately following the abort, a Rocketdyne/NASA failure investigation team was assembled. The team successfully isolated the failure cause to the oxidizer preburner augmented spark igniter purge check valve not being fully closed due to contamination. The source of the contaminant was traced to a cut segment from a rubber O-ring which was used in a fine clean tool during valve production prior to 1992. The valve was apparently contaminated during its fabrication in 1985. The valve had performed acceptably on four previous flights of the engine, and SSME flight history shows 780 combined check valve flights without failure. The failure of an Engine 3 (SSME No. 2011) check valve to close was sensed by onboard engine instruments even though all other engine operations were normal. This resulted in an engine shutdown and safe sequential shutdown of all three engines prior to ignition of the solid boosters.
Reading Computer Programs: Instructor’s Guide to Exercises
1990-08-01
activities that underlie effective writing, many of which are similar to those underlying software development . The module draws on related work in a number...Instructor’s Guide and Exercises Abstract: The ability to read and understand a computer program is a criti- cal skill for the software developer , yet this...skill is seldom developed in any systematic way in the education or training of software professionals. These materials discuss the importance of