Kimlin, Michael G; Guo, Yuming
2012-05-15
Ultraviolet radiation exposure during an individuals' lifetime is a known risk factor for the development of skin cancer. However, less evidence is available on assessing the relationship between lifetime sun exposure and skin damage and skin aging. This study aims to assess the relationship between lifetime sun exposure and skin damage and skin aging using a non-invasive measure of exposure. We recruited 180 participants (73 males, 107 females) aged 18-83 years. Digital imaging of skin hyperpigmentation (skin damage) and skin wrinkling (skin aging) on the facial region was measured. Lifetime sun exposure (presented as hours) was calculated from the participants' age multiplied by the estimated annual time outdoors for each year of life. We analyzed the effects of lifetime sun exposure on skin damage and skin aging. We adjust for the influence of age, sex, occupation, history of skin cancer, eye color, hair color, and skin color. There were non-linear relationships between lifetime sun exposure and skin damage and skin aging. Younger participant's skin is much more sensitive to sun exposure than those who were over 50 years of age. As such, there were negative interactions between lifetime sun exposure and age. Age had linear effects on skin damage and skin aging. The data presented showed that self reported lifetime sun exposure was positively associated with skin damage and skin aging, in particular, the younger people. Future health promotion for sun exposure needs to pay attention to this group for skin cancer prevention messaging. Copyright © 2012 Elsevier B.V. All rights reserved.
... pass through your skin and damage your skin cells. Sunburns are a sign of skin damage. Suntans ... after the sun's rays have already killed some cells and damaged others. UV rays can cause skin ...
Comparing Alternative Methods of Measuring Skin Color and Damage
Daniel, Lauren C.; Heckman, Carolyn J.; Kloss, Jacqueline D.; Manne, Sharon L.
2009-01-01
Objective: The current study investigated the reliability and validity of several skin color and damage measurement strategies and explored their applicability among participants of different races, skin types, and sexes. Methods: One hundred college-aged participants completed an online survey about their perceived skin damage and skin protection. They also attended an in-person session in which an observer rated their skin color; additionally, UV photos and spectrophotometry readings were taken. Results: Trained research assistants rated the damage depicted in the UV photos reliably. Moderate to high correlations emerged between skin color self-report and spectrophotometry readings. Observer rating correlated with spectrophotometry rating of current but not natural skin color. Lighter-skinned individuals reported more cumulative skin damage, which was supported by UV photography. Although women's current skin color was lighter and their UV photos showed similar damage to men's, women reported significantly more damaged skin than men did. Conclusions: These findings suggest that self-report continues to be a valuable measurement strategy when skin reflectance measurement is not feasible or appropriate and that UV photos and observer ratings may be useful but need to be tested further. The results also suggest that young women and men may benefit from different types of skin cancer prevention interventions. PMID:18931926
Panich, Uraiwan; Sittithumcharee, Gunya; Rathviboon, Natwarath
2016-01-01
Skin is the largest human organ. Skin continually reconstructs itself to ensure its viability, integrity, and ability to provide protection for the body. Some areas of skin are continuously exposed to a variety of environmental stressors that can inflict direct and indirect damage to skin cell DNA. Skin homeostasis is maintained by mesenchymal stem cells in inner layer dermis and epidermal stem cells (ESCs) in the outer layer epidermis. Reduction of skin stem cell number and function has been linked to impaired skin homeostasis (e.g., skin premature aging and skin cancers). Skin stem cells, with self-renewal capability and multipotency, are frequently affected by environment. Ultraviolet radiation (UVR), a major cause of stem cell DNA damage, can contribute to depletion of stem cells (ESCs and mesenchymal stem cells) and damage of stem cell niche, eventually leading to photoinduced skin aging. In this review, we discuss the role of UV-induced DNA damage and oxidative stress in the skin stem cell aging in order to gain insights into the pathogenesis and develop a way to reduce photoaging of skin cells. PMID:27148370
Atmospheric skin aging-Contributors and inhibitors.
McDaniel, David; Farris, Patricia; Valacchi, Giuseppe
2018-04-01
Cutaneous aging is a complex biological process consisting of 2 elements: intrinsic aging, which is primarily determined by genetics, and extrinsic aging, which is largely caused by atmospheric factors, such as exposure to sunlight and air pollution, and lifestyle choices, such as diet and smoking. The role of the solar spectrum, comprised of ultraviolet light, specifically UVB (290-320 nm) and UVA (320-400) in causing skin damage, including skin cancers, has been well documented. In recent years, the contribution of visible light (400-700 nm) and infrared radiation (above 800 nm) in causing skin damage, similar to the photodamage caused by UV light, is also being elucidated. In addition, other atmospheric factors such as air pollution (smog, ozone, particulate matter, etc.) have been implicated in premature skin aging. The skin damage caused by environmental exposure is largely attributable to a complex cascade of reactions inside the skin initiated by the generation of reactive oxygen species (ROS), which causes oxidative damage to cellular components such as proteins, lipids, and nucleic acids. These damaged skin cells initiate inflammatory responses leading to the eventual damage manifested in chronically exposed skin. Novel therapeutic strategies to combat ROS species generation are being developed to prevent the skin damage caused by atmospheric factors. In addition to protecting skin from solar radiation using sunscreens, other approaches using topically applied ingredients, particularly antioxidants that penetrate the skin and protect the skin from within, have also been well documented. This review summarizes current knowledge of atmospheric aggressors, including UVA, UVB, visible light, infrared radiation (IR), and ozone on skin damage, and proposes new avenues for future research in the prevention and treatment of premature skin aging caused by such atmospheric factors. New therapeutic modalities currently being developed are also discussed. © 2018 Wiley Periodicals, Inc.
Skin damage associated with intravenous therapy: common problems and strategies for prevention.
Thayer, Debra
2012-01-01
Infusion therapy is among the most common health care interventions, with approximately 90% of hospitalized patients receiving vascular access and an estimated 1.3 million home infusion therapies delivered annually. Whereas most individuals complete their therapy uneventfully, others experience alterations in skin integrity, some significant enough to disrupt therapy. There are limited published data on the incidence of skin damage associated with infusion therapy, and the etiology of damage has not been previously described in detail. Wound, ostomy, and continence (WOC) nurses have developed a significant understanding of skin-related problems and effective prevention strategies from over 40 years of experience with ostomy patients--another population in which adhesive wear is a constant and localized, superficial skin damage is common. This article will offer a WOC nursing perspective of skin damage and seek to provide a context for understanding and preventing skin damage in the infusion therapy patient.
Jacques-Jamin, Carine; Jeanjean-Miquel, Corinne; Domergue, Anaïs; Bessou-Touya, Sandrine; Duplan, Hélène
2017-01-01
Information is lacking on the dermal penetration of topically applied formulations on in vitro skin models, under conditions where the stratum corneum (SC) is damaged. Therefore, we have developed a standardized in vitro barrier-disrupted skin model using tape stripping. Different tape stripping conditions were evaluated using histology, transepidermal water loss, infrared densitometry, and caffeine absorption. The effects of tape stripping were comparable using pig and human skin. Optimized conditions were used to test the effect of SC damage and UV irradiation on the absorption of an UV filter combination present in a sunscreen. The bioavailability of the filters was extremely low regardless of the extent of skin damage, suggesting bioavailability would not be increased if the consumer applied the sunscreen to sun-damaged skin. This standardized in vitro methodology using pig or human skin for damaged skin will add valuable information for the safety assessment of topically applied products. © 2017 S. Karger AG, Basel.
Laser-Induced Thermal Damage of Skin
1977-12-01
identify by block number) Skin Burns Skin Model Laser Effects \\Thermal Predictions 20 ABSTRACT (Continue on reverse side it necessary and identify by...block number) A computerized model was developed for predicting thermal damage of skin by laser exposures. Thermal, optical, and physiological data are...presented for the model. Model predictions of extent of irreversible damage were compared with histologic determinations of the extent of damage
Karaya gum electrocardiographic electrodes for preterm infants.
Cartlidge, P H; Rutter, N
1987-01-01
Changes in transepidermal water loss were used to measure skin damage caused by removal of electrocardiograph electrodes in 20 preterm infants. Electrodes secured by conventional adhesive damaged the skin, leading to a potentially dangerous increase in skin permeability. In contrast, those secured by karaya gum caused no skin damage. PMID:3435167
7 CFR 52.3184 - Grades of dried prunes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... be affected by: Off-color. End cracks. 1 Skin or flesh Mold. Poor texture. Skin or flesh damage. 2..., by weight, may be affected by: Off-color. Poor texture. Mold. Decay. Poor texture. End cracks. Dirt. End cracks. Skin or flesh Foreign material. Skin or flesh damage. 2 damage. 2 Fermentation. Insect...
7 CFR 52.3184 - Grades of dried prunes.
Code of Federal Regulations, 2014 CFR
2014-01-01
... be affected by: Off-color. End cracks. 1 Skin or flesh Mold. Poor texture. Skin or flesh damage. 2..., by weight, may be affected by: Off-color. Poor texture. Mold. Decay. Poor texture. End cracks. Dirt. End cracks. Skin or flesh Foreign material. Skin or flesh damage. 2 damage. 2 Fermentation. Insect...
Quercitrin Protects Skin from UVB-induced Oxidative Damage
Yin, Yuanqin; Li, Wenqi; Son, Yong-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo
2013-01-01
Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. PMID:23545178
Quercitrin protects skin from UVB-induced oxidative damage.
Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo
2013-06-01
Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. Copyright © 2013 Elsevier Inc. All rights reserved.
Jelveh, Salomeh; Kaspler, Pavel; Bhogal, Nirmal; Mahmood, Javed; Lindsay, Patricia E; Okunieff, Paul; Doctrow, Susan R; Bristow, Robert G; Hill, Richard P
2013-08-01
Radioprotection and mitigation effects of the antioxidants, Eukarion (EUK)-207, curcumin, and the curcumin analogs D12 and D68, on radiation-induced DNA damage or lipid peroxidation in murine skin were investigated. These antioxidants were studied because they have been previously reported to protect or mitigate against radiation-induced skin reactions. DNA damage was assessed using two different assays. A cytokinesis-blocked micronucleus (MN) assay was performed on primary skin fibroblasts harvested from the skin of C3H/HeJ male mice 1 day, 1 week and 4 weeks after 5 Gy or 10 Gy irradiation. Local skin or whole body irradiation (100 kVp X-rays or caesium (Cs)-137 γ-rays respectively) was performed. DNA damage was further quantified in keratinocytes by immunofluorescence staining of γ-histone 2AX (γ-H2AX) foci in formalin-fixed skin harvested 1 hour or 1 day post-whole body irradiation. Radiation-induced lipid peroxidation in the skin was investigated at the same time points as the MN assay by measuring malondialdehyde (MDA) with a Thiobarbituric acid reactive substances (TBARS) assay. None of the studied antioxidants showed significant mitigation of skin DNA damage induced by local irradiation. However, when EUK-207 or curcumin were delivered before irradiation they provided some protection against DNA damage. In contrast, all the studied antioxidants demonstrated significant mitigating and protecting effects on radiation-induced lipid peroxidation at one or more of the three time points after local skin irradiation. Our results show no evidence for mitigation of DNA damage by the antioxidants studied in contrast to mitigation of lipid peroxidation. Since these agents have been reported to mitigate skin reactions following irradiation, the data suggest that changes in lipid peroxidation levels in skin may reflect developing skin reactions better than residual post-irradiation DNA damage in skin cells. Further direct comparison studies are required to confirm this inference from the data.
An, Jae Jin; Eum, Won Sik; Kwon, Hyuck Se; Koh, Jae Sook; Lee, Soo Yun; Baek, Ji Hwoon; Cho, Yong-Jun; Kim, Dae Won; Han, Kyu Huyng; Park, Jinseu; Jang, Sang Ho; Choi, Soo Young
2013-12-01
Epidermal and fibroblast growth factor (EGF and FGF1) proteins play an important role in the regeneration and proliferation of skin cells. EGF and FGF1 have considerable potential as possible therapeutic or cosmetic agents for the treatment of skin damage including wrinkles. Using protein transduction domains (PTD), we investigated whether PTD-EGF and FGF1 transduced into skin cells and tissue. Transduced proteins showed protective effects in a UV-induced skin damage model as well as against skin wrinkles. Transduced PTD-EGF and FGF1 proteins were detected by immunofluorescence and immunohistochemistry. The effects of PTD-EGF and FGF1 were examined by WST assay, Western blotting, immunohistochemistry, and skin wrinkle parameters. The PTD-EGF and FGF1 increased cell proliferation and collagen type 1 alpha 1 protein accumulation in skin tissue. Also, PTD-EGF and FGF1 inhibited UV-induced skin damage. Furthermore, topical application of PTD-EGF and FGF1 contained ampoules which were considered to improve the wrinkle parameters of human skin. These results show that PTD-EGF and FGF1 can be a potential therapeutic or cosmetic agent for skin damaged and injury including wrinkles and aging. © 2013 Wiley Periodicals, Inc.
Quercitrin protects skin from UVB-induced oxidative damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Yuanqin; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY; Li, Wenqi
Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidativemore » damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.« less
Abbaszadeh, A; Haddadi, G H; Haddadi, Z
2017-06-01
Normal skin is composed of epidermis and dermis. Skin is susceptible to radiation damage because it is a continuously renewing organ containing rapidly proliferating mature cells. Radiation burn is a damage to the skin or other biological tissues caused by exposure to radiofrequency energy or ionizing radiation. Acute skin reaction is the most frequently occurring side effect of radiation therapy. Generally, any chemical/biological agent given before or at the time of irradiation to prevent or ameliorate damage to normal tissues is called a radioprotector. Melatonin is a highly lipophilic substance that easily penetrates organic membranes and therefore is able to protect important intracellular structures including mitochondria and DNA against oxidative damage directly at the sites where such a kind of damage would occur. Melatonin leads to an increase in the molecular level of some important antioxidative enzymes such as superoxide, dismotase and glutation-peroxidase, and also a reduction in synthetic activity of nitric oxide. There is a large body of evidence which proves the efficacy of Melatonin in ameliorating UV and X ray-induced skin damage. We propose that, in the future, Melatonin would improve the therapeutic ratio in radiation oncology and ameliorate skin damage more effectively when administered in optimal and non-toxic doses.
Abbaszadeh, A.; Haddadi, G.H.; Haddadi, Z.
2017-01-01
Normal skin is composed of epidermis and dermis. Skin is susceptible to radiation damage because it is a continuously renewing organ containing rapidly proliferating mature cells. Radiation burn is a damage to the skin or other biological tissues caused by exposure to radiofrequency energy or ionizing radiation. Acute skin reaction is the most frequently occurring side effect of radiation therapy. Generally, any chemical/biological agent given before or at the time of irradiation to prevent or ameliorate damage to normal tissues is called a radioprotector. Melatonin is a highly lipophilic substance that easily penetrates organic membranes and therefore is able to protect important intracellular structures including mitochondria and DNA against oxidative damage directly at the sites where such a kind of damage would occur. Melatonin leads to an increase in the molecular level of some important antioxidative enzymes such as superoxide, dismotase and glutation-peroxidase, and also a reduction in synthetic activity of nitric oxide. There is a large body of evidence which proves the efficacy of Melatonin in ameliorating UV and X ray-induced skin damage. We propose that, in the future, Melatonin would improve the therapeutic ratio in radiation oncology and ameliorate skin damage more effectively when administered in optimal and non-toxic doses. PMID:28580334
7 CFR 52.3184 - Grades of dried prunes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... flesh damage. 2 damage. 2 Fermentation. Insect infestation.Decay. Fermentation. Scars. Scars. Heat.... Skin or flesh. Foreign material. Skin or flesh damage. 2 Inset infestation. damage. 2 Fermentation. Decay. Fermentation. Scars. Scars. Heat damage. Heat damage. Inset injury. Insect injury. Other means...
The Clinical Test of Nano gold Cosmetic for Recovering Skin Damage Due to Chemicals: Special Case
NASA Astrophysics Data System (ADS)
Taufikurohmah, T.; Wardana, A. P.; Tjahjani, S.; Sanjaya, I. G. M.; Baktir, A.; Syahrani, A.
2018-01-01
Manufacturing of Nano gold cosmetics was done at PT. Gizi Indonesia. Clinical trials to cosmetics data supported that cosmetics are able to treat skin health which has been reported partially. For special cases, the recovery process of facial skin damage should also receive attention including cases of facial skin damage caused by chemicals such as phenol, HCl, aqua regia or other harsh chemicals. The problem determined whether the Nano gold is able to recover skin damage due to the harsh chemicals. This clinical trial data on the forms of early skin damage caused by phenol was delivered in the forms of facial photos patients. The recovery progress of facial skin condition was obtained every week for two months. The data included the forms of widespread wounds during the recovery process. This statement supported by anova statistical analysis of the widespread wound changing every week for 8 times. The conclusion is skin damage due to Phenol impregnation can be recovered with the use of Nano gold cosmetics for 8 weeks. This results support the manufacturing of Nano gold cosmetics for the needs of society. It also suggest that Nano gold material can be used for medicine manufacturing in the future.
Quantitative analysis on PUVA-induced skin photodamages using optical coherence tomography
NASA Astrophysics Data System (ADS)
Zhai, Juan; Guo, Zhouyi; Liu, Zhiming; Xiong, Honglian; Zeng, Changchun; Jin, Ying
2009-08-01
Psoralen plus ultraviolet A radiation (PUVA) therapy is a very important clinical treatment of skin diseases such as vitiligo and psoriasis, but associated with an increased risk of skin photodamages especially photoaging. Since skin biopsy alters the original skin morphology and always requires an iatrogenic trauma, optical coherence tomography (OCT) appears to be a promising technique to study skin damage in vivo. In this study, the Balb/c mice had 8-methoxypsralen (8-MOP) treatment prior to UVA radiation was used as PUVA-induced photo-damaged modal. The OCT imaging of photo-damaged group (modal) and normal group (control) in vivo was obtained of mice dorsal skin at 0, 24, 48, 72 hours after irradiation respectively. And then the results were quantitatively analyzed combined with histological information. The experimental results showed that, PUVA-induced photo-damaged skin had an increase in epidermal thickness (ET), a reduction of attenuation coefficient in OCT images signal, and an increase in brightness of the epidermis layer compared with the control group. In conclusion, noninvasive high-resolution imaging techniques such as OCT may be a promising tool for photobiological studies aimed at assessing photo-damage and repair processes in vivo. It can be used to quantitative analysis of changes in photo-damaged skin, such as the ET and collagen in dermis, provides a theoretical basis for treatment and prevention of skin photodamages.
Comparative study of 1,064-nm laser-induced skin burn and thermal skin burn.
Zhang, Yi-Ming; Ruan, Jing; Xiao, Rong; Zhang, Qiong; Huang, Yue-Sheng
2013-01-01
Infrared lasers are widely used in medicine, industry, and other fields. While science, medicine, and the society in general have benefited from the many practical uses of lasers, they also have inherent safety issues. Although several procedures have been put forward to protect the skin from non-specific laser-induced damage, individuals receiving laser therapy or researchers who use laser are still at risk for skin damage. This study aims to understand the interaction between laser and the skin, and to investigate the differences between the skin damage caused by 1,064-nm laser and common thermal burns. Skin lesions on Wistar rats were induced by a 1,064-nm CW laser at a maximum output of 40 W and by a copper brass bar attached to an HQ soldering iron. Histological sections of the lesions and the process of wound healing were evaluated. The widths of the epidermal necrosis and dermal denaturalization of each lesion were measured. To observe wound healing, the epithelial gap and wound gap were measured. Masson's trichrome and picrosirius red staining were also used to assess lesions and wound healing. The thermal damage induced by laser intensified significantly in both horizontal dimension and in vertical depth with increased duration of irradiation. Ten days after wounding, the dermal injuries induced by laser were more severe. Compared with the laser-induced skin damage, the skin burn induced by an HQ soldering iron did not show a similar development or increased in severity with the passage of time. The results of this study showed the pattern of skin damage induced by laser irradiation and a heated brass bar. This study also highlighted the difference between laser irradiation and thermal burn in terms of skin damage and wound healing, and offers insight for further treatment.
Structural Integrity Evaluation of the Lear Fan 2100 Aircraft
NASA Technical Reports Server (NTRS)
Kan, H. P.; Dyer, T. A.
1996-01-01
An in-situ nondestructive inspection was conducted to detect manufacturing and assembly induced defects in the upper two wing surfaces (skin s) and upper fuselage skin of the Lear Fan 2100 aircraft E009. The effects of the defects, detected during the inspection, on the integrity of the structure was analytically evaluated. A systematic evaluation was also conducted to determine the damage tolerance capability of the upper wing skin against impact threats and assembly induced damage. The upper wing skin was divided into small regions for damage tolerance evaluations. Structural reliability, margin of safety, allowable strains, and allowable damage size were computed. The results indicated that the impact damage threat imposed on composite military aircraft structures is too severe for the Lear Fan 2100 upper wing skin. However, the structural integrity is not significantly degraded by the assembly induced damage for properly assembled structures, such as the E009 aircraft.
Dyer, J M; Haines, S R; Thomas, A; Wang, W; Walls, R J; Clerens, S; Harland, D P
2017-04-01
Exposure to UV in humans resulting in sunburn triggers a complex series of events that are a mix of immediate and delayed damage mediation and healing. While studies on the effects of UV exposure on DNA damage and repair have been reported, changes in the oxidative modification of skin proteins are poorly understood at the molecular level, despite the important role played by structural proteins in skin tissue, and the effect of the integrity of these proteins on skin appearance and health. Proteomic molecular mapping of oxidation was here applied to try to enhance understanding of skin damage and recovery from oxidative damage and UVB exposure. A redox proteomic-based approach was applied to evaluating skin protein modification when exposed to varying doses of UVB after initial oxidative stress, via tracking changes in protein oxidation during the healing process in vitro using a full-thickness reconstituted human skin tissue model. Bioassays and structural evaluation confirmed that our cultured skin tissues underwent a normal physiological response to UVB exposure. A set of potential skin marker peptides was generated, for use in tracking skin protein oxidative modification. Exposure to UVB after thermal oxidative stress was found to result in higher levels of skin protein oxidation than a non-irradiated control for up to seven days after exposure. Recovery of the skin proteins from oxidative stress, as assessed by the overall protein oxidation levels, was found to be impaired by UVB exposure. Oxidative modification was largely observed in skin structural proteins. Exposure of skin proteins to UVB exacerbates oxidative damage to structural skin proteins, with higher exposure levels leading to increasingly impaired recovery from this damage. This has potential implications for the functional performance of the proteins and inter-related skin health and cosmetic appearance. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
... This can result in damage or tissue death ( necrosis ). Arterial emboli often occur in the legs and ... sloughing) of skin Skin erosion ( ulcer ) Tissue death (necrosis; skin is dark and damaged) Symptoms of a ...
Rosenblat, Gennady; Meretski, Shai; Segal, Joseph; Tarshis, Mark; Schroeder, Avi; Zanin-Zhorov, Alexandra; Lion, Gilead; Ingber, Arieh; Hochberg, Malka
2011-05-01
Exposing skin to ultraviolet (UV) radiation contributes to photoaging and to the development of skin cancer by DNA lesions and triggering inflammatory and other harmful cellular cascades. The present study tested the ability of unique lipid molecules, polyhydroxylated fatty alcohols (PFA), extracted from avocado, to reduce UVB-induced damage and inflammation in skin. Introducing PFA to keratinocytes prior to their exposure to UVB exerted a protective effect, increasing cell viability, decreasing the secretion of IL-6 and PGE(2), and enhancing DNA repair. In human skin explants, treating with PFA reduced significantly UV-induced cellular damage. These results support the idea that PFA can play an important role as a photo-protective agent in UV-induced skin damage.
Removing bonded skin from a substrate
NASA Technical Reports Server (NTRS)
Chartier, E. N.
1980-01-01
Metal skin is peeled off like sardine-can cover with key. Method is useful in removing bonded skins from any substrate where substrate is strong enough not to buckle or tear when bonded skin is rolled free. Also, it is useful for removing sections of damaged skin where bladders of other equipment below substrate might be damaged if saw or router were used to cut completely through skin.
Gremlin inhibits UV-induced skin cell damages via activating VEGFR2-Nrf2 signaling
Xu, Qiu-yun; Zhang, Jing; Lin, Meng-ting; Tu, Ying; He, Li; Bi, Zhi-gang; Cheng, Bo
2016-01-01
Ultra Violet (UV) radiation induces reactive oxygen species (ROS) production, DNA oxidation and single strand breaks (SSBs), which will eventually lead to skin cell damages or even skin cancer. Here, we tested the potential activity of gremlin, a novel vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) agonist, against UV-induced skin cell damages. We show that gremlin activated VEGFR2 and significantly inhibited UV-induced death and apoptosis of skin keratinocytes and fibroblasts. Pharmacological inhibition or shRNA-mediated knockdown of VEGFR2 almost abolished gremlin-mediated cytoprotection against UV in the skin cells. Further studies showed that gremlin activated VEGFR2 downstream NF-E2-related factor 2 (Nrf2) signaling, which appeared required for subsequent skin cell protection. Nrf2 shRNA knockdown or S40T dominant negative mutation largely inhibited gremlin-mediated skin cell protection against UV. At last, we show that gremlin dramatically inhibited UV-induced ROS production and DNA SSB formation in skin keratinocytes and fibroblasts. We conclude that gremlin protects skin cells from UV damages via activating VEGFR2-Nrf2 signaling. Gremlin could be further tested as a novel anti-UV skin protectant. PMID:27713170
Gremlin inhibits UV-induced skin cell damages via activating VEGFR2-Nrf2 signaling.
Ji, Chao; Huang, Jin-Wen; Xu, Qiu-Yun; Zhang, Jing; Lin, Meng-Ting; Tu, Ying; He, Li; Bi, Zhi-Gang; Cheng, Bo
2016-12-20
Ultra Violet (UV) radiation induces reactive oxygen species (ROS) production, DNA oxidation and single strand breaks (SSBs), which will eventually lead to skin cell damages or even skin cancer. Here, we tested the potential activity of gremlin, a novel vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) agonist, against UV-induced skin cell damages. We show that gremlin activated VEGFR2 and significantly inhibited UV-induced death and apoptosis of skin keratinocytes and fibroblasts. Pharmacological inhibition or shRNA-mediated knockdown of VEGFR2 almost abolished gremlin-mediated cytoprotection against UV in the skin cells. Further studies showed that gremlin activated VEGFR2 downstream NF-E2-related factor 2 (Nrf2) signaling, which appeared required for subsequent skin cell protection. Nrf2 shRNA knockdown or S40T dominant negative mutation largely inhibited gremlin-mediated skin cell protection against UV. At last, we show that gremlin dramatically inhibited UV-induced ROS production and DNA SSB formation in skin keratinocytes and fibroblasts. We conclude that gremlin protects skin cells from UV damages via activating VEGFR2-Nrf2 signaling. Gremlin could be further tested as a novel anti-UV skin protectant.
Dong, Yang; He, Honghui; Sheng, Wei; Wu, Jian; Ma, Hui
2017-10-31
Skin tissue consists of collagen and elastic fibres, which are highly susceptible to damage when exposed to ultraviolet radiation (UVR), leading to skin aging and cancer. However, a lack of non-invasive detection methods makes determining the degree of UVR damage to skin in real time difficult. As one of the fundamental features of light, polarization can be used to develop imaging techniques capable of providing structural information about tissues. In particular, Mueller matrix polarimetry is suitable for detecting changes in collagen and elastic fibres. Here, we demonstrate a novel, quantitative, non-contact and in situ technique based on Mueller matrix polarimetry for monitoring the microstructural changes of skin tissues during UVR-induced photo-damaging. We measured the Mueller matrices of nude mouse skin samples, then analysed the transformed parameters to characterise microstructural changes during the skin photo-damaging and self-repairing processes. Comparisons between samples with and without the application of a sunscreen showed that the Mueller matrix-derived parameters are potential indicators for fibrous microstructure in skin tissues. Histological examination and Monte Carlo simulations confirmed the relationship between the Mueller matrix parameters and changes to fibrous structures. This technique paves the way for non-contact evaluation of skin structure in cosmetics and dermatological health.
Green, H A; Burd, E E; Nishioka, N S; Compton, C C
1993-08-01
Ablative lasers have been used for cutaneous surgery for greater than two decades since they can remove skin and skin lesions bloodlessly and efficiently. Because full-thickness skin wounds created after thermal laser ablation may require skin grafting in order to heal, we have examined the effect of the residual laser-induced thermal damage in the wound bed on subsequent skin graft take and healing. In a pig model, four different pulsed and continuous-wave lasers with varying wavelengths and radiant energy exposures were used to create uniform fascial graft bed thermal damage of approximately 25, 160, 470, and 1100 microns. Meshed split-thickness skin graft take and healing on the thermally damaged fascial graft beds were examined on a gross and microscopic level on days 3 and 7, and then weekly up to 42 days. Laser-induced thermal damage on the graft bed measuring greater than 160 +/- 60 microns in depth significantly decreased skin graft take. Other deleterious effects included delayed graft revascularization, increased inflammatory cell infiltrate at the graft-wound bed interface, and accelerated formation of hypertrophied fibrous tissue within the graft bed and underlying muscle. Ablative lasers developed for cutaneous surgery should create less than 160 +/- 60 microns of residual thermal damage to permit optimal skin graft take and healing. Pulsed carbon dioxide and 193-nm excimer lasers may be valuable instruments for the removal of full-thickness skin, skin lesions, and necrotic tissue, since they create wound beds with minimal thermal damage permitting graft take comparable to that achieved with standard surgical techniques.
Is lack of sleep capable of inducing DNA damage in aged skin?
Kahan, V; Ribeiro, D A; Egydio, F; Barros, L A; Tomimori, J; Tufik, S; Andersen, M L
2014-01-01
Skin naturally changes with age, becoming more fragile. Various stimuli can alter skin integrity. The aim of this study was to evaluate whether sleep deprivation affects the integrity of DNA in skin and exacerbates the effects of aging. Fifteen-month old female Hairless mice underwent 72 h of paradoxical sleep deprivation or 15 days of chronic sleep restriction. Punch biopsies of the skin were taken to evaluate DNA damage by single cell gel (comet) assay. Neither paradoxical sleep deprivation nor sleep restriction increased genetic damage, measured by tail movement and tail intensity values. Taken together, the findings are consistent with the notion that aging overrides the effect of sleep loss on the genetic damage in elderly mice. © 2014 S. Karger AG, Basel.
Builles, Nicolas; Frouin, Éric; Scott, Dan; Ramos, Jeanne; Marti-Mestres, Gilberte
2015-01-01
For most xenobiotics, the rates of percutaneous absorption are limited by diffusion through the horny layer of skin. However, percutaneous absorption of chemicals may seriously increase when the skin is damaged. The aim of this work was to develop an in vitro representative model of mechanically damaged skins. The epidermal barrier was examined following exposure to a razor, a rotating brush, and a microneedle system in comparison to tape-stripping which acted as a reference. Excised full-thickness skins were mounted on a diffusion chamber in order to evaluate the effect of injuries and to mimic physiological conditions. The transepidermal water loss (TEWL) was greatly increased when the barrier function was compromised. Measurements were made for all the damaged biopsies and observed histologically by microscopy. On human and porcine skins, the tape-stripping application (0 to 40 times) showed a proportional increase in TEWL which highlights the destruction of the stratum corneum. Similar results were obtained for all cosmetic instruments. This is reflected in our study by the nonsignificant difference of the mean TEWL scores between 30 strips and mechanical damage. For a specific appreciation, damaged skins were then selected to qualitatively evaluate the absorption of a chlorogenic acid solution using fluorescence microscopy. PMID:26247021
Brand, Rhonda M.; Epperly, Michael W.; Stottlemyer, J. Mark; Skoda, Erin M.; Gao, Xiang; Li, Song; Huq, Saiful; Wipf, Peter; Kagan, Valerian E.; Greenberger, Joel S.; Falo, Louis D.
2017-01-01
Skin is the largest human organ and provides a first line of defense that includes physical, chemical, and immune mechanisms to combat environmental stress. Radiation is a prevalent environmental stressor. Radiation induced skin damage ranges from photoaging and cutaneous carcinogenesis from UV exposure, to treatment-limiting radiation dermatitis associated with radiotherapy, to cutaneous radiation syndrome, a frequently fatal consequence of exposures from nuclear accidents. The major mechanism of skin injury common to these exposures is radiation induced oxidative stress. Efforts to prevent or mitigate radiation damage have included development of antioxidants capable of reducing reactive oxygen species (ROS). Mitochondria are particularly susceptible to oxidative stress, and mitochondrial dependent apoptosis plays a major role in radiation induced tissue damage. We reasoned that targeting a redox cycling nitroxide to mitochondria could prevent ROS accumulation, limiting downstream oxidative damage and preserving mitochondrial function. Here we show that in both mouse and human skin, topical application of a mitochondrial targeted antioxidant prevents and mitigates radiation induced skin damage characterized by clinical dermatitis, loss of barrier function, inflammation, and fibrosis. Further, damage mitigation is associated with reduced apoptosis, preservation of the skin’s antioxidant capacity, and reduction of irreversible DNA and protein oxidation associated with oxidative stress. PMID:27794421
Diagnosis of skin cancer by correlation and complexity analyses of damaged DNA
Namazi, Hamidreza; Kulish, Vladimir V.; Delaviz, Fatemeh; Delaviz, Ali
2015-01-01
Skin cancer is a common, low-grade cancerous (malignant) growth of the skin. It starts from cells that begin as normal skin cells and transform into those with the potential to reproduce in an out-of-control manner. Cancer develops when DNA, the molecule found in cells that encodes genetic information, becomes damaged and the body cannot repair the damage. A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this research in order to diagnose the skin cancer, first DNA walk plots of genomes of patients with skin cancer were generated. Then, the data so obtained was checked for complexity by computing the fractal dimension. Furthermore, the Hurst exponent has been employed in order to study the correlation of damaged DNA. By analysing different samples it has been found that the damaged DNA sequences are exhibiting higher degree of complexity and less correlation compared to normal DNA sequences. This investigation confirms that this method can be used for diagnosis of skin cancer. The method discussed in this research is useful not only for diagnosis of skin cancer but can be applied for diagnosis and growth analysis of different types of cancers. PMID:26497203
Biothermomechanics of skin tissues
NASA Astrophysics Data System (ADS)
Xu, F.; Lu, T. J.; Seffen, K. A.
Biothermomechanics of skin is highly interdisciplinary involving bioheat transfer, burn damage, biomechanics and neurophysiology. During heating, thermally induced mechanical stress arises due to the thermal denaturation of collagen, resulting in macroscale shrinkage. Thus, the strain, stress, temperature and thermal pain/damage are highly correlated; in other words, the problem is fully coupled. The aim of this study is to develop a computational approach to examine the heat transfer process and the heat-induced mechanical response, so that the differences among the clinically applied heating modalities can be quantified. Exact solutions for temperature, thermal damage and thermal stress for a single-layer skin model were first derived for different boundary conditions. For multilayer models, numerical simulations using the finite difference method (FDM) and finite element method (FEM) were used to analyze the temperature, burn damage and thermal stress distributions in the skin tissue. The results showed that the thermomechanical behavior of skin tissue is very complex: blood perfusion has little effect on thermal damage but large influence on skin temperature distribution, which, in turn, influences significantly the resulting thermal stress field; the stratum corneum layer, although very thin, has a large effect on the thermomechanical behavior of skin, suggesting that it should be properly accounted for in the modeling of skin thermal stresses; the stress caused by non-uniform temperature distribution in the skin may also contribute to the thermal pain sensation.
Guan, Linna; Suggs, Amanda; Ahsanuddin, Sayeeda; Tarrillion, Madeline; Selph, Jacqueline; Lam, Minh; Baron, Elma
2016-09-01
Exposure of the skin to ultraviolet (UV) irradiation causes many detrimental effects through mechanisms related to oxidative stress and DNA damage. Excessive oxidative stress can cause apoptosis and cellular dysfunction of epidermal cells leading to cellular senescence and connective tissue degradation. Direct and indirect damage to DNA predisposes the skin to cancer formation. Chronic UV exposure also leads to skin aging manifested as wrinkling, loss of skin tone, and decreased resilience. Fortunately, human skin has several natural mechanisms for combating UV-induced damage. The mechanisms operate on a diurnal rhythm, a cycle that repeats approximately every 24 hours. It is known that the circadian rhythm is involved in many skin physiologic processes, including water regulation and epidermal stem cell function. This study evaluated whether UV damage and the skin's natural mechanisms of inflammation and repair are also affected by circadian rhythm. We looked at UV-induced erythema on seven human subjects irradiated with simulated solar radiation in the morning (at 08:00 h) versus in the afternoon (at 16:00 h). Our data suggest that the same dose of UV radiation induces significantly more inflammation in the morning than in the afternoon. Changes in protein expression relevant to DNA damage, such as xeroderma pigmentosum, complementation group A (XPA), and cyclobutane pyrimidine dimers (CPD) from skin biopsies correlated with our clinical results. Both XPA and CPD levels were higher after the morning UV exposure compared with the afternoon exposure.
J Drugs Dermatol. 2016;15(9):1124-1130.
In vitro permeation of palladium powders through intact and damaged human skin.
Crosera, Matteo; Mauro, Marcella; Bovenzi, Massimo; Adami, Gianpiero; Baracchini, Elena; Maina, Giovanni; Larese Filon, Francesca
2018-05-01
The use of palladium (Pd) has grown in the last decades, commonly used in automotive catalytic converters, jewellery and dental restorations sectors. Both general and working population can be exposed to this metal, which may act as skin sensitizer. This study investigated in vitro palladium powders permeation through excised intact and damaged human skin using the Franz diffusion cell method and the effect of rapid skin decontamination using sodium laureth-sulphate. 1 mL of a 10 min sonicated suspension made of 2.5 g of Pd powder in 50 mL synthetic sweat at pH 4.5 and room temperature was applied to the outer surface of the skin membranes for 24 h. Pd permeation, assessed by ICP-MS, was higher when damaged skin was used (p = 0.03). Final flux permeation values and lag times were 0.02 ± 0.01 μg cm -2 h -1 and 6.00 ± 3.95 h for intact, and 0.10 ± 0.02 μg cm -2 h -1 and 2.05 ± 1.49 h for damaged skin samples, respectively. Damaged skin protocol enhances Pd skin penetration inside dermal layer (p = 0.04), thus making the metal available for systemic uptake. Pd penetration (p = 0.02) and permeation (p = 0.012) through intact skin decreased significantly when a cleaning procedure was applied. This study demonstrates that after skin exposure to Pd powders a small permeation of the metal happen both through intact and damaged skin and that an early decontamination with a common cleanser can significantly decrease the final amount of metal available forsystemic uptake. Copyright © 2018 Elsevier B.V. All rights reserved.
Kim, Byung-Hak; Choi, Mi Sun; Lee, Hyun Gyu; Lee, Song-Hee; Noh, Kum Hee; Kwon, Sunho; Jeong, Ae Jin; Lee, Haeri; Yi, Eun Hee; Park, Jung Youl; Lee, Jintae; Joo, Eun Young; Ye, Sang-Kyu
2015-11-01
Exposure of the skin to ultraviolet radiation can cause skin damage with various pathological changes including inflammation. In the present study, we identified the skin-protective activity of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (pentagalloyl glucose, PGG) in ultraviolet B (UVB) radiation-induced human dermal fibroblasts and mouse skin. PGG exhibited antioxidant activity with regard to intracellular reactive oxygen species (ROS) generation as well as ROS and reactive nitrogen species (RNS) scavenging. Furthermore, PGG exhibited anti-inflammatory activity, inhibiting the activation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, resulting in inhibition of the expression of pro-inflammatory mediators. Topical application of PGG followed by chronic exposure to UVB radiation in the dorsal skin of hairless mice resulted in a significant decrease in the progression of inflammatory skin damages, leading to inhibited activation of NF-κB signaling and expression of pro-inflammatory mediators. The present study demonstrated that PGG protected from skin damage induced by UVB radiation, and thus, may be a potential candidate for the prevention of environmental stimuli-induced inflammatory skin damage.
Involvement of activation-induced cytidine deaminase in skin cancer development.
Nonaka, Taichiro; Toda, Yoshinobu; Hiai, Hiroshi; Uemura, Munehiro; Nakamura, Motonobu; Yamamoto, Norio; Asato, Ryo; Hattori, Yukari; Bessho, Kazuhisa; Minato, Nagahiro; Kinoshita, Kazuo
2016-04-01
Most skin cancers develop as the result of UV light-induced DNA damage; however, a substantial number of cases appear to occur independently of UV damage. A causal link between UV-independent skin cancers and chronic inflammation has been suspected, although the precise mechanism underlying this association is unclear. Here, we have proposed that activation-induced cytidine deaminase (AID, encoded by AICDA) links chronic inflammation and skin cancer. We demonstrated that Tg mice expressing AID in the skin spontaneously developed skin squamous cell carcinoma with Hras and Trp53 mutations. Furthermore, genetic deletion of Aicda reduced tumor incidence in a murine model of chemical-induced skin carcinogenesis. AID was expressed in human primary keratinocytes in an inflammatory stimulus-dependent manner and was detectable in human skin cancers. Together, the results of this study indicate that inflammation-induced AID expression promotes skin cancer development independently of UV damage and suggest AID as a potential target for skin cancer therapeutics.
Involvement of activation-induced cytidine deaminase in skin cancer development
Toda, Yoshinobu; Hiai, Hiroshi; Uemura, Munehiro; Nakamura, Motonobu; Hattori, Yukari; Bessho, Kazuhisa; Minato, Nagahiro
2016-01-01
Most skin cancers develop as the result of UV light–induced DNA damage; however, a substantial number of cases appear to occur independently of UV damage. A causal link between UV-independent skin cancers and chronic inflammation has been suspected, although the precise mechanism underlying this association is unclear. Here, we have proposed that activation-induced cytidine deaminase (AID, encoded by AICDA) links chronic inflammation and skin cancer. We demonstrated that Tg mice expressing AID in the skin spontaneously developed skin squamous cell carcinoma with Hras and Trp53 mutations. Furthermore, genetic deletion of Aicda reduced tumor incidence in a murine model of chemical-induced skin carcinogenesis. AID was expressed in human primary keratinocytes in an inflammatory stimulus–dependent manner and was detectable in human skin cancers. Together, the results of this study indicate that inflammation-induced AID expression promotes skin cancer development independently of UV damage and suggest AID as a potential target for skin cancer therapeutics. PMID:26974156
Song, Ji Youn; Kang, Hyun A; Kim, Mi-Yeon; Park, Young Min; Kim, Hyung Ok
2004-03-01
Superficial chemical peeling and microdermabrasion have become increasingly popular methods for producing facial rejuvenation. However, there are few studies reporting the skin barrier function changes after these procedures. To evaluate objectively the degree of damage visually and the time needed for the skin barrier function to recover after glycolic acid peeling and aluminum oxide crystal microdermabrasion using noninvasive bioengineering methods. Superficial chemical peeling using 30%, 50%, and 70% glycolic acid and aluminum oxide crystal microdermabrasion were used on the volar forearm of 13 healthy women. The skin response was measured by a visual observation and using an evaporimeter, corneometer, and colorimeter before and after peeling at set time intervals. Both glycolic acid peeling and aluminum oxide crystal microdermabrasion induced significant damage to the skin barrier function immediately after the procedure, and the degree of damage was less severe after the aluminum oxide crystal microdermabrasion compared with glycolic acid peeling. The damaged skin barrier function had recovered within 24 hours after both procedures. The degree of erythema induction was less severe after the aluminum oxide crystal microdermabrasion compared with the glycolic acid peeling procedure. The degree of erythema induced after the glycolic acid peeling procedure was not proportional to the peeling solution concentration used. The erythema subsided within 1 day after the aluminum oxide crystal microdermabrasion procedure and within 4 days after the glycolic acid peeling procedure. These results suggest that the skin barrier function is damaged after the glycolic acid peeling and aluminum oxide crystal microdermabrasion procedure but recovers within 1 to 4 days. Therefore, repeating the superficial peeling procedure at 2-week intervals will allow sufficient time for the damaged skin to recover its barrier function.
Duncan, C J
1987-05-01
Agents (A23187, caffeine) believed to raise [Ca]i in vertebrate cardiac and skeletal muscles cause rapid and characteristic subcellular damage in vitro and in vivo. By using saponin-skinned amphibian pectoris cutaneous muscle and Ca-EGTA-buffered solutions it is shown that low [Ca] consistently triggers the same rapid (2-20 min), ultrastructural damage. Electron micrographs reveal a close similarity between the damaged intact and skinned preparations, namely loss of myofilament organization, specific Z-line damage, dissolution and hypercontraction bands, characteristic mitochondrial swelling and division. Where both actin and myosin filaments were lost, an underlying cytoskeletal network frequently remained, still attached to the Z-line framework. Ca was effective in skinned preparations from 5 X 10(-7) M to 8 X 10(-6) M, within the concentration range experienced by a contracting muscle. Damage was [Ca]- and time-dependent and it is suggested that it is probably the active movement of Ca ions across key membrane sites that is critical in triggering damage of the myofilament apparatus. Strontium can substitute for Ca at higher concentrations. The action of saponin suggests that the chemically skinned cell is partially activated. Ca-triggering can be bypassed experimentally by membrane-active agents or by sulphydryl agents. Ruthenium Red and trifluoperazine indirectly cause damage in the intact cell by raising [Ca]i. Studies with saponin-skinned cells and protease inhibitors show that changes in pHi, loss of ATP, Ca-activated neutral protease, or release of lysosomal enzymes (cathepsins B, D, L or H), are not involved in characteristic rapid myofilament damage.
Bates-Jensen, Barbara M; McCreath, Heather E; Patlan, Anabel
2017-05-01
We examined the relationship between subepidermal moisture measured using surface electrical capacitance and visual skin assessment of pressure ulcers at the trunk location (sacral, ischial tuberosities) in 417 nursing home residents residing in 19 facilities. Participants were on average older (mean age of 77 years), 58% were female, over half were ethnic minorities (29% African American, 12% Asian American, and 21% Hispanic), and at risk for pressure ulcers (mean score for Braden Scale for Predicting Pressure Ulcer Risk of 15.6). Concurrent visual assessments and subepidermal moisture were obtained at the sacrum and right and left ischium weekly for 16 weeks. Visual assessment was categorized as normal, erythema, stage 1 pressure ulcer, Deep Tissue Injury or stage 2+ pressure ulcer using the National Pressure Ulcer Advisory Panel 2009 classification system. Incidence of any skin damage was 52%. Subepidermal moisture was measured with a dermal phase meter where higher readings indicate greater moisture (range: 0-70 tissue dielectric constant), with values increasing significantly with the presence of skin damage. Elevated subepidermal moisture values co-occurred with concurrent skin damage in generalized multinomial logistic models (to control for repeated observations) at the sacrum, adjusting for age and risk. Higher subepidermal moisture values were associated with visual damage 1 week later using similar models. Threshold values for subepidermal moisture were compared to visual ratings to predict skin damage 1 week later. Subepidermal moisture of 39 tissue dielectric constant units predicted 41% of future skin damage while visual ratings predicted 27%. Thus, this method of detecting early skin damage holds promise for clinicians, especially as it is objective and equally valid for all groups of patients. © 2017 by the Wound Healing Society.
Waring, Mike; Bielfeldt, Stephan; Mätzold, Katja; Wilhelm, Klaus-Peter
2013-02-01
Chronic wounds require frequent dressing changes. Adhesive dressings used for this indication can be damaging to the stratum corneum, particularly in the elderly where the skin tends to be thinner. Understanding the level of damage caused by dressing removal can aid dressing selection. This study used a novel methodology that applied a stain to the skin and measured the intensity of that stain after repeated application and removal of a series of different adhesive types. Additionally, a traditional method of measuring skin barrier damage (transepidermal water loss) was also undertaken and compared with the staining methodology. The staining methodology and measurement of transepidermal water loss differentiated the adhesive dressings, showing that silicone adhesives caused least trauma to the skin. The staining methodology was shown to be as effective as transepidermal water loss in detecting damage to the stratum corneum and was shown to detect disruption of the barrier earlier than the traditional technique. © 2012 John Wiley & Sons A/S.
Impact of Age and Insulin-Like Growth Factor-1 on DNA Damage Responses in UV-Irradiated Human Skin.
Kemp, Michael G; Spandau, Dan F; Travers, Jeffrey B
2017-02-26
The growing incidence of non-melanoma skin cancer (NMSC) necessitates a thorough understanding of its primary risk factors, which include exposure to ultraviolet (UV) wavelengths of sunlight and age. Whereas UV radiation (UVR) has long been known to generate photoproducts in genomic DNA that promote genetic mutations that drive skin carcinogenesis, the mechanism by which age contributes to disease pathogenesis is less understood and has not been sufficiently studied. In this review, we highlight studies that have considered age as a variable in examining DNA damage responses in UV-irradiated skin and then discuss emerging evidence that the reduced production of insulin-like growth factor-1 (IGF-1) by senescent fibroblasts in the dermis of geriatric skin creates an environment that negatively impacts how epidermal keratinocytes respond to UVR-induced DNA damage. In particular, recent data suggest that two principle components of the cellular response to DNA damage, including nucleotide excision repair and DNA damage checkpoint signaling, are both partially defective in keratinocytes with inactive IGF-1 receptors. Overcoming these tumor-promoting conditions in aged skin may therefore provide a way to lower aging-associated skin cancer risk, and thus we will consider how dermal wounding and related clinical interventions may work to rejuvenate the skin, re-activate IGF-1 signaling, and prevent the initiation of NMSC.
Impact of Age and Insulin-Like Growth Factor-1 on DNA Damage Responses in UV-Irradiated Human Skin
Kemp, Michael G.; Spandau, Dan F; Travers, Jeffrey B.
2017-01-01
The growing incidence of non-melanoma skin cancer (NMSC) necessitates a thorough understanding of its primary risk factors, which include exposure to ultraviolet (UV) wavelengths of sunlight and age. Whereas UV radiation (UVR) has long been known to generate photoproducts in genomic DNA that promote genetic mutations that drive skin carcinogenesis, the mechanism by which age contributes to disease pathogenesis is less understood and has not been sufficiently studied. In this review, we highlight studies that have considered age as a variable in examining DNA damage responses in UV-irradiated skin and then discuss emerging evidence that the reduced production of insulin-like growth factor-1 (IGF-1) by senescent fibroblasts in the dermis of geriatric skin creates an environment that negatively impacts how epidermal keratinocytes respond to UVR-induced DNA damage. In particular, recent data suggest that two principle components of the cellular response to DNA damage, including nucleotide excision repair and DNA damage checkpoint signaling, are both partially defective in keratinocytes with inactive IGF-1 receptors. Overcoming these tumor-promoting conditions in aged skin may therefore provide a way to lower aging-associated skin cancer risk, and thus we will consider how dermal wounding and related clinical interventions may work to rejuvenate the skin, re-activate IGF-1 signaling, and prevent the initiation of NMSC. PMID:28245638
UVA-induced protection of skin through the induction of heme oxygenase-1.
Xiang, Yuancai; Liu, Gang; Yang, Li; Zhong, Julia Li
2011-12-01
UVA (320-400 nm) and UVB (290-320 nm) are the major components of solar UV irradiation, which is associated with various pathological conditions. UVB causes direct damage to DNA of epidermal cells and is mainly responsible for erythema, immunosuppression, photoaging, and skin cancer. UVA has oxidizing properties that can cause damage or enhance UVB damaging effects on skin. On the other hand, UVA can also lead to high levels of heme oxygenase-1 (HO-1) expression of cells that can provide an antioxidant effect on skin as well as anti-inflammatory properties in mammals and rodents. Therefore, this review focuses on the potential protection of UVA wavebands for the skin immune response, instead of mechanisms that underlie UVA-induced damage. Also, the role of HO-1 in UVA-mediated protection against UVB-induced immunosuppression in skin will be summarized. Thus, this review facilitates further understanding of potential beneficial mechanisms of UVA irradiation, and using the longer UVA (UVA1, 340-400 nm) in combination with HO-1 for phototherapy and skin protection against sunlight exposure.
Using Optical Coherence Tomography to Evaluate Skin Sun Damage and Precancer
Korde, Vrushali R.; Bonnema, Garret T.; Xu, Wei; Krishnamurthy, Chetankumar; Ranger-Moore, James; Saboda, Kathylynn; Slayton, Lisa D.; Salasche, Stuart J.; Warneke, James A.; Alberts, David S.; Barton, Jennifer K.
2008-01-01
Background and Objectives Optical coherence tomography (OCT) is a depth resolved imaging modality that may aid in identifying sun damaged skin and the precancerous condition actinic keratosis (AK). Study Design/Materials and Methods OCT images were acquired of 112 patients at 2 sun protected and 2 sun exposed sites, with a subsequent biopsy. Each site received a dermatological evaluation, a histological diagnosis, and a solar elastosis (SE) score. OCT images were examined visually and statistically analyzed. Results Characteristic OCT image features were identified of sun protected, undiseased, sun damaged, and AK skin. A statistically significant difference (P < 0.0001) between the average attenuation values of skin with minimal and severe solar elastosis was observed. Significant differences (P < 0.0001) were also found between undiseased skin and AK using a gradient analysis. Using image features, AK could be distinguished from undiseased skin with 86% sensitivity and 83% specificity. Conclusion OCT has the potential to guide biopsies and provide non-invasive measures of skin sun damage and disease state, possibly increasing efficiency of chemopreventive agent trials. PMID:17960754
Permeation of platinum and rhodium nanoparticles through intact and damaged human skin
NASA Astrophysics Data System (ADS)
Mauro, Marcella; Crosera, Matteo; Bianco, Carlotta; Adami, Gianpiero; Montini, Tiziano; Fornasiero, Paolo; Jaganjac, Morana; Bovenzi, Massimo; Filon, Francesca Larese
2015-06-01
The aim of the study was to evaluate percutaneous penetration of platinum and rhodium nanoparticles (PtNPs: 5.8 ± 0.9 nm, RhNPs: 5.3 ± 1.9 nm) through human skin. Salts compounds of these metals are sensitizers and some also carcinogenic agents. In vitro permeation experiments were performed using Franz diffusion cells with intact and damaged skin. PtNPs and RhNPs, stabilized with polyvinylpyrrolidone, were synthesized by reduction of Na2PtCl6 and RhCl3·3H2O respectively. Suspensions with a concentration of 2.0 g/L of PtNPs and RhNPs were dispersed separately in synthetic sweat at pH 4.5 and applied as donor phases to the outer surface of the skin for 24 h. Measurements of the content of the metals in the receiving solution and in the skin were performed subsequently. Rhodium skin permeation was demonstrated through damaged skin, with a permeation flux of 0.04 ± 0.04 μg cm-2 h-1 and a lag time of 7.9 ± 1.1 h, while no traces of platinum were found in receiving solutions. Platinum and rhodium skin-analysis showed significantly higher concentrations of the metals in damaged skin. Rh and Pt applied as NPs can penetrate the skin barrier and Rh can be found in receiving solutions. These experiments pointed out the need for skin contamination prevention, since even a minor injury to the skin barrier can significantly increase penetration.
Self inflicted corneal abrasions due to delusional parasitosis
Meraj, Adeel; Din, Amad U; Larsen, Lynn; Liskow, Barry I
2011-01-01
The authors report a case of self inflicted bilateral corneal abrasions and skin damage due to ophthalmic and cutaneous delusional parasitosis. A male in his 50s presented with a 10 year history of believing that parasites were colonizing his skin and biting into his skin and eyes. The patient had received extensive medical evaluations that found no evidence that symptoms were due to a medical cause. He was persistent in his belief and had induced bilateral corneal abrasions and skin damage by using heat lamps and hair dryers in an attempt to disinfect his body. The patient was treated with olanzapine along with treatment for his skin and eyes. His delusional belief system persisted but no further damage to his eyes and skin was noted on initial follow-up. PMID:22689836
Topical Application of Liposomal Antioxidant’s for Protection Against CEES Induced Skin Damage
2006-07-01
14. ABSTRACT The objective of this study is to develop an effective prophylactic therapy against an analog of mustard gas, 2-chloroethylethyl...sulfide (CEES). The therapy for CEES-induced skin damage will be based on the topical application of antioxidant liposomes. We will use EpiDerm cultured...to develop an effective prophylactic therapy against CEES-induced skin damage (analogous to HD effect) based on the topical application of
Water intrusion in thin-skinned composite honeycomb sandwich structures
NASA Technical Reports Server (NTRS)
Jackson, Wade C.; O'Brien, T. Kevin
1988-01-01
Thin-skinned composite honeycomb sandwich structures from the trailing edge of the U.S. Army's Apache and Chinook helicopters have been tested to ascertain their susceptibility to water intrusion as well as such intrusions' effects on impact damage and cyclic loading. Minimum-impact and fatigue conditions were determined which would create microcracks sufficiently large to allow the passage of water through the skins; damage sufficient for this to occur was for some skins undetectable under a 40X-magnification optical microscope. Flow rate was a function of moisture content, damage, applied strain, and pressure differences.
Shih, Barbara B; Farrar, Mark D; Cooke, Marcus S; Osman, Joanne; Langton, Abigail K; Kift, Richard; Webb, Ann R; Berry, Jacqueline L; Watson, Rachel E B; Vail, Andy; de Gruijl, Frank R; Rhodes, Lesley E
2018-05-03
Public health guidance recommends limiting sun-exposure to sub-sunburn levels, but it's unknown whether these can gain vitamin D (for musculoskeletal health) whilst avoiding epidermal DNA damage (initiates skin cancer). Well-characterised healthy humans of all skin types (I-VI; lightest to darkest skin) were exposed to a low dose-series of solar simulated UVR of 20-80% their individual sunburn threshold dose (minimal erythemal dose, MED). Significant UVR dose-responses were seen for serum 25(OH)D and whole epidermal CPD, with as little as 0.2 MED concurrently producing 25(OH)D and CPD. Notably, fractional MEDs generated equivalent levels of whole epidermal CPD and 25(OH)D across all skin types. Crucially, we demonstrated an epidermal gradient of CPD formation strongly correlated with skin darkness (r=0.74; P<0.0001), which reflected melanin content and revealed increasing protection across the skin types, ranging from darkest skin, where high CPD levels occurred superficially with none in the germinative basal layer, through to lightest skin where CPD were induced evenly across the epidermal depth. Darker skin people can be encouraged to utilise sub-sunburn UVR-exposure to enhance their vitamin D. In lighter skin people, basal cell damage occurs concurrent with vitamin D synthesis at exquisitely low UVR levels, providing an explanation for their high skin cancer incidence; greater caution is required. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
78 FR 38550 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
... skin just above certain lap splice locations is subject to widespread fatigue damage. This AD requires... necessary. We are issuing this AD to detect and correct fatigue cracking of the fuselage skin, which could... skin just above certain lap splice locations is subject to widespread fatigue damage. We are issuing...
7 CFR 993.97 - Exhibit A; minimum standards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... condition; (3) end cracks; (4) fermentation; (5) skin or flesh damage; (6) scab; (7) burned; (8) mold; (9... substantially affected. (3) End cracks means callous growth cracks, at the blossom end of prunes, aggregating... flavor is substantially affected. (5) Skin or flesh damage means growth cracks, splits, breaks in skin or...
Narayanapillai, Sreekanth; Agarwal, Chapla; Deep, Gagan; Agarwal, Rajesh
2014-06-01
Recent studies have demonstrated silibinin efficacy against ultraviolet B (UVB)-induced skin carcinogenesis via different mechanisms in cell lines and animal models; however, its role in regulating interleukin-12 (IL-12), an immunomodulatory cytokine that reduces UVB-induced DNA damage and apoptosis, is not known. Here, we report that UVB irradiation causes caspase 3 and PARP cleavage and apoptosis, and addition of recombinant IL-12 or silibinin immediately after UVB significantly protects UVB-induced apoptosis in JB6 cells. IL-12 antibody-mediated blocking of IL-12 activity compromised the protective effects of both IL-12 and silibinin. Both silibinin and IL-12 also accelerated the repair of UVB-caused cyclobutane-pyrimidine dimers (CPDs) in JB6 cells. Additional studies confirmed that indeed silibinin causes a significant increase in IL-12 levels in UVB-irradiated JB6 cells as well as in mouse skin epidermis, and that similar to cell-culture findings, silibinin topical application immediately after UVB exposure causes a strong protection against UVB-induced TUNEL positive cells in epidermis possibly through a significantly accelerated repair of UVB-caused CPDs. Together, these findings for the first time provide an important insight regarding the pharmacological mechanism wherein silibinin induces endogenous IL-12 in its efficacy against UVB-caused skin damages. In view of the fact that an enhanced endogenous IL-12 level could effectively remove UVB-caused DNA damage and associated skin cancer, our findings suggest that the use of silibinin in UVB-damaged human skin would also be a practical and translational strategy to manage solar radiation-caused skin damages as well as skin cancer. © 2013 Wiley Periodicals, Inc.
Yao, Ruiqing; Tanaka, Miyuki; Misawa, Eriko; Saito, Marie; Nabeshima, Kazumi; Yamauchi, Koji; Abe, Fumiaki; Yamamoto, Yuki; Furukawa, Fukumi
2016-10-12
Estrogen deficiencies associated with menopause accelerate spontaneous skin aging and stimulate the ultraviolet (UV) irradiation-induced photoaging of skin. However, food compositions with the potential to ameliorate the UV irradiation-induced acceleration of skin aging with menopause have not yet been investigated in detail. In the present study, we examined the ability of plant sterols derived from Aloe vera gel to prevent the UV irradiation-induced acceleration of skin aging in ovariectomized mice. Skin transepidermal water loss (TEWL) was significantly higher in the ovariectomy group than in the sham operation group following UVB irradiation, whereas skin elasticity was significantly lower. Ultraviolet B (UVB) irradiation induced greater reductions in skin hyaluronic acid levels and more severe collagen fiber damage in the derims in the ovariectomy group than in the sham group. The intake of AVGP significantly ameliorated this acceleration in skin aging by reducing the expression of matrix metalloproteinases (MMPs) and increasing that of epidermal growth factor (EGF) and hyaluronan synthase (HAS) in the skin. These results indicate that AVGP supplementation prevents skin damage induced by UVB irradiation and ovariectomy in part by inhibiting damage to the extracellular matrix. © 2016 Institute of Food Technologists®.
MHY1485 ameliorates UV-induced skin cell damages via activating mTOR-Nrf2 signaling.
Yang, Bo; Xu, Qiu-Yun; Guo, Chun-Yan; Huang, Jin-Wen; Wang, Shu-Mei; Li, Yong-Mei; Tu, Ying; He, Li; Bi, Zhi-Gang; Ji, Chao; Cheng, Bo
2017-02-21
Ultra Violet (UV)-caused skin cell damage is a main cause of skin cancer. Here, we studied the activity of MHY1485, a mTOR activator, in UV-treated skin cells. In primary human skin keratinocytes, HaCaT keratinocytes and human skin fibroblasts, MHY1485 ameliorated UV-induced cell death and apoptosis. mTOR activation is required for MHY1485-induced above cytoprotective actions. mTOR kinase inhibitors (OSI-027, AZD-8055 and AZD-2014) or mTOR shRNA knockdown almost abolished MHY1485-induced cytoprotection. Further, MHY1485 treatment in skin cells activated mTOR downstream NF-E2-related factor 2 (Nrf2) signaling, causing Nrf2 Ser-40 phosphorylation, stabilization/upregulation and nuclear translocation, as well as mRNA expression of Nrf2-dictated genes. Contrarily, Nrf2 knockdown or S40T mutation almost nullified MHY1485-induced cytoprotection. MHY1485 suppressed UV-induced reactive oxygen species production and DNA single strand breaks in skin keratinocytes and fibroblasts. Together, we conclude that MHY1485 inhibits UV-induced skin cell damages via activating mTOR-Nrf2 signaling.
Modeling Burns for Pre-Cooled Skin Flame Exposure
2017-01-01
On a television show, a pre-cooled bare-skinned person (TV host) passed through engulfing kerosene flames. The assumption was that a water film should protect him during 0.74 s flame exposure in an environment of 86 kW/m2 heat flux. The TV host got light burn inflammation on the back, arms and legs. The present work studies skin temperatures and burn damage integral of such dangerous flame exposure. The skin temperature distribution during water spray pre-cooling, transport to the flames, flame exposure, transport to the water pool, and final water pool cooling is modelled numerically. Details of the temperature development of the skin layers are presented, as well as the associated damage integral. It is shown that 5 °C water spray applied for a 30 s period pre-cooled the skin sufficiently to prevent severe skin injury. Soot marks indicate that the water layer evaporated completely in some areas resulting in skin flame contact. This exposed dry skin directly to the flames contributing significantly to the damage integral. It is further analyzed how higher water temperature, shorter pre-cooling period or longer flame exposure influence the damage integral. It is evident that minor changes in conditions could lead to severe burns and that high heat flux levels at the end of the exposure period are especially dangerous. This flame stunt should never be repeated. PMID:28880253
Wineman, Eitan; Portugal-Cohen, Meital; Soroka, Yoram; Cohen, Dror; Schlippe, Gerrit; Voss, Werner; Brenner, Sarah; Milner, Yoram; Hai, Noam; Ma'or, Zeevi
2012-09-01
Skin appearance is badly affected when exposed to solar UV rays, which encourage physiological and structural cutaneous alterations that eventually lead to skin photo-damage. To test the capability of two facial preparations, extreme day cream (EXD) and extreme night treatment (EXN), containing a unique complex of Dead Sea water and three Himalayan extracts, to antagonize biological effects induced by photo-damage. Pieces of organ cultures of human skin were used as a model to assess the biological effects of UVB irradiation and the protective effect of topical application of two Extreme preparations. Skin pieces were analyzed for mitochondrial activity by MTT assay, for apoptosis by caspase 3 assay, and for cytokine secretion by solid phase ELISA. Human subjects were tested to evaluate the effect of Extreme preparations on skin wrinkle depth using PRIMOS and skin hydration by a corneometer. UVB irradiation induced cell apoptosis in the epidermis of skin organ cultures and increased their pro-inflammatory cytokine, tumor necrosis α (TNFα) secretion. Topical applications of both preparations significantly attenuated all these effects. Furthermore, in human subjects, a reduction in wrinkle depth and an elevation in the intense skin moisture were observed. The observations clearly show that EXD and EXN preparations have protective anti-apoptotic and anti-inflammatory properties that can attenuate biological effects of skin photo-damage. Topical application of the preparations improves skin appearance by reducing its wrinkles depth and increasing its moisturizing impact. © 2012 Wiley Periodicals, Inc.
Zhao, Zhao; Sun, Tao; Jiang, Yun; Wu, Lijiang; Cai, Xiangzhong; Sun, Xiaodong; Sun, Xiangjun
2014-12-01
Blue light induced oxidative damage and ER stress are related to the pathogenesis of age-related macular degeneration (AMD). However, the mechanism of blue light-induced damage remained obscure. The objective of this work is to assess the photooxidative damage to retinal pigment epithelial cells (RPE) and oxidation-induced changes in expression of ER stress associated apoptotic proteins, and investigate the mechanism underlying the protective effects of grape skin extracts. To mimic lipofuscin-mediated photooxidation in vivo, ARPE-19 cells that accumulated A2E, one of lipofuscin fluorophores, were used as a model system to investigate the mechanism of photooxidative damage and the protective effects of grape skin polyphenols. Exposure of A2E containing ARPE-19 cells to blue light resulted in significant apoptosis and increases in levels of GRP78, CHOP, p-JNK, Bax, cleaved caspase-9, and cleaved caspase-3, indicating that photooxidative damage to RPE cells is mediated by the ER-stress-induced intrinsic apoptotic pathway. Cells in which GRP78 had been knocked down with shRNA were more vulnerable to photooxidative damage. Pre-treatment of blue-light-exposed A2E containing ARPE-19 cells, with grape skin extracts, inhibited apoptosis, in a dose dependent manner. Knockdown GRP78 blocked the protective effect of grape skin extracts.
Reduction of skin damage from transcutaneous oxygen electrodes using a spray on dressing.
Evans, N J; Rutter, N
1986-01-01
A spray on, copolymer acrylic dressing (Op-Site) was used to limit the skin damage caused by a transcutaneous oxygen electrode and its adhesive ring. Two identical electrodes were applied to the abdominal skin of 10 preterm infants, one on untreated skin, the other after application of Op-Site. It was found that Op-Site prevented the epidermal damage (as measured by transepidermal water loss) that occurs when the adhesive ring is removed from untreated skin. It did not interfere with transcutaneous oxygen measurements; absolute values and response times were unchanged. Op-Site is therefore useful in preventing the skin trauma that occurs when transcutaneous oxygen monitoring is being performed in preterm infants below 30 weeks' gestation in the first week of life. Care must be taken, however, to prevent a build up of Op-Site--it should be applied as a single layer, allowed to dry, and removed after use. PMID:3767417
Reduction of skin damage from transcutaneous oxygen electrodes using a spray on dressing.
Evans, N J; Rutter, N
1986-09-01
A spray on, copolymer acrylic dressing (Op-Site) was used to limit the skin damage caused by a transcutaneous oxygen electrode and its adhesive ring. Two identical electrodes were applied to the abdominal skin of 10 preterm infants, one on untreated skin, the other after application of Op-Site. It was found that Op-Site prevented the epidermal damage (as measured by transepidermal water loss) that occurs when the adhesive ring is removed from untreated skin. It did not interfere with transcutaneous oxygen measurements; absolute values and response times were unchanged. Op-Site is therefore useful in preventing the skin trauma that occurs when transcutaneous oxygen monitoring is being performed in preterm infants below 30 weeks' gestation in the first week of life. Care must be taken, however, to prevent a build up of Op-Site--it should be applied as a single layer, allowed to dry, and removed after use.
Photoprotection of human skin beyond ultraviolet radiation.
Grether-Beck, Susanne; Marini, Alessandra; Jaenicke, Thomas; Krutmann, Jean
2014-01-01
Photoprotection of human skin by means of sunscreens or daily skin-care products is traditionally centered around the prevention of acute (e.g. sunburn) and chronic (e.g. skin cancer and photoaging) skin damage that may result from exposure to ultraviolet rays (UVB and UVA). Within the last decade, however, it has been appreciated that wavelengths beyond the ultraviolet spectrum, in particular visible light and infrared radiation, contribute to skin damage in general and photoaging of human skin in particular. As a consequence, attempts have been made to develop skin care/sunscreen products that not only protect against UVB or UVA radiation but provide photoprotection against visible light and infrared radiation as well. In this article, we will briefly review the current knowledge about the mechanisms responsible for visible light/infrared radiation-induced skin damage and then, based on this information, discuss strategies that have been successfully used or may be employed in the future to achieve photoprotection of human skin beyond ultraviolet radiation. In this regard we will particularly focus on the use of topical antioxidants and the challenges that result from the task of showing their efficacy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Sheng, Wei; He, Honghui; Dong, Yang; Ma, Hui
2018-02-01
As one of the most fundamental features of light, polarization can be used to develop imaging techniques which can provide insight into the optical and structural properties of tissues. Especially, the Mueller matrix polarimetry is suitable to detect the changes in collagen and elastic fibres, which are the main compositions of skin tissue. Here we demonstrate a novel quantitative, non-contact and in situ technique to monitor the microstructural variations of skin tissue during ultraviolet radiation (UVR) induced photoaging based on Mueller matrix polarimetry. Specifically, we measure the twodimensional (2D) backscattering Mueller matrices of nude mouse skin samples, then calculate and analyze the Mueller matrix derived parameters during the skin photoaging and self-repairing processes. To induce three-day skin photoaging, the back skin of each mouse is irradiated with UVR (0.05J/cm2) for five minutes per day. After UVR, the microstructures of the nude mouse skin are damaged. During the process of UV damage, we measure the backscattering Mueller matrices of the mouse skin samples and examine the relationship between the Mueller matrix parameters and the microstructural variations of skin tissue quantitatively. The comparisons between the UVR damaged groups with and without sunscreens show that the Mueller matrix derived parameters are potential indicators for fibrous microstructure variation in skin tissue. The pathological examinations and Monte Carlo simulations confirm the relationship between the values of Mueller matrix parameters and the changes of fibrous structures. Combined with smart phones or wearable devices, this technique may have a good application prospect in the fields of cosmetics and dermatological health.
2016-01-01
Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 GHz, 2–20 W) up to 120 s. The extent of damage to synthetic skin samples, assessed by the change in the surface area of skin samples, was negligible for microwave power of ≤7 W and more extensive damage (>50%) to skin samples occurred when exposed to >7 W at initial temperature range of 20–39 °C. The initial temperature of synthetic skin samples significantly affected the extent of change in temperature of synthetic skin samples during their exposure to microwave heating. The proof of principle use of the MAMAD technique was demonstrated for the decrystallization of a model biological crystal (l-alanine) placed under synthetic skin samples in the presence of gold nanoparticles. Our results showed that the size (initial size ∼850 μm) of l-alanine crystals can be reduced up to 60% in 120 s without damage to synthetic skin samples using the MAMAD technique. Finite-difference time-domain-based simulations of the electric field distribution of an 8 GHz monomode microwave radiation showed that synthetic skin samples are predicted to absorb ∼92.2% of the microwave radiation. PMID:27917407
[Progressive damage monitoring of corrugated composite skins by the FBG spectral characteristics].
Zhang, Yong; Wang, Bang-Feng; Lu, Ji-Yun; Gu, Li-Li; Su, Yong-Gang
2014-03-01
In the present paper, a method of monitoring progressive damage of composite structures by non-uniform fiber Bragg grating (FBG) reflection spectrum is proposed. Due to the finite element analysis of corrugated composite skins specimens, the failure process under tensile load and corresponding critical failure loads of corrugated composite skin was predicated. Then, the non-uniform reflection spectrum of FBG sensor could be reconstructed and the corresponding relationship between layer failure order sequence of corrugated composite skin and FBG sensor reflection spectrums was acquired. A monitoring system based on FBG non-uniform reflection spectrum, which can be used to monitor progressive damage of corrugated composite skins, was built. The corrugated composite skins were stretched under this FBG non-uniform reflection spectrum monitoring system. The results indicate that real-time spectrums acquired by FBG non-uniform reflection spectrum monitoring system show the same trend with the reconstruction reflection spectrums. The maximum error between the corresponding failure and the predictive value is 8.6%, which proves the feasibility of using FBG sensor to monitor progressive damage of corrugated composite skin. In this method, the real-time changes in the FBG non-uniform reflection spectrum within the scope of failure were acquired through the way of monitoring and predicating, and at the same time, the progressive damage extent and layer failure sequence of corru- gated composite skin was estimated, and without destroying the structure of the specimen, the method is easy and simple to operate. The measurement and transmission section of the system are completely composed of optical fiber, which provides new ideas and experimental reference for the field of dynamic monitoring of smart skin.
Reelfs, Olivier; Eggleston, Ian M; Pourzand, Charareh
2010-03-01
In humans, prolonged sunlight exposure is associated with various pathological states. The continuing drive to develop improved skin protection involves not only approaches to reduce DNA damage by solar ultraviolet B (UVB) but also the development of methodologies to provide protection against ultraviolet A (UVA), the oxidising component of sunlight. Furthermore identification of specific cellular events following ultraviolet (UV) irradiation is likely to provide clues as to the mechanism of the development of resulting pathologies and therefore strategies for protection. Our discovery that UVA radiation, leads to an immediate measurable increase in 'labile' iron in human skin fibroblasts and keratinocytes provides a new insight into UVA-induced skin damage, since iron is a catalyst of biological oxidations. The main purpose of this overview is to bring together some of the new findings related to mechanisms underlying UVA-induced iron release and to discuss novel approaches based on the use of multiantioxidants and light-activated caged-iron chelators for efficient protection of skin cells against UVA-induced iron damage.
Interaction of 1.319 μm laser with skin: an optical-thermal-damage model and experimental validation
NASA Astrophysics Data System (ADS)
Jiao, Luguang; Yang, Zaifu; Wang, Jiarui
2014-09-01
With the widespread use of high-power laser systems operating within the wavelength region of approximately 1.3 to 1.4 μm, it becomes very necessary to refine the laser safety guidelines setting the exposure limits for the eye and skin. In this paper, an optical-thermal-damage model was developed to simulate laser propagation, energy deposition, heat transfer and thermal damage in the skin for 1.319 μm laser irradiation. Meanwhile, an experiment was also conducted in vitro to measure the tempreture history of a porcine skin specimen irradiated by a 1.319 μm laser. Predictions from the model included light distribution in the skin, temperature response and thermal damge level of the tissue. It was shown that the light distribution region was much larger than that of the incident laser at the wavelength of 1.319 μm, and the maximum value of the fluence rate located on the interior region of the skin, not on the surface. By comparing the calculated temperature curve with the experimentally recorded temperautre data, good agreement was shown betweeen them, which validated the numerical model. The model also indicated that the damage integral changed little when the temperature of skin tissue was lower than about 55 °C, after that, the integral increased rapidly and denatunation of the tissue would occur. Based on this model, we can further explore the damage mechanisms and trends for the skin and eye within the wavelength region of 1.3 μm to 1.4 μm, incorporating with in vivo experimental investigations.
The Characteristics of Fatigue Damage in the Fuselage Riveted Lap Splice Joint
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Willard, Scott A.
1997-01-01
An extensive data base has been developed to form the physical basis for new analytical methodology to predict the onset of widespread fatigue damage in the fuselage lap splice joint. The results of detailed destructive examinations have been cataloged to describe the physical nature of MSD in the lap splice joint. ne catalog includes a detailed description, e.g., crack initiation, growth rates, size, location, and fracture morphology, of fatigue damage in the fuselage lap splice joint structure. Detailed examinations were conducted on a lap splice joint panel removed from a full scale fuselage test article after completing a 60,000 cycle pressure test. The panel contained a four bay region that exhibited visible outer skin cracks and regions of crack link-up along the upper rivet row. Destructive examinations revealed undetected fatigue damage in the outer skin, inner skin, and tear strap regions. Outer skin fatigue cracks were found to initiate by fretting damage along the faying surface. The cracks grew along the faying surface to a length equivalent to two to three skin thicknesses before penetrating the outboard surface of the outer skin. Analysis of fracture surface marker bands produced during full scale testing revealed that all upper rivet row fatigue cracks contained in a dim bay region grow at similar rates; this important result suggests that fracture mechanics based methods can be used to predict the growth of outer skin fatigue cracks in lap splice structure. Results are presented showing the affects of MSD and out-of-plane pressure loads on outer skin crack link-up.
Damage tolerance of a composite sandwich with interleaved foam core
NASA Astrophysics Data System (ADS)
Ishai, Ori; Hiel, Clement
A composite sandwich panel consisting of carbon fiber-reinforced plastic (CFRP) skins and a syntactic foam core was selected as an appropriate structural concept for the design of wind tunnel compressor blades. Interleaving of the core with tough interlayers was done to prevent core cracking and to improve damage tolerance of the sandwich. Simply supported sandwich beam specimens were subjected to low-velocity drop-weight impacts as well as high velocity ballistic impacts. The performance of the interleaved core sandwich panels was characterized by localized skin damage and minor cracking of the core. Residual compressive strength (RCS) of the skin, which was derived from flexural test, shows the expected trend of decreasing with increasing size of the damage, impact energy, and velocity. In the case of skin damage, RCS values of around 50 percent of the virgin interleaved reference were obtained at the upper impact energy range. Based on the similarity between low-velocity and ballistic-impact effects, it was concluded that impact energy is the main variable controlling damage and residual strength, where as velocity plays a minor role.
Damage tolerance of a composite sandwich with interleaved foam core
NASA Technical Reports Server (NTRS)
Ishai, Ori; Hiel, Clement
1992-01-01
A composite sandwich panel consisting of carbon fiber-reinforced plastic (CFRP) skins and a syntactic foam core was selected as an appropriate structural concept for the design of wind tunnel compressor blades. Interleaving of the core with tough interlayers was done to prevent core cracking and to improve damage tolerance of the sandwich. Simply supported sandwich beam specimens were subjected to low-velocity drop-weight impacts as well as high velocity ballistic impacts. The performance of the interleaved core sandwich panels was characterized by localized skin damage and minor cracking of the core. Residual compressive strength (RCS) of the skin, which was derived from flexural test, shows the expected trend of decreasing with increasing size of the damage, impact energy, and velocity. In the case of skin damage, RCS values of around 50 percent of the virgin interleaved reference were obtained at the upper impact energy range. Based on the similarity between low-velocity and ballistic-impact effects, it was concluded that impact energy is the main variable controlling damage and residual strength, where as velocity plays a minor role.
Characterization of damaged skin by impedance spectroscopy: chemical damage by dimethyl sulfoxide.
White, Erick A; Orazem, Mark E; Bunge, Annette L
2013-10-01
To relate changes in the electrochemical impedance spectra to the progression and mechanism of skin damage arising from exposure to dimethyl sulfoxide (DMSO). Electrochemical impedance spectra measured before and after human cadaver skin was treated with neat DMSO or phosphate buffered saline (control) for 1 h or less were compared with electrical circuit models representing two contrasting theories describing the progression of DMSO damage. Flux of a model lipophilic compound (p-chloronitrobenzene) was also measured. The impedance spectra collected before and after 1 h treatment with DMSO were consistent with a single circuit model; whereas, the spectra collected after DMSO exposure for 0.25 h were consistent with the model circuits observed before and after DMSO treatment for 1 h combined in series. DMSO treatments did not significantly change the flux of p-chloronitrobenzene compared to control. Impedance measurements of human skin exposed to DMSO for less than about 0.5 h were consistent with the presence of two layers: one damaged irreversibly and one unchanged. The thickness of the damaged layer increased proportional to the square-root of treatment time until about 0.5 h, when DMSO affected the entire stratum corneum. Irreversible DMSO damage altered the lipophilic permeation pathway minimally.
Pigmentation means coloring. Skin pigmentation disorders affect the color of your skin. Your skin gets its color from a pigment called melanin. Special cells in the skin make melanin. When these cells become damaged or ...
Studying the effects of the heat stress on the various layers of human skin using damage function
NASA Astrophysics Data System (ADS)
Aijaz, Mir; Khanday, M. A.
2016-03-01
This paper develops a model to identify the effects of thermal stress on temperature distribution and damage in human dermal regions. The design and selection of the model takes into account many factors effecting the temperature distribution of skin, e.g., thermal conductance, perfusion, metabolic heat generation and thermal protective capabilities of the skin. The transient temperature distribution within the region is simulated using a two-dimensional finite element model of the Pennes’ bioheat equation. The relationship between temperature and time is integrated to view the damage caused to human skin by using Henriques’ model Henriques, F. C., Arch. Pathol. 43 (1947) 489-502]. The Henriques’ damage model is found to be more desirable for use in predicting the threshold of thermal damage. This work can be helpful in both emergency medicines as well as to plastic surgeon in deciding upon a course of action for the treatment of different burn injuries.
Oxidative Damage to RPA Limits the Nucleotide Excision Repair Capacity of Human Cells.
Guven, Melisa; Brem, Reto; Macpherson, Peter; Peacock, Matthew; Karran, Peter
2015-11-01
Nucleotide excision repair (NER) protects against sunlight-induced skin cancer. Defective NER is associated with photosensitivity and a high skin cancer incidence. Some clinical treatments that cause photosensitivity can also increase skin cancer risk. Among these, the immunosuppressant azathioprine and the fluoroquinolone antibiotics ciprofloxacin and ofloxacin interact with UVA radiation to generate reactive oxygen species that diminish NER capacity by causing protein damage. The replication protein A (RPA) DNA-binding protein has a pivotal role in DNA metabolism and is an essential component of NER. The relationship between protein oxidation and NER inhibition was investigated in cultured human cells expressing different levels of RPA. We show here that RPA is limiting for NER and that oxidative damage to RPA compromises NER capability. Our findings reveal that cellular RPA is surprisingly vulnerable to oxidation, and we identify oxidized forms of RPA that are associated with impaired NER. The vulnerability of NER to inhibition by oxidation provides a connection between cutaneous photosensitivity, protein damage, and increased skin cancer risk. Our findings emphasize that damage to DNA repair proteins, as well as to DNA itself, is likely to be an important contributor to skin cancer risk.
Nichols, Joi A; Katiyar, Santosh K
2010-03-01
Epidemiological, clinical and laboratory studies have implicated solar ultraviolet (UV) radiation in various skin diseases including, premature aging of the skin and melanoma and non-melanoma skin cancers. Chronic UV radiation exposure-induced skin diseases or skin disorders are caused by the excessive induction of inflammation, oxidative stress and DNA damage, etc. The use of chemopreventive agents, such as plant polyphenols, to inhibit these events in UV-exposed skin is gaining attention. Chemoprevention refers to the use of agents that can inhibit, reverse or retard the process of these harmful events in the UV-exposed skin. A wide variety of polyphenols or phytochemicals, most of which are dietary supplements, have been reported to possess substantial skin photoprotective effects. This review article summarizes the photoprotective effects of some selected polyphenols, such as green tea polyphenols, grape seed proanthocyanidins, resveratrol, silymarin and genistein, on UV-induced skin inflammation, oxidative stress and DNA damage, etc., with a focus on mechanisms underlying the photoprotective effects of these polyphenols. The laboratory studies conducted in animal models suggest that these polyphenols have the ability to protect the skin from the adverse effects of UV radiation, including the risk of skin cancers. It is suggested that polyphenols may favorably supplement sunscreens protection, and may be useful for skin diseases associated with solar UV radiation-induced inflammation, oxidative stress and DNA damage.
Skin integrity and silicone: Appeel 'no-sting' medical adhesive remover.
Stephen-Haynes, Jackie
This article offers an overview of skin and the importance of maintaining intact skin in relation to wound and stoma care. Various patients and their conditions are considered in relation to their potential for skin damage with the removal of adhesive products, including paediatrics, those with epidermolysis bullosa, haemangioma, fragile skin, elderly skin and ostomates. The importance of protecting fragile skin and protecting the peri-wound and peri-stoma area is discussed and the impact of such damage on quality of life is considered. The evidence relating to the impact that silicone-based adhesive removers can have is reviewed with a conclusion that an evidence-based approach can significantly affect patient outcomes.
Zhu, Xianbing; Zeng, Xiaowei; Zhang, Xudong; Cao, Wei; Wang, Yilin; Chen, Houjie; Wang, Teng; Tsai, Hsiang-I; Zhang, Ran; Chang, Danfeng; He, Shuai; Mei, Lin; Shi, Xiaojun
2016-04-01
Ultraviolet (UV) radiation has deleterious effects on living organisms, and functions as a tumor initiator and promoter. Multiple natural compounds, like quercetin, have been shown the protective effects on UV-induced damage. However, quercetin is extremely hydrophobic and limited by its poor percutaneous permeation and skin deposition. Here, we show that quercetin-loaded PLGA-TPGS nanoparticles could overcome low hydrophilicity of quercetin and improve its anti-UVB effect. Quercetin-loaded NPs can significantly block UVB irradiation induced COX-2 up-expression and NF-kB activation in Hacat cell line. Moreover, PLGA-TPGS NPs could efficiently get through epidermis and reach dermis. Treatment of mice with quercetin-loaded NPs also attenuates UVB irradiation-associated macroscopic and histopathological changes in mice skin. These results demonstrated that copolymer PLGA-TPGS could be used as drug nanocarriers against skin damage and disease. The findings provide an external use of PLGA-TPGS nanocarriers for application in the treatment of skin diseases. Skin is the largest organ in the body and is subjected to ultraviolet (UV) radiation damage daily from the sun. Excessive exposure has been linked to the development of skin cancer. Hence, topically applied agents can play a major role in skin protection. In this article, the authors developed quercetin-loaded PLGA-TPGS nanoparticles and showed their anti-UVB effect. Copyright © 2015 Elsevier Inc. All rights reserved.
Protecting the radiation-damaged skin from friction: a mini review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herst, Patries M
2014-06-15
Radiation-induced skin reactions are an unavoidable side effect of external beam radiation therapy, particularly in areas prone to friction and excess moisture such as the axilla, head and neck region, perineum and skin folds. Clinical studies investigating interventions for preventing or managing these reactions have largely focussed on formulations with moisturising, anti-inflammatory, anti-microbial and wound healing properties. However, none of these interventions has emerged as a consistent candidate for best practice. Much less emphasis has been placed on evaluating ways to protect the radiation-damaged skin from friction and excess moisture. This mini review analyses the clinical evidence for barrier productsmore » that form a protective layer by adhering very closely to the skin folds and do not cause further trauma to the radiation-damaged skin upon removal. A database search identified only two types of barrier products that fitted these criteria and these were tested in two case series and six controlled clinical trials. Friction protection was most effective when the interventions were used from the start of treatment and continued for several weeks after completion of treatment. Soft silicone dressings (Mepilex Lite and Mepitel Film) and Cavilon No Sting Barrier Film, but not Cavilon Moisturizing Barrier Cream, decreased skin reaction severity, most likely due to differences in formulation and skin build-up properties. It seems that prophylactic use of friction protection of areas at risk could be a worthwhile addition to routine care of radiation-damaged skin.« less
Protecting the radiation-damaged skin from friction: a mini review
Herst, Patries M
2014-01-01
Radiation-induced skin reactions are an unavoidable side effect of external beam radiation therapy, particularly in areas prone to friction and excess moisture such as the axilla, head and neck region, perineum and skin folds. Clinical studies investigating interventions for preventing or managing these reactions have largely focussed on formulations with moisturising, anti-inflammatory, anti-microbial and wound healing properties. However, none of these interventions has emerged as a consistent candidate for best practice. Much less emphasis has been placed on evaluating ways to protect the radiation-damaged skin from friction and excess moisture. This mini review analyses the clinical evidence for barrier products that form a protective layer by adhering very closely to the skin folds and do not cause further trauma to the radiation-damaged skin upon removal. A database search identified only two types of barrier products that fitted these criteria and these were tested in two case series and six controlled clinical trials. Friction protection was most effective when the interventions were used from the start of treatment and continued for several weeks after completion of treatment. Soft silicone dressings (Mepilex Lite and Mepitel Film) and Cavilon No Sting Barrier Film, but not Cavilon Moisturizing Barrier Cream, decreased skin reaction severity, most likely due to differences in formulation and skin build-up properties. It seems that prophylactic use of friction protection of areas at risk could be a worthwhile addition to routine care of radiation-damaged skin. PMID:26229646
MHY1485 ameliorates UV-induced skin cell damages via activating mTOR-Nrf2 signaling
Yang, Bo; Xu, Qiu-Yun; Guo, Chun-Yan; Huang, Jin-Wen; Wang, Shu-Mei; Li, Yong-Mei; Tu, Ying; He, Li; Bi, Zhi-Gang; Ji, Chao; Cheng, Bo
2017-01-01
Ultra Violet (UV)-caused skin cell damage is a main cause of skin cancer. Here, we studied the activity of MHY1485, a mTOR activator, in UV-treated skin cells. In primary human skin keratinocytes, HaCaT keratinocytes and human skin fibroblasts, MHY1485 ameliorated UV-induced cell death and apoptosis. mTOR activation is required for MHY1485-induced above cytoprotective actions. mTOR kinase inhibitors (OSI-027, AZD-8055 and AZD-2014) or mTOR shRNA knockdown almost abolished MHY1485-induced cytoprotection. Further, MHY1485 treatment in skin cells activated mTOR downstream NF-E2-related factor 2 (Nrf2) signaling, causing Nrf2 Ser-40 phosphorylation, stabilization/upregulation and nuclear translocation, as well as mRNA expression of Nrf2-dictated genes. Contrarily, Nrf2 knockdown or S40T mutation almost nullified MHY1485-induced cytoprotection. MHY1485 suppressed UV-induced reactive oxygen species production and DNA single strand breaks in skin keratinocytes and fibroblasts. Together, we conclude that MHY1485 inhibits UV-induced skin cell damages via activating mTOR-Nrf2 signaling. PMID:28061443
Effect of Impact Damage and Open Hole on Compressive Strength of Hybrid Composite Laminates
NASA Technical Reports Server (NTRS)
Hiel, Clement; Brinson, H. F.
1993-01-01
Impact damage tolerance is a frequently listed design requirement for composites hardware. The effect of impact damage and open hole size on laminate compressive strength was studied on sandwich beam specimens which combine CFRP-GFRP hybrid skins and a syntactic foam core. Three test specimen configurations have been investigated for this study. The first two were sandwich beams which were loaded in pure bending (by four point flexure). One series had a skin damaged by impact, and the second series had a circular hole machined through one of the skins. The reduction of compressive strength with increasing damage (hole) size was compared. Additionally a third series of uniaxially loaded open hole compression coupons were tested to generate baseline data for comparison with both series of sandwich beams.
Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo
2017-01-01
Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways. PMID:28277539
Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo
2017-03-09
Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways.
Schroeder, P; Calles, C; Benesova, T; Macaluso, F; Krutmann, J
2010-01-01
Solar radiation is well known to damage human skin, for example by causing premature skin ageing (i.e. photoageing). We have recently learned that this damage does not result from ultraviolet (UV) radiation alone, but also from longer wavelengths, in particular near-infrared radiation (IRA radiation, 760-1,440 nm). IRA radiation accounts for more than one third of the solar energy that reaches human skin. While infrared radiation of longer wavelengths (IRB and IRC) does not penetrate deeply into the skin, more than 65% of the shorter wavelength (IRA) reaches the dermis. IRA radiation has been demonstrated to alter the collagen equilibrium of the dermal extracellular matrix in at least two ways: (a) by leading to an increased expression of the collagen-degrading enzyme matrix metalloproteinase 1, and (b) by decreasing the de novo synthesis of the collagen itself. IRA radiation exposure therefore induces similar biological effects to UV radiation, but the underlying mechanisms are substantially different, specifically, the cellular response to IRA irradiation involves the mitochondrial electron transport chain. Effective sun protection requires specific strategies to prevent IRA radiation-induced skin damage. 2010 S. Karger AG, Basel.
Bernerd, Francoise; Marionnet, Claire; Duval, Christine
2012-06-01
Cutaneous damages such as sunburn, pigmentation, and photoaging are known to be induced by acute as well as repetitive sun exposure. Not only for basic research, but also for the design of the most efficient photoprotection, it is crucial to understand and identify the early biological events occurring after ultraviolet (UV) exposure. Reconstructed human skin models provide excellent and reliable in vitro tools to study the UV-induced alterations of the different skin cell types, keratinocytes, fibroblasts, and melanocytes in a dose- and time-dependent manner. Using different in vitro human skin models, the effects of UV light (UVB and UVA) were investigated. UVB-induced damages are essentially epidermal, with the typical sunburn cells and DNA lesions, whereas UVA radiation-induced damages are mostly located within the dermal compartment. Pigmentation can also be obtained after solar simulated radiation exposure of pigmented reconstructed skin model. Those models are also highly adequate to assess the potential of sunscreens to protect the skin from UV-associated damage, sunburn reaction, photoaging, and pigmentation. The results showed that an effective photoprotection is provided by broad-spectrum sunscreens with a potent absorption in both UVB and UVA ranges.
Miyamura, Yoshinori; Coelho, Sergio G; Schlenz, Kathrin; Batzer, Jan; Smuda, Christoph; Choi, Wonseon; Brenner, Michaela; Passeron, Thierry; Zhang, Guofeng; Kolbe, Ludger; Wolber, Rainer; Hearing, Vincent J
2011-02-01
The relationship between human skin pigmentation and protection from ultraviolet (UV) radiation is an important element underlying differences in skin carcinogenesis rates. The association between UV damage and the risk of skin cancer is clear, yet a strategic balance in exposure to UV needs to be met. Dark skin is protected from UV-induced DNA damage significantly more than light skin owing to the constitutively higher pigmentation, but an as yet unresolved and important question is what photoprotective benefit, if any, is afforded by facultative pigmentation (i.e. a tan induced by UV exposure). To address that and to compare the effects of various wavelengths of UV, we repetitively exposed human skin to suberythemal doses of UVA and/or UVB over 2 weeks after which a challenge dose of UVA and UVB was given. Although visual skin pigmentation (tanning) elicited by different UV exposure protocols was similar, the melanin content and UV-protective effects against DNA damage in UVB-tanned skin (but not in UVA-tanned skin) were significantly higher. UVA-induced tans seem to result from the photooxidation of existing melanin and its precursors with some redistribution of pigment granules, while UVB stimulates melanocytes to up-regulate melanin synthesis and increases pigmentation coverage, effects that are synergistically stimulated in UVA and UVB-exposed skin. Thus, UVA tanning contributes essentially no photoprotection, although all types of UV-induced tanning result in DNA and cellular damage, which can eventually lead to photocarcinogenesis. 2010 John Wiley & Sons A/S. This article is a US Government work and is in the public domain in the USA.
Kahsay, Tesfay; Negash, Guesh; Hagos, Yohannes; Hadush, Birhanu
2015-08-21
Skins and hides are perishable resources that can be damaged by parasitic diseases and human error, which result in downgrading or rejection. This study was conducted to identify defect types and to determine their prevalence in pickled sheep and wet blue goat skins and wet blue hides. Each selected skin or hide was examined for defects in natural light and the defects were graded according to established quality criteria in Ethiopian standard manuals. Major defects were captured by digital photography. The major pre-slaughter defects included scratches (64.2%), cockle (ekek) (32.8%), wounds or scars (12.6%), lesions from pox or lumpy skin disease (6.1%), poor substance (5%), branding marks (2.3%) and tick bites (1.5%). The presence of grain scratches in wet blue hides (76.3%) was significantly higher than in pickled sheep (67.2%) and wet blue goat (59.1%) skins. The major slaughter defects included flay cuts or scores, holes, poor pattern and vein marks, with a higher occurrence in wet blue goat skins (28.7%; P < 0.001) than in wet blue hides (22.8%) and pickled sheep skins (11.1%). The most prevalent postslaughter defects were grain cracks (14.9%), hide beetle damage (8%), damage caused by heat or putrefaction (3.7%) and machine-induced defects (0.5%). Grain cracks (27.04%) and hide beetle damage (13.9%) in wet blue goat skins were significantly more common than in wet blue hides and pickled sheep skins. These defects cause depreciation in the value of the hides and skins. Statistically significant (P < 0.001) higher rejection rates were recorded for wet blue hides (82.9%) than for pickled sheep skins (18.3%) and wet blue goat skins (8.5%). Improved animal health service delivery, effective disease control strategies and strong collaboration between stakeholders are suggested to enhance the quality of skins and hides.
González-Herrero, I; Romero-Camarero, I; Cañueto, J; Cardeñoso-Álvarez, E; Fernández-López, E; Pérez-Losada, J; Sánchez-García, I; Román-Curto, C
2013-10-01
Melanoma is responsible for almost 80% of the deaths attributed to skin cancer. Stem cells, defined by CD133 expression, have been implicated in melanoma tumour growth, but their specific role is still uncertain. We hypothesized that the phenotypic heterogeneity of human cutaneous melanomas is related to their content of CD133+ cells. We compared the percentages of CD133+ cells in 29 tumours from four classic types of melanoma: lentigo maligna melanoma (LMM), superficial spreading melanoma, nodular melanoma and acral lentiginous melanoma (ALM). Also, we compared the percentages of CD133+ cells in melanomas with different degrees of exposure to ultraviolet radiation: 16 melanomas from skin with chronic sun-induced damage and 13 melanomas from skin without such damage. We found a statistically significant increase of CD133+ cells in three different contexts: in melanomas arising on skin with signs of chronic sun-induced damage vs. nonexposed skin, in melanomas in situ vs. invasive melanomas, and in LMM vs. ALM. The proportions of CD133+ cells did not differ among samples of normal skin with different degrees of sun exposure. A distinct subpopulation of CD133+CXCR4+ cancer stem cells (CSCs) was identified and shown to be related to the invasive phenotype of the tumours. Here, we provide evidence showing, for the first time, that an increase in the CD133+ cell content is associated both with melanomas arising on skin with signs of chronic sun-induced damage and in melanomas in situ with better prognosis. Moreover, our study further confirms the existence of a subpopulation of CD133+CXCR4+ CSCs in cutaneous melanomas with invasive phenotype and poor prognosis. © 2013 British Association of Dermatologists.
Sumiyoshi, Maho; Kimura, Yoshiyuki
2009-12-01
Turmeric (the rhizomes of Curcuma longa L., Zingiberacease) is widely used as a dietary pigment and spice, and has been traditionally used for the treatment of inflammation, skin wounds and hepatic disorders in Ayurvedic, Unani and Chinese medicine. Although the topical application or oral administration of turmeric is used to improve skin trouble, there is no evidence to support this effect. The aim of this study was to clarify whether turmeric prevents chronic ultraviolet B (UVB)-irradiated skin damage. We examined the effects of a turmeric extract on skin damage including changes in skin thickness and elasticity, pigmentation and wrinkling caused by long-term, low-dose ultraviolet B irradiation in melanin-possessing hairless mice. The extract (at 300 or 1000 mg/kg, twice daily) prevented an increase in skin thickness and a reduction in skin elasticity induced by chronic UVB exposure. It also prevented the formation of wrinkles and melanin (at 1000 mg/kg, twice daily) as well as increases in the diameter and length of skin blood vessels and in the expression of matrix metalloproteinase-2 (MMP-2). Prevention of UVB-induced skin aging by turmeric may be due to the inhibition of increases in MMP-2 expression caused by chronic irradiation.
Chronic sun damage and the perception of age, health and attractiveness.
Matts, Paul J; Fink, Bernhard
2010-04-01
Young and healthy-looking skin is a feature that is universally admired and considered attractive among humans. However, as we age, skin condition deteriorates due to a variety of intrinsic and extrinsic factors determined not only by genetics and physiological health but also by behaviour and lifestyle choice. As regards the latter, cumulative, repeated exposure to solar ultraviolet radiation (UVR) is linked intrinsically to the induction of specific types of skin cancer and the expression of cutaneous damage markers responsible for the majority of the visible signs of skin ageing. Here we review empirical evidence for skin-specific effects of chronic UVR exposure and relate it to perception of visible skin condition. In contrast to other dermatological accounts, we stress an evolutionary psychology context in understanding the significance of age-related changes in visible skin condition in human social cognition and interaction. We suggest that the "marriage" of the scientific fields of skin biology and evolutionary psychology provides a modern, powerful framework for investigating the causes, mechanisms and perception of chronic sun damage of skin, as it explains the human obsession with a youthful and healthy appearance. Hence, it may be that these insights bring true emotional impetus to the adoption of sun protection strategies, which could conceivably impact skin cancer rates in coming years.
NASA Astrophysics Data System (ADS)
Rossi, Francesca; Zingoni, Tiziano; Di Cicco, Emiliano; Manetti, Leonardo; Pini, Roberto; Fortuna, Damiano
2011-07-01
Laser light is nowadays routinely used in the aesthetic treatments of facial skin, such as in laser rejuvenation, scar removal etc. The induced thermal damage may be varied by setting different laser parameters, in order to obtain a particular aesthetic result. In this work, it is proposed a theoretical study on the induced thermal damage in the deep tissue, by considering different laser pulse duration. The study is based on the Finite Element Method (FEM): a bidimensional model of the facial skin is depicted in axial symmetry, considering the different skin structures and their different optical and thermal parameters; the conversion of laser light into thermal energy is modeled by the bio-heat equation. The light source is a CO2 laser, with different pulse durations. The model enabled to study the thermal damage induced into the skin, by calculating the Arrhenius integral. The post-processing results enabled to study in space and time the temperature dynamics induced in the facial skin, to study the eventual cumulative effects of subsequent laser pulses and to optimize the procedure for applications in dermatological surgery. The calculated data where then validated in an experimental measurement session, performed in a sheep animal model. Histological analyses were performed on the treated tissues, evidencing the spatial distribution and the entity of the thermal damage in the collageneous tissue. Modeling and experimental results were in good agreement, and they were used to design a new optimized laser based skin resurfacing procedure.
Pelle, Edward; Maes, Daniel; Huang, Xi; Frenkel, Krystyna; Pernodet, Nadine; Yarosh, Daniel B; Zhang, Qi
2012-01-01
Environmental trauma to human skin can lead to oxidative damage of proteins and affect their activity and structure. When methionine becomes oxidized to its sulfoxide form, methionine sulfoxide reductase A (MSRA) reduces it back to methionine. We report here the increase in MSRA in normal human epidermal keratinocytes (NHEK) after ultraviolet B (UVB) radiation, as well as the reduction in hydrogen peroxide levels in NHEK pre-treated with MSRA after exposure. Further, when NHEK were pre-treated with a non-cytotoxic pentapeptide containing methionine sulfoxide (metSO), MSRA expression increased by 18.2%. Additionally, when the media of skin models were supplemented with the metSO pentapeptide and then exposed to UVB, a 31.1% reduction in sunburn cells was evident. We conclude that the presence of MSRA or an externally applied peptide reduces oxidative damage in NHEK and skin models and that MSRA contributes to the protection of proteins against UVB-induced damage in skin.
Tulah, Asif S; Birch-Machin, Mark A
2013-09-01
Mitochondrial DNA damage has been used as a successful and unique biomarker of tissue stress. A valuable example of this is sun damage in human skin which leads to ageing and skin cancer. The skin is constantly exposed to the harmful effects of sunlight, such as ultraviolet radiation, which causes it to age with observable characteristic features as well as clinical precancerous lesions and skin cancer. Formation of free radicals by the sun's harmful rays which contribute to oxidative stress has been linked to the induction of deletions and mutations in the mitochondrial DNA. These markers of mitochondrial DNA damage have been proposed to contribute to the mechanisms of ageing in many tissues including skin and are associated with many diseases including cancer. In this article we highlight the role of this important organelle in ageing and cancer with particular emphasis on experimental strategies in the skin. Copyright © 2012 © Elsevier B.V. and Mitochondria Research Society. All rights reserved. Published by Elsevier B.V. All rights reserved.
Zhu, Rui; Gao, Feng; Piao, Ji-Gang; Yang, Lihua
2017-07-25
How to ablate tumor without damaging skin is a challenge for photothermal therapy. We, herein, report skin-safe photothermal cancer therapy provided by the responsive release of acid-activated hemolytic polymer (aHLP) from the photothermal polydopamine (PDA) nanoparticle upon irradiation at very low dosage. Upon skin-permissible irradiation (via an 850 nm laser irradiation at the power density of 0.4 W cm -2 ), the nanoparticle aHLP-PDA generates sufficient localized-heat to bring about mild hyperthermia treatment and consequently, responsively sheds off the aHLP polymer from its PDA nanocore; this leads to selective cytotoxicity to cancer cells under the acidic conditions of the extracellular microenvironment of tumor. As a result, our aHLP-PDA nanoparticle upon irradiation at a low dosage effectively inhibits tumor growth without damaging skin, as demonstrated using animal models. Effective in mitigating the otherwise inevitable skin damage in tumor photothermal therapy, the nanosystem reported herein offers an efficient pathway towards skin-safe photothermal therapy.
Experimental study on skin irritation of bone spur powder on rabbit
NASA Astrophysics Data System (ADS)
Ma, Zhenzhen; Zhang, Xuhui; Hao, Shaojun; Shen, Huiling; Wang, Huamin; Ji, Xianghui; Zhang, Zhengchen; Huang, Youling
2018-04-01
To observe the effect of bone powder of rabbit skin, provide the basis for the safety of clinical use of bone powder, 24 rabbits were randomly divided into 6 groups, complete skin test and damaged skin test each divided into 3 groups (n=4), high, low, 3 doses tested daily administered 1 times, continuous administration for 7 days, in 24 hours after the last administration of drug residues, wash with warm water, the removal of L hours after drug for 24 hours, 48 hours, 72 hours and seventh days, observed and recorded to apply position before administration and administration during the skin no erythema and edema, and observe the smear Parts of any pigmentation, bleeding, rough skin or thin skin etc., record the occurrence time and duration time. Through comparative observation, intact skin group before administration and dosing period, there were no erythema and edema, pigmentation, bleeding, rough skin or thin skin etc., there is no difference with the control group; the damaged skin group after administration of 1 to 5 days, each rabbit skin there are different degrees of erythema and edema, especially to skin injury after 24-48 hours is obvious, 2 days (48 hours) after 4 days gradually reduced, significantly subsided after 6 days, erythema and edema phenomenon subsided completely, not out of blood, pigmentation, rough skin or thin skin and so on. The bone spur powder has no irritation on the intact skin of rabbits. The bone spur powder has moderate irritation on the damaged skin of rabbits, but after 48 hours, the stimulation reaction subsided spontaneously, which is caused by the inflammatory reaction caused by skin injury, rather than the medication. The bone spur powder is safe for clinical use.
Inturi, Swetha; Tewari-Singh, Neera; Gu, Mallikarjuna; Shrotriya, Sangeeta; Gomez, Joe; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh
2011-12-15
Employing mouse skin epidermal JB6 cells and dermal fibroblasts, here we examined the mechanisms of DNA damage by 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of sulfur mustard (SM). CEES exposure caused H2A.X and p53 phosphorylation as well as p53 accumulation in both cell types, starting at 1h, that was sustained for 24h, indicating a DNA-damaging effect of CEES, which was also confirmed and quantified by alkaline comet assay. CEES exposure also induced oxidative stress and oxidative DNA damage in both cell types, measured by an increase in mitochondrial and cellular reactive oxygen species and 8-hydroxydeoxyguanosine levels, respectively. In the studies distinguishing between oxidative and direct DNA damage, 1h pretreatment with glutathione (GSH) or the antioxidant Trolox showed a decrease in CEES-induced oxidative stress and oxidative DNA damage. However, only GSH pretreatment decreased CEES-induced total DNA damage measured by comet assay, H2A.X and p53 phosphorylation, and total p53 levels. This was possibly due to the formation of GSH-CEES conjugates detected by LC-MS analysis. Together, our results show that CEES causes both direct and oxidative DNA damage, suggesting that to rescue SM-caused skin injuries, pleiotropic agents (or cocktails) are needed that could target multiple pathways of mustard skin toxicities. Copyright © 2011 Elsevier Inc. All rights reserved.
Palladium nanoparticles exposure: Evaluation of permeation through damaged and intact human skin.
Larese Filon, Francesca; Crosera, Matteo; Mauro, Marcella; Baracchini, Elena; Bovenzi, Massimo; Montini, Tiziano; Fornasiero, Paolo; Adami, Gianpiero
2016-07-01
The intensified use of palladium nanoparticles (PdNPs) in many chemical reactions, jewellery, electronic devices, in car catalytic converters and in biomedical applications lead to a significant increase in palladium exposure. Pd can cause allergic contact dermatitis when in contact with the skin. However, there is still a lack of toxicological data related to nano-structured palladium and information on human cutaneous absorption. In fact, PdNPs, can be absorbed through the skin in higher amounts than bulk Pd because NPs can release more ions. In our study, we evaluated the absorption of PdNPs, with a size of 10.7 ± 2.8 nm, using intact and damaged human skin in Franz cells. 0.60 mg cm(-2) of PdNPs were applied on skin surface for 24 h. Pd concentrations in the receiving solutions at the end of experiments were 0.098 ± 0.067 μg cm(-2) and 1.06 ± 0.44 μg cm(-2) in intact skin and damaged skin, respectively. Pd flux permeation after 24 h was 0.005 ± 0.003 μg cm(-2) h(-1) and 0.057 ± 0.030 μg cm(-2) h(-1) and lag time 4.8 ± 1.7 and 4.2 ± 3.6 h, for intact and damaged skin respectively. This study indicates that Pd can penetrate human skin. Copyright © 2016 Elsevier Ltd. All rights reserved.
Novel Means for Photoprotection.
Sondenheimer, Kevin; Krutmann, Jean
2018-01-01
Due to changes in human lifestyle (expanded sunbathing, the use of solaria, etc.) and, most importantly, increasing lifetime and thus higher cumulative exposure to solar radiation, skin aging and skin cancer have become major health issues. As a consequence effective photoprotection is of outmost importance to humans. In this regard a lot has been learned in the past about the cellular and molecular basis underlying ultraviolet (UV) radiation-induced skin damage and, based on this knowledge, numerous skin protective approaches including organic and inorganic UV-filters, but also topically applicable antioxidants, DNA repair enzymes and compatible solutes as well as oral photoprotective strategies based on nutritional supplements have been developed. A new aspect is here that sun protection of human skin might even be possible after solar radiation-induced skin damage has occurred. A second, very important development was prompted by the discovery that also wavelengths beyond the UV spectrum can damage human skin. These include the blue light region of visible light (VIS) as well as the near infrared range (IRA) and corresponding sunprotection strategies have thus recently been or are still being developed. In this article we will provide a state of the art summary of these two novel developments and, at the end, we will also critically discuss strengths and weaknesses of the current attempts, which mainly focus on the prevention of skin damage by selected wavelengths but greatly ignore the possibility that wavelengths might interfere with each other. Such combined effects, however, need to be taken into account if photoprotection of human skin is intended to be global in nature.
McCreath, Heather E; Bates-Jensen, Barbara M; Nakagami, Gojiro; Patlan, Anabel; Booth, Howard; Connolly, Dana; Truong, Cyndi; Woldai, Agazi
2016-09-01
To assess the feasibility of classifying skin tone using Munsell color chart values and to compare Munsell-based skin tone categories to ethnicity/race to predict pressure ulcer risk. Pressure ulcer classification uses level of visible tissue damage, including skin discoloration over bony prominences. Prevention begins with early detection of damage. Skin discoloration in those with dark skin tones can be difficult to observe, hindering early detection. Observational cohort of 417 nursing home residents from 19 nursing homes collected between 2009-2014, with weekly skin assessments for up to 16 weeks. Assessment included forearm and buttocks skin tone based on Munsell values (Dark, Medium, Light) at three time points, ethnicity/race medical record documentation, and weekly skin assessment on trunk and heels. Inter-rater reliability was high for forearm and buttock values and skin tone. Mean Munsell buttocks values differed significantly by ethnicity/race. Across ethnicity/race, Munsell value ranges overlapped, with the greatest range among African Americans. Trunk pressure ulcer incidence varied by skin tone, regardless of ethnicity/race. In multinomial regression, skin tone was more predictive of skin damage than ethnicity/race for trunk locations but ethnicity/race was more predictive for heels. Given the overlap of Munsell values across ethnicity/race, color charts provide more objective measurement of skin tone than demographic categories. An objective measure of skin tone can improve pressure ulcer risk assessment among patients for whom current clinical guidelines are less effective. © 2016 John Wiley & Sons Ltd.
Use of a coverlet system for the management of skin microclimate.
Collier, Mark; Potts, Carol; Shaw, Elaine
2014-08-12
Pressure and shear are the two key extrinsic factors that cause pressure ulcer damage. However, if the resilience of the skin and soft tissue deteriorates, the individual's susceptibility to such pressure damage will increase. The risk is greater if the microclimate at the interface between the skin and the support surface is impaired. This will occur when the skin temperature is elevated and there is excess moisture on the skin surface. Microclimate management therefore plays an important role in pressure ulcer prevention. This article describes how use of a new coverlet system (Skin IQ Microclimate Manager, ArjoHuntleigh) can avoid the accumulation of heat and moisture at the patient/support-surface interface.
Ueda, Setsuko; Mitsugi, Koichi; Ichige, Kazumi; Yoshida, Kenji; Sakuma, Tomoko; Ninomiya, Shin-ichi; Sudou, Tetsuji
2002-04-01
Salicylic acid is used in chemical peeling procedures. However, they have caused many side effects, even salicylism. To achieve a salicylic acid peeling that would be safer for topical use, we recently developed a new formulation consisting of 30% salicylic acid in polyethylene glycol (PEG) vehicle. In an extension of our previous research, we studied the absorption of 30% salicylic acid labeled with 14C in PEG vehicle applied topically to the intact and damaged skin of male hairless mice. An ointment containing 3 mg salicylic acid in 10 mg vehicle was applied to both groups. In animals with intact skin, 1 h after application the plasma concentration of radioactivity was 1665.1 ng eq/ml, significantly lower than the 21437.6 ng eq/ml observed in mice with damaged skin. Microautoradiograms of intact skin showed that the level of radioactivity in the cornified cell layer was similar at 6 h after application. However, in damaged skin, the overall level of radioactivity showed a decrease by 3 h after application. In the carcasses remaining after the treated intact and damaged skin had been removed, 0.09 and 11.38% of the applied radioactivity remained, respectively. These findings confirm that 30% salicylic acid in PEG vehicle is little absorbed through the intact skin of hairless mice, and suggest that salicylism related to absorption through the skin of quantities of topically applied salicylic acid is not likely to occur in humans with intact skin during chemical peeling with this preparation. This new preparation of 30% salicylic acid in PEG vehicle is believed to be safe for application as a chemical peeling agent.
Dicer Cooperates with p53 to Suppress DNA Damage and Skin Carcinogenesis in Mice
Lyle, Stephen; Hoover, Kathleen; Colpan, Cansu; Zhu, Zhiqing; Matijasevic, Zdenka; Jones, Stephen N.
2014-01-01
Dicer is required for the maturation of microRNA, and loss of Dicer and miRNA processing has been found to alter numerous biological events during embryogenesis, including the development of mammalian skin and hair. We have previously examined the role of miRNA biogenesis in mouse embryonic fibroblasts and found that deletion of Dicer induces cell senescence regulated, in part, by the p53 tumor suppressor. Although Dicer and miRNA molecules are thought to have either oncogenic or tumor suppressing roles in various types of cancer, a role for Dicer and miRNAs in skin carcinogenesis has not been established. Here we show that perinatal ablation of Dicer in the skin of mice leads to loss of fur in adult mice, increased epidermal cell proliferation and apoptosis, and the accumulation of widespread DNA damage in epidermal cells. Co-ablation of Dicer and p53 did not alter the timing or extent of fur loss, but greatly reduced survival of Dicer-skin ablated mice, as these mice developed multiple and highly aggressive skin carcinomas. Our results describe a new mouse model for spontaneous basal and squamous cell tumorigenesis. Furthermore, our findings reveal that loss of Dicer in the epidermis induces extensive DNA damage, activation of the DNA damage response and p53-dependent apoptosis, and that Dicer and p53 cooperate to suppress mammalian skin carcinogenesis. PMID:24979267
Neoplasms treatment by diode laser with and without real time temperature control on operation zone
NASA Astrophysics Data System (ADS)
Belikov, Andrey V.; Gelfond, Mark L.; Shatilova, Ksenia V.; Sosenkova, Svetlana A.; Lazareva, Anastasia A.; Semyashkina, Yulia V.
2016-04-01
Results of nevus, papilloma, dermatofibroma, and basal cell skin cancer in vivo removal by a 980+/-10 nm diode laser with "blackened" tip operating in continuous (CW) mode and automatic power control (APC) mode are presented. The collateral damage width and width of graze wound area around the collateral damage area were demonstrated. The total damage area width was calculated as sum of collateral damage width and graze wound area width. The mean width of total damage area reached 1.538+/-0.254 mm for patient group with nevus removing by 980 nm diode laser operating in CW mode, papilloma - 0.586+/-0.453 mm, dermatofibroma - 1.568+/-0.437 mm, and basal cell skin cancer - 1.603+/-0.613 mm. The mean width of total damage area reached 1.201+/-0.292 mm for patient group with nevus removing by 980 nm diode laser operating in APC mode, papilloma - 0.413+/-0.418 mm, dermatofibroma - 1.240+/-0.546 mm, and basal cell skin cancer - 1.204+/-0.517 mm. It was found that using APC mode decreases the total damage area width at removing of these nosological neoplasms of human skin, and decreases the width of graze wound area at removing of nevus and basal cell skin cancer. At the first time, the dynamic of output laser power and thermal signal during laser removal of nevus in CW and APC mode is presented. It was determined that output laser power during nevus removal for APC mode was 1.6+/-0.05 W and for CW mode - 14.0+/-0.1 W. This difference can explain the decrease of the total damage area width and width of graze wound area for APC mode in comparison with CW mode.
Kitagawa, Shuji; Yoshii, Kenta; Morita, Shin-ya; Teraoka, Reiko
2011-01-01
We examined the intradermal delivery of a hydrophilic polyphenol chlorogenic acid by in vitro study using excised guinea pig dorsal skin and Yucatan micropig skin. Skin accumulation as well as the solubility of chlorogenic acid in aqueous vehicles was much greater than for other polyphenols such as quercetin and genistein. However, since enhancement of skin delivery seemed to be necessary to exhibit its protective effects against oxidative damage of skin, we examined the effects of microemulsions as vehicles. Using microemulsions consisting of 150 mM NaCl solution, isopropyl myristate, polyoxyethylene sorbitan monooleate (Tween 80) and ethanol, skin accumulation as well as solubility of chlorogenic acid further increased. Enhancement effect of an oil-in-water (o/w-type) microemulsion was greater than that of a water-in-oil (w/o-type) microemulsion possibly due to the greater increase in solubility. This finding was quite different from previous findings on relatively hydrophobic polyphenols such as quercetin and genistein. Pretreatment of guinea pig dorsal skin with chlorogenic acid containing microemulsion gel prevented erythema formation induced by UV irradiation. These findings indicate the potential use of hydrophilic chlorogenic acid with o/w-type microemulsion as a vehicle to protect skin against UV-induced oxidative damage.
In vitro protective effect of a Jacquez grapes wine extract on UVB-induced skin damage.
Tomaino, A; Cristani, M; Cimino, F; Speciale, A; Trombetta, D; Bonina, F; Saija, A
2006-12-01
Several studies have shown that UV radiation on the skin results in the formation of reactive oxygen species (ROS) that interact with proteins, lipids and DNA, thus altering cellular functions. The epidermis is composed mainly of keratinocytes, rich in ROS detoxifying enzymes and in low-molecular-mass antioxidant molecules. However, the increased generation of ROS can overwhelm the natural defences against oxidative stress. Therefore treatment of the skin with products containing plant-derived antioxidant ingredients may be a useful strategy for the prevention of UV-mediated cutaneous damage. In the present study we have investigated the in vitro capability of a Jacquez grapes wine extract (containing a significant level of proanthocyanidins, together with lower amounts of anthocyanins and hydroxycinnamic acids; JW-E), to protect skin against UVB-induced oxidative damage by using a three-dimensional tissue culture model of human epidermis. The endpoints of our experiments were cell viability, release of interleukin-1alpha and prostaglandin E(2) (well-known mediators of cutaneous inflammatory processes), accumulation in the epidermis of malondialdehyde/4-hydroxynonenal and protein carbonyl groups (derived by the oxidative damage respectively of lipids and proteins) and tissue redox balance (expressed by the levels of reduced glutathione, oxidized glutathione, glutathione peroxidase and glutathione reductase). Taken together, our findings demonstrate that the JW-E is an efficient botanical mixture able to prevent skin oxidative damage induced by UV-B exposure and may thus be a potential promising candidate as a skin photoprotective agent.
Puglia, Carmelo; Offerta, Alessia; Saija, Antonella; Trombetta, Domenico; Venera, Cardile
2014-06-01
Exposure of the skin to solar ultraviolet (UV) radiations causes important oxidative damages that result in clinical and hystopathological changes, contributing to premature skin aging. Hyperpigmented lesions, also known as age spots, are one of the most visible alterations in skin photoaging. Skin is naturally equipped with antioxidant systems against UV-induced ROS generation; however, these antioxidant defenses are not completely efficient during exposure to sunlight. Oral antioxidants are able to counteract the harmful effects of UV radiation and to strengthen the physiological skin antioxidant defenses. The present study was performed to evaluate the in vivo skin photo-protecting and anti-aging effects of a red orange (Citrus sinensis varieties Moro, Tarocco and Sanguinello) extract supplementation. Previous studies showed that red orange extracts possess strong in vitro free radical scavenging/antioxidant activity and photo-protective effects on human skin. The photo-protective effects of red orange extract intake against UV-induced skin erythema and melanin production in solar lentigo was evaluated on healthy volunteers by an objective instrumental method (reflectance spectrophotometry). Data obtained from in vivo studies showed that supplementation of red orange extract (100 mg/daily) for 15 days brought a significant reduction in the UV-induced skin erythema degree. Moreover, skin age spots pigmentation (melanin content) decreased from 27% to 7% when subjects were exposed to solar lamp during red orange extract supplementation. Red orange extract intake can strengthen physiological antioxidant skin defenses, protecting skin from the damaging processes involved in photo-aging and leading to an improvement in skin appearance and pigmentation. © 2014 Wiley Periodicals, Inc.
Casari, Alice; Farnetani, Francesca; De Pace, Barbara; Losi, Amanda; Pittet, Jean-Christophe; Pellacani, Giovanni; Longo, Caterina
2017-03-01
Irritant contact dermatitis is caused by skin barrier damage. Vitamin E is an antioxidant that is commonly used in cosmetics to prevent photo-damage. To show the usefulness of reflectance confocal microscopy in the assessment of irritant skin damage caused by sodium lauryl sulfate (SLS) and of the protective action of vitamin E applied prior to skin irritation. Ten healthy volunteers were enrolled. Irritation was induced by the application of a patch test containing SLS 5% aq. for 24 h. Three sites were compared: one site on which a product with vitamin E was applied before SLS treatment, one site on which the same product was applied after SLS treatment, and one control site (SLS only). Each site was evaluated with reflectance confocal microscopy, providing in vivo tissue images at nearly histological resolution. We also performed a computerized analysis of the VivaStack® images. Reflectance confocal microscopy is able to identify signs of skin irritation and the preventive effect of vitamin E application. Reflectance confocal microscopy is useful in the objective assessment of irritative skin damage. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hey! A Brown Recluse Spider Bit Me!
... like antibiotics, antihistamines, or pain medicines. Rarely, a skin graft might be needed if the skin is really damaged at the area of the bite. (A skin graft is when a small amount of skin is ...
Jain, Anil K.; Tewari-Singh, Neera; Gu, Mallikarjuna; Inturi, Swetha; White, Carl W.; Agarwal, Rajesh
2011-01-01
Bifunctional alkyalating agent, Sulfur mustard (SM)-caused cutaneous injury is characterized by inflammation and delayed blistering. Our recent studies demonstrated that 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of SM that can be used in laboratory settings, induces oxidative stress. This could be the major cause of the activation of Akt/MAP kinase and AP1/NF-κB pathways that are linked to the inflammation and microvesication, and histopathological alterations in SKH-1 hairless mouse skin. To further establish a link between CEES-induced DNA damage and signaling pathways and inflammatory responses, skin samples from mice exposed to 2 or 4 mg CEES for 9–48 h were subjected to molecular analysis. Our results show a strong CEES-induced phosphorylation of H2A.X and an increase in COX-2, iNOS, and MMP-9 levels, indicating the involvement of DNA damage and inflammation in CEES-caused skin injury in male and female mice. Since, our recent studies showed reduction in CEES-induced inflammatory responses by glutathione (GSH), we further assessed the role of oxidative stress in CEES-caused DNA damage and the induction of inflammatory molecules. Oral GSH (300mg/kg) administration 1 h before CEES exposure attenuated the increase in both CEES-induced H2A.X phosphorylation (59%) as well as expression of COX-2 (68%), iNOS (53%) and MMP-9 (54%). Collectively, our results indicate that CEES-induced skin injuries involve DNA damage and an induction of inflammatory mediators, at least in part via oxidative stress. This study could help in identifying countermeasures that alone or in combination, can target the unveiled pathways for reducing skin injuries in humans by SM. PMID:21722719
Vibro-Acoustic Modulation Based Damage Identification in a Composite Skin-Stiffener Structure
NASA Technical Reports Server (NTRS)
Ooijevaar, T. H.; Loendersloot, R.; Rogge, M. D.; Akkerman, R.; Tinga, T.
2014-01-01
The vibro-acoustic modulation method is applied to a composite skin-stiffener structure to investigate the possibilities to utilize this method for damage identification in terms of detection, localisation and damage quantification. The research comprises a theoretical part and an experimental part. An impact load is applied to the skin-stiffener structure, resulting in a delamination underneath the stiffener. The structure is interrogated with a low frequency pump excitation and a high frequency carrier excitation. The analysis of the response in a frequency band around the carrier frequency is employed to assess the damage identification capabilities and to gain a better understanding of the modulations occurring and the underlying physical phenomena. Though vibro-acoustic is shown to be a sensitive method for damage identification, the complexity of the damage, combined with a high modal density, complicate the understanding of the relation between the physical phenomena and the modulations occurring. more research is recommended to reveal the physics behind the observations.
Risk Assessment of Face Skin Exposure to UV Irradiance from Different Rotation Angle Ranges.
Wang, Fang; Gao, Qian; Deng, Yan; Chen, Rentong; Liu, Yang
2017-06-06
Ultraviolet (UV) is one of the environmental pathogenic factors causing skin damage. Aiming to assess the risk of face skin exposure to UV irradiance from different rotation angles, a rotating model was used to monitor the exposure of the skin on the face to UV irradiance, with skin damage action spectra used to determine the biologically effective UV irradiance (UVBE skin ) and UVBE skin radiant exposure (HBE skin ) causing skin damage. The results indicate that the UVBE skin is directly influenced by variations in rotation angles. A significant decrease of approximately 52.70% and 52.10% in UVBE skin was found when the cheek and nose measurement sites was rotated from 0° to 90°, while a decrease of approximately 62.70% was shown when the forehead measurement sites was rotated from an angle of 0° to 108°. When HBE skin was compared to the exposure limits (ELs; 30 J·m -2 ), the maximum relative risk ratios (RR) for cheek, nose, and forehead were found to be approximately 2.01, 2.40, and 2.90, respectively, which were all measured at a rotation angle of 0°. The maximal increase in the percentage of the average HBE skin for rotation angles of 60°, 120°, 180°, and 360° facing the sun to ELs were found to be approximately 62.10%, 52.72%, 43.43%, and 26.27% for the cheek; approximately 130.61%, 109.68%, 86.43%, and 50.06% for the nose; and approximately 178.61%, 159.19%, 134.38%, and 83.41% for the forehead, respectively.
NASA Astrophysics Data System (ADS)
Fried, Nathaniel M.; Walsh, Joseph T.
1998-10-01
Previous laser skin welding studies have used continuous wave delivery of radiation. However, heat diffusion during irradiation prevents strong welds from being achieved without creating large zones of thermal damage. Previously published results indicate that a thermal damage zone in skin greater than 200 micrometers may prevent normal wound healing. We proposed that both strong welds and minimal thermal damage can be achieved by introducing a dye and delivering the radiation in a series of sufficiently short pulses. Two-cm-long incisions were made in guinea pig skin, in vitro. India ink and egg white (albumin) were applied to the wound edges to enhance radiation absorption and to close the wound, respectively. Continuous wave (cw), 1.06 micrometers , Nd:yttrium-aluminum-garnet laser radiation was scanned over the weld producing approximately 100 ms pulses. The cooling time between scans and the number of scans was varied. The thermal damage zone at the weld edges was measured using a transmission polarizing light microscope. The tensile strength of the welds was measured using a tensiometer. For pulsed welding and long cooling times between pulses (8 s), weld strengths of 2.4 +/- 0.9 kg/cm2 were measured, and lateral thermal damage at the epidermis was limited to 500 +/- 150 micrometers . With cw welding, comparable weld strengths produced 2700 +/- 300 micrometers of lateral thermal damage. The cw weld strengths were only 0.6 +/- 0.3 kg/cm2 for thermal damage zones comparable to pulsed welding.
Determining the Location of DNA Modification and Mutation Caused by UVB Light in Skin Cancer
2014-09-01
14 Appendices……………………………………………………………………………14 2 Introduction Ultraviolet ( UV ) light damages skin cells by causing the formation of...dimers on adjacent pyrimidines in DNA. The two main forms of damage caused by UV light are cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6...caused by UV damage in tumor suppressor genes such as p53 have been found in the majority of skin cancers. Many studies have focused on these and
Sirerol, J Antoni; Feddi, Fatima; Mena, Salvador; Rodriguez, María L; Sirera, Paula; Aupí, Miguel; Pérez, Salvador; Asensi, Miguel; Ortega, Angel; Estrela, José M
2015-08-01
The aim of our study was to investigate in the SKH-1 hairless mouse model the effect of pterostilbene (Pter), a natural dimethoxy analog of resveratrol (Resv), against procarcinogenic ultraviolet B radiation (UVB)-induced skin damage. Pter prevented acute UVB (360 mJ/cm(2))-induced increase in skin fold, thickness, and redness, as well as photoaging-associated skin wrinkling and hyperplasia. Pter, but not Resv, effectively prevented chronic UVB (180 mJ/cm(2), three doses/week for 6 months)-induced skin carcinogenesis (90% of Pter-treated mice did not develop skin carcinomas, whereas a large number of tumors were observed in all controls). This anticarcinogenic effect was associated with (a) maintenance of skin antioxidant defenses (i.e., glutathione (GSH) levels, catalase, superoxide, and GSH peroxidase activities) close to control values (untreated mice) and (b) an inhibition of UVB-induced oxidative damage (using as biomarkers 8-hydroxy-2'-deoxyguanosine, protein carbonyls, and isoprostanes). The molecular mechanism underlying the photoprotective effect elicited by Pter was further evaluated using HaCaT immortalized human keratinocytes and was shown to involve potential modulation of the Nrf2-dependent antioxidant response. Copyright © 2015 Elsevier Inc. All rights reserved.
Olsson, Magnus G; Allhorn, Maria; Larsson, Jörgen; Cederlund, Martin; Lundqvist, Katarina; Schmidtchen, Artur; Sørensen, Ole E; Mörgelin, Matthias; Akerström, Bo
2011-01-01
During bleeding the skin is subjected to oxidative insults from free heme and radicals, generated from extracellular hemoglobin. The lipocalin α(1)-microglobulin (A1M) was recently shown to have reductase properties, reducing heme-proteins and other substrates, and to scavenge heme and radicals. We investigated the expression and localization of A1M in skin and the possible role of A1M in the protection of skin tissue from damage induced by heme and reactive oxygen species. Skin explants, keratinocyte cultures and purified collagen I were exposed to heme, reactive oxygen species, and/or A1M and investigated by biochemical methods and electron microscopy. The results demonstrate that A1M is localized ubiquitously in the dermal and epidermal layers, and that the A1M-gene is expressed in keratinocytes and up-regulated after exposure to heme and reactive oxygen species. A1M inhibited the heme- and reactive oxygen species-induced ultrastructural damage, up-regulation of antioxidation and cell cycle regulatory genes, and protein carbonyl formation in skin and keratinocytes. Finally, A1M bound to purified collagen I (K(d) = 0.96×10(-6) M) and could inhibit and repair the destruction of collagen fibrils by heme and reactive oxygen species. The results suggest that A1M may have a physiological role in protection of skin cells and matrix against oxidative damage following bleeding.
Hsu, Mei-Yu; Hsu, Hsiao-Hui; Lyu, Ji-Yan
2016-10-01
Leakage is a common complication of gastrostomy. Exposure of the skin surrounding the gastrostomy tube to moisture or chemical irritants may cause moisture-associated skin damage (MASD) and seriously affect the patient's quality of life. This case study describes a nursing experience with gastrostomy leakage that resulted in MASD. An assessment conducted from July 29, 2015 to August 20, 2015 revealed that heavy gastronomy leakage had caused extensive skin erosion, ulceration, hyperplasia, and superficial infection. Simultaneously, the patient was required to conduct complex stoma care, which resulted in physical and psychological exhaustion. Changes in traditional tube and wound care were discussed on multiple occasions with an interdisciplinary healthcare team. Based on the evidence-based literature, we provide gastrostomy and MASD management strategies. Through team collaboration, we prevented gastric contents from contacting the patient's skin directly, improved patient comfort, controlled effluent and skin infections, maintained fluid and electrolyte balances, and acce-lerated the healing of the damaged skin. We recommend that healthcare professionals caring for patients with gastrostomy leakage be provided with early skin protection programs to learn the standard methods for identifying and correcting leakage factors, containing effluent, and adequately stabilizing the gastrostomy tube in order to reduce the impact on the patient's quality of life. In addition, patient education on tube and skin care should be provided to prevent the reoccurrence of complications.
Nucleotide Excision Repair and Vitamin D--Relevance for Skin Cancer Therapy.
Pawlowska, Elzbieta; Wysokinski, Daniel; Blasiak, Janusz
2016-04-06
Ultraviolet (UV) radiation is involved in almost all skin cancer cases, but on the other hand, it stimulates the production of pre-vitamin D3, whose active metabolite, 1,25-dihydroxyvitamin D3 (1,25VD3), plays important physiological functions on binding with its receptor (vitamin D receptor, VDR). UV-induced DNA damages in the form of cyclobutane pyrimidine dimers or (6-4)-pyrimidine-pyrimidone photoproducts are frequently found in skin cancer and its precursors. Therefore, removing these lesions is essential for the prevention of skin cancer. As UV-induced DNA damages are repaired by nucleotide excision repair (NER), the interaction of 1,25VD3 with NER components can be important for skin cancer transformation. Several studies show that 1,25VD3 protects DNA against damage induced by UV, but the exact mechanism of this protection is not completely clear. 1,25VD3 was also shown to affect cell cycle regulation and apoptosis in several signaling pathways, so it can be considered as a potential modulator of the cellular DNA damage response, which is crucial for mutagenesis and cancer transformation. 1,25VD3 was shown to affect DNA repair and potentially NER through decreasing nitrosylation of DNA repair enzymes by NO overproduction by UV, but other mechanisms of the interaction between 1,25VD3 and NER machinery also are suggested. Therefore, the array of NER gene functioning could be analyzed and an appropriate amount of 1.25VD3 could be recommended to decrease UV-induced DNA damage important for skin cancer transformation.
Effecting skin renewal: a multifaceted approach.
Widgerow, Alan D; Grekin, Steven K
2011-06-01
The skin undergoes intrinsic aging as a normal course, but exposure to ultraviolet (UV) light results in major cumulative damage that manifests as the typical aged photodamaged skin. UV irradiation produces a sequence of changes within the skin layers starting with signaling processes following DNA damage and culminating in nonabsorbed fragmentation of collagen and other proteins within the extracellular matrix. These fragments promote the synthesis of matrix metalloproteinases (MMPs) that further aggravate the damage to the ground substance and add to fragment accumulation. This study describes a unique sequential approach to controlling this photodamage - inhibition of signaling, inhibition of MMPs, proteasome stimulation and mopping up of fragments, stimulation of procollagen and collagen production, and uniform packaging of new collagen fibers. Thus, a multifaceted approach is introduced with presentation of a unique product formulation based on these research principles. © 2011 Wiley Periodicals, Inc.
Bowman, Amy; Martinez-Levasseur, Laura M; Acevedo-Whitehouse, Karina; Gendron, Diane; Birch-Machin, Mark A
2013-07-01
Due to life history and physiological constraints, cetaceans (whales) are unable to avoid prolonged exposure to external environmental insults, such as solar ultraviolet radiation (UV). The majority of studies on the effects of UV on skin are restricted to humans and laboratory animals, but it is important to develop tools to understand the effects of UV damage on large mammals such as whales, as these animals are long-lived and widely distributed, and can reflect the effects of UV across a large geographical range. We and others have used mitochondrial DNA (mtDNA) as a reliable marker of UV-induced damage particularly in human skin. UV-induced mtDNA strand breaks or lesions accumulate throughout the lifespan of an individual, thus constituting an excellent biomarker for cumulative exposure. Based on our previous studies in human skin, we have developed for the first time in the literature a quantitative real-time PCR methodology to detect and quantify mtDNA lesions in skin from sun-blistered whales. Furthermore the methodology allows for simultaneous detection of mtDNA damage in different species. Therefore using 44 epidermal mtDNA samples collected from 15 blue whales, 10 fin whales, and 19 sperm whales from the Gulf of California, Mexico, we quantified damage across 4.3 kilobases, a large region of the ~16,400 base pair whale mitochondrial genome. The results show a range of mtDNA damage in the skin of the three different whale species. This previously unreported observation was correlated with apoptotic damage and microscopic lesions, both of which are markers of UV-induced damage. As is the case in human studies, this suggests the potential use of mtDNA as a biomarker for measuring the effect of cumulative UV exposure in whales and may provide a platform to help understand the effects of changing global environmental conditions. Copyright © 2013 Elsevier B.V. and Mitochondria Research Society. All rights reserved. All rights reserved.
Influence of heat, wind, and humidity on ultraviolet radiation injury.
Owens, D W; Knox, J M
1978-12-01
We investigated the influence of heat, wind, and humidity on UVR-induced acute and chronic skin damage of experimental animals housed in environmental chambers and irradiated under controlled conditions. Hairless mice (strain HRS/J) irradiated after an increase of 10 degrees F in skin temperature had more skin damage than irradiated controls. Significantly more Swiss albino mice irradiated for 400 days while maintained at 90 degrees F developed tumors than did those receiving the same amount of UVR but maintained at room temperature. Mice exposed to UVR daily for 4 weeks while kept in wind of 7 mph had greater damage and slower recovery than animals irradiated but protected from wind. Wind also accelerated tumorigenesis in mice than received chronic UVR. Mice kept at 80% relative humidity and given a single dose of UVR had greater skin injury than animals irradiated while at 5% relative humidity. High midity also appears to accelerate skin cancer formation in animals that were exposed to chronic UVR.
Strozyk, Elwira; Kulms, Dagmar
2013-01-01
Induction of DNA damage by UVB and UVA radiation may generate mutations and genomic instability leading to carcinogenesis. Therefore, skin cells being repeatedly exposed to ultraviolet (UV) light have acquired multilayered protective mechanisms to avoid malignant transformation. Besides extensive DNA repair mechanisms, the damaged skin cells can be eliminated by induction of apoptosis, which is mediated through the action of tumor suppressor p53. In order to prevent the excessive loss of skin cells and to maintain the skin barrier function, apoptotic pathways are counteracted by anti-apoptotic signaling including the AKT/mTOR pathway. However, AKT/mTOR not only prevents cell death, but is also active in cell cycle transition and hyper-proliferation, thereby also counteracting p53. In turn, AKT/mTOR is tuned down by the negative regulators being controlled by the p53. This inhibition of AKT/mTOR, in combination with transactivation of damage-regulated autophagy modulators, guides the p53-mediated elimination of damaged cellular components by autophagic clearance. Alternatively, p53 irreversibly blocks cell cycle progression to prevent AKT/mTOR-driven proliferation, thereby inducing premature senescence. Conclusively, AKT/mTOR via an extensive cross talk with p53 influences the UV response in the skin with no black and white scenario deciding over death or survival. PMID:23887651
PTEN positively regulates UVB-induced DNA damage repair
Ming, Mei; Feng, Li; Shea, Christopher R.; Soltani, Keyoumars; Zhao, Baozhong; Han, Weinong; Smart, Robert C.; Trempus, Carol S.; He, Yu-Ying
2011-01-01
Non-melanoma skin cancer is the most common cancer in the U.S., where DNA-damaging UVB radiation from the sun remains the major environmental risk factor. However, the critical genetic targets of UVB radiation are undefined. Here we show that attenuating PTEN in epidermal keratinocytes is a predisposing factor for UVB-induced skin carcinogenesis in mice. In skin papilloma and squamous cell carcinoma (SCC), levels of PTEN were reduced compared to skin lacking these lesions. Likewise, there was a reduction in PTEN levels in human premalignant actinic keratosis and malignant SCC, supporting a key role for PTEN in human skin cancer formation and progression. PTEN downregulation impaired the capacity of global genomic nucleotide excision repair (GG-NER), a critical mechanism for removing UVB-induced mutagenic DNA lesions. In contrast to the response to ionizing radiation, PTEN downregulation prolonged UVB-induced growth arrest and increased the activation of the Chk1 DNA damage pathway in an AKT-independent manner, likely due to reduced DNA repair. PTEN loss also suppressed expression of the key GG-NER protein xeroderma pigmentosum C (XPC) through the AKT/p38 signaling axis. Reconstitution of XPC levels in PTEN-inhibited cells restored GG-NER capacity. Taken together, our findings define PTEN as an essential genomic gatekeeper in the skin, through its ability to positively regulate XPC-dependent GG-NER following DNA damage. PMID:21771908
Ayello, Elizabeth A
2017-09-01
The purpose of this learning activity is to provide information about the updates to the Centers for Medicare & Medicaid Services (CMS) MDS 3.0 Section M, Skin Conditions documentation in long-term care. This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and nurses with an interest in skin and wound care. After participating in this educational activity, the participant should be better able to:1. Explain the use of the CMS MDS 3.0 tool for documenting skin problems in long-term care.2. Demonstrate examples of proper documentation for specific skin problems. This manuscript reviews some of the key parts of the October 2016 revised Long-term Care Resident Assessment Instrument manual for Minimum Data Set (MDS) 3.0 Section M Skin Conditions. It also reports the Centers for Medicare & Medicaid's publicly reported frequency data in long-term care for selected items on the MDS 3.0 Section M Skin Conditions. Percentages and trends of pressure ulcers/injuries, skin tears, and moisture-associated skin damage are assessed.
Keloids and Hypertrophic Scars
... to the skin both skin cells and connective tissue cells (fibroblasts) begin multiplying to repair the damage. A scar is made up of 'connective tissue', gristle-like fibers deposited in the skin by ...
Mugita, Yuko; Minematsu, Takeo; Huang, Lijuan; Nakagami, Gojiro; Kishi, Chihiro; Ichikawa, Yoshie; Nagase, Takashi; Oe, Makoto; Noguchi, Hiroshi; Mori, Taketoshi; Abe, Masatoshi; Sugama, Junko; Sanada, Hiromi
2015-01-01
A common complication in patients with incontinence is perineal skin lesions, which are recognized as a form of dermatitis. In these patients, perineal skin is exposed to digestive enzymes and intestinal bacterial flora, as well as excessive water. The relative contributions of digestive enzymes and intestinal bacterial flora to skin lesion formation have not been fully shown. This study was conducted to reveal the process of histopathological changes caused by proteases and bacterial inoculation in skin maceration. For skin maceration, agarose gel containing proteases was applied to the dorsal skin of male Sprague-Dawley rats for 4 h, followed by Pseudomonas aeruginosa inoculation for 30 min. Macroscopic changes, histological changes, bacterial distribution, inflammatory response, and keratinocyte proliferation and differentiation were examined. Proteases induced digestion in the prickle cell layer of the epidermis, and slight bleeding in the papillary dermis and around hair follicles in the macerated skin without macroscopic evidence of erosion. Bacterial inoculation of the skin macerated by proteolytic solution resulted in the formation of bacteria-rich clusters comprising numerous microorganisms and inflammatory cells within the papillary dermis, with remarkable tissue damage around the clusters. Tissue damage expanded by day 2. On day 3, the proliferative keratinocyte layer was elongated from the bulge region of the hair follicles. Application of proteases and P. aeruginosa induced skin lesion formation internally without macroscopic erosion of the overhydrated area, suggesting that the histopathology might be different from regular dermatitis. The healing process of this lesion is similar to transepidermal elimination. PMID:26407180
Photoprotection by pistachio bioactives in a 3-dimensional human skin equivalent tissue model.
Chen, C-Y Oliver; Smith, Avi; Liu, Yuntao; Du, Peng; Blumberg, Jeffrey B; Garlick, Jonathan
2017-09-01
Reactive oxygen species (ROS) generated during ultraviolet (UV) light exposure can induce skin damage and aging. Antioxidants can provide protection against oxidative injury to skin via "quenching" ROS. Using a validated 3-dimensional (3D) human skin equivalent (HSE) tissue model that closely mimics human skin, we examined whether pistachio antioxidants could protect HSE against UVA-induced damage. Lutein and γ-tocopherol are the predominant lipophilic antioxidants in pistachios; treatment with these compounds prior to UVA exposure protected against morphological changes to the epithelial and connective tissue compartments of HSE. Pistachio antioxidants preserved overall skin thickness and organization, as well as fibroblast morphology, in HSE exposed to UVA irradiation. However, this protection was not substantiated by the analysis of the proliferation of keratinocytes and apoptosis of fibroblasts. Additional studies are warranted to elucidate the basis of these discordant results and extend research into the potential role of pistachio bioactives promoting skin health.
The repair of low dose UV light-induced damage to human skin DNA in condition of trace amount Mg 2+
NASA Astrophysics Data System (ADS)
Gao, Fang; Guo, Zhouyi; Zheng, Changchun; Wang, Rui; Liu, Zhiming; Meng, Pei; Zhai, Juan
2008-12-01
Ultraviolet light-induced damage to human skin DNA was widely investigated. The primary mechanism of this damage contributed to form cyclobutane pyrimidine dimmers (CPDs). Although the distribution of UV light-induced CPDs within a defined sequence is similar, the damage in cellular environment which shields the nuclear DNA was higher than that in organism in apparent dose. So we use low UVB light as main study agent. Low dose UV-irradiated HDF-a cells (Human Dermal Fibroblasts-adult cells) which is weaker than epidermic cells were cultured with DMEM at different trace amount of Mg2+ (0mmol/L , 0.1mmol/L , 0.2mmol/L, 0.4mmol/L, 0.8mmol/L, 1.2mmol/L) free-serum DMEM and the repair of DNA strands injured were observed. Treat these cells with DNA strand breaks detection, photoproducts detection and the repair of photoproducts detection. Then quantitate the role of trace amount Mg2+ in repair of UV light-induced damage to human skin. The experiment results indicated that epidermic cells have capability of resistance to UV-radiation at a certain extent. And Mg2+ can regulate the UV-induced damage repair and relative vitality. It can offer a rationale and experiment data to relieve UV light-induced skin disease.
Donovanosis (granuloma inguinale)
... The genitals and the skin around them lose skin color. In its early stages, it may be hard ... disease include: Genital damage and scarring Loss of skin color in genital area Permanent genital swelling due to ...
Skin temperature in the extremities of healthy and neurologically impaired children.
Svedberg, Lena E; Stener-Victorin, Elisabet; Nordahl, Gunnar; Lundeberg, Thomas
2005-01-01
Little emphasis has been accorded to peripheral skin temperature impairments in children with neurological disorders but attention has been paid to the significance of cold extremities (autonomic failure) for well-being and quality of life in adults stroke patients. Therefore, it seems important to investigate skin temperature in children with neurological disorder, especially when their communication is impaired. In the present study, we wanted to objectively verify any skin temperature differences between pre-school children with and without neurological disorders and also ascertain if any correlation existed between skin temperature and physical activity. Skin temperatures in 25 healthy children and 15 children with cerebral or spinal cord damages were assessed using infrared radiation. The temperatures were recorded on the palm and the dorsal surface of the hands and on the sole and dorsal surface of the feet three times at 15-minute intervals over 30min. A significant lower mean skin temperature in all measurement points was seen in non-walking children with cerebral damages compared to healthy controls. Also, the mean skin temperature was significantly lower in all foot measuring points in the children with cerebral damages that were unable to walk compared to those walking. In conclusion, as cold extremities may result in impaired well-being and hypothetically may be associated with other symptoms born by the child, further investigations of thermal dysfunction and autonomic function are of importance and treatment may be warranted.
Skin, Stringer, and Fastener Loads in Buckled Fuselage Panels
NASA Technical Reports Server (NTRS)
Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.
2001-01-01
The results of a numerical study to assess the effect of skin buckling on the internal load distribution in a stiffened fuselage panel, with and without longitudinal cracks, are presented. In addition, the impact of changes in the internal loads on the fatigue life and residual strength of a fuselage panel is assessed. A generic narrow-body fuselage panel is considered. The entire panel is modeled using shell elements and considerable detail is included to represent the geometric-nonlinear response of the buckled skin, cross section deformation of the stiffening components, and details of the skin-string attachment with discrete fasteners. Results are presented for a fixed internal pressure and various combinations of axial tension or compression loads. Results illustrating the effect of skin buckling on the stress distribution in the skin and stringer, and fastener loads are presented. Results are presented for the pristine structure, and for cases where damage is introduced in the form of a longitudinal crack adjacent to the stringer, or failed fastener elements. The results indicate that axial compression loads and skin buckling can have a significant effect on the circumferential stress in the skin, and fastener loads, which will influence damage initiation, and a comparable effect on stress intensity factors for cases with cracks. The effects on stress intensity factors will influence damage propagation rates and the residual strength of the panel.
[Therapeutic effect of human mesenchymal stem cells in skin after radiation damage].
Bensidhoum, Morad; Gobin, Stéphanie; Chapel, Alain; Lemaitre, Gilles; Bouet, Stéphan; Waksman, Gilles; Thierry, Dominique; Martin, Michèle T
2005-01-01
Over 50% of all cancer patients presently receive radiotherapy at one stage in their treatment course. Inevitably skin is one of the most frequently damaged tissue due to its localization and constant turn-over. Our present goal is to reduce radiation-induced complications in human skin through stem cell therapy, particulary in human epidermis. Mesenchymal Stem Cells (MSCs) have been shown to be multipotent cells able to engraft in many tissues after injury. Herein, we isolated human MSCs and tested their capability to improve skin wound healing after irradiation. This potential was assessed in NOD/SCID mice which received 30 Gy locally on the thigh. This dose caused within 3 weeks local epidermis necrosis which was repaired within 13 weeks. MSCs were intravenously injected in irradiated mice 24 hours after exposure. Clinical scoring throughout 6 weeks gave indications that human MSCs reduced the extent of damage and accelerated the wound healing process. We show by quantitative qPCR and histological studies the presence of human MSCs derived cells into the scar. Human MSCs homed to the damaged skin and participated to the wound healing process. These results open prospects for cellular therapy by MSCs in irradiated epithelial tissues and could be extended to the whole general field of cutaneous cicatrization, particularly after burns.
Towards standardization of UV eye protection: what can be learned from photodermatology?
Krutmann, Jean; Béhar-Cohen, Francine; Baillet, Gilles; de Ayguavives, Tito; Ortega Garcia, Paula; Peña-García, Pablo; Remé, Charlotte; Wolffsohn, James
2014-01-01
While knowledge about standardization of skin protection against ultraviolet radiation (UVR) has progressed over the past few decades, there is no uniform and generally accepted standardized measurement for UV eye protection. The literature provides solid evidence that UV can induce considerable damage to structures of the eye. As well as damaging the eyelids and periorbital skin, chronic UV exposure may also affect the conjunctiva and lens. Clinically, this damage can manifest as skin cancer and premature skin ageing as well as the development of pterygia and premature cortical cataracts. Modern eye protection, used daily, offers the opportunity to prevent these adverse sequelae of lifelong UV exposure. A standardized, reliable and comprehensive label for consumers and professionals is currently lacking. In this review we (i) summarize the existing literature about UV radiation-induced damage to the eye and surrounding skin; (ii) review the recent technological advances in UV protection by means of lenses; (iii) review the definition of the Eye-Sun Protection Factor (E-SPF®), which describes the intrinsic UV protection properties of lenses and lens coating materials based on their capacity to absorb or reflect UV radiation; and (iv) propose a strategy for establishing the biological relevance of the E-SPF. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Calvo-Castro, Laura; Syed, Deeba N.; Chamcheu, Jean C.; Vilela, Fernanda M. P.; Pérez, Ana M.; Vaillant, Fabrice; Rojas, Miguel; Mukhtar, Hasan
2014-01-01
Solar ultraviolet (UV) radiation, particularly its UVB (280–320 nm) spectrum, is the primary environmental stimulus leading to skin carcinogenesis. Several botanical species with antioxidant properties have shown photochemopreventive effects against UVB damage. Costa Rica’s tropical highland blackberry (Rubus adenotrichos) contains important levels of phenolic compounds, mainly ellagitannins and anthocyanins, with strong antioxidant properties. In this study, we examined the photochemopreventive effect of R. adenotrichos blackberry juice (BBJ) on UVB-mediated responses in human epidermal keratinocytes and in a three-dimensional (3D) reconstituted normal human skin equivalent (SE). Pretreatment (2 h) and posttreatment (24 h) of normal human epidermal keratinocytes (NHEKs) with BBJ reduced UVB (25 mJ cm−2)-mediated (1) cyclobutane pyrimidine dimers (CPDs) and (2) 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) formation. Furthermore, treatment of NHEKs with BBJ increased UVB-mediated (1) poly(ADP-ribose) polymerase cleavage and (2) activation of caspases 3, 8 and 9. Thus, BBJ seems to alleviate UVB-induced effects by reducing DNA damage and increasing apoptosis of damaged cells. To establish the in vivo significance of these findings to human skin, immunohistochemistry studies were performed in a 3D SE model, where BBJ was also found to decrease CPDs formation. These data suggest that BBJ may be developed as an agent to ameliorate UV-induced skin damage. PMID:23711186
Calvo-Castro, Laura; Syed, Deeba N; Chamcheu, Jean C; Vilela, Fernanda M P; Pérez, Ana M; Vaillant, Fabrice; Rojas, Miguel; Mukhtar, Hasan
2013-01-01
Solar ultraviolet (UV) radiation, particularly its UVB (280-320 nm) spectrum, is the primary environmental stimulus leading to skin carcinogenesis. Several botanical species with antioxidant properties have shown photochemopreventive effects against UVB damage. Costa Rica's tropical highland blackberry (Rubus adenotrichos) contains important levels of phenolic compounds, mainly ellagitannins and anthocyanins, with strong antioxidant properties. In this study, we examined the photochemopreventive effect of R. adenotrichos blackberry juice (BBJ) on UVB-mediated responses in human epidermal keratinocytes and in a three-dimensional (3D) reconstituted normal human skin equivalent (SE). Pretreatment (2 h) and posttreatment (24 h) of normal human epidermal keratinocytes (NHEKs) with BBJ reduced UVB (25 mJ cm(-2))-mediated (1) cyclobutane pyrimidine dimers (CPDs) and (2) 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation. Furthermore, treatment of NHEKs with BBJ increased UVB-mediated (1) poly(ADP-ribose) polymerase cleavage and (2) activation of caspases 3, 8 and 9. Thus, BBJ seems to alleviate UVB-induced effects by reducing DNA damage and increasing apoptosis of damaged cells. To establish the in vivo significance of these findings to human skin, immunohistochemistry studies were performed in a 3D SE model, where BBJ was also found to decrease CPDs formation. These data suggest that BBJ may be developed as an agent to ameliorate UV-induced skin damage. © 2013 The American Society of Photobiology.
Asaoka, Kentaro; Endo, Shiro; Suzuki, Yuki; Komuro, Satoru; Nemoto, Tadanobu; Kaku, Mitsuo
2016-08-01
Staphylococcus aureus is known to form a biofilm and colonize on damaged skin of the hands. We investigated changes in the quantity of S aureus on the hands and changes in skin damage when using a hand-cleansing formulation with potassium oleate but without a sanitizer (formulation A), which is highly effective in removing S aureus biofilm and causes minimal skin damage. The participants (14 medical staff members) used 2 types of hand-cleansing formulations (formulations A and B), each for 4 weeks. S aureus of the hands was cultured from swab samples on agar plates. Surface of hands was measured using an ultraviolet light microscope. The quantity of S aureus after using formulation A for 4 weeks was 10(1.08 ± 0.05) CFU/mL, a statistically significant decrease from the quantity of S aureus (10(1.59 ± 0.19) CFU/mL) just before use (P = .029). Also, dryness of hand surfaces decreased. With formulation B, the quantity of S aureus did not significantly change from before to after use (P > .05). This presumably occurs because formulation A gently removes S aureus biofilm. Formulation A removed S aureus from the hands of participants, and skin damage on the hands improved. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Investigating Motivations for Women's Skin Bleaching in Tanzania
ERIC Educational Resources Information Center
Lewis, Kelly M.; Robkin, Navit; Gaska, Karie; Njoki, Lillian Carol
2011-01-01
Why do many African women continue to use damaging skin-bleaching cosmetics that contain dangerous chemicals (e.g., mercury) that may increase their rates of infertility, skin cancer, and serious skin/brain/kidney disease? To address this question, our study investigated motivations driving the preservation of skin-bleaching practices in Tanzania.…
40 CFR 156.70 - Precautionary statements for human hazards.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., dermal, inhalation toxicity) Irritation effects (skin and eye) Sensitizer (There are no categories of... or spray mist]. Do not get in eyes, on skin, or on clothing. [Front panel first aid statement required.] Corrosive, causes eye and skin damage [or skin irritation]. Do not get in eyes on skin, or on...
40 CFR 156.70 - Precautionary statements for human hazards.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., dermal, inhalation toxicity) Irritation effects (skin and eye) Sensitizer (There are no categories of... or spray mist]. Do not get in eyes, on skin, or on clothing. [Front panel first aid statement required.] Corrosive, causes eye and skin damage [or skin irritation]. Do not get in eyes on skin, or on...
Skin Photoaging and the Role of Antioxidants in Its Prevention
Pandel, Ruža; Poljšak, Borut
2013-01-01
Photoaging of the skin depends primarily on the degree of ultraviolet radiation (UVR) and on an amount of melanin in the skin (skin phototype). In addition to direct or indirect DNA damage, UVR activates cell surface receptors of keratinocytes and fibroblasts in the skin, which leads to a breakdown of collagen in the extracellular matrix and a shutdown of new collagen synthesis. It is hypothesized that dermal collagen breakdown is followed by imperfect repair that yields a deficit in the structural integrity of the skin, formation of a solar scar, and ultimately clinically visible skin atrophy and wrinkles. Many studies confirmed that acute exposure of human skin to UVR leads to oxidation of cellular biomolecules that could be prevented by prior antioxidant treatment and to depletion of endogenous antioxidants. Skin has a network of all major endogenous enzymatic and nonenzymatic protective antioxidants, but their role in protecting cells against oxidative damage generated by UV radiation has not been elucidated. It seems that skin's antioxidative defence is also influenced by vitamins and nutritive factors and that combination of different antioxidants simultaneously provides synergistic effect. PMID:24159392
Histopathological study of perilesional skin in patients diagnosed with nonmelanoma skin cancer.
Apalla, Z; Calzavara-Pinton, P; Lallas, A; Argenziano, G; Kyrgidis, A; Crotti, S; Facchetti, F; Monari, P; Gualdi, G
2016-01-01
Epidemiological and clinical data suggest that actinic damage to the skin is an important predictor of skin carcinogenesis. To investigate the association of squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) with sun-damage alterations seen by histopathology. In the current prospective study, perilesional skin of SCC or BCC lesions was evaluated for presence of alterations associated with chronic photodamage. Presence of scarring, perineural/perivascular invasion, haemorrhage/haemorrhagic crust, ulceration/erosion and margin involvement were also assessed. Of 6038 included lesions, 4523 (74.9%) were BCCs and 1515 (25.1%) were SCCs. Presence of actinic damage was five times more frequent in SCC than in BCC (OR = 5.29, 95% CI 4.44-6.00, P < 0.001), and diagnosis of SCC was twice as common in photo-exposed than nonphoto-exposed body sites (OR = 2.34, 95% CI 2.03-2.70, P < 0.001). There were twofold higher odds for actinic damage in SCC compared with Bowen disease (OR = 2.015, 95% CI 1.55-2.61, P < 0.001). Assessing the different BCC histological subtypes, we found that nodular BCC had at least twofold higher odds (OR = 2.63, 95% CI 2.09-3.32), infiltrative BCC had 48% higher odds (OR = 1.487, 95% CI 1.18-1.87) and basosquamous BCC had fourfold higher odds (OR = 4.10, 95% CI 3.01-5.57) of having actinic damage compared with superficial BCC. Histological verification of ultraviolet-associated alterations in the perilesional skin in patients with NMSC in our study confirms the aetiopathogenic link between sun exposure and epithelial carcinogenesis on a histopathological basis. This correlation was stronger for SCCs than for BCCs. © 2015 British Association of Dermatologists.
Corneal and skin laser exposures from 1540-nm laser pulses
NASA Astrophysics Data System (ADS)
Johnson, Thomas E.; Mitchell, Michael A.; Rico, Pedro J.; Fletcher, David J.; Eurell, Thomas E.; Roach, William P.
2000-06-01
Mechanisms of tissue damage are investigated for skin and cornea exposures from 1540 nm ('eye safe') laser single pulses of 0.8 milli-seconds. New skin model data point out the advantages of using the Yucatan mini-pig versus the Yorkshire pig for in-vivo skin laser exposures. Major advantages found include similarities in thickness and melanin content when compared with human skin. Histology from Yucatan mini-pig skin exposures and the calculation of an initial ED50 threshold indicate that the main photon tissue interaction may not be solely due to water absorption. In-vitro corneal equivalents compared well with in-vivo rabbit cornea exposure under similar laser conditions. In-vivo and in-vitro histology show that initial energy deposition leading to damage occurs intrastromally, while epithelial cells show no direct injury due to laser light absorption.
Calapre, Leslie; Gray, Elin S; Kurdykowski, Sandrine; David, Anthony; Hart, Prue; Descargues, Pascal; Ziman, Mel
2016-05-26
UV radiation induces significant DNA damage in keratinocytes and is a known risk factor for skin carcinogenesis. However, it has been reported previously that repeated and simultaneous exposure to UV and heat stress increases the rate of cutaneous tumour formation in mice. Since constant exposure to high temperatures and UV are often experienced in the environment, the effects of exposure to UV and heat needs to be clearly addressed in human epidermal cells. In this study, we determined the effects of repeated UVB exposure 1 kJ/m(2) followed by heat (39 °C) to human keratinocytes. Normal human ex vivo skin models and primary keratinocytes (NHEK) were exposed once a day to UVB and/or heat stress for four consecutive days. Cells were then assessed for changes in proliferation, apoptosis and gene expression at 2 days post-exposure, to determine the cumulative and persistent effects of UV and/or heat in skin keratinocytes. Using ex vivo skin models and primary keratinocytes in vitro, we showed that UVB plus heat treated keratinocytes exhibit persistent DNA damage, as observed with UVB alone. However, we found that apoptosis was significantly reduced in UVB plus heat treated samples. Immunohistochemical and whole genome transcription analysis showed that multiple UVB plus heat exposures induced inactivation of the p53-mediated stress response. Furthermore, we demonstrated that repeated exposure to UV plus heat induced SIRT1 expression and a decrease in acetylated p53 in keratinocytes, which is consistent with the significant downregulation of p53-regulated pro-apoptotic and DNA damage repair genes in these cells. Our results suggest that UVB-induced p53-mediated cell cycle arrest and apoptosis are reduced in the presence of heat stress, leading to increased survival of DNA damaged cells. Thus, exposure to UVB and heat stress may act synergistically to allow survival of damaged cells, which could have implications for initiation skin carcinogenesis.
Beliefs and Intentions for Skin Protection and Exposure
Heckman, Carolyn J.; Manne, Sharon L.; Kloss, Jacqueline D.; Bass, Sarah Bauerle; Collins, Bradley; Lessin, Stuart R.
2010-01-01
Objectives To evaluate Fishbein’s Integrative Model in predicting young adults’ skin protection, sun exposure, and indoor tanning intentions. Methods 212 participants completed an online survey. Results Damage distress, self-efficacy, and perceived control accounted for 34% of the variance in skin protection intentions. Outcome beliefs and low self-efficacy for sun avoidance accounted for 25% of the variance in sun exposure intentions. Perceived damage, outcome evaluation, norms, and indoor tanning prototype accounted for 32% of the variance in indoor tanning intentions. Conclusions Future research should investigate whether these variables predict exposure and protection behaviors and whether intervening can reduce young adults’ skin cancer risk behaviors. PMID:22251761
Poljsak, Borut; Dahmane, Raja; Godic, Aleksandar
2013-04-01
It is estimated that total sun exposure occurs non-intentionally in three quarters of our lifetimes. Our skin is exposed to majority of UV radiation during outdoor activities, e.g. walking, practicing sports, running, hiking, etc. and not when we are intentionally exposed to the sun on the beach. We rarely use sunscreens during those activities, or at least not as much and as regular as we should and are commonly prone to acute and chronic sun damage of the skin. The only protection of our skin is endogenous (synthesis of melanin and enzymatic antioxidants) and exogenous (antioxidants, which we consume from the food, like vitamins A, C, E, etc.). UV-induced photoaging of the skin becomes clinically evident with age, when endogenous antioxidative mechanisms and repair processes are not effective any more and actinic damage to the skin prevails. At this point it would be reasonable to ingest additional antioxidants and/or to apply them on the skin in topical preparations. We review endogenous and exogenous skin protection with antioxidants.
Time-Restricted Feeding Shifts the Skin Circadian Clock and Alters UVB-Induced DNA Damage.
Wang, Hong; van Spyk, Elyse; Liu, Qiang; Geyfman, Mikhail; Salmans, Michael L; Kumar, Vivek; Ihler, Alexander; Li, Ning; Takahashi, Joseph S; Andersen, Bogi
2017-08-01
The epidermis is a highly regenerative barrier protecting organisms from environmental insults, including UV radiation, the main cause of skin cancer and skin aging. Here, we show that time-restricted feeding (RF) shifts the phase and alters the amplitude of the skin circadian clock and affects the expression of approximately 10% of the skin transcriptome. Furthermore, a large number of skin-expressed genes are acutely regulated by food intake. Although the circadian clock is required for daily rhythms in DNA synthesis in epidermal progenitor cells, RF-induced shifts in clock phase do not alter the phase of DNA synthesis. However, RF alters both diurnal sensitivity to UVB-induced DNA damage and expression of the key DNA repair gene, Xpa. Together, our findings indicate regulation of skin function by time of feeding and emphasize a link between circadian rhythm, food intake, and skin health. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Felton, S J; Cooke, M S; Kift, R; Berry, J L; Webb, A R; Lam, P M W; de Gruijl, F R; Vail, A; Rhodes, L E
2016-12-01
The concurrent impact of repeated low-level summer sunlight exposures on vitamin D production and cutaneous DNA damage, potentially leading to mutagenesis and skin cancer, is unknown. This is an experimental study (i) to determine the dual impact of repeated low-level sunlight exposures on vitamin D status and DNA damage/repair (via both skin and urinary biomarkers) in light-skinned adults; and (ii) to compare outcomes following the same exposures in brown-skinned adults. Ten white (phototype II) and six South Asian volunteers (phototype V), aged 23-59 years, received 6 weeks' simulated summer sunlight exposures (95% ultraviolet A/5% ultraviolet B, 1·3 standard erythemal doses three times weekly) wearing summer clothing exposing ~35% body surface area. Assessments made were circulating 25-hydroxyvitamin D [25(OH)D], immunohistochemistry for cyclobutane pyrimidine dimer (CPD)-positive nuclei and urinary biomarkers of direct and oxidative (8-oxo-deoxyguanosine) DNA damage. Serum 25(OH)D rose from mean 36·5 ± 13·0 to 54·3 ± 10·5 nmol L -1 (14·6 ± 5·2 to 21·7 ± 4·2 ng mL -1 ) in phototype II vs. 17·2 ± 6·3 to 25·5 ± 9·5 nmol L -1 (6·9 ± 2·5 to 10·2 ± 3·8 ng mL -1 ) in phototype V (P < 0·05). Phototype II skin showed CPD-positive nuclei immediately postcourse, mean 44% (range 27-84) cleared after 24 h, contrasting with minimal DNA damage and full clearance in phototype V (P < 0·001). The findings did not differ from those following single ultraviolet radiation (UVR) exposure. Urinary CPDs remained below the detection threshold in both groups; 8-oxo-deoxyguanosine was higher in phototype II than V (P = 0·002), but was unaffected by UVR. Low-dose summer sunlight exposures confer vitamin D sufficiency in light-skinned people concurrently with low-level, nonaccumulating DNA damage. The same exposures produce minimal DNA damage but less vitamin D in brown-skinned people. This informs tailoring of sun-exposure policies. © 2016 The Authors. British Journal of Dermatology published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists.
Fujimura, T; Shimotoyodome, Y; Nishijima, T; Sugata, K; Taguchi, H; Moriwaki, S
2017-02-01
Irritancy levels of surfactants on human skin have not been clarified completely. The relationships between skin damage and changes of skin properties caused by various surfactants were investigated using non-invasive measurements. Aqueous solutions of seven kinds of anionic, non-ionic, and amphoteric surfactants were exposed to the inside of forearm skin of 20 human subjects in two separate studies using the cup method. Hydration of the stratum corneum (SC), transepidermal water loss (TEWL), pH, skin surface roughness, and contents of the SC were measured before and after one exposure and after five and nine consecutive exposures to various surfactants. The discontinuation ratio of subjects for testing in each surfactant was determined by skin irritation symptoms and was defined as the degree of skin damage. Significant changes were observed only in hydration, TEWL, and natural moisturizing factors (NMF) content in the SC following surfactant exposure. A significant correlation was observed between the discontinuation ratio of each surfactant and the changes of hydration, TEWL, and NMF. Especially, the change of SC hydration showed an excellent correlation with the discontinuation ratio both for single (r = 0.942, P < 0.001) and for chronic exposures (r = 0.934, P < 0.001). Our results indicate that the change of hydration of the SC is equivalent to the skin damage caused by surfactants, and therefore is the most suitable indicator to evaluate the irritation of surfactants on the skin. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Jain, Anil K; Tewari-Singh, Neera; Gu, Mallikarjuna; Inturi, Swetha; White, Carl W; Agarwal, Rajesh
2011-09-10
Bifunctional alkyalating agent, sulfur mustard (SM)-induced cutaneous injury is characterized by inflammation and delayed blistering. Our recent studies demonstrated that 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of SM that can be used in laboratory settings, induces oxidative stress. This could be the major cause of the activation of Akt/MAP kinase and AP1/NF-κB pathways that are linked to the inflammation and microvesication, and histopathological alterations in SKH-1 hairless mouse skin. To further establish a link between CEES-induced DNA damage and signaling pathways and inflammatory responses, skin samples from mice exposed to 2 mg or 4 mg CEES for 9-48 h were subjected to molecular analysis. Our results show a strong CEES-induced phosphorylation of H2A.X and an increase in cyclooxygenase-2 (COX-2), inducible NOS (iNOS), and matrix metalloproteinase-9 (MMP-9) levels, indicating the involvement of DNA damage and inflammation in CEES-induced skin injury in male and female mice. Since, our recent studies showed reduction in CEES-induced inflammatory responses by glutathione (GSH), we further assessed the role of oxidative stress in CEES-related DNA damage and the induction of inflammatory molecules. Oral GSH (300 mg/kg) administration 1h before CEES exposure attenuated the increase in both CEES-induced H2A.X phosphorylation (59%) as well as expression of COX-2 (68%), iNOS (53%) and MMP-9 (54%). Collectively, our results indicate that CEES-induced skin injury involves DNA damage and an induction of inflammatory mediators, at least in part via oxidative stress. This study could help in identifying countermeasures that alone or in combination, can target the unveiled pathways for reducing skin injury in humans by SM. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Predicting Avoidance of Skin Damage Feedback among College Students
Dwyer, Laura A.; Shepperd, James A.; Stock, Michelle L.
2015-01-01
Background Showing people a personal ultraviolet (UV) photograph depicting skin damage can be an effective method for changing sun protection cognitions and behaviors. Purpose We examined whether people opt not to see their UV photograph if given a choice. We also examined predictors of avoidance of skin damage feedback. Methods College students (N = 257) completed questionnaires, viewed example UV photographs, and received the opportunity to see a UV photograph of their face. Results Over one-third of participants opted not to see their UV photograph. Greater perceived risk of sun damage and having fewer coping resources corresponded with greater avoidance, particularly among participants who reported infrequent sun protection behavior. Conclusion The health benefits of UV photography are realized only if people are willing to view the photograph. Our findings suggest the need for interventions that increase receptivity to viewing one’s UV photograph. PMID:25894276
Priyadarshika, R C U; Crosbie, J C; Kumar, B; Rogers, P A W
2011-01-01
Objectives Microbeam radiotherapy (MRT) with wafers of microscopically narrow, synchrotron generated X-rays is being used for pre-clinical cancer trials in animal models. It has been shown that high dose MRT can be effective at destroying tumours in animal models, while causing unexpectedly little damage to normal tissue. The aim of this study was to use a dermatopathological scoring system to quantify and compare the acute biological response of normal mouse skin with microplanar and broad-beam (BB) radiation as a basis for biological dosimetry. Method The skin flaps of three groups of mice were irradiated with high entrance doses (200 Gy, 400 Gy and 800 Gy) of MRT and BB and low dose BB (11 Gy, 22 Gy and 44 Gy). The mice were culled at different time-points post-irradiation. Skin sections were evaluated histologically using the following parameters: epidermal cell death, nuclear enlargement, spongiosis, hair follicle damage and dermal inflammation. The fields of irradiation were identified by γH2AX-positive immunostaining. Results The acute radiation damage in skin from high dose MRT was significantly lower than from high dose BB and, importantly, similar to low dose BB. Conclusion The integrated MRT dose was more relevant than the peak or valley dose when comparing with BB fields. In MRT-treated skin, the apoptotic cells of epidermis and hair follicles were not confined to the microbeam paths. PMID:21849367
The skin: its structure and response to ionizing radiation.
Hopewell, J W
1990-04-01
The response of the skin to ionizing radiation has important implications both for the treatment of malignant disease by radiation and for radiological protection. The structural organization of human skin is described and compared with that of the pig, with which it shows many similarities, in order that the response of the skin to ionizing radiation may be more fully understood. Acute radiation damage to the skin is primarily a consequence of changes in the epidermis; the timing of the peak of the reaction is related to the kinetic organization of this layer. The rate of development of damage is independent of the radiation dose, since this is related to the natural rate of loss of cells from the basal layer of the epidermis. Recovery of the epidermis occurs as a result of the proliferation of surviving clonogenic basal cells from within the irradiated area. The presence of clonogenic cells in the canal of the hair follicle is important, particularly after non-uniform irradiation from intermediate energy beta-emitters. The migration of viable cells from the edges of the irradiated site is also significant when small areas of skin are irradiated. Late damage to the skin is primarily a function of radiation effects on the vasculature; this produces a wave of dermal atrophy after 16-26 weeks. Dermal necrosis develops at this time after high doses. A second phase of dermal thinning is seen to develop after greater than 52 weeks, and this later phase of damage is associated with the appearance of telangiectasia. Highly localized irradiation of the skin, either to a specific layer (as may result from exposure to very low energy beta-emitters) or after exposure to small highly radioactive particles, 'hot particles', produces gross effects that become visibly manifest within 2 weeks of exposure. These changes result from the direct killing of the cells of the skin in interphase after doses greater than 100 Gy. Dose-effect curves have been established for the majority of these deterministic endpoints in the skin from the results of both experimental and clinical studies. These are of value in the establishment of safe radiation dose limits for the skin.
Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Anil K.; Tewari-Singh, Neera; Inturi, Swetha
Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantlymore » decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. - Highlights: • Silibinin treatment attenuated nitrogen mustard (NM)-induced skin injury. • Silibinin affects pathways associated with DNA damage, inflammation and vesication. • The efficacy of silibinin could also be associated with oxidative stress. • These results support testing and optimization of silibinin against SM-induced skin injury.« less
ANALYSIS OF DNA DAMAGE AND REPAIR IN SKIN FIBROBLASTS OF INFANT AND OLDER CHILDREN USING THE IN VITRO ALKALINE COMET ASSAY, Alan H. Tennant1, Geremy W. Knapp1 and Andrew D. Kligerman1, 1Environmental Carcinogenesis Division, National Health and Environmental Effects Research Lab...
7 CFR 52.3188 - Work sheet for dried prunes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... defects, including off-color 10 percent 15 percent No limit except as indicated below. Total of all defects, including off-color and poor texture 20 percent Poor texture, end cracks, skin or flesh damage, 3..., decay But no more than 6 percent But no more than 8 percent End cracks,2 skin or flesh damage, 3...
2014-01-01
Background Metal oxide nanoparticles such as ZnO are used in sunscreens as they improve their optical properties against the UV-light that causes dermal damage and skin cancer. However, the hazardous properties of the particles used as UV-filters in the sunscreens and applied to the skin have remained uncharacterized. Methods Here we investigated whether different sized ZnO particles would be able to penetrate injured skin and injured allergic skin in the mouse atopic dermatitis model after repeated topical application of ZnO particles. Nano-sized ZnO (nZnO) and bulk-sized ZnO (bZnO) were applied to mechanically damaged mouse skin with or without allergen/superantigen sensitization. Allergen/superantigen sensitization evokes local inflammation and allergy in the skin and is used as a disease model of atopic dermatitis (AD). Results Our results demonstrate that only nZnO is able to reach into the deep layers of the allergic skin whereas bZnO stays in the upper layers of both damaged and allergic skin. In addition, both types of particles diminish the local skin inflammation induced in the mouse model of AD; however, nZnO has a higher potential to suppress the local effects. In addition, especially nZnO induces systemic production of IgE antibodies, evidence of allergy promoting adjuvant properties for topically applied nZnO. Conclusions These results provide new hazard characterization data about the metal oxide nanoparticles commonly used in cosmetic products and provide new insights into the dermal exposure and hazard assessment of these materials in injured skin. PMID:25123235
The impact of skin colour on human photobiological responses.
Fajuyigbe, Damilola; Young, Antony R
2016-11-01
Terrestrial solar ultraviolet radiation (UVR) exerts both beneficial and adverse effects on human skin. Epidemiological studies show a lower incidence of skin cancer in people with pigmented skins compared to fair skins. This is attributed to photoprotection by epidermal melanin, as is the poorer vitamin D status of those with darker skins. We summarize a wide range of photobiological responses across different skin colours including DNA damage and immunosuppression. Some studies show the generally modest photoprotective properties of melanin, but others show little or no effect. DNA photodamage initiates non-melanoma skin cancer and is reduced by a factor of about 3 in pigmented skin compared with white skin. This suggests that if such a modest reduction in DNA damage can result in the significantly lower skin cancer incidence in black skin, the use of sunscreen protection might be extremely beneficial for susceptible population. Many contradictory results may be explained by protocol differences, including differences in UVR spectra and exposure protocols. We recommend that skin type comparisons be done with solar-simulated radiation and standard erythema doses or physical doses (J/m 2 ) rather than those based solely on clinical endpoints such as minimal erythema dose (MED). © 2016 The Authors. Pigment Cell & Melanoma Research Published by John Wiley & Sons Ltd.
7 CFR 51.3069 - Very serious damage.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Cuts or other skin breaks when not healed and penetrating into the flesh of the fruit, or any skin... the skin surrounding the exposed stem cavity is torn more than an aggregate area of a circle one-half...
Melatonin and human skin aging
Kleszczynski, Konrad; Fischer, Tobias W.
2012-01-01
Like the whole organism, skin follows the process of aging during life-time. Additional to internal factors, several environmental factors, such as solar radiation, considerably contribute to this process. While fundamental mechanisms regarding skin aging are known, new aspects of anti-aging agents such as melatonin are introduced. Melatonin is a hormone produced in the glandula pinealis that follows a circadian light-dependent rhythm of secretion. It has been experimentally implicated in skin functions such as hair cycling and fur pigmentation, and melatonin receptors are expressed in many skin cell types including normal and malignant keratinocytes, melanocytes and fibroblasts. It possesses a wide range of endocrine properties as well as strong antioxidative activity. Regarding UV-induced solar damage, melatonin distinctly counteracts massive generation of reactive oxygen species, mitochondrial and DNA damage. Thus, there is considerable evidence for melatonin to be an effective anti-skin aging compound, and its various properties in this context are described in this review. PMID:23467217
A New Approach to Defining Human Touch Temperature Standards
NASA Technical Reports Server (NTRS)
Ungar, Eugene; Stroud, Kenneth
2010-01-01
Defining touch temperature limits for skin contact with both hot and cold objects is important to prevent pain and skin damage, which may affect task performance or become a safety concern. Pain and skin damage depend on the skin temperature during contact, which depends on the contact thermal conductance, the object's initial temperature, and its material properties. However, previous spacecraft standards have incorrectly defined touch temperature limits in terms of a single object temperature value for all materials, or have provided limited material-specific values which do not cover the gamut of likely designs. A new approach has been developed for updated NASA standards, which defines touch temperature limits in terms of skin temperature at pain onset for bare skin contact with hot and cold objects. The authors have developed an analytical verification method for safe hot and cold object temperatures for contact times from 1 second to infinity.
A New Approach to Defining Human Touch Temperature Standards
NASA Technical Reports Server (NTRS)
Ungar, Eugene; Stroud, Kenneth
2009-01-01
Defining touch temperature limits for skin contact with both hot and cold objects is important to prevent pain and skin damage, which may affect task performance or become a safety concern. Pain and skin damage depend on the resulting skin temperature during contact, which depends on the object s initial temperature, its material properties and its ability to transfer heat. However, previous spacecraft standards have incorrectly defined touch temperature limits in terms of a single object temperature value for all materials, or have provided limited material-specific values which do not cover the gamut of most designs. A new approach is being used in new NASA standards, which defines touch temperature limits in terms of skin temperature at pain onset for bare skin contact with hot and cold objects. The authors have developed an analytical verification method for safe hot and cold object temperatures for contact times from 1 second to infinity.
Lee, Jin-Ku; Ko, Seong-Hee; Ye, Sang-Kyu; Chung, Myung-Hee
2013-04-01
Skin is uniquely vulnerable to damage caused by reactive oxygen species (ROS), which are most commonly produced in response to ultraviolet (UV) light. ROS generated at injury sites play an important role in modulating the inflammatory response. Besides inhibiting Rac, 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) has also shown notable antioxidant action. We tested whether 8-oxo-dG could protect skin from UVB-induced damage by scavenging ROS. HaCaT cells and hairless mice were irradiated with 15 and 180 mJ/cm(2) narrow-spectrum UVB, respectively. ROS generation was detected through incubation with DCFDA and confocal microscopy. Western blot analyses and immunohistochemistry were performed to verify the activities of ERK, JNK, p38, ATF-2, and c-Jun, and the expression of matrix metalloproteinases (MMPs), in UVB-irradiated HaCaT cells and murine skin. Hydrogen peroxide production and protein carbonyl concentrations were measured in UVB-damaged mouse skin. MMP-1 and MMP-9 expression in UVB-irradiated HaCaT cells was measured by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). In UVB-irradiated HaCaT cells, 8-oxo-dG inhibited ROS production, subsequent activation of mitogen-activated protein kinase (MAPK), ATF-2, and c-Jun, and MMP expression. It also prevented UV-induced skin reactions in hairless mice, inhibiting the increase in protein carbonyl content, activation of MAPKs, ATF-2, and c-Jun, the increases in MMP-9 and -13 expression, and epidermal hyperplasia. 8-oxo-dG can be considered an endogenous antioxidant and its potent antioxidant activity might be a beneficial property that could be exploited to protect skin from ROS-associated photodamage. Copyright © 2013. Published by Elsevier Ireland Ltd.
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light
Buonanno, Manuela; Ponnaiya, Brian; Welch, David; Stanislauskas, Milda; Randers-Pehrson, Gerhard; Smilenov, Lubomir; Lowy, Franklin D.; Owens, David M.; Brenner, David J.
2017-01-01
We have previously shown that 207-nm ultraviolet (UV) light has similar antimicrobial properties as typical germicidal UV light (254 nm), but without inducing mammalian skin damage. The biophysical rationale is based on the limited penetration distance of 207-nm light in biological samples (e.g. stratum corneum) compared with that of 254-nm light. Here we extended our previous studies to 222-nm light and tested the hypothesis that there exists a narrow wavelength window in the far-UVC region, from around 200–222 nm, which is significantly harmful to bacteria, but without damaging cells in tissues. We used a krypton-chlorine (Kr-Cl) excimer lamp that produces 222-nm UV light with a bandpass filter to remove the lower- and higher-wavelength components. Relative to respective controls, we measured: 1. in vitro killing of methicillin-resistant Staphylococcus aureus (MRSA) as a function of UV fluence; 2. yields of the main UV-associated premutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts) in a 3D human skin tissue model in vitro; 3. eight cellular and molecular skin damage endpoints in exposed hairless mice in vivo. Comparisons were made with results from a conventional 254-nm UV germicidal lamp used as positive control. We found that 222-nm light kills MRSA efficiently but, unlike conventional germicidal UV lamps (254 nm), it produces almost no premutagenic UV-associated DNA lesions in a 3D human skin model and it is not cytotoxic to exposed mammalian skin. As predicted by biophysical considerations and in agreement with our previous findings, far-UVC light in the range of 200–222 nm kills bacteria efficiently regardless of their drug-resistant proficiency, but without the skin damaging effects associated with conventional germicidal UV exposure. PMID:28225654
Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light.
Buonanno, Manuela; Ponnaiya, Brian; Welch, David; Stanislauskas, Milda; Randers-Pehrson, Gerhard; Smilenov, Lubomir; Lowy, Franklin D; Owens, David M; Brenner, David J
2017-04-01
We have previously shown that 207-nm ultraviolet (UV) light has similar antimicrobial properties as typical germicidal UV light (254 nm), but without inducing mammalian skin damage. The biophysical rationale is based on the limited penetration distance of 207-nm light in biological samples (e.g. stratum corneum) compared with that of 254-nm light. Here we extended our previous studies to 222-nm light and tested the hypothesis that there exists a narrow wavelength window in the far-UVC region, from around 200-222 nm, which is significantly harmful to bacteria, but without damaging cells in tissues. We used a krypton-chlorine (Kr-Cl) excimer lamp that produces 222-nm UV light with a bandpass filter to remove the lower- and higher-wavelength components. Relative to respective controls, we measured: 1. in vitro killing of methicillin-resistant Staphylococcus aureus (MRSA) as a function of UV fluence; 2. yields of the main UV-associated premutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts) in a 3D human skin tissue model in vitro; 3. eight cellular and molecular skin damage endpoints in exposed hairless mice in vivo. Comparisons were made with results from a conventional 254-nm UV germicidal lamp used as positive control. We found that 222-nm light kills MRSA efficiently but, unlike conventional germicidal UV lamps (254 nm), it produces almost no premutagenic UV-associated DNA lesions in a 3D human skin model and it is not cytotoxic to exposed mammalian skin. As predicted by biophysical considerations and in agreement with our previous findings, far-UVC light in the range of 200-222 nm kills bacteria efficiently regardless of their drug-resistant proficiency, but without the skin damaging effects associated with conventional germicidal UV exposure.
Progressive Damage Analyses of Skin/Stringer Debonding
NASA Technical Reports Server (NTRS)
Daville, Carlos G.; Camanho, Pedro P.; deMoura, Marcelo F.
2004-01-01
The debonding of skin/stringer constructions is analyzed using a step-by-step simulation of material degradation based on strain softening decohesion elements and a ply degradation procedure. Decohesion elements with mixed-mode capability are placed at the interface between the skin and the flange to simulate the initiation and propagation of the delamination. In addition, the initiation and accumulation of fiber failure and matrix damage is modeled using Hashin-type failure criteria and their corresponding material degradation schedules. The debonding predictions using simplified three-dimensional models correlate well with test results.
Hou, Hu; Li, Bafang; Zhang, Zhaohui; Xue, Changhu; Yu, Guangli; Wang, Jingfeng; Bao, Yuming; Bu, Lin; Sun, Jiang; Peng, Zhe; Su, Shiwei
2012-12-01
Collagen polypeptides were prepared from cod skin. Moisture absorption and retention properties of collagen polypeptides were determined at different relative humidities. In addition, the protective effects of collagen polypeptide against UV-induced damage to mouse skin were evaluated. Collagen polypeptides had good moisture absorption and retention properties and could alleviate the damage induced by UV radiation. The action mechanisms of collagen polypeptide mainly involved enhancing immunity, reducing the loss of moisture and lipid, promoting anti-oxidative properties, inhibiting the increase of glycosaminoglycans, repairing the endogenous collagen and elastin protein fibres, and maintaining the ratio of type III to type I collagen. Copyright © 2012 Elsevier Ltd. All rights reserved.
Quantification of gravity-induced skin strain across the breast surface.
Sanchez, Amy; Mills, Chris; Haake, Steve; Norris, Michelle; Scurr, Joanna
2017-12-01
Quantification of the magnitude of skin strain in different regions of the breast may help to estimate possible gravity-induced damage whilst also being able to inform the selection of incision locations during breast surgery. The aim of this study was to quantify static skin strain over the breast surface and to estimate the risk of skin damage caused by gravitational loading. Fourteen participants had 21 markers applied to their torso and left breast. The non-gravity breast position was estimated as the mid-point of the breast positions in water and soybean oil (higher and lower density than breast respectively). The static gravity-loaded breast position was also measured. Skin strain was calculated as the percentage extension between adjacent breast markers in the gravity and non-gravity loaded conditions. Gravity induced breast deformation caused peak strains ranging from 14 to 75% across participants, with potentially damaging skin strain (>60%) in one participant and skin strains above 30% (skin resistance zone) in a further four participants. These peak strain values all occurred in the longitudinal direction in the upper region of the breast skin. In the latitudinal direction, smaller-breasted participants experienced greater strain on the outer (lateral) breast regions and less strain on the inner (medial) breast regions, a trend which was reversed in the larger breasted participants (above size 34D). To reduce tension on surgical incisions it is suggested that preference should be given to medial latitudinal locations for smaller breasted women and lateral latitudinal locations for larger breasted women. Copyright © 2017 Elsevier Ltd. All rights reserved.
Protective Skins for Composite Airliners
NASA Technical Reports Server (NTRS)
Johnson, Vicki S.; Boone, Richard L.; Jones, Shannon; Pendse, Vandana; Hayward, Greg
2014-01-01
Traditional composite aircraft structures are designed for load bearing and then overdesigned for impact damage and hot humid environments. Seeking revolutionary improvement in the performance and weight of composite structures, Cessna Aircraft Company, with sponsorship from the NASA Fundamental Aeronautics Program/Subsonic Fixed Wing Project, has developed and tested a protective skin concept which would allow the primary composite structure to carry only load and would meet the impact, hot and humid, and other requirements through protective skins. A key requirement for the protective skins is to make any impact damage requiring repair visible. Testing from the first generation of skins helped identify the most promising materials which were used in a second generation of test articles. This report summarizes lessons learned from the first generation of protective skins, the design and construction of the second-generation test articles, test results from the second generation for impact, electromagnetic effects, aesthetics and smoothing, thermal, and acoustic (for the first time), and an assessment of the feasibility of the protective skin concept.
Validity of reciprocity rule on mouse skin thermal damage due to CO2 laser irradiation
NASA Astrophysics Data System (ADS)
Parvin, P.; Dehghanpour, H. R.; Moghadam, M. S.; Daneshafrooz, V.
2013-07-01
CO2 laser (10.6 μm) is a well-known infrared coherent light source as a tool in surgery. At this wavelength there is a high absorbance coefficient (860 cm-1), because of vibration mode resonance of H2O molecules. Therefore, the majority of the irradiation energy is absorbed in the tissue and the temperature of the tissue rises as a function of power density and laser exposure duration. In this work, the tissue damage caused by CO2 laser (1-10 W, ˜40-400 W cm-2, 0.1-6 s) was measured using 30 mouse skin samples. Skin damage assessment was based on measurements of the depth of cut, mean diameter of the crater and the carbonized layer. The results show that tissue damage as assessed above parameters increased with laser fluence and saturated at 1000 J cm-2. Moreover, the damage effect due to high power density at short duration was not equivalent to that with low power density at longer irradiation time even though the energy delivered was identical. These results indicate the lack of validity of reciprocity (Bunsen-Roscoe) rule for the thermal damage.
7 CFR 52.3188 - Work sheet for dried prunes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... defects, including off-color and poor texture 20 percent Poor texture, end cracks, skin or flesh damage, 3..., decay But no more than 6 percent But no more than 8 percent End cracks,2 skin or flesh damage, 3... (including all factors) 1 Percentages of defects are “by weight.” 2 Except that each 1 percent of end cracks...
Bahia El Idrissi, Nawal; Iyer, Anand M; Ramaglia, Valeria; Rosa, Patricia S; Soares, Cleverson T; Baas, Frank; Das, Pranab K
2017-01-01
Mycobacterium leprae (M. leprae) infection causes nerve damage and the condition worsens often during and long after treatment. Clearance of bacterial antigens including lipoarabinomannan (LAM) during and after treatment in leprosy patients is slow. We previously demonstrated that M. leprae LAM damages peripheral nerves by in situ generation of the membrane attack complex (MAC). Investigating the role of complement activation in skin lesions of leprosy patients might provide insight into the dynamics of in situ immune reactivity and the destructive pathology of M. leprae. In this study, we analyzed in skin lesions of leprosy patients, whether M. leprae antigen LAM deposition correlates with the deposition of complement activation products MAC and C3d on nerves and cells in the surrounding tissue. Skin biopsies of paucibacillary (n = 7), multibacillary leprosy patients (n = 7), and patients with erythema nodosum leprosum (ENL) (n = 6) or reversal reaction (RR) (n = 4) and controls (n = 5) were analyzed. The percentage of C3d, MAC and LAM deposition was significantly higher in the skin biopsies of multibacillary compared to paucibacillary patients (p = <0.05, p = <0.001 and p = <0.001 respectively), with a significant association between LAM and C3d or MAC in the skin biopsies of leprosy patients (r = 0.9578, p< 0.0001 and r = 0.8585, p<0.0001 respectively). In skin lesions of multibacillary patients, MAC deposition was found on axons and co-localizing with LAM. In skin lesions of paucibacillary patients, we found C3d positive T-cells in and surrounding granulomas, but hardly any MAC deposition. In addition, MAC immunoreactivity was increased in both ENL and RR skin lesions compared to non-reactional leprosy patients (p = <0.01 and p = <0.01 respectively). The present findings demonstrate that complement is deposited in skin lesions of leprosy patients, suggesting that inflammation driven by complement activation might contribute to nerve damage in the lesions of these patients. This should be regarded as an important factor in M. leprae nerve damage pathology.
980 nm diode laser with automatic power control mode for dermatological applications
NASA Astrophysics Data System (ADS)
Belikov, Andrey V.; Gelfond, Mark L.; Shatilova, Ksenia V.; Sosenkova, Svetlana A.; Lazareva, Anastasia A.
2015-07-01
Results of nevus, papilloma, dermatofibroma, and basal cell skin cancer removal by a 980+/-10 nm diode laser with "blackened" tip operating in continuous (CW) mode and automatic power control (APC) mode are compared. It was demonstrated that using APC mode decreases the width of collateral damage at removing of these nosological neoplasms of human skin. The mean width of collateral damage reached 0.846+/-0.139 mm for patient group with nevus removing by 980 nm diode laser operating in CW mode, papilloma - 0.443+/-0.312 mm, dermatofibroma - 0.923+/-0.271 mm, and basal cell skin cancer - 0.787+/-0.325 mm. The mean width of collateral damage reached 0.592+/-0.197 mm for patient group with nevus removing by 980 nm diode laser operating in APC mode, papilloma - 0.191+/-0.162 mm, dermatofibroma - 0.476+/-0.366 mm, and basal cell skin cancer - 0.517+/-0.374 mm. It was found that the percentage of laser wounds with collateral damage less than 300 μm of quantity of removed nosological neoplasms in APC mode is 50%, that significantly higher than the percentage of laser wounds obtained using CW mode (13.4%).
Ji, Chao; Yang, Bo; Huang, Shu-Ying; Huang, Jin-Wen; Cheng, Bo
2017-12-02
The role of UVB in skin photo damages has been widely reported. Overexposure to UVB will induce severe DNA damages in epidermal cells and cause most cytotoxic symptoms. In the present study, we tested the potential activity of salubrinal, a selective inhibitor of Eukaryotic Initiation Factor 2 (eIF2) -alpha phosphatase, against UV-induced skin cell damages. We first exposed human fibroblasts to UVB radiation and evaluated the cytosolic Ca 2+ level as well as the induction of ER stress. We found that UVB radiation induced the depletion of ER Ca 2+ and increased the expression of ER stress marker including phosphorylated PERK, CHOP, and phosphorylated IRE1α. We then determined the effects of salubrinal in skin cell death induced by UVB radiation. We observed that cells pre-treated with salubrinal had a higher survival rate compared to cells treated with UVB alone. Pre-treatment with salubrinal successfully re-established the ER function and Ca 2+ homeostasis. Our results suggest that salubrinal can be a potential therapeutic agents used in preventing photoaging and photo damages. Copyright © 2017 Elsevier Inc. All rights reserved.
Characterization of Fatigue Damage for Bonded Composite Skin/Stringer Configurations
NASA Technical Reports Server (NTRS)
Paris, Isabelle; Cvitkovich, Michael; Krueger, Ronald
2008-01-01
The fatigue damage was characterized in specimens which consisted of a tapered composite flange bonded onto a composite skin. Quasi-static tension tests were performed first to determine the failure load. Subsequently, tension fatigue tests were performed at 40%, 50%, 60% and 70% of the failure load to evaluate the debonding mechanisms. For four specimens, the cycling loading was stopped at intervals. Photographs of the polished specimen edges were taken under a light microscope to document the damage. At two diagonally opposite corners of the flange, a delamination appeared to initiate at the flange tip from a matrix crack in the top 45deg skin ply and propagated at the top 45deg/-45deg skin ply interface. At the other two diagonally opposite corners, a delamination running in the bondline initiated from a matrix crack in the adhesive pocket. In addition, two specimens were cut longitudinally into several sections. Micrographs revealed a more complex pattern inside the specimen where the two delamination patterns observed at the edges are present simultaneously across most of the width of the specimen. The observations suggest that a more sophisticated nondestructive evaluation technique is required to capture the complex damage pattern of matrix cracking and multi-level delaminations.
Skin welding using pulsed laser radiation and a dye
NASA Astrophysics Data System (ADS)
Fried, Nathaniel M.; Walsh, Joseph T., Jr.
1998-07-01
Previous skin welding studies have used continuous wave (CW) delivery of radiation. However, heat diffusion during irradiation prevents strong welds from being achieved without creating large zones of thermal damage to surrounding tissue. This damage may prevent normal wound healing. Strong welds and minimal thermal damage can be achieved by introducing a dye and delivering the radiation in a pulsed mode. Two-cm-long, full-thickness incisions were made in guinea pig skin. India ink was used as an absorber, and egg white albumin was used as an adhesive. A 5-mm-diameter spot of CW, 1.06-micrometer Nd:YAG laser radiation was scanned over the weld site, producing 100 millisecond pulses. The cooling time between scans and number of scans was varied. Thermal damage zones were measured using a transmission polarizing microscope to identify birefringence changes in tissue. Tensile strengths were measured using a tensiometer. For pulsed welding and long cooling times, weld strengths of 2.4 kg/cm2 were measured, and thermal damage to the epidermis was limited to approximately 500 micrometers. With CW welding, comparable weld strengths resulted in approximately 2700 micrometer of thermal damage. CW laser radiation weld strengths were only 0.6 kg/cm2 when thermal damage in the epidermis was limited to approximately 500 micrometers.
Impact analysis of automotive structures with distributed smart material systems
NASA Astrophysics Data System (ADS)
Peelamedu, Saravanan M.; Naganathan, Ganapathy; Buckley, Stephen J.
1999-06-01
New class of automobiles has structural skins that are quite different from their current designs. Particularly, new families of composite skins are developed with new injection molding processes. These skins while support the concept of lighter vehicles of the future, are also susceptible to damage upon impact. It is important that their design should be based on a better understanding on the type of impact loads and the resulting strains and damage. It is possible that these skins can be integrally designed with active materials to counter damages. This paper presents a preliminary analysis of a new class of automotive skins, using piezoceramic as a smart material. The main objective is to consider the complex system with, the skin to be modeled as a layered plate structure involving a lightweight material with foam and active materials imbedded on them. To begin with a cantilever beam structure is subjected to a load through piezoceramic and the resulting strain at the active material site is predicted accounting for the material properties, piezoceramic thickness, adhesive thickness including the effect of adhesives. A finite element analysis is carried out to compare experimental work. Further work in this direction would provide an analytical tool that will provide the basis for algorithms to predict and counter impacts on the future class of automobiles.
NASA Astrophysics Data System (ADS)
Pocock, Ginger M.; Zohner, Justin J.; Stolarski, David J.; Buchanan, Kelvin C.; Jindra, Nichole M.; Figueroa, Manuel A.; Chavey, Lucas J.; Imholte, Michelle L.; Thomas, Robert J.; Rockwell, Benjamin A.
2006-02-01
The reflectance and absorption of the skin plays a vital role in determining how much radiation will be absorbed by human tissue. Any substance covering the skin would change the way radiation is reflected and absorbed and thus the extent of thermal injury. Hairless guinea pigs (cavia porcellus) in vivo were used to evaluate how the minimum visible lesion threshold for single-pulse laser exposure is changed with a topical agent applied to the skin. The ED 50 for visible lesions due to an Er: glass laser at 1540-nm with a pulse width of 50-ns was determined, and the results were compared with model predictions using a skin thermal model. The ED50 is compared with the damage threshold of skin coated with a highly absorbing topical cream at 1540 nm to determine its effect on damage pathology and threshold. The ED 50 for the guinea pig was then compared to similar studies using Yucatan minipigs and Yorkshire pigs at 1540-nm and nanosecond pulse duration. 1,2 The damage threshold at 24-hours of a Yorkshire pig for a 2.5-3.5-mm diameter beam for 100 ns was 3.2 Jcm -2; very similar to our ED 50 of 3.00 Jcm -2 for the hairless guinea pigs.
Skin cell protection against UVA by Sideroxyl, a new antioxidant complementary to sunscreens.
Pygmalion, Marie-Jocelyne; Ruiz, Laetitia; Popovic, Evelyne; Gizard, Julie; Portes, Pascal; Marat, Xavier; Lucet-Levannier, Karine; Muller, Benoit; Galey, Jean-Baptiste
2010-12-01
Oxidative stress resulting from photosensitized ROS production in skin is widely accepted as the main contributor to the deleterious effects of UVA exposure. Among the mechanisms known to be involved in UVA-induced oxidative damage, iron plays a central role. UVA radiation of skin cells induces an immediate release of iron, which can then act as a catalyst for uncontrolled oxidation reactions of cell components. Such site-specific damage can scarcely be counteracted by classical antioxidants. In contrast, iron chelators potentially offer an effective way to protect skin against UVA insults. However, iron chelation is very difficult to achieve without disturbing iron homeostasis or inducing iron depletion. A novel compound was developed to avoid these potentially harmful side effects. Sideroxyl was designed to acquire its strong chelating capability only during oxidative stress according to an original process of intramolecular hydroxylation. Herein, we describe in vitro results demonstrating the protective efficiency of Sideroxyl against deleterious effects of UVA at the molecular, cellular, and tissular levels. First, the Sideroxyl diacid form protects a model protein against UVA-induced photosensitized carbonylation. Second, intracellular ROS are dose-dependently decreased in the presence of Sideroxyl in both human cultured fibroblasts and human keratinocytes. Third, Sideroxyl protects normal human fibroblasts against UVA-induced DNA damage as measured by the comet assay and MMP-1 production. Finally, Sideroxyl provides protection against UVA-induced alterations in human reconstructed skin. These results suggest that Sideroxyl may prevent UVA-induced damage in human skin as a complement to sunscreens, especially in the long-wavelength UVA range. Copyright © 2010 Elsevier Inc. All rights reserved.
7 CFR 52.3187 - Definitions and explanations of defects.
Code of Federal Regulations, 2012 CFR
2012-01-01
... by the following are scorable as defects: (a) Off-color. “Off-color” means a skin color different from characteristic black, blue-black, reddish-purple, or other characteristic skin color for the type... length. (d) Skin or flesh damage. “Skin or flesh damage” in the case of “Whole Unpitted” style means: (1...
Thermal Skin Damage During Reirradiation and Hyperthermia Is Time-Temperature Dependent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakker, Akke, E-mail: akke.bakker@amc.uva.nl; Kolff, M. Willemijn; Holman, Rebecca
Purpose: To investigate the relationship of thermal skin damage (TSD) to time–temperature isoeffect levels for patients with breast cancer recurrence treated with reirradiation plus hyperthermia (reRT + HT), and to investigate whether the treatment history of previous treatments (scar tissue) is a risk factor for TSD. Methods and Materials: In this observational study, temperature characteristics of hyperthermia sessions were analyzed in 262 patients with recurrent breast cancer treated in the AMC between 2010 and 2014 with reirradiation and weekly hyperthermia for 1 hour. Skin temperature was measured using a median of 42 (range, 29-82) measurement points per hyperthermia session. Results: Sixty-eight patients (26%) developed 79more » sites of TSD, after the first (n=26), second (n=17), third (n=27), and fourth (n=9) hyperthermia session. Seventy percent of TSD occurred on or near scar tissue. Scar tissue reached higher temperatures than other skin tissue (0.4°C, P<.001). A total of 102 measurement points corresponded to actual TSD sites in 35 of 79 sessions in which TSD developed. Thermal skin damage sites had much higher maximum temperatures than non-TSD sites (2.8°C, P<.001). Generalized linear mixed models showed that the probability of TSD is related to temperature and thermal dose values (P<.001) and that scar tissue is more at risk (odds ratio 0.4, P<.001). Limiting the maximum temperature of a measurement point to 43.7°C would mean that the probability of observing TSD was at most 5%. Conclusion: Thermal skin damage during reRT + HT for recurrent breast cancer was related to higher local temperatures and time–temperature isoeffect levels. Scar tissue reached higher temperatures than other skin tissue, and TSD occurred at lower temperatures and thermal dose values in scar tissue compared with other skin tissue. Indeed, TSD developed often on and around scar tissue from previous surgical procedures.« less
Hall, Charlotte A; Lydon, Helen L; Dalton, Christopher H; Chipman, J Kevin; Graham, John S; Chilcott, Robert P
2017-09-01
This study used a damaged skin, porcine model to evaluate the in vivo efficacy of WoundStat™ for decontamination of superficial (non-haemorrhaging), sulphur mustard-contaminated wounds. The dorsal skin of 12 female pigs was subjected to controlled physical damage and exposed to 10 μL 14 C-radiolabelled sulphur mustard ( 14 C-SM). Animals were randomly assigned to either a control or a treatment group. In the latter, WoundStat™ was applied 30 s post exposure and left in situ for 1 h. Skin lesion progression and decontaminant efficacy were quantified over 6 h using a range of biophysical measurements. Skin, blood and organ samples were taken post mortem for histopathological assessment, 14 C-SM distribution and toxicokinetic analyses. Application of SM to damaged skin without decontamination was rapidly followed by advanced signs of toxicity, including ulceration and decreased blood flow at the exposure site in all animals. WoundStat™ prevented ulceration and improved blood flow at the exposure site in all decontaminated animals (n = 6). Furthermore, significantly smaller quantities of 14 C-SM were detected in the blood (45% reduction), and recovered from skin (70% reduction) and skin surface swabs (99% reduction) at 6 h post-challenge. Overall, the distribution of 14 C-SM in the internal organs was similar for both groups, with the greatest concentration in the kidneys, followed by the liver and small intestine. WoundStat™ significantly reduced the amount of 14 C-SM recovered from the liver, a key organ for SM metabolism and detoxification. This study demonstrates that WoundStat™ is a suitable product for reducing the ingress and toxicity of a chemical warfare agent. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Mechanisms of DNA Damage Response to Targeted Irradiation in Organotypic 3D Skin Cultures
Acheva, Anna; Ghita, Mihaela; Patel, Gaurang; Prise, Kevin M.; Schettino, Giuseppe
2014-01-01
DNA damage (caused by direct cellular exposure and bystander signaling) and the complex pathways involved in its repair are critical events underpinning cellular and tissue response following radiation exposures. There are limited data addressing the dynamics of DNA damage induction and repair in the skin particularly in areas not directly exposed. Here we investigate the mechanisms regulating DNA damage, repair, intracellular signalling and their impact on premature differentiation and development of inflammatory-like response in the irradiated and surrounding areas of a 3D organotypic skin model. Following localized low-LET irradiation (225 kVp X-rays), low levels of 53BP1 foci were observed in the 3D model (3.8±0.28 foci/Gy/cell) with foci persisting and increasing in size up to 48 h post irradiation. In contrast, in cell monolayers 14.2±0.6 foci/Gy/cell and biphasic repair kinetics with repair completed before 24 h was observed. These differences are linked to differences in cellular status with variable level of p21 driving apoptotic signalling in 2D and accelerated differentiation in both the directly irradiated and bystander areas of the 3D model. The signalling pathways utilized by irradiated keratinocytes to induce DNA damage in non-exposed areas of the skin involved the NF-κB transcription factor and its downstream target COX-2. PMID:24505255
Li, Sheng; Chen, Fei; Shen, Lujun; Zeng, Qi; Wu, Peihong
2016-08-05
To study the safety, feasibility and skin effects of irreversible electroporation (IRE) for breast tissue and breast cancer in animal models. Eight pigs were used in this study. IRE was performed on the left breasts of the pigs with different skin-electrode distances, and the right breasts were used as controls. The electrodes were placed 1-8 mm away from the skin, with an electrode spacing of 1.5-2 cm. Imaging and pathological examinations were performed at specific time points for follow-up evaluation. Vital signs, skin damage, breast tissue changes and ablation efficacy were also closely observed. Eight rabbit models with or without VX2 breast tumor implantations were used to further assess the damage caused by and the repair of thin skin after IRE treatment for breast cancer. Contrast-enhanced ultrasound and elastosonography were used to investigate ablation efficacy and safety. During IRE, the color of the pig breast skin reversibly changed. When the skin-electrode distance was 3 mm, the breast skin clearly changed, becoming white in the center and purple in the surrounding region during IRE. One small purulent skin lesion was detected several days after IRE. When the skin-electrode distance was 5-8 mm, the breast skin became red during IRE. However, the skin architecture was normal when evaluated using gross pathology and hematoxylin-eosin staining. When the skin-electrode distance was 1 mm, skin atrophy and yellow glabrescence occurred in the rabbit breasts after IRE. When the skin-electrode distance was ≥5 mm, there was no skin damage in the rabbit model regardless of breast cancer implantation. After IRE, complete ablation of the targeted breast tissue or cancer was confirmed, and apoptosis was detected in the target tissue and outermost epidermal layer. In the ablated breasts of the surviving animals, complete mammary regeneration with normal skin and hair was observed. Furthermore, no massive fibrosis or mass formation were detected on ultrasound or through hematoxylin-eosin staining. After IRE, the skin architecture was well preserved when the skin-electrode distance was ≥5 mm. Moreover, breast regeneration occurred without mass formation or obvious fibrosis.
... Laser therapy is most successful in removing port-wine stains. It is the only method that can destroy the tiny blood vessels in the skin without causing much damage to the skin. The exact type ... on the person's age, skin type, and particular port-wine stain.
Regalado, Erik L; Rodríguez, María; Menéndez, Roberto; Concepción, Angel A; Nogueiras, Clara; Laguna, Abilio; Rodríguez, Armando A; Williams, David E; Lorenzo-Luaces, Patricia; Valdés, Olga; Hernandez, Yasnay
2009-01-01
Daily topical application of the aqueous ethanolic extract of the marine sea grass, Thalassia testudinum, on mice skin exposed to UVB radiation resulted in a dose-dependent recovery of the skin macroscopic alterations over a 6-day period. Maximal effect (90%) occurred at a dose of 240 microg/cm(2), with no additional effects at higher doses. Bioassay-guided fractionation of the plant extract resulted in the isolation of thalassiolin B (1). Topical application of 1 (240 microg/cm(2)) markedly reduces skin UVB-induced damage. In addition, thalassiolin B scavenged 2,2-diphenyl-2-picrylhydrazyl radical with an EC(50) = 100 microg/ml. These results suggest that thalassiolin B is responsible for the skin-regenerating effects of the crude extract of T. testudinum.
Ultrasound-induced cavitation damage to external epithelia of fish skin.
Frenkel, V; Kimmel, E; Iger, Y
1999-10-01
Transmission electron microscopy was used to show the effects of therapeutic ultrasound (< or = 1.0 W/cm2, 1 MHz) on the external epithelia of fish skin. Exposures of up to 90 s produced damage to 5 to 6 of the outermost layers. Negligible temperature elevations and lack of damage observed when using degassed water indicated that the effects were due to cavitation. The minimal intensity was determined for inducing cellular damage, where the extent and depth of damage to the tissues was correlated to the exposure duration. The results may be interpreted as a damage front, advancing slowly from the outer cells inward, presumably in association with the slow replacement of the perforated cell contents with the surrounding water. This study illustrates that a controlled level of microdamage may be induced to the outer layers of the tissues.
Pérez-Sánchez, Almudena; Barrajón-Catalán, Enrique; Herranz-López, María; Castillo, Julián; Micol, Vicente
2016-11-01
Solar ultraviolet (UV) radiation is one of the main causes of a variety of cutaneous disorders, including photoaging and skin cancer. Its UVB component (280-315nm) leads to oxidative stress and causes inflammation, DNA damage, p53 induction and lipid and protein oxidation. Recently, an increase in the use of plant polyphenols with antioxidant and anti-inflammatory properties has emerged to protect human skin against the deleterious effects of sunlight. This study evaluates the protective effects of lemon balm extract (LBE) (Melissa Officinalis, L) and its main phenolic compound rosmarinic acid (RA) against UVB-induced damage in human keratinocytes. The LBE composition was determined by HPLC analysis coupled to photodiode array detector and ion trap mass spectrometry with electrospray ionization (HPLC-DAD-ESI-IT-MS/MS). Cell survival, ROS generation and DNA damage were determined upon UVB irradiation in the presence of LBE. The melanogenic capacity of LBE was also determined. RA and salvianolic acid derivatives were the major compounds, but caffeic acid and luteolin glucuronide were also found in LBE. LBE and RA significantly increased the survival of human keratinocytes upon UVB radiation, but LBE showed a stronger effect. LBE significantly decreased UVB-induced intracellular ROS production. Moreover, LBE reduced UV-induced DNA damage and the DNA damage response (DDR), which were measured as DNA strand breaks in the comet assay and histone H2AX activation, respectively. Finally, LBE promoted melanogenesis in the cell model. These results suggest that LBE may be considered as a candidate for the development of oral/topical photoprotective ingredients against UVB-induced skin damage. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Take Action to Protect Your Skin from the Sun | Poster
Soaking up the sun’s rays may give you a great tan, but it may increase your risk of skin cancer in the future. This is especially true if, for example, you have lighter skin or a family history of skin cancer. Any change to the color of your skin indicates damage from ultraviolet (UV) rays, which can lead to skin cancer. According to the Centers for Disease Control (CDC),
[Forensic medical characteristic of the damages to the skin and clothes by plastic knives].
Finkel'shtein, V T
2016-01-01
The present study was designed to characterize the group and individual properties of plastic knives with special reference to the classification of the damages inflicted to the human skin and textile fabric by these weapons including multiblade ones. It was shown in experiment that repeated impacts through a barrier (textile fabric) lead to a partial destruction of the blade.
An Alternative Method of Evaluating 1540NM Exposure Laser Damage using an Optical Tissue Phantom
2006-11-01
experimentation at this wavelength. Most experiments have been done using Yucatan and Yorkshire pig skin since it is very similar to human skin. Alexei...3.82 Guinea Pig 9 3.0 Domestic Pig - (Lukashev) 5, 6 3.2 Yucatan Mini-Pig (Zohner) 22 6.1 Figure 5. Laser exposure damage (8.39 J/cm 2) to resin, viewed
Oxidative damage, skin aging, antioxidants and a novel antioxidant rating system.
Palmer, Debbie M; Kitchin, Jennifer Silverman
2010-01-01
It is believed that oxidative stress is caused by an imbalance between the production of reactive oxygen and a biological system's ability to neutralize the reactive intermediates. Oxidative damage occurs because of both intrinsic and extrinsic mechanisms. Together, intrinsic and extrinsic damage are the primary causes of skin aging. The skin uses a series of intrinsic antioxidants to protect itself from free radical damage. Naturally occurring extrinsic antioxidants have also been widely shown to offset and alleviate these changes. Unlike sunscreens, which have an SPF rating system to guide consumers in their purchases, there is no widely accepted method to choose antioxidant anti-aging products. ORAC (Oxygen Radical Absorbance Capacity) and ABEL-RAC (Analysis By Emitted Light-Relative Antioxidant Capacity), are both accepted worldwide as a standard measure of the antioxidant capacity of foods, and are rating systems that could be applied to all antioxidant skincare products. The standardization of antioxidant creams could revolutionize the cosmeceutical market and give physicians and consumers the ability to compare and choose effectively.
Rigo, Lucas Almeida; da Silva, Cássia Regina; de Oliveira, Sara Marchesan; Cabreira, Thaíssa Nunes; de Bona da Silva, Cristiane; Ferreira, Juliano; Beck, Ruy Carlos Ruver
2015-06-01
Excessive UV-B radiation by sunlight produces inflammatory and oxidative damage of skin, which can lead to sunburn, photoaging, and cancer. This study evaluated whether nanoencapsulation improves the protective effects of rice bran oil against UVB radiation-induced skin damage in mice. Lipid-core nanocapsules containing rice bran oil were prepared, and had mean size around 200 nm, negative zeta potential (∼-9 mV), and low polydispersity index (<0.20). In order to allow application on the skin, a hydrogel containing the nanoencapsulated rice bran oil was prepared. This formulation was able to prevent ear edema induced by UVB irradiation by 60 ± 9%, when compared with a hydrogel containing LNC prepared with a mixture of medium chain triglycerides instead of rice bran oil. Protein carbonylation levels (biomarker of oxidative stress) and NF-κB nuclear translocation (biomarker of pro-inflammatory and carcinogenesis response) were reduced (81% and 87%, respectively) in animals treated with the hydrogel containing the nanoencapsulated rice bran oil. These in vivo results demonstrate the beneficial effects of nanoencapsulation to improve the protective properties of rice bran oil on skin damage caused by UVB exposure. Copyright © 2015 Elsevier B.V. All rights reserved.
Blue light-induced oxidative stress in live skin.
Nakashima, Yuya; Ohta, Shigeo; Wolf, Alexander M
2017-07-01
Skin damage from exposure to sunlight induces aging-like changes in appearance and is attributed to the ultraviolet (UV) component of light. Photosensitized production of reactive oxygen species (ROS) by UVA light is widely accepted to contribute to skin damage and carcinogenesis, but visible light is thought not to do so. Using mice expressing redox-sensitive GFP to detect ROS, blue light could produce oxidative stress in live skin. Blue light induced oxidative stress preferentially in mitochondria, but green, red, far red or infrared light did not. Blue light-induced oxidative stress was also detected in cultured human keratinocytes, but the per photon efficacy was only 25% of UVA in human keratinocyte mitochondria, compared to 68% of UVA in mouse skin. Skin autofluorescence was reduced by blue light, suggesting flavins are the photosensitizer. Exposing human skin to the blue light contained in sunlight depressed flavin autofluorescence, demonstrating that the visible component of sunlight has a physiologically significant effect on human skin. The ROS produced by blue light is probably superoxide, but not singlet oxygen. These results suggest that blue light contributes to skin aging similar to UVA. Copyright © 2017 Elsevier Inc. All rights reserved.
UVA-UVB photoprotective activity of topical formulations containing Morinda citrifolia extract.
Serafini, Mairim Russo; Detoni, Cassia Britto; Menezes, Paula dos Passos; Pereira Filho, Rose Nely; Fortes, Vanessa Silveira; Vieira, Maria José Fonseca; Guterres, Sílvia Stanisçuaski; Cavalcanti de Albuquerque Junior, Ricardo Luiz; Araújo, Adriano Antunes de Souza
2014-01-01
Exposure to solar radiation, particularly its ultraviolet (UV) component, has a variety of harmful effects on human health. Some of these effects include sunburn cell formations, basal and squamous cell cancers, melanoma, cataracts, photoaging of the skin, and immune suppression. The beneficial photoprotective effects of topical formulations with the extract, Morinda citrifolia, have not been investigated. This present study aims to investigate the potential benefits of M. citrifolia topical application on the dorsal skin of mice, exposed to UVA-UVB light. Using 7 days of treatment, [before (baseline values) and 20 h after UV exposure], the thickness, skin barrier damage (TEWL), erythema, and histological alterations were evaluated. The results showed that the formulations containing the extract protected the skin against UV-induced damage.
Sanderson, Alicia R; Wu, Edward C; Liaw, Lih-Huei L; Garg, Rohit; Gangnes, Richard A
2014-02-01
The plasma skin regeneration (PSR) device delivers thermal energy to the skin by converting nitrogen gas to plasma. Prior to treatment, hydration of the skin is recommended as it is thought to limit the zone of thermal damage. However, there is limited data on optimal hydration time. This pilot study aims to determine the effect of topical anesthetic application time on the depth of thermal injury from a PSR device using histology. PSR (1.8 and 3.5 J) was performed after 0, 30, or 60 minutes of topical anesthetic application. Rhytidectomy was then performed and skin was fixed for histologic analysis. Four patients (two control and four treatment sites per patient) undergoing rhytidectomy were recruited for the study. Each patient served as his/her own control (no hydration). A scoring system for tissue injury was developed. Epidermal injury, the presence of vacuolization, blistering, damage to adnexal structures, and depth of dermal collagen changes were evaluated in over 1,400 high-power microscopy fields. There was a significant difference in the average thermal injury score, depth of thermal damage, and epidermal injury when comparing controls to 30 minutes of hydration (P = 0.012, 0.012, 0.017, respectively). There was no statistical difference between controls and 60 minutes of hydration or between 30 and 60 minutes of hydration. Epidermal vacuolization at low energy and patchy distribution of thermal injury was also observed. Topical hydration influences the amount of thermal damage when applied to skin for 30 minutes prior to treatment with the PSR device. There was a trend toward decreasing thermal damage at 60 minutes, and there was no difference between treatment for 30 or 60 minutes. The data suggest that application of topical anesthetic for a short period of time prior to treatment with the PSR device is cost-effective, safe, and may be clinically beneficial. © 2013 Wiley Periodicals, Inc.
Gamble, Ryan G; Asdigian, Nancy L; Aalborg, Jenny; Gonzalez, Victoria; Box, Neil F; Huff, Laura S; Barón, Anna E; Morelli, Joseph G; Mokrohisky, Stefan T; Crane, Lori A; Dellavalle, Robert P
2012-10-01
Ultraviolet (UV) photography has been used to motivate sun safety in behavioral interventions. The relationship between sun damage shown in UV photographs and melanoma risk has not been systematically investigated. To examine the relationship between severity of sun damage in UV photographs and phenotypic melanoma risk factors in children. UV, standard visible and cross-polarized photographs were recorded for 585 children. Computer software quantified sun damage. Full-body nevus counts, skin color by colorimetry, facial freckling, hair and eye color were collected in skin examinations. Demographic data were collected in telephone interviews of parents. Among 12-year-old children, sun damage shown in UV photographs correlated with phenotypic melanoma risk factors. Sun damage was greatest for children who were non-Hispanic white and those who had red hair, blue eyes, increased facial freckling, light skin and greater number of nevi (all P values < .001). Results were similar for standard visible and cross-polarized photographs. Freckling was the strongest predictor of sun damage in visible and UV photographs. All other phenotypic melanoma risk factors were also predictors for the UV photographs. Differences in software algorithms used to score the photographs could produce different results. UV photographs portray more sun damage in children with higher risk for melanoma based on phenotype. Therefore sun protection interventions targeting those with greater sun damage on UV photographs will target those at higher melanoma risk. This study establishes reference ranges dermatologists can use to assess sun damage in their pediatric patients. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
7 CFR 51.2657 - Serious damage.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Standards for Grades for Sweet Cherries 1 Definitions § 51.2657 Serious damage. Serious damage means any... healed; (d) Cracks which are not well healed; and, (e) Pulled stems with skin or flesh of cherry torn or...
7 CFR 51.2657 - Serious damage.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Standards for Grades for Sweet Cherries 1 Definitions § 51.2657 Serious damage. Serious damage means any... healed; (d) Cracks which are not well healed; and, (e) Pulled stems with skin or flesh of cherry torn or...
Reich, Hilary; Wallander, Irmina; Schulte, Lacie; Goodier, Molly; Zelickson, Brian
2016-01-01
Many over the counter topical products claim to reverse the signs of cutaneous photo-damage. To date, the two most studied ingredients for improving the texture, tone, and pigmentation of the skin are topical retinoids and hydroquinone. This split face study compares a mass market skincare regimen with a prescription skin care regimen for improvement in photo damaged skin. Twenty-seven subjects with moderate photo damaged facial skin were enrolled. Each subject was consented and assigned with the mass market anti-aging system (Treatment A) to one side of the face and the prescription anti-aging system (Treatment B or Treatment C) to the other side of the face. Treatment B contained 13 subjects whom did not use 0.025% Retinol cream. Treatment C contained 14 subjects who used a 0.025% Retinol Cream. Subjects had 4 visits over 12 weeks for digital photography and surveys. Photographs were evaluated by blinded physicians. Physician objective analysis showed all three systems to have a statistically significant clinical improvement in photoaged skin seen in as little as 4 weeks of use. Participant's surveys rated the mass market system higher than both of the professional systems for visible skin changes, ease of use, and likelihood to recommend to a friend. Twelve of twenty-seven subjects preferred the mass market system for overall improvement while twelve thought each system gave the same improvement. This study demonstrates that a mass marketed skin care system can give similar clinical improvements in photo-aged skin as a professionally dispensed prescription system and the majority of participants preferred the mass-marketed system.
The circadian clock controls sunburn apoptosis and erythema in mouse skin.
Gaddameedhi, Shobhan; Selby, Christopher P; Kemp, Michael G; Ye, Rui; Sancar, Aziz
2015-04-01
Epidemiological studies of humans and experimental studies with mouse models suggest that sunburn resulting from exposure to excessive UV light and damage to DNA confers an increased risk for melanoma and non-melanoma skin cancer. Previous reports have shown that both nucleotide excision repair, which is the sole pathway in humans for removing UV photoproducts, and DNA replication are regulated by the circadian clock in mouse skin. Furthermore, the timing of UV exposure during the circadian cycle has been shown to affect skin carcinogenesis in mice. Because sunburn and skin cancer are causally related, we investigated UV-induced sunburn apoptosis and erythema in mouse skin as a function of circadian time. Interestingly, we observed that sunburn apoptosis, inflammatory cytokine induction, and erythema were maximal following an acute early-morning exposure to UV and minimal following an afternoon exposure. Early-morning exposure to UV also produced maximal activation of ataxia telangiectasia mutated and Rad3-related (Atr)-mediated DNA damage checkpoint signaling, including activation of the tumor suppressor p53, which is known to control the process of sunburn apoptosis. These data provide early evidence that the circadian clock has an important role in the erythemal response in UV-irradiated skin. The early morning is when DNA repair is at a minimum, and thus the acute responses likely are associated with unrepaired DNA damage. The prior report that mice are more susceptible to skin cancer induction following chronic irradiation in the AM, when p53 levels are maximally induced, is discussed in terms of the mutational inactivation of p53 during chronic irradiation.
The Circadian Clock Controls Sunburn Apoptosis and Erythema in Mouse Skin
Gaddameedhi, Shobhan; Selby, Christopher P.; Kemp, Michael G.; Ye, Rui; Sancar, Aziz
2014-01-01
Epidemiological studies of humans and experimental studies with mouse models suggest that sunburn resulting from exposure to excessive UV light and damage to DNA confers an increased risk for melanoma and non-melanoma skin cancer. Previous reports have shown that both nucleotide excision repair, which is the sole pathway in humans for removing UV photoproducts, and DNA replication, are regulated by the circadian clock in mouse skin. Furthermore, the timing of UV exposure during the circadian cycle has been shown to affect skin carcinogenesis in mice. Because sunburn and skin cancer are causally related, we investigated UV-induced sunburn apoptosis and erythema in mouse skin as a function of circadian time. Interestingly, we observed that sunburn apoptosis, inflammatory cytokine induction, and erythema were maximal following an acute early morning exposure to UV and minimal following an afternoon exposure. Early morning exposure to UV also produced maximal activation of Atr-mediated DNA damage checkpoint signaling including activation of the tumor suppressor p53, which is known to control the process of sunburn apoptosis. To our knowledge these data provide the first evidence that the circadian clock plays an important role in the erythemal response in UV-irradiated skin. The early morning is when DNA repair is at a minimum, thus the acute responses likely are associated with unrepaired DNA damage. The prior report that mice are more susceptible to skin cancer induction following chronic irradiation in the AM, when p53 levels are maximally induced, is discussed in terms of the mutational inactivation of p53 during chronic irradiation. PMID:25431853
The involvement of galectin-3 in skin injury in systemic lupus erythematosus patients.
Shi, Z; Meng, Z; Han, Y; Cao, C; Tan, G; Wang, L
2018-04-01
Objective Our previous research suggested that anti-galectin-3 antibody was highly associated with the development of lupus skin lesions in systemic lupus erythematosus (SLE). In this study we aimed to investigate the involvement of galectin-3 in SLE skin damage. Methods The study consisted of 49 patients with SLE, 16 with dermatomyositis and 11 with systemic scleroderma and 20 healthy controls. Galectin-3 was examined by ELISA and immunohistochemical staining in serum and skin, respectively. Results Serum galectin-3 was significantly higher in patients with SLE than in those with dermatomyositis ( P < 0.01), systemic scleroderma ( P < 0.001) and healthy controls ( P < 0.001); however, it was comparable between SLE patients with and without skin lesions ( P = 0.2010 and was not correlated with cutaneous disease activity ( r = -0.020, P = 0.93) or damage score ( r = -0.380, P = 0.09). Galectin-3 expression was reduced in epidermis in lesional skin from patients with SLE, dermatomyositis and systemic scleroderma compared to healthy controls ( P = 0.0055), whereas it was comparable among diseases ( P > 0.05). As for subtypes of skin lesions in SLE, galectin-3 expression was lower in chronic cutaneous lupus erythematosus than in acute cutaneous lupus erythematosus ( P = 0.0439). Conclusion Serum galectin-3 is unlikely to play a role in the pathogenesis of lupus skin damage, but can be a potential biomarker for the measurement of SLE disease activity. Galectin-3 is greatly reduced in patients with lupus lesions compared with healthy controls, which may contribute to the recruitment of inflammatory cells in the skin.
Repair Mechanism of UV-damaged DNA in Xeroderma Pigmentosum | Center for Cancer Research
Xeroderma pigmentosum (XP) is a rare, inherited disorder characterized by extreme skin sensitivity to ultraviolet (UV) rays from sunlight. XP is caused by mutations in genes involved in nucleotide excision repair (NER) of damaged DNA. Normal cells are usually able to fix this damage before it leads to problems; however, the DNA damage is not repaired normally in patients with XP. As more abnormalities form in DNA, cells malfunction and eventually become cancerous or die. XP patients have more than a 10,000-fold increased risk of developing skin cancer. Kenneth Kraemer, M.D., in CCR’s Dermatology Branch, has been studying XP patients at the Clinical Center for more than 40 years.
7 CFR 52.3187 - Definitions and explanations of defects.
Code of Federal Regulations, 2013 CFR
2013-01-01
...-color” means a skin color different from characteristic black, blue-black, reddish-purple, or other characteristic skin color for the type. (b) Poor texture. “Poor texture” means porous, woody, or fibrous flesh or... not more than 1/2 inch in length. (d) Skin or flesh damage. “Skin or flesh damage” in the case of...
7 CFR 52.3187 - Definitions and explanations of defects.
Code of Federal Regulations, 2014 CFR
2014-01-01
...-color” means a skin color different from characteristic black, blue-black, reddish-purple, or other characteristic skin color for the type. (b) Poor texture. “Poor texture” means porous, woody, or fibrous flesh or... not more than 1/2 inch in length. (d) Skin or flesh damage. “Skin or flesh damage” in the case of...
Prens, Sebastiaan P; de Vries, Karin; Neumann, H A Martino; Prens, Errol P
2013-06-01
Actinic keratoses (AK) are premalignant lesions occurring mainly in sun-damaged skin. Current topical treatment options for AK and photo-damaged skin such as liquid nitrogen and electrosurgery are not suitable for field treatment. Otherwise, therapies suitable for field treatment bring along considerable patient discomfort. Non-ablative fractional resurfacing has emerged as a logical treatment option especially for field treatment of AK. To evaluate the clinical efficacy of fractional laser therapy for clearing AK and improving skin quality. To compare patient friendliness of the "fractional" therapy with those reported for other field treatment modalities. Ten patients with Fitzpatrick skin type I to III with multiple AK and extensive sun-damaged skin, received 5-10 sessions with a 4-week interval using a 1550 nm Erbium-Glass Fractionated laser (Sellas, Korea). Four weeks and 24 weeks after the last treatment the clinical results were evaluated by an independent physician. The mean degree of improvement, in terms of reduction in the number of AK and improvement of skin texture, was 54% on a 4 point PGA scale, and persisted for approximately 6 months. The biggest advantage of fractional laser treatment, besides the eradication of AK and a clear rejuvenation effect, is the absence of "downtime". Fractional non-ablative resurfacing induces significant reduction in the number of AK and improves the skin quality. Also all patients preferred fractional laser therapy above other AK treatment modalities.
Thompson, Benjamin C.; Halliday, Gary M.; Damian, Diona L.
2015-01-01
Arsenic-induced skin cancer is a significant global health burden. In areas with arsenic contamination of water sources, such as China, Pakistan, Myanmar, Cambodia and especially Bangladesh and West Bengal, large populations are at risk of arsenic-induced skin cancer. Arsenic acts as a co-carcinogen with ultraviolet (UV) radiation and affects DNA damage and repair. Nicotinamide (vitamin B3) reduces premalignant keratoses in sun-damaged skin, likely by prevention of UV-induced cellular energy depletion and enhancement of DNA repair. We investigated whether nicotinamide modifies DNA repair following exposure to UV radiation and sodium arsenite. HaCaT keratinocytes and ex vivo human skin were exposed to 2μM sodium arsenite and low dose (2J/cm2) solar-simulated UV, with and without nicotinamide supplementation. DNA photolesions in the form of 8-oxo-7,8-dihydro-2′-deoxyguanosine and cyclobutane pyrimidine dimers were detected by immunofluorescence. Arsenic exposure significantly increased levels of 8-oxo-7,8-dihydro-2′-deoxyguanosine in irradiated cells. Nicotinamide reduced both types of photolesions in HaCaT keratinocytes and in ex vivo human skin, likely by enhancing DNA repair. These results demonstrate a reduction of two different photolesions over time in two different models in UV and arsenic exposed cells. Nicotinamide is a nontoxic, inexpensive agent with potential for chemoprevention of arsenic induced skin cancer. PMID:25658450
Wild chrysanthemum extract prevents UVB radiation-induced acute cell death and photoaging.
Sun, Sujiao; Jiang, Ping; Su, Weiting; Xiang, Yang; Li, Jian; Zeng, Lin; Yang, Shuangjuan
2016-03-01
Wild chrysanthemum (Chrysanthemum indicum L.) is traditionally used in folk medicine as an anti-inflammatory agent. It is also used in the southwest plateau region of China to prevent ultraviolet-induced skin damage. However, the role and mechanism by which wild chrysanthemum prevents UV-induced skin damage and photoaging have never been investigated in vitro. In the present study, we found that aqueous extracts from wild chrysanthemum strongly reduced high-dose UVB-induced acute cell death of human immortalized keratinocytic HaCat cells. Wild chrysanthemum extract was also demonstrated to reduce low-dose UVB-induced expression of the photoaging-related matrix metalloproteinases MMP-2 and MMP-9. The ROS level elevated by UVB irradiation was strongly attenuated by wild chrysanthemum extract. Further study revealed that wild chrysanthemum extract reduced UVB-triggered ERK1/2 and p38 MAPK phosphorylation and their protective role, which is partially dependent on inhibiting p38 activation. These results suggest that wild chrysanthemum extract can protect the skin from UVB-induced acute skin damage and photoaging by reducing the intracellular reactive oxygen species (ROS) level and inhibiting p38 MAPK phosphorylation. The present study confirmed the protective role of wild chrysanthemum against UV-induced skin disorders in vitro and indicated the possible mechanism. Further study to identify the active components in wild chrysanthemum extract would be useful for developing new drugs for preventing and treating skin diseases, including skin cancer and photoaging, induced by UV irradiation.
Dachir, Shlomit; Cohen, Maayan; Kamus-Elimeleh, Dikla; Fishbine, Eliezer; Sahar, Rita; Gez, Rellie; Brandeis, Rachel; Horwitz, Vered; Kadar, Tamar
2012-01-01
Sulfur mustard induces severe acute and prolonged damage to the skin and only partially effective treatments are available. We have previously validated the use of hairless guinea pigs as an experimental model for skin lesions. The present study aimed to characterize a model of a deep dermal lesion and to compare it with the previously described superficial lesion. Clinical evaluation of the lesions was conducted using reflectance colorimetry, trans-epidermal water loss and wound area measurements. Prostaglandin E(2) content, matrix metalloproteinase-2 and 9 activity, and histopathology were conducted up to 4 weeks post-exposure. Sulfur mustard skin injury, including erythema and edema, impairment of skin barrier and wounds developed in a dose-dependent manner. Prostaglandin E(2) content and matrix metalloproteinase-2 and 9 activities were elevated during the wound development and the healing process. Histological evaluation revealed severe damage to the epidermis and deep dermis and vesications. At 4 weeks postexposure, healing was not completed: significantly impaired stratum corneum, absence of hair follicles, and epidermal hyperplasia were observed. These results confirm the use of the superficial and deep dermal skin injuries in the hairless guinea pigs as suitable models that can be utilized for the investigation of the pathological processes of acute as well as long-term injuries. These models will be further used to develop treatments to improve the healing process and prevent skin damage and long-term effects. © 2012 by the Wound Healing Society.
Protective effect of pomegranate derived products on UVB-mediated damage in human reconstituted skin
Afaq, Farrukh; Zaid, Mohammad Abu; Khan, Naghma; Dreher, Mark; Mukhtar, Hasan
2010-01-01
Solar ultraviolet (UV) radiation, particularly its UVB (290-320 nm) component, is the primary cause of many adverse biological effects including photoaging and skin cancer. UVB radiation causes DNA damage, protein oxidation and induces matrix metalloproteinases (MMPs). Photochemoprevention via the use of botanical antioxidants in affording protection to human skin against UVB damage is receiving increasing attention. Pomegranate, from the tree Punica granatum contains anthocyanins and hydrolyzable tannins and possesses strong anti-oxidant and anti-tumor promoting properties. In this study, we determined the effect of pomegranate derived products POMx juice, POMx extract and pomegranate oil (POMo) against UVB-mediated damage using reconstituted human skin (EpiDerm™ FT-200). EpiDerm was treated with POMx juice (1-2 μl/0.1 ml/well), POMx extract (5-10 μg/0.1 ml/well), and POMo (1-2 μl/0.1 ml/well) for 1 h prior to UVB (60 mJ/cm2) irradiation and was harvested 12 h post-UVB to assess protein oxidation, markers of DNA damage and photoaging by western blot analysis and immunohistochemistry. Pretreatment of Epiderm with pomegranate derived products resulted in inhibition of UVB-induced (i) cyclobutane pyrimidine dimers, (ii) 8-dihydro-2′-deoxyguanosine, (iii) protein oxidation, and (iv) PCNA protein expression. We also found that pretreatment of Epiderm with pomegranate derived products resulted in inhibition of UVB-induced (i) collagenase (MMP-1), (ii) gelatinase (MMP-2, MMP-9), (iii) stromelysin (MMP-3), (iv) marilysin (MMP-7), (v) elastase (MMP-12), and (vi) tropoelastin. Gelatin zymography revealed that pomegranate derived products inhibited UVB-induced MMP-2 and MMP-9 activities. Pomegranate derived products also caused a decrease in UVB-induced protein expression of c-Fos and phosphorylation of c-Jun. Collectively, these results suggest that all three pomegranate derived products may be useful against UVB-induced damage to human skin. PMID:19320737
Signaling pathways targeted by curcumin in acute and chronic injury: burns and photo-damaged skin.
Heng, Madalene C Y
2013-05-01
Phosphorylase kinase (PhK) is a unique enzyme in which the spatial arrangements of the specificity determinants can be manipulated to allow the enzyme to recognize substrates of different specificities. In this way, PhK is capable of transferring high energy phosphate bonds from ATP to serine/threonine and tyrosine moieties in serine/threonine kinases and tyrosine kinases, thus playing a key role in the activation of multiple signaling pathways. Phosphorylase kinase is released within five minutes following injury and is responsible for activating inflammatory pathways in injury-activated scarring following burns. In photo-damaged skin, PhK plays an important role in promoting photocarcinogenesis through activation of NF-kB-dependent signaling pathways with inhibition of apoptosis of photo-damaged cells, thus promoting the survival of precancerous cells and allowing for subsequent tumor transformation. Curcumin, the active ingredient in the spice, turmeric, is a selective and non-competitive PhK inhibitor. By inhibition of PhK, curcumin targets multiple PhK-dependent pathways, with salutary effects on a number of skin diseases induced by injury. In this paper, we show that curcumin gel produces rapid healing of burns, with little or no residual scarring. Curcumin gel is also beneficial in the repair of photo-damaged skin, including pigmentary changes, solar elastosis, thinning of the skin with telangiectasia (actinic poikiloderma), and premalignant lesions such as actinic keratoses, dysplastic nevi, and advanced solar lentigines, but the repair process takes many months. © 2012 The International Society of Dermatology.
Porcine skin damage thresholds for pulsed nanosecond-scale laser exposure at 1064-nm
NASA Astrophysics Data System (ADS)
DeLisi, Michael P.; Peterson, Amanda M.; Noojin, Gary D.; Shingledecker, Aurora D.; Tijerina, Amanda J.; Boretsky, Adam R.; Schmidt, Morgan S.; Kumru, Semih S.; Thomas, Robert J.
2018-02-01
Pulsed high-energy lasers operating in the near-infrared (NIR) band are increasingly being used in medical, industrial, and military applications, but there are little available experimental data to characterize their hazardous effects on skin tissue. The current American National Standard for the Safe Use of Lasers (ANSI Z136.1-2014) defines the maximum permissible exposure (MPE) on the skin as either a single-pulse or total exposure time limit. This study determined the minimum visible lesion (MVL) damage thresholds in Yucatan miniature pig skin for the single-pulse case and several multiple-pulse cases over a wide range of pulse repetition frequencies (PRFs) (10, 125, 2,000, and 10,000 Hz) utilizing nanosecond-scale pulses (10 or 60 ns). The thresholds are expressed in terms of the median effective dose (ED50) based on varying individual pulse energy with other laser parameters held constant. The results confirm a decrease in MVL threshold as PRF increases for exposures with a constant number of pulses, while also noting a PRF-dependent change in the threshold as a function of the number of pulses. Furthermore, this study highlights a change in damage mechanism to the skin from melanin-mediated photomechanical events at high irradiance levels and few numbers of pulses to bulk tissue photothermal additivity at lower irradiance levels and greater numbers of pulses. The observed trends exceeded the existing exposure limits by an average factor of 9.1 in the photothermally-damaged cases and 3.6 in the photomechanicallydamaged cases.
Phytoconstituents as photoprotective novel cosmetic formulations
Saraf, S.; Kaur, C. D.
2010-01-01
Phytoconstituents are gaining popularity as ingredients in cosmetic formulations as they can protect the skin against exogenous and endogenous harmful agents and can help remedy many skin conditions. Exposure of skin to sunlight and other atmospheric conditions causes the production of reactive oxygen species, which can react with DNA, proteins, and fatty acids, causing oxidative damage and impairment of antioxidant system. Such injuries damage regulation pathways of skin and lead to photoaging and skin cancer development. The effects of aging include wrinkles, roughness, appearance of fine lines, lack of elasticity, and de- or hyperpigmentation marks. Herbal extracts act on these areas and produce healing, softening, rejuvenating, and sunscreen effects. We have selected a few photoprotective phytoconstituents, such as curcumin, resveratrol, tea polyphenols, silymarin, quercetin and ascorbic acid, and have discussed the considerations to be undertaken for the development of herbal cosmetic formulations that could reduce the occurrence of skin cancer and delay the process of photoaging. This article is aimed at providing specific and compiled knowledge for the successful preparation of photoprotective herbal cosmetic formulations. PMID:22228936
Tunnell, James W; Chang, David W; Johnston, Carol; Torres, Jorge H; Patrick, Charles W; Miller, Michael J; Thomsen, Sharon L; Anvari, Bahman
2003-06-01
Increasing radiant exposure offers a means to increase treatment efficacy during laser-mediated treatment of vascular lesions, such as port-wine stains; however, excessive radiant exposure decreases selective vascular injury due to increased heat generation within the epidermis and collateral damage to perivascular collagen. To determine if cryogen spray cooling could be used to maintain selective vascular injury (ie, prevent epidermal and perivascular collagen damage) when using high radiant exposures (16-30 J/cm2). Observational study. Academic hospital and research laboratory. Twenty women with normal abdominal skin (skin phototypes I-VI). Skin was irradiated with a pulsed dye laser (wavelength = 585 nm; pulse duration = 1.5 milliseconds; 5-mm-diameter spot) using various radiant exposures (8-30 J/cm2) without and with cryogen spray cooling (50- to 300-millisecond cryogen spurts). Hematoxylin-eosin-stained histologic sections from each irradiated site were examined for the degree of epidermal damage, maximum depth of red blood cell coagulation, and percentage of vessels containing perivascular collagen coagulation. Long cryogen spurt durations (>200 milliseconds) protected the epidermis in light-skinned individuals (skin phototypes I-IV) at the highest radiant exposure (30 J/cm2); however, epidermal protection could not be achieved in dark-skinned individuals (skin phototypes V-VI) even at the lowest radiant exposure (8 J/cm2). The red blood cell coagulation depth increased with increasing radiant exposure (to >2.5 mm for skin phototypes I-IV and to approximately 1.2 mm for skin phototypes V-VI). In addition, long cryogen spurt durations (>200 milliseconds) prevented perivascular collagen coagulation in all skin types. Cryogen spurt durations much longer than those currently used in therapy (>200 milliseconds) may be clinically useful for protecting the epidermis and perivascular tissues when using high radiant exposures during cutaneous laser therapies. Additional studies are necessary to prove clinical safety of these protocols.
NASA Technical Reports Server (NTRS)
Lowry, D. W.; Rich, M. J.
1983-01-01
The installation of a composite skin panel on the cargo ramp of a CH-530 marine helicopter is discussed. The composite material is of Kevlar/Epoxy (K/E) which replaces aluminum outer skins on the aft two bays of the ramp. The cargo ramp aft region was selected as being a helicopter airframe surface subjected to possible significant field damage and would permit an evaluation of the long term durability of the composite skin panel. A structural analysis was performed and the skin shears determined. Single lap joints of K/E riveted to aluminum were statically tested. The joint tests were used to determine bearing allowables and the required K/E skin gage. The K/E skin panels riveted to aluminum edge members were tested in a shear fixture to confirm the allowable shear and bearing strengths. Impact tests were conducted on aluminum skin panels to determine energy level and damage relationship. The K/E skin panels of various ply orientations and laminate thicknesses were then impacted at similar energy levels. The results of the analysis and tests were used to determine the required K/E skin gages in each of the end two bays of the ramp.
Failure mechanisms of laminates transversely loaded by bolt push-through
NASA Technical Reports Server (NTRS)
Waters, W. A., Jr.; Williams, J. G.
1985-01-01
Stiffened composite panels proposed for fuselage and wing design utilize a variety of stiffener-to-skin attachment concepts including mechanical fasteners. The attachment concept is an important factor influencing the panel's strength and can govern its performance following local damage. Mechanical fasteners can be an effective method for preventing stiffener-skin separation. One potential failure mode for bolted panels occurs when the bolts pull through the stiffener attachment flange or skin. The resulting loss of support by the skin to the stiffener and by the stiffener to the skin can result in local buckling and subsequent panel collapse. The characteristic failure modes associated with bolt push-through failure are described and the results of a parametric study of the effects that different material systems, boundary conditions, and laminates have on the forces and displacements required to cause damage and bolt pushthrough failure are presented.
Photodecomposition and Phototoxicity of Natural Retinoids
Tolleson, William H.; Cherng, Shui-Hui; Xia, Qingsu; Boudreau, Mary; Yin, Jun Jie; Wamer, Wayne G.; Howard, Paul C.; Yu, Hongtao; Fu, Peter P.
2005-01-01
Sunlight is a known human carcinogen. Many cosmetics contain retinoid-based compounds, such as retinyl palmitate (RP), either to protect the skin or to stimulate skin responses that will correct skin damaged by sunlight. However, little is known about the photodecomposition of some retinoids and the toxicity of these retinoids and their sunlight-induced photodecomposition products on skin. Thus, studies are required to test whether topical application of retinoids enhances the phototoxicity and photocarcinogenicity of sunlight and UV light. Mechanistic studies are needed to provide insight into the disposition of retinoids in vitro and on the skin, and to test thoroughly whether genotoxic damage by UV-induced radicals may participate in any toxicity of topically applied retinoids in the presence of UV light. This paper reports the update information and our experimental results on photostability, photoreactions, and phototoxicity of the natural retinoids including retinol (ROH), retinal, retinoid acid (RA), retinyl acetate, and RP (Figure 1). PMID:16705812
Burns, Erin M; Tober, Kathleen L; Riggenbach, Judith A; Kusewitt, Donna F; Young, Gregory S; Oberyszyn, Tatiana M
2013-01-01
Because of the ever-increasing incidence of ultraviolet light B (UVB)-induced skin cancer, considerable attention is being paid to prevention through the use of both sunscreens and after sun treatments, many of which contain antioxidants. Vitamin E is included as an antioxidant in many sunscreens and lotions currently on the market. Studies examining the efficacy of vitamin E as a topical preventative agent for UVB-induced skin cancer have yielded conflicting results. A likely contributor to differences in study outcome is the stability of vitamin E in the particular formulation being tested. In the current study we examined the effects of topical vitamin E alone as well as vitamin E combined with vitamin C and ferulic acid in a more stable topical formula (C E Ferulic®). Mice were exposed to UVB for 10 weeks in order to induce skin damage. Then, before the appearance of any cutaneous lesions, mice were treated for 15 weeks with a topical antioxidant, without any further UVB exposure. We found that topical C E Ferulic decreased tumor number and tumor burden and prevented the development of malignant skin tumors in female mice with chronically UVB-damaged skin. In contrast, female mice chronically exposed to UVB and treated topically with vitamin E alone showed a trend towards increased tumor growth rate and exhibited increased levels of overall DNA damage, cutaneous proliferation, and angiogenesis compared to vehicle-treated mice. Thus, we have demonstrated that topical 5% alpha tocopherol may actually promote carcinogenesis when applied on chronically UVB-damaged skin while treating with a more stable antioxidant compound may offer therapeutic benefits.
Koehler, Martin Johannes; Preller, Anja; Kindler, Nadja; Elsner, Peter; König, Karsten; Bückle, Rainer; Kaatz, Martin
2009-08-01
Skin aging is accelerated by extrinsic factors, particularly actinic damage. Over the last decades, both clinical and pathological differences between intrinsic and actinic aging have been characterized. In this work, we aimed at quantifying skin aging by non-invasive in vivo methods. Young healthy volunteers using indoor tanning facilities and aged people were compared with appropriate controls by measurements of skin elasticity with the Cutometer and the Reviscometer and by semi-quantitative evaluation of the dermal matrix composition by the multiphoton laser tomograph DermaInspect. We found differences between the sun-protected volar forearm and the dorsal side as well as between young and old test persons with all three methods. No significant differences were found between the skin of indoor-tanned test persons and control. Also, gender had no influence on the severity of skin aging. The most consistent results were obtained with the DermaInspect. The considerable inter-individual variation due to the cross-sectional design of the study may have disguised the factual skin damage caused by tanning beds.
Ben Khedir, S; Moalla, D; Jardak, N; Mzid, M; Sahnoun, Z; Rebai, T
2016-10-01
We investigated the efficacy of Pistacia lentiscus fruit oil (PLFO) for protecting human skin from damage due to oxidative stress. PLFO contains natural antioxidants including polyphenols, sterols and tocopherols. We compared the antioxidant potential of PLFO with extra virgin olive oil (EVOO). Explants of healthy adult human skin were grown in culture with either PLFO or EVOO before adding hydrogen peroxide (H 2 O 2 ). We also used cultured skin explants to investigate the effects of PLFO on lipid oxidation and depletion of endogenous antioxidant defense enzymes including glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) one day after 2 h exposure to H 2 O 2 . We found that PLFO scavenged radicals and protected skin against oxidative injury. PLFO exhibited greater antioxidant and free radical scavenging activity than EVOO. Skin explants treated with PLFO inhibited H 2 O 2 induced MDA formation by inhibition of lipid oxidation. In addition, the oil inhibited H 2 O 2 induced depletion of antioxidant defense enzymes including GPx, SOD and CAT. We found that treatment with PLFO repaired skin damage owing to its antioxidant properties.
Confocal laser scanning microscopy to estimate nanoparticles' human skin penetration in vitro.
Zou, Ying; Celli, Anna; Zhu, Hanjiang; Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard
2017-01-01
With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human "viable" epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested.
FEM simulation of single beard hair cutting with foil-blade-shaving system.
Fang, Gang; Köppl, Alois
2015-06-01
The performance of dry-shavers depends on the interaction of the shaving components, hair and skin. Finite element models on the ABAQUS/Explicit platform are established to simulate the process of beard hair cutting. The skin is modelled as three-layer structure with a single cylindrical hair inserted into the skin. The material properties of skin are considered as Neo-Hookean hyper-elastic (epidermis) and Prony visco-elastic (dermis and hypodermis) with finite deformations. The hair is modelled as elastic-plastic material with shear damage. The cutting system is composed of a blade and a foil of shaver. The simulation results of cutting processes are analyzed, including the skin compression, hair bending, hair cutting and hair severance. Calculations of cutting loads, skin stress, and hair damage show the impact of clearance, skin bulge height, blade dimension and shape on cutting results. The details show the build-up of finite element models for hair cutting, and highlight the challenges arising during model construction and numerical simulation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Eastern, J S; Martin, S
1980-12-01
Solitary plaques developed on the sun-exposed and damaged skin of five elderly, fair-skinned individuals. The lesions, erythematous to bluish confluent nodules and plaques with a cribriform appearance and comedone-like structures, presented a distinctive histologic picture of dilated, keratin-filled follicles within a matrix of amorphous, damaged collagen. We believe these cases demonstrate a distinct entity within the realm of actinic dermatoses, for which the name "actinic comedonal plaque" seems appropriate.
Skin protection against UV light by dietary antioxidants.
Fernández-García, Elisabet
2014-09-01
There is considerable interest in the concept of additional endogenous photoprotection by dietary antioxidants. A number of efficient micronutrients are capable of contributing to the prevention of UV damage in humans. These compounds protect molecular targets by scavenging reactive oxygen species, including excited singlet oxygen and triplet state molecules, and also modulate stress-dependent signaling and/or suppress cellular and tissue responses like inflammation. Micronutrients present in the diet such as carotenoids, vitamins E and C, and polyphenols contribute to antioxidant defense and may also contribute to endogenous photoprotection. This review summarizes the literature concerning the use of dietary antioxidants as systemic photoprotective agents towards skin damage induced by UVA and UVB. Intervention studies in humans with carotenoid-rich diets have shown photoprotection. Interestingly, rather long treatment periods (a minimum of 10 weeks) were required to achieve this effect. Likewise, dietary carotenoids exert their protective antioxidant function in several in vitro and in vivo studies when present at sufficiently high concentration. A combination of vitamins E and C protects the skin against UV damage. It is suggested that daily consumption of dietary polyphenols may provide efficient protection against the harmful effects of solar UV radiation in humans. Furthermore, the use of these micronutrients in combination may provide an effective strategy for protecting human skin from damage by UV exposure.
Bates-Jensen, Barbara M; McCreath, Heather E; Nakagami, Gojiro; Patlan, Anabel
2018-04-01
We examined subepidermal moisture (SEM) and visual skin assessment of heel pressure injury (PrI) among 417 nursing home residents in 19 facilities over 16 weeks. Participants were older (mean age 77 years), 58% were female, over half were ethnic minorities (29% African American, 12% Asian American, 21% Hispanic), and at risk for PrI (mean Braden Scale Risk score = 15.6). Blinded concurrent visual assessments and SEM measurements were obtained at heels weekly. Visual skin damage was categorised as normal, erythema, stage 1 PrI, deep tissue injury (DTI) or stage 2 or greater PrI. PrI incidence was 76%. Off-loading occurred with pillows (76% of residents) rather than heel boots (21%) and often for those with DTI (91%). Subepidermal moisture was measured with a device where higher readings indicate greater moisture (range: 0-70 tissue dielectric constant), with normal skin values significantly different from values in the presence of skin damage. Subepidermal moisture was associated with concurrent damage and damage 1 week later in generalised multinomial logistic models adjusting for age, diabetes and function. Subepidermal moisture detected DTI and differentiated those that resolved, remained and deteriorated over 16 weeks. Subepidermal moisture may be an objective method for detecting PrI. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
7 CFR 52.3188 - Work sheet for dried prunes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... fermentation, scars, heat damage, insect injury, other means, mold, dirt, foreign material, insect infestation... fermentation, scars, heat damage, insect injury, other means, mold, dirt, foreign material, insect infestation, decay 10 percent 2 Skin or flesh damage, 3 fermentation, scars, heat damage, insect injury, other means...
Prevention of UV-induced skin damages by 11,14,17-eicosatrienoic acid in hairless mice in vivo.
Jin, Xing-Ji; Kim, Eun Ju; Oh, In Kyung; Kim, Yeon Kyung; Park, Chi-Hyun; Chung, Jin Ho
2010-06-01
Polyunsaturated fatty acids (PUFAs) are known to play important roles in various physiological and pathological processes. Recent studies have shown that some omega-3 (omega-3) PUFAs, such as eicosapentaenoic acid (EPA) and dodecahexaenoic acid (DHA), have protective effects on acute and chronic UV-induced changes. However, the effects of other omega-3 PUFAs including 11,14,17-eicosatrienoic acid (20:3) (ETA) on UV-induced skin damages are poorly understood. In this study, we investigated the cutaneous photoprotective effects of ETA in hairless mice in vivo. Female HR-1 hairless mice were topically treated with vehicle (ethanol:polyethylene glycol=30:70) only, 0.1% ETA, or 1% ETA once a day for 3 successive days after one time UV irradiation (200 mJ/cm(2)) on dorsal skins. Skin biopsy was carried out on the fourth day (72 hr after UV irradiation). We found that topical treatment with ETA attenuated UV-induced epidermal and dermal thickness and infiltration of inflammatory cells, and impairment of skin barrier function. In addition, ETA suppressed the expression of IL-1beta, COX-2, and MMP-13 induced by UV irradiation. Our results show that the topical application of ETA protects against UV-induced skin damage in hairless mice and suggest that ETA can be a potential agent for preventing and/or treating UV-induced inflammation and photoaging.
Topical Steroid Damaged/Dependent Face (TSDF): An Entity of Cutaneous Pharmacodependence
Lahiri, Koushik; Coondoo, Arijit
2016-01-01
Topical Steroid Damaged/Dependent face (TSDF) is a phenomenon which has been described very recently (2008). It is characterized by a plethora of symptoms caused by an usually unsupervised misuse/abuse/overuse of topical corticosteroid of any potency on the face over an unspecified and/or prolonged period of time. This misuse and damage have a serious effect on the quality of life of the patients in general and the skin of the face in particular. Management is difficult and necessitates psychological counseling as well as physical soothing of the sensitive skin. PMID:27293246
... Marks Sun-damaged Skin Tattoo Removal Varicose Veins Vitiligo Wrinkles Back Skin Treatments Back Ambulatory Phlebectomy Blepharoplasty ... Micropigmentation Back Migropigmentation for Burn Scars Migropigmentation for Vitiligo Back Microwave Thermolysis for Excessive Sweating Mohs Surgery ...
Composite transport wing technology development
NASA Technical Reports Server (NTRS)
Madan, Ram C.
1988-01-01
The design, fabrication, testing, and analysis of stiffened wing cover panels to assess damage tolerance criteria are discussed. The damage tolerance improvements were demonstrated in a test program using full-sized cover panel subcomponents. The panels utilized a hard skin concept with identical laminates of 44-percent 0-degree, 44-percent plus or minus 45-degree, and 12-percent 90-degree plies in the skins and stiffeners. The panel skins were impacted at midbay between the stiffeners, directly over the stiffener, and over the stiffener flange edge. The stiffener blades were impacted laterally. Impact energy levels of 100 ft-lb and 200 ft-lb were used. NASTRAN finite-element analyses were performed to simulate the nonvisible damage that was detected in the panels by nondestructive inspection. A closed-form solution for generalized loading was developed to evaluate the peel stresses in the bonded structure. Two-dimensional delamination growth analysis was developed using the principle of minimum potential energy in terms of closed-form solution for critical strain. An analysis was conducted to determine the residual compressive stress in the panels after impact damage, and the analytical predictions were verified by compression testing of the damaged panels.
Electro-gene transfer to skin using a noninvasive multielectrode array
Guo, Siqi; Donate, Amy; Basu, Gaurav; Lundberg, Cathryn; Heller, Loree; Heller, Richard
2011-01-01
Because of its large surface area and easy access for both delivery and monitoring, the skin is an attractive target for gene therapy for cutaneous diseases, vaccinations and several metabolic disorders. The critical factors for DNA delivery to the skin by electroporation (EP) are effective expression levels and minimal or no tissue damage. Here, we evaluated the non-invasive multielectrode array (MEA) for gene electrotransfer. For these studies we utilized a guinea pig model, which has been shown to have a similar thickness and structure to human skin. Our results demonstrate significantly increased gene expression 2 to 3 logs above injection of plasmid DNA alone over 15 days. Furthermore, gene expression could be enhanced by increasing the size of the treatment area. Transgene expressing cells were observed exclusively in the epidermal layer of the skin. In contrast to caliper or plate electrodes, skin EP with the MEA greatly reduced muscle twitching and resulted in minimal and completely recoverable skin damage. These results suggest EP with the MEA can be an efficient and non-invasive skin delivery method with less adverse side effects than other EP delivery systems and promising clinical applications. PMID:21262290
Impact damage resistance of composite fuselage structure, part 2
NASA Technical Reports Server (NTRS)
Dost, Ernest F.; Finn, Scott R.; Murphy, Daniel P.; Huisken, Amy B.
1993-01-01
The strength of laminated composite materials may be significantly reduced by foreign object impact induced damage. An understanding of the damage state is required in order to predict the behavior of structure under operational loads or to optimize the structural configuration. Types of damage typically induced in laminated materials during an impact event include transverse matrix cracking, delamination, and/or fiber breakage. The details of the damage state and its influence on structural behavior depend on the location of the impact. Damage in the skin may act as a soft inclusion or affect panel stability, while damage occurring over a stiffener may include debonding of the stiffener flange from the skin. An experiment to characterize impact damage resistance of fuselage structure as a function of structural configuration and impact threat was performed. A wide range of variables associated with aircraft fuselage structure such as material type and stiffener geometry (termed, intrinsic variables) and variables related to the operating environment such as impactor mass and diameter (termed, extrinsic variables) were studied using a statistically based design-of-experiments technique. The experimental design resulted in thirty-two different 3-stiffener panels. These configured panels were impacted in various locations with a number of impactor configurations, weights, and energies. The results obtained from an examination of impacts in the skin midbay and hail simulation impacts are documented. The current discussion is a continuation of that work with a focus on nondiscrete characterization of the midbay hail simulation impacts and discrete characterization of impact damage for impacts over the stiffener.
UVA-UVB Photoprotective Activity of Topical Formulations Containing Morinda citrifolia Extract
Serafini, Mairim Russo; Detoni, Cassia Britto; Menezes, Paula dos Passos; Pereira Filho, Rose Nely; Fortes, Vanessa Silveira; Vieira, Maria José Fonseca; Guterres, Sílvia Stanisçuaski; de Albuquerque Junior, Ricardo Luiz Cavalcanti; Araújo, Adriano Antunes de Souza
2014-01-01
Exposure to solar radiation, particularly its ultraviolet (UV) component, has a variety of harmful effects on human health. Some of these effects include sunburn cell formations, basal and squamous cell cancers, melanoma, cataracts, photoaging of the skin, and immune suppression. The beneficial photoprotective effects of topical formulations with the extract, Morinda citrifolia, have not been investigated. This present study aims to investigate the potential benefits of M. citrifolia topical application on the dorsal skin of mice, exposed to UVA-UVB light. Using 7 days of treatment, [before (baseline values) and 20 h after UV exposure], the thickness, skin barrier damage (TEWL), erythema, and histological alterations were evaluated. The results showed that the formulations containing the extract protected the skin against UV-induced damage. PMID:25133171
An Overview of Ultraviolet B Radiation-Induced Skin Cancer Chemoprevention by Silibinin.
Kumar, Rahul; Deep, Gagan; Agarwal, Rajesh
2015-06-01
Skin cancer incidences are rising worldwide, and one of the major causative factors is excessive exposure to solar ultraviolet radiation (UVR). Annually, ~5 million skin cancer patients are treated in United States, mostly with nonmelanoma skin cancer (NMSC), which is also frequent in other Western countries. As sunscreens do not provide adequate protection against deleterious effects of UVR, additional and alternative chemoprevention strategies are urgently needed to reduce skin cancer burden. Over the last couple of decades, extensive research has been conducted to understand the molecular basis of skin carcinogenesis, and to identifying novel agents which could be useful in the chemoprevention of skin cancer. In this regard, several natural non-toxic compounds have shown promising efficacy in preventing skin carcinogenesis at initiation, promotion and progression stages, and are considered important in better management of skin cancer. Consistent with this, we and others have studied and established the notable efficacy of natural flavonolignan silibinin against UVB-induced skin carcinogenesis. Extensive pre-clinical animal and cell culture studies report strong anti-inflammatory, anti-oxidant, DNA damage repair, immune-modulatory and anti-proliferative properties of silibinin. Molecular studies have identified that silibinin targets pleotropic signaling pathways including mitogenic, cell cycle, apoptosis, autophagy, p53, NF-κB, etc. Overall, the skin cancer chemopreventive potential of silibinin is well supported by comprehensive mechanistic studies, suggesting its greater use against UV-induced cellular damages and photocarcinogenesis.
An Overview of Ultraviolet B Radiation-Induced Skin Cancer Chemoprevention by Silibinin
Kumar, Rahul; Deep, Gagan; Agarwal, Rajesh
2015-01-01
Skin cancer incidences are rising worldwide, and one of the major causative factors is excessive exposure to solar ultraviolet radiation (UVR). Annually, ~5 million skin cancer patients are treated in United States, mostly with nonmelanoma skin cancer (NMSC), which is also frequent in other Western countries. As sunscreens do not provide adequate protection against deleterious effects of UVR, additional and alternative chemoprevention strategies are urgently needed to reduce skin cancer burden. Over the last couple of decades, extensive research has been conducted to understand the molecular basis of skin carcinogenesis, and to identifying novel agents which could be useful in the chemoprevention of skin cancer. In this regard, several natural non-toxic compounds have shown promising efficacy in preventing skin carcinogenesis at initiation, promotion and progression stages, and are considered important in better management of skin cancer. Consistent with this, we and others have studied and established the notable efficacy of natural flavonolignan silibinin against UVB-induced skin carcinogenesis. Extensive pre-clinical animal and cell culture studies report strong anti-inflammatory, anti-oxidant, DNA damage repair, immune-modulatory and anti-proliferative properties of silibinin. Molecular studies have identified that silibinin targets pleotropic signaling pathways including mitogenic, cell cycle, apoptosis, autophagy, p53, NF-κB, etc. Overall, the skin cancer chemopreventive potential of silibinin is well supported by comprehensive mechanistic studies, suggesting its greater use against UV-induced cellular damages and photocarcinogenesis. PMID:26097804
... boil is an infection that affects groups of hair follicles and nearby skin tissue. Related conditions include: Carbunculosis ... found on the skin's surface. Damage to the hair follicle allows the infection to grow deeper into the ...
78 FR 38546 - Airworthiness Directives; Bell Helicopter Textron Canada Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
... damage. This AD was prompted by a stress analysis of the tailboom skin that revealed that high-stress... that a stress analysis of the chemically milled tailboom skin ``revealed a possibility of skin cracking due to high stress concentration areas.'' Transport Canada advises that this condition, if not...
Beliefs and Intentions for Skin Protection and UV Exposure in Young Adults
ERIC Educational Resources Information Center
Heckman, Carolyn J.; Manne, Sharon L.; Kloss, Jacqueline D.; Bass, Sarah Bauerle; Collins, Bradley; Lessin, Stuart R.
2011-01-01
Objective: To evaluate Fishbein's integrative model in predicting young adults' skin protection, sun exposure, and indoor tanning intentions. Methods: Two hundred twelve participants completed an online survey. Results: Damage distress, self-efficacy, and perceived control accounted for 34% of the variance in skin protection intentions. Outcome…
An immunohistochemical panel to assess ultraviolet radiation-associated oxidative skin injury.
Mamalis, A; Fiadorchanka, N; Adams, L; Serravallo, M; Heilman, E; Siegel, D; Brody, N; Jagdeo, J
2014-05-01
Ultraviolet (UV) radiation results in a significant loss in years of healthy life, approximately 1.5 million disability-adjusted life years (DALYs), and is associated with greater than 60,000 deaths annually worldwide that are attributed to melanoma and other skin cancers. Currently, there are no standardized biomarkers or assay panels to assess oxidative stress skin injury patterns in human skin exposed to ionizing radiation. Using biopsy specimens from chronic solar UV-exposed and UV-protected skin, we demonstrate that UV radiation-induced oxidative skin injury can be evaluated by an immunohistochemical panel that stains 8-hydroxydeoxyguanosine (8-OH-dG) to assess DNA adducts, 4-hydroxy-2-nonenal (HNE) to assess lipid peroxidation, and advanced glycation end products (AGEs) to assess protein damage. We believe this panel contains the necessary cellular biomarkers to evaluate topical agents, such as sunscreens and anti-oxidants that are designed to prevent oxidative skin damage and may reduce UV-associated skin aging, carcinogenesis, and inflammatory skin diseases. We envision that this panel will become an important tool for researchers developing topical agents to protect against UV radiation and other oxidants and ultimately lead to reductions in lost years of healthy life, DALYs, and annual deaths associated with UV radiation.
Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes.
Liebel, Frank; Kaur, Simarna; Ruvolo, Eduardo; Kollias, Nikiforos; Southall, Michael D
2012-07-01
Daily skin exposure to solar radiation causes cells to produce reactive oxygen species (ROS), which are a primary factor in skin damage. Although the contribution of the UV component to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology. Solar radiation comprises <10% of UV, and thus the purpose of this study was to examine the physiological response of skin to visible light (400-700 nm). Irradiation of human skin equivalents with visible light induced production of ROS, proinflammatory cytokines, and matrix metalloproteinase (MMP)-1 expression. Commercially available sunscreens were found to have minimal effects on reducing visible light-induced ROS, suggesting that UVA/UVB sunscreens do not protect the skin from visible light-induced responses. Using clinical models to assess the generation of free radicals from oxidative stress, higher levels of free radical activity were found after visible light exposure. Pretreatment with a photostable UVA/UVB sunscreen containing an antioxidant combination significantly reduced the production of ROS, cytokines, and MMP expression in vitro, and decreased oxidative stress in human subjects after visible light irradiation. Taken together, these findings suggest that other portions of the solar spectrum aside from UV, particularly visible light, may also contribute to signs of premature photoaging in skin.
NASA Astrophysics Data System (ADS)
Zohner, Justin J.; Schuster, Kurt J.; Chavey, Lucas J.; Stolarski, David J.; Kumru, Semih S.; Rockwell, Benjamin A.; Thomas, Robert J.; Cain, Clarence P.
2006-02-01
Skin damage thresholds were measured and compared with theoretical predictions using a skin thermal model for near-IR laser pulses at 1318 nm and 1540 nm. For the 1318-nm data, a Q-switched, 50-ns pulse with a spot size of 5 mm was applied to porcine skin and the damage thresholds were determined at 1 hour and 24 hours postexposure using Probit analysis. The same analysis was conducted for a Q-switched, 30-ns pulse at 1540 nm with a spot size of 5 mm. The Yucatan mini-pig was used as the skin model for human skin due to its similarity to pigmented human skin. The ED 50 for these skin exposures at 24 hours postexposure was 10.5 J/cm2 for the 1318-nm exposures, and 6.1 J/cm2 for the 1540-nm exposures. These results were compared to thermal model predictions. We show that the thermal model fails to account for the ED 50 values observed. A brief discussion of the possible causes of this discrepancy is presented. These thresholds are also compared with previously published skin minimum visible lesion (MVL) thresholds and with the ANSI Standard's MPE for 1318-nm lasers at 50 ns and 1540-nm lasers at 30 ns.
Application of photo-magnetic therapy for treatment of skin radiation damage in rats.
Simonova-Pushkar, L I; Gertman, V Z; Bilogurova, L V
2014-09-01
To improve methods of prevention and treatment of local radiation injury to the skin using the photomagnetic therapy. Materials and methods. Study was conducted on 60 male Wistar rats with 180-200 g bodyweight. The femoral area right hind limb of rats was locally irradiated by X-ray unit at a dose of 80.0 Gy. Exposed animals were divided into 2 groups: control and experimental. The rats of the experimental group received 2 courses of photo-magnetic therapy on the irradiated skin. The observations were carried out for 60 days. Methods - clinical, histological and statistical. Results. Local irradiation of rat skin causes the development of radiation ulcers in 60-70 % of the animals with the destruction of the structure in all layers of the skin. Spontaneous healing of radiation ulcer lasts at least two months with no complete skin recovery. Photo-magnetic therapy applied immediately after irradiation resulted in two-folddecrease of frequency of radiation ulcer incidence, accelerated the complete healing for 3 weeks and to ameliorated their progress. Histological examination showed that the photo-magnetic therapy reduced the extent of damage to all layers of the skin with restoration of epidermis and dermis structure and reduced the degree of inflammatory and destructive processes in the dermis. Conclusions. Photo-magnetic therapy produces a significant positive treatment effect by significantly reducing the inflammatory and destructive processes in all layers of the skin, stimulates the blood flow recovery in damaged tissue both with fibroblast proliferation and synthesis activation of native collagen fibers and other components of connective tissue, so almost a month accelerates ulcer healing radiation. L. I. Simonova-Pushkar, V. Z. Gertman, L. V. Bilogurova.
Kornhauser, Andrija; Wei, Rong-Rong; Yamaguchi, Yuji; Coelho, Sergio G; Kaidbey, Kays; Barton, Curtis; Takahashi, Kaoruko; Beer, Janusz Z; Miller, Sharon A; Hearing, Vincent J
2009-07-01
alpha-Hydroxy acids (alphaHAs) are reported to reduce signs of aging in the skin and are widely used cosmetic ingredients. Several studies suggest that alphaHA can increase the sensitivity of skin to ultraviolet radiation. More recently, beta-hydroxy acids (betaHAs), or combinations of alphaHA and betaHA have also been incorporated into antiaging skin care products. Concerns have also arisen about increased sensitivity to ultraviolet radiation following use of skin care products containing beta-HA. To determine whether topical treatment with glycolic acid, a representative alphaHA, or with salicylic acid, a betaHA, modifies the short-term effects of solar simulated radiation (SSR) in human skin. Fourteen subjects participated in this study. Three of the four test sites on the mid-back of each subject were treated daily Monday-Friday, for a total of 3.5 weeks, with glycolic acid (10%), salicylic acid (2%), or vehicle (control). The fourth site received no treatment. After the last treatment, each site was exposed to SSR, and shave biopsies from all four sites were obtained. The endpoints evaluated in this study were erythema (assessed visually and instrumentally), DNA damage and sunburn cell formation. Treatment with glycolic acid resulted in increased sensitivity of human skin to SSR, measured as an increase in erythema, DNA damage and sunburn cell formation. Salicylic acid did not produce significant changes in any of these biomarkers. Short-term topical application of glycolic acid in a cosmetic formulation increased the sensitivity of human skin to SSR, while a comparable treatment with salicylic acid did not.
Kornhauser, Andrija; Wei, Rong-Rong; Yamaguchi, Yuji; Coelho, Sergio G.; Kaidbey, Kays; Barton, Curtis; Takahashi, Kaoruko; Beer, Janusz Z.; Miller, Sharon A.; Hearing, Vincent J.
2009-01-01
Background α-Hydroxy acids (αHA) are reported to reduce signs of aging in the skin and are widely used cosmetic ingredients. Several studies suggest that αHA can increase the sensitivity of skin to ultraviolet radiation. More recently, β-hydroxy acids (βHA), or combinations of αHA and βHA have also been incorporated into antiaging skin care products. Concerns have also arisen about increased sensitivity to ultraviolet radiation following use of skin care products containing β-HA. Objective To determine whether topical treatment with glycolic acid, a representative αHA, or with salicylic acid, a βHA, modifies the short-term effects of solar simulated radiation (SSR) in human skin. Methods Fourteen subjects participated in this study. Three of the four test sites on the mid-back of each subject were treated daily Monday - Friday, for a total of 3.5 weeks, with glycolic acid (10%), salicylic acid (2%), or vehicle (control). The fourth site received no treatment. After the last treatment, each site was exposed to SSR, and shave biopsies from all 4 sites were obtained. The endpoints evaluated in this study were erythema (assessed visually and instrumentally), DNA damage and sunburn cell formation. Results Treatment with glycolic acid resulted in increased sensitivity of human skin to SSR, measured as an increase in erythema, DNA damage and sunburn cell formation. Salicylic acid did not produce significant changes in any of these biomarkers. Conclusions Short-term topical application of glycolic acid in a cosmetic formulation increased the sensitivity of human skin to SSR, while a comparable treatment with salicylic acid did not. PMID:19411163
The use of suction blisters to measure sunscreen protection against UVR-induced DNA damage.
Josse, Gwendal; Douki, Thierry; Le Digabel, Jimmy; Gravier, Eleonore; Questel, Emmanuel
2018-02-01
The formation of DNA photoproducts caused by solar UVR exposure needs to be investigated in-vivo and in particular in order to assess sunscreens' level of protection against solar genotoxicity. The study's purposes were: i) to evaluate if the roof of suction blisters is an appropriate sampling method for measuring photoproducts, and ii) to measure in-vivo sunscreen protection against cyclobutane pyrimidine dimers. Skin areas on the interior forearms of eight healthy volunteers were exposed in-vivo to 2 MED of simulated solar radiation (SSR) and to 15 MED on a sunscreen protected area. After irradiation, six suction blisters were induced and the blister roofs were collected. Analysis of SSR-induced CPDs was performed by two independent methods: a chromatography coupled to mass spectroscopy (HPLC-MS/MS) approach and a 3D-imaging of CPD immunostaining by multiphoton microscopy on floating epidermal sheets. HPLC-MS/MS analyses showed that SSR-unexposed skin presented no CPD dimers, whereas 2 MED SSR-exposed skin showed a significant number of TT-CPD. The sunscreen covered skin exposed to 15 MED appeared highly protected from DNA damage, as the amount of CPD-dimers remained below the detection limit. The multiphoton-immunostaining analysis consistently showed that no CPD staining was observed on the non-SSR-exposed skin. A significant increase of CPD staining intensity and number of CPD-positive cells were observed on the 2 MED SSR-exposed skin. Sunscreen protected skin presented a very low staining intensity and the number of CPD-positive cells remained very close to non-SSR-exposed skin. This study showed that suction blister samples are very appropriate for measuring CPD dimers in-vivo, and that sunscreens provide high protection against UVR-induced DNA damage. Copyright © 2017 Elsevier B.V. All rights reserved.
Propagation Effects in the Assessment of Laser Damage Thresholds to the Eye and Skin
2007-01-01
Conference on Optical Interactions with Tissue and Cells [18th] Held in San Jose, California on January 22-24, 2007 To order the complete compilation report...evaluation of the role of propagation with regard to laser damage to tissues. Regions of the optical spectrum, where linear and non-linear propagation...photo-chemical toxicity. Exposure limits commonly address skin and eye hazards through separate definitions. Differing optical absorption and scattering
Improving Strength of Postbuckled Panels Through Stitching
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
2007-01-01
The behavior of blade-stiffened graphite-epoxy panels with impact damage is examined to determine the effect of adding through-the-thickness stitches in the stiffener flange-to-skin interface. The influence of stitches is evaluated by examining buckling and failure for panels with failure loads up to 3.5 times greater than buckling loads. Analytical and experimental results from four configurations of panel specimens are presented. For each configuration, two panels were manufactured with skin and flanges held together with through-the-thickness stitches introduced prior to resin infusion and curing and one panel was manufactured with no stitches holding the flange to the skin. No mechanical fasteners were used for the assembly of any of these panels. Panels with and without low-speed impact damage were loaded to failure in compression. Buckling and failure modes are discussed. Stitching had little effect on buckling loads but increased the failure loads of impact-damaged panels by up to 30%.
Effect of Buckling Modes on the Fatigue Life and Damage Tolerance of Stiffened Structures
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Bisagni, Chiara; Rose, Cheryl A.
2015-01-01
The postbuckling response and the collapse of composite specimens with a co-cured hat stringer are investigated experimentally and numerically. These specimens are designed to evaluate the postbuckling response and the effect of an embedded defect on the collapse load and the mode of failure. Tests performed using controlled conditions and detailed instrumentation demonstrate that the damage tolerance, fatigue life, and collapse loads are closely tied with the mode of the postbuckling deformation, which can be different between two nominally identical specimens. Modes that tend to open skin/stringer defects are the most damaging to the structure. However, skin/stringer bond defects can also propagate under shearing modes. In the proposed paper, the effects of initial shape imperfections on the postbuckling modes and the interaction between different postbuckling deformations and the propagation of skin/stringer bond defects under quasi-static or fatigue loads will be examined.
Local Melatoninergic System as the Protector of Skin Integrity
Slominski, Andrzej T.; Kleszczyński, Konrad; Semak, Igor; Janjetovic, Zorica; Żmijewski, Michał A.; Kim, Tae-Kang; Slominski, Radomir M.; Reiter, Russel J.; Fischer, Tobias W.
2014-01-01
The human skin is not only a target for the protective actions of melatonin, but also a site of melatonin synthesis and metabolism, suggesting an important role for a local melatoninergic system in protection against ultraviolet radiation (UVR) induced damages. While melatonin exerts many effects on cell physiology and tissue homeostasis via membrane bound melatonin receptors, the strong protective effects of melatonin against the UVR-induced skin damage including DNA repair/protection seen at its high (pharmocological) concentrations indicate that these are mainly mediated through receptor-independent mechanisms or perhaps through activation of putative melatonin nuclear receptors. The destructive effects of the UVR are significantly counteracted or modulated by melatonin in the context of a complex intracutaneous melatoninergic anti-oxidative system with UVR-enhanced or UVR-independent melatonin metabolites. Therefore, endogenous intracutaneous melatonin production, together with topically-applied exogenous melatonin or metabolites would be expected to represent one of the most potent anti-oxidative defense systems against the UV-induced damage to the skin. In summary, we propose that melatonin can be exploited therapeutically as a protective agent or as a survival factor with anti-genotoxic properties or as a “guardian” of the genome and cellular integrity with clinical applications in UVR-induced pathology that includes carcinogenesis and skin aging. PMID:25272227
... skin cleansers, alcohol, peroxide, iodine, or soap with antibacterial chemicals. These can damage the wound tissue and ... the wound from re-opening by keeping strenuous activity to a minimum. Make sure your hands are ...
Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin.
Jain, Anil K; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh
2015-05-15
Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. Copyright © 2015 Elsevier Inc. All rights reserved.
Raab, W
1980-04-15
When discussing the effects of ultraviolet radiation on human skin, one should carefully distinguish between the long wave ultraviolet light (UV-A) and the short wave radiations (UV-B and UV-C). Ultraviolet A induces immediate pigmentation but, if high energies are applied, a permanent pigmentation is elicited. This type of ultraviolet A-induced pigmentation has been called "spontaneous" pigmentation as no erythematous reaction is necessary to induce or accelerate melanine formation. Ultraviolet B provokes erythema and consecutive pigmentation. Upon chronic exposure, ultraviolet B causes the wellknown actinic damage of the skin and even provokes carcinoma. With exposures to the sunlight (global radiation), one should be most careful. The public must be informed extensively about the dangers of excessive sunbaths. The use of artificial "suns" with spectra between 260 and 400 nm is limited as it may cause the same type of damage as the global radiation. An exact schedule for use of artificial lamps is strongly recommended. After one cycle of exposures, an interruption is necessary until the next cycle of irradiations may start. Upon continual use for tanning of the skin, artificial lamps may provoke irreversible damage of the skin. Radiation sources with emission spectra of wavelengths between 315 and 400 nm exclusively are well suited for the induction of skin pigmentation (cosmetic use). Potent radiation such as UVASUN systems provoke a "pleasant" permanent pigmentation after exposures for less than one hour. The use of ultraviolet A (UV-A) does not carry any risk for the human skin.
Non-invasive, investigative methods in skin aging.
Longo, C; Ciardo, S; Pellacani, G
2015-12-01
A precise and noninvasive quantification of aging is of outmost importance for in vivo assessment of the skin aging "stage", and thus acts to minimize it. Several bioengineering methods have been proposed to objectively, precisely, and non-invasively measure skin aging, and to detect early skin damage, that is sub-clinically observable. In this review we have described the most relevant methods that have emerged from recently introduced technologies, aiming at quantitatively assessing the effects of aging on the skin.
Skin friction related behaviour of artificial turf systems.
Tay, Sock Peng; Fleming, Paul; Hu, Xiao; Forrester, Steph
2017-08-01
The occurrence of skin friction related injuries is an issue for artificial turf sports pitches and remains a barrier to their acceptance. The purpose of this study was to evaluate the current industry standard Securisport® Sports Surface Tester that measures skin surface related frictional behaviour of artificial turf. Little research has been published about the device and its efficacy, despite its widespread use as a standard FIFA test instrument. To achieve a range of frictional behaviours, several "third generation" (3G) carpet and infill combinations were investigated; friction time profiles throughout the Securisport rotations were assessed in combination with independent measurements of skin roughness before and after friction testing via 3D surface scanning. The results indicated that carpets without infill had greatest friction (coefficients of friction 0.97-1.20) while those completely filled with sand or rubber had similar and lower values independent of carpet type (coefficient of friction (COF) ≈0.57). Surface roughness of a silicone skin (s-skin) decreased after friction testing, with the largest change on sand infilled surfaces, indicating an "abrasive" polishing effect. The combined data show that the s-skin is damaged in a surface-specific manner, thus the Securisport COF values appear to be a poor measure of the potential for skin abrasion. It is proposed that the change in s-skin roughness improves assessment of the potential for skin damage when players slide on artificial turf.
NASA Astrophysics Data System (ADS)
Zou, D.; Haack, C.; Bishop, P.; Bezabeh, A.
2015-04-01
Composite aircraft structures such as fuselage and wings are subject to impact from many sources. Ground service equipment (GSE) vehicles are regarded as realistic sources of blunt impact damage, where the protective soft rubber is used. With the use of composite materials, blunt impact damage is of special interest, since potential significant structural damage may be barely visible or invisible on the structure's outer surface. Such impact can result in local or non-local damage, in terms of internal delamination in skin, interfacial delamination between stiffeners and skin, and fracture of internal reinforced component such as stringers and frames. The consequences of these events result in aircraft damage, delays, and financial cost to the industry. Therefore, it is necessary to understand the criticality of damage under this impact and provide reliable recommendations for safety and inspection technologies. This investigation concerns a composite-metallic 4-hat-stiffened and 5-frame panel, designed to represent a fuselage structure panel generic to the new generation of composite aircraft. The test fixtures were developed based on the correlation between finite element analyses of the panel model and the barrel model. Three static tests at certain amount of impact energy were performed, in order to improve the understanding of the influence of the variation in shear ties, and the added rotational stiffness. The results of this research demonstrated low velocity high mass impacts on composite aircraft fuselages beyond 82.1 kN of impact load, which may cause extensive internal structural damage without clear visual detectability on the external skin surface.
Naringin protects ultraviolet B-induced skin damage by regulating p38 MAPK signal pathway.
Ren, Xiaolin; Shi, Yuling; Zhao, Di; Xu, Mengyu; Li, Xiaolong; Dang, Yongyan; Ye, Xiyun
2016-05-01
Naringin is a bioflavonoid and has free radical scavenging and anti-inflammatory properties. We examined the effects of naringin on skin after ultraviolet radiation B (UVB) irradiation and the signal pathways by in vitro and in vivo assay. HaCaT cells pretreated with naringin significantly inhibited UVB induced-cell apoptosis and production of intracellular reactive oxygen species (ROS). The expressions of interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2) in HaCaT cells pretreated with naringin were decreased compared with the only UVB group. Also, the activation of p38 induced by UVB in HaCaT cells was reversed by naringin treatments. The inhibition function of naringin on p38 activity was more obvious than JNK. In vivo, topical treatments with naringin prevented the increase of epidermal thickness, IL-6 production, cell apoptosis and the overexpression of COX-2 in BALB/c mice skin irradiated with UVB. Naringin treatment also markedly blocked the activation of p38 in response to UVB stimulation in the mouse skin. Naringin can effectively protect against UVB-induced keratinocyte apoptosis and skin damage by inhibiting ROS production, COX-2 overexpression and strong inflammation reactions. It seemed that naringin played its role against UVB-induced skin damage through inhibition of mitogen-activated protein kinase (MAPK)/p38 activation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sagan, Dorota; Stepniak, Jan; Gesing, Adam; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata
2017-12-23
Protective antioxidative effects of melatonin have been repeatedly documented in experimental and clinical studies. One of the most spectacular exogenous prooxidative agents is cigarette smoking. The aim of the study was to evaluate the level of oxidative damage to membrane lipids (lipid peroxidation; LPO) in blood serum, and in epidermis exfoliated during microdermabrasion collected from former-smokers who were treated with melatonin. The study was performed in postmenopausal women. Ninety (90) female volunteers, aged 46-67 years, were enrolled. Two major groups, i.e. never-smokers (n=44) and former-smokers (n=46), were divided into: Control, melatonin topical skin application, Restructurer (containing antioxidants) topical skin application, and melatonin oral treatment. Microdermabrasion was performed at point '0', after 2 weeks, and after 4 weeks of treatment. The following parameters were measured: LPO in blood serum, LPO in epidermis exfoliated during microdermabrasion, and skin biophysical characteristics, such as sebum, moisture, elasticity, and pigmentation. Malondialdehyde+4-hydroxyalkenals level (LPO index) was measured spectrophotometrically. Melatonin oral treatment significantly reversed the increased serum LPO level in former-smokers already after 2 weeks of treatment. In a univariate regression model, LPO blood level constituted the only independent factor negatively associated with melatonin oral treatment. After 4 weeks of treatment, melatonin given orally increased skin sebum, moisture and elasticity levels, and melatonin applied topically increased sebum level. Exogenous melatonin reverses the enhanced oxidative damage to membrane lipids and improves skin biophysical characteristics in former-smokers.
Thompson, Elizabeth A; Zhu, Songyun; Hall, Jonathan R; House, John S; Ranjan, Rakesh; Burr, Jeanne A; He, Yu-Ying; Owens, David M; Smart, Robert C
2011-06-01
Human epidermis is routinely subjected to DNA damage induced by UVB solar radiation. Cell culture studies have revealed an unexpected role for C/EBPα (CCAAT/enhancer-binding protein-α) in the DNA damage response network, where C/EBPα is induced following UVB DNA damage, regulates the G(1) checkpoint, and diminished or ablated expression of C/EBPα results in G(1) checkpoint failure. In the current study we observed that C/EBPα is induced in normal human epidermal keratinocytes and in the epidermis of human subjects exposed to UVB radiation. The analysis of human skin precancerous and cancerous lesions (47 cases) for C/EBPα expression was conducted. Actinic keratoses, a precancerous benign skin growth and precursor to squamous cell carcinoma (SCC), expressed levels of C/EBPα similar to normal epidermis. Strikingly, all invasive SCCs no longer expressed detectable levels of C/EBPα. To determine the significance of C/EBPα in UVB-induced skin cancer, SKH-1 mice lacking epidermal C/EBPα (CKOα) were exposed to UVB. CKOα mice were highly susceptible to UVB-induced SCCs and exhibited accelerated tumor progression. CKOα mice displayed keratinocyte cell cycle checkpoint failure in vivo in response to UVB that was characterized by abnormal entry of keratinocytes into S phase. Our results demonstrate that C/EBPα is silenced in human SCC and loss of C/EBPα confers susceptibility to UVB-induced skin SCCs involving defective cell cycle arrest in response to UVB.
Thompson, Elizabeth A.; Zhu, Songyun; Hall, Jonathan R.; House, John S.; Ranjan, Rakesh; Burr, Jeanne A.; He, Yu-Ying; Owens, David M.; Smart, Robert C.
2012-01-01
Human epidermis is routinely subjected to DNA damage induced by UVB solar radiation. Cell culture studies have revealed an unexpected role for C/EBPα (CCAAT/enhancer-binding protein-α) in the DNA damage response network, where C/EBPα is induced following UVB DNA damage, regulates the G1 checkpoint, and diminished or ablated expression of C/EBPα results in G1 checkpoint failure. In the current study we observed that C/EBPα is induced in normal human epidermal keratinocytes and in the epidermis of human subjects exposed to UVB radiation. The analysis of human skin precancerous and cancerous lesions (47 cases) for C/EBPα expression was conducted. Actinic keratoses, a precancerous benign skin growth and precursor to squamous cell carcinoma (SCC), expressed levels of C/EBPα similar to normal epidermis. Strikingly, all invasive SCCs no longer expressed detectable levels of C/EBPα. To determine the significance of C/EBPα in UVB-induced skin cancer, SKH-1 mice lacking epidermal C/EBPα (CKOα) were exposed to UVB. CKOα mice were highly susceptible to UVB-induced SCCs and exhibited accelerated tumor progression. CKOα mice displayed keratinocyte cell cycle checkpoint failure in vivo in response to UVB that was characterized by abnormal entry of keratinocytes into S phase. Our results demonstrate that C/EBPα is silenced in human SCC and loss of C/EBPα confers susceptibility to UVB-induced skin SCCs involving defective cell cycle arrest in response to UVB. PMID:21346772
Sunlight damage to cellular DNA: Focus on oxidatively generated lesions.
Schuch, André Passaglia; Moreno, Natália Cestari; Schuch, Natielen Jacques; Menck, Carlos Frederico Martins; Garcia, Camila Carrião Machado
2017-06-01
The routine and often unavoidable exposure to solar ultraviolet (UV) radiation makes it one of the most significant environmental DNA-damaging agents to which humans are exposed. Sunlight, specifically UVB and UVA, triggers various types of DNA damage. Although sunlight, mainly UVB, is necessary for the production of vitamin D, which is necessary for human health, DNA damage may have several deleterious consequences, such as cell death, mutagenesis, photoaging and cancer. UVA and UVB photons can be directly absorbed not only by DNA, which results in lesions, but also by the chromophores that are present in skin cells. This process leads to the formation of reactive oxygen species, which may indirectly cause DNA damage. Despite many decades of investigation, the discrimination among the consequences of these different types of lesions is not clear. However, human cells have complex systems to avoid the deleterious effects of the reactive species produced by sunlight. These systems include antioxidants, that protect DNA, and mechanisms of DNA damage repair and tolerance. Genetic defects in these mechanisms that have clear harmful effects in the exposed skin are found in several human syndromes. The best known of these is xeroderma pigmentosum (XP), whose patients are defective in the nucleotide excision repair (NER) and translesion synthesis (TLS) pathways. These patients are mainly affected due to UV-induced pyrimidine dimers, but there is growing evidence that XP cells are also defective in the protection against other types of lesions, including oxidized DNA bases. This raises a question regarding the relative roles of the various forms of sunlight-induced DNA damage on skin carcinogenesis and photoaging. Therefore, knowledge of what occurs in XP patients may still bring important contributions to the understanding of the biological impact of sunlight-induced deleterious effects on the skin cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Concurrent Psychosocial Predictors of Sun Safety among Middle School Youth
ERIC Educational Resources Information Center
Andreeva, Valentina A.; Reynolds, Kim D.; Buller, David B.; Chou, Chih-Ping; Yaroch, Amy L.
2008-01-01
Background: Sun-induced skin damage, which increases skin cancer risk, is initiated in early life and promoted through later sun exposure patterns. If sun safety determinants are well understood and addressed during the school years, skin cancer incidence might be reduced. This study tested psychosocial influences on youth's sun safety and…
Jang, Won Hyuk; Shim, Sehwan; Wang, Taejun; Yoon, Yeoreum; Jang, Won-Suk; Myung, Jae Kyung; Park, Sunhoo; Kim, Ki Hean
2016-01-01
Ionizing radiation (IR) injury is tissue damage caused by high energy electromagnetic waves such as X-ray and gamma ray. Diagnosis and treatment of IR injury are difficult due to its characteristics of clinically latent post-irradiation periods and the following successive and unpredictable inflammatory bursts. Skin is one of the many sensitive organs to IR and bears local injury upon exposure. Early-stage diagnosis of IR skin injury is essential in order to maximize treatment efficiency and to prevent the aggravation of IR injury. In this study, early-stage changes of the IR injured skin at the cellular level were characterized in an in vivo mouse model by two-photon microscopy (TPM). Various IR doses were applied to the mouse hind limbs and the injured skin regions were imaged daily for 6 days after IR irradiation. Changes in the morphology and distribution of the epidermal cells and damage of the sebaceous glands were observed before clinical symptoms. These results showed that TPM is sensitive to early-stage changes of IR skin injury and may be useful for its diagnosis. PMID:26755422
Degradation of tropoelastin and skin elastin by neprilysin.
Mora Huertas, Angela C; Schmelzer, Christian E H; Luise, Chiara; Sippl, Wolfgang; Pietzsch, Markus; Hoehenwarter, Wolfgang; Heinz, Andrea
2018-03-01
Neprilysin is also known as skin fibroblast-derived elastase, and its up-regulation during aging is associated with impairments of the elastic fiber network, loss of skin elasticity and wrinkle formation. However, information on its elastase activity is still limited. The aim of this study was to investigate the degradation of fibrillar skin elastin by neprilysin and the influence of the donor's age on the degradation process using mass spectrometry and bioinformatics approaches. The results showed that cleavage by neprilysin is dependent on previous damage of elastin. While neprilysin does not cleave young and intact skin elastin well, it degrades elastin fibers from older donors, which may further promote aging processes. With regards to the cleavage behavior of neprilysin, a strong preference for Gly at P1 was found, while Gly, Ala and Val were well accepted at P1' upon cleavage of tropoelastin and skin elastin. The results of the study indicate that the progressive release of bioactive elastin peptides by neprilysin upon skin aging may enhance local tissue damage and accelerate extracellular matrix aging processes. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Confocal laser scanning microscopy to estimate nanoparticles’ human skin penetration in vitro
Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard
2017-01-01
Objective With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Methods Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. Results NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Conclusion Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human “viable” epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested. PMID:29184403
When is protection from impact needed for the face as well as the eyes in occupational environments?
Dain, Stephen J; Huang, Rose; Tiao, Aimee; Chou, B Ralph
2018-05-01
The most commonly identified reason for requiring or using occupational eye and face protection is for protection against flying objects. Standards vary on what risk may require protection of the eyes alone and what requires protection for the whole face. Information on the minimum energy transfer for face damage to occur is not well-established. The heads of pigs were used as the common model for human skin. A 6 mm steel ball projected at velocities between 45 and 135 m/s was directed at the face area. Examples of impacts were filmed with a high-speed camera and the resulting damage was rated visually on a scale from 1 (no visible damage) to 5 (penetrated the skin and embedded in the flesh). The results for the cheek area indicate that 85 m/s is the velocity above which damage is more likely to occur unless the skin near the lip is included. For damage to the lip area to be avoided, the velocity needs to be 60 m/s or less. The present data support a maximum impact velocity of 85 m/s, provided the thinner and more vulnerable skin of the lids and orbital adnexa is protected. If the coverage area does not extend to the orbital adnexa, then the absolute upper limit for the velocity is 60 m/s. At this stage, eye-only protection, as represented by the lowest level of impact test in the standards in the form of a drop ball test, is not in question. © 2017 Optometry Australia.
Magnetic Field Triggered Multicycle Damage Sensing and Self Healing.
Ahmed, Anansa S; Ramanujan, R V
2015-09-08
Multifunctional materials inspired by biological structures have attracted great interest, e.g. for wearable/ flexible "skin" and smart coatings. A current challenge in this area is to develop an artificial material which mimics biological skin by simultaneously displaying color change on damage as well as self healing of the damaged region. Here we report, for the first time, the development of a damage sensing and self healing magnet-polymer composite (Magpol), which actively responds to an external magnetic field. We incorporated reversible sensing using mechanochromic molecules in a shape memory thermoplastic matrix. Exposure to an alternating magnetic field (AMF) triggers shape recovery and facilitates damage repair. Magpol exhibited a linear strain response upto 150% strain and complete recovery after healing. We have demonstrated the use of this concept in a reusable biomedical device i.e., coated guidewires. Our findings offer a new synergistic method to bestow multifunctionality for applications ranging from medical device coatings to adaptive wing structures.
Controlling reactive oxygen species in skin at their source to reduce skin aging.
Kern, Dale G; Draelos, Zoe D; Meadows, Christiaan; James Morré, D; Morré, Dorothy M
2010-01-01
Activity of an age-related, superoxide-forming, cell-surface oxidase (arNOX) comparing dermis, epidermis, serum, and saliva from female and male subjects ages 28-72 years measured spectrophotometrically using reduction of ferricytochrome c correlated with oxidative skin damage as estimated from autofluoresence of skin using an Advanced Glycation End products Reader (AGE-Reader; DiagnOptics B.V., Netherlands). By reducing arNOX activity in skin with arNOX-inhibitory ingredients (NuSkin's ageLOC technology), skin appearance was improved through decreased protein cross-linking and an accelerated increase in collagen.
Kim, Dai Hyun; Oh, Ga Na; Kwon, In Hyuk; Seo, Soo Hong; Kye, Young Chul; Ahn, Hyo Hyun
2017-10-01
Aged skin is reported to be associated with unattractive skin color changes and solar elastosis. However, comparative studies have not documented the possible correlation between the two factors. This study investigated the plausible relationship between the facial skin color of elderly Asians and solar elastosis. A total of 22 skin specimens were collected from 22 Korean patients who underwent cheek skin biopsies. Skin color was quantitatively measured using colorimetric photography techniques to produce CIE L*a*b* values; the degree of solar elastosis was quantifiably assessed using a histologic grading scale. These values were used to investigate a correlation between the CIE L*a*b* coordinates and solar elastosis grade. The solar elastosis grade increased according to patient age (r = 0.67, p = .0006). However, the extent of solar elastosis was not statistically correlated with the CIE L*a*b* values, including L*, a*, and b* (r = 0.02, p = .95; r = 0.15, p = 0.50; r = -0.07, p = 0.76, respectively). The results showed that the solar elastosis grade increased, according to patient age, because of cumulative actinic damage. However, colorimetric skin color data did not correlate with the degree of solar elastosis. Therefore, cutaneous color changes and solar elastosis are separate, age-related phenomena. Physicians should be aware of the possible histologic changes in actinically damaged facial skin, regardless of the skin color. © 2017 Wiley Periodicals, Inc.
I. Microwave Apparatus for Exposing Tissue and the Effect of the Radiation on Skin Respiration
Lawrence, J. C.
1968-01-01
An apparatus was designed which enabled small pieces of skin to be exposed to a uniform field of microwaves at χ-band (8,730 MHz). This was used to investigate the effect of these microwaves at selected energy levels on the metabolism of skin. It was shown that skin cultured in vitro exhibited a graded response to microwave energy, and a doseresponse curve was constructed from this data. The ED50 of this curve was 4,740 mW./sq. cm. applied for 1 second. Microscopical examination of three-day cultures of skin showed that histological abnormalities occurred if the specimens were exposed to intensities of microwaves causing more than 30% respiratory damage. The energy level at the ED30 was 2,880 mW./sq. cm. applied for 1 second. Results were consistent with the hypothesis that tissue damage caused by irradiation with microwaves was due to the energy absorbed by the specimen being converted to heat. PMID:5663427
Kigasawa, Kaoru; Miyashita, Moeko; Kajimoto, Kazuaki; Kanamura, Kiyoshi; Harashima, Hideyoshi; Kogure, Kentaro
2012-01-01
Superoxide dismutase (SOD) is a potent antioxidant agent that protects against UV-induced skin damage. However, its high molecular weight is a significant obstacle for efficient delivery into the skin through the stratum corneum and development of antioxidant activity. Recently, we developed a non-invasive transfollicular delivery system for macromolecules using a combination of liposomes and iontophoresis, that represents promising technology for enhancing transdermal administration of charged drugs (IJP, 403, 2011, Kajimoto et al.). In this study, in rats we attempted to apply this system to intradermal delivery of SOD for preventing UV-induced skin injury. SOD encapsulating in cationic liposomes was subjected to anodal iontophoresis. After iontophoretic treatment, the liposomes were diffused widely in the viable skin layer around hair follicles. In contrast, passive diffusion failed to transport liposomes efficiently into the skin. Iontophoretic delivery of liposomes encapsulating SOD caused a marked decrease in the production of oxidative products, such as malondialdehyde, hexanoyl lysine, and 8-hydroxi-2-deoxyguanosine, in UV-irradiated skin. These findings suggested that functional SOD can be delivered into the skin using a combination of iontophoresis and a liposomal system. In conclusion, we succeeded in developing an efficient intradermal SOD delivery system, that would be useful for delivery of other macromolecules.
Eastabrook, Suzette; Chang, Paul; Taylor, Myra F
2018-03-01
Suntanning increases skin cancer risk and prematurely ages skin. Photoageing photography is an effective means of increasing adult ultraviolet radiation (UVR) awareness and skin-protection practices. While adults' largely positive suntanning-deterrence responses to photoageing photography are well-documented, comparatively little is known about the deterrence effectiveness of photoageing photography with adolescents. To help fill this knowledge gap, in-depth interviews were collected from 10 adolescent females and were subsequently subjected to interpretive phenomenological analysis. The emergent central theme - Having a tan and looking good in the short-term is okay, however, in the longer-term you can end up looking far worse… but still a tan is worth it - and its component subthemes reveal that the adolescent female's desire for a suntan is largely appearance driven. While photoaged photography is effective in increasing their awareness of the skin damage that UVR exposure causes, it does not alter their suntanning intentions. The analysis also revealed that one of the major barriers to adolescent females' adoption of skin-protective behaviours is their belief in their own invincibility. Hence, skin-protection interventions that lessen the aura of invincibility around adolescent females' understanding of their risk for developing skin cancers are vital to reducing the incidence of malignant melanoma.
Pyruvate metabolism: A therapeutic opportunity in radiation-induced skin injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Hyun; Kang, Jeong Wook; Lee, Dong Won
Ionizing radiation is used to treat a range of cancers. Despite recent technological progress, radiation therapy can damage the skin at the administration site. The specific molecular mechanisms involved in this effect have not been fully characterized. In this study, the effects of pyruvate, on radiation-induced skin injury were investigated, including the role of the pyruvate dehydrogenase kinase 2 (PDK2) signaling pathway. Next generation sequencing (NGS) identified a wide range of gene expression differences between the control and irradiated mice, including reduced expression of PDK2. This was confirmed using Q-PCR. Cell culture studies demonstrated that PDK2 overexpression and a highmore » cellular pyruvate concentration inhibited radiation-induced cytokine expression. Immunohistochemical studies demonstrated radiation-induced skin thickening and gene expression changes. Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness and inflammatory cytokine expression. These findings indicated that regulation of the pyruvate metabolic pathway could provide an effective approach to the control of radiation-induced skin damage. - Highlights: • The effects of radiation on skin thickness in mice. • Next generation sequencing revealed that radiation inhibited pyruvate dehydrogenase kinase 2 expression. • PDK2 inhibited irradiation-induced cytokine gene expression. • Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness.« less
Reisinger, Kerstin; Blatz, Veronika; Brinkmann, Joep; Downs, Thomas R; Fischer, Anja; Henkler, Frank; Hoffmann, Sebastian; Krul, Cyrille; Liebsch, Manfred; Luch, Andreas; Pirow, Ralph; Reus, Astrid A; Schulz, Markus; Pfuhler, Stefan
2018-03-01
Recently revised OECD Testing Guidelines highlight the importance of considering the first site-of-contact when investigating the genotoxic hazard. Thus far, only in vivo approaches are available to address the dermal route of exposure. The 3D Skin Comet and Reconstructed Skin Micronucleus (RSMN) assays intend to close this gap in the in vitro genotoxicity toolbox by investigating DNA damage after topical application. This represents the most relevant route of exposure for a variety of compounds found in household products, cosmetics, and industrial chemicals. The comet assay methodology is able to detect both chromosomal damage and DNA lesions that may give rise to gene mutations, thereby complementing the RSMN which detects only chromosomal damage. Here, the comet assay was adapted to two reconstructed full thickness human skin models: the EpiDerm™- and Phenion ® Full-Thickness Skin Models. First, tissue-specific protocols for the isolation of single cells and the general comet assay were transferred to European and US-American laboratories. After establishment of the assay, the protocol was then further optimized with appropriate cytotoxicity measurements and the use of aphidicolin, a DNA repair inhibitor, to improve the assay's sensitivity. In the first phase of an ongoing validation study eight chemicals were tested in three laboratories each using the Phenion ® Full-Thickness Skin Model, informing several validation modules. Ultimately, the 3D Skin Comet assay demonstrated a high predictive capacity and good intra- and inter-laboratory reproducibility with four laboratories reaching a 100% predictivity and the fifth yielding 70%. The data are intended to demonstrate the use of the 3D Skin Comet assay as a new in vitro tool for following up on positive findings from the standard in vitro genotoxicity test battery for dermally applied chemicals, ultimately helping to drive the regulatory acceptance of the assay. To expand the database, the validation will continue by testing an additional 22 chemicals. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Protective Effects of Triphala on Dermal Fibroblasts and Human Keratinocytes
Varma, Sandeep R.; Sivaprakasam, Thiyagarajan O.; Mishra, Abheepsa; Kumar, L. M. Sharath; Prakash, N. S.; Prabhu, Sunil; Ramakrishnan, Shyam
2016-01-01
Human skin is body’s vital organ constantly exposed to abiotic oxidative stress. This can have deleterious effects on skin such as darkening, skin damage, and aging. Plant-derived products having skin-protective effects are well-known traditionally. Triphala, a formulation of three fruit products, is one of the most important rasayana drugs used in Ayurveda. Several skin care products based on Triphala are available that claim its protective effects on facial skin. However, the skin protective effects of Triphala extract (TE) and its mechanistic action on skin cells have not been elucidated in vitro. Gallic acid, ellagic acid, and chebulinic acid were deduced by LC-MS as the major constituents of TE. The identified key compounds were docked with skin-related proteins to predict their binding affinity. The IC50 values for TE on human dermal fibroblasts (HDF) and human keratinocytes (HaCaT) were 204.90 ± 7.6 and 239.13 ± 4.3 μg/mL respectively. The antioxidant capacity of TE was 481.33 ± 1.5 mM Trolox equivalents in HaCaT cells. Triphala extract inhibited hydrogen peroxide (H2O2) induced RBC haemolysis (IC50 64.95 μg/mL), nitric oxide production by 48.62 ± 2.2%, and showed high reducing power activity. TE also rescued HDF from H2O2-induced damage; inhibited H2O2 induced cellular senescence and protected HDF from DNA damage. TE increased collagen-I, involucrin and filaggrin synthesis by 70.72 ± 2.3%, 67.61 ± 2.1% and 51.91 ± 3.5% in HDF or HaCaT cells respectively. TE also exhibited anti-tyrosinase and melanin inhibition properties in a dose-dependent manner. TE increased the mRNA expression of collagen-I, elastin, superoxide dismutase (SOD-2), aquaporin-3 (AQP-3), filaggrin, involucrin, transglutaminase in HDF or HaCaT cells, and decreased the mRNA levels of tyrosinase in B16F10 cells. Thus, Triphala exhibits protective benefits on skin cells in vitro and can be used as a potential ingredient in skin care formulations. PMID:26731545
Zhang, Yujuan; Li, Peng; Wang, Jianmei; Huo, Yan; Yang, Jing
2015-03-01
To investigate the occurrence and protection of skin/mucosa contamination among obstetrician and gynecologist. By random, stratified, and clustered sampling, 219 obstetrician and gynecologist were selected. 210 valid questionnaires were collected, efficiency is 95.89%. 110 obstetrician and gynecologist come from tertiary hospitals, 100 come from secondary hospitals. A self-administered questionnaire on skin/mucosa contamination was employed to gauge the implementation of protection, types and working links of skin/mucosa contamination. Of the respondents, only 14.76% (31/210) and 5.24% (11/210) adhered to proper hand washing and wearing protective glasses within nearly 1 year in practical work. Of the respondents, 73.81% (155/210) had experienced the skin/mucosa contamination during their vocation, 50.95% (107/210) occurred sharps injuries, 45.71% (96/210) occurred damaged skin contamination, and 43.33% (91/210) occurred mucosa contamination. Sharps injuries mainly occurred when abdominal operation (45.71%, 96/120), damaged skin contamination mainly occurred when gynecological examination (21.43%, 45/210), and mucosa contamination mainly occurred when midwifery (37.14%, 78/210). The implementation of protective measures is inadequate and incidence of skin/mucosa contamination is higher among obstetrician and gynecologist. Therefore, occupational protection education should focus on different types and working links of skin/mucosa contamination. At the same time, strict supervision and management system should be established.
The relationship of subepidermal moisture and early stage pressure injury by visual skin assessment.
Kim, Chul-Gyu; Park, Seungmi; Ko, Ji Woon; Jo, Sungho
2018-05-08
The purpose of this study was to examine the relationship of subepidermal moisture and early stage pressure injury by visual skin assessment in elderly Korean. Twenty-nine elderly participated at a particular nursing home. Data were collected for 12 weeks by one wound care nurse. Visual skin assessment and subepidermal moisture value were measured at both buttocks, both ischia, both trochanters, sacrum, and coccyx of each subject once a week. Subepidermal moisture value of stage 1 pressure injury was significantly higher than that of no injury and blanching erythema. After adjustment with covariates, odds ratios of blanching erythema to normal skin and stage 1 pressure injury to blanching erythema/normal skin were statistically significant (p < 0.05). Odds ratio of blanching erythema to normal skin was 1.003 (p = .047) by 1-week prior subepidermal moisture value, and that of concurrent subepidermal moisture value was 1.004 (p = .011). Odds ratio of stage 1 pressure injury to normal skin/blanching erythema was 1.003 (p = .005) by 1-week prior subepidermal moisture value, and that for concurrent subepidermal moisture value was 1.007 (p = .030). Subepidermal moisture was associated with concurrent and future (1 week later) skin damage at both trochanters. Subepidermal moisture would be used to predict early skin damage in clinical nursing field for the effective pressure injury prevention. Copyright © 2018. Published by Elsevier Ltd.
Haywood, Rachel; Volkov, Arsen; Andrady, Carima; Sayer, Robert
2012-03-01
The in vitro star system used for sunscreen UVA-testing is not an absolute measure of skin protection being a ratio of the total integrated UVA/UVB absorption. The in vivo persistent-pigment-darkening method requires human volunteers. We investigated the use of the ESR-detectable DMPO protein radical-adduct in solar-simulator-irradiated skin substitutes for sunscreen testing. Sunscreens SPF rated 20+ with UVA protection, reduced this adduct by 40-65% when applied at 2 mg/cm(2). SPF 15 Organic UVA-UVB (BMDBM-OMC) and TiO(2)-UVB filters and a novel UVA-TiO(2) filter reduced it by 21, 31 and 70% respectively. Conventional broad-spectrum sunscreens do not fully protect against protein radical-damage in skin due to possible visible-light contributions to damage or UVA-filter degradation. Anisotropic spectra of DMPO-trapped oxygen-centred radicals, proposed intermediates of lipid-oxidation, were detected in irradiated sunscreen and DMPO. Sunscreen protection might be improved by the consideration of visible-light protection and the design of filters to minimise radical leakage and lipid-oxidation.
Wu, Po-Yuan; Lyu, Jia-Ling; Liu, Yi-Jung; Chien, Ting-Yi; Hsu, Hao-Cheng; Wen, Kuo-Ching; Chiang, Hsiu-Mei
2017-10-10
Chronic ultraviolet (UV) exposure may cause skin damage, disrupt skin barrier function, and promote wrinkle formation. UV induces oxidative stress and inflammation, which results in extracellular matrix degradation in the dermis and epidermal hyperplasia. Our previous study demonstrated that fisetin exerts photoprotective activity by inhibiting mitogen-activated protein kinase/activator protein-1/matrix metalloproteinases (MMPs) activation. In this study, fisetin was applied topically to investigate its antiphotodamage effects in hairless mice. The erythema index (a* values) and transepidermal water loss were evaluated to assess skin damage, and immunohistochemical staining was conducted to elucidate the photoprotective mechanism of fisetin. The results revealed that the topical application of fisetin reduced UVB-induced increase in the a* value and wrinkle formation. In addition, fisetin inhibited epidermal hyperplasia and increased the collagen content in the dermis. Fisetin exerted photoprotective activity by inhibiting the expression of MMP-1, MMP-2, and cyclooxygenase-2 and increasing the expression of nuclear factor erythroid 2-related factor. Furthermore, fisetin increased the expression of filaggrin to prevent UVB-induced barrier function disruption. Altogether, the present results provide evidence of the effects and mechanisms of fisetin's antiphotodamage and antiphotoinflammation activities.
Gao, Chenguang; Chen, Hong; Niu, Cong; Hu, Jie; Cao, Bo
2017-01-02
Schizandrin B is extracted from Schisandra chinensis (Turcz.) Baill. This study evaluated the photoprotective effect of Schizandrin B on oxidative stress injury of the skin caused by UVB-irradiation and the molecular mechanism of the photoprotective effect of Schizandrin B, and we firstly found that Schizandrin B could block Cox-2, IL-6 and IL-18 signal pathway to protect damage of skin cells given by UVB-irradiation. In the research, we found that Schizandrin B can attenuate the UVB-induced toxicity on keratinocytes and dermal fibroblasts in human body, and can outstandingly eliminated intracellular ROS produced by UVB-irradiation. These results demonstrate that Schizandrin B can regulate the function of decreasing intracellular SOD's activity and increasing the expression level of MDA in HaCaT cells result from the guidance of UVB, and it markedly reduced the production of inflammatory factors such as Cox-2, IL-6 or IL-18, decreased the expression level of MMP-1, and interdicted degradation process of collagens in UVB-radiated cells. Therefore, skin keratinocytes can be effectively protected from UVB-radiated damage by Schizandrin B, and UVB-irradiation caused inflammatory responses can be inhibited by attenuating process of ROS generating.
Wu, Po-Yuan; Lyu, Jia-Ling; Chien, Ting-Yi; Hsu, Hao-Cheng; Wen, Kuo-Ching
2017-01-01
Chronic ultraviolet (UV) exposure may cause skin damage, disrupt skin barrier function, and promote wrinkle formation. UV induces oxidative stress and inflammation, which results in extracellular matrix degradation in the dermis and epidermal hyperplasia. Our previous study demonstrated that fisetin exerts photoprotective activity by inhibiting mitogen-activated protein kinase/activator protein-1/matrix metalloproteinases (MMPs) activation. In this study, fisetin was applied topically to investigate its antiphotodamage effects in hairless mice. The erythema index (a* values) and transepidermal water loss were evaluated to assess skin damage, and immunohistochemical staining was conducted to elucidate the photoprotective mechanism of fisetin. The results revealed that the topical application of fisetin reduced UVB-induced increase in the a* value and wrinkle formation. In addition, fisetin inhibited epidermal hyperplasia and increased the collagen content in the dermis. Fisetin exerted photoprotective activity by inhibiting the expression of MMP-1, MMP-2, and cyclooxygenase-2 and increasing the expression of nuclear factor erythroid 2-related factor. Furthermore, fisetin increased the expression of filaggrin to prevent UVB-induced barrier function disruption. Altogether, the present results provide evidence of the effects and mechanisms of fisetin’s antiphotodamage and antiphotoinflammation activities. PMID:28994699
Omura, Yuko; Yamabe, Motoko; Anazawa, Sadao
2010-01-01
This study examines the adhesiveness of hydrocolloid wafers and its relationship to physical damage of the underlying skin. Observational study. All subjects received ostomy care at the Tokyo Ostomy Center and outpatient departments of 4 hospitals in Tokyo, Japan. One hundred ninety-four of 917 patients receiving care over a 23-year span agreed to participate in the research. Subjects met 2 inclusion criteria: (1) ostomy management was performed using a combination of skin barriers and an adhesive ostomy pouch; and (2) the patient's medical file and color photographs were available, allowing analysis of the peristomal skin over time. Photographs were taken with an Olympus (OM2) camera equipped with an Olympus macro lens and a ring flash. We analyzed the impact of the adhesive force of various hydrocolloid wafers on the underlying skin. Photographs were digitized and systematically examined the peristomal skin exposed to regular use of skin barriers. The observation period varied among individual patients, ranging from 1 week to 30 years after surgery. The incidence of dermatologic changes (active, inactive, and area cutanea changes) was lower in patients who used skin barriers with adhesive force of not more than 2 Newtons(N) than among those using higher forces (>2 N). Specifically, there was a significant difference in change of the area cutanea. The incidence of papules and erosion was unrelated to the adhesive force of skin barriers. These results suggest that the peristomal skin is irritated by repeated peeling, resulting in physical damage to the horny layer of the skin. The presence of papules and erosion was not associated with the adhesive force of skin barriers. This finding suggests that these changes are associated with an inflammatory process, possibly caused by chemical substances within the skin barrier.
Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells
Crosera, Matteo; Prodi, Andrea; Mauro, Marcella; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Pietro; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Larese Filon, Francesca
2015-01-01
Titanium dioxide nanoparticles (TiO2NPs) suspensions (concentration 1.0 g/L) in synthetic sweat solution were applied on Franz cells for 24 h using intact and needle-abraded human skin. Titanium content into skin and receiving phases was determined. Cytotoxicity (MTT, AlamarBlue® and propidium iodide, PI, uptake assays) was evaluated on HaCat keratinocytes after 24 h, 48 h, and seven days of exposure. After 24 h of exposure, no titanium was detectable in receiving solutions for both intact and damaged skin. Titanium was found in the epidermal layer after 24 h of exposure (0.47 ± 0.33 μg/cm2) while in the dermal layer, the concentration was below the limit of detection. Damaged skin, in its whole, has shown a similar concentration (0.53 ± 0.26 μg/cm2). Cytotoxicity studies on HaCaT cells demonstrated that TiO2NPs induced cytotoxic effects only at very high concentrations, reducing cell viability after seven days of exposure with EC50s of 8.8 × 10−4 M (MTT assay), 3.8 × 10−5 M (AlamarBlue® assay), and 7.6 × 10−4 M (PI uptake, index of a necrotic cell death). Our study demonstrated that TiO2NPs cannot permeate intact and damaged skin and can be found only in the stratum corneum and epidermis. Moreover, the low cytotoxic effect observed on human HaCaT keratinocytes suggests that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure. PMID:26262634
Meningococcal ACWY Vaccines (MenACWY and MPSV4)
... disabilities such as hearing loss, brain damage, kidney damage, amputations, nervous system problems, or severe scars from skin grafts.Meningococcal ACWY vaccines can help prevent meningococcal disease caused by serogroups ...
Optical clearing of skin using flash lamp-induced enhancement of epidermal permeability.
Tuchin, V V; Altshuler, G B; Gavrilova, A A; Pravdin, A B; Tabatadze, D; Childs, J; Yaroslavsky, I V
2006-10-01
Strong light scattering in skin prevents precise targeting of optical energy in therapeutic and diagnostic applications. Optical immersion based on matching refractive index of scattering centers with that of surrounding matter through introduction of an exogenous index-matching agent can alleviate the problem. However, slow diffusion of the index-matching agent through skin barrier makes practical implementation of this approach difficult. We propose a method of accelerating penetration of the index-matching compounds by enhancing skin permeability through creating a lattice of micro-zones (islets) of limited thermal damage in the stratum corneum (SC). A flash lamp (intense pulsed light) system and an island mask with a pattern of absorbing centers (center size approximately 75-120 microm, lattice pitch approximately 450-500 microm) were used to create the lattice of islets of damage (LID). Index-matching agents, such as glucose solution, propylene glycol solution, and glycerol solution, were applied. Experimental results of optical clearing ex vivo rat and pig skin, and ex vivo and in vivo human skin are presented. Optical transmission spectra of the skin samples with LID were measured during some 2 hours after application of index-matching chemical agents. In order to assess and compare the clearing rate under different treatment and clearing agents we calculated the quantity that we call "relative transmittance": T(rel) = I(t)(lambda)/I(0)(lambda), were I(t)(lambda) is the intensity measured at elapsed time t. The dynamics of relative transmittance of skin samples at 470 and 650 nm shows that the implementation of limited thermal damage technique leads to a 3-10-fold increase of optical clearing (rise of transmittance) rate compared to the results obtained when the samples were treated with high-intensity light pulses but without the use of island damage mask (IDM). It was observed from the plotted spectra of relative transmittance that the maximum increase of transmitted light intensity has been obtained with glucose solution as a clearing agent. Noteworthy is the difference in the trend of spectral curves: relative transmittance spectrum for glycerol reveals, on the whole, a greater slope which may be indicative of higher extent of index matching between the scattering centers and base material for this index-matching agent. Under the transillumination of the skin sample by the wide flat beam the more effective clearing (the increase of transmitted intensity) is attained within the hemoglobin absorption bands; with the narrow quasi-collimated beam the higher relative transmittance was observed over the intervals of minimum absorption. The use of specially designed island mask combined with non-laser intensive pulse irradiation produces a lattice of islands of limited thermal damage in SC that substantially enhances the penetration rate of topically applied index-matching agents. The suggested technique gave comparable magnitudes of clearing dynamics enhancement for glucose solution, glycerol solution, and propylene glycol solution applied to mammalian skin.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., CERTIFICATION, AND STANDARDS) United States Standards for Florida Avocados Definitions § 51.3064 Damage. Damage... inch in width, or when healed and the appearance is materially affected; (b) Pulled stems when the exposed stem cavity is excessively deep, or when skin surrounding the stem cavity is more than slightly...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., CERTIFICATION, AND STANDARDS) United States Standards for Florida Avocados Definitions § 51.3064 Damage. Damage... inch in width, or when healed and the appearance is materially affected; (b) Pulled stems when the exposed stem cavity is excessively deep, or when skin surrounding the stem cavity is more than slightly...
Wells-Knecht, M C; Lyons, T J; McCance, D R; Thorpe, S R; Baynes, J W
1997-01-01
The glycoxidation products Nepsilon-(carboxymethyl)lysine and pentosidine increase in skin collagen with age and at an accelerated rate in diabetes. Their age-adjusted concentrations in skin collagen are correlated with the severity of diabetic complications. To determine the relative roles of increased glycation and/or oxidation in the accelerated formation of glycoxidation products in diabetes, we measured levels of amino acid oxidation products, distinct from glycoxidative modifications of amino acids, as independent indicators of oxidative stress and damage to collagen in aging and diabetes. We show that ortho-tyrosine and methionine sulfoxide are formed in concert with Nepsilon-(carboxymethyl)lysine and pentosidine during glycoxidation of collagen in vitro, and that they also increase with age in human skin collagen. The age-adjusted levels of these oxidized amino acids in collagen was the same in diabetic and nondiabetic subjects, arguing that diabetes per se does not cause an increase in oxidative stress or damage to extracellular matrix proteins. These results provide evidence for an age-dependent increase in oxidative damage to collagen and support previous conclusions that the increase in glycoxidation products in skin collagen in diabetes can be explained by the increase in glycemia alone, without invoking a generalized, diabetes-dependent increase in oxidative stress. PMID:9259583
Dye-enhanced laser welding for skin closure.
DeCoste, S D; Farinelli, W; Flotte, T; Anderson, R R
1992-01-01
The use of a laser to weld tissue in combination with a topical photosensitizing dye permits selective delivery of energy to the target tissue. A combination of indocyanine green (IG), absorption peak 780 nm, and the near-infrared (IR) alexandrite laser was studied with albino guinea pig skin. IG was shown to bind to the outer 25 microns of guinea pig dermis and appeared to be bound to collagen. The optical transmittance of full-thickness guinea pig skin in the near IR was 40% indicating that the alexandrite laser should provide adequate tissue penetration. Laser "welding" of skin in vivo was achieved at various concentrations of IG from 0.03 to 3 mg/cc using the alexandrite at 780 nm, 250-microseconds pulse duration, 8 Hz, and a 4-mm spot size. A spectrum of welds was obtained from 1- to 20-W/cm2 average irradiance. Weak welds occurred with no thermal damage obtained at lower irradiances: stronger welds with thermal damage confined to the weld site occurred at higher irradiances. At still higher irradiances, local vaporization occurred with failure to "weld." Thus, there was an optimal range of irradiances for "welding," which varied inversely with dye concentration. Histology confirmed the thermal damage results that were evident clinically. IG dye-enhanced laser welding is possible in skin and with further optimization may have practical application.
Debonding in Composite Skin/Stringer Configurations Under Multi-Axial Loading
NASA Technical Reports Server (NTRS)
Cvitkovich, Michael K.; Krueger, Ronald; OBrien, T.; Minguet, Pierre J.
2004-01-01
The objective of this work was to investigate the damage mechanisms in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions as typically experienced by aircraft crown fuselage panels. The specimens for all tests were identical and consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both loads simultaneously. Microscopic investigations of the specimen edges were used to document the damage occurrence and to identify typical damage patterns. The observations showed that, for all three load cases, failure initiated in the flange near the flange tip causing the flange to almost fully debond from the skin. A two-dimensional plain-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, principal stresses exceeded the transverse strength of the material in the flange area. Additionally, delaminations of various lengths were simulated in the locations where delaminations were experimentally observed. The analyses showed that unstable delamination propagation is likely to occur at the loads corresponding to matrix ply crack initiation for all three loadings.
NASA Technical Reports Server (NTRS)
Paris, Isabelle L.; Krueger, Ronald; OBrien, T. Kevin
2004-01-01
The difference in delamination onset predictions based on the type and location of the assumed initial damage are compared in a specimen consisting of a tapered flange laminate bonded to a skin laminate. From previous experimental work, the damage was identified to consist of a matrix crack in the top skin layer followed by a delamination between the top and second skin layer (+45 deg./-45 deg. interface). Two-dimensional finite elements analyses were performed for three different assumed flaws and the results show a considerable reduction in critical load if an initial delamination is assumed to be present, both under tension and bending loads. For a crack length corresponding to the peak in the strain energy release rate, the delamination onset load for an assumed initial flaw in the bondline is slightly higher than the critical load for delamination onset from an assumed skin matrix crack, both under tension and bending loads. As a result, assuming an initial flaw in the bondline is simpler while providing a critical load relatively close to the real case. For the configuration studied, a small delamination might form at a lower tension load than the critical load calculated for a 12.7 mm (0.5") delamination, but it would grow in a stable manner. For the bending case, assuming an initial flaw of 12.7 mm (0.5") is conservative, the crack would grow unstably.
Becattini, Barbara; Zani, Fabio; Breasson, Ludovic; Sardi, Claudia; D'Agostino, Vito Giuseppe; Choo, Min-Kyung; Provenzani, Alessandro; Park, Jin Mo; Solinas, Giovanni
2016-09-01
Obesity and insulin resistance are associated with oxidative stress, which may be implicated in the progression of obesity-related diseases. The kinase JNK1 has emerged as a promising drug target for the treatment of obesity and type 2 diabetes. JNK1 is also a key mediator of the oxidative stress response, which can promote cell death or survival, depending on the magnitude and context of its activation. In this article, we describe a study in which the long-term effects of JNK1 inactivation on glucose homeostasis and oxidative stress in obese mice were investigated for the first time. Mice lacking JNK1 (JNK1(-/-)) were fed an obesogenic high-fat diet (HFD) for a long period. JNK1(-/-) mice fed an HFD for the long term had reduced expression of antioxidant genes in their skin, more skin oxidative damage, and increased epidermal thickness and inflammation compared with the effects in control wild-type mice. However, we also observed that the protection from obesity, adipose tissue inflammation, steatosis, and insulin resistance, conferred by JNK1 ablation, was sustained over a long period and was paralleled by decreased oxidative damage in fat and liver. We conclude that compounds targeting JNK1 activity in brain and adipose tissue, which do not accumulate in the skin, may be safer and most effective.-Becattini, B., Zani, F., Breasson, L., Sardi, C., D'Agostino, V. G., Choo, M.-K., Provenzani, A., Park, J. M., Solinas, G. JNK1 ablation in mice confers long-term metabolic protection from diet-induced obesity at the cost of moderate skin oxidative damage. © FASEB.
Coelho, Sergio G; Yin, Lanlan; Smuda, Christoph; Mahns, Andre; Kolbe, Ludger; Hearing, Vincent J
2015-03-01
Repetitive suberythemal UVA and/or UVB exposures were used to generate comparable UV-induced tans in human skin over the course of 2 weeks. To evaluate the potential photoprotective values of those UVA- and/or UVB- induced tans and to avoid the confounding issue of residual UV-induced DNA damage, we waited 1 week before challenging those areas with a 1.5 MED of UVA+UVB after which we measure DNA damage. The results show that the type of UV used to induce skin pigmentation affects the redistribution of melanin in the skin and/or de novo melanin synthesis. The UVA-induced tans failed to even provide a minimal SPF of 1.5, which suggests that producing a tan with UVA-rich sunlamps prior to a holiday or vacation is completely counterproductive. Published 2014. This article is a US Government work and is in the public domain in the USA.
Zhuang, Yongliang; Hou, Hu; Zhao, Xue; Zhang, Zhaohui; Li, Bafang
2009-08-01
Collagen (JC) was extracted from jellyfish (Rhopilema esculentum) and hydrolyzed to prepare collagen hydrolysate (JCH). The protective effects of JC and JCH against UV-induced damages to mice skin were evaluated and compared in this article. JC and JCH could alleviate the UV-induced abnormal changes of antioxidative indicators, including the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities and the contents of glutathione (GSH) and malondiaidehyde (MDA). JC and JCH could protect skin lipid and collagen from the UV radiation damages. Furthermore, the changes of total ceramide and glycosaminoglycan in skin were recovered significantly by JC and JCH. The action mechanisms mainly involved the antioxidative properties and the repairing to endogenous collagen synthesis of JC and JCH in vivo. JCH with the lower molecular weight showed much higher effects than JC. The results indicated that JCH was a novel antiphotoaging agent from natural resources.
Low and high velocity impact response of thick hybrid composites
NASA Technical Reports Server (NTRS)
Hiel, Clement; Ishai, Ori
1993-01-01
The effects of low and high velocity impact on thick hybrid composites (THC's) were experimentally compared. Test Beams consisted of CFRP skins which were bonded onto an interleaved syntactic foam core and cured at 177 C (350 F). The impactor tip for both cases was a 16 mm (0.625 inch) steel hemisphere. In spite of the order of magnitude difference in velocity ranges and impactor weights, similar relationships between impact energy, damage size, and residual strength were found. The dependence of the skin compressive strength on damage size agree well with analytical open hole models for composite laminates and may enable the prediction of ultimate performance for the damaged composite, based on visual inspection.
Simulation of Detecting Damage in Composite Stiffened Panel Using Lamb Waves
NASA Technical Reports Server (NTRS)
Wang, John T.; Ross, Richard W.; Huang, Guo L.; Yuan, Fuh G.
2013-01-01
Lamb wave damage detection in a composite stiffened panel is simulated by performing explicit transient dynamic finite element analyses and using signal imaging techniques. This virtual test process does not need to use real structures, actuators/sensors, or laboratory equipment. Quasi-isotropic laminates are used for the stiffened panels. Two types of damage are studied. One type is a damage in the skin bay and the other type is a debond between the stiffener flange and the skin. Innovative approaches for identifying the damage location and imaging the damage were developed. The damage location is identified by finding the intersection of the damage locus and the path of the time reversal wave packet re-emitted from the sensor nodes. The damage locus is a circle that envelops the potential damage locations. Its center is at the actuator location and its radius is computed by multiplying the group velocity by the time of flight to damage. To create a damage image for estimating the size of damage, a group of nodes in the neighborhood of the damage location is identified for applying an image condition. The image condition, computed at a finite element node, is the zero-lag cross-correlation (ZLCC) of the time-reversed incident wave signal and the time reversal wave signal from the sensor nodes. This damage imaging process is computationally efficient since only the ZLCC values of a small amount of nodes in the neighborhood of the identified damage location are computed instead of those of the full model.
NASA Astrophysics Data System (ADS)
Pradeep, K. R.; Thomas, A. M.; Basker, V. T.
2018-03-01
Structural health monitoring (SHM) is an essential component of futuristic civil, mechanical and aerospace structures. It detects the damages in system or give warning about the degradation of structure by evaluating performance parameters. This is achieved by the integration of sensors and actuators into the structure. Study of damage detection process in piezoelectric sensor and actuator integrated sandwich cantilever beam is carried out in this paper. Possible skin-core debond at the root of the cantilever beam is simulated and compared with undamaged case. The beam is actuated using piezoelectric actuators and performance differences are evaluated using Polyvinylidene fluoride (PVDF) sensors. The methodology utilized is the voltage/strain response of the damaged versus undamaged beam against transient actuation. Finite element model of piezo-beam is simulated in ANSYSTM using 8 noded coupled field element, with nodal degrees of freedoms are translations in the x, y directions and voltage. An aluminium sandwich beam with a length of 800mm, thickness of core 22.86mm and thickness of skin 0.3mm is considered. Skin-core debond is simulated in the model as unmerged nodes. Reduction in the fundamental frequency of the damaged beam is found to be negligible. But the voltage response of the PVDF sensor under transient excitation shows significantly visible change indicating the debond. Piezo electric based damage detection system is an effective tool for the damage detection of aerospace and civil structural system having inaccessible/critical locations and enables online monitoring possibilities as the power requirement is minimal.
[Preventive measures against health damage due to chemicals in household products].
Kaniwa, Masa-aki
2010-01-01
Chemicals in household products have been paid much attention as the main cause of health damage in consumers, such as allergic contact dermatitis. Preventive measures against health damage due to chemicals in fabrics, plastics and rubber products for household use, are reviewed, focusing on 1) the incidence of health damage due to household products, 2) causative product-chemical investigation, and 3) case studies on skin damage.
Prevention of Incontinence Associated Skin Damage in Nursing Homes: Disparities and Predictors
Bliss, Donna Z.; Gurvich, Olga V.; Mathiason, Michelle A.; Eberly, Lynn E.; Savik, Kay; Harms, Susan; Mueller, Christine; Wyman, Jean F.; Virnig, Beth
2016-01-01
Racial/ethnic disparities in preventing health problems have been reported in nursing homes. Incontinence is common among nursing home residents and can result in inflammatory-type skin damage, referred to as incontinence associated skin damage (IASD). Little is known about the prevention of IASD and whether there are racial/ethnic disparities in its prevention. This study assessed the proportion of older nursing home residents receiving IASD prevention after developing incontinence after admission (n=10,713) and whether there were racial/ethnic disparities in IASD prevention. Predictors of preventing IASD were also examined. Four national datasets provided potential predictors at multiple levels. Disparities were analyzed using the Peters-Belson method; predictors of preventing IASD were assessed using hierarchical logistic regression. Prevention of IASD was received by 0.12 of residents and no racial/ethnic disparities were found. Predictors of preventing IASD were primarily resident level factors including limitations in activities of daily living, poor nutrition, and more oxygenation problems. PMID:27586441
Experimental study of thin film sensor networks for wind turbine blade damage detection
NASA Astrophysics Data System (ADS)
Downey, A.; Laflamme, S.; Ubertini, F.; Sauder, H.; Sarkar, P.
2017-02-01
Damage detection of wind turbine blades is difficult due to their complex geometry and large size, for which large deployment of sensing systems is typically not economical. A solution is to develop and deploy dedicated sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel skin-type strain gauge for measuring strain over very large surfaces. The skin, a type of large-area electronics, is constituted from a network of soft elastomeric capacitors. The sensing system is analogous to a biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization of a dense network of soft elastomeric capacitors to detect, localize, and quantify damage on wind turbine blades. We also leverage mature off-the-shelf technologies, in particular resistive strain gauges, to augment such dense sensor network with high accuracy data at key locations, therefore constituting a hybrid dense sensor network. The proposed hybrid dense sensor network is installed inside a wind turbine blade model, and tested in a wind tunnel to simulate an operational environment. Results demonstrate the ability of the hybrid dense sensor network to detect, localize, and quantify damage.
Madden, Victoria J; Catley, Mark J; Grabherr, Luzia; Mazzola, Francesca; Shohag, Mohammad; Moseley, G Lorimer
2016-01-01
Background. Nd:YAP laser is widely used to investigate the nociceptive and pain systems, generating perpetual and laser-evoked neurophysiological responses. A major procedural concern for the use of Nd:YAP laser stimuli in experimental research is the risk of skin damage. The absorption of Nd:YAP laser stimuli is greater in darker skin, or in pale skin that has been darkened with ink, prompting some ethics boards to refuse approval to experimenters wishing to track stimulus location by marking the skin with ink. Some research questions, however, require laser stimuli to be delivered at particular locations or within particular zones, a requirement that is very difficult to achieve if marking the skin is not possible. We thoroughly searched the literature for experimental evidence and protocol recommendations for safe delivery of Nd:YAP laser stimuli over marked skin, but found nothing. Methods. We designed an experimental protocol to define safe parameters for the use of Nd:YAP laser stimuli over skin that has been marked with black dots, and used thermal imaging to assess the safety of the procedure at the forearm and the back. Results. Using thermal imaging and repeated laser stimulation to ink-marked skin, we demonstrated that skin temperature did not increase progressively across the course of the experiment, and that the small change in temperature seen at the forearm was reversed during the rest periods between blocks. Furthermore, no participant experienced skin damage due to the procedure. Conclusion. This protocol offers parameters for safe, confident and effective experimentation using repeated Nd:YAP laser on skin marked with ink, thus paving the way for investigations that depend on it.
Code of Federal Regulations, 2012 CFR
2012-01-01
... material. The shells are clean, fairly bright, fairly uniform color, and free from damage caused by..., rancidity, and free from damage caused by insects, mold, gum, skin discoloration, shriveling, brown spot or...
Risk Assessment of Face Skin Exposure to UV Irradiance from Different Rotation Angle Ranges
Wang, Fang; Gao, Qian; Deng, Yan; Chen, Rentong; Liu, Yang
2017-01-01
Ultraviolet (UV) is one of the environmental pathogenic factors causing skin damage. Aiming to assess the risk of face skin exposure to UV irradiance from different rotation angles, a rotating model was used to monitor the exposure of the skin on the face to UV irradiance, with skin damage action spectra used to determine the biologically effective UV irradiance (UVBEskin) and UVBEskin radiant exposure (HBEskin) causing skin damage. The results indicate that the UVBEskin is directly influenced by variations in rotation angles. A significant decrease of approximately 52.70% and 52.10% in UVBEskin was found when the cheek and nose measurement sites was rotated from 0° to 90°, while a decrease of approximately 62.70% was shown when the forehead measurement sites was rotated from an angle of 0° to 108°. When HBEskin was compared to the exposure limits (ELs; 30 J·m−2), the maximum relative risk ratios (RR) for cheek, nose, and forehead were found to be approximately 2.01, 2.40, and 2.90, respectively, which were all measured at a rotation angle of 0°. The maximal increase in the percentage of the average HBEskin for rotation angles of 60°, 120°, 180°, and 360° facing the sun to ELs were found to be approximately 62.10%, 52.72%, 43.43%, and 26.27% for the cheek; approximately 130.61%, 109.68%, 86.43%, and 50.06% for the nose; and approximately 178.61%, 159.19%, 134.38%, and 83.41% for the forehead, respectively. PMID:28587318
Take Action to Protect Your Skin from the Sun | Poster
Soaking up the sun’s rays may give you a great tan, but it may increase your risk of skin cancer in the future. This is especially true if, for example, you have lighter skin or a family history of skin cancer. Any change to the color of your skin indicates damage from ultraviolet (UV) rays, which can lead to skin cancer. According to the Centers for Disease Control (CDC), skin cancer is most common type of cancer diagnosed in the United States. Statistics from the National Cancer Institute (NCI) show that only 2 percent of all skin cancers are melanoma, but melanoma is the cause of most skin cancer–related deaths. Skin cancer is composed of basal and squamous cells, and begins in the outer layer of the skin.
A model for quantitative evaluation of skin damage at adhesive wound dressing removal.
Matsumura, Hajime; Ahmatjan, Niyaz; Ida, Yukiko; Imai, Ryutaro; Wanatabe, Katsueki
2013-06-01
The removal of adhesive wound dressings from the wound surface involves a risk of damaging the intact stratum corneum and regenerating epithelium. Pain associated with the removal of wound dressings is a major issue for patients and medical personnel. Recently, wound dressings coated with a silicone adhesive have been developed to reduce such skin damage and pain on removal and they have received good evaluation in various clinical settings. However, there is neither a standard method to quantify whether or not the integrity of the stratum corneum and regenerating epithelium is retained or if both structures are damaged by the removal of wound dressings, nor are there standardised values with which to assess skin damage. We applied six different types of adhesive wound dressing on plain copy paper printed with black ink by a laser printer, removed the dressings, examined the adhesive-coated surface of the wound dressings using a high-power videoscope, and examined the stripped areas. Wound dressings coated with a silicone adhesive showed significantly less detachment of the stratum corneum and regenerating epithelium, followed by those coated with polyurethane, hydrocolloid, and acrylic adhesives. The assessment method utilised in this study revealed distinct differences between wound dressing types, but less variation in the evaluation outcome of each type. This assessment method may be useful for the evaluation of adhesive wound dressings, particularly during product development. However, further studies will be needed to examine the effectiveness of this assessment method in the clinical setting because the adherent properties of polyurethane and hydrocolloid adhesives may be altered by the absorption of water from the skin. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.
Sun, Yang; Wang, Peiling; Li, Hongyu; Dai, Jun
2018-06-26
A diverse array of biological processes are under circadian controls. In mouse skin, ultraviolet ray (UVR)-induced apoptosis and DNA damage responses are time-of-day dependent, which are controlled by core clock proteins. This study investigates the roles of clock proteins in regulating UVB responses in human keratinocytes (HKCs). We found that the messenger RNA expression of brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) genes is altered by low doses (5 mJ/cm 2 ) of UVB in the immortalized HaCat HKCs cell line. Although depletion of BMAL1 or CLOCK has no effect on the activation of Rad3-related protein kinases-checkpoint kinase 1-p53 mediated DNA damage checkpoints, it leads to suppression of UVB-stimulated apoptotic responses, and downregulation of UVB-elevated expression of DNA damage marker γ-H2AX and cell cycle inhibitor p21. Diminished apoptotic responses are also observed in primary HKCs depleted of BMAL1 or CLOCK after UVB irradiation. While CLOCK depletion shows a suppressive effect on UVB-induced p53 protein accumulation, depletion of either clock gene triggers early keratinocyte differentiation of HKCs at their steady state. These results suggest that UVB-induced apoptosis and DNA damage responses are controlled by clock proteins, but via different mechanisms in the immortalized human adult low calcium temperature and primary HKCs. Given the implication of UVB in photoaging and photocarcinogenesis, mechanistic elucidation of circadian controls on UVB effects in human skin will be critical and beneficial for prevention and treatment of skin cancers and other skin-related diseases. © 2018 Wiley Periodicals, Inc.
[Preventive measures against health damage due to chemicals in household products].
Kaniwa, Masa-aki
2006-01-01
Chemicals in household products have been paid much attention as main cause of health damage on consumers, such as allergic contact dermatitis. Preventive measures against health damage due to chemicals in fabric, plastic and rubber products for household uses, are reviewed, focusing on (1) regulation and voluntary control by manufacturers, (2) incidence of health damage from household products, (3) causative product-chemical investigation, (4) case studies on skin damage and respiratory tract damage.
Pulse Width Dependence Of Pigment Cell Damage At 694 nm In Guinea Pig Skin
NASA Astrophysics Data System (ADS)
Dover, Jeffrey S.; Polla, Luigi L.; Margolis, Randall J.; Whitaker, Diana; Watanabe, Schinichi; Murphy, George F.; Parrish, John A.; Anderson, R. R.
1987-03-01
351 nm, 20-nsec XeF excimer laser irradiation has previously been shown to selectively target and damage melanosomes in human skin. In the following studies selective targeting with melanosomal photodisruption has been demonstrated in pigmented guinea pig skin with a Q-switched 40-nsec ruby laser, and a 750-nsec pulsed dye laser but not with a 400-usec pulsed dye laser. The pulse width dependence of melanosomal disruption, occurring only at pulsewidths shorter than the thermal relaxation time of the melanosome (0.5 - 1.0 usec), is in accordance with the theory of selective photothermolysis. Possible mechanisms of melanosomal photodisruption include development of sudden thermal gradients leading to cavitation or shock wave production.
Synthesis and biological evaluation of sulfur-containing cinnamate and salicylate derivatives.
Chiang, Chih-Chia; Chang, Tsu-Chung; Tsai, Hou-Jen; Hsu, Ling-Yih
2008-03-01
UV irradiation induced formation of reactive oxygen radical species and matrix metalloproteinases (MMPs) are thought to be involved in photo-damage to the skin. MMP-1 is the major collagenolytic enzyme responsible for collagen destruction in skin tissue. To develop new anti-photoaging agents, a series of 2,2'-dithiocinnamate derivatives and 2,2'-dithio or 2-thiobenzoate derivatives were designed and synthesized. The biological activities of the synthesized compounds were assayed for ABTS [2,2'-azinobis-(3-ethyl-benzo-thiazoline-6-sulfonic acid)] radical scavenging activity, MMP-1 inhibitory activity, and cytotoxicity to human dermal fibroblast cells. Compounds with potential of resistance to UV irradiation were identified. These compounds are expected to be useful for preventing photo-damage to the skin.
[The role of free radicals in the UV-induced skin damage. Photo-aging].
Emri, Gabriella; Horkay, Irén; Remenyik, Eva
2006-04-23
The natural (intrinsic) ageing of the skin is enhanced by environmental factors (extrinsic ageing). One of the most important exogenous factors is the solar UV exposure, which results in photo-aging. Besides this, epidemiological and experimental data show a rapid increase in the incidence of human skin cancers, which is also in relation to the increased sunlight exposure of the skin. In the background of these processes there are cell biological effects, photochemical reactions, membrane receptor changes, lipid- and protein modifications, DNA-damage induced by UV. The qualities and quantities of them are wavelength dependent. The UVB photons are absorbed mostly by the DNA of the epidermal keratinocytes, therefore this spectrum is more relevant for photocarcinogenesis. The effect of UVA-irradiation is mainly manifested in the induction of free radicals, which have not only DNA-damaging, but also immunomodulating effect, which also can influence on tumour development. Furthermore, the free radicals cause dermal connective tissue damage as well via activating transcription factors, inducing matrix metalloproteinases, diminishing the procollagen I and fibrillin-1 synthesis. These processes are augmented by mitochondrial DNA mutations, protein oxidation, apoptosis induction. Therefore the enzymes neutralising free radicals and antioxidant molecules, respectively, have an important role in the defence mechanisms. In the therapy of photo-aging the local retinoids lived up to expectations, but the clinical effectiveness of antioxidant vitamins is lower than expected. The most important factor in the prevention of the photo-aging and photocarcinogenesis is the sun protection at present.
Lee, Ju Hwan; Park, So Ra; Jo, Jeong Ho; Park, Sung Yun; Seo, Young Kwon; Kim, Sung Min
2014-07-01
The purpose of this study was to compare degrees of epidermal/dermal tissue damage quantitatively and histologically after laser irradiation, to find ideal treatment conditions with relatively high fluence for skin rejuvenation. A number of recent studies have evaluated the clinical efficacy and safety of therapeutic lasers under relatively low fluence conditions. We transmitted the long-pulsed 1064 nm Nd:YAG and 755 nm Alexandrite lasers into pig skin according to different fluences and spot diameters, and estimated epidermal/dermal temperatures. Pig skin specimens were stained with hematoxylin and eosin for histological assessments. The fluence conditions comprised 26, 30, and 36 J/cm2, and the spot diameter conditions were 5, 8, and 10 mm. Pulse duration was 30 ms for all experiments. Both lasers produced reliable thermal damage on the dermis without any serious epidermal injuries, under relatively high fluence conditions. The 1064 nm laser provided more active fibrous formations than the 755 nm laser, while higher risks for tissue damages simultaneously occurred. The ideal treatment conditions for skin rejuvenation were 8 mm diameter with 30 J/cm2 and 10 mm diameter with 26 J/cm2 for the 1064 nm laser, and 8 mm diameter with 36 J/cm2 and 10 mm diameter with 26 J/cm2 for the 755 nm laser.
Mauro, Marcella; Crosera, Matteo; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Piero; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Larese Filon, Francesca
2015-01-01
Skin absorption and toxicity on keratinocytes of cobalt oxide nanoparticles (Co3O4NPs) have been investigated. Co3O4NPs are commonly used in industrial products and biomedicine. There is evidence that these nanoparticles can cause membrane damage and genotoxicity in vitro, but no data are available on their skin absorption and cytotoxicity on keratinocytes. Two independent 24 h in vitro experiments were performed using Franz diffusion cells, using intact (experiment 1) and needle-abraded human skin (experiment 2). Co3O4NPs at a concentration of 1000 mg/L in physiological solution were used as donor phase. Cobalt content was evaluated by Inductively Coupled–Mass Spectroscopy. Co permeation through the skin was demonstrated after 24 h only when damaged skin protocol was used (57 ± 38 ng·cm−2), while no significant differences were shown between blank cells (0.92 ± 0.03 ng cm−2) and those with intact skin (1.08 ± 0.20 ng·cm−2). To further investigate Co3O4NPs toxicity, human-derived HaCaT keratinocytes were exposed to Co3O4NPs and cytotoxicity evaluated by MTT, Alamarblue® and propidium iodide (PI) uptake assays. The results indicate that a long exposure time (i.e., seven days) was necessary to induce a concentration-dependent cell viability reduction (EC50 values: 1.3 × 10−4 M, 95% CL = 0.8–1.9 × 10−4 M, MTT essay; 3.7 × 10−5 M, 95% CI = 2.2–6.1 × 10−5 M, AlamarBlue® assay) that seems to be associated to necrotic events (EC50 value: 1.3 × 10−4 M, 95% CL = 0.9–1.9 × 10−4 M, PI assay). This study demonstrated that Co3O4NPs can penetrate only damaged skin and is cytotoxic for HaCat cells after long term exposure. PMID:26193294
Melatonin: A Cutaneous Perspective on its Production, Metabolism, and Functions.
Slominski, Andrzej T; Hardeland, Ruediger; Zmijewski, Michal A; Slominski, Radomir M; Reiter, Russel J; Paus, Ralf
2018-03-01
Melatonin, an evolutionarily ancient derivative of serotonin with hormonal properties, is the main neuroendocrine secretory product of the pineal gland. Although melatonin is best known to regulate circadian rhythmicity and lower vertebrate skin pigmentation, the full spectrum of functional activities of this free radical-scavenging molecule, which also induces/promotes complex antioxidative and DNA repair systems, includes immunomodulatory, thermoregulatory, and antitumor properties. Because this plethora of functional melatonin properties still awaits to be fully appreciated by dermatologists, the current review synthesizes the main features that render melatonin a promising candidate for the management of several dermatoses associated with substantial oxidative damage. We also review why melatonin promises to be useful in skin cancer prevention, skin photo- and radioprotection, and as an inducer of repair mechanisms that facilitate the recovery of human skin from environmental damage. The fact that human skin and hair follicles not only express functional melatonin receptors but also engage in substantial, extrapineal melatonin synthesis further encourages one to systematically explore how the skin's melatonin system can be therapeutically targeted in future clinical dermatology and enrolled for preventive medicine strategies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Extract of Punica granatum inhibits skin photoaging induced by UVB irradiation.
Park, Hye Min; Moon, Eunjung; Kim, Ae-Jung; Kim, Mi Hyun; Lee, Sanghee; Lee, Jung Bok; Park, Yong Kon; Jung, Hyuk-Sang; Kim, Yoon-Bum; Kim, Sun Yeou
2010-03-01
Punica granatum (pomegranate) is kind of a fruit consumed fresh or in beverage. It has been widely used in traditional medicine in various parts of the world. In this study, we examined the efficacy of a Punica granatum (PG) extract in protecting skin against UVB-induced damage using cultured human skin fibroblasts. A Korean red PG sample was used, and its effects classified according to if the PG source originated from the rind, seed and fruit. The polyphenol content of PG, which is known to prevent other adverse cutaneous effects of UV irradiation, was measured by GC-MS. The protective effects of PG on UVB-induced skin photoaging were examined by determining the level of procollagen type I and MMP-1 after UVB irradiation. Based on the GC-MS quantitative analysis, catechin, quercetin, kaempferol, and equol were the predominant compounds detected in PG. In the changes of expression of procollagen type I and MMP-1 in UV irradiated human skin fibroblasts treated PG, especially extract prepared from rind, the synthesis of collagen was increased and the expression of MMP-1 was decreased. The major polyphenols in PG, particularly catechin, play a significant role in its photoprotective effects on UVB-induced skin damage.
Leerach, Nontaphat; Yakaew, Swanya; Phimnuan, Preeyawass; Soimee, Wichuda; Nakyai, Wongnapa; Luangbudnark, Witoo; Viyoch, Jarupa
2017-03-01
Chronic UVB exposure causes skin disorders and cancer through DNA strand breaks and oxidation of numerous functional groups of proteins and lipids in the skin. In this study, we investigated the effects of Thai banana (Musa AA group, "Khai," and Musa ABB group, "Namwa") on the prevention of UVB-induced skin damage when fed to male ICR mice. Mice were orally fed banana (Khai or Namwa) fruit pulps at dose of 1mg/g body weight/day for 12weeks. The shaved backs of the mice were irradiated with UVB for 12weeks. The intensity dose of UVB-exposure was increased from 54mJ/cm 2 /exposure at week 1 to 126mJ/cm 2 /exposure at week 12. A significant increase in skin thickness, lipid peroxidation, protein oxidation end products, and expression of MMP-1 was observed in UVB-irradiated mouse skin. A reduction in the accumulation of oxidation end products was found in the skin of UVB-irradiated mice receiving Khai. This occurred in conjunction with a reduction in MMP-1 expression, inhibition of epidermal thickening, and induction of γ-GCS expression. The dietary intake of Khai prevented skin damage from chronic UVB exposure by increased γ-GCS expression and reduced oxidation end products included carbonyls, malondialdehyde and 4-hydroxynonenal. Copyright © 2017 Elsevier B.V. All rights reserved.
Recommendations for managing cutaneous disorders associated with advancing age
Humbert, Philippe; Dréno, Brigitte; Krutmann, Jean; Luger, Thomas Anton; Triller, Raoul; Meaume, Sylvie; Seité, Sophie
2016-01-01
The increasingly aged population worldwide means more people are living with chronic diseases, reduced autonomy, and taking various medications. Health professionals should take these into consideration when managing dermatological problems in elderly patients. Accordingly, current research is investigating the dermatological problems associated with the loss of cutaneous function with age. As cell renewal slows, the physical and chemical barrier function declines, cutaneous permeability increases, and the skin becomes increasingly vulnerable to external factors. In geriatric dermatology, the consequences of cutaneous aging lead to xerosis, skin folding, moisture-associated skin damage, and impaired wound healing. These problems pose significant challenges for both the elderly and their carers. Most often, nurses manage skin care in the elderly. However, until recently, little attention has been paid to developing appropriate, evidence-based, skincare protocols. The objective of this paper is to highlight common clinical problems with aging skin and provide some appropriate advice on cosmetic protocols for managing them. A review of the literature from 2004 to 2014 using PubMed was performed by a working group of six European dermatologists with clinical and research experience in dermatology. Basic topical therapy can restore and protect skin barrier function, which relieves problems associated with xerosis, prevents aggravating moisture-associated skin damage, and enhances quality of life. In conclusion, the authors provide physicians with practical recommendations to assist them in implementing basic skin care for the elderly in an integrated care approach. PMID:26929610
Meningococcal ACWY Vaccines - MenACWY and MPSV4: What You Need to Know
... disabilities such as hearing loss, brain damage, kidney damage, amputations, nervous system problems, or severe scars from skin grafts. Meningococcal ACWY vaccines can help prevent meningococcal disease caused by serogroups ...
Akasaka, Emiko; Takekoshi, Susumu; Horikoshi, Yosuke; Toriumi, Kentarou; Ikoma, Norihiro; Mabuchi, Tomotaka; Tamiya, Shiho; Matsuyama, Takashi; Ozawa, Akira
2010-12-20
Oxidative stress derived from ultraviolet (UV) light in sunlight induces different hazardous effects in the skin, including sunburn, photo-aging and DNA mutagenesis. In this study, the protein-bound lipid peroxidation products 4-hydroxy-2-nonenal (HNE) and the oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine (8OHdG) were investigated in chronically sun-exposed and sun-protected human skins using immunohistochemistry. The levels of antioxidative enzymes, such as heme oxygenase 1 and 2, Cu/Zn-SOD, Mn-SOD and catalase, were also examined. Oxidative stress is also implicated in the activation of signal transduction pathways, such as mitogen-activated protein kinase (MAPK). Therefore, the expression and distribution of phosphorylated p38 MAPK, phosphorylated Jun N-terminal kinase (JNK) and phosphorylated extracellular signal-regulated kinase (ERK) were observed. Skin specimens were obtained from the surgical margins. Chronically sunlight-exposed skin samples were taken from the ante-auricular (n = 10) and sunlight-protected skin samples were taken from the post-auricular (n = 10). HNE was increased in the chronically sunlight-exposed skin but not in the sunlight-protected skin. The expression of heme oxygenase-2 was markedly increased in the sunlight-exposed skin compared with the sun-protected skin. In contrast, the intensity of immunostaining of Cu/Zn-SOD, Mn-SOD and catalase was not different between the two areas. Phosphorylated p38 MAPK and phosphorylated JNK accumulated in the ante-auricular dermis and epidermis, respectively. These data show that particular anti-oxidative enzymes function as protective factors in chronically sunlight-exposed human skin. Taken together, our results suggest (1) antioxidative effects of heme oxygenase-2 in chronically sunlight-exposed human skin, and that (2) activation of p38 MAPK may be responsible for oxidative stress.
Morphogenesis and Biomechanics of Engineered Skin Cultured Under Uniaxial Strain.
Blackstone, Britani N; Powell, Heather M
2012-04-01
Split-thickness autograft is the standard wound treatment for full-thickness burns. In large burns, sparse availability of uninjured skin prevents rapid closure of the wound, resulting in increased scar tissue formation or mortality. Tissue-engineered skin (ES) offers promise when autografts are not available. ES, constructed from a polymeric scaffold and skin cells, has been shown to reduce donor site area required to permanently close wounds, mortality, and morbidity from scarring but cannot restore all skin functions. Current generations of ES are orders of magnitude weaker than normal human skin, leading to difficulty in surgical application, greater susceptibility to mechanical damage during fabrication and application, and less elasticity and strength once engrafted. Previous studies to improve ES biomechanics focus on altering the scaffolding material, which resulted in modest improvements but often inhibited proper skin development. As the skin is naturally under static strain, adding these mechanical cues to the culture environment is hypothesized to improve ES biomechanics. ES was cultured under applied static strains ranging from 0% to 40% strain for a total of 10 days. Strain magnitudes of 10% and 20% strain resulted in significantly stronger ES than unstrained controls, showed upregulation of many genes encoding structural extracellular matrix proteins, and exhibited increased epidermal cell proliferation and differentiation. Enhanced biomechanical properties of ES can allow for facile surgical application and less damage during dressing changes. These findings suggest that mechanical cues play a significant role in skin development and should be further explored.
MDI 301, a nonirritating retinoid, improves abrasion wound healing in damaged/atrophic skin
Warner, Roscoe L.; Bhagavathula, Narasimharao; Nerusu, Kamalakar; Hanosh, Andrew; McClintock, Shannon D.; Naik, Madhav K.; Johnson, Kent J.; Ginsburg, Isaac; Varani, James
2010-01-01
MDI 301 is a picolinic acid-substituted ester of 9-cis retinoic acid. It has been shown in the past that MDI 301 increases epidermal thickness, decreases matrix metalloproteinase (MMP) activity, and increases procollagen synthesis in organ-cultured human skin. Unlike all-trans retinoic acid (RA), MDI 301 does not induce expression of proinflammatory cytokines or induce expression of leukocyte adhesion molecules in human skin. In the present study we examined topical MDI 301 treatment for ability to improve the structure and function of skin in three models of skin damage in rodents and for ability to improve abrasion wound healing in these models. MDI 301 was applied daily to the skin of rats treated with the potent corticosteroid, clobetasol propionate, to the skin of diabetic rats (8 weeks posttreatment with streptozotocin) and to the skin of aged (14–16-month-old) rats. In all three models, subsequently induced abrasion wounds healed more rapidly in the retinoid-treated animals than in vehicle-treated controls. Immediately after complete wound closure, tissue from the wound site (as well as from a control site) was put into organ culture and maintained for 3 days. At the end of the incubation period, culture fluids were assessed for soluble type I collagen and for MMPs-2 and -9. In all three models, the level of type I collagen was increased and MMP levels were decreased by MDI 301. In all three models, skin irritation during the retinoid-treatment phase was virtually nonexistent. PMID:18211583
Infrared skin damage thresholds from 1319-nm continuous-wave laser exposures
NASA Astrophysics Data System (ADS)
Oliver, Jeffrey W.; Vincelette, Rebecca; Noojin, Gary D.; Clark, Clifton D.; Harbert, Corey A.; Schuster, Kurt J.; Shingledecker, Aurora D.; Kumru, Semih S.; Maughan, Justin; Kitzis, Naomi; Buffington, Gavin D.; Stolarski, David J.; Thomas, Robert J.
2013-12-01
A series of experiments were conducted in vivo using Yucatan miniature pigs (Sus scrofa domestica) to determine thermal damage thresholds to the skin from 1319-nm continuous-wave Nd:YAG laser irradiation. Experiments employed exposure durations of 0.25, 1.0, 2.5, and 10 s and beam diameters of ˜0.6 and 1 cm. Thermal imagery data provided a time-dependent surface temperature response from the laser. A damage endpoint of fifty percent probability of a minimally visible effect was used to determine threshold for damage at 1 and 24 h postexposure. Predicted thermal response and damage thresholds are compared with a numerical model of optical-thermal interaction. Resultant trends with respect to exposure duration and beam diameter are compared with current standardized exposure limits for laser safety. Mathematical modeling agreed well with experimental data, predicting that though laser safety standards are sufficient for exposures <10 s, they may become less safe for very long exposures.
Innate sensing of microbial products promotes wound-induced skin cancer.
Hoste, Esther; Arwert, Esther N; Lal, Rohit; South, Andrew P; Salas-Alanis, Julio C; Murrell, Dedee F; Donati, Giacomo; Watt, Fiona M
2015-01-09
The association between tissue damage, chronic inflammation and cancer is well known. However, the underlying mechanisms are unclear. Here we characterize a mouse model in which constitutive epidermal extracellular-signal-regulated kinase-MAP-kinase signalling results in epidermal inflammation, and skin wounding induces tumours. We show that tumour incidence correlates with wound size and inflammatory infiltrate. Ablation of tumour necrosis factor receptor (TNFR)-1/-2, Myeloid Differentiation primary response gene 88 or Toll-like receptor (TLR)-5, the bacterial flagellin receptor, but not other innate immune sensors, in radiosensitive leukocytes protects against tumour formation. Antibiotic treatment inhibits, whereas injection of flagellin induces, tumours in a TLR-5-dependent manner. TLR-5 is also involved in chemical-induced skin carcinogenesis in wild-type mice. Leukocytic TLR-5 signalling mediates upregulation of the alarmin HMGB1 (High Mobility Group Box 1) in wound-induced papillomas. HMGB1 is elevated in tumours of patients with Recessive Dystrophic Epidermolysis Bullosa, a disease characterized by chronic skin damage. We conclude that in our experimental model the combination of bacteria, chronic inflammation and wounding cooperate to trigger skin cancer.
Innate sensing of microbial products promotes wound-induced skin cancer
Hoste, Esther; Arwert, Esther N.; Lal, Rohit; South, Andrew P.; Salas-Alanis, Julio C.; Murrell, Dedee F.; Donati, Giacomo; Watt, Fiona M.
2015-01-01
The association between tissue damage, chronic inflammation and cancer is well known. However, the underlying mechanisms are unclear. Here we characterize a mouse model in which constitutive epidermal extracellular-signal-regulated kinase-MAP-kinase signalling results in epidermal inflammation, and skin wounding induces tumours. We show that tumour incidence correlates with wound size and inflammatory infiltrate. Ablation of tumour necrosis factor receptor (TNFR)-1/-2, Myeloid Differentiation primary response gene 88 or Toll-like receptor (TLR)-5, the bacterial flagellin receptor, but not other innate immune sensors, in radiosensitive leukocytes protects against tumour formation. Antibiotic treatment inhibits, whereas injection of flagellin induces, tumours in a TLR-5-dependent manner. TLR-5 is also involved in chemical-induced skin carcinogenesis in wild-type mice. Leukocytic TLR-5 signalling mediates upregulation of the alarmin HMGB1 (High Mobility Group Box 1) in wound-induced papillomas. HMGB1 is elevated in tumours of patients with Recessive Dystrophic Epidermolysis Bullosa, a disease characterized by chronic skin damage. We conclude that in our experimental model the combination of bacteria, chronic inflammation and wounding cooperate to trigger skin cancer. PMID:25575023
NASA Astrophysics Data System (ADS)
Kohlenberg, Elicia M.; Zanca, Jeanne; Brienza, David M.; Levasseur, Michelle A.; Sowa, Michael G.
2005-09-01
Pressure ulcers (sores) can occur when there is constant pressure being applied to tissue for extended periods of time. Immobile people are particularly prone to this problem. Ideally, pressure damage is detected at an early stage, pressure relief is applied and the pressure ulcer is averted. One of the hallmarks of pressure damaged skin is an obliterated blanch response due to compromised microcirculation near the surface of the skin. Visible reflectance spectroscopy can noninvasively probe the blood circulation of the upper layers of skin by measuring the electronic transitions arising from hemoglobin, the primary oxygen carrying protein in blood. A spectroscopic test was developed on a mixed population of 30 subjects to determine if the blanch response could be detected in healthy skin with high sensitivity and specificity regardless of the pigmentation of the skin. Our results suggest that a spectroscopic based blanch response test can accurately detect the blanching of healthy tissue and has the potential to be developed into a screening test for early stage I pressure ulcers.
Repair Mechanism of UV-damaged DNA in Xeroderma Pigmentosum | Center for Cancer Research
Xeroderma pigmentosum (XP) is a rare, inherited disorder characterized by extreme skin sensitivity to ultraviolet (UV) rays from sunlight. XP is caused by mutations in genes involved in nucleotide excision repair (NER) of damaged DNA. Normal cells are usually able to fix this damage before it leads to problems; however, the DNA damage is not repaired normally in patients with
SansEC Sensing Technology - A New Tool for Designing Space Systems and Components
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.
2011-01-01
This paper presents concepts for using the NASA developed SansEC sensing technology for reconfiguring/modifying many space subsystems to add to their original function the ability to be sensors/sensor arrays without the addition of the electrical circuitry typically used for sensors. Each sensor is a self-resonating planar pattern of electrically conductive material that is an open-circuit single component without electrical connections. The sensors are wirelessly powered using external oscillating magnetic fields and when electrically excited respond with their own magnetic fields whose frequency, amplitude and bandwidth can be correlated with the magnitude of multiple unrelated physical quantities. These sensors have been demonstrated for numerous measurements required for spacecraft and inflatable/expandable structures. SansEC sensors are damage resilient and simple to fabricate. Thin films of conductive material can be used to create sensor arrays that function as sensing skins. Each sensor on the skin can be tailored for a science or engineering measurement. Additionally, each sensor has an inherent damage detection capability. These sensing skins can be used to redesign inflatable habitat multi-layer insulation to provide additional functions of environmental measurement and micrometeorite/orbital debris damage detections. The sensing skins can be deposited on planetary exploratory vehicles to increase the number of measurements with negligible weight increase.
Antagonist effects of veratric acid against UVB-induced cell damages.
Shin, Seoung Woo; Jung, Eunsun; Kim, Seungbeom; Lee, Kyung-Eun; Youm, Jong-Kyung; Park, Deokhoon
2013-05-10
Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human epidermis, resulting in inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effect of UV irradiation is essential. In recent years naturally occurring herbal compounds such as phenolic acids, flavonoids, and high molecular weight polyphenols have gained considerable attention as beneficial protective agents. The simple phenolic veratric acid (VA, 3,4-dimethoxybenzoic acid) is one of the major benzoic acid derivatives from vegetables and fruits and it also occurs naturally in medicinal mushrooms which have been reported to have anti-inflammatory and anti-oxidant activities. However, it has rarely been applied in skin care. This study, therefore, aimed to explore the possible roles of veratric acid in protection against UVB-induced damage in HaCaT cells. Results showed that veratric acid can attenuate cyclobutane pyrimidine dimers (CPDs) formation, glutathione (GSH) depletion and apoptosis induced by UVB. Furthermore, veratric acid had inhibitory effects on the UVB-induced release of the inflammatory mediators such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of veratric acid on human skin. Overall, results demonstrated significant benefits of veratric acid on the protection of keratinocyte against UVB-induced injuries and suggested its potential use in skin photoprotection.
Lydon, Helen L; Hall, Charlotte A; Dalton, Christopher H; Chipman, J Kevin; Graham, John S; Chilcott, Robert P
2017-08-01
Previous studies have demonstrated that haemostatic products with an absorptive mechanism of action retain their clotting efficiency in the presence of toxic materials and are effective in decontaminating chemical warfare (CW) agents when applied to normal, intact skin. The purpose of this in vitro study was to assess three candidate haemostatic products for effectiveness in the decontamination of superficially damaged porcine skin exposed to the radiolabelled CW agents, soman (GD), VX and sulphur mustard (HD). Controlled physical damage (removal of the upper 100 μm skin layer) resulted in a significant enhancement of the dermal absorption of all three CW agents. Of the haemostatic products assessed, WoundStat™ was consistently the most effective, being equivalent in performance to a standard military decontaminant (fuller's earth). These data suggest that judicious application of haemostatic products to wounds contaminated with CW agents may be a viable option for the clinical management of casualties presenting with contaminated, haemorrhaging injuries. Further studies using a relevant animal model are required to confirm the potential clinical efficacy of WoundStat™ for treating wounds contaminated with CW agents. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Testing and Analysis of Composite Skin/Stringer Debonding Under Multi-Axial Loading
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Cvitkovich, Michael K.; OBrien, T. Kevin; Minguet, Pierre J.
1999-01-01
Damage mechanisms in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out- of-plane) loading conditions were examined. Specimens consisted of a tapered composite flange bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending . For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both in-plane tension and out-of-plane bending loads simultaneously. Specimen edges were examined on the microscope to document the damage occurrence and to identify typical damage patterns. The observations showed that, for all three load cases, failure initiated in the flange, near the flange tip, causing the flange to almost fully debond from the skin. A two-dimensional plane-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, principal stresses exceeded the transverse strength of the material in the flange area. Additionally, delaminations of various lengths were simulated in two locations where delaminations were observed. The analyses showed that unstable delamination propagation is likely to occur in one location at the loads corresponding to matrix ply crack initiation for all three load cases.
Dandelion Extracts Protect Human Skin Fibroblasts from UVB Damage and Cellular Senescence
Yang, Yafan; Li, Shuangshuang
2015-01-01
Ultraviolet (UV) irradiation causes damage in skin by generating excessive reactive oxygen species (ROS) and induction of matrix metalloproteinases (MMPs), leading to skin photoageing. Dandelion extracts have long been used for traditional Chinese medicine and native American medicine to treat cancers, hepatitis, and digestive diseases; however, less is known on the effects of dandelion extracts in skin photoageing. Here we found that dandelion leaf and flower extracts significantly protect UVB irradiation-inhibited cell viability when added before UVB irradiation or promptly after irradiation. Dandelion leaf and flower extracts inhibited UVB irradiation-stimulated MMP activity and ROS generation. Dandelion root extracts showed less action on protecting HDFs from UVB irradiation-induced MMP activity, ROS generation, and cell death. Furthermore, dandelion leaf and flower but not root extracts stimulated glutathione generation and glutathione reductase mRNA expression in the presence or absence of UVB irradiation. We also found that dandelion leaf and flower extracts help absorb UVB irradiation. In addition, dandelion extracts significantly protected HDFs from H2O2-induced cellular senescence. In conclusion, dandelion extracts especially leaf and flower extracts are potent protective agents against UVB damage and H2O2-induced cellular senescence in HDFs by suppressing ROS generation and MMP activities and helping UVB absorption. PMID:26576225
Serogroup B Meningococcal vaccine (MenB) - What you need to know
... disabilities such as hearing loss, brain damage, kidney damage, amputations, nervous system problems, or severe scars from skin grafts. Serogroup B meningococcal (MenB) vaccines can help prevent meningococcal disease caused by serogroup ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Divya, Sasidharan Padmaja; Wang, Xin; Pratheeshkumar, Poyil
Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm{sup 2}) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasiamore » and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (PGE{sub 2}), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways. - Highlights: • Blackberry extract inhibits UVB-induced glutathione depletion. • Blackberry extract inhibits UVB-induced lipid peroxidation. • Blackberry extract inhibits UVB-induced myeloperoxidase activity. • Blackberry extract diminishes UVB-induced inflammatory responses. • Blackberry extract prevents skin from oxidative damage and inflammation by UVB.« less
Lee, Seon Hwa; Matsushima, Keita; Miyamoto, Kohei; Oe, Tomoyuki
2016-02-05
Ultraviolet (UV) radiation is the major environmental factor that causes oxidative skin damage. Keratins are the main constituents of human skin and have been identified as oxidative target proteins. We have recently developed a mass spectrometry (MS)-based non-invasive proteomic methodology to screen oxidative modifications in human skin keratins. Using this methodology, UV effects on methionine (Met) oxidation in human skin keratins were investigated. The initial screening revealed that Met(259), Met(262), and Met(296) in K1 keratin were the most susceptible oxidation sites upon UVA (or UVB) irradiation of human tape-stripped skin. Subsequent liquid chromatography/electrospray ionization-MS and tandem MS analyses confirmed amino acid sequences and oxidation sites of tryptic peptides D(290)VDGAYMTK(298) (P1) and N(258)MQDMVEDYR(267) (P2). The relative oxidation levels of P1 and P2 increased in a time-dependent manner upon UVA irradiation. Butylated hydroxytoluene was the most effective antioxidant for artifactual oxidation of Met residues. The relative oxidation levels of P1 and P2 after UVA irradiation for 48 h corresponded to treatment with 100mM hydrogen peroxide for 15 min. In addition, Met(259) was oxidized by only UVA irradiation. The Met sites identified in conjunction with the current proteomic methodology can be used to evaluate skin damage under various conditions of oxidative stress. We demonstrated that the relative Met oxidation levels in keratins directly reflected UV-induced damages to human tape-stripped skin. Human skin proteins isolated by tape stripping were analyzed by MS-based non-invasive proteomic methodology. Met(259), Met(262), and Met(296) in K1 keratin were the most susceptible oxidation sites upon UV irradiation. Met(259) was oxidized by only UVA irradiation. Quantitative LC/ESI-SRM/MS analyses confirmed a time-dependent increase in the relative oxidation of target peptides (P1 and P2) containing these Met residues, upon UVA irradiation of isolated human skin. The relative oxidation levels of P1 and P2 along with the current proteomic methodology could be applied to the assessment of oxidative stress levels in skin after exposure to sunlight. Copyright © 2015 Elsevier B.V. All rights reserved.
Nonlinear Dynamic Behavior of Impact Damage in a Composite Skin-Stiffener Structure
NASA Technical Reports Server (NTRS)
Ooijevaar, T. H.; Rogge, M. D.; Loendersloot, R.; Warnet, L.; Akkerman, R.; deBoer, A.
2013-01-01
One of the key issues in composite structures for aircraft applications is the early identification of damage. Often, service induced damage does not involve visible plastic deformation, but internal matrix related damage, like delaminations. A wide range of technologies, comprising global vibration and local wave propagation methods can be employed for health monitoring purposes. Traditional low frequency modal analysis based methods are linear methods. The effectiveness of these methods is often limited since they rely on a stationary and linear approximation of the system. The nonlinear interaction between a low frequency wave field and a local impact induced skin-stiffener failure is experimentally demonstrated in this paper. The different mechanisms that are responsible for the nonlinearities (opening, closing and contact) of the distorted harmonic waveforms are separated with the help of phase portraits. A basic analytical model is employed to support the observations.
New Methods for Evaluating Skin Injury from Sulfur Mustard in the Hairless Guinea Pig
1993-05-13
MUSTARD IN THE HAIRLESS GUINEA PIG Ernest H. Braue, Jr., Catherine R. Bangledorf, and Robert G. Rieder "U.S. Army Medical Research Institute of Chemical...evaluating the skin hydration state. The skin of anesthetized hairless guinea pigs was exposed to saturated HD vapor (1.4mg/ml) at 4 sites for 3, 5, 7, or 9...assessment of skin damage following cutaneous exposure to HD vapor. EXPERIMENTAL METHODS Each hairless guinea pig (HGP) was exposed to saturated HD vapor
Guillermo-Lagae, Ruth; Deep, Gagan; Ting, Harold; Agarwal, Chapla; Agarwal, Rajesh
2015-01-01
Ultraviolet radiation B (UVB) is the main cause of DNA damage in epidermal cells; and if not repaired, this DNA damage leads to skin cancer. In earlier studies, we have reported that natural flavonolignan silibinin exerts strong chemopreventive efficacy against UVB-induced skin damage and carcinogenesis; however mechanistic studies are still being actively pursued. Here, we investigated the role of nucleotide excision repair (NER) pathway in silibinin's efficacy to repair UVB-induced DNA damage. Normal human dermal fibroblasts (NHDFs) were exposed to UVB (1 mJ/cm2) with pre- or post- silibinin (100 μM) treatment, and cyclobutane pyrimidine dimers (CPDs) formation/repair was measured. Results showed that post-UVB silibinin treatment accelerates DNA repair via activating the NER pathway including the expression of XPA (xeroderma pigmentosum complementation group A), XPB, XPC, and XPG. In UVB exposed fibroblasts, silibinin treatment also increased p53 and GADD45α expression; the key regulators of the NER pathway and DNA repair. Consistently, post-UVB silibinin treatment increased the mRNA transcripts of XPA and GADD45α. Importantly, silibinin showed no effect on UVB-induced DNA damage repair in XPA- and XPB-deficient human dermal fibroblasts suggesting their key role in silibinin-mediated DNA damage repair. Moreover, in the presence of pifithrin-α, an inhibitor of p53, the DNA repair efficacy of silibinin was compromised associated with a reduction in XPA and GADD45α transcripts. Together, these findings suggest that silibinin's efficacy against UVB-induced photodamage is primarily by inhibiting NER and p53; and these findings further support silibinin's usage as a potential inexpensive, effective, and non-toxic agent for skin cancer chemoprevention. PMID:26447614
Guillermo-Lagae, Ruth; Deep, Gagan; Ting, Harold; Agarwal, Chapla; Agarwal, Rajesh
2015-11-24
Ultraviolet radiation B (UVB) is the main cause of DNA damage in epidermal cells; and if not repaired, this DNA damage leads to skin cancer. In earlier studies, we have reported that natural flavonolignan silibinin exerts strong chemopreventive efficacy against UVB-induced skin damage and carcinogenesis; however mechanistic studies are still being actively pursued. Here, we investigated the role of nucleotide excision repair (NER) pathway in silibinin's efficacy to repair UVB-induced DNA damage. Normal human dermal fibroblasts (NHDFs) were exposed to UVB (1 mJ/cm2) with pre- or post- silibinin (100 μM) treatment, and cyclobutane pyrimidine dimers (CPDs) formation/repair was measured. Results showed that post-UVB silibinin treatment accelerates DNA repair via activating the NER pathway including the expression of XPA (xeroderma pigmentosum complementation group A), XPB, XPC, and XPG. In UVB exposed fibroblasts, silibinin treatment also increased p53 and GADD45α expression; the key regulators of the NER pathway and DNA repair. Consistently, post-UVB silibinin treatment increased the mRNA transcripts of XPA and GADD45α. Importantly, silibinin showed no effect on UVB-induced DNA damage repair in XPA- and XPB-deficient human dermal fibroblasts suggesting their key role in silibinin-mediated DNA damage repair. Moreover, in the presence of pifithrin-α, an inhibitor of p53, the DNA repair efficacy of silibinin was compromised associated with a reduction in XPA and GADD45α transcripts. Together, these findings suggest that silibinin's efficacy against UVB-induced photodamage is primarily by inhibiting NER and p53; and these findings further support silibinin's usage as a potential inexpensive, effective, and non-toxic agent for skin cancer chemoprevention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verhey, L.J.; Sedlacek, R.
1983-01-01
Topical applications of MEA (beta-mercaptoethylamine or cysteamine), WR-2721 (S-2-(3-aminopropylamino)-ethylphosphorothioic acid), and N-acetylcysteine (NAC) were tested for their ability to protect the normal skin of the hind legs of mice against acute and late damage from single doses of /sup 137/Cs radiation. No significant protection was observed with either WR-2721 or NAC. MEA was shown to offer significant protection against acute skin damage in both buffered and unbuffered forms, but no significant protection against late contraction. The use of topical MEA on unanesthetized animals breathing carbogen (95% O2, 5% CO2) appears to give an enhanced level of radioprotection over that shownmore » for anesthetized, air-breathing animals.« less
Bae, Jung-Soo; Han, Mira; Shin, Hee Soon; Kim, Min-Kyoung; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho
2017-01-04
Perilla frutescens (L.) Britt. (Lamiaceae) is a traditional herb that is consumed in East Asian countries as a traditional medicine. This traditional herb has been documented for centuries to treat various diseases such as depression, allergies, inflammation and asthma. However, the effect of Perilla frutescens on skin has not been characterized well. The present study aimed to investigate the effect of Perilla frutescens leaves extract (PLE) on ultraviolet radiation-induced extracellular matrix damage in human dermal fibroblasts and hairless mice skin. Human dermal fibroblasts and Skh-1 hairless mice were irradiated with UV and treated with PLE. Protein and mRNA levels of various target molecules were analyzed by western blotting and quantitative RT-PCR, respectively. Histological changes of mouse skin were analyzed by H&E staining. To elucidate underlying mechanism of PLE, activator protein-1 (AP-1) DNA binding assay and the measurement of reactive oxygen species (ROS) were performed. PLE significantly inhibited basal and UV-induced MMP-1 and MMP-3 expression dose-dependently, and also decreased UV-induced phosphorylation of extracellular signal-regulated kinases and c-Jun N-terminal kinases. This inhibitory effects of PLE on MMP-1 and MMP-3 were mediated by reduction of ROS generation and AP-1 DNA binding activity induced by UV. Furthermore, PLE promoted type I procollagen production irrespective of UV irradiation. In the UV-irradiated animal model, PLE significantly reduced epidermal skin thickness and MMP-13 expression induced by UV. Our results demonstrate that PLE has the protective effect against UV-induced dermal matrix damage. Therefore, we suggest that PLE can be a potential agent for prevention of skin aging. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Huber, Adam M.; Dugan, Elizabeth M.; Lachenbruch, Peter A.; Feldman, Brian M.; Perez, Maria D.; Zemel, Lawrence S.; Lindsley, Carol B.; Rennebohm, Robert M.; Wallace, Carol A.; Passo, Murray H.; Reed, Ann M.; Bowyer, Suzanne L.; Ballinger, Susan H.; Miller, Frederick W.; Rider, Lisa G.
2007-01-01
Objectives Clinical care and therapeutic trials in idiopathic inflammatory myopathies (IIM) require accurate and consistent assessment of cutaneous involvement. The Cutaneous Assessment Tool (CAT) was designed to measure skin activity and damage in IIM. We describe the development and inter-rater reliability of the CAT, and the frequency of lesions endorsed in a large population of juvenile IIM patients. Methods The CAT includes 10 activity, 4 damage and 7 combined lesions. Thirty-two photographic slides depicting IIM skin lesions were assessed by 11 raters. One hundred and twenty three children were assessed by 11 pediatric rheumatologists at ten centers. Inter-rater reliability was assessed using simple agreements and intra-class correlation coefficients (ICC). Results Simple agreements in recognizing lesions as present or absent were generally high (0.5 – 1.0). ICC's for CAT lesions were moderate (0.4 – 0.75) in both slides and real patients. ICC's for the CAT activity and damage scores were 0.71 and 0.81, respectively. CAT activity scores ranged from 0 – 44 (median 7, potential range 0 – 96) and CAT damage scores ranged from 0 – 13 (median 1, potential range 0 – 22). The most common cutaneous lesions endorsed were periungual capillary loop changes (63%), Gottron's papules/sign (53%), heliotrope rash (49%) and malar/facial erythema (49%). Conclusions Total CAT activity and damage scores have moderate to good reliability. Assessors generally agree on the presence of a variety of cutaneous lesions. The CAT is a promising, semi-quantitative tool to comprehensively assess skin disease activity and damage in IIM. PMID:17890275
Protective effects of grape stem extract against UVB-induced damage in C57BL mice skin.
Che, Denis Nchang; Xie, Guang Hua; Cho, Byoung Ok; Shin, Jae Young; Kang, Hyun Ju; Jang, Seon Il
2017-08-01
Humans have become exposed to another form of a trait which is ultraviolet B (UVB) radiation reaching the earth's surface. This has become a major source of oxidative stress that ultimately leads to inflammation, DNA damage, photoaging and pigmentation disorders etc. Although several studies have shown the photo-protective role of different grape parts like the fruits and seeds, little or no data demonstrating the in vivo photo-protective role of grape stem, which is the most discarded part of the grape are available. We evaluated the protective influence of grape stem extract against UVB-induced oxidative damage in C57BL mice characterized by epidermal hyperplasia, pigmentation, collagen degradation and inflammation. Grape stem extract was administered topically 1week before UVB irradiation (120mJ/cm 2 ) and continued until the termination of the experiment. A group of non-irradiated mice and a group of irradiated mice topically administered with propylene were used as a negative and positive control. Epidermal thickness, pigmentation, erythema, mast cell and neutrophil infiltration, collagen degradation and COX-2, Nrf2, and HO-1 expressions were evaluated. Grape stem extract markedly recovered skin damage induced by the UVB radiation through the prevention of epidermal hyperplasia, pigmentation, erythema, mast cell and neutrophil infiltrations, collagen degradation and COX-2, Nrf2, and HO-1 expressions. Our study demonstrated for the first time in C57BL mice that grape stem extract reduces UVB-induced oxidative damage and hence can play a protective role in skin photo-damage. Copyright © 2017. Published by Elsevier B.V.
The Protective Role of Melanin Against UV Damage in Human Skin
Brenner, Michaela; Hearing, Vincent J.
2009-01-01
Human skin is repeatedly exposed to ultraviolet radiation (UVR) that influences the function and survival of many cell types and is regarded as the main causative factor in the induction of skin cancer. It has been traditionally believed that skin pigmentation is the most important photoprotective factor, since melanin, besides functioning as a broadband UV absorbent, has antioxidant and radical scavenging properties. Besides, many epidemiological studies have shown a lower incidence for skin cancer in individuals with darker skin compared to those with fair skin. Skin pigmentation is of great cultural and cosmetic importance, yet the role of melanin in photoprotection is still controversial. This article outlines the major acute and chronic effects of UV radiation on human skin, the properties of melanin, the regulation of pigmentation and its effect on skin cancer prevention. PMID:18435612
7 CFR 51.1430 - U.S. No. 1 Halves.
Code of Federal Regulations, 2013 CFR
2013-01-01
... quality: (1) Well dried; (2) Fairly well developed; (3) Fairly uniform in color; (4) Not darker than “amber” skin color; (5) Free from damage or serious damage by any cause; (6) Free from pieces of shell...
7 CFR 51.1430 - U.S. No. 1 Halves.
Code of Federal Regulations, 2014 CFR
2014-01-01
... quality: (1) Well dried; (2) Fairly well developed; (3) Fairly uniform in color; (4) Not darker than “amber” skin color; (5) Free from damage or serious damage by any cause; (6) Free from pieces of shell...
Jeter, Joanne M; Curiel-Lewandrowski, Clara; Stratton, Steven P; Myrdal, Paul B; Warneke, James A; Einspahr, Janine G; Bartels, Hubert G; Yozwiak, Michael; Bermudez, Yira; Hu, Chengcheng; Bartels, Peter; Alberts, David S
2016-02-01
Prevention of nonmelanoma skin cancers remains a health priority due to high costs associated with this disease. Diclofenac and difluoromethylornithine (DFMO) have demonstrated chemopreventive efficacy for cutaneous squamous cell carcinomas. We designed a randomized study of the combination of DFMO and diclofenac in the treatment of sun-damaged skin. Individuals with visible cutaneous sun damage were eligible. Subjects were randomized to one of the three groups: topical DFMO applied twice daily, topical diclofenac applied daily, or DFMO plus diclofenac. The treatment was limited to an area on the left forearm, and the duration of use was 90 days. We hypothesized that combination therapy would have increased efficacy compared with single-agent therapy. The primary outcome was change in karyometric average nuclear abnormality (ANA) in the treated skin. Individuals assessing the biomarkers were blinded regarding the treatment for each subject. A total of 156 subjects were randomized; 144 had baseline and end-of-study biopsies, and 136 subjects completed the study. The ANA unexpectedly increased for all groups, with higher values correlating with clinical cutaneous inflammation. Nearly all of the adverse events were local cutaneous effects. One subject had cutaneous toxicity that required treatment discontinuation. Significantly more adverse events were seen in the groups taking diclofenac. Overall, the study indicated that the addition of topical DFMO to topical diclofenac did not enhance its activity. Both agents caused inflammation on a cellular and clinical level, which may have confounded the measurement of chemopreventive effects. More significant effects may be observed in subjects with greater baseline cutaneous damage. ©2015 American Association for Cancer Research.
Lee, Ju Hwan; Park, So Ra; Jo, Jeong Ho; Park, Sung Yun; Seo, Young Kwon
2014-01-01
Abstract Objective: The purpose of this study was to compare degrees of epidermal/dermal tissue damage quantitatively and histologically after laser irradiation, to find ideal treatment conditions with relatively high fluence for skin rejuvenation. Background data: A number of recent studies have evaluated the clinical efficacy and safety of therapeutic lasers under relatively low fluence conditions. Methods: We transmitted the long-pulsed 1064 nm Nd:YAG and 755 nm Alexandrite lasers into pig skin according to different fluences and spot diameters, and estimated epidermal/dermal temperatures. Pig skin specimens were stained with hematoxylin and eosin for histological assessments. The fluence conditions comprised 26, 30, and 36 J/cm2, and the spot diameter conditions were 5, 8, and 10 mm. Pulse duration was 30 ms for all experiments. Results: Both lasers produced reliable thermal damage on the dermis without any serious epidermal injuries, under relatively high fluence conditions. The 1064 nm laser provided more active fibrous formations than the 755 nm laser, while higher risks for tissue damages simultaneously occurred. Conclusions: The ideal treatment conditions for skin rejuvenation were 8 mm diameter with 30 J/cm2 and 10 mm diameter with 26 J/cm2 for the 1064 nm laser, and 8 mm diameter with 36 J/cm2 and 10 mm diameter with 26 J/cm2 for the 755 nm laser. PMID:24992273
Code of Federal Regulations, 2014 CFR
2014-01-01
..., broken skins which are not healed, bruises (except those incident to proper handling and packing), and hard or dry skins, and free from serious damage caused by freezing, dryness or mushy condition, sprayburn, exanthema (ammoniation), scars, thorn scratches, scale, sunburn, scab, blanching, yellow color...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., broken skins which are not healed, bruises (except those incident to proper handling and packing), and hard or dry skins, and free from serious damage caused by freezing, dryness or mushy condition, sprayburn, exanthema (ammoniation), scars, thorn scratches, scale, sunburn, scab, blanching, yellow color...
Code of Federal Regulations, 2012 CFR
2012-01-01
... breakdown or other internal discoloration, broken skins which are not healed, bruises (except those incident to proper handling and packing), hard or dry skins, and free from damage caused by freezing, dryness..., blanching, yellow color, discoloration, buckskin, dirt or other foreign material, disease, insects or...
A practice-based evaluation of a liquid barrier film.
Harding, Nicola
2002-05-01
In palliative care it is often the little things such as being comfortable that help to improve a patient's quality of life. When the opportunity arose in our hospice to take part in a practice-based evaluation of a product that promised to make patients more comfortable, we were pleased to take part. Our small-scale evaluation was part of a wider study of SuperSkin, a liquid barrier film designed to protect skin at risk of damage. Information was collected from the patient, patient's medical notes and the nursing staff - a patient daily diary record was used in addition to normal information recordings. We evaluated the efficacy of the product and found this liquid barrier film to have a positive effect in several ways. It appeared to assist in the healing of skin damaged by friction and shearing forces, and from excoriation from wound exudates, urine and faeces. In addition, it appeared to protect healthy, 'at risk' skin from the same problems.
Mitochondria-Targeted Vitamin E Protects Skin from UVB-Irradiation.
Kim, Won-Serk; Kim, Ikyon; Kim, Wang-Kyun; Choi, Ju-Yeon; Kim, Doo Yeong; Moon, Sung-Guk; Min, Hyung-Keun; Song, Min-Kyu; Sung, Jong-Hyuk
2016-05-01
Mitochondria-targeted vitamin E (MVE) is designed to accumulate within mitochondria and is applied to decrease mitochondrial oxidative damage. However, the protective effects of MVE in skin cells have not been identified. We investigated the protective effect of MVE against UVB in dermal fibroblasts and immortalized human keratinocyte cell line (HaCaT). In addition, we studied the wound-healing effect of MVE in animal models. We found that MVE increased the proliferation and survival of fibroblasts at low concentration (i.e., nM ranges). In addition, MVE increased collagen production and downregulated matrix metalloproteinase1. MVE also increased the proliferation and survival of HaCaT cells. UVB increased reactive oxygen species (ROS) production in fibroblasts and HaCaT cells, while MVE decreased ROS production at low concentration. In an animal experiment, MVE accelerated wound healing from laser-induced skin damage. These results collectively suggest that low dose MVE protects skin from UVB irradiation. Therefore, MVE can be developed as a cosmetic raw material.
Beneficial effects of pro-/antioxidant-based nutraceuticals in the skin rejuvenation techniques.
de Luca, C; Deeva, I; Mikhal'Chik, E; Korkina, L
2007-04-15
Modern technologies of skin rejuvenation include many physical and chemical intervention tools--laser irradiation, oxygen and ozone therapy, chemical peels, plastic surgery operations--affecting by different mechanisms the sensitive physiological free radical/antioxidant balance in the skin. All these interventions induce from mild to severe tissue damage, providing beneficial biochemical stimuli for skin re-epithelization and rejuvenation. Paradoxically, free radical production in the course of tissue inflammation helps to combat free radical damage consequent to the ageing process. We have studied two animal models (experimental burn and trichloracetic peeling), reproducing on the Wistar rat the effects generated by the commonly practiced aesthetic medicine procedures of laser resurfacing and chemical peels, demonstrating that the severe oxidative stress induced both systemically and on skin can be modulated by the oral pre- and post treatment administration of specific nutraceutical formulations. Potent antioxidants (RRR-alpha-tocopherol, coenzyme Q10), enhancing antioxidant defences, coupled with mild pro-oxidants, enhancers of a specific immune defense (soy phospholipids, L-methionine), at the blood and the skin levels, proved in fact to be beneficial in vivo, on the rat, for skin healing, trophism and accelerated re-epithelization. Data obtained allow us to predict the possibility of innovative protocols for dermocosmetology, enabling successful lowering of the risk of permanent adverse effects, and prolonging the duration of the beneficial effects of dermocosmetologic procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batal, Mohamed; Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche; Boudry, Isabelle
Sulfur mustard (SM) is a chemical warfare agent that targets skin where it induces large blisters. DNA alkylation is a critical step to explain SM-induced cutaneous symptoms. We determined the kinetics of formation of main SM–DNA adducts and compare it with the development of the SM-induced pathogenesis in skin. SKH-1 mice were exposed to 2, 6 and 60 mg/kg of SM and treated skin was biopsied between 6 h and 21 days. Formation of SM DNA adducts was dose-dependent with a maximum immediately after exposure. However, adducts were persistent and still detectable 21 days post-exposure. The time-dependent formation of DNAmore » adducts was also found to be correlated with the appearance of apoptotic cells. This temporal correlation suggests that these two early events are responsible for the severity of the damage to the skin. Besides, SM–DNA adducts were also detected in areas located next to contaminated zone, thus suggesting that SM diffuses in skin. Altogether, this work provides for the first time a clear picture of SM-induced genotoxicity using DNA adducts as a marker. - Highlights: • Sulfur mustard adducts are formed in DNA after skin exposure. • DNA damage formation is an early event in the pathological process of skin burn. • The amount of SM–DNA adducts is maximal at the earliest time point investigated. • Adducts are still detected 3 weeks after exposure. • Sulfur mustard diffuses in skin especially when large doses are applied.« less
Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya
2016-09-01
Alcohol is frequently used to induce chronic liver injury in laboratory animals. Alcohol causes oxidative stress in the liver and increases the expression of inflammatory mediators that cause hepatocellular damage. However, during chronic liver injury, it is unclear if/how these liver-derived factors affect distal tissues, such as the skin. The purpose of this study was to evaluate skin barrier function during chronic liver injury. Hairless mice were administered 5% or 10% ethanol for 8 weeks, and damages to the liver and skin were assessed using histological and protein-analysis methods, as well as by detecting inflammatory mediators in the plasma. After alcohol administration, the plasma concentration of the aspartate and alanine aminotransferases increased, while albumin levels decreased. In mice with alcohol-induced liver injury, transepidermal water loss was significantly increased, and skin hydration decreased concurrent with ceramide and type I collagen degradation. The plasma concentrations of [Formula: see text]/[Formula: see text] and tumor necrosis factor-alpha (TNF-α) were significantly increased in mice with induced liver injury. TNF receptor (TNFR) 2 expression was upregulated in the skin of alcohol-administered mice, while TNFR1 levels remained constant. Interestingly, the impairment of skin barrier function in mice administered with 10% ethanol was ameliorated by administering an anti-TNF-α antibody. We propose a novel mechanism whereby plasma TNF-α, via TNFR2 alone or with TNFR1, plays an important role in skin barrier function during chronic liver disease in these mouse models.
Protection afforded by controlled application of a barrier cream: a study in a workplace setting.
Sadhra, S S; Kurmi, O P; Mohammed, N I; Foulds, I S
2014-10-01
Skin protective creams (PCs) are used widely in industrial work environments to prevent irritant contact dermatitis. However, workplace studies remain equivocal in terms of their effectiveness, which may be partly owing to whether the PC remains on the skin. To assess the practicability of using skin occlusion testing in a workplace as a method to determine whether PCs applied under controlled conditions can reduce skin damage against known irritants. This study also compares two methods of skin evaluation: clinical dermatological assessment and bioengineering techniques. Daily occlusion testing for 1 h (over two consecutive weeks) was conducted in an engineering company on the volar forearm of 21 healthy volunteer engineers with sodium lauryl sulfate (SLS) and a PC that was used on site. The engineers conducted their normal work activities during the occlusion testing period. The skin areas tested were assessed using transepidermal water loss (TEWL), Chroma Meter and by visual dermatological scoring. Testing with PC and SLS together showed that PC does not prevent irritant contact dermatitis but significantly reduced skin damage compared with SLS alone (P < 0.01). The changes in skin were evident earlier with the biophysical measurements when compared with the dermatological assessment. Occlusion testing is a useful method for assessing the potential effectiveness of protective creams and can be used in a workplace without affecting work practices. TEWL and the Chroma Meter provide useful objective information and should be used in combination with dermatological examinations. © 2014 British Association of Dermatologists.
The irritation potential and reservoir effect of mild soaps.
Lodén, Marie; Buraczewska, Izabela; Edlund, Fredrik
2003-08-01
Identification and reduction of external noxious factors is one key point in the strategy for the treatment and reduction of contact dermatitis. A wide variety of soaps on the market are claimed to be suitable for the use on sensitive skin due to their mildness. The aim of the present study was to illustrate possible differences in the irritation potential of 8 products and to investigate whether surfactant residues may form an irritant reservoir on the skin. The study was double-blind, randomized using healthy human volunteers. The inherent capacity of the products to induce irritation was determined using conventional patch test technique, whereas detection of potential surfactant residues on the skin was done using a methodology developed in the 1960s for detection of the corticosteroid reservoir in the stratum corneum. The method comprised the release of active substance from the stratum corneum reservoir by occlusion of the skin with an aluminium chamber, followed by evaluation of the biological response. In the present study, the soap-treated area was rinsed with water and then occluded. Instrumental measurements of the transepidermal water loss and superficial skin blood flow served as indicators of the injurious effects of the products. The results showed large differences in irritation potential between the products, and some of them demonstrated considerable damaging effect. Moreover, the study proved the presence of barrier-impairing residues on the skin after rinsing with water. Subclinical skin damage can make the skin vulnerable to further irritation and delay recovery of chronic irritant contact dermatitis.
Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue
Titova, Lyubov V.; Ayesheshim, Ayesheshim K.; Golubov, Andrey; Fogen, Dawson; Rodriguez-Juarez, Rocio; Hegmann, Frank A.; Kovalchuk, Olga
2013-01-01
Recent emergence and growing use of terahertz (THz) radiation for medical imaging and public security screening raise questions on reasonable levels of exposure and health consequences of this form of electromagnetic radiation. In particular, picosecond-duration THz pulses have shown promise for novel diagnostic imaging techniques. However, the effects of THz pulses on human cells and tissues thus far remain largely unknown. We report on the investigation of the biological effects of pulsed THz radiation on artificial human skin tissues. We observe that exposure to intense THz pulses for ten minutes leads to a significant induction of H2AX phosphorylation, indicating that THz pulse irradiation may cause DNA damage in exposed skin tissue. At the same time, we find a THz-pulse-induced increase in the levels of several proteins responsible for cell-cycle regulation and tumor suppression, suggesting that DNA damage repair mechanisms are quickly activated. Furthermore, we find that the cellular response to pulsed THz radiation is significantly different from that induced by exposure to UVA (400 nm). PMID:23577291
Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue.
Titova, Lyubov V; Ayesheshim, Ayesheshim K; Golubov, Andrey; Fogen, Dawson; Rodriguez-Juarez, Rocio; Hegmann, Frank A; Kovalchuk, Olga
2013-04-01
Recent emergence and growing use of terahertz (THz) radiation for medical imaging and public security screening raise questions on reasonable levels of exposure and health consequences of this form of electromagnetic radiation. In particular, picosecond-duration THz pulses have shown promise for novel diagnostic imaging techniques. However, the effects of THz pulses on human cells and tissues thus far remain largely unknown. We report on the investigation of the biological effects of pulsed THz radiation on artificial human skin tissues. We observe that exposure to intense THz pulses for ten minutes leads to a significant induction of H2AX phosphorylation, indicating that THz pulse irradiation may cause DNA damage in exposed skin tissue. At the same time, we find a THz-pulse-induced increase in the levels of several proteins responsible for cell-cycle regulation and tumor suppression, suggesting that DNA damage repair mechanisms are quickly activated. Furthermore, we find that the cellular response to pulsed THz radiation is significantly different from that induced by exposure to UVA (400 nm).
Emanuele, Enzo; Spencer, James M; Braun, Martin
2014-03-01
The exposure to ultraviolet radiation (UVR) is a major risk factor for skin aging and the development of non-melanoma skin cancer (NMSC). Although traditional sunscreens remain the mainstay for the prevention of UVR-induced skin damage, they cannot ensure a complete protection against the whole spectrum of molecular lesions associated with UVR exposure. The formation of helix-distorting photoproducts such as cyclobutane pyrimidine dimers (CPD), as well as oxidative damage to DNA bases, including the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8OHdG) are among the key DNA lesions associated with photoaging and tumorigenesis. Besides DNA lesions, UVR-induced formation of free radicals can result in protein carbonylation (PC), a major form of irreversible protein damage that inactivates their biological function. This study compares a complex novel topical product (TPF50) consisting of three actives, ie, 1) traditional physical sunscreens (SPF 50), 2) a liposome-encapsulated DNA repair enzymes complex (photolyase, endonuclease, and 8-oxoguanine glycosylase [OGG1]), and 3) a potent antioxidant complex (carnosine, arazine, ergothionine) to existing products. Specifically, we assessed the ability of TFP50 vs those of DNA repair and antioxidant and growth factor topical products used with SPF 50 sunscreens in preventing CPD, 8OHdG, and PC formation in human skin biopsies after experimental irradiations. In head-to-head comparison studies, TPF50 showed the best efficacy in reducing all of the three molecular markers. The results indicated that the three TPF50 components had a synergistic effect in reducing CPD and PC, but not 8OHdG. Taken together, our results indicate that TPF50 improves the genomic and proteomic integrity of skin cells after repeated exposure to UVR, ultimately reducing the risk of skin aging and NMSC.
Aziz, Moammir Hassan; Afaq, Farrukh; Ahmad, Nihal
2005-01-01
Nonmelanoma skin cancer is the most frequently diagnosed malignancy in the United States, and multiple exposures to solar ultraviolet (UV) radiation (particularly its UV-B component, 290-320 nm), is its major cause. 'Chemoprevention' by naturally occurring agents is being appreciated as a newer dimension in the management of neoplasia including skin cancer. We recently demonstrated that resveratrol (trans-3, 5, 4-trihydroxystilbene), an antioxidant found in grapes, red wines and a variety of nuts and berries, imparts protection from acute UV-B-mediated cutaneous damages in SKH-1 hairless mice. Understanding the mechanism of resveratrol-mediated protection of UV responses is important. We earlier demonstrated that resveratrol imparts chemopreventive effects against multiple UV-exposure-mediated modulations in (1) cki-cyclin-cdk network, and (2) mitogen activated protein kinase (MAPK)-pathway. This study was conducted to assess the involvement of inhibitor of apoptosis protein family Survivin during resveratrol-mediated protection from multiple exposures of UV-B (180 mJ/cm(2); on alternate days; for a total of seven exposures) radiations in the SKH-1 hairless mouse skin. Our data demonstrated that topical pre-treatment of resveratrol (10 micromol in 200 microl acetone/mouse) resulted in significant inhibition of UV-B exposure-mediated increases in (1) cellular proliferations (Ki-67 immunostaining), (2) protein levels of epidermal cyclooxygenase-2 and ornithine decarboxylase, established markers of tumor promotion, (3) protein and messenger RNA levels of Survivin, and (4) phosphorylation of survivin in the skin of SKH-1 hairless mouse. Resveratrol pretreatment also resulted in (1) reversal of UV-B-mediated decrease of Smac/DIABLO, and (2) enhancement of UV-B-mediated induction of apoptosis, in mouse skin. Taken together, our study suggested that resveratrol imparts chemopreventive effects against UV-B exposure-mediated damages in SKH-1 hairless mouse skin via inhibiting Survivin and the associated events.
Photoprotection against UV-induced damage by skin-derived precursors in hairless mice.
Xian, Dehai; Gao, Xiaoqing; Xiong, Xia; Xu, Jixiang; Yang, Lingyu; Pan, Lun; Zhong, Jianqiao
2017-10-01
Skin photodamage is associated with UV-induced overproduction of reactive oxygen species (ROS) and the inactivation of NF-E2-related factor 2 (Nrf2). Skin-derived precursor cells (SKPs), a population of dermal stem cells, are considered to be involved in wound repair and skin regeneration through the activation of Nrf2. However, no reports concentrate on the treatment of skin photodamage with SKPs. To investigate the photoprotective role of SKPs against UV-induced damage in mice. Fifty Balb/c hairless mice were divided into five groups (n=10), namely, normal (no intervention), model, prevention, treatment, and control groups. The latter four groups were dorsally exposed to UVA+UVB irradiation over a 2-week period. Mice in the prevention group received weekly SKP injections for 2weeks the day before irradiation. Mice in the treatment and Hanks groups received a two-time injection of SKPs and Hanks, respectively, after irradiation. One week after final intervention, skin appearance, pathological alterations, and oxidative indicators were evaluated by enzyme-linked immunosorbent assay, immunohistochemical analysis, and western blotting. After irradiation, lesions were observed on the dorsal skin of mice, including erythema, edema, scales, and wrinkles; however, these were significantly ameliorated by subcutaneous SKP injection. Hyperkeratosis, acanthosis, and spongiosis in the epidermis, as well as dermal papillae edema and inflammatory cell infiltration, were observed in both model and control groups; however, these conditions resolved with either pretreatment or posttreatment with SKPs. In addition, SKPs increased Nrf2, heme oxygenase-1, glutathione peroxidase, superoxide dismutase, catalase, and gluthathione expression, while decreasing levels of ROS, MDA, and H 2 O 2 . These findings suggest that SKPs have a photoprotective role against UV-induced damage in mice, which may be associated with their ability to scavenge photo-oxidative insults and activate Nrf2. Copyright © 2017 Elsevier B.V. All rights reserved.
Topical application of ochratoxin A causes DNA damage and tumor initiation in mouse skin.
Kumar, Rahul; Ansari, Kausar M; Chaudhari, Bhushan P; Dhawan, Alok; Dwivedi, Premendra D; Jain, Swatantra K; Das, Mukul
2012-01-01
Skin cancer is one of the most common forms of cancer and 2-3 million new cases are being diagnosed globally each year. Along with UV rays, environmental pollutants/chemicals including mycotoxins, contaminants of various foods and feed stuffs, could be one of the aetiological factors of skin cancer. In the present study, we evaluated the DNA damaging potential and dermal carcinogenicity of a mycotoxin, ochratoxin A (OTA), with the rationale that dermal exposure to OTA in workers may occur during their involvement in pre and post harvest stages of agriculture. A single topical application of OTA (20-80 µg/mouse) resulted in significant DNA damage along with elevated γ-H2AX level in skin. Alteration in oxidative stress markers such as lipid peroxidation, protein carbonyl, glutathione content and antioxidant enzymes was observed in a dose (20-80 µg/mouse) and time-dependent (12-72 h) manner. The oxidative stress was further emphasized by the suppression of Nrf2 translocation to nucleus following a single topical application of OTA (80 µg/mouse) after 24 h. OTA (80 µg/mouse) application for 12-72 h caused significant enhancement in- (a) reactive oxygen species generation, (b) activation of ERK1/2, p38 and JNK MAPKs, (c) cell cycle arrest at G0/G1 phase (37-67%), (d) induction of apoptosis (2.0-11.0 fold), (e) expression of p53, p21/waf1, (f) Bax/Bcl-2 ratio, (g) cytochrome c level, (h) activities of caspase 9 (1.2-1.8 fold) and 3 (1.7-2.2 fold) as well as poly ADP ribose polymerase cleavage. In a two-stage mouse skin tumorigenesis protocol, it was observed that a single topical application of OTA (80 µg/mouse) followed by twice weekly application of 12-O-tetradecanoylphorbol-13-acetate for 24 week leads to tumor formation. These results suggest that OTA has skin tumor initiating property which may be related to oxidative stress, MAPKs signaling and DNA damage.
Morphogenesis and Biomechanics of Engineered Skin Cultured Under Uniaxial Strain
Blackstone, Britani N.; Powell, Heather M.
2012-01-01
Background Split-thickness autograft is the standard wound treatment for full-thickness burns. In large burns, sparse availability of uninjured skin prevents rapid closure of the wound, resulting in increased scar tissue formation or mortality. Tissue-engineered skin (ES) offers promise when autografts are not available. The Problem ES, constructed from a polymeric scaffold and skin cells, has been shown to reduce donor site area required to permanently close wounds, mortality, and morbidity from scarring but cannot restore all skin functions. Current generations of ES are orders of magnitude weaker than normal human skin, leading to difficulty in surgical application, greater susceptibility to mechanical damage during fabrication and application, and less elasticity and strength once engrafted. Basic/Clinical Science Advances Previous studies to improve ES biomechanics focus on altering the scaffolding material, which resulted in modest improvements but often inhibited proper skin development. As the skin is naturally under static strain, adding these mechanical cues to the culture environment is hypothesized to improve ES biomechanics. ES was cultured under applied static strains ranging from 0% to 40% strain for a total of 10 days. Strain magnitudes of 10% and 20% strain resulted in significantly stronger ES than unstrained controls, showed upregulation of many genes encoding structural extracellular matrix proteins, and exhibited increased epidermal cell proliferation and differentiation. Clinical Care Relevance Enhanced biomechanical properties of ES can allow for facile surgical application and less damage during dressing changes. Conclusion These findings suggest that mechanical cues play a significant role in skin development and should be further explored. PMID:24527283
Hong, Yong-Han; Huang, Ya-Ling; Liu, Yao-Cheng; Tsai, Pi-Jen
2016-01-01
Dermal photoaging is a condition of skin suffering inappropriate ultraviolet (UV) exposure and exerts inflammation, tissue alterations, redness, swelling, and uncomfortable feelings. Djulis ( Chenopodium formosanum Koidz.) is a cereal food and its antioxidant and pigment constituents may provide skin protection from photoaging, but it still lacks proved experiments. In this study, protective effects of djulis extract (CFE) on UVB-irradiated skin were explored. The results showed that HaCaT cells with 150 μ g/mL CFE treatment had higher survival and less production of interleukin- (IL-) 6, matrix metalloprotease- (MMP-) 1, and reactive oxygen species (ROS) in UVB-irradiated conditions. Subsequently, in animal studies, mice supplemented with CFE (100 mg/kg BW) were under UVB irradiation and had thinner epidermis and lower IL-6 levels in skin layer. These data demonstrate that bioactive compounds possessing the potency of antiphotoaging exist in CFE. Following that, we found rutin and chlorogenic acid (10-100 μ M) could significantly increase cell viability and decrease the production of IL-6 in UVB models. Additionally, djulis pigment-betanin has no effect of increasing cell viability in this study. Our findings suggest CFE can protect skin against UV-induced damage and this protection is mainly from contributions of rutin and chlorogenic acid.
Kim, Yoon-Jung; Kim, Ha-Neui; Shin, Mi-Sook; Choi, Byung-Tae
2015-01-01
Thread embedding acupuncture (TEA) is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB) irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P = 0.001 versus UV) in UVB irradiated mice and also inhibited degradation of collagen fibers (P = 0.010 versus normal) by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9). Western blot data showed that activation of c-Jun N-terminal kinase (JNK) induced by UVB (P = 0.002 versus normal group) was significantly inhibited by TEA treatment (P = 0.005 versus UV) with subsequent alleviation of MMP-9 activation (P = 0.048 versus UV). These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging.
Kim, Yoon-Jung; Kim, Ha-Neui; Shin, Mi-Sook; Choi, Byung-Tae
2015-01-01
Thread embedding acupuncture (TEA) is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB) irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P = 0.001 versus UV) in UVB irradiated mice and also inhibited degradation of collagen fibers (P = 0.010 versus normal) by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9). Western blot data showed that activation of c-Jun N-terminal kinase (JNK) induced by UVB (P = 0.002 versus normal group) was significantly inhibited by TEA treatment (P = 0.005 versus UV) with subsequent alleviation of MMP-9 activation (P = 0.048 versus UV). These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging. PMID:26185518
Ahmad, Israr; Simanyi, Eva; Guroji, Purushotham; Tamimi, Iman A; delaRosa, Hillary J; Nagar, Anusuiya; Nagar, Priyamvada; Katiyar, Santosh K; Elmets, Craig A; Yusuf, Nabiha
2014-01-01
UVB-induced DNA damage plays a critical role in development of photoimmunosuppression. The purpose of this study was to determine whether repair of UVB-induced DNA damage is regulated by Toll-like receptor-4 (TLR4). When TLR4 gene knockout (TLR4-/-) and TLR4 competent (TLR4+/+) mice were subjected to 90 mJ/cm2 UVB radiation locally, DNA damage in the form of CPD, were repaired more efficiently in the skin and bone marrow dendritic cells (BMDC) of TLR4-/- mice in comparison to TLR4+/+ mice. Expression of DNA repair gene XPA (Xeroderma pigmentosum complementation group A) was significantly lower in skin and BMDC of TLR4+/+ mice than TLR4-/- mice after UVB exposure. When cytokine levels were compared in these strains after UVB exposure, BMDC from UV-irradiated TLR4-/- mice produced significantly more interleukin (IL)-12 and IL-23 cytokines (p<0.05) than BMDC from TLR4+/+ mice. Addition of anti-IL-12 and anti-IL-23 antibodies to BMDC of TLR4-/- mice (before UVB exposure) inhibited repair of CPD, with a concomitant decrease in XPA expression. Addition of TLR4 agonist to TLR4+/+ BMDC cultures decreased XPA expression and inhibited CPD repair. Thus, strategies to inhibit TLR4 may allow for immunopreventive and immunotherapeutic approaches for managing UVB-induced cutaneous DNA damage and skin cancer. PMID:24326454
Arora, Sumit; Omar, Yousef; Ijaz, Zohaib Mohammad; AL-Ghadhban, Ahmed; Deshmukh, Sachin K.; Carter, James E.; Singh, Ajay P.; Singh, Seema
2016-01-01
Sunscreen formulations containing UVB filters, such as Zinc-oxide (ZnO) and titanium-dioxide (TiO2) nanoparticles (NPs) have been developed to limit the exposure of human skin to UV-radiations. Unfortunately, these UVB protective agents have failed in controlling the skin cancer incidence. We recently demonstrated that silver nanoparticles (Ag-NPs) could serve as novel protective agents against UVB-radiations. Here our goal was to perform comparative analysis of direct and indirect UVB-protection efficacy of ZnO-, TiO2- and Ag-NPs. Sun-protection-factor calculated based on their UVB-reflective/absorption abilities was the highest for TiO2-NPs followed by Ag- and ZnO-NPs. This was further confirmed by studying indirect protection of UVB radiation-induced death of HaCaT cells. However, only Ag-NPs were active in protecting HaCaT cells against direct UVB-induced DNA-damage by repairing bulky-DNA lesions through nucleotide-excision-repair mechanism. Moreover, Ag-NPs were also effective in protecting HaCaT cells from UVB-induced oxidative DNA damage by enhancing SOD/CAT/GPx activity. In contrast, ZnO- and TiO2-NPs not only failed in providing any direct protection from DNA-damage, but rather enhanced oxidative DNA-damage by increasing ROS production. Together, these findings raise concerns about safety of ZnO- and TiO2-NPs and establish superior protective efficacy of Ag-NPs. PMID:27693632
Code of Federal Regulations, 2012 CFR
2012-01-01
... considered as damage: (1) Sunburn which causes the rind to become brownish in color, hard, tough, or thin; and, (2) Bruising when the size or color of the affected area materially detracts from the appearance... occurring as very shallow cracks in the skin. ...
The Grape Antioxidant Resveratrol for Skin Disorders: Promise, Prospects, and Challenges
Ndiaye, Mary; Philippe, Carol; Mukhtar, Hasan; Ahmad, Nihal
2011-01-01
Resveratrol, a phytoalexin antioxidant found in red grapes, has been shown to have both chemopreventive and therapeutic effects against many diseases and disorders, including those of the skin. Studies have shown protective effects of resveratrol against ultraviolet radiation mediated oxidative stress and cutaneous damages including skin cancer. Because many of the skin conditions stem from ultraviolet radiation and oxidative stress, this antioxidant appears to have promise and prospects against a wide range of cutaneous disorders including skin aging and skin cancers. However, there are a few roadblocks in the way of this promising agent regarding its translation from the bench to the bedside. This review discusses the promise and prospects of resveratrol in the management of skin disorders and the associated challenges. PMID:21215251
The TopClosure® 3S System, for skin stretching and a secure wound closure.
Topaz, Moris; Carmel, Narin-Nard; Silberman, Adi; Li, Ming Sen; Li, Yong Zhong
2012-07-01
The principle of stretching wound margins for primary wound closure is commonly practiced and used for various skin defects, leading at times to excessive tension and complications during wound closure. Different surgical techniques, skin stretching devices and tissue expanders have been utilized to address this issue. Previously designed skin stretching devices resulted in considerable morbidity. They were invasive by nature and associated with relatively high localized tissue pressure, frequently leading to necrosis, damage and tearing of skin at the wound margins. To assess the clinical effectiveness and performance and, to determine the safety of TopClosure® for gradual, controlled, temporary, noninvasive and invasive applications for skin stretching and secure wound closing, the TopClosure® device was applied to 20 patients for preoperative skin lesion removal and to secure closure of a variety of wound sizes. TopClosure® was reinforced with adhesives, staples and/or surgical sutures, depending on the circumstances of the wound and the surgeon's judgment. TopClosure® was used prior to, during and/or after surgery to reduce tension across wound edges. No significant complications or adverse events were associated with its use. TopClosure® was effectively used for preoperative skin expansion in preparation for dermal resection (e.g., congenital nevi). It aided closure of large wounds involving significant loss of skin and soft tissue by mobilizing skin and subcutaneous tissue, thus avoiding the need for skin grafts or flaps. Following surgery, it was used to secure closure of wounds under tension, thus improving wound aesthetics. A sample case study will be presented. We designed TopClosure®, an innovative device, to modify the currently practiced concept of wound closure by applying minimal stress to the skin, away from damaged wound edges, with flexible force vectors and versatile methods of attachment to the skin, in a noninvasive or invasive manner.
NASA Astrophysics Data System (ADS)
Jeevan Kumar, N.; Ramesh Babu, P.
2018-02-01
In recent years carbon fibre-reinforced polymers (CFRP) emerged its increasing demand in aerospace engineering. Due to their high specific strength to weight ratio, these composites offer more characteristics and considerable advantages compared to metals. Metals, unlike composites, offer plasticity effects to evade high stress concentrations during postbuckling. Under compressive load, composite structures show a wide range of damage mechanisms where a set of damage modes combined together might lead to the eventual structural collapse. Crack is one of the most critical damages in fiber composites, which are being employed in primary aircraft structures. A parametric study is conducted to investigate the arrest mechanism of the delamination or crack growth with installation of multiple fasteners when the delamination is embedded in between the skin and stiffener interface.
Human skin permeation of emerging mycotoxins (beauvericin and enniatins).
Taevernier, Lien; Veryser, Lieselotte; Roche, Nathalie; Peremans, Kathelijne; Burvenich, Christian; Delesalle, Catherine; De Spiegeleer, Bart
2016-01-01
Currently, dermal exposure data of cyclic depsipeptide mycotoxins are completely absent. There is a lack of understanding about the local skin and systemic kinetics and effects, despite their widespread skin contact and intrinsic hazard. Therefore, we provide a quantitative characterisation of their dermal kinetics. The emerging mycotoxins enniatins (ENNs) and beauvericin (BEA) were used as model compounds and their transdermal kinetics were quantitatively evaluated, using intact and damaged human skin in an in vitro Franz diffusion cell set-up and ultra high-performance liquid chromatography (UHPLC)-MS analytics. We demonstrated that all investigated mycotoxins are able to penetrate through the skin. ENN B showed the highest permeation (kp,v=9.44 × 10(-6) cm/h), whereas BEA showed the lowest (kp,v=2.35 × 10(-6) cm/h) and the other ENNs ranging in between. Combining these values with experimentally determined solubility data, Jmax values ranging from 0.02 to 0.35 μg/(cm(2) h) for intact skin and from 0.07 to 1.11 μg/(cm(2) h) for damaged skin were obtained. These were used to determine the daily dermal exposure (DDE) in a worst-case scenario. On the other hand, DDE's for a typical occupational scenario were calculated based on real-life mycotoxin concentrations for the industrial exposure of food-related workers. In the latter case, for contact with intact human skin, DDE's up to 0.0870 ng/(kg BW × day) for ENN A were calculated, whereas for impaired skin barrier this can even rise up to 0.3209 ng/(kg BW × day) for ENN B1. This knowledge is needed for the risk assessment after skin exposure of contaminated food, feed, indoor surfaces and airborne particles with mycotoxins.
Katiyar, Santosh K.; Mantena, Sudheer K.; Meeran, Syed M.
2011-01-01
Solar ultraviolet (UV) radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum), inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK) with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs) and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER) genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells. PMID:21731736
Collateral damage-free debridement using 193nm ArF laser
NASA Astrophysics Data System (ADS)
Wynne, James J.; Felsenstein, Jerome M.; Trzcinski, Robert; Zupanski-Nielsen, Donna; Connors, Daniel P.
2011-03-01
Burn eschar and other necrotic areas of the skin and soft tissue are anhydrous compared to the underlying viable tissue. A 193 nm ArF excimer laser, emitting electromagnetic radiation at 6.4 eV at fluence exceeding the ablation threshold, will debride such necrotic areas. Because such radiation is strongly absorbed by aqueous chloride ions through the nonthermal process of electron photodetachment, debridement will cease when hydrated (with chloride ions) viable tissue is exposed, avoiding collateral damage to this tissue. Such tissue will be sterile and ready for further treatment, such as a wound dressing and/or a skin graft.
Lai, Ying-Chih; Deng, Jianan; Niu, Simiao; Peng, Wenbo; Wu, Changsheng; Liu, Ruiyuan; Wen, Zhen; Wang, Zhong Lin
2016-12-01
Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator is demonstrated for the first time by using triboelectric effect. This newly designed nanogenerator can produce electricity by touch or tapping despite under various extreme mechanical deformations or even after experiencing damage. This device can be used not only as deformable and wearable power source but also as fully autonomous and self-sufficient adaptive electronic skin system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tunable engineered skin mechanics via coaxial electrospun fiber core diameter.
Blackstone, Britani Nicole; Drexler, Jason William; Powell, Heather Megan
2014-10-01
Autologous engineered skin (ES) offers promise as a treatment for massive full thickness burns. Unfortunately, ES is orders of magnitude weaker than normal human skin causing it to be difficult to apply surgically and subject to damage by mechanical shear in the early phases of engraftment. In addition, no manufacturing strategy has been developed to tune ES biomechanics to approximate the native biomechanics at different anatomic locations. To enhance and tune ES biomechanics, a coaxial (CoA) electrospun scaffold platform was developed from polycaprolactone (PCL, core) and gelatin (shell). The ability of the coaxial fiber core diameter to control both scaffold and tissue mechanics was investigated along with the ability of the gelatin shell to facilitate cell adhesion and skin development compared to pure gelatin, pure PCL, and a gelatin-PCL blended fiber scaffold. CoA ES exhibited increased cellular adhesion and metabolism versus PCL alone or gelatin-PCL blend and promoted the development of well stratified skin with a dense dermal layer and a differentiated epidermal layer. Biomechanics of the scaffold and ES scaled linearly with core diameter suggesting that this scaffold platform could be utilized to tailor ES mechanics for their intended grafting site and reduce graft damage in vitro and in vivo.
Treatment of sulphur mustard skin injury.
Jenner, John; Graham, Stuart J
2013-12-05
Since its first use in 1917, sulphur mustard (SM) has been used virtually exclusively as a weapon of war.SM is a volatile liquid that damages any tissue it contacts as a vapour or liquid. SM primarily damages the skin, eyes and lungs producing massive inflammation culminating in the characteristic blistering of the skin which classifies SM as a vesicant. Several mechanisms of action at the cellular level have been proposed for SM, but none has ever been convincingly linked to the production of blisters or vesication. First aid for those contaminated with liquid SM consists of the rapid removal (within a few minutes) of liquid from the surface of the skin, as once penetrated into the stratum corneum it is very difficult to remove. In the absence of a mechanistically based specific therapy, SM skin injury is normally treated in a similar way to thermal and chemical burns, which it resembles pathologically. Effective therapy consist of treating the inflammation and where necessary removal of the dead eschar to facilitate healing. Post surgical care comprises the use of one of a number of available dressings used in thermal burn care and antibiotic creams should infection be present.
An approach for development of alternative test methods based on mechanisms of skin irritation.
Osborne, R; Perkins, M A
1994-02-01
Recent advances in techniques for culture of human skin cells have led to their potential for use as in vitro models for skin irritation testing to augment or replace existing rabbit skin patch tests. Our work is directed towards the development of cultured human skin cells, together with endpoints that can be linked to in vivo mechanisms of skin irritation, as in vitro models for prediction of human skin irritation, and for study of mechanisms of contact irritant dermatitis. Three types of commercial human skin cell cultures have been evaluated, epidermal keratinocytes and partially or fully cornified keratinocyte-dermal fibroblast co-cultures. Human epidermal keratinocyte cultures (Clonetics) were treated with product ingredients and formulations, and the extent of cell damage was assessed by incorporation of the vital dye neutral red. Cell damage correlated with human skin patch data for ingredient chemicals with the exception of acids and alkalis, but did not correlate with skin irritation to surfactant-containing product formulations. Cultures of human skin equivalents were evaluated as potential models for measurement of responses to test materials that could not be measured in the keratinocyte/neutral red assay. We developed a battery of in vitro endpoints to measure responses to prototype ingredients and formulations in human epidermal keratinocyte-dermal fibroblast co-cultures grown on a nylon mesh ('Skin2' from Advanced Tissue Sciences) or on a collagen gel ('Testskin' from Organogenesis). The endpoints measure cytotoxicity (neutral red and MTT vital dye staining, lactate dehydrogenase and N-acetyl glucosaminidase release, glucose utilization) and inflammatory mediator (prostaglandin E2) release. Initial experiments indicate a promising correlation between responses of the Skin2 model to prototype surfactants and in vivo human skin irritation. The responses of Testskin cultures to acids and alkalis help to prove the concept that a topical application model can measure responses to these materials. These results suggest that human skin cell models can provide useful systems for preclinical skin irritation assessments, as alternatives to rabbits, for at least certain classes of test substances.
UV-Induced Molecular Signaling Differences in Melanoma and Non-melanoma Skin Cancer.
Liu-Smith, Feng; Jia, Jinjing; Zheng, Yan
2017-01-01
There are three major types of skin cancer: melanoma, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). BCC and SCC are often referred to as non-melanoma skin cancer (NMSC). NMSCs are relatively non-lethal and curable by surgery, hence are not reportable in most cancer registries all over the world. Melanoma is the deadliest skin cancer. Its incidence rate (case number) is about 1/10th of that for NMSC, yet its death toll is ~8 fold higher than NMSC.Melanomas arise from melanocytes which are normally located on the basement membrane with dendrites extending into the epidermal keratinocytes. A major known function of melanocytes is to produce pigments which are enclosed by lipid membrane (termed melanosomes) and distribute them into keratinocytes, thus give different shade of skin colors. BCCs arise from basal cells, which are a layer of cells located at the deepest part of epidermis. Basal cells are recently considered to be skin stem cells as they are constantly proliferating and generating keratinocytes which are continuously pushed to the surface and eventually become a dead layer of stratum corneum. Squamous cells are the keratinocytes which resembles fish scale shape, ie, those initiated from basal cells and differentiated into squamous cells. Both basal cells and squamous cells belong to keratinocytes, therefore sometimes BCC and SCC are termed keratinocyte cancer.These three types of cancer share many characteristics, yet they are very different from etiology to progression. One shared characteristic of skin cancer is that, according to the current views, they all are caused by solar or artificial ultraviolet radiation (UVR). UVA and UVB from solar UVR are the major UV bands reaching the earth surface. Both UV types cause DNA damage and immune suppression which play crucial roles in skin carcinogenesis. UVB can be directly absorbed by DNA molecules and thus causes UV-signature DNA damages; UVA, on the other hand, may function through inducing cellular ROS which then causes oxidative DNA damages [1-4]. This chapter will discuss the molecular signaling differences of UVR in melanoma and NMSC.
Residual life and strength estimates of aircraft structural components with MSD/MED
NASA Technical Reports Server (NTRS)
Singh, Ripudaman; Park, Jai H.; Atluri, Satya N.
1994-01-01
Economic and safe operation of the flight vehicles flying beyond their initial design life calls for an in-depth structural integrity evaluation of all components with potential for catastrophic damages. Fuselage panels with cracked skin and/or stiffening elements is one such example. A three level analytical approach is developed to analyze the pressurized fuselage stiffened shell panels with damaged skin or stiffening elements. A global finite element analysis is first carried out to obtain the load flow pattern through the damaged panel. As an intermediate step, the damaged zone is treated as a spatially three-dimensional structure modeled by plate and shell finite elements, with all the neighboring elements that can alter the stress state at the crack tip. This is followed by the Schwartz-Neumann alternating method for local analysis to obtain the relevant crack tip parameters that govern the onset of fracture and the crack growth. The methodology developed is generic in nature and aims at handling a large fraction of problem areas identified by the Industry Committee on Wide-Spread Fatigue Damage.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Unhealed skin breaks; and, (4) Wormy fruit. (c) Free from damage caused by: (1) Ammoniation; (2) Bruises...) Disease; (8) Green spots; (9) Hail; (10) Insects; (11) Oil spots; (12) Scab; (13) Scale; (14) Scars; (15) Skin breakdown; (16) Sprayburn; (17) Sunburn; and, (18) Other means. (d) For tolerances see § 51.1820. ...
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Unhealed skin breaks; and, (3) Wormy fruit. (c) Free from serious damage caused by: (1) Ammoniation; (2...; (8) Dryness or mushy condition; (9) Green spots; (10) Hail; (11) Insects; (12) Oil spots; (13) Scab; (14) Scale; (15) Scars; (16) Skin breakdown; (17) Sprayburn; (18) Sunburn; and (19) Other means. (d...
Sun Safety Knowledge, Attitudes, and Behaviors among Beachgoing Adolescents
ERIC Educational Resources Information Center
Merten, Julie Williams; Higgins, Sue; Rowan, Alan; Pragle, Aimee
2014-01-01
Background: Skin cancer rates are rising and could be reduced with better sun protection behaviors. Adolescent exposure to ultraviolet (UV) radiation is damaging because it can lead to skin cancer. This descriptive study extends understanding of adolescent sun exposure attitudes, knowledge, and behaviors. Methods: A sample of 423 beachgoing…
Pal, Harish Chandra; Athar, Mohammad; Elmets, Craig A.; Afaq, Farrukh
2014-01-01
Solar ultraviolet B (UVB) radiation has been shown to induce inflammation, DNA damage, p53 mutations, and alterations in signaling pathways eventually leading to skin cancer. In the present study, we investigated whether fisetin reduces inflammatory responses and modulates PI3K/AKT/NFκB cell survival signaling pathways in UVB exposed SKH-1 hairless mouse skin. Mice were exposed to 180 mJ/cm2 of UVB radiation on alternate days for a total of seven exposures, and fisetin (250 and 500 nmol) was applied topically after 15 min of each UVB exposure. Fisetin treatment to UVB exposed mice resulted in decreased hyperplasia and reduced infiltration of inflammatory cells. Fisetin treatment also reduced inflammatory mediators such as COX-2, PGE2 as well as its receptors (EP1- EP4), and MPO activity. Furthermore, fisetin reduced the level of inflammatory cytokines TNFα, IL-1β and IL-6 in UVB exposed skin. Fisetin treatment also reduced cell proliferation markers as well as DNA damage as evidenced by increased expression of p53 and p21 proteins. Further studies revealed that fisetin inhibited UVB-induced expression of PI3K, phosphorylation of AKT, and activation of the NFκB signaling pathway in mouse skin. Overall, these data suggest that fisetin may be useful against UVB-induced cutaneous inflammation and DNA damage. PMID:25169110
The National Nanotechnology Initiative: Overview, Reauthorization, and Appropriations Issues
2013-08-09
new organs to replace damaged or diseased ones;10 • contact lenses, skin patches, and glucose-sensing tattoos that monitor diabetics’ blood sugar...collection on a device the size of a sugar cube;16 • inexpensive, flexible, durable, low-voltage “electronic skin ” sensors that allow robots and...Toward Nanoparticle-Based Electronic Skin ,” ACS Applied Materials and Interfaces, vol. 5, no. 12 (2013), pp. pp 5531-5541. 18 U.S. Department of
Pedunculated and telangiectatic merkel cell carcinoma: an unusual clinical presentation.
Errichetti, Enzo; Piccirillo, Angelo; Ricciuti, Federico; Ricciuti, Francesco
2013-05-01
Merkel cell carcinoma (MCC) is an uncommon aggressive neuroendocrine tumor of the skin that classically presents on chronic sun-damaged skin as a skin-colored, red or violaceous, firm and nontender papule or nodule with a smooth and shiny surface. Ulcerations can be observed very seldom and only in very advanced lesions. We present a unique case of a MCC presenting with two unusual clinical features: The Telangiectatic surface and the pedunculated aspect.
2014-01-01
Background Digital image analysis has the potential to address issues surrounding traditional histological techniques including a lack of objectivity and high variability, through the application of quantitative analysis. A key initial step in image analysis is the identification of regions of interest. A widely applied methodology is that of segmentation. This paper proposes the application of image analysis techniques to segment skin tissue with varying degrees of histopathological damage. The segmentation of human tissue is challenging as a consequence of the complexity of the tissue structures and inconsistencies in tissue preparation, hence there is a need for a new robust method with the capability to handle the additional challenges materialising from histopathological damage. Methods A new algorithm has been developed which combines enhanced colour information, created following a transformation to the L*a*b* colourspace, with general image intensity information. A colour normalisation step is included to enhance the algorithm’s robustness to variations in the lighting and staining of the input images. The resulting optimised image is subjected to thresholding and the segmentation is fine-tuned using a combination of morphological processing and object classification rules. The segmentation algorithm was tested on 40 digital images of haematoxylin & eosin (H&E) stained skin biopsies. Accuracy, sensitivity and specificity of the algorithmic procedure were assessed through the comparison of the proposed methodology against manual methods. Results Experimental results show the proposed fully automated methodology segments the epidermis with a mean specificity of 97.7%, a mean sensitivity of 89.4% and a mean accuracy of 96.5%. When a simple user interaction step is included, the specificity increases to 98.0%, the sensitivity to 91.0% and the accuracy to 96.8%. The algorithm segments effectively for different severities of tissue damage. Conclusions Epidermal segmentation is a crucial first step in a range of applications including melanoma detection and the assessment of histopathological damage in skin. The proposed methodology is able to segment the epidermis with different levels of histological damage. The basic method framework could be applied to segmentation of other epithelial tissues. PMID:24521154
Penetration and perforation of skin by bullets and missiles. A review of the literature.
DiMaio, V J
1981-06-01
A review of the literature on perforation of skin by bullets and missiles indicates that there is a range of velocity below which a missile cannot perforate the skin. Velocities of between 38.1 and 61.6 meters/second (125 and 202 ft./second) will produce at least minimal damage to the surface of the skin, though without perforation. In order for a missile to perforate the skin and enter the underlying subcutaneous tissue and muscle, a minimum velocity in the order of 70 meters/second (230 ft./second) is necessary with an energy/area of presentation of approximately 2.1 m-kg/cm2.
The Role of Phytonutrients in Skin Health
Evans, Julie A.; Johnson, Elizabeth J.
2010-01-01
Photodamage is known to occur in skin with exposure to sunlight, specifically ultraviolet (UV) radiation. Such damage includes inflammation, oxidative stress, breakdown of the extracellular matrix, and development of cancer in the skin. Sun exposure is considered to be one of the most important risk factors for both nonmelanoma and melanoma skin cancers. Many phytonutrients have shown promise as photoprotectants in clinical, animal and cell culture studies. In part, the actions of these phytonutrients are thought to be through their actions as antioxidants. In regard to skin health, phytonutrients of interest include vitamin E, certain flavonoids, and the carotenoids, β-carotene, lycopene and lutein. PMID:22254062
Epidermolysis bullosa: Careful monitoring and no touch principle for anesthesia management.
Saraf, Sujit V; Mandawade, Nishigandha J; Gore, Sandeep K; Padhye, Usha D; Pereira, Charissa S
2013-07-01
Epidermolysis bullosa (EB) is a rare genetic mechanobullous disorder, with excessive fragility of the skin and mucous membranes. Avoiding mechanical injury to the skin and mucous membranes is essential in the anesthetic management. Shearing forces applied to the skin result in bullae formation, while compressive forces to the skin are tolerated. The challenge is to use monitoring technology without damaging the epithelial surface. Difficult airway, positioning issues, nutritional deficiencies, poor immunity, and carcinogenic potential add to the comorbidities. We managed a child with EB undergoing syndactyly release. Ensuring maximal skin and mucous membrane protection, anesthesia in children with EB can be conducted with few sequelae.
Karthikeyan, Ramasamy; Kanimozhi, Govindasamy; Prasad, Nagarajan Rajendra; Agilan, Balupillai; Ganesan, Muthusamy; Mohana, Shanmugham; Srithar, Gunaseelan
2016-08-01
Ultraviolet B (UVB) irradiation alters multiple molecular pathways in the skin, thereby inducing skin damage. Human dermal fibroblasts (HDFa) were subjected to single UVB-irradiation (18mJ/cm(2)) resulting in reactive oxygen species (ROS) generation, oxidative DNA damage and upregulation of nuclear factor kappa B (NF-κB) expression. Further, it has been observed that there was a significant cytokine production (TNF-α and IL-6) in UVB irradiated HDFa cells. Our results show that 7-hydroxycoumarin (7-OHC) prevents UVB-induced activation of NF-κB thereby subsequently preventing the overexpression of TNF-α and IL-6 in HDFa cells. Further, 7-OHC prevents UVB-induced activation of cyclooxygenase-2 (COX-2) expression, an inflammatory mediator in skin cells. Moreover, 7-OHC inhibited mRNA expression pattern of matrix metalloproteinases (MMP-1 and MMP-9) in UVB irradiated skin cells. Furthermore, 7-OHC restored antioxidant status, thereby scavenging the excessively generated ROS; consequently preventing the oxidative DNA damage. It has also been noticed that 7-OHC prevents UVB mediated DNA damage through activation of DNA repair enzymes such as XRCC1 and HOGG1. In this study, we treated HDFa cells with 7-OHC before and after UVB irradiation and we found that pretreatment showed better results when compared to posttreatment. Further, 7-OHC showed 9.8416 sun protection factor (SPF) value and it absorbs photons in the UVB wavelength rage. Thus, it has been concluded that sunscreen property, free radical scavenging potential and prevention of NF-κB activation play a role for photoprotective property of 7-OHC. Copyright © 2016 Elsevier B.V. All rights reserved.
Rybchyn, Mark Stephen; De Silva, Warusavithana Gunawardena Manori; Sequeira, Vanessa Bernadette; McCarthy, Bianca Yuko; Dilley, Anthony Vincent; Dixon, Katie Marie; Halliday, Gary Mark; Mason, Rebecca Sara
2018-05-01
Inadequately repaired post-UV DNA damage results in skin cancers. DNA repair requires energy but skin cells have limited capacity to produce energy after UV insult. We examined whether energy supply is important for DNA repair after UV exposure, in the presence of 1α,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ), which reduces UV-induced DNA damage and photocarcinogenesis in a variety of models. After UV exposure of primary human keratinocytes, the addition of 1,25(OH) 2 D 3 increased unscheduled DNA synthesis, a measure of DNA repair. Oxidative phosphorylation was depleted in UV-irradiated keratinocytes to undetectable levels within an hour of UV irradiation. Treatment with 1,25(OH) 2 D 3 but not vehicle increased glycolysis after UV. 2-Deoxyglucose-dependent inhibition of glycolysis abolished the reduction in cyclobutane pyrimidine dimers by 1,25(OH) 2 D 3 , whereas inhibition of oxidative phosphorylation had no effect. 1,25(OH) 2 D 3 increased autophagy and modulated PINK1/Parkin consistent with enhanced mitophagy. These data confirm that energy availability is limited in keratinocytes after exposure to UV. In the presence of 1,25(OH) 2 D 3 , glycolysis is enhanced along with energy-conserving processes such as autophagy and mitophagy, resulting in increased repair of cyclobutane pyrimidine dimers and decreased oxidative DNA damage. Increased energy availability in the presence of 1,25(OH) 2 D 3 is an important contributor to DNA repair in skin after UV exposure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Zakaria, N N A; Okello, E J; Howes, M-J; Birch-Machin, M A; Bowman, A
2018-06-01
The traditional practice of eating the flowers of Clitoria ternatea L. or drinking their infusion as herbal tea in some of the Asian countries is believed to promote a younger skin complexion and defend against skin aging. This study was conducted to investigate the protective effect of C. ternatea flower water extract (CTW) against hydrogen peroxide-induced cytotoxicity and ultraviolet (UV)-induced mitochondrial DNA (mtDNA) damage in human keratinocytes. The protective effect against hydrogen peroxide-induced cytotoxicity was determined by 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, and mtDNA damage induced by UV was determined by polymerase chain reaction. Preincubation of HaCaT with 100, 250, and 500 μg/ml CTW reduced cytotoxicity effects of H 2 O 2 compared with control (H 2 O 2 alone). CTW also significantly reduced mtDNA damage in UV-exposed HaCaT (p < .05). CTW was chemically-characterized using high resolution liquid chromatography-mass spectrometry. The main compounds detected were assigned as anthocyanins derived from delphinidin, including polyacylated ternatins, and flavonol glycosides derived from quercetin and kaempferol. These results demonstrated the protective effects of C. ternatea flower extracts that contain polyacylated anthocyanins and flavonol glycosides as major constituents, against H 2 O 2 and UV-induced oxidative stress on skin cells, and may provide some explanation for the putative traditional and cosmetic uses of C. ternatea flower against skin aging. Copyright © 2018 John Wiley & Sons, Ltd.
Code of Federal Regulations, 2010 CFR
2010-10-01
... associated with the performance of, a governmental function such as firefighting, search and rescue, law... normally require major repair or replacement of the affected component. Engine failure or damage limited to an engine if only one engine fails or is damaged, bent fairings or cowling, dented skin, small...
Thermal Damage Analysis in Biological Tissues Under Optical Irradiation: Application to the Skin
NASA Astrophysics Data System (ADS)
Fanjul-Vélez, Félix; Ortega-Quijano, Noé; Solana-Quirós, José Ramón; Arce-Diego, José Luis
2009-07-01
The use of optical sources in medical praxis is increasing nowadays. In this study, different approaches using thermo-optical principles that allow us to predict thermal damage in irradiated tissues are analyzed. Optical propagation is studied by means of the radiation transport theory (RTT) equation, solved via a Monte Carlo analysis. Data obtained are included in a bio-heat equation, solved via a numerical finite difference approach. Optothermal properties are considered for the model to be accurate and reliable. Thermal distribution is calculated as a function of optical source parameters, mainly optical irradiance, wavelength and exposition time. Two thermal damage models, the cumulative equivalent minutes (CEM) 43 °C approach and the Arrhenius analysis, are used. The former is appropriate when dealing with dosimetry considerations at constant temperature. The latter is adequate to predict thermal damage with arbitrary temperature time dependence. Both models are applied and compared for the particular application of skin thermotherapy irradiation.
Yoon, Hyun-Sun; Cho, Hyun Hee; Cho, Soyun; Lee, Se-Rah; Shin, Mi-Hee; Chung, Jin Ho
2014-07-01
Photoaging accounts for most age-related changes in skin appearance. It has been suggested that both astaxanthin, a potent antioxidant, and collagen hydrolysate can be used as antiaging modalities in photoaged skin. However, there is no clinical study using astaxanthin combined with collagen hydrolysate. We investigated the effects of using a combination of dietary astaxanthin and collagen hydrolysate supplementation on moderately photoaged skin in humans. A total of 44 healthy subjects were recruited and treated with astaxanthin (2 mg/day) combined with collagen hydrolysate (3 g/day) or placebos, which were identical in appearance and taste to the active supplementation for 12 weeks. The elasticity and hydration properties of facial skin were evaluated using noninvasive objective devices. In addition, we also evaluated the expression of procollagen type I, fibrillin-1, matrix metalloproteinase-1 (MMP-1) and -12, and ultraviolet (UV)-induced DNA damage in artificially UV-irradiated buttock skin before and after treatment. The supplement group showed significant improvements in skin elasticity and transepidermal water loss in photoaged facial skin after 12 weeks compared with the placebo group. In the supplement group, expression of procollagen type I mRNA increased and expression of MMP-1 and -12 mRNA decreased compared with those in the placebo group. In contrast, there was no significant difference in UV-induced DNA damage between groups. These results demonstrate that dietary astaxanthin combined with collagen hydrolysate can improve elasticity and barrier integrity in photoaged human facial skin, and such treatment is well tolerated.
da Rosa Silva, Carleara Ferreira; Santana, Rosimere Ferreira; de Oliveira, Beatriz Guitton Renaud Baptista; do Carmo, Thalita Gomes
2017-02-02
Skin changes caused by aging increase the risk of skin damages, such as pressure ulcers, during hospitalization of elderly patients. There is few information about the cost of wound treatment in Brazil. Conversely, skin and wound problems are highly reported among hospitalized elderly patients and caregivers. The purpose is to analyze the socio-demographic and clinical profile associated with skin and wound care in hospitalized elderly. This is a prospective observational study. The sample consisted of 75 patients, aged 60 years or more, randomly selected in three hospitals in Rio de Janeiro, Brazil. Data extraction from nursing records of the sample, using cross mapping with Nursing Interventions Classification. Data Synthesis supported by SAS 6.11 (SAS Institute, Inc. Cary North Carolina) in association with SPSS version 14.0 and statistics analysis. The findings were: age standard deviation 7.8, with minimum as 60, and maximum as 91 years old. Prevalence of women and married seniors. High prevalence of long-term hospitalization. There were 21 Nursing Interventions in the nursing records and seventeen of them related to skin and wound care. They were described in 57 nursing activities, present during 376 evaluations and repeated 1756 times. A significant difference was obtained between age and the presence of the nursing interventions "Positioning" (p-0.004), Eye Care/Hygiene (p- < 0.0001) and Oral Health Maintenance (p-0.0003). The skin care to prevention and treatment of skin damages represented the major demand of nursing interventions in different clinical conditions of hospitalized elderly.
Haywood, Rachel
2006-01-01
With the continued rise in skin cancers worldwide there is a need for effective skin protection against sunlight damage. It was shown previously that sunscreens, which claimed UVA protection (SPF 20+), provided limited protection against UV-induced ascorbate radicals in human skin. Here the results of an electron spin resonance (ESR) investigation to irradiate ex vivo human skin with solar-simulated light are reported. The ascorbate radical signal in the majority of skin samples was directly proportional to the irradiance over relevant sunlight intensities (0.9-2.9 mW cm(-2)). Radical production (substratum-corneum) by UV (wavelengths < 400 nm) and visible components (> 400 nm) was approximately 67% and 33% respectively. Ascorbate radicals were in steady state concentration at low irradiance (approximately 1 mW cm(-2) equivalent to UK sunlight), but at higher irradiance (approximately 3 mW cm(-2)) decreased with time, suggesting ascorbate depletion. Radical protection by a four star-rated sunscreen (with UVA protection) was optimal when applied as a thin film (40-60% at 2 mg cm(-2)) but less so when rubbed into the skin (37% at 4 mg cm(-2) and no significant protection at 2 mg cm(-2)), possibly due to cream filling crevices, which reduced film thickness. This study validates ESR determinations of the ascorbate radical for quantitative protection measurements. Visible light contribution to radical production, and loss of protection when sunscreen is rubbed into skin, has implications for sunscreen design and use for the prevention of free-radical damage.
Martini, Ana Paula M; Maia Campos, Patricia M B G
2018-01-30
Cutaneous hyperchromias are disorders of skin pigmentation involving increased melanin production and its irregular accumulation in skin cells. The use of sunscreens is fundamental for the control of hyperchromias by reducing the stimulation of pigmentation, as melanin synthesis is mainly stimulated by solar radiation. Many studies have demonstrated that visible light can induce significant skin damage. Considering the effects of visible light, effective photoprotection should not be limited only to UV protection but should also involve visible and infrared protection. The aim of this study was to evaluate the efficacy of UV-VIS sunscreens in protecting skin against damages caused by solar radiation and the influence of visible light on the appearance of cutaneous hyperchromias. Forty volunteers aged 18 to 39 years with skin hyperpigmentation participated in the study. To evaluate the efficacy of the formulations developed, the percentage of hyperpigmented area was evaluated using high-resolution images-Visioface ® Quick (Courage-Khazaka, Germany) and the analysis of epidermal pigmentation was performed by RCM-Vivascope ® 1500 (Lucid, USA). Also, the melanin index was determined using the Mexameter ® M X16 colorimeter (Courage-Khazaka, Germany). The developed formulations were effective in the reduction in melanin index, epidermal pigmentation, and percentage of hyperpigmented area. Finally, this study discusses how the combination of UV filters and pigments can protect the skin from solar radiation and reduces skin hyperpigmentations. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Im, A-Rang; Lee, Hee Jeong; Youn, Ui Joung; Hyun, Jin Won; Chae, Sungwook
2016-01-01
Betaine is widely distributed in plants, microorganisms, in several types of food and in medical herbs, including Lycium chinense. The administration of 100 mg betaine/kg body weight/day is an effective strategy for preventing ultraviolet irradiation‑induced skin damage. The present study aimed to determine the preventive effects of betaine on ultraviolet B (UVB) irradiation‑induced skin damage in hairless mice. The mice were divided into three groups: Control (n=5), UVB‑treated vehicle (n=5) and UVB‑treated betaine (n=5) groups. The level of irradiation was progressively increased between 60 mJ/cm2 per exposure at week 1 (one minimal erythematous dose = 60 mJ/cm2) and 90 mJ/cm2 per exposure at week 7. The formation of wrinkles significantly increased following UVB exposure in the UVB‑treated vehicle group. However, treatment with betaine suppressed UVB‑induced wrinkle formation, as determined by the mean length, mean depth, number, epidermal thickness and collagen damage. Furthermore, oral administration of betaine also inhibited the UVB‑induced expression of mitogen‑activated protein kinase kinase (MEK), extracellular signal‑regulated kinase (ERK), and matrix metalloproteinase‑9 (MMP‑9). These findings suggested that betaine inhibits UVB‑induced skin damage by suppressing increased expression of MMP‑9 through the inhibition of MEK and ERK.
Calafat, V; Strugarek, C; Montoya-Faivre, D; Dap, F; Dautel, G
2018-04-04
Skin envelope degloving of fingers are rare injuries that require rapid care and surgical treatment. Mostly caused by ring finger injuries, these traumas include bone, tendon and neurovascular pedicle damage. The authors present an unusual case of finger degloving limited exclusively to the skin envelope, without skeletal, tendinous or vascular lesion. This rare case of skin envelope degloving rendered microsurgical revascularization impossible. The authors report the results at 12 months following salvage reconstruction combining a partial second toe pulp free flap for the volar side and a dermal substitute with a thin skin graft for the dorsum. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Pedunculated and Telangiectatic Merkel Cell Carcinoma: An Unusual Clinical Presentation
Errichetti, Enzo; Piccirillo, Angelo; Ricciuti, Federico; Ricciuti, Francesco
2013-01-01
Merkel cell carcinoma (MCC) is an uncommon aggressive neuroendocrine tumor of the skin that classically presents on chronic sun-damaged skin as a skin-colored, red or violaceous, firm and nontender papule or nodule with a smooth and shiny surface. Ulcerations can be observed very seldom and only in very advanced lesions. We present a unique case of a MCC presenting with two unusual clinical features: The Telangiectatic surface and the pedunculated aspect. PMID:23723504
Tyagi, Nikhil; Srivastava, Sanjeev K; Arora, Sumit; Omar, Yousef; Ijaz, Zohaib Mohammad; Al-Ghadhban, Ahmed; Deshmukh, Sachin K; Carter, James E; Singh, Ajay P; Singh, Seema
2016-12-01
Sunscreen formulations containing UVB filters, such as Zinc-oxide (ZnO) and titanium-dioxide (TiO 2 ) nanoparticles (NPs) have been developed to limit the exposure of human skin to UV-radiations. Unfortunately, these UVB protective agents have failed in controlling the skin cancer incidence. We recently demonstrated that silver nanoparticles (Ag-NPs) could serve as novel protective agents against UVB-radiations. Here our goal was to perform comparative analysis of direct and indirect UVB-protection efficacy of ZnO-, TiO 2 - and Ag-NPs. Sun-protection-factor calculated based on their UVB-reflective/absorption abilities was the highest for TiO 2 -NPs followed by Ag- and ZnO-NPs. This was further confirmed by studying indirect protection of UVB radiation-induced death of HaCaT cells. However, only Ag-NPs were active in protecting HaCaT cells against direct UVB-induced DNA-damage by repairing bulky-DNA lesions through nucleotide-excision-repair mechanism. Moreover, Ag-NPs were also effective in protecting HaCaT cells from UVB-induced oxidative DNA damage by enhancing SOD/CAT/GPx activity. In contrast, ZnO- and TiO 2 -NPs not only failed in providing any direct protection from DNA-damage, but rather enhanced oxidative DNA-damage by increasing ROS production. Together, these findings raise concerns about safety of ZnO- and TiO 2 -NPs and establish superior protective efficacy of Ag-NPs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Katiyar, Santosh K; Pal, Harish C; Prasad, Ram
2017-10-01
Numerous plant products have been used to prevent and manage a wide variety of diseases for centuries. These products are now considered as promising options for the development of more effective and less toxic alternatives to the systems of medicine developed primarily in developed countries in the modern era. Grape seed proanthocyanidins (GSPs) are of great interest due to their anti-carcinogenic effects that have been demonstrated using various tumor models including ultraviolet (UV) radiation-induced non-melanoma skin cancer. In a pre-clinical mouse model supplementation of a control diet (AIN76A) with GSPs at concentrations of 0.2% and 0.5% (w/w) significantly inhibits the growth and multiplicity of UVB radiation-induced skin tumors. In this review, we summarize the evidence that this inhibition of UVB-induced skin tumor development by dietary GSPs is mediated by a multiplicity of coordinated effects including: (i) Promotion of the repair of damaged DNA by nuclear excision repair mechanisms, and (ii) DNA repair-dependent stimulation of the immune system following the functional activation of dendritic cells and effector T cells. Dietary GSPs hold promise for the development of an effective alternative strategy for the prevention of excessive solar UVB radiation exposure-induced skin diseases including the risk of non-melanoma skin cancer in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.
Huang, Ya-Ling; Liu, Yao-Cheng; Tsai, Pi-Jen
2016-01-01
Dermal photoaging is a condition of skin suffering inappropriate ultraviolet (UV) exposure and exerts inflammation, tissue alterations, redness, swelling, and uncomfortable feelings. Djulis (Chenopodium formosanum Koidz.) is a cereal food and its antioxidant and pigment constituents may provide skin protection from photoaging, but it still lacks proved experiments. In this study, protective effects of djulis extract (CFE) on UVB-irradiated skin were explored. The results showed that HaCaT cells with 150 μg/mL CFE treatment had higher survival and less production of interleukin- (IL-) 6, matrix metalloprotease- (MMP-) 1, and reactive oxygen species (ROS) in UVB-irradiated conditions. Subsequently, in animal studies, mice supplemented with CFE (100 mg/kg BW) were under UVB irradiation and had thinner epidermis and lower IL-6 levels in skin layer. These data demonstrate that bioactive compounds possessing the potency of antiphotoaging exist in CFE. Following that, we found rutin and chlorogenic acid (10–100 μM) could significantly increase cell viability and decrease the production of IL-6 in UVB models. Additionally, djulis pigment-betanin has no effect of increasing cell viability in this study. Our findings suggest CFE can protect skin against UV-induced damage and this protection is mainly from contributions of rutin and chlorogenic acid. PMID:27847821
78 FR 7308 - Airworthiness Directives; Bell Helicopter Textron Canada Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-01
... other damage. This proposed AD is prompted by a stress analysis of the tailboom skin that revealed high-stress-concentration areas are susceptible to skin cracking. This condition, if not detected, could... tailboom assembly, part number (P/N) 407-030-801-201, -203, or -205. Transport Canada states that a stress...
2006-08-01
injuries, including corneal, lenticular , and retinal lesions as a function of pulse duration. American National Standards Institute (ANSI) laser...little for skin effects. Unlike most other laser wavelengths, 1315-nm irradiation has been shown to cause damage at corneal, lenticular , and retinal
[Most common skin disorders caused by excessive exposure to sunlight].
Zitás, Éva; Mészáros, Judit
2016-01-17
The healing properties of sunlight has been known for millennia, however the gradual deterioration of the ozone layer and the increased use of sun tanning beds in recent decades are causing an increase in skin damaging ultraviolet exposure. In this article the most common photodermatoses and the principles of their treatments are reviewed.
78 FR 14719 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-07
... that the fuselage skin just above certain lap splice locations is subject to widespread fatigue damage... fatigue cracking of the fuselage skin, which could result in reduced structural integrity of the airplane.... Hand Delivery: Deliver to Mail address above between 9 a.m. and 5 p.m., Monday through Friday, except...
Capriotti, Margherita; Kim, Hyungsuk E; Scalea, Francesco Lanza di; Kim, Hyonny
2017-06-04
This paper discusses a non-destructive evaluation (NDE) technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI) from ground service equipment (GSE), such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers.
NASA Astrophysics Data System (ADS)
Coker, Zachary; Meng, Zhaokai; Troyanova-Wood, Maria; Traverso, Andrew; Ballmann, Charles; Petrov, Georgi; Ibey, Bennett L.; Yakovlev, Vladislav
2017-02-01
Burns are thermal injuries that can completely damage or at least compromise the protective function of skin, and affect the ability of tissues to manage moisture. Burn-damaged tissues exhibit lower elasticity than healthy tissues, due to significantly reduced water concentrations and plasma retention. Current methods for determining burn intensity are limited to visual inspection, and potential hospital x-ray examination. We present a unique confocal microscope capable of measuring Raman and Brillouin spectra simultaneously, with concurrent fluorescence investigation from a single spatial location, and demonstrate application by investigating and characterizing the properties of burn-afflicted tissue on chicken skin model. Raman and Brillouin scattering offer complementary information about a material's chemical and mechanical structure, while fluorescence can serve as a useful diagnostic indicator and imaging tool. The developed instrument has the potential for very diverse analytical applications in basic biomedical science and biomedical diagnostics and imaging.
Capriotti, Margherita; Kim, Hyungsuk E.; Lanza di Scalea, Francesco; Kim, Hyonny
2017-01-01
This paper discusses a non-destructive evaluation (NDE) technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI) from ground service equipment (GSE), such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers. PMID:28772976
Zhang, Min; Wang, Xiu Feng; Cui, Xiu Min; Wang, Jian; Yu, Shi Xin
2015-02-01
To determine the correlation between the working environment and the health status of employees in solar greenhouse, 1171 employees were surveyed. The results show the 'Greenhouse diseases' are affected by many factors. Among general uncomforts, the morbidity of the bone and joint damage is the highest and closely related to labor time and age. Planting summer squash and wax gourd more easily cause skin pruritus. Asthma-related cough, eye disease, and skin pruritus are significantly correlated with the cultivation of wax gourd. The application of inorganic fertilizer and fertigation dramatically induce the bone and joint damage. The smell of covering film greatly influence skin pruritus. Personal protection is badly scanty and normative occupational health and safety need to be completed. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Ishida, Takahiro; Sakaguchi, Ikuyo
2007-05-01
UVB irradiation is an important inducer of biological changes in skin and can activate inflammatory reactions and apoptotic pathways, leading to skin damage. A root extract of Lithospermum erythrorhizon (SK), which has naphthoquinone pigments containing shikonin and shikonin derivatives, is known for its anti-inflammatory, anti-bacterial, and anti-tumor activity, and for its scavenging of reactive oxygen species. However, the effect of SK against UV damage is not clear. The aim of this study was to evaluate the efficacy of SK against UVB induced damage in normal human epidermal keratinocytes (NHEK). UVB-irradiated NHEK showed decreased cell viability, increased production of interleukin (IL)-1alpha, IL-6, IL-8, and tumor necrosis factor-alpha, and induced apoptosis. In an apoptosis pathway assay, UVB-irradiated NHEK showed increased caspase-3 activity, p53 and its phosphorylation at serine 15 compared with non-irradiated cells. All these effects induced by UVB irradiation were clearly inhibited by treatment with SK before and after UVB irradiation for 24 h. It is suggested that SK can protect epidermal cells against harmful effects of UVB irradiation and that SK treatment is probably beneficial for photoprotection of the skin.
Horiguchi, Masatoshi; Miyata, Nariaki; Mizuno, Hiroshi
2017-04-01
In order to avoid epidermal heat damage, we developed a novel irradiation method termed "Focused multiple laser beams (FMLB)," which allows long-pulse neodymium:yttrium aluminum garnet (Nd:YAG) laser beams to be irradiated from several directions in a concentric fashion followed by focusing into the dermis without epidermal damage. This study aimed to assess whether FMLB achieves the desired dermal improvement without epidermal damage. The dorsal skin of New Zealand White rabbits was irradiated with FMLB. Macroscopic and histological analyses were performed after 1 hour and 1, 2, 3 and 4 weeks. Real-time PCR analysis of type I and III collagen expression was performed at two and four weeks. Control groups exhibited skin ulcers which were healed with scar formation whereas FMLB groups remained intact macroscopically. Histologically, FMLB group showed increase in dermal thickness at four weeks while the epidermis remained intact. Real-time PCR demonstrated that both type I and III collagen increased at two weeks but decreased at four weeks. FMLB can deliver the target laser energy to the dermis without significantly affecting the epidermis.
Flavonols Protect Against UV Radiation-Induced Thymine Dimer Formation in an Artificial Skin Mimic.
Maini, Sabia; Fahlman, Brian M; Krol, Ed S
2015-01-01
Exposure of skin to ultraviolet light has been shown to have a number of deleterious effects including photoaging, photoimmunosuppression and photoinduced DNA damage which can lead to the development of skin cancer. In this paper we present a study on the ability of three flavonols to protect EpiDerm™, an artificial skin mimic, against UV-induced damage. EpiDerm™ samples were treated with flavonol in acetone and exposed to UVA (100 kJ/m(2) at 365 nm) and UVB (9000 J/m(2) at 310 nm) radiation. Secretion of matrix metalloproteinase-1 (MMP-1) and tumor necrosis factor-α (TNF-a) were determined by ELISA, cyclobutane pyrimidine dimers were quantified using LC-APCI-MS. EpiDerm™ treated topically with quercetin significantly decreased MMP-1 secretion induced by UVA (100 µM) or UVB (200 µM) and TNF-a secretion was significantly reduced at 100 µM quercetin for both UVA and UVB radiation. In addition, topically applied quercetin was found to be photostable over the duration of the experiment. EpiDerm™ samples were treated topically with quercetin, kaempferol or galangin (52 µM) immediately prior to UVA or UVB exposure, and the cyclobutane thymine dimers (T-T (CPD)) were quantified using an HPLC-APCI MS/MS method. All three flavonols significantly decreased T-T (CPD) formation in UVB irradiated EpiDerm™, however no effect could be observed for the UVA irradiation experiments as thymine dimer formation was below the limit of quantitation. Our results suggest that flavonols can provide protection against UV radiation-induced skin damage through both antioxidant activity and direct photo-absorption. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.
Lai, Dongmei; Wang, Fangyuan; Dong, Zhangli; Zhang, Qiuwan
2014-01-01
Skin-derived mesenchymal stem cells (SMSCs) can differentiate into the three embryonic germ layers. For this reason, they are considered a powerful tool for therapeutic cloning and offer new possibilities for tissue therapy. Recent studies showed that skin-derived stem cells can differentiate into cells expressing germ-cell specific markers in vitro and form oocytes in vivo. The idea that SMSCs may be suitable for the treatment of intractable diseases or traumatic tissue damage has attracted attention. To determine the ability of SMSCs to reactivate injured ovaries, a mouse model with ovaries damaged by busulfan and cyclophosphamide was developed and is described here. Female skin-derived mesenchymal stem cells (F-SMSCs) and male skin-derived mesenchymal stem cells (M-SMSCs) from red fluorescence protein (RFP) transgenic adult mice were used to investigate the restorative effects of SMSCs on ovarian function. Significant increases in total body weight and the weight of reproductive organs were observed in the treated animals. Both F-SMSCs and M-SMSCs were shown to be capable of partially restoring fertility in chemotherapy-treated females. Immunostaining with RFP and anti-Müllerian hormone (AMH) antibodies demonstrated that the grafted SMSCs survived, migrated to the recipient ovaries. After SMSCs were administered to the treated mice, real-time PCR showed that the expression levels of pro-inflammatory cytokines TNF-α, TGF-β, IL-8, IL-6, IL-1β, and IFNγ were significantly lower in the ovaries than in the untreated controls. Consistent with this observation, expression of oogenesis marker genes Nobox, Nanos3, and Lhx8 increased in ovaries of SMSCs-treated mice. These findings suggest that SMSCs may play a role within the ovarian follicle microenvironment in restoring the function of damaged ovaries and could be useful in reproductive health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Yang; Kojima, Chikara; Chignell, Colin
2011-09-15
Inorganic arsenic and UV, both human skin carcinogens, may act together as skin co-carcinogens. We find human skin keratinocytes (HaCaT cells) are malignantly transformed by low-level arsenite (100 nM, 30 weeks; termed As-TM cells) and with transformation concurrently undergo full adaptation to arsenic toxicity involving reduced apoptosis and oxidative stress response to high arsenite concentrations. Oxidative DNA damage (ODD) is a possible mechanism in arsenic carcinogenesis and a hallmark of UV-induced skin cancer. In the current work, inorganic arsenite exposure (100 nM) did not induce ODD during the 30 weeks required for malignant transformation. Although acute UV-treatment (UVA, 25 J/cm{supmore » 2}) increased ODD in passage-matched control cells, once transformed by arsenic to As-TM cells, acute UV actually further increased ODD (> 50%). Despite enhanced ODD, As-TM cells were resistant to UV-induced apoptosis. The response of apoptotic factors and oxidative stress genes was strongly mitigated in As-TM cells after UV exposure including increased Bcl2/Bax ratio and reduced Caspase-3, Nrf2, and Keap1 expression. Several Nrf2-related genes (HO-1, GCLs, SOD) showed diminished responses in As-TM cells after UV exposure consistent with reduced oxidant stress response. UV-exposed As-TM cells showed increased expression of cyclin D1 (proliferation gene) and decreased p16 (tumor suppressor). UV exposure enhanced the malignant phenotype of As-TM cells. Thus, the co-carcinogenicity between UV and arsenic in skin cancer might involve adaptation to chronic arsenic exposure generally mitigating the oxidative stress response, allowing apoptotic by-pass after UV and enhanced cell survival even in the face of increased UV-induced oxidative stress and increased ODD. - Highlights: > Arsenic transformation adapted to UV-induced apoptosis. > Arsenic transformation diminished oxidant response. > Arsenic transformation enhanced UV-induced DNA damage.« less
Behar-Cohen, Francine; Baillet, Gilles; de Ayguavives, Tito; Garcia, Paula Ortega; Krutmann, Jean; Peña-García, Pablo; Reme, Charlotte; Wolffsohn, James S
2014-01-01
Ultraviolet (UV) radiation potentially damages the skin, the immune system, and structures of the eye. A useful UV sun protection for the skin has been established. Since a remarkable body of evidence shows an association between UV radiation and damage to structures of the eye, eye protection is important, but a reliable and practical tool to assess and compare the UV-protective properties of lenses has been lacking. Among the general lay public, misconceptions on eye-sun protection have been identified. For example, sun protection is mainly ascribed to sunglasses, but less so to clear lenses. Skin malignancies in the periorbital region are frequent, but usual topical skin protection does not include the lids. Recent research utilized exact dosimetry and demonstrated relevant differences in UV burden to the eye and skin at a given ambient irradiation. Chronic UV effects on the cornea and lens are cumulative, so effective UV protection of the eyes is important for all age groups and should be used systematically. Protection of children's eyes is especially important, because UV transmittance is higher at a very young age, allowing higher levels of UV radiation to reach the crystalline lens and even the retina. Sunglasses as well as clear lenses (plano and prescription) effectively reduce transmittance of UV radiation. However, an important share of the UV burden to the eye is explained by back reflection of radiation from lenses to the eye. UV radiation incident from an angle of 135°-150° behind a lens wearer is reflected from the back side of lenses. The usual antireflective coatings considerably increase reflection of UV radiation. To provide reliable labeling of the protective potential of lenses, an eye-sun protection factor (E-SPF®) has been developed. It integrates UV transmission as well as UV reflectance of lenses. The E-SPF® compares well with established skin-sun protection factors and provides clear messages to eye health care providers and to lay consumers.
NASA Astrophysics Data System (ADS)
Pinheiro, T.; Pallon, J.; Alves, L. C.; Veríssimo, A.; Filipe, P.; Silva, J. N.; Silva, R.
2007-07-01
The permeability of skin to nanoparticles of titanium dioxide (TiO 2) used in sunscreens as a reflector of the UV wavelengths of sunlight, was examined using nuclear microscopy techniques. Special attention was given to the permeation characteristics of these nanoparticles across the outer layers of skin, the stratum corneum, in healthy and psoriatic skin condition. Aspects that may influence the interpretation of results such as sample preparation difficulties and skin condition were focused. Sample preparation can damage the integrity of the corneocyte layers inducing unwanted artefacts that may bias the evaluation of results. Irradiation conditions may also introduce distortions in the labile structures of human skin. Skin condition, such as loss of corneocyte cohesion occurring in psoriasis also influence the permeation profile of the nanoparticles. Weighing and accounting for these features in the examination of skin by nuclear microscopy is crucial to accurately assess the TiO 2 nanoparticles permeation depth.
Radiotherapy and wound healing: principles, management and prospects (review).
Gieringer, Matthias; Gosepath, Jan; Naim, Ramin
2011-08-01
Radiation therapy is a major therapeutic modality in the management of cancer patients. Over 60% of these patients receive radiotherapy at some point during their course of treatment and over 90% will develop skin reactions after therapy. Problematic wound healing in radiation-damaged tissue constitutes a major surgical difficulty and despite all efforts, irradiated skin remains a therapeutic challenge. This review provides an overview of the fundamental principles of radiation therapy with regards to the wound healing in normal and irradiated skin. Furthermore, it presents techniques that describe how to prevent and manage skin side effects as well as prospects that may improve cutaneous wound repair in general and in irradiated skin.
Skin appendage-derived stem cells: cell biology and potential for wound repair.
Xie, Jiangfan; Yao, Bin; Han, Yutong; Huang, Sha; Fu, Xiaobing
2016-01-01
Stem cells residing in the epidermis and skin appendages are imperative for skin homeostasis and regeneration. These stem cells also participate in the repair of the epidermis after injuries, inducing restoration of tissue integrity and function of damaged tissue. Unlike epidermis-derived stem cells, comprehensive knowledge about skin appendage-derived stem cells remains limited. In this review, we summarize the current knowledge of skin appendage-derived stem cells, including their fundamental characteristics, their preferentially expressed biomarkers, and their potential contribution involved in wound repair. Finally, we will also discuss current strategies, future applications, and limitations of these stem cells, attempting to provide some perspectives on optimizing the available therapy in cutaneous repair and regeneration.
Cui, Le; Jia, Yan; Cheng, Zhi-Wei; Gao, Ying; Zhang, Gao-Lei; Li, Jing-Yi; He, Cong-Fen
2016-12-01
The human skin barrier has an important role in protection and defense, reflected not only in the ability to resist entry of harmful substances into the human body, but also in the ability to prevent loss of water and nutrients. Once the skin barrier is damaged, the skin may become dry, scaly, and wrinkled, and a series of skin problems may occur. In this article, we review the composition of lipids, such as ceramides, cholesterol, and free fatty acids, in the skin and examine the expression of enzymes related to lipid metabolism, such as kallikreins, elongase of elongation of very long-chain fatty acids, hydrolases, and lipid synthases. Additionally, we discuss the involvement of these proteins in skin barrier function and structure. The information presented in this review is expected to provide a theoretical basis for the development of skin care products facilitating the maintenance and repair of skin barrier function. © 2016 Wiley Periodicals, Inc.
Water content and structure in malignant and benign skin tumours
NASA Astrophysics Data System (ADS)
Gniadecka, M.; Nielsen, O. F.; Wulf, H. C.
2003-12-01
Analysis of the low frequency region of Raman spectra enables determination of water structure. It has been previously demonstrated by various techniques that water content and possibly also the water structure is altered in some malignant tumours. To further elucidate possible change in water structure in tumours we performed NIR FT Raman spectroscopy on biopsies from selected benign and malignant skin tumours (benign: seborrheic keratosis, pigmented nevi; malignant: malignant melanoma, basal cell carcinoma). We did not observe any differences in water content between malignant and benign skin tumours with an exception of seborrheic keratosis, in which the water content was decreased. Increase in the tetrahedral (free) water was found in malignant skin tumours and sun-damaged skin relative to normal young skin and benign skin tumours. This finding may add to the understanding of molecular alterations in cancer.
Implications of Sensory Stimulation in Self-Destructive Behavior.
ERIC Educational Resources Information Center
Edelson, Stephen M.
1984-01-01
The author extends the self stimulatory theory of self destructive behavior in autistic, schizophrenic, and mentally retarded individuals to suggest that damage of the skin's nerve structure lowers the tactile sensory threshold for physical input and enables individuals to obtain sensory stimulation by repeatedly depressing the damaged area. (CL)
7 CFR 51.3069 - Very serious damage.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS) United States Standards for Florida Avocados Definitions § 51.3069 Very serious damage. Very... break very seriously affecting the appearance, or the edible or shipping quality; (b) Pulled stems when the skin surrounding the exposed stem cavity is torn more than an aggregate area of a circle one-half...
7 CFR 51.3069 - Very serious damage.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS) United States Standards for Florida Avocados Definitions § 51.3069 Very serious damage. Very... break very seriously affecting the appearance, or the edible or shipping quality; (b) Pulled stems when the skin surrounding the exposed stem cavity is torn more than an aggregate area of a circle one-half...
7 CFR 993.97 - Exhibit A; minimum standards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... condition; (3) end cracks; (4) fermentation; (5) skin or flesh damage; (6) scab; (7) burned; (8) mold; (9...) Fermentation means damage to the flesh by fermentation to the extent that the characteristic appearance or..., and decay shall not exceed five percent (5%). (3) The combined tolerance allowance for fermentation...
PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN
Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin.
Arsenic causes cancer in human skin, urinary bladder, lung, liver and kidney and is a significant world-wide public health problem. Although the metabolism of inorganic arsenic is ...
Damage Detection Response Characteristics of Open Circuit Resonant (SansEC) Sensors
NASA Technical Reports Server (NTRS)
Dudley, Kenneth L.; Szatkowski, George N.; Smith, Laura J.; Koppen, Sandra V.; Ely, Jay J.; Nguyen, Truong X.; Wang, Chuantong; Ticatch, Larry A.; Mielnik, John J.
2013-01-01
The capability to assess the current or future state of the health of an aircraft to improve safety, availability, and reliability while reducing maintenance costs has been a continuous goal for decades. Many companies, commercial entities, and academic institutions have become interested in Integrated Vehicle Health Management (IVHM) and a growing effort of research into "smart" vehicle sensing systems has emerged. Methods to detect damage to aircraft materials and structures have historically relied on visual inspection during pre-flight or post-flight operations by flight and ground crews. More quantitative non-destructive investigations with various instruments and sensors have traditionally been performed when the aircraft is out of operational service during major scheduled maintenance. Through the use of reliable sensors coupled with data monitoring, data mining, and data analysis techniques, the health state of a vehicle can be detected in-situ. NASA Langley Research Center (LaRC) is developing a composite aircraft skin damage detection method and system based on open circuit SansEC (Sans Electric Connection) sensor technology. Composite materials are increasingly used in modern aircraft for reducing weight, improving fuel efficiency, and enhancing the overall design, performance, and manufacturability of airborne vehicles. Materials such as fiberglass reinforced composites (FRC) and carbon-fiber-reinforced polymers (CFRP) are being used to great advantage in airframes, wings, engine nacelles, turbine blades, fairings, fuselage structures, empennage structures, control surfaces and aircraft skins. SansEC sensor technology is a new technical framework for designing, powering, and interrogating sensors to detect various types of damage in composite materials. The source cause of the in-service damage (lightning strike, impact damage, material fatigue, etc.) to the aircraft composite is not relevant. The sensor will detect damage independent of the cause. Damage in composite material is generally associated with a localized change in material permittivity and/or conductivity. These changes are sensed using SansEC. The unique electrical signatures (amplitude, frequency, bandwidth, and phase) are used for damage detection and diagnosis. An operational system and method would incorporate a SansEC sensor array on select areas of the aircraft exterior surfaces to form a "Smart skin" sensing surface. In this paper a new method and system for aircraft in-situ damage detection and diagnosis is presented. Experimental test results on seeded fault damage coupons and computational modeling simulation results are presented. NASA LaRC has demonstrated with individual sensors that SansEC sensors can be effectively used for in-situ composite damage detection of delamination, voids, fractures, and rips. Keywords: Damage Detection, Composites, Integrated Vehicle Health Monitoring (IVHM), Aviation Safety, SansEC Sensors
Gonzales-Castañeda, Cynthia; Rivera, Valery; Chirinos, Ana Lucía; Evelson, Pablo; Gonzales, Gustavo Francisco
2011-08-01
Skin exposure to ultraviolet (UV) B radiation leads to epidermal damage and generation of reactive oxygen species. The photoprotective effect of extracts of three varieties of leaves (red, yellow, and black) from maca (Lepidium meyenii), a plant from the Peruvian highlands, was assessed in mouse skin exposed to UVB radiation. The hydroalcoholic extracts of three varieties of maca leaves were applied topically to the dorsal skin of young-adult male mice prior to exposition to UVB radiation. The three varieties had UVA/UVB absorptive properties and presented antioxidant activity, being highest with red maca, followed by black and yellow maca. The three varieties of maca leaves prevented the development of sunburn cells, epidermal hyperplasia, leukocytic infiltration, and other alterations produced by UVB radiation. Mice treated with black maca showed the highest superoxide dismutase levels, and mice treated with black and yellow maca showed higher catalase levels in skin, whereas red maca protected the skin and liver against significant increases in the lipid peroxidation activity observed in the unprotected animals. The presence of significant antioxidant activity and the inhibition of lipid peroxidation suggest that the observed protection could be partly attributable to this mechanism. © 2011 The International Society of Dermatology.
Efficacy of marigold extract-loaded formulations against UV-induced oxidative stress.
Fonseca, Yris Maria; Catini, Carolina Dias; Vicentini, Fabiana T M C; Cardoso, Juliana Cordeiro; Cavalcanti De Albuquerque Junior, Ricardo Luiz; Vieira Fonseca, Maria José
2011-06-01
The present study investigated the potential use of topical formulations containing marigold extract (ME) (Calendula officinalis extract) against ultraviolet (UV)B irradiation-induced skin damage. The physical and functional stabilities, as well as the skin penetration capacity, of the different topical formulations developed were evaluated. In addition, the in vivo capacity to prevent/treat the UVB irradiation-induced skin damage, in hairless mice, of the formulation with better skin penetration capacity was investigated. All of the formulations were physically and functionally stable. The gel formulation [Formulation 3 (F3)] was the most effective for the topical delivery of ME, which was detected as 0.21 μg/cm(2) of narcissin and as 0.07 μg/cm(2) of the rutin in the viable epidermis. This formulation was able to maintain glutathione reduced levels close to those of nonirradiated animals, but did not affect the gelatinase-9 and myeloperoxidase activities increased by exposure to UVB irradiation. In addition, F3 reduced the histological skin changes induced by UVB irradiation that appear as modifications of collagen fibrils. Therefore, the photoprotective effect in hairless mice achieved with the topical application of ME in gel formulation is most likely associated with a possible improvement in the collagen synthesis in the subepidermal connective tissue. Copyright © 2010 Wiley-Liss, Inc.
Tunable Engineered Skin Mechanics via Coaxial Electrospun Fiber Core Diameter
Blackstone, Britani Nicole; Drexler, Jason William
2014-01-01
Autologous engineered skin (ES) offers promise as a treatment for massive full thickness burns. Unfortunately, ES is orders of magnitude weaker than normal human skin causing it to be difficult to apply surgically and subject to damage by mechanical shear in the early phases of engraftment. In addition, no manufacturing strategy has been developed to tune ES biomechanics to approximate the native biomechanics at different anatomic locations. To enhance and tune ES biomechanics, a coaxial (CoA) electrospun scaffold platform was developed from polycaprolactone (PCL, core) and gelatin (shell). The ability of the coaxial fiber core diameter to control both scaffold and tissue mechanics was investigated along with the ability of the gelatin shell to facilitate cell adhesion and skin development compared to pure gelatin, pure PCL, and a gelatin-PCL blended fiber scaffold. CoA ES exhibited increased cellular adhesion and metabolism versus PCL alone or gelatin-PCL blend and promoted the development of well stratified skin with a dense dermal layer and a differentiated epidermal layer. Biomechanics of the scaffold and ES scaled linearly with core diameter suggesting that this scaffold platform could be utilized to tailor ES mechanics for their intended grafting site and reduce graft damage in vitro and in vivo. PMID:24712409
Dalton, Christopher H; Hall, Charlotte A; Lydon, Helen L; Chipman, J K; Graham, John S; Jenner, John; Chilcott, Robert P
2015-05-01
The risk of penetrating, traumatic injury occurring in a chemically contaminated environment cannot be discounted. Should a traumatic injury be contaminated with a chemical warfare (CW) agent, it is likely that standard haemostatic treatment options would be complicated by the need to decontaminate the wound milieu. Thus, there is a need to develop haemostatic products that can simultaneously arrest haemorrhage and decontaminate CW agents. The purpose of this study was to evaluate a number of candidate haemostats for efficacy as skin decontaminants against three CW agents (soman, VX and sulphur mustard) using an in vitro diffusion cell containing undamaged pig skin. One haemostatic product (WoundStat™) was shown to be as effective as the standard military decontaminants Fuller's earth and M291 for the decontamination of all three CW agents. The most effective haemostatic agents were powder-based and use fluid absorption as a mechanism of action to sequester CW agent (akin to the decontaminant Fuller's earth). The envisaged use of haemostatic decontaminants would be to decontaminate from within wounds and from damaged skin. Therefore, WoundStat™ should be subject to further evaluation using an in vitro model of damaged skin. Copyright © 2014 Crown copyright. Journal of Applied Toxicology © 2014 John Wiley & Sons, Ltd.
Macrophages - sensors and effectors coordinating skin damage and repair.
Willenborg, Sebastian; Eming, Sabine A
2014-03-01
Restoration of skin integrity and homeostasis following injury is a vital process. Wound healing disorders, including chronic skin ulcers and pathological scarring, are of major clinical impact. The current therapeutic approaches are often not sufficient. The development of novel efficient therapies requires a thorough understanding of the underlying molecular mechanisms. A cardinal feature of non-healing skin ulcers and excessive scarring is a prolonged inflammatory response at the wound site, which aborts the healing response. Modulation of the local immune response may be an effective therapeutic strategy to correct impaired healing conditions. Yet, the specific mechanisms of inflammation, particularly the role of the diverse leukocyte lineages attracted to the site of tissue damage, have not been resolved. Recent findings in diverse experimental model systems and clinical studies have refined the understanding of monocyte/macrophage biology and the role of cells of the monocytic lineage in tissue regeneration. Thus, monocytes/macrophages are emerging as novel and interesting therapeutic targets to interfere in wound healing pathologies. In this article we will review the role of monocytes/macrophages in skin repair in the light of the recent literature and findings from our own group. This article will provide a rationale for monocyte/macrophage-based therapies to facilitate the healing response. © 2014 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.
SIRT1 regulates MAPK pathways in vitiligo skin: insight into the molecular pathways of cell survival
Becatti, Matteo; Fiorillo, Claudia; Barygina, Victoria; Cecchi, Cristina; Lotti, Torello; Prignano, Francesca; Silvestro, Agrippino; Nassi, Paolo; Taddei, Niccolò
2014-01-01
Vitiligo is an acquired and progressive hypomelanotic disease that manifests as circumscribed depigmented patches on the skin. The aetiology of vitiligo remains unclear, but recent experimental data underline the interactions between melanocytes and other typical skin cells, particularly keratinocytes. Our previous results indicate that keratinocytes from perilesional skin show the features of damaged cells. Sirtuins (silent mating type information regulation 2 homolog) 1, well-known modulators of lifespan in many species, have a role in gene repression, metabolic control, apoptosis and cell survival, DNA repair, development, inflammation, neuroprotection and healthy ageing. In the literature there is no evidence for SIRT1 signalling in vitiligo and its possible involvement in disease progression. Here, biopsies were taken from the perilesional skin of 16 patients suffering from non-segmental vitiligo and SIRT1 signalling was investigated in these cells. For the first time, a new SIRT1/Akt, also known as Protein Kinase B (PKB)/mitogen-activated protein kinase (MAPK) signalling has been revealed in vitiligo. SIRT1 regulates MAPK pathway via Akt-apoptosis signal-regulating kinase-1 and down-regulates pro-apoptotic molecules, leading to decreased oxidative stress and apoptotic cell death in perilesional vitiligo keratinocytes. We therefore propose SIRT1 activation as a novel way of protecting perilesional vitiligo keratinocytes from damage. PMID:24410795
NASA Technical Reports Server (NTRS)
Bisagni, Chiara; Davila, Carlos G.; Rose, Cheryl A.; Zalameda, Joseph N.
2014-01-01
The durability and damage tolerance of postbuckled composite structures are not yet completely understood, and remain difficult to predict due to the nonlinearity of the geometric response and its interaction with local damage modes. A research effort was conducted to investigate experimentally the quasi-static and fatigue damage progression in a single-stringer compression (SSC) specimen. Three specimens were manufactured with a hat-stiffener, and an initial defect was introduced with a Teflon film embedded between one flange of the stringer and the skin. One of the specimens was tested under quasi-static compressive loading, while the remaining two specimens were tested by cycling in postbuckling. The tests were performed at the NASA Langley Research Center under controlled conditions and with instrumentation that allows a precise evaluation of the postbuckling response and of the damage modes. Three-dimensional digital image correlation VIC-3D systems were used to provide full field displacements and strains on the skin and the stringer. Passive thermal monitoring was conducted during the fatigue tests using an infrared camera that showed the location of the delamination front while the specimen was being cycled. The live information from the thermography was used to stop the fatigue tests at critical stages of the damage evolution to allow detailed ultrasonic scans.
Pal, Harish Chandra; Athar, Mohammad; Elmets, Craig A; Afaq, Farrukh
2015-01-01
Solar ultraviolet B (UVB) radiation has been shown to induce inflammation, DNA damage, p53 mutations and alterations in signaling pathways eventually leading to skin cancer. In this study, we investigated whether fisetin reduces inflammatory responses and modulates PI3K/AKT/NFκB cell survival signaling pathways in UVB-exposed SKH-1 hairless mouse skin. Mice were exposed to 180 mJ cm(-2) of UVB radiation on alternate days for a total of seven exposures, and fisetin (250 and 500 nmol) was applied topically after 15 min of each UVB exposure. Fisetin treatment to UVB-exposed mice resulted in decreased hyperplasia and reduced infiltration of inflammatory cells. Fisetin treatment also reduced inflammatory mediators such as COX-2, PGE2 as well as its receptors (EP1-EP4) and MPO activity. Furthermore, fisetin reduced the level of inflammatory cytokines TNFα, IL-1β and IL-6 in UVB-exposed skin. Fisetin treatment also reduced cell proliferation markers as well as DNA damage as evidenced by increased expression of p53 and p21 proteins. Further studies revealed that fisetin inhibited UVB-induced expression of PI3K, phosphorylation of AKT and activation of the NFκB signaling pathway in mouse skin. Overall, these data suggest that fisetin may be useful against UVB-induced cutaneous inflammation and DNA damage. © 2014 The American Society of Photobiology.
Spradling, Kyle; Uribe, Brittany; Okhunov, Zhamshid; Hofmann, Martin; Del Junco, Michael; Hwang, Christina; Gruber, Caden; Youssef, Ramy F; Landman, Jaime
2015-09-01
To evaluate the ignition and burn risk associated with contemporary fiberoptic and distal sensor endoscopic technologies. We used new and used SCB Xenon 300 light sources to illuminate a 4.8 mm fiberoptic cable, 10 mm laparoscope, 5 mm laparoscope, rigid cystoscope, semirigid ureteroscope, flexible cystoscope, flexible fiberoptic ureteroscope, distal sensor cystoscope, and a distal sensor ureteroscope (Karl Storz, Inc., Tuttlingen, Germany). We measured peak temperatures at the distal end of each device. We then evaluated each device on a flat and folded surgical drape to establish ignition risk. Finally, we evaluated the effects of all devices on human cadaver skin covered by surgical drape. Peak temperatures recorded for each device ranged from 26.9°C (flexible fiberoptic ureteroscope) to 194.5°C (fiberoptic cable). Drape ignition was noted when the fiberoptic cable was placed against a fold of drape. Contact with the fiberoptic cable, 10 mm laparoscope, 5 mm laparoscope, and distal sensor cystoscope resulted in cadaver skin damage. Cadaver skin damage occurred despite little or no visible change to the surgical drape. Rigid and flexible fiberoptic cystoscopes and flexible fiberoptic ureteroscopes had no effect on surgical drapes or cadaver skin. Fiberoptic light cables and some endoscopic devices have the potential to cause thermal injury and drape ignition. Thermal injury may occur without visible damage to drapes. Surgeons should remain vigilant regarding the risks associated with these devices and take necessary safety precautions to prevent patient injury.
F-111 Adhesive Bonded Repairs Assessment Program - Progress Report 2: Analysis of FM300-2K Repairs
2015-01-01
primarily the effect of panel skin thickness The previous report found that while repair location on the aircraft structure may have had some effect...typically are manufactured by adhesively bonding an upper and lower aluminium skin to aluminium honeycomb-core. The structure provides added stiffness to...component, one of the typical repair techniques requires removal of the damaged skin and honeycomb core. New core is adhesively bonded back in place and an
Brain hemorrhage after electrical burn injury: Case report and probable mechanism.
Axayacalt, Gutierrez Aceves Guillermo; Alejandro, Ceja Espinosa; Marcos, Rios Alanis; Inocencio, Ruiz Flores Milton; Alfredo, Herrera Gonzalez Jose
2016-01-01
High-voltage electric injury may induce lesion in different organs. In addition to the local tissue damage, electrical injuries may lead to neurological deficits, musculoskeletal damage, and cardiovascular injury. Severe vascular damage may occur making the blood vessels involved prone to thrombosis and spontaneous rupture. Here, we present the case of a 39-year-old male who suffered an electrical burn with high tension wire causing intracranial bleeding. He presented with an electrical burn in the parietal area (entry zone) and the left forearm (exit zone). The head tomography scan revealed an intraparenchimatous bleeding in the left parietal area. In this case, the electric way was the scalp, cranial bone, blood vessels and brain, upper limb muscle, and skin. The damage was different according to the dielectric property in each tissue. The injury was in the scalp, cerebral blood vessel, skeletal muscle, and upper limb skin. The main damage was in brain's blood vessels because of the dielectric and geometric features that lead to bleeding, high temperature, and gas delivering. This is a report of a patient with an electric brain injury that can be useful to elucidate the behavior of the high voltage electrical current flow into the nervous system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackerman, Z.; Seidenbaum, M.; Loewenthal, E.
1988-09-01
The brown pigmentation of the skin associated with venous ulceration is caused by increased local iron deposition. Diagnostic x-ray spectrometry, a method based on x-ray fluorescence analysis, was used for the noninvasive determination of iron levels in the skin of patients with venous ulceration. The mean (+/- SEM) iron concentration in the skin around the venous ulcer was elevated, compared with control values of nonulcerated skin (250 +/- 54 vs 128 +/- 39 micrograms) and compared with normal skin from the forearm (250 +/- 54 vs 14 +/- 2.5 micrograms). These data suggest that dermal iron deposition may not bemore » an incidental by-product of increased venous pressure, but may actively perpetuate tissue damage in venous ulcerations.« less
NASA Astrophysics Data System (ADS)
Balu, Mihaela; Lentsch, Griffin; Korta, Dorota; Konig, Karsten; Kelly, Kristen M.; Tromberg, Bruce J.; Zachary, Christopher B.
2017-02-01
We use a multiphoton microscopy (MPM)-based clinical microscope (MPTflex, JenLab, Germany) to describe changes in human skin following treatment with a fractional non-ablative laser (PicoWay, Candela). The treatment was based on a fractionated picosecond Nd:YAG laser (1064 and 532nm, 3mJ and 1.5mJ (no attenuation), respectively maximum energy/pulse, 100 microbeams/6mmx6mm). Improvements in skin appearance resulting from treatment with this laser have been noted but optimizing the efficacy depends on a thorough understanding of the specific skin response to treatment. MPM is a nonlinear laser scanning microscopy technique that features sub-cellular resolution and label-free molecular contrast. MPM contrast in skin is derived from second-harmonic generation of collagen and two-photon excited fluorescence of NADH/FAD+, elastin, keratin, melanin. In this pilot study, two areas on the arm of a volunteer (skin type II) were treated with the picoWay laser (1064nm, 3mJ; 532nm, 1.5mJ; 1pass). The skin response to treatment was imaged in-vivo at 8 time points over the following 4 weeks. MPM revealed micro-injuries present in epidermis. Damaged individual cells were distinguished after 3h and 24h from treatment with both wavelengths. Pigmented cells were particularly damaged in the process, suggesting that melanin is the main absorber and the primary target for laser induced optical breakdown. At later time points, clusters of cellular necrotic debris were imaged across the treated epidermis. These results represent the groundwork for future longitudinal studies on expanded number of subjects to understand the response to treatment in different skin types at different laser parameters, critical factors in optimizing treatment outcomes.
von Grote, Erika C; Palaniswarmy, Kiruthi; Meckfessel, Matthew H
2016-12-01
Occupational irritant contact dermatitis (ICD) affecting the hands is a common and difficult-to-manage condition. Occupations that necessitate contact with harsh chemicals, use of alcohol-based disinfectants, and frequent hand washing elevate the risk of ICD. Management strategies that do not adequately prevent accumulated damage and repair skin, can develop into chronic dermatoses which negatively impact work productivity and quality of life. A 2-step skin-care regimen (Excipial Daily Protection Hand Cream (EP) and Excipial Rapid Repair Hand Cream (ER), Galderma Laboratories, L.P.) has been developed as a daily-use management strategy to protect and repair vulnerable hands. The protective barrier cream is formulated with aluminum chlorohydrate and designed for pre-exposure application to enhance the skin's natural protective barrier and minimize excessive moisture while wearing protective gloves. The repair cream, a lipid-rich formulation, is intended for post-exposure application to rehydrate and facilitate the skin's natural healing process. The results of 3 clinical studies highlighted in this review demonstrate how the use of a 2-step skin-care regimen offers a greater protective effect against ICD than the use of barrier cream alone, and also how the formulation of the barrier cream used in these studies helps minimize the occlusion effect caused by gloves and does not interfere with the antibacterial efficacy of an alcohol-based hand sanitizer. This 2-step skin-care regimen is effectively designed to manage and minimize the risk of ICD development in a variety of patients and provides clinicians an additional tool for helping patients manage ICD. J Drugs Dermatol. 2016;15(12):1504-1510.
Stojadinovic, Olivera; Minkiewicz, Julia; Sawaya, Andrew; Bourne, Jonathan W.; Torzilli, Peter; de Rivero Vaccari, Juan Pablo; Dietrich, W. Dalton; Keane, Robert W.; Tomic-Canic, Marjana
2013-01-01
Molecular mechanisms leading to pressure ulcer development are scarce in spite of high mortality of patients. Development of pressure ulcers that is initially observed as deep tissue injury is multifactorial. We postulate that biomechanical forces and inflammasome activation, together with ischemia and aging, may play a role in pressure ulcer development. To test this we used a newly-developed bio-mechanical model in which ischemic young and aged human skin was subjected to a constant physiological compressive stress (load) of 300 kPa (determined by pressure plate analyses of a person in a reclining position) for 0.5–4 hours. Collagen orientation was assessed using polarized light, whereas inflammasome proteins were quantified by immunoblotting. Loaded skin showed marked changes in morphology and NLRP3 inflammasome protein expression. Sub-epidermal separations and altered orientation of collagen fibers were observed in aged skin at earlier time points. Aged skin showed significant decreases in the levels of NLRP3 inflammasome proteins. Loading did not alter NLRP3 inflammasome proteins expression in aged skin, whereas it significantly increased their levels in young skin. We conclude that aging contributes to rapid morphological changes and decrease in inflammasome proteins in response to tissue damage, suggesting that a decline in the innate inflammatory response in elderly skin could contribute to pressure ulcer pathogenesis. Observed morphological changes suggest that tissue damage upon loading may not be entirely preventable. Furthermore, newly developed model described here may be very useful in understanding the mechanisms of deep tissue injury that may lead towards development of pressure ulcers. PMID:23967056
Whales Use Distinct Strategies to Counteract Solar Ultraviolet Radiation
Martinez-Levasseur, Laura M.; Birch-Machin, Mark A.; Bowman, Amy; Gendron, Diane; Weatherhead, Elizabeth; Knell, Robert J.; Acevedo-Whitehouse, Karina
2013-01-01
A current threat to the marine ecosystem is the high level of solar ultraviolet radiation (UV). Large whales have recently been shown to suffer sun-induced skin damage from continuous UV exposure. Genotoxic consequences of such exposure remain unknown for these long-lived marine species, as does their capacity to counteract UV-induced insults. We show that UV exposure induces mitochondrial DNA damage in the skin of seasonally sympatric fin, sperm, and blue whales and that this damage accumulates with age. However, counteractive molecular mechanisms are markedly different between species. For example, sperm whales, a species that remains for long periods at the sea surface, activate genotoxic stress pathways in response to UV exposure whereas the paler blue whale relies on increased pigmentation as the season progresses. Our study also shows that whales can modulate their responses to fluctuating levels of UV, and that different evolutionary constraints may have shaped their response strategies. PMID:23989080
Modeling of skin cooling, blood flow, and optical properties in wounds created by electrical shock
NASA Astrophysics Data System (ADS)
Nguyen, Thu T. A.; Shupp, Jeffrey W.; Moffatt, Lauren T.; Jordan, Marion H.; Jeng, James C.; Ramella-Roman, Jessica C.
2012-02-01
High voltage electrical injuries may lead to irreversible tissue damage or even death. Research on tissue injury following high voltage shock is needed and may yield stage-appropriate therapy to reduce amputation rate. One of the mechanisms by which electricity damages tissue is through Joule heating, with subsequent protein denaturation. Previous studies have shown that blood flow had a significant effect on the cooling rate of heated subcutaneous tissue. To assess the thermal damage in tissue, this study focused on monitoring changes of temperature and optical properties of skin next to high voltage wounds. The burns were created between left fore limb and right hind limb extremities of adult male Sprague-Dawley rats by a 1000VDC delivery shock system. A thermal camera was utilized to record temperature variation during the exposure. The experimental results were then validated using a thermal-electric finite element model (FEM).
Arsenic is a recognized human skin, lung, and urinary bladder carcinogen, and may act as a cocarcinogen in the urinary bladder (with cigarette smoking) and skin (with UV light exposure). Possible modes of action of arsenic carcinogenesis/cocarcinogenesis include induction of DNA ...
24 CFR Appendix II to Subpart C of... - Development of Standards; Calculation Methods
Code of Federal Regulations, 2014 CFR
2014-04-01
... suffer intolerable pain after 15 seconds. Longer exposure causes blistering, permanent skin damage, and even death. Since it is assumed that children and the elderly could not take refuge behind walls or run... acceptable flux level, particularly for elderly people and children, is 450 Btu/ft2 hr. The skin can be...
24 CFR Appendix II to Subpart C of... - Development of Standards; Calculation Methods
Code of Federal Regulations, 2013 CFR
2013-04-01
... suffer intolerable pain after 15 seconds. Longer exposure causes blistering, permanent skin damage, and even death. Since it is assumed that children and the elderly could not take refuge behind walls or run... acceptable flux level, particularly for elderly people and children, is 450 Btu/ft2 hr. The skin can be...
24 CFR Appendix II to Subpart C of... - Development of Standards; Calculation Methods
Code of Federal Regulations, 2011 CFR
2011-04-01
... suffer intolerable pain after 15 seconds. Longer exposure causes blistering, permanent skin damage, and even death. Since it is assumed that children and the elderly could not take refuge behind walls or run... acceptable flux level, particularly for elderly people and children, is 450 Btu/ft2 hr. The skin can be...
[Scars, physiology, classification and assessment].
Roques, Claude
2013-01-01
A skin scar is the sign of tissue repair following damage to the skin. Once formed, it follows a process of maturation which, after several months, results in a mature scar. This can be pathological with functional and/or aesthetic consequences. It is important to assess the scar as it matures in order to adapt the treatment to its evolution.
Morris, G M; Coderre, J A; Hopewell, J W; Micca, P L; Rezvani, M
1994-08-01
The effects of boron neutron capture irradiation employing either BPA or BSH as neutron capture agents has been assessed using the dorsal skin of Fischer 344 rats. Pharmacokinetic studies, using prompt gamma spectrometry, revealed comparable levels of boron-10 (10B) in blood and skin after the intravenous infusion of BSH (100 mg/kg body wt.). The 10B content of blood (12.0 +/- 0.5 micrograms/g) was slightly higher than that of skin (10.0 +/- 0.5 micrograms/g) after oral dosing with BPA. Biphasic skin reactions were observed after irradiation with the thermal neutron beam alone or in combination with BPA or BSH. The time of onset of the first phase of the skin reaction, moist desquamation, was approximately 2 weeks. The time at which the second-wave skin reaction, dermal necrosis, became evident was dose-related and occurred after a latent interval of > or = 24 weeks, well after the acute epithelial reaction had healed. The incidence of both phases of skin damage was also dose-related. The radiation doses required to produce skin damage in 50% of skin sites (ED50 values) were calculated from dose-effect curves and these values were used to determine relative biological effectiveness (RBE) and compound biological effectiveness (CBE) factors for both moist desquamation and dermal necrosis. It was concluded on the basis of these calculations that the microdistribution of the two neutron capture agents had a critical bearing on the overall biological effect after thermal neutron activation. BSH, which was possibly excluded from the cytoplasm of epidermal cells, had a low CBE factor value (0.56 +/- 0.06) while BPA, which may be selectively accumulated in epidermal cells had a very high CBE factor (3.74 +/- 0.7). For the dermal reaction, where vascular endothelial cells represent the likely target cell population, the CBE factor values were comparable, at 0.73 +/- 0.42 and 0.86 +/- 0.08 for BPA ad BSH, respectively.
Divya, Sasidharan Padmaja; Wang, Xin; Pratheeshkumar, Poyil; Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Hitron, John Andrew; Wang, Lei; Asha, Padmaja; Shi, Xianglin; Zhang, Zhuo
2015-04-01
Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm(2)) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasia and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways. Copyright © 2015 Elsevier Inc. All rights reserved.
Garre, Aurora; Martinez-Masana, Gemma; Piquero-Casals, Jaime; Granger, Corinne
2017-01-01
Background Skin aging is accelerated by multiple extrinsic factors: ultraviolet radiation, smoking and pollution increase oxidative activity, damaging cellular and extracellular components such as DNA, proteins, and lipids. With age, collagen and hyaluronic acid levels decline, resulting in loss of elasticity and moisture of the skin. Over time this damage leads to characteristic signs that make the skin look older: altered facial contour, sagging skin, wrinkles, and an uneven complexion. This study evaluated the anti-aging effects of a new facial cream formulated with carnosine, Alteromonas ferment extract, crosspolymer hyaluronic acid, and a tripeptide. Methods An open-label intra-individual study to assess the anti-aging efficacy of the investigational product in 33 women aged 45 to 65 years. The product was applied twice daily for 56 days. Facial contour and skin deformation, elasticity, hydration, and complexion were measured with specialized equipment at baseline and days 28 and 56. Additionally, subjects completed questionnaires at days 28 and 56 on the perceived efficacy and cosmetic characteristics of the product. Results After 56 days of use of the investigational product, a redefining effect was observed, with a significant decrease in sagging jawline (7%). Skin was significantly more hydrated (12%), firmer (29%), and more elastic (20%) (P<0.001 for all). On complexion assessment, skin texture (a measure of skin smoothness) and spots (brown and red skin lesions) also improved significantly (12% and 6% decrease, respectively). In the subjective self-evaluation, the majority of subjects reported that the skin was visibly tightened and more elastic, flexible, and moisturized (91%, 88%, 91%, and 90%, respectively). The product was well tolerated with no adverse events reported during the study. Conclusion This new cosmetic product demonstrated anti-aging effects after 56 days of use, most notably a redefined facial contour and improved complexion. It is a safe and effective anti-aging product. PMID:29180884
Garre, Aurora; Martinez-Masana, Gemma; Piquero-Casals, Jaime; Granger, Corinne
2017-01-01
Skin aging is accelerated by multiple extrinsic factors: ultraviolet radiation, smoking and pollution increase oxidative activity, damaging cellular and extracellular components such as DNA, proteins, and lipids. With age, collagen and hyaluronic acid levels decline, resulting in loss of elasticity and moisture of the skin. Over time this damage leads to characteristic signs that make the skin look older: altered facial contour, sagging skin, wrinkles, and an uneven complexion. This study evaluated the anti-aging effects of a new facial cream formulated with carnosine, Alteromonas ferment extract, crosspolymer hyaluronic acid, and a tripeptide. An open-label intra-individual study to assess the anti-aging efficacy of the investigational product in 33 women aged 45 to 65 years. The product was applied twice daily for 56 days. Facial contour and skin deformation, elasticity, hydration, and complexion were measured with specialized equipment at baseline and days 28 and 56. Additionally, subjects completed questionnaires at days 28 and 56 on the perceived efficacy and cosmetic characteristics of the product. After 56 days of use of the investigational product, a redefining effect was observed, with a significant decrease in sagging jawline (7%). Skin was significantly more hydrated (12%), firmer (29%), and more elastic (20%) ( P <0.001 for all). On complexion assessment, skin texture (a measure of skin smoothness) and spots (brown and red skin lesions) also improved significantly (12% and 6% decrease, respectively). In the subjective self-evaluation, the majority of subjects reported that the skin was visibly tightened and more elastic, flexible, and moisturized (91%, 88%, 91%, and 90%, respectively). The product was well tolerated with no adverse events reported during the study. This new cosmetic product demonstrated anti-aging effects after 56 days of use, most notably a redefined facial contour and improved complexion. It is a safe and effective anti-aging product.
Akdag, Mehmet Zulkuf; Dasdag, Suleyman; Canturk, Fazile; Karabulut, Derya; Caner, Yusuf; Adalier, Nur
2016-09-01
Wireless internet (Wi-Fi) providers have become essential in our daily lives, as wireless technology is evolving at a dizzying pace. Although there are different frequency generators, one of the most commonly used Wi-Fi devices are 2.4GHz frequency generators. These devices are heavily used in all areas of life but the effect of radiofrequency (RF) radiation emission on users is generally ignored. Yet, an increasing share of the public expresses concern on this issue. Therefore, this study intends to respond to the growing public concern. The purpose of this study is to reveal whether long term exposure of 2.4GHz frequency RF radiation will cause DNA damage of different tissues such as brain, kidney, liver, and skin tissue and testicular tissues of rats. The study was conducted on 16 adult male Wistar-Albino rats. The rats in the experimental group (n=8) were exposed to 2.4GHz frequency radiation for over a year. The rats in the sham control group (n=8) were subjected to the same experimental conditions except the Wi-Fi generator was turned off. After the exposure period was complete the possible DNA damage on the rat's brain, liver, kidney, skin, and testicular tissues was detected through the single cell gel electrophoresis assay (comet) method. The amount of DNA damage was measured as percentage tail DNA value. Based on the DNA damage results determined by the single cell gel electrophoresis (Comet) method, it was found that the% tail DNA values of the brain, kidney, liver, and skin tissues of the rats in the experimental group increased more than those in the control group. The increase of the DNA damage in all tissues was not significant (p>0.05). However the increase of the DNA damage in rat testes tissue was significant (p<0.01). In conclusion, long-term exposure to 2.4GHz RF radiation (Wi-Fi) does not cause DNA damage of the organs investigated in this study except testes. The results of this study indicated that testes are more sensitive organ to RF radiation. Copyright © 2016 Elsevier B.V. All rights reserved.
Design, testing, and damage tolerance study of bonded stiffened composite wing cover panels
NASA Technical Reports Server (NTRS)
Madan, Ram C.; Sutton, Jason O.
1988-01-01
Results are presented from the application of damage tolerance criteria for composite panels to multistringer composite wing cover panels developed under NASA's Composite Transport Wing Technology Development contract. This conceptual wing design integrated aeroelastic stiffness constraints with an enhanced damage tolerance material system, in order to yield optimized producibility and structural performance. Damage tolerance was demonstrated in a test program using full-sized cover panel subcomponents; panel skins were impacted at midbay between stiffeners, directly over a stiffener, and over the stiffener flange edge. None of the impacts produced visible damage. NASTRAN analyses were performed to simulate NDI-detected invisible damage.
Hong, Yang Hee; Lee, Hyun-Sun; Jung, Eun Young; Han, Sung-Hee; Park, Yooheon; Suh, Hyung Joo
2017-10-01
Abnormal activation of matrix metalloproteinases (MMPs) plays an important role in UV-induced wrinkle formation, which is a major dermatological problem. This formation occurs due to the degeneration of the extracellular matrix (ECM). In this study, we investigated the cutaneous photoprotective effects of Ultraflo L treated ginseng leaf (UTGL) in hairless mice. SKH-1 hairless mice (6 weeks of age) were randomly divided into four groups (8 mice/group). UTGL formulation was applied topically to the skin of the mice for 10 weeks. The normal control group received nonvehicle and was not irradiated with UVB. The UV control (UVB) group received nonvehicle and was exposed to gradient-UVB irradiation. The groups (GA) receiving topical application of UTGL formulation were subjected to gradient-UVB irradiation on 0.5 mg/cm 2 [GA-low (GA-L)] and 1.0 mg/cm 2 [(GA-high (GA-H)] of dorsal skin area, respectively. We found that topical treatment with UTGL attenuated UVB-induced epidermal thickness and impairment of skin barrier function. Additionally, UTGL suppressed the expression of MMP-2, -3, and -13 induced by UVB irradiation. Our results show that topical application of UTGL protects the skin against UVB-induced damage in hairless mice and suggest that UTGL can act as a potential agent for preventing and/or treating UVB-induced photoaging. UTGL possesses sunscreen properties and may exhibit photochemoprotective activities inside the skin of mice. Therefore, UTGL could be used as a potential therapeutic agent to protect the skin against UVB-induced photoaging.
Carpenter, Evan L.; Le, Mai N.; Miranda, Cristobal L.; Reed, Ralph L.; Stevens, Jan F.; Indra, Arup K.; Ganguli-Indra, Gitali
2018-01-01
Exposure to ultraviolet B (UVB) irradiation of the skin leads to numerous dermatological concerns including skin cancer and accelerated aging. Natural product glucosinolate derivatives, like sulforaphane, have been shown to exhibit chemopreventive and photoprotective properties. In this study, we examined meadowfoam (Limnanthes alba) glucosinolate derivatives, 3-methoxybenzyl isothiocyanate (MBITC) and 3-methoxyphenyl acetonitrile (MPACN), for their activity in protecting against the consequences of UV exposure. To that end, we have exposed human primary epidermal keratinocytes (HPEKs) and 3D human skin reconstructed in vitro (EpiDermTM FT-400) to UVB insult and investigated whether MBITC and MPACN treatment ameliorated the harmful effects of UVB damage. Activity was determined by the compounds’ efficacy in counteracting UVB-induced DNA damage, matrix-metalloproteinase (MMP) expression, and proliferation. We found that in monolayer cultures of HPEK, MBITC and MPACN did not protect against a UVB-induced loss in proliferation and MBITC itself inhibited cell proliferation. However, in human reconstructed skin-equivalents, MBITC and MPACN decrease epidermal cyclobutane pyrimidine dimers (CPDs) and significantly reduce total phosphorylated γH2A.X levels. Both MBITC and MPACN inhibit UVB-induced MMP-1 and MMP-3 expression indicating their role to prevent photoaging. Both compounds, and MPACN in particular, showed activity against UVB-induced proliferation as indicated by fewer epidermal PCNA+ cells and prevented UVB-induced hyperplasia as determined by a reduction in reconstructed skin epidermal thickness (ET). These data demonstrate that MBITC and MPACN exhibit promising anti-photocarcinogenic and anti-photoaging properties in the skin microenvironment and could be used for therapeutic interventions. PMID:29867483
Carpenter, Evan L; Le, Mai N; Miranda, Cristobal L; Reed, Ralph L; Stevens, Jan F; Indra, Arup K; Ganguli-Indra, Gitali
2018-01-01
Exposure to ultraviolet B (UVB) irradiation of the skin leads to numerous dermatological concerns including skin cancer and accelerated aging. Natural product glucosinolate derivatives, like sulforaphane, have been shown to exhibit chemopreventive and photoprotective properties. In this study, we examined meadowfoam ( Limnanthes alba ) glucosinolate derivatives, 3-methoxybenzyl isothiocyanate (MBITC) and 3-methoxyphenyl acetonitrile (MPACN), for their activity in protecting against the consequences of UV exposure. To that end, we have exposed human primary epidermal keratinocytes (HPEKs) and 3D human skin reconstructed in vitro (EpiDerm TM FT-400) to UVB insult and investigated whether MBITC and MPACN treatment ameliorated the harmful effects of UVB damage. Activity was determined by the compounds' efficacy in counteracting UVB-induced DNA damage, matrix-metalloproteinase (MMP) expression, and proliferation. We found that in monolayer cultures of HPEK, MBITC and MPACN did not protect against a UVB-induced loss in proliferation and MBITC itself inhibited cell proliferation. However, in human reconstructed skin-equivalents, MBITC and MPACN decrease epidermal cyclobutane pyrimidine dimers (CPDs) and significantly reduce total phosphorylated γH2A.X levels. Both MBITC and MPACN inhibit UVB-induced MMP-1 and MMP-3 expression indicating their role to prevent photoaging. Both compounds, and MPACN in particular, showed activity against UVB-induced proliferation as indicated by fewer epidermal PCNA+ cells and prevented UVB-induced hyperplasia as determined by a reduction in reconstructed skin epidermal thickness (ET). These data demonstrate that MBITC and MPACN exhibit promising anti-photocarcinogenic and anti-photoaging properties in the skin microenvironment and could be used for therapeutic interventions.
Yamaguchi, Fumiko; Watanabe, Shin-Ichi; Harada, Fusae; Miyake, Miyuki; Yoshida, Masaki; Okano, Tomomichi
2014-01-01
We investigated the effect of the alkyl-chain length of anionic surfactants on the skin using an in vitro model. The evaluated anionic surfactants were sodium alkyl sulfate (AS) and sodium fatty acid methyl ester sulfonate (MES), which had different alkyl-chain lengths (C8-C14). Skin tissue damage and permeability were examined using a reconstructed human epidermal model, LabCyte EPI-MODEL24. Skin tissue damage was examined by measuring cytotoxicity with an MTT assay. Liquid chromatography/tandem mass spectrometry (LC/MS-MS) and liquid chromatography/mass spectrometry (LC/MS) were used to detect surfactants that permeated into the assay medium through an epidermal model. To assess the permeation mechanism and cell damage caused by the surfactants through the epidermis, we evaluated the structural changes of Bovine Serum Albumin (BSA), used as a simple model protein, and the fluidity of 1,2-dipalmitoyl-sn-glycero-3-phosphpcholine (DPPC) liposome, which serves as one of the most abundant phospholipid models of living cell membranes in the epidermis. The effects of the surfactants on the proteins were measured using Circular Dichroism (CD) spectroscopy, while the effects on membrane fluidity were investigated by electron spin resonance (ESR) spectroscopy. ET50 (the 50% median effective time) increased as follows: C10 < C12 < C8 < C14 in AS and C8, C10 < C12 < C14 in MES. The order of permeation through the LabCyte EPI-MODEL24 was C10 > C12 > C14, for both AS and MES. For both AS and MES, the order parameter, which is the criteria for the microscopic viscosity of lipid bilayers, increased as follows: C10 < C12 < C14, which means the membrane fluidity is C10 > C12 > C14. It was determined that the difference in skin tissue damage in the LabCyte EPI-MODEL24 with C10 to C14 AS and MES was caused by the difference in permeation and cell membrane fluidity through the lipid bilayer path in the epidermis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratheeshkumar, Poyil; Son, Young-Ok; Wang, Xin
Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicatemore » that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE{sub 2} and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2′-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways. - Highlights: • C3G inhibited UVB-induced oxidative damage and inflammation. • C3G inhibited UVB-induced COX-2, iNOS and PGE{sub 2} production. • C3G inhibited UVB-induced elevated proinflammatory cytokine level. • C3G inhibited UVB-induced p38 MAP kinase signaling. • C3G inhibited UVB-induced NF-κB activation.« less
Matching the skin barrier to the skin type.
Thompson, Hyacinth; North, Jacqui; Davenport, Rebecca; Williams, Julia
Peristomal skin problems are thought to be common (Herlufsson et al, 2006; Williams et al, 2010), and can interfere with the security of stoma products. Stoma patients are reliant on the integrity of their peristomal skin to maintain a normal lifestyle. Bekkers et al (1996) highlighted that, if the peristomal skin becomes damaged, it not only affects the person physically, but also psychologically, ultimately prolonging rehabilitation and adaptation to the stoma. Therefore, it can be concluded that maintaining skin integrity is a basic and essential skill in ensuring good stoma management. This article explores the assessment of four stoma patients, highlighting the importance of matching their skin type with their skin barrier for optimum skin protection. The patients have kindly agreed for their case studies to be published as a means of informing others. All names have been changed in line with Nursing and Midwifery Council (2010) guidelines to maintain patient confidentiality. This article was originally presented at the World Council of Enterostomal Therapists' (WCET) annual conference in 2010, receiving first prize at poster presentations.
Kitamura, Toshihiko; Todo, Hiroaki; Sugibayashi, Kenji
2009-02-01
The effects of several electrolyzed waters were evaluated on the permeation of model base, acid and non-ionized compounds, lidocaine (LC), benzoic acid (BA), and isosorbide mononitrate (ISMN), respectively, through excised hairless rat skin. Strong alkaline-electrolyzed reducing water (ERW) enhanced and suppressed the skin permeation of LC and BA, respectively, and it also increased the skin permeation of ISMN, a non-ionized compound. On the contrary, strong acidic electrolyzed oxidizing water (EOW) enhanced BA permeation, whereas suppressing LC permeation. Only a marginal effect was observed on the skin permeation of ISMN by EOW. These marked enhancing effects of ERW on the skin permeation of LC and ISMN were explained by pH partition hypothesis as well as a decrease in skin impedance. The present results strongly support that electrolyzed waters, ERW and EOW, can be used as a new vehicle in topical pharmaceuticals or cosmetics to modify the skin permeation of drugs without severe skin damage.
Swalwell, Helen; Latimer, Jennifer; Haywood, Rachel M; Birch-Machin, Mark A
2012-02-01
Skin cancer incidence is dramatically increasing worldwide, with exposure to ultraviolet radiation (UVR) a predominant factor. The UVA component initiates oxidative stress in human skin, although its exact role in the initiation of skin cancer, particularly malignant melanoma, remains unclear and is controversial because there is evidence for a melanin-dependent mechanism in UVA-linked melanoma studies. Nonpigmented (CHL-1, A375), moderately pigmented (FM55, SKmel23), and highly pigmented (FM94, hyperpigmented FM55) human melanoma cell lines have been used to investigate UVA-induced production of reactive oxygen species using FACS analysis, at both the cellular (dihydrorhodamine-123) and the mitochondrial (MitoSOX) level, where most cellular stress is generated. For the first time, downstream mtDNA damage (utilizing a quantitative long-PCR assay) has been investigated. Using UVA, UVB, and H(2)O(2) as cellular stressors, we have explored the dual roles of melanin as a photoprotector and photosensitizer. The presence of melanin has no influence over cellular oxidative stress generation, whereas, in contrast, melanin protects against mitochondrial superoxide generation and mtDNA damage (one-way ANOVA with post hoc Tukey's analysis, P<0.001). We show that if melanin binds directly to DNA, it acts as a direct photosensitizer of mtDNA damage during UVA irradiation (P<0.001), providing evidence for the dual roles of melanin. Copyright © 2011 Elsevier Inc. All rights reserved.
Arduini, Agnese; Redaelli, Veronica; Luzi, Fabio; Dall'Olio, Stefania; Pace, Vincenzo; Nanni Costa, Leonardo
2017-02-10
In order to evaluate the relationships between deck level, body surface temperature and carcass damages after a short journey (30 min), 10 deliveries of Italian heavy pigs, including a total of 1400 animals from one farm, were examined. Within 5 min after the arrival at the abattoir, the vehicles were unloaded. Environmental temperature and relative humidity were recorded and a Temperature Humidity Index (THI) was calculated. After unloading, maximum temperatures of dorsal and ocular regions were measured by a thermal camera on groups of pigs from each of the unloaded decks. After dehairing, quarters and whole carcasses were evaluated subjectively by a trained operator for skin damage using a four-point scale. On the basis of THI at unloading, deliveries were grouped into three classes. Data of body surface temperature and skin damage score were analysed in a model including THI class, deck level and their interaction. Regardless of pig location in the truck, the maximum temperature of the dorsal and ocular regions increased with increasing THI class. Within each THI class, the highest and lowest body surface temperatures were found in pigs located on the middle and upper decks, respectively. Only THI class was found to affect the skin damage score ( p < 0.05), which increased on quarters and whole carcasses with increasing THI class. The results of this study on short-distance transport of Italian heavy pigs highlighted the need to control and ameliorate the environmental conditions in the trucks, even at relatively low temperature and THI, in order to improve welfare and reduce loss of carcass value.
Lavelli, V; Sri Harsha, P S C; Ferranti, P; Scarafoni, A; Iametti, S
2016-03-01
Type-2 diabetes is continuously increasing worldwide. Hence, there is a need to develop functional foods that efficiently alleviate damage due to hyperglycaemia complications while meeting the criteria for a sustainable food processing technology. Inhibition of mammalian α-amylase and α-glucosidase was studied for white grape skin samples recovered from wineries and found to be higher than that of the drug acarbose. In white grape skins, quercetin and kaempferol derivatives, analysed by UPLC-DAD-MS, and the oligomeric series of catechin/epicatechin units and their gallic acid ester derivatives up to nonamers, analysed by MALDI-TOF-MS were identified. White grape skin was then used for enrichment of a tomato puree (3%) and a flat bread (10%). White grape skin phenolics were found in the extract obtained from the enriched foods, except for the higher mass proanthocyanidin oligomers, mainly due to their binding to the matrix and to a lesser extent to heat degradation. Proanthocyanidin solubility was lower in bread, most probably due to formation of binary proanthocyanin/protein complexes, than in tomato puree where possible formation of ternary proanthocyanidin/protein/pectin complexes can enhance solubility. Enzyme inhibition by the enriched foods was significantly higher than for unfortified foods. Hence, this in vitro approach provided a platform to study potential dietary agents to alleviate hyperglycaemia damage and suggested that grape skin phenolics could be effective even if the higher mass proanthocyanidins are bound to the food matrix.
Hwang, Eunson; Kim, Su Hyeon; Lee, Sarah; Lee, Choong Hwan; Do, Seon-Gil; Kim, Jinwan; Kim, Sun Yeou
2013-12-01
Ultraviolet (UV) irradiation induces photo-damage of the skin, which in turn causes depletion of the dermal extracellular matrix and chronic alterations in skin structure. Skin wrinkle formations are associated with collagen synthesis and matrix metalloproteinase (MMP) expression. The production of type I procollagen is regulated by transforming growth factor-β1 (TGF-β1) expression; the activation of MMP is also correlated with an increase of interleukin-6 (IL-6). Aloe barbadensis M. (Aloe vera) is widely used in cosmetic and pharmaceutical products. In this study, we examined whether baby aloe shoot extract (BAE, immature aloe extract), which is from the one-month-old shoots of Aloe vera, and adult aloe shoot extract (AE), which is from the four-month-old shoots of Aloe vera, have a protective effect on UVB-induced skin photoaging in normal human dermal fibroblasts (NHDFs). The effects of BAE and AE on UVB-induced photoaging were tested by measuring the levels of reactive oxygen species, MMP-1, MMP-3, IL-6, type I procollagen, and TGF-β1 after UVB irradiation. We found that NHDF cells treated with BAE after UVB-irradiation suppressed MMP-1, MMP-3, and IL-6 levels compared to the AE-treated cells. Furthermore, BAE treatment elevated type I procollagen and TGF-β1 levels. Our results suggest that BAE may potentially protect the skin from UVB-induced damage more than AE. Copyright © 2013 John Wiley & Sons, Ltd.
Time course pathogenesis of sulphur mustard-induced skin lesions in mouse model.
Lomash, Vinay; Jadhav, Sunil E; Vijayaraghavan, Rajagopalan; Pant, Satish C
2013-08-01
Sulphur mustard (SM) is a bifunctional alkylating agent that causes cutaneous blistering in humans and animals. In this study, we have presented closer views on pathogenesis of SM-induced skin injury in a mouse model. SM diluted in acetone was applied once dermally at a dose of 5 or 10 mg/kg to Swiss albino mice. Skin was dissected out at 0, 1, 3, 6, 12, 24, 48, 72 and 168 hours, post-SM exposure for studying histopathological changes and immunohistochemistry of inflammatory-reparative biomarkers, namely, transforming growth factor alpha (TGF-α), fibroblast growth factor (FGF), endothelial nitric oxide synthase (eNOS) and interlukin 6 (IL-6). Histopathological changes were similar to other mammalian species and basal cell damage resembled the histopathological signs observed with vesication in human skin. Inflammatory cell recruitment at the site of injury was supported by differential expressions of IL-6 at various stages. Time-dependent expressions of eNOS played pivotal roles in all the events of wound healing of SM-induced skin lesions. TGF-α and FGF were strongly associated with keratinocyte migration, re-epithelialisation, angiogenesis, fibroblast proliferation and cell differentiation. Furthermore, quantification of the tissue leukocytosis and DNA damage along with semiquantitative estimation of re-epithelialisation, fibroplasia and neovascularisation on histomorphologic scale could be efficiently used for screening the efficacy of orphan drugs against SM-induced skin injury. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.
Stimulation of the penetration of particles into the skin by plasma tissue interaction
NASA Astrophysics Data System (ADS)
Lademann, O.; Richter, H.; Kramer, A.; Patzelt, A.; Meinke, M. C.; Graf, C.; Gao, Q.; Korotianskiy, E.; Rühl, E.; Weltmann, K.-D.; Lademann, J.; Koch, S.
2011-10-01
A high number of treatments in dermatology are based on the penetration of topically applied drugs through the skin barrier. This process is predominantly inefficient, on account of the strong protection properties of the upper skin layer - the stratum corneum. If the skin barrier is damaged, the penetration efficiency of topically applied drugs increases. Therefore, different methods have been developed to influence the barrier properties of the skin. Recently, it could be demonstrated that a cold tissue tolerable plasma (TTP) produced by a plasma-jet can strongly enhance drug delivery through the skin. These investigations were performed by using a solution of fluorescent dye as a model drug. In the present study, these investigations were carried out using fluorescent silica particles at different sizes. The aim of the study was to investigate whether or not there is a limitation in size for topically applied substances to pass through the skin barrier after plasma treatment.
The Importance of Some Plant Extracts as Skin Anti-aging Resources: A Review.
Yasin, Zaliyatun A M; Ibrahim, Fatimah; Rashid, Nurshamimi N; Razif, Muhammad F M; Yusof, Rohana
2017-01-01
Skin is the largest and most visible organ of the body. Many of its functions include temperature regulation, immunity from microorganisms, maintaining electrolyte balance, and protection from physical injuries, chemical agents and ultraviolet (UV) radiation. Aging occurs in every layer of the skin, primarily due to the degradation of its components. Induction of degradative enzymes and the abundant production of reactive oxygen species lead to skin aging. Understanding the complexity of skin structure and factors contributing to the skin aging will help us impede the aging process. Applications of anti-aging products are a common method to prevent or repair damages that lead to aging. This review will provide information on the causes and indicators of skin aging as well as examine studies that have used plants to produce anti-aging products. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Clinical applications of CO2 laser resurfacing in the treatment of various pathologic skin disorders
NASA Astrophysics Data System (ADS)
Giler, Shamai
1997-12-01
CO2 laser skin resurfacing devices are widely used in cosmetic surgery for the treatment of facial rhytides, acne scars and aging skin. This technique is also useful in the treatment of various benign and premalignant or multiple pathological skin conditions and disorders originating in the epidermal, dermal and skin appendages, vascular lesions, epidermal nevi, infected wounds and ulcers, and keloids. Various surgical techniques have been developed in our clinic using laser resurfacing in the treatment of more than 2,000 patients with various skin pathologic disorders. We describe our experience with the various techniques used. The precise depth control and ablation properties combined with the hemostatic and sterilizing effects of the CO2 laser beam, reduction of the possibility of bleeding, infection and damage to healthy tissues, make the CO2 laser resurfacing techniques the treatment of choice for cosmetic surgery and treatment of benign, premalignant and multiple pathologic skin conditions.
Toxicological and pharmacological effects of gadolinium and samarium chlorides
Haley, T. J.; Raymond, K.; Komesu, N.; Upham, H. C.
1961-01-01
A study has been made of the toxicology and pharmacology of gadolinium and samarium chlorides. The symptoms of acute toxicity following intraperitoneal injection are described. The chronic oral ingestion of both chemicals for 12 weeks produced no effects on growth or the blood picture, and only the male rats receiving gadolinium chloride showed liver damage. The pharmacological responses to both chemicals were mainly depressant on all systems studied, and death was associated with cardiovascular collapse coupled with respiratory paralysis. The greatest damage seen was on abraded skin, where non-healing ulcers were produced by both chemicals, whereas irritation of intact skin and ocular tissues was only transient in nature. PMID:13903826
Sun exposure: what molecular photodermatology tells us about its good and bad sides.
Krutmann, Jean; Morita, Akimichi; Chung, Jin Ho
2012-03-01
The health consequences of sun exposure have concerned mankind for more than 100 years. Recent molecular studies in photodermatology have greatly advanced our understanding of this important topic. We will illustrate this progress by focusing on the following selected topics: (i) the nature of the DNA damage-independent part of the UVB response of human skin and the role of the arylhydrocarbon receptor in cutaneous biology, (ii) the contribution of wavelengths beyond the UV spectrum to solar radiation-induced skin damage, (iii) the emerging evidence that subcutaneous fat is a target tissue for sunlight, and (iv) the most recent insight into the mode of action of phototherapy.
Reversal of skin aging with topical retinoids.
Hubbard, Bradley A; Unger, Jacob G; Rohrich, Rod J
2014-04-01
Topical skin care and its place in plastic surgery today are often overlooked by clinicians formulating a plan for facial rejuvenation. Not only is it important to consider topical skin care as part of comprehensive care, but clinicians should also be educated with the data available in today's literature. This review aims to familiarize the reader with the biological processes of skin aging and evidence-based clinical outcomes afforded by various topical therapies. Furthermore, this review will focus on solar damage, the value of retinoids, and how they can be used in conjunction with forms of treatment such as chemical peel, dermabrasion, and lasers. Finally, guidelines will be provided to help the physician administer appropriate skin care based on the data presented.
Thougaard, Annemette V; Langer, Seppo W; Hainau, Bo; Grauslund, Morten; Juhl, Birgitte Ravn; Jensen, Peter Buhl; Sehested, Maxwell
2010-02-28
The bisdioxopiperazine topoisomerase II catalytic inhibitor dexrazoxane has successfully been introduced into the clinic as an antidote to accidental anthracycline extravasation based on our preclinical mouse studies. The histology of this mouse extravasation model was investigated and found to be similar to findings in humans: massive necrosis in the subcutis, dermis and epidermis followed by sequestration and healing with granulation tissue, and a graft-versus-host-like reaction with hyperkeratotic and acanthotic keratinocytes, occasional apoptoses, epidermal invasion by lymphocytes and healing with dense dermal connective tissue. The extension of this fibrosis was quantified, and dexrazoxane intervention resulted in a statistically significant decrease in fibrosis extension, as also observed in the clinic. Several mechanisms have been proposed in anthracycline extravasation cytotoxicity, and we tested two major hypotheses: (1) interaction with topoisomerase II alpha and (2) the formation of tissue damaging reactive oxygen species following redox cycling of an anthracycline Fe(2+) complex. Dexrazoxane could minimise skin damage via both mechanisms, as it stops the catalytic activity of topoisomerase II alpha and thereby prevents access of anthracycline to the enzyme and thus cytotoxicity, and also acts as a strong iron chelator following opening of its two bisdioxopiperazine rings. Using the model of extravasation in a dexrazoxane-resistant transgenic mouse with a heterozygous mutation in the topoisomerase II alpha gene (Top2a(Y165S/+)), we found that dexrazoxane provided a protection against anthracycline-induced skin wounds that was indistinguishable from that found in wildtype mice. Thus, interaction with topoisomerase II alpha is not central in the pathogenesis of anthracycline-induced skin damage. In contrast to dexrazoxane, the iron-chelating bisdioxopiperazine ICRF-161 do not inhibit the catalytic cycle of topoisomerase II alpha. This compound was used to isolate and test the importance of iron in the wound pathogenesis. ICRF-161 was found ineffective in the treatment of anthracycline-induced skin damage, suggesting that iron does not play a dominant role in the genesis of wounds. (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Yang, Mei; Liang, Yimin; Sheng, Lingling; Shen, Guoxiong; Liu, Kai; Gu, Bin; Meng, Fanjun; Li, Qingfeng
2011-03-01
In adults, severely damaged skin heals by scar formation and cannot regenerate to the original skin structure. However, tissue expansion is an exception, as normal skin regenerates under the mechanical stretch resulting from tissue expansion. This technique has been used clinically for defect repair and organ reconstruction for decades. However, the phenomenon of adult skin regeneration during tissue expansion has caused little attention, and the mechanism of skin regeneration during tissue expansion has not been fully understood. In this study, microarray analysis was performed on expanded human skin and normal human skin. Significant difference was observed in 77 genes, which suggest a network of several integrated cascades, including cytokines, extracellular, cytoskeletal, transmembrane molecular systems, ion or ion channels, protein kinases and transcriptional systems, is involved in the skin regeneration during expansion. Among these, the significant expression of some regeneration related genes, such as HOXA5, HOXB2 and AP1, was the first report in tissue expansion. Data in this study suggest a list of candidate genes, which may help to elucidate the fundamental mechanism of skin regeneration during tissue expansion and which may have implications for postnatal skin regeneration and therapeutic interventions in wound healing.
Vilaiyuk, Soamarat; Torok, Kathryn S.; Medsger, Thomas A.
2010-01-01
Objective. To develop and assess the psychometric properties of the Localized Scleroderma (LS) Skin Damage Index (LoSDI) and Physician Global Assessment of disease Damage (PGA-D). Methods. Damage was defined as irreversible/persistent changes (>6 months) due to previous active disease/complications of therapy. Eight rheumatologists assessed the importance of 17 variables in formulating the PGA-D/LoSDI. LS patients were evaluated by two rheumatologists using both tools to assess their psychometric properties. LoSDI was calculated by summing three scores for cutaneous features of damage [dermal atrophy (DAT), subcutaneous atrophy (SAT) and dyspigmentation (DP)] measured at 18 anatomic sites. Patient GA of disease severity (PtGA-S), Children's Dermatology Life Quality Index (CDLQI) and PGA-D were recorded at the time of each examination. Results. Thirty LS patients (112 lesions) and nine patient-visit pairs (18 lesions) were included for inter- and intra-rater reliability study. LoSDI and its domains DAT, SAT, DP and PGA-D demonstrated excellent inter- and intra-rater reliability (reliability coefficients 0.86–0.99 and 0.74–0.96, respectively). LoSDI correlated moderately with PGA-D and poorly with PtGA-S and CDLQI. PGA-D correlated moderately with PtGA-S, but poorly with CDLQI. Conclusions. To complete the LS Cutaneous Assessment Tool (LoSCAT), we developed and evaluated the psychometric properties of the LoSDI and PGA-D in addition to the LS Skin Severity Index (LoSSI). These instruments will facilitate evaluation of LS patients for individual patient management and clinical trials. LoSDI and PGA-D demonstrated excellent reliability and high validity. LoSCAT provides an improved understanding of LS natural history. Further study in a larger group of patients is needed to confirm these preliminary findings. PMID:20008472
Disinfection of human skin allografts in tissue banking: a systematic review report.
Johnston, C; Callum, J; Mohr, J; Duong, A; Garibaldi, A; Simunovic, N; Ayeni, O R
2016-12-01
The use of skin allografts to temporarily replace lost or damaged skin is practiced worldwide. Naturally occurring contamination can be present on skin or can be introduced at recovery or during processing. This contamination can pose a threat to allograft recipients. Bacterial culture and disinfection of allografts are mandated, but the specific practices and methodologies are not dictated by standards. A systematic review of literature from three databases found 12 research articles that evaluated bioburden reduction processes of skin grafts. The use of broad spectrum antibiotics and antifungal agents was the most frequently identified disinfection method reported demonstrating reductions in contamination rates. It was determined that the greatest reduction in the skin allograft contamination rates utilized 0.1 % peracetic acid or 25 kGy of gamma irradiation at lower temperatures.
Velarde, Michael C.; Flynn, James M.; Day, Nicholas U.; Melov, Simon; Campisi, Judith
2012-01-01
Cellular senescence arrests the proliferation of mammalian cells at risk for neoplastic transformation, and is also associated with aging. However, the factors that cause cellular senescence during aging are unclear. Excessive reactive oxygen species (ROS) have been shown to cause cellular senescence in culture, and accumulated molecular damage due to mitochondrial ROS has long been thought to drive aging phenotypes in vivo. Here, we test the hypothesis that mitochondrial oxidative stress can promote cellular senescence in vivo and contribute to aging phenotypes in vivo, specifically in the skin. We show that the number of senescent cells, as well as impaired mitochondrial (complex II) activity increase in naturally aged mouse skin. Using a mouse model of genetic Sod2 deficiency, we show that failure to express this important mitochondrial anti-oxidant enzyme also impairs mitochondrial complex II activity, causes nuclear DNA damage, and induces cellular senescence but not apoptosis in the epidermis. Sod2 deficiency also reduced the number of cells and thickness of the epidermis, while increasing terminal differentiation. Our results support the idea that mitochondrial oxidative stress and cellular senescence contribute to aging skin phenotypes in vivo. PMID:22278880
Failure Analysis of Discrete Damaged Tailored Extension-Shear-Coupled Stiffened Composite Panels
NASA Technical Reports Server (NTRS)
Baker, Donald J.
2005-01-01
The results of an analytical and experimental investigation of the failure of composite is tiffener panels with extension-shear coupling are presented. This tailored concept, when used in the cover skins of a tiltrotor aircraft wing has the potential for increasing the aeroelastic stability margins and improving the aircraft productivity. The extension-shear coupling is achieved by using unbalanced 45 plies in the skin. The failure analysis of two tailored panel configurations that have the center stringer and adjacent skin severed is presented. Finite element analysis of the damaged panels was conducted using STAGS (STructural Analysis of General Shells) general purpose finite element program that includes a progressive failure capability for laminated composite structures that is based on point-stress analysis, traditional failure criteria, and ply discounting for material degradation. The progressive failure predicted the path of the failure and maximum load capability. There is less than 12 percent difference between the predicted failure load and experimental failure load. There is a good match of the panel stiffness and strength between the progressive failure analysis and the experimental results. The results indicate that the tailored concept would be feasible to use in the wing skin of a tiltrotor aircraft.
Kownatzki, E
2003-12-01
The high rate of hand problems associated with the hand hygiene of medical professions is due to a combination of damaging factors: (1) the removal of barrier lipids by detergent cleaning and alcohol antisepsis followed by a loss of moisturizers and stratum corneum water and (2) the overhydration of the stratum corneum by sweat trapped within gloves. Together the facilitate the invasion of irritants and allergens which elicit inflammatory responses in the dermis. Among the lipids and water-soluble substances removed are natural antibacterials. Their loss leads to increased growth of transient and pathogenic micro-organisms which jeapordizes the very intention of skin hygiene. The kinetics of damage and its repair, and epidemiological evidence suggest that modern synthetic detergents as used in foaming liquid cleansers are the major offender. Conversely, the replacement of detergents with non-detergent emulsion cleansers has been shown to be effective in reducing the prevalence of hand problems among hospital staff. Presently recommended hand antisepsis reduces the risks to patients, but puts the burden on the health care provider. Rather than fighting micro-organisms at the expense of the skin's health, the skin and its own defences should be considered a collaborator in combating infectious diseases.
Laser abrasion for cosmetic and medical treatment of facial actinic damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, L.M.; Lask, G.P.; Glassberg, E.
1989-06-01
Previous studies have shown the carbon dioxide (CO/sub 2/) laser to be effective in the treatment of actinic cheilitis. After CO/sub 2/ laser abrasion, normal skin and marked cosmetic improvement of the lip were noted. In our study, twenty-three patients were treated with CO/sub 2/ laser abrasions for cosmetic improvement of facial lines and actinic changes. Pre- and postoperative histopathologic examinations were made on two patients. Preoperative examination of specimens from actinically damaged skin showed atypical keratinocytes in the basal layer of the epidermis, with overlying dense compact orthokeratosis and parakeratosis. Abundant solar elastosis was seen in the papillary dermis.more » Postoperative histologic specimens showed a normal-appearing epidermis with fibrosis in the papillary dermis and minimal solar elastosis (about four weeks after laser treatment). At present, various modalities are available for the regeneration of the aged skin, including chemical peels and dermabrasion. Significantly fewer complications were noted with CO/sub 2/ laser abrasion than with these methods. Thus, CO/sub 2/ laser abrasion can be useful in the cosmetic and medical treatment of the aged skin. Marked clinical and histologic improvement has been demonstrated.« less
SHINING A LIGHT ON XERODERMA PIGMENTOSUM
DiGiovanna, John J.; Kraemer, Kenneth H.
2012-01-01
Xeroderma pigmentosum (XP) is a rare, autosomal recessive disorder of DNA repair characterized by sun sensitivity and ultraviolet (UV) induced skin and mucous membrane cancers. Described in 1874 by Moriz Kaposi in Vienna, nearly 100 years later James Cleaver in San Francisco reported defective DNA repair in XP cells. This eventually provided the basis for a mechanistic link between sun exposure, DNA damage, somatic mutations and skin cancer. XP cells were found to have defects in 7 of the proteins of the nucleotide excision repair pathway and in DNA polymerase eta. XP cells are hypersensitive to killing by UV and XP cancers have characteristic “UV signature” mutations. Clinical studies at NIH found a nearly 10,000-fold increase in skin cancer in XP patients under age 20 years demonstrating the substantial importance of DNA repair in cancer prevention in the general population. About 25 % of XP patients have progressive neurological degeneration with progressive loss of neurons, probably from DNA damage induced by oxidative metabolism which kills non-dividing cells in the nervous system. Interestingly, patients with another disorder, trichothiodystrophy have defects in some of the same genes as XP but they have primary developmental abnormalities without an increase in skin cancer. PMID:22217736
Mordon, S; Desmettre, T; Devoisselle, J M; Soulie, S
1997-01-01
The present study was undertaken to evaluate the feasibility of thermal damage assessment of blood vessels by using laser-induced release of liposome-encapsulated dye. Experiments were performed in a hamster skin flap model. Laser irradiation was achieved with a 300 microm fiber connected to a 805 nm diode laser (power = 0.8W, spot diameter = 1.3 mm and pulse exposure time lasting from 1 to 6 s) after potentiation using a specific indocyanine green (ICG) formulation (water and oil emulsion). Liposomes-encapsulated carboxyfluorescein were prepared by the sonication procedure. Carboxyfluorescein (5,6-CF) was loaded at high concentration (100 mM) in order to quench its fluorescence. The measurements were performed after i.v. injection of DSPC liposomes (1.5 ml) and lasted 40 min. Fluorescence emission was measured with an ultra high sensitivity intensified camera. Three different shapes of fluorescent spots were identified depending on target (blood vessel or skin) and energy deposition in tissue: (i) intravascular fluorescence, (ii) transient low fluorescence circular spot, and (iii) persistent high intense fluorescence spot. These images are correlated with histological data. Real-time fluorescence imaging seems to be a good tool to estimate in a non-invasive manner the thermal damage induced by a diode laser combined with ICG potentiation.
Bae, Seunghee; An, In-Sook; An, Sungkwan
2015-09-01
Ultraviolet (UV) radiation is a major inducer of skin aging and accumulated exposure to UV radiation increases DNA damage in skin cells, including dermal fibroblasts. In the present study, we developed a novel DNA repair regulating material discovery (DREAM) system for the high-throughput screening and identification of putative materials regulating DNA repair in skin cells. First, we established a modified lentivirus expressing the luciferase and hypoxanthine phosphoribosyl transferase (HPRT) genes. Then, human dermal fibroblast WS-1 cells were infected with the modified lentivirus and selected with puromycin to establish cells that stably expressed luciferase and HPRT (DREAM-F cells). The first step in the DREAM protocol was a 96-well-based screening procedure, involving the analysis of cell viability and luciferase activity after pretreatment of DREAM-F cells with reagents of interest and post-treatment with UVB radiation, and vice versa. In the second step, we validated certain effective reagents identified in the first step by analyzing the cell cycle, evaluating cell death, and performing HPRT-DNA sequencing in DREAM-F cells treated with these reagents and UVB. This DREAM system is scalable and forms a time-saving high-throughput screening system for identifying novel anti-photoaging reagents regulating DNA damage in dermal fibroblasts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mouret, Stéphane, E-mail: stephane.mouret@irba.fr; Wartelle, Julien; Emorine, Sandy
2013-10-15
Lewisite is a potent chemical warfare arsenical vesicant that can cause severe skin lesions. Today, lewisite exposure remains possible during demilitarization of old ammunitions and as a result of deliberate use. Although its cutaneous toxicity is not fully elucidated, a specific antidote exists, the British anti-lewisite (BAL, dimercaprol) but it is not without untoward effects. Analogs of BAL, less toxic, have been developed such as meso-2,3-dimercaptosuccinic acid (DMSA) and have been employed for the treatment of heavy metal poisoning. However, efficacy of DMSA against lewisite-induced skin lesions remains to be determined in comparison with BAL. We have thus evaluated inmore » this study the therapeutic efficacy of BAL and DMSA in two administration modes against skin lesions induced by lewisite vapor on SKH-1 hairless mice. Our data demonstrate a strong protective efficacy of topical application of dimercapto-chelating agents in contrast to a subcutaneous administration 1 h after lewisite exposure, with attenuation of wound size, necrosis and impairment of skin barrier function. The histological evaluation also confirms the efficacy of topical application by showing that treatments were effective in reversing lewisite-induced neutrophil infiltration. This protective effect was associated with an epidermal hyperplasia. However, for all the parameters studied, BAL was more effective than DMSA in reducing lewisite-induced skin injury. Together, these findings support the use of a topical form of dimercaprol-chelating agent against lewisite-induced skin lesion within the first hour after exposure to increase the therapeutic management and that BAL, despite its side-effects, should not be abandoned. - Highlights: • Topically applied dimercapto-chelating agents reduce lewisite-induced skin damage. • One topical application of BAL or DMSA is sufficient to reverse lewisite effects. • Topical BAL is more effective than DMSA to counteract lewisite-induced skin damage.« less
Shining Light on Skin Pigmentation: The Darker and the Brighter Side of Effects of UV Radiation†
Maddodi, Nityanand; Jayanthy, Ashika; Setaluri, Vijayasaradhi
2012-01-01
The term barrier function as applied to human skin often connotes the physical properties of this organ that provide protection from its surrounding environment. This term does not generally include skin pigmentation. However, skin pigmentation, which is the result of melanin produced in melanocytes residing the basal layer of the skin and exported to the keratinocytes in the upper layers, serves equally important protective function. Indeed, changes in skin pigmentation are often the most readily recognized indicators of exposure of skin to damaging agents, especially to natural and artificial radiation in the environment. Several recent studies have shed new light on a) the mechanisms of involved in selective effects of subcomponents of UV radiation on human skin pigmentation and b) the interactive influences between keratinocytes and melanocytes, acting as ‘epidermal melanin unit’, that manifest as changes in skin pigmentation in response to exposure to various forms of radiation. This article provides a concise review of our current understanding of the effects of the non-ionizing solar radiation, at cellular and molecular levels, on human skin pigmentation. PMID:22404235
... Use of a liver-damaging drug Risks Slight risks from having blood drawn may include: Excessive bleeding Fainting or feeling lightheaded Hematoma (blood accumulating under the skin) Infection ( ...
Ma, Jun; Chen, Bin; Li, Dong; Zhang, Yue; Ying, Zhaoxia
2018-03-14
Port-wine stain (PWS) birthmark is a congenital microvascular malformation of the skin. A 1064-nm Nd:YAG laser can achieve a deeper treatment, but the weak absorption by blood limits its clinical application. Multiple laser pulses (MLPs) are a potential solution to enhance the curative effect of a Nd:YAG laser. To reduce the pulse number (p n ) required for the thermal destruction of the blood vessel, the effect of glucose in conjunction with MLP was investigated. In vivo experiments were performed on a dorsal skin chamber model. Different concentrations (20, 25, 30, and 40%) of glucose were applied to the sub-dermal side of the hamster skin before laser irradiation. Identical vessels with diameters of 200 ± 30 and 110 ± 20 μm were chosen as representatives of typical PWS vessels. Instant thermal responses of the blood vessel were recorded by a high-speed camera. The required p n for blood vessel damage was compared with that without glucose pretreatment. Results showed that the use of glucose with a concentration of 20% combined with MLP Nd:YAG laser to damage blood vessels is more appropriate because severe hemorrhage or carbonization easily appeared in blood vessels at higher glucose concentration of 25, 30, and 40%. When 20% glycerol is pretreated on the sub-dermal hamster skin, the required p n for blood vessel damage can be significantly decreased for different power densities. For example, p n can be reduced by 40% when the power density is 57 J/cm 2 . In addition, generation of cavitation and bubbles in blood vessels is difficult upon pretreatment with glucose. The combination of glucose with MLP Nd:YAG laser could be an effective protocol for reducing the p n required for blood vessel damage. Randomized controlled trial (RCT) and human trials will be conducted in the future.
Singha, Indrani; Das, Subir Kumar
2014-10-01
The phytochemicals present in the grapes are responsible for nutraceutical and health benfits due to their antioxidant properties. These phytochemicals, however, vary greatly among different cultivars. In this study, we evaluated the antioxidant potential and protective role of four different Indian grape (Vitis vinifera) cultivars extracts, namely Flame seedless (Black grapes), Kishmish chorni (Black with reddish brown), Red globe (Red) and Thompson seedless mutant (Sonaka, Green) against the Fenton-like reagent (200 μmole H2O2, 2 mmole ascorbate, 25 μmole FeSO4)-induced liver damage. Non-enzymatic antioxidants, such as glutathione (GSH) levels and activities of antioxidant enzymes, such as glutathione S-transferase (GST) and superoxide dismutase (SOD), as well as total antioxidant capacity (TAC) were highest in the grape seed, followed by skin and pulp. Among edible parts of different cultivars, skin of Flame seedless (Black) cultivar showed highest antioxidant potential, while the Thompson seedless the least potential. These antioxidants were found to be significantly (P < 0.01) correlated with the levels of total phenol, flavonoids and ascorbic acid. Fenton-like reagent treatment significantly (P < 0.001) decreased GSH content by 39.1% and activities of catalase (CAT) by 43.2% and glutathione reductase (GR) by 60%, while increasing thiobarbituric acid reactive substances (TBARS) and nitric oxide levels by 2.13-fold and 0.64-fold, respectively and GST activity by 0.81-fold. Pre-treatment with grape seed extracts showed the best hepatoprotective action against Fenton-like reagent-induced damage, followed by the extracts of skin and pulp of any cultivar. Thus, our study showed the significant amounts of antioxidants were in grape seed, followed by its skin and pulp, which varied among the cultivars and was associated with the protective action of grape extracts against Fenton-like reagent-induced liver damage ex-vivo.
NASA Astrophysics Data System (ADS)
Redon, Christophe E.; Dickey, Jennifer S.; Bonner, William M.; Sedelnikova, Olga A.
2009-04-01
Ionizing radiation (IR) exposure is inevitable in our modern society and can lead to a variety of deleterious effects including cancer and birth defects. A reliable, reproducible and sensitive assessment of exposure to IR and the individual response to that exposure would provide much needed information for the optimal treatment of each donor examined. We have developed a diagnostic test for IR exposure based on detection of the phosphorylated form of variant histone H2AX (γ-H2AX), which occurs specifically at sites of DNA double-strand breaks (DSBs). The cell responds to a nascent DSB through the phosphorylation of thousands of H2AX molecules flanking the damaged site. This highly amplified response can be visualized as a γ-H2AX focus in the chromatin that can be detected in situ with the appropriate antibody. Here we assess the usability of γ-H2AX focus formation as a possible biodosimeter for human exposure to IR using peripheral blood lymphocytes irradiated ex vivo and three-dimensional artificial models of human skin biopsies. In both systems, the tissues were exposed to 0.2-5 Gy, doses of IR that might be realistically encountered in various scenarios such as cancer radiotherapies or accidental exposure to radiation. Since the γ-H2AX response is maximal 30 min after exposure and declines over a period of hours as the cells repair the damage, we examined the time limitations of the useful detectability of γ-H2AX foci. We report that a linear response proportional to the initial radiation dose was obtained 48 and 24 h after exposure in blood samples and skin cells respectively. Thus, detection of γ-H2AX formation to monitor DNA damage in minimally invasive blood and skin tests could be useful tools to determine radiation dose exposure and analyze its effects on humans.
Effects of intrinsic aging and photodamage on skin dyspigmentation: an explorative study
NASA Astrophysics Data System (ADS)
Dobos, Gabor; Trojahn, Carina; D'Alessandro, Brian; Patwardhan, Sachin; Canfield, Douglas; Blume-Peytavi, Ulrike; Kottner, Jan
2016-06-01
Photoaging is associated with increasing pigmentary heterogeneity and darkening of skin color. However, little is known about age-related changes in skin pigmentation on sun-protected areas. The aim of this explorative study was to measure skin color and dyspigmentation using image processing and to evaluate the reliability of these parameters. Twenty-four volunteers of three age-groups were included in this explorative study. Measurements were conducted at sun-exposed and sun-protected areas. Overall skin-color estimates were similar among age groups. The hyper- and hypopigmentation indices differed significantly by age groups and their correlations with age ranged between 0.61 and 0.74. Dorsal forearm skin differed from the other investigational areas (p<0.001). We observed an increase in dyspigmentation at all skin areas, including sun-protected skin areas, already in young adulthood. Associations between age and dyspigmentation estimates were higher compared to color parameters. All color and dyspigmentation estimates showed high reliability. Dyspigmentation parameters seem to be better biomarkers for UV damage than the overall color measurements.
The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders
Działo, Magdalena; Mierziak, Justyna; Korzun, Urszula; Preisner, Marta; Szopa, Jan; Kulma, Anna
2016-01-01
Phenolic compounds constitute a group of secondary metabolites which have important functions in plants. Besides the beneficial effects on the plant host, phenolic metabolites (polyphenols) exhibit a series of biological properties that influence the human in a health-promoting manner. Evidence suggests that people can benefit from plant phenolics obtained either by the diet or through skin application, because they can alleviate symptoms and inhibit the development of various skin disorders. Due to their natural origin and low toxicity, phenolic compounds are a promising tool in eliminating the causes and effects of skin aging, skin diseases, and skin damage, including wounds and burns. Polyphenols also act protectively and help prevent or attenuate the progression of certain skin disorders, both embarrassing minor problems (e.g., wrinkles, acne) or serious, potentially life-threatening diseases such as cancer. This paper reviews the latest reports on the potential therapy of skin disorders through treatment with phenolic compounds, considering mostly a single specific compound or a combination of compounds in a plant extract. PMID:26901191
Afornali, Alessandro; Vecchi, Rodrigo de; Stuart, Rodrigo Makowiecky; Dieamant, Gustavo; Oliveira, Luciana Lima de; Brohem, Carla Abdo; Feferman, Israel Henrique Stokfisz; Fabrício, Lincoln Helder Zambaldi; Lorencini, Márcio
2013-01-01
The sum of environmental and genetic factors affects the appearance and function of the skin as it ages. The identification of molecular changes that take place during skin aging provides biomarkers and possible targets for therapeutic intervention. Retinoic acid in different formulations has emerged as an alternative to prevent and repair age-related skin damage. To understand the effects of different retinoid formulations on the expression of genes associated with biological processes that undergo changes during skin aging. Ex-vivo skin samples were treated topically with different retinoid formulations. The modulation of biological processes associated with skin aging was measured by Reverse Transcription quantitative PCR (RT-qPCR). A formulation containing microencapsulated retinol and a blend of active ingredients prepared as a triple nanoemulsion provided the best results for the modulation of biological, process-related genes that are usually affected during skin aging. This association proved to be therapeutically more effective than tretinoin or microencapsulated retinol used singly.
[Functional food and bioavailability in the target organ skin].
Darwin, M; Schanzer, S; Teichmann, A; Blume-Peytavi, U; Sterry, W; Lademann, J
2006-04-01
Reactive free radicals can be produced in the skin by the action of environmental factors, such as sun radiation and toxins. These radicals can damage the DNA, proteins and lipids of the living cells. The consequences can be skin aging, immune suppression and even skin cancer. Humans have developed a protective mechanism against the action of free radicals in the form of antioxidant substances. Several of these antioxidants cannot be produced by humans and have to be acquired via food, such as carotenoids. Optical, non-invasive methods, like resonance Raman spectroscopy, allow a qualitative and quantitative online detection of the kinetics of antioxidants such as carotenoids in the skin. By employing this method it has been shown that the uptake of carotenoids in food can lead to an accumulation in the skin. On the other hand, stress, illness and UV-radiation can reduce the concentration of antioxidant substances in the skin. A high concentration of antioxidant substances is protective and associated with a reduction in skin wrinkling.
Darvin, Maxim E; Sandhagen, Carl; Koecher, Wolfgang; Sterry, Wolfram; Lademann, Juergen; Meinke, Martina C
2012-07-01
Based on compelling in vivo and in vitro studies on human skin, carotenoids are thought to be of great interest as powerful antioxidants acting to prevent free-radical-induced damages, including premature skin ageing and the development of skin diseases such as cancer. Among the available techniques that are suitable for noninvasive determination of carotenoids in human skin, are resonance Raman spectroscopy (RRS) and reflection spectroscopy (RS). For RS, a LED-based miniaturized spectroscopic system (MSS) was developed for noninvasive measurement of carotenoids in human skin. The optimization and subsequent calibration of the MSS was performed with the use of RRS. A strong correlation between the carotenoid concentration determined by the RS and for the RRS system was achieved for human skin in vivo (R = 0.88) and for bovine udder skin in vitro (R = 0.81). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.