Skull defect reconstruction based on a new hybrid level set.
Zhang, Ziqun; Zhang, Ran; Song, Zhijian
2014-01-01
Skull defect reconstruction is an important aspect of surgical repair. Historically, a skull defect prosthesis was created by the mirroring technique, surface fitting, or formed templates. These methods are not based on the anatomy of the individual patient's skull, and therefore, the prosthesis cannot precisely correct the defect. This study presented a new hybrid level set model, taking into account both the global optimization region information and the local accuracy edge information, while avoiding re-initialization during the evolution of the level set function. Based on the new method, a skull defect was reconstructed, and the skull prosthesis was produced by rapid prototyping technology. This resulted in a skull defect prosthesis that well matched the skull defect with excellent individual adaptation.
Reyes, Camilo; Mason, Eric; Solares, C. Arturo
2014-01-01
Introduction A substantial body of literature has been devoted to the distinct characteristics and surgical options to repair the skull base. However, the skull base is an anatomically challenging location that requires a three-dimensional reconstruction approach. Furthermore, advances in endoscopic skull base surgery encompass a wide range of surgical pathology, from benign tumors to sinonasal cancer. This has resulted in the creation of wide defects that yield a new challenge in skull base reconstruction. Progress in technology and imaging has made this approach an internationally accepted method to repair these defects. Objectives Discuss historical developments and flaps available for skull base reconstruction. Data Synthesis Free grafts in skull base reconstruction are a viable option in small defects and low-flow leaks. Vascularized flaps pose a distinct advantage in large defects and high-flow leaks. When open techniques are used, free flap reconstruction techniques are often necessary to repair large entry wound defects. Conclusions Reconstruction of skull base defects requires a thorough knowledge of surgical anatomy, disease, and patient risk factors associated with high-flow cerebrospinal fluid leaks. Various reconstruction techniques are available, from free tissue grafting to vascularized flaps. Possible complications that can befall after these procedures need to be considered. Although endonasal techniques are being used with increasing frequency, open techniques are still necessary in selected cases. PMID:25992142
Reconstruction Using Locoregional Flaps for Large Skull Base Defects.
Hatano, Takaharu; Motomura, Hisashi; Ayabe, Shinobu
2015-06-01
We present a modified locoregional flap for the reconstruction of large anterior skull base defects that should be reconstructed with a free flap according to Yano's algorithm. No classification of skull base defects had been proposed for a long time. Yano et al suggested a new classification in 2012. The lb defect of Yano's classification extends horizontally from the cribriform plate to the orbital roof. According to Yano's algorithm for subsequent skull base reconstructive procedures, a lb defect should be reconstructed with a free flap such as an anterolateral thigh free flap or rectus abdominis myocutaneous free flap. However, our modified locoregional flap has also enabled reconstruction of lb defects. In this case series, we used a locoregional flap for lb defects. No major postoperative complications occurred. We present our modified locoregional flap that enables reconstruction of lb defects.
Chen, Min-Jie; Yang, Chi; Zheng, Ji-Si; Bai, Guo; Han, Zi-Xiang; Wang, Yi-Wen
2018-06-01
We sought to introduce our classification and reconstruction protocol for skull base erosions in the temporomandibular joint and skull base region. Patients with neoplasms in the temporomandibular joint and skull base region treated from January 2006 to March 2017 were reviewed. Skull base erosion was classified into 3 types according to the size of the defect. We included 33 patients, of whom 5 (15.2%) had type I defects (including 3 in whom free fat grafts were placed and 2 in whom deep temporal fascial fat flaps were placed). There were 8 patients (24.2%) with type II defects, all of whom received deep temporal fascial fat flaps. A total of 20 patients (60.6%) had type III defects, including 17 in whom autogenous bone grafts were placed, 1 in whom titanium mesh was placed, and 2 who received total alloplastic joints. The mean follow-up period was 50 months. All of the patients exhibited stable occlusion and good facial symmetry. No recurrence was noted. Our classification and reconstruction principles allowed reliable morpho-functional skull base reconstruction. Copyright © 2018 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Indorewala, Shabbir; Nemade, Gaurav; Indorewala, Abuzar; Mahajan, Gauri
2018-06-23
To see effectiveness of the senior author's repair technique for repair of large (equal to or larger than 10 mm) bony lateral skull base defects. Retrospective. Secondary/tertiary care center. We performed retrospective review of 9 surgeries done in our institution between January 2010 and December 2013 for repair of large lateral bony skull base defects. We defined skull base defects extra-cranially and repaired them intra-cranially. We made an extracorporeal sandwich of autologous fascia-bone-fascia (fascia lata and nasal septal bone) and sewed it together to make it into a unit-sandwich graft. This extracorporeally sewed unit-sandwich graft was then inserted to close the large skull base defects either via (1) a cranial slit-window, or (2) the skull base defect itself. Since skull base is bony, bony repair is preferred. Bone plates that are easily available for skull base repair are calvarial and nasal septal bone. Occasionally, harvest of split calvarial bone carries risk of major complications. We preferred nasal septal bone. Harvesting of septal bone even in children using a posterior incision should not disturb the cartilage growth centers. All nine patients were operated by this technique. We had four patients with cerebrospinal fluid leak, and five patients with brain herniation. All these patients had complete reversal of herniation of cranial contents and cessation of cerebrospinal fluid leak. On imaging, in 6 cases the bone graft remained in original intended position after 12 months of surgery. The bone graft was not identifiable in 3 cases. The senior author's technique using autologous multi-layered graft is simple to master, repeatable and very effective.
Management of Anterior Skull Base Defect Depending on Its Size and Location
Bernal-Sprekelsen, Manuel; Rioja, Elena; Enseñat, Joaquim; Enriquez, Karla; Viscovich, Liza; Agredo-Lemos, Freddy Enrique; Alobid, Isam
2014-01-01
Introduction. We present our experience in the reconstruction of these leaks depending on their size and location. Material and Methods. Fifty-four patients who underwent advanced skull base surgery (large defects, >20 mm) and 62 patients with CSF leaks of different origin (small, 2–10 mm, and midsize, 11–20 mm, defects) were included in the retrospective study. Large defects were reconstructed with a nasoseptal pedicled flap positioned on fat and fascia lata. In small and midsized leaks. Fascia lata in an underlay position was used for its reconstruction covered with mucoperiosteum of either the middle or the inferior turbinate. Results. The most frequent etiology for small and midsized defects was spontaneous (48.4%), followed by trauma (24.2%), iatrogenic (5%). The success rate after the first surgical reconstruction was 91% and 98% in large skull base defects and small/midsized, respectively. Rescue surgery achieved 100%. Conclusions. Endoscopic surgery for any type of skull base defect is the gold standard. The size of the defects does not seem to play a significant role in the success rate. Fascia lata and mucoperiosteum of the turbinate allow a two-layer reconstruction of small and midsized defects. For larger skull base defects, a combination of fat, fascia lata, and nasoseptal pedicled flaps provides a successful reconstruction. PMID:24895567
Facial artery musculomucosal flap for reconstruction of skull base defects: a cadaveric study.
Xie, Liyue; Lavigne, François; Rahal, Akram; Moubayed, Sami Pierre; Ayad, Tareck
2013-08-01
Failure in skull base defects reconstruction following tumor resection can have serious consequences such as ascending meningitis and pneumocephaly. The nasoseptal flap showed a very low incidence of cerebrospinal fluid leak but is not always available. The superiorly pedicled facial artery musculomucosal (FAMM) flap has been successfully used for reconstruction of head and neck defects. Our objective is to show that the FAMM flap can be used as a new alternative in skull base reconstruction. Cadaveric study. Feasibility. Thirteen specimens underwent bilateral FAMM flap dissection. Two new modifications of the traditional FAMM flap have been developed. Feasibility in FAMM flap transfer to the skull base was investigated through endoscopic skull base dissection and maxillectomy in four specimens. Measurements were recorded for each harvested flap. The mean surface area of the modified FAMM flap efficient for reconstruction was 15.90 cm(2) . The flaps easily covered the simulated defects of the frontal sinus and the fovea ethmoidalis areas. Modifications of the traditional FAMM flap were necessary for a tension-free coverage of the planum sphenoidale and sella turcica. The FAMM flap holds high potential as a new alternative vascular flap in skull base reconstruction. However, it has not been used in patients yet and should be considered only when other options are not available. New modifications developed in this article can elongate the traditional FAMM flap, potentially contributing to a tighter seal of the skull base defect than FAMM flap alone. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
Usefulness of an Osteotomy Template for Skull Tumorectomy and Simultaneous Skull Reconstruction.
Oji, Tomito; Sakamoto, Yoshiaki; Miwa, Tomoru; Nakagawa, Yu; Yoshida, Kazunari; Kishi, Kazuo
2016-09-01
Simultaneous tumor resection and cranioplasty with hydroxyapatite osteosynthesis are sometimes necessary in patients of skull neoplasms or skull-invasive tumors. However, the disadvantage of simultaneous surgery is that mismatches often occur between the skull defect and the hydroxyapatite implant. To solve this problem, the authors developed a customized template for designing the craniotomy line. Before each operation, the craniotomy design was discussed with a neurosurgeon. Based on the discussion, 2 hydroxyapatite implants were customized for each patient on the basis of models prepared using computed tomography data. The first implant was an onlay template for the preoperative cranium, which was customized for designing the osteotomy line. The other implant was used for the skull defect. Using the template, the osteotomy line was drawn along the template edge, osteotomy was performed along this line, and the implant was placed in the skull defect. This technique was performed in 3 patients. No implant or defect trimming was required in any patient, good cosmetic outcomes were noted in all patients, and no complications occurred. Use of predesigned hydroxyapatite templates for craniotomy during simultaneous skull tumor resection and cranioplasty has some clinical advantages: the precise craniotomy line can be designed, the implant and skull defect fit better and show effective osteoconduction, trimming of the implant or defect is minimized, and the operation time is shortened.
Lau, Stephan; Güllmar, Daniel; Flemming, Lars; Grayden, David B.; Cook, Mark J.; Wolters, Carsten H.; Haueisen, Jens
2016-01-01
Magnetoencephalography (MEG) signals are influenced by skull defects. However, there is a lack of evidence of this influence during source reconstruction. Our objectives are to characterize errors in source reconstruction from MEG signals due to ignoring skull defects and to assess the ability of an exact finite element head model to eliminate such errors. A detailed finite element model of the head of a rabbit used in a physical experiment was constructed from magnetic resonance and co-registered computer tomography imaging that differentiated nine tissue types. Sources of the MEG measurements above intact skull and above skull defects respectively were reconstructed using a finite element model with the intact skull and one incorporating the skull defects. The forward simulation of the MEG signals reproduced the experimentally observed characteristic magnitude and topography changes due to skull defects. Sources reconstructed from measured MEG signals above intact skull matched the known physical locations and orientations. Ignoring skull defects in the head model during reconstruction displaced sources under a skull defect away from that defect. Sources next to a defect were reoriented. When skull defects, with their physical conductivity, were incorporated in the head model, the location and orientation errors were mostly eliminated. The conductivity of the skull defect material non-uniformly modulated the influence on MEG signals. We propose concrete guidelines for taking into account conducting skull defects during MEG coil placement and modeling. Exact finite element head models can improve localization of brain function, specifically after surgery. PMID:27092044
Magnetoencephalography signals are influenced by skull defects.
Lau, S; Flemming, L; Haueisen, J
2014-08-01
Magnetoencephalography (MEG) signals had previously been hypothesized to have negligible sensitivity to skull defects. The objective is to experimentally investigate the influence of conducting skull defects on MEG and EEG signals. A miniaturized electric dipole was implanted in vivo into rabbit brains. Simultaneous recording using 64-channel EEG and 16-channel MEG was conducted, first above the intact skull and then above a skull defect. Skull defects were filled with agar gels, which had been formulated to have tissue-like homogeneous conductivities. The dipole was moved beneath the skull defects, and measurements were taken at regularly spaced points. The EEG signal amplitude increased 2-10 times, whereas the MEG signal amplitude reduced by as much as 20%. The EEG signal amplitude deviated more when the source was under the edge of the defect, whereas the MEG signal amplitude deviated more when the source was central under the defect. The change in MEG field-map topography (relative difference measure, RDM(∗)=0.15) was geometrically related to the skull defect edge. MEG and EEG signals can be substantially affected by skull defects. MEG source modeling requires realistic volume conductor head models that incorporate skull defects. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Markey, Jeff; Benet, Arnau; El-Sayed, Ivan H
2015-10-01
Extirpation via expanded endonasal approaches (EEA) to the skull base can result in defects requiring vascularized rotational flap reconstruction. The buccal fat pad (BFP) is a vascularized graft described in open skull base resections, but its harvest and adequacy of vascular supply have not been examined for use with EEA. A transfacial cadaveric dissection was carried forth in a latex-injected specimen to characterize the BFP blood supply. Then a cadaveric dissection series was performed involving the endoscopic harvest and rotation of 10 buccal fat pads in five cadaveric specimens to assess defect coverage. An endoscopic medial maxillectomy combined with an anterior maxillotomy was performed prior to endoscopic harvest in cadaveric specimens. The BFP was rotated to assess its capability to reconstruct seven possible ventral skull base defects. Finally, the BFP vascular anatomy was further characterized following harvest and transposition. The BFP reconstructed defects at the greater sphenoid wing, inferior and superior clivus, sella, planum, and bilateral ethmoids in all cadaveric specimens. In some cases it covered two sites concurrently. The BFP pedicled rotational flap is a potential alternate flap following EEA in select cases. NA © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Autogenous Bone Reconstruction of Large Secondary Skull Defects.
Fearon, Jeffrey A; Griner, Devan; Ditthakasem, Kanlaya; Herbert, Morley
2017-02-01
The authors sought to ascertain the upper limits of secondary skull defect size amenable to autogenous reconstructions and to examine outcomes of a surgical series. Published data for autogenous and alloplastic skull reconstructions were also examined to explore associations that might guide treatment. A retrospective review of autogenously reconstructed secondary skull defects was undertaken. A structured literature review was also performed to assess potential differences in reported outcomes between autogenous bone and synthetic alloplastic skull reconstructions. Weighted risks were calculated for statistical testing. Ninety-six patients underwent autogenous skull reconstruction for an average defect size of 93 cm (range, 4 to 506 cm) at a mean age of 12.9 years. The mean operative time was 3.4 hours, 2 percent required allogeneic blood transfusions, and the average length of stay was less than 3 days. The mean length of follow-up was 28 months. There were no postoperative infections requiring surgery, but one patient underwent secondary grafting for partial bone resorption. An analysis of 34 studies revealed that complications, infections, and reoperations were more commonly reported with alloplastic than with autogenous reconstructions (relative risk, 1.57, 4.8, and 1.48, respectively). Autogenous reconstructions are feasible, with minimal associated morbidity, for patients with skull defect sizes as large as 500 cm. A structured literature review suggests that autogenous bone reconstructions are associated with lower reported infection, complication, and reoperation rates compared with synthetic alloplasts. Based on these findings, surgeons might consider using autogenous reconstructions even for larger skull defects. Therapeutic, IV.
Osseointegrated Implants and Prosthetic Reconstruction Following Skull Base Surgery.
Hu, Shirley; Arnaoutakis, Demetri; Kadakia, Sameep; Vest, Allison; Sawhney, Raja; Ducic, Yadranko
2017-11-01
Rehabilitation following ablative skull base surgery remains a challenging task, given the complexity of the anatomical region, despite the recent advances in reconstructive surgery. Remnant defects following resection of skull base tumors are often not amenable to primary closure. As such, numerous techniques have been described for reconstruction, including local rotational muscle flaps, pedicled flaps with skin paddle, or even free tissue transfer. However, not all patients are appropriate surgical candidates and therefore may instead benefit from nonsurgical options for functional and aesthetic restoration. Osseointegrated implants and biocompatible prostheses provide a viable alternative for such a patient population. The purpose of this review serves to highlight current options for prosthetic rehabilitation of skull base defects and describe their indications, advantages, and disadvantages.
Cherubino, Mario; Turri-Zanoni, Mario; Battaglia, Paolo; Giudice, Marco; Pellegatta, Igor; Tamborini, Federico; Maggiulli, Francesca; Guzzetti, Luca; Di Giovanna, Danilo; Bignami, Maurizio; Calati, Carolina; Castelnuovo, Paolo; Valdatta, Luigi
2017-01-01
Complex cranio-orbito-facial defects after skull base cancers resection entail a functional and esthetic reconstruction. The introduction of endoscopic assisted techniques for excision surgery with the advances in reconstructive surgery and anesthesiology allowed to improve the management of such critical patients. We report a series of chimeric anterolateral thigh (ALT) flaps used to reconstruct complex cranio-orbital-facial defects after skull base surgery. A retrospective review of patients that underwent cranio-orbito-facial reconstruction using a chimeric ALT flap from March 2013 to October 2015 at a single tertiary care referral Institute was performed. All patients were affected by locally-advanced malignant tumor and the resulting defects involved the skull base in all cases. The ALT flaps were perforator-based flaps with different components: fascia, skin and muscle. The different flap territories had independent vascular supply and were independent of any physical interconnection except where linked by a common source vessel. Ten patients were included in the study. Three patients underwent adjuvant radiotherapy and to chemotherapy. The mean hospitalization time was 21 days (range, 8-24 days). One failure was observed. After a mean follow-up of 12.4 months, 3 patients died of the disease, 2 are alive with disease, while 5 patients (50%) are currently alive without evidence of disease. Chimeric ALT flap is a reliable and versatile reconstructive option for complex cranio-orbito-facial defects resulting from skull base surgery. The chimeric flap composed of different territories proved to be adequate for a patient-tailored three-dimensional reconstruction of the defects as well as able to resist to the postoperative adjuvant treatments. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
[Management of cerebrospinal fluid leaks according to size. Our experience].
Alobid, Isam; Enseñat, Joaquim; Rioja, Elena; Enriquez, Karla; Viscovich, Liza; de Notaris, Matteo; Bernal-Sprekelsen, Manuel
2014-01-01
We present our experience in the reconstruction of cerebrospinal fluid (CSF) leaks according to their size and location. Fifty-four patients who underwent advanced skull base surgery (large defects) and 62 patients with CSF leaks of different origin (small and medium-sized defects) were included. Large defects were reconstructed with a nasoseptal pedicled flap positioned on fat and fascia lata and lumbar drainage was used. In small and medium-sized leaks of other origin, intrathecal fluorescein 5% was applied previously to identify the defect. Fascia lata in an underlay position was used for reconstruction, which was then covered with mucoperiosteum from the turbinate. Perioperative antibiotics were administered for 5-7 days. Nasal packing was removed after 24-48 hours. The most frequent aetiology for small and medium-sized defects was spontaneous (48.4%), followed by trauma (24.2%), iatrogenic (5%) and others. The success rate was of 91% after the first surgery and 98% in large skull base defects and small/medium-sized respectively. After rescue surgery, the rate of closure achieved was 100%. The follow-up was 15.6 ± 12.4 months for large defects and 75.3 ± 51.3 months for small/medium-sized defects without recurrence. Endoscopic surgery for closure of any type of skull base defect is the gold standard approach. Defect size does not play a significant role in the success rate. Fascia lata and mucoperiosteum allow a reconstruction of small/medium-sized defects. For larger skull base defects, a combination of fat, fascia lata and nasoseptal pedicled flaps provide a successful reconstruction. Copyright © 2013 Elsevier España, S.L. All rights reserved.
Use of titanium mesh for reconstruction of large anterior cranial base defects.
Badie, B; Preston, J K; Hartig, G K
2000-10-01
The authors evaluated the role of titanium mesh used in combination with vascularized pericranium to provide rigid support during reconstruction of anterior skull base defects. Thirteen patients with large anterior skull base defects caused by tumor invasion or traumatic injury involving the cribriform plate, orbital roof, and planum sphenoidale were included in the study. The reconstruction technique involved placement of titanium mesh between two layers of continuous vascularized pericranium. Surgical glue and routine lumbar cerebrospinal fluid (CSF) drainage were not used in any patient. At a mean postoperative follow-up time of 22 months (range 8-39 months), none of the patients had developed infection or meningocele. Postoperative CSF rhinorrhea occurred in two patients with extensive dural defects, which resolved with temporary lumbar drainage. Use of titanium mesh and a two-layer vascularized pericranial graft is a safe, reproducible, and feasible method for reconstructing the anterior skull base. Patients with large dural defects may need temporary CSF diversion to avoid postoperative fistula formation.
The inferior turbinate flap in skull base reconstruction
2013-01-01
Background As the indications for expanded endonasal approaches continue to evolve, alternative reconstructive techniques are needed to address increasingly complex surgical skull base defects. In the absence of the nasoseptal flap, we describe our experience with the posterior pedicle inferior turbinate flap (PPITF) in skull base reconstruction. Design Case series. Setting Academic tertiary care centre. Methods Patients who underwent reconstruction of the skull base with the PPITF were identified. Medical records were reviewed for demographic, presentation, treatment, follow-up, surgical and outcomes data. Main outcome measures Flap survival, adequacy of seal, and complications. Results Two patients with residual/recurrent pituitary adenomas met the inclusion criteria. The nasoseptal flap was unavailable in each case due to a prior septectomy. Salvage of the original nasoseptal flap was not possible, as it did not provide adequate coverage of the resultant defect due to contraction from healing. All PPITFs healed uneventfully and covered the entire defect. No complications were observed in the early post-operative period. Endoscopic techniques and limitations of the PPITF are also discussed. Conclusions Our clinical experience supports the PPITF to be a viable alternative for reconstruction of the skull base in the absence of the nasoseptal flap. PMID:23663897
Hoekstra, Jitske; Vissink, Arjan; Raghoebar, Gerry M; Visser, Anita
2017-05-01
Skin carcinoma, particularly basal cell carcinoma, and its treatment can result in large defects of the hairy skull. A 53-year-old man is described who was surgically treated for a large basal cell carcinoma invading the skin and underlying tissue at the top of the hairy skull. Treatment consisted of resecting the tumor and external part of the skull bone. To protect the brain and to cover the defect of the hairy skull, an acrylic resin skull prosthesis with hair was designed to mask the defect. The skull prosthesis was retained on 8 extraoral implants placed at the margins of the defect in the skull bone. The patient was satisfied with the treatment outcome. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Sharma, Rajeev; Singh, Bhoopendra; Kedia, Shweta; Laythalling, Rajinder Kumar
2017-02-01
Meningocele is defined as a protrusion of the meninges through an opening in the skull or spinal column, forming a bulge or sac filled with cerebrospinal fluid. A pseudomeningocele is defined as a cerebrospinal fluid (CSF) collection formed due to escape of CSF through a dural defect with trapping of CSF into the surrounding soft tissues. We herby report rare occurrence of a large (pseudo)meningocele in a young patient with congenital skull base defect presenting as upper lateral neck swelling. We present the case of a 17-year-old boy who had painless progressive swelling right side of the upper neck without any history of meningitis or CSF leak. He had a history of undergoing cranioplasty using steel plates for nontraumatic boggy swelling right parieto-occipital region at the age of 5 years at another hospital. Clinical examination showed painless swelling right side of the upper neck, with positive cough impulse and transillumination. CT head with cisternography showed a large right skull base defect through which a large pseudomeningocele was herniating, thus producing upper neck swelling and compressing oral cavity. The neck swelling and intraoral bulge reduced in size after the coperitoneal shunt. Differential diagnosis of (pseudo)meningocele should be considered while evaluating a painless progressive upper neck swelling having cough impulse and transillumination in a young patient.
Pedicled Extranasal Flaps in Skull Base Reconstruction
Kim, Grace G.; Hang, Anna X.; Mitchell, Candace; Zanation, Adam M.
2013-01-01
Cerebrospinal fluid (CSF) leaks most commonly arise during or after skull base surgery, although they occasionally present spontaneously. Recent advances in the repair of CSF leaks have enabled endoscopic endonasal surgery to become the preferred option for management of skull base pathology. Small defects (<1cm) can be repaired by multilayered free grafts. For large defects (>3cm), pedicled vascular flaps are the repair method of choice, resulting in much lower rates of postoperative CSF leaks. The pedicled nasoseptal flap (NSF) constitutes the primary reconstructive option for the vast majority of skull base defects. It has a large area of potential coverage and high rates of success. However, preoperative planning is required to avoid sacrificing the NSF during resection. In cases where the NSF is unavailable, often due to tumor involvement of the septum or previous resection removing or compromising the flap, other flaps may be considered. These flaps include intranasal options—inferior turbinate (IT) or middle turbinate (MT) flaps—as well as regional pedicled flaps: pericranial flap (PCF), temporoparietal fascial flap (TPFF), or palatal flap (PF). More recently, novel alternatives such as the pedicled facial buccinator flap (FAB) and the pedicled occipital galeopericranial flap (OGP) have been added to the arsenal of options for skull base reconstruction. Characteristics of and appropriate uses for each flap are described. PMID:23257554
Santamaría, Alfonso; Langdon, Cristóbal; López-Chacon, Mauricio; Cordero, Arturo; Enseñat, Joaquim; Carrau, Ricardo; Bernal-Sprekelsen, Manuel; Alobid, Isam
2017-11-01
To evaluate the versatility of the pericranial flap (PCF) to reconstruct the ventral skull base, using the frontal sinus as a gate for its passage into the sinonasal corridor "money box approach." Anatomic-radiological study and case series. Various approaches and their respective defects (cribriform, transtuberculum, clival, and craniovertebral junction) were completed in 10 injected specimens. The PCF was introduced into the nose through the uppermost portion of the frontal sinus (money box approach). Computed tomography (CT) scans (n = 50) were used to measure the dimensions of the PCF and the skull base defects. The vertical projection of the external ear canal was used as the reference point to standardize the incisions for the PCF. The surface area and maximum length of the PCF were 121.5 ± 19.4 cm 2 and 18.3 ± 1.3 cm, respectively. Using CT scans, we determined that to reconstruct defects secondary to transcribriform, transtuberculum, clival, and craniovertebral approaches, the PCF distal incision must be placed respectively at -3.7 ± 2.0 cm (angle -17.4 ± 8.5°), -0.2 ± 2.0 cm (angle -1.0 ± 9.3°), +5.5 ± 2.3 cm (angle +24.4 ± 9.7°), +8.4 ± 2.4 cm (angle +36.6 ± 11.5°), as related to the reference point. Skull base defects in our clinical cohort (n = 6) were completely reconstructed uneventfully with the PCF. The PCF renders enough surface area to reconstruct all possible defects in the ventral and median skull base. Using the uppermost frontal sinus as a gateway into the nose (money box approach) is feasible and simple. NA. Laryngoscope, 127:2482-2489, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Reconstruction of posterior neck and skull with vertical trapezius musculocutaneous flap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathes, S.J.; Stevenson, T.R.
1988-10-01
The vertical trapezius musculocutaneous flap has been successfully utilized for reconstruction in 13 patients with complex posterior skull and neck defects. This flap based on its vascular pedicle, the descending branch of the transverse cervical artery, provides well-vascularized tissue for coverage of defects related to chronic osteomyelitis, tumor extirpation, osteoradionecrosis, and dehisced cervical laminectomy wounds. Emphasis on flap design, including the location of the skin island, allows adequate wound coverage, direct donor site closure, and muscle function preservation. With its large size and wide arc of rotation, the vertical trapezius musculocutaneous flap provides reliable coverage for posterior trunk, cervical, andmore » skull defects.« less
Golbin, Denis A.; Lasunin, Nikolay V.; Cherekaev, Vasily A.; Polev, Georgiy A.
2016-01-01
Objectives To evaluate the efficacy and safety of using a buccal fat pad for endoscopic skull base defect reconstruction. Design Descriptive anatomical study with an illustrative case presentation. Setting Anatomical study was performed on 12 fresh human cadaver specimens with injected arteries (24 sides). Internal carotid artery was exposed in the coronal plane via the endoscopic transpterygoid approach. The pedicled buccal fat pad was used for reconstruction. Participants: 12 human cadaver head specimens; one patient operated using the proposed technique. Main outcome measures: Proximity of the buccal fat pad flap to the defect, compliance of the flap, comfort and safety of harvesting procedure, and compatibility with the Hadad–Bassagasteguy nasoseptal flap. Results: Harvesting procedure was performed using anterior transmaxillary corridor. The pedicled buccal fat pad flap can be used to pack the sphenoid sinus or cover the internal carotid artery from cavernous to upper parapharyngeal segment. Conclusion The buccal fat pad can be safely harvested through the same approach without external incisions and is compliant enough to conform to the skull base defect. The proposed pedicled flap can replace free abdominal fat in central skull base reconstruction. The volume of the buccal fat pad allows obliteration of the sphenoid sinus or upper parapharyngeal space. PMID:28180047
Innovative real CSF leak simulation model for rhinology training: human cadaveric design.
AlQahtani, Abdulaziz A; Albathi, Abeer A; Alhammad, Othman M; Alrabie, Abdulkarim S
2018-04-01
To study the feasibility of designing a human cadaveric simulation model of real CSF leak for rhinology training. The laboratory investigation took place at the surgical academic center of Prince Sultan Military Medical City between 2016 and 2017. Five heads of human cadaveric specimens were cannulated into the intradural space through two frontal bone holes. Fluorescein-dyed fluid was injected intracranialy, then endoscopic endonasal iatrogenic skull base defect was created with observation of fluid leak, followed by skull base reconstruction. The outcome measures included subjective assessment of integrity of the design, the ability of creating real CSF leak in multiple site of skull base and the possibility of watertight closure by various surgical techniques. The fluid filled the intradural space in all specimens without spontaneous leak from skull base or extra sinus areas. Successfully, we demonstrated fluid leak from all areas after iatrogenic defect in the cribriform plate, fovea ethmoidalis, planum sphenoidale sellar and clival regions. Watertight closure was achieved in all defects using different reconstruction techniques (overly, underlay and gasket seal closure). The design is simulating the real patient with CSF leak. It has potential in the learning process of acquiring and maintaining the surgical skills of skull base reconstruction before direct involvement of the patient. This model needs further evaluation and competence measurement as training tools in rhinology training.
Teshima, Tara Lynn; Patel, Vaibhav; Mainprize, James G; Edwards, Glenn; Antonyshyn, Oleh M
2015-07-01
The utilization of three-dimensional modeling technology in craniomaxillofacial surgery has grown exponentially during the last decade. Future development, however, is hindered by the lack of a normative three-dimensional anatomic dataset and a statistical mean three-dimensional virtual model. The purpose of this study is to develop and validate a protocol to generate a statistical three-dimensional virtual model based on a normative dataset of adult skulls. Two hundred adult skull CT images were reviewed. The average three-dimensional skull was computed by processing each CT image in the series using thin-plate spline geometric morphometric protocol. Our statistical average three-dimensional skull was validated by reconstructing patient-specific topography in cranial defects. The experiment was repeated 4 times. In each case, computer-generated cranioplasties were compared directly to the original intact skull. The errors describing the difference between the prediction and the original were calculated. A normative database of 33 adult human skulls was collected. Using 21 anthropometric landmark points, a protocol for three-dimensional skull landmarking and data reduction was developed and a statistical average three-dimensional skull was generated. Our results show the root mean square error (RMSE) for restoration of a known defect using the native best match skull, our statistical average skull, and worst match skull was 0.58, 0.74, and 4.4 mm, respectively. The ability to statistically average craniofacial surface topography will be a valuable instrument for deriving missing anatomy in complex craniofacial defects and deficiencies as well as in evaluating morphologic results of surgery.
Fuessinger, Marc Anton; Schwarz, Steffen; Cornelius, Carl-Peter; Metzger, Marc Christian; Ellis, Edward; Probst, Florian; Semper-Hogg, Wiebke; Gass, Mathieu; Schlager, Stefan
2018-04-01
Virtual reconstruction of large cranial defects is still a challenging task. The current reconstruction procedures depend on the surgeon's experience and skills in planning the reconstruction based on mirroring and manual adaptation. The aim of this study is to propose and evaluate a computer-based approach employing a statistical shape model (SSM) of the cranial vault. An SSM was created based on 131 CT scans of pathologically unaffected adult crania. After segmentation, the resulting surface mesh of one patient was established as template and subsequently registered to the entire sample. Using the registered surface meshes, an SSM was generated capturing the shape variability of the cranial vault. The knowledge about this shape variation in healthy patients was used to estimate the missing parts. The accuracy of the reconstruction was evaluated by using 31 CT scans not included in the SSM. Both unilateral and bilateral bony defects were created on each skull. The reconstruction was performed using the current gold standard of mirroring the intact to the affected side, and the result was compared to the outcome of our proposed SSM-driven method. The accuracy of the reconstruction was determined by calculating the distances to the corresponding parts on the intact skull. While unilateral defects could be reconstructed with both methods, the reconstruction of bilateral defects was, for obvious reasons, only possible employing the SSM-based method. Comparing all groups, the analysis shows a significantly higher precision of the SSM group, with a mean error of 0.47 mm compared to the mirroring group which exhibited a mean error of 1.13 mm. Reconstructions of bilateral defects yielded only slightly higher estimation errors than those of unilateral defects. The presented computer-based approach using SSM is a precise and simple tool in the field of computer-assisted surgery. It helps to reconstruct large-size defects of the skull considering the natural asymmetry of the cranium and is not limited to unilateral defects.
Jones, Kenneth Lyons; Robinson, Luther K; Benirschke, Kurt
2006-09-01
Amniotic bands can cause disruption of the cranial end of the developing fetus, leading in some cases to a neural tube closure defect. Although recurrence for unaffected parents of an affected child with a defect in which the neural tube closed normally but was subsequently disrupted by amniotic bands is negligible; for a primary defect in closure of the neural tube to which amnion has subsequently adhered, recurrence risk is 1.7%. In that primary defects of neural tube closure are characterized by typical abnormalities of the base of the skull, evaluation of the cranial base in such fetuses provides an approach for making a distinction between these 2 mechanisms. This distinction has implications regarding recurrence risk. The skull base of 2 fetuses with amnion rupture sequence involving the cranial end of the neural tube were compared to that of 1 fetus with anencephaly as well as that of a structurally normal fetus. The skulls were cleaned, fixed in 10% formalin, recleaned, and then exposed to 10% KOH solution. After washing and recleaning, the skulls were exposed to hydrogen peroxide for bleaching and photography. Despite involvement of the anterior neural tube in both fetuses with amnion rupture sequence, in Case 3 the cranial base was normal while in Case 4 the cranial base was similar to that seen in anencephaly. This technique provides a method for determining the developmental pathogenesis of anterior neural tube defects in cases of amnion rupture sequence. As such, it provides information that can be used to counsel parents of affected children with respect to recurrence risk.
Treatment of anterior skull base defects by a transnasal endoscopic approach in children.
Di Rocco, Federico; Couloigner, Vincent; Dastoli, Patricia; Sainte-Rose, Christian; Zerah, Michel; Roger, Gilles
2010-11-01
The object of this study was to assess the efficacy and complications of endoscopic management of anterior skull base defects. The authors reviewed the medical records of 28 children (20 boys and 8 girls) undergoing endoscopic repair of anterior skull base defects in their tertiary referral center between 2001 and 2008; 18 cases were congenital and 10 cases posttraumatic. During the endoscopic procedure, rigid telescopes--2.7 or 4 mm in diameter, with 0° or 30° lenses--were used. In 23 patients the anterior skull base defect was sealed with fragments of middle turbinate (bone and mucosa). In the remaining 5 patients it was sealed with cartilage harvested from the nasal septum (3 cases) or from the auricle (2 cases), fibrin glue, and oxidized cellulose. A combined external and endoscopic approach was required in 3 cases because of the size and extensions of the encephalocele. Outcome was primarily assessed by means of clinical examination, nasal fibroscopy, and imaging. The mean duration of follow-up was 26.7 months (range 9-57 months). One patient treated by a combined approach died of meningitis 2 years after surgery. In the remaining 27 patients, there was no recurrence of CSF leak, meningitis, or encephalocele. An iatrogenic frontal or ethmoidal mucocele was observed in 4 cases. The endoscopic approach is a minimally invasive, safe, and efficient technique for removing nasal encephaloceles in children.
A novel ciliopathic skull defect arising from excess neural crest.
Tabler, Jacqueline M; Rice, Christopher P; Liu, Karen J; Wallingford, John B
2016-09-01
The skull is essential for protecting the brain from damage, and birth defects involving disorganization of skull bones are common. However, the developmental trajectories and molecular etiologies by which many craniofacial phenotypes arise remain poorly understood. Here, we report a novel skull defect in ciliopathic Fuz mutant mice in which only a single bone pair encases the forebrain, instead of the usual paired frontal and parietal bones. Through genetic lineage analysis, we show that this defect stems from a massive expansion of the neural crest-derived frontal bone. This expansion occurs at the expense of the mesodermally-derived parietal bones, which are either severely reduced or absent. A similar, though less severe, phenotype was observed in Gli3 mutant mice, consistent with a role for Gli3 in cilia-mediated signaling. Excess crest has also been shown to drive defective palate morphogenesis in ciliopathic mice, and that defect is ameliorated by reduction of Fgf8 gene dosage. Strikingly, skull defects in Fuz mutant mice are also rescued by loss of one allele of fgf8, suggesting a potential route to therapy. In sum, this work is significant for revealing a novel skull defect with a previously un-described developmental etiology and for suggesting a common developmental origin for skull and palate defects in ciliopathies. Copyright © 2016 Elsevier Inc. All rights reserved.
Park, Eun-Kyung; Lim, Jun-Young; Yun, In-Sik; Kim, Ju-Seong; Woo, Su-Heon; Kim, Dong-Seok; Shim, Kyu-Won
2016-06-01
The authors studied to demonstrate the efficacy of custom-made three-dimensional (3D)-printed titanium implants for reconstructing skull defects. From 2013 to 2015, 21 patients (8-62 years old, mean = 28.6-year old; 11 females and 10 males) with skull defects were treated. Total disease duration ranged from 6 to 168 months (mean = 33.6 months). The size of skull defects ranged from 84 × 104 to 154 × 193 mm. Custom-made implants were manufactured by Medyssey Co, Ltd (Jecheon, South Korea) using 3D computed tomography data, Mimics software, and an electron beam melting machine. The team reviewed several different designs and simulated surgery using a 3D skull model. During the operation, the implant was fit to the defect without dead space. Operation times ranged from 85 to 180 minutes (mean = 115.7 minutes). Operative sites healed without any complications except for 1 patient who had red swelling with exudation at the skin defect, which was a skin infection and defect at the center of the scalp flap reoccurring since the initial head injury. This patient underwent reoperation for skin defect revision and replacement of the implant. Twenty-one patients were followed for 6 to 24 months (mean = 14.1 months). The patients were satisfied and had no recurrent wound problems. Head computed tomography after operation showed good fixation of titanium implants and satisfactory skull-shape symmetry. For the reconstruction of skull defects, the use of autologous bone grafts has been the treatment of choice. However, bone use depends on availability, defect size, and donor morbidity. As 3D printing techniques are further advanced, it is becoming possible to manufacture custom-made 3D titanium implants for skull reconstruction.
The Development of Skull Prosthesis Through Active Contour Model.
Chen, Yi-Wen; Shih, Cheng-Ting; Cheng, Chen-Yang; Lin, Yu-Cheng
2017-09-09
Skull defects result in brain infection and inadequate brain protection and pose a general danger to patient health. To avoid these situations and prevent re-injury, a prosthesis must be constructed and grafted onto the deficient region. With the development of rapid customization through additive manufacturing and 3D printing technology, skull prostheses can be fabricated accurately and efficiently prior to cranioplasty. However, an unfitted skull prosthesis made with a metal implant can cause repeated infection, potentially necessitating secondary surgery. This paper presents a method of creating suitably geometric graphics of skull defects to be applied in skull repair through active contour models. These models can be adjusted in each computed tomography slice according to the graphic features, and the curves representing the skull defect can be modeled. The generated graphics can adequately mimic the natural curvature of the complete skull. This method will enable clinical surgeons to rapidly implant customized prostheses, which is of particular importance in emergency surgery. The findings of this research can help surgeons provide patients with skull defects with treatment of the highest quality.
Essayed, Walid I; Unadkat, Prashin; Hosny, Ahmed; Frisken, Sarah; Rassi, Marcio S; Mukundan, Srinivasan; Weaver, James C; Al-Mefty, Ossama; Golby, Alexandra J; Dunn, Ian F
2018-03-02
OBJECTIVE Endoscopic endonasal approaches are increasingly performed for the surgical treatment of multiple skull base pathologies. Preventing postoperative CSF leaks remains a major challenge, particularly in extended approaches. In this study, the authors assessed the potential use of modern multimaterial 3D printing and neuronavigation to help model these extended defects and develop specifically tailored prostheses for reconstructive purposes. METHODS Extended endoscopic endonasal skull base approaches were performed on 3 human cadaveric heads. Preprocedure and intraprocedure CT scans were completed and were used to segment and design extended and tailored skull base models. Multimaterial models with different core/edge interfaces were 3D printed for implantation trials. A novel application of the intraoperative landmark acquisition method was used to transfer the navigation, helping to tailor the extended models. RESULTS Prostheses were created based on preoperative and intraoperative CT scans. The navigation transfer offered sufficiently accurate data to tailor the preprinted extended skull base defect prostheses. Successful implantation of the skull base prostheses was achieved in all specimens. The progressive flexibility gradient of the models' edges offered the best compromise for easy intranasal maneuverability, anchoring, and structural stability. Prostheses printed based on intraprocedure CT scans were accurate in shape but slightly undersized. CONCLUSIONS Preoperative 3D printing of patient-specific skull base models is achievable for extended endoscopic endonasal surgery. The careful spatial modeling and the use of a flexibility gradient in the design helped achieve the most stable reconstruction. Neuronavigation can help tailor preprinted prostheses.
Cranial Defects and Cranioplasty. Part 8. Chapter 194,
1984-01-01
scalp incision is outlined on the skin outside the area of the defect and infiltrated with a local anesthetic containing adrenalin. (c) Margins of the...plate to repair cleft palates in the first instance of an alloplastic material to repair a defect. J. van 14eekren in 1670 is credited with the first...osteomyelitis, infected skull flaps), aseptic necrosis of skull flaps, radionecrosis and electrical burns of skull, con- genital absences of skull
Dolci, Ricardo Landini Lutaif; Todeschini, Alexandre Bossi; Santos, Américo Rubens Leite Dos; Lazarini, Paulo Roberto
2018-04-19
One of the main concerns in endoscopic endonasal approaches to the skull base has been the high incidence and morbidity associated with cerebrospinal fluid leaks. The introduction and routine use of vascularized flaps allowed a marked decrease in this complication followed by a great expansion in the indications and techniques used in endoscopic endonasal approaches, extending to defects from huge tumours and previously inaccessible areas of the skull base. Describe the technique of performing endoscopic double flap multi-layered reconstruction of the anterior skull base without craniotomy. Step by step description of the endoscopic double flap technique (nasoseptal and pericranial vascularized flaps and fascia lata free graft) as used and illustrated in two patients with an olfactory groove meningioma who underwent an endoscopic approach. Both patients achieved a gross total resection: subsequent reconstruction of the anterior skull base was performed with the nasoseptal and pericranial flaps onlay and a fascia lata free graft inlay. Both patients showed an excellent recovery, no signs of cerebrospinal fluid leak, meningitis, flap necrosis, chronic meningeal or sinonasal inflammation or cerebral herniation having developed. This endoscopic double flap technique we have described is a viable, versatile and safe option for anterior skull base reconstructions, decreasing the incidence of complications in endoscopic endonasal approaches. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Use of Pedicled Trapezius Myocutaneous Flap for Posterior Skull Reconstruction.
Singh, Mansher; Rios Diaz, Arturo J; Cauley, Ryan; Smith, Timothy R; Caterson, E J
2015-09-01
Soft-tissue defects in posterior skull can be challenging for reconstruction. If related to tumor resection, these wound beds are generally irradiated and can be difficult from a recipient-vessel perspective for a free tissue transfer. Locoregional flaps might prove to be important reconstructive option in such patients. There is a very limited data on the usage of pedicled trapezius myocutaneous flaps for such defects. The authors reviewed existing study for usage of trapezius flap for posterior skull repair and used pedicled trapezius myocutaneous flaps based on the descending branch of superficial cervical artery (SCA) for reconstruction of posterior skull soft-tissue defect in an irradiated and infected wound. Two patients were operated for trapezius myocutaneous flap for posterior skull defects complicated by cerebrospinal fluid (CSF) leakage and epidural abscess. There was no recipient or donor-site complication at a mean follow-up of 12.5 months. Neither of the 2 patients had any functional deficits for the entire duration of the follow-up. Although this flap was able to help in controlling the CSF leakage in the first patient, it successfully healed the cavity generated from epidural abscess drainage in the second patient. The large angle of rotation coupled with the ability to complete the procedure without repositioning the patients makes trapezius myocutaneous flap an attractive option for posterior skull reconstruction. In our limited experience, the pedicled trapezius flaps are a reliable alternative as they are well vascularized and able to obliterate the soft-tissue defect completely. The recipient site healed completely in infected as well as irradiated wound beds. In addition, the donor site can be primarily closed with minimal donor-associated complication.
NASA Astrophysics Data System (ADS)
Duke, P. J.; Montufar-Solis, D.; Nguyen, H. C.; Cody, D. D.
2008-06-01
Using cartilage to replace/repair bone is advantageous as no scaffolding is required to form the implant which disappears as bone is formed during the endochondral process. Previously, we demonstrated that cartilage spheroids, grown in a rotating bioreactor, (Synthecon, Inc.) and implanted into a 2 mm skull defect, contributed to healing of the defect. In this report, skulls with or without implants were subjected to microCT scans, and sections from these scans were compared to histological sections of the defect region of demineralized skulls from the same experiment. The area of the defect staining for bone in histological sections of demineralized skulls was the same region shown as mineralized in CT sections. Defects without implants were shown in serial CT sections and histological sections, to be incompletely healed. This study demonstrates that microCT scans are an important corollary to histological studies evaluating the use of implants in healing of bony defects. Supported in part by NIH/NIDCR Training Grant T35 DE07252 and by Cancer Center Support Grant (CA-16672).
Three-layer reconstruction for large defects of the anterior skull base.
Sinha, Uttam K; Johnson, Terence E; Crockett, Dennis; Vadapalli, Satish; Gruen, Peter
2002-03-01
To evaluate and discuss a three-layer rigid reconstruction technique for large anterior skull base defects. Prospective, nonrandomized, non-blinded. Tertiary teaching medical center. Twenty consecutive patients underwent craniofacial resection for a variety of pathology. All patients had large anterior cranial base defects involving the cribriform plate, fovea ethmoidalis, and medial portion of the roof of the orbit at least on one side. A few patients had more extensive defects involving both roof of the orbits, planum sphenoidale, and bones of the upper third of the face. The defects were reconstructed with a three-layer technique. A watertight seal was obtained with a pericranial flap separating the neurocranium from the viscerocranium. Rigid support was provided by bone grafts fixed to a titanium mesh, anchored laterally to the orbital roofs. All patients had a computed tomography scan of the skull on the first or second postoperative day. Patients were observed for immediate and long-term postoperative complications after such reconstruction. Postoperative computed tomography scans showed small pneumocephalus in all patients. It resolved spontaneously and did not produce neurologic deficits in any patient. There was no cerebrospinal fluid leak, hematoma, or infection. On long-term follow-up, exposures of bone graft or mesh, brain herniation, or transmission of brain pulsation to the eyes were not observed in any patient. Three-layer reconstruction using bone grafts, titanium mesh, and pericranial flap provides an alternative technique for repair of large anterior cranial base defects. It is safe and effective, and provides rigid protection to the brain.
NASA Astrophysics Data System (ADS)
Wan, Weibing; Shi, Pengfei; Li, Shuguang
2009-10-01
Given the potential demonstrated by research into bone-tissue engineering, the use of medical image data for the rapid prototyping (RP) of scaffolds is a subject worthy of research. Computer-aided design and manufacture and medical imaging have created new possibilities for RP. Accurate and efficient design and fabrication of anatomic models is critical to these applications. We explore the application of RP computational methods to the repair of a pediatric skull defect. The focus of this study is the segmentation of the defect region seen in computerized tomography (CT) slice images of this patient's skull and the three-dimensional (3-D) surface rendering of the patient's CT-scan data. We see if our segmentation and surface rendering software can improve the generation of an implant model to fill a skull defect.
Ahmed, Sameer; VanKoevering, Kyle K; Kline, Stephanie; Green, Glenn E; Arts, H Alexander
2017-10-01
To explore the perioperative utility of three-dimensionally (3D)-printed temporal bone models of patients undergoing repair of lateral skull base defects and spontaneous cerebrospinal fluid leaks with the middle cranial fossa approach. Case series. 3D-printed temporal bone models-based on patient-specific, high-resolution computed tomographic imaging-were constructed using inexpensive polymer materials. Preoperatively, the models demonstrated the extent of temporal lobe retraction necessary to visualize the proposed defects in the lateral skull base. Also preoperatively, Silastic sheeting was arranged across the modeled tegmen, marked, and cut to cover all of the proposed defect sites. The Silastic sheeting was then sterilized and subsequently served as a precise intraoperative template for a synthetic dural replacement graft. Of note, these grafts were customized without needing to retract the temporal lobe. Five patients underwent the middle cranial fossa approach assisted by 3D-printed temporal bone models to repair tegmen defects and spontaneous cerebrospinal fluid leaks. No complications were encountered. The prefabricated dural repair grafts were easily placed and fit precisely onto the middle fossa floor without any additional modifications. All defects were covered as predicted by the 3D temporal bone models. At their postoperative visits, all five patients maintained resolution of their spontaneous cerebrospinal fluid leaks. Inexpensive 3D-printed temporal bone models of tegmen defects can serve as beneficial adjuncts during lateral skull base repair. The models provide a panoramic preoperative view of all tegmen defects and allow for custom templating of dural grafts without temporal lobe retraction. 4 Laryngoscope, 127:2347-2351, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Relief of Headache by Cranioplasty After Skull Base Surgery
Fetterman, Bruce L.; Lanman, Todd H.; House, John W.
1997-01-01
Headache after skull base surgery can cause profound morbidity in certain patients, resulting in significant impairment of their quality of life. Several methods to prevent postoperative headache have been described, including a modification of the skin/muscle incision replacing the craniotomy bone flap replacing the bone flap and filling in the residual defect with methyl methacrylate, using hydroxyapatite cement (HAC) to fill the craniectomy defect, and wiring hardened methyl methacrylate (MMA) into the defect. Ten patients with severe headache following craniectomy for a posterior fossa lesion underwent cranioplasty with MMA, which was placed exactly within the craniectomy defect and secured rigidly with miniplates and screws. The headache decreased in severity in all patients and resolved completely in 90%. Also, 78% of patients with dizziness improved. The procedure and its effect on headache and dizziness will be described. PMID:17171000
Osseointegrated Implant Applications in Cosmetic and Functional Skull Base Rehabilitation
Benscoter, Brent J.; Jaber, James J.; Kircher, Matthew L.; Marzo, Sam J.; Leonetti, John P.
2011-01-01
This study discusses the indications, outcomes, and complications in patients that underwent osseointegrated implantation for skull base rehabilitation. We conducted a retrospective review of eight patients with skull base defects who had undergone implantation of a facial prosthetic retention device ± bone-anchored hearing aid at a tertiary academic referral center. Descriptive analysis of applications, techniques, outcomes, and complications were reviewed. The majority of patients were males (n = 6) with previously diagnosed skull base malignancy (n = 5) with an average age of 46 (range, 14 to 77). All patients received an implanted facial prosthetic device either for an aural (n = 7) or orbital (n = 1) prosthesis. There were only two complications that included infection (n = 1) and implant extrusion (n = 1). Osseointegrated implantation of abutments for anchoring prosthetic devices in patients for skull base rehabilitation provides an excellent cosmetic option with minimal complications. PMID:22451830
The Critical Size Defect as an Experimental Model for Craniomaxillofacial Nonunions,
1985-01-01
union evident at two months. The wider defects of 12 m, 15 m, and 18 mm in length exhibited bony union in four months but exhibited drainage either...Prolo, D.J., (-btierrez, R.V., DeVine, J.S., and (*und, R.A.: Clinical l1tility of Alloqeneic Skull Discs in Human Craniotomy . Neurosurgery. 14:1R3, 1984...1. R rm craniotomy defect prepared in dried rat skull. Piq. 2. 15 rm craniotamy defect in dried rabbit skull. Fig. 3. r-ied dog mandible qhowing
[Management of occult malformations at the lateral skull base].
Bryson, E; Draf, W; Hofmann, E; Bockmühl, U
2005-12-01
Occult malformations of the lateral skull base are rare anomalies, but can cause severe complications such as recurrent meningitis. Therefore, they need to be precisely delineated and sufficient surgical closure is mandatory. Between 1986 and 2004 twenty patients (10 children and 10 adults) with occult malformations at the lateral skull base were treated surgically at the ENT-Department of the Hospital Fulda gAG. Of these 3 Mondini-malformations, 11 defects of the tegmen tympani or the mastoidal roof, 2 dural lesions to the posterior fossa and 4 malformations within the pyramidal apex have been found. Four patients have had multiple anomalies. Routing symptom was in all cases at least one previous meningitis. Radiological diagnostics included high-resolution computed tomography (CT) and magnetic resonance imaging (MRI) as well as CT- or MR-cisternography. Depending on type and localisation of the defect the following surgical algorithm was carried out: The trans-mastoidal approach was used in all cases of Mondini-malformation (including obliteration of the ear), in case of lesions to the posterior fossa as well as partly in anomalies at the tegmen tympani and mastoidal roof, respectively. Defects of the pyramidal apex should be explored via the trans-mastoidal way if the lesion is located caudally to the inner auditory canal (IAC), whereas the trans-temporal approach should be used if the lesion is situated ventral to the IAC and dorso-medially to the internal carotid artery (ICA). The trans-temporal approach was also performed in large defects of the tegmen tympani and mastoidal roof as well as in recurrences. In all cases of recurrent meningitis caused by agents of the upper airway tract the basic principle should be to search for occult skull base malformations radiologically as well as by sodium fluorescein endoscopy as long as the anomaly is detected.
Open Approaches to the Anterior Skull Base in Children: Review of the Literature.
Wasserzug, Oshri; DeRowe, Ari; Ringel, Barak; Fishman, Gadi; Fliss, Dan M
2018-02-01
Introduction Skull base lesions in children and adolescents are rare, and comprise only 5.6% of all skull base surgery. Anterior skull base lesions dominate, averaging slightly more than 50% of the cases. Until recently, surgery of the anterior skull base was dominated by open procedures and endoscopic skull base surgery was reserved for benign pathologies. Endoscopic skull base surgery is gradually gaining popularity. In spite of that, open skull base surgery is still considered the "gold standard" for the treatment of anterior skull base lesions, and it is the preferred approach in selected cases. Objective This article reviews current concepts and open approaches to the anterior skull base in children in the era of endoscopic surgery. Materials and Methods Comprehensive literature review. Results Extensive intracranial-intradural invasion, extensive orbital invasion, encasement of the optic nerve or the internal carotid artery, lateral supraorbital dural involvement and involvement of the anterior table of the frontal sinus or lateral portion of the frontal sinus precludes endoscopic surgery, and mandates open skull base surgery. The open approaches which are used most frequently for surgical resection of anterior skull base tumors are the transfacial/transmaxillary, subcranial, and subfrontal approaches. Reconstruction of anterior skull base defects is discussed in a separate article in this supplement. Discussion Although endoscopic skull base surgery in children is gaining popularity in developed countries, in many cases open surgery is still required. In addition, in developing countries, which accounts for more than 80% of the world's population, limited access to expensive equipment precludes the use of endoscopic surgery. Several open surgical approaches are still employed to resect anterior skull base lesions in the pediatric population. With this large armamentarium of surgical approaches, tailoring the most suitable approach to a specific lesion in regard to its nature, location, and extent is of utmost importance.
Transorbital and transnasal endoscopic repair of a meningoencephalocele.
Schaberg, Madeleine; Murchison, Ann P; Rosen, Marc R; Evans, James J; Bilyk, Jurij R
2011-10-01
A 71-year-old female with a history of thyroid eye disease (TED) presented for evaluation of a skull base mass noted on neuroimaging. She had previously undergone bilateral orbital decompressions and strabismus surgery and had no neurologic symptoms. Successful resection of the menigoencephalocele and repair of the skull base defect was performed through a combined transnasal endoscopic and transorbital approach, obviating the need for craniotomy.
Prevertebral corridor: posterior pathway for reconstruction of the ventral skull base.
Durmaz, Abdullah; Fernandez-Miranda, Juan; Snyderman, Carl H; Rivera-Serrano, Carlos; Tosun, Fuat
2011-05-01
Regional vascularized flaps, such as the pericranial and temporoparietal fascia flaps, are currently used for reconstruction of skull base defects after endoscopic endonasal surgery whenever local vascularized flaps, such as the nasoseptal flap, are not available. Two different transposition pathways, infratemporal transpterygoid and subfrontal, have been proposed for regional flaps. The objective of this study was to describe and assess the feasibility of the transposition of a vascularized pedicled flap from the occipital galeopericranium via the prevertebral space corridor into the nasopharynx. Ten heads were injected with colored silicone. An endoscopic endonasal anterior craniofacial resection and panclival approach were performed in each specimen. The occipital flap was harvested using a previously described technique. The prevertebral corridor, extending from the neck to the nasopharynx, was dissected superficial to the paraspinal muscles. Computed tomography-based image guidance was used to assess the relationship between the corridor and adjacent neurovascular structures. Length of the corridor and pedicle and area of the donor flap were measured. The flap was harvested and successfully transposed into the nasopharynx using the proposed corridor in all studied specimens (10 heads, 20 sides). All flaps provided complete coverage of the skull base defects. The average length of the pedicle was 70.5 (SD, 6.5) mm, and the average length and width of the flap were 99.9 (SD, 14.6) mm and 59.3 (SD, 10.9) mm, respectively. The average length of the prevertebral corridor was 49.7 (SD, 4.8) mm. The occipital flap has favorable anatomic characteristics for use in skull base reconstruction. Transposition of the flap via the prevertebral corridor is a suitable option for vascularized reconstruction of expanded endonasal skull base defects when other local or regional flaps are not available. Additional clinical studies are necessary to define its role in endoscopic endonasal surgery.
Surgery of the ear and the lateral skull base: pitfalls and complications
Schick, Bernhard; Dlugaiczyk, Julia
2013-01-01
Surgery of the ear and the lateral skull base is a fascinating, yet challenging field in otorhinolaryngology. A thorough knowledge of the associated complications and pitfalls is indispensable for the surgeon, not only to provide the best possible care to his patients, but also to further improve his surgical skills. Following a summary about general aspects in pre-, intra-and postoperative care of patients with disorders of the ear/lateral skull base, this article covers the most common pitfalls and complications in stapes surgery, cochlear implantation and surgery of vestibular schwannomas and jugulotympanal paragangliomas. Based on these exemplary procedures, basic “dos and don’ts” of skull base surgery are explained, which the reader can easily transfer to other disorders. Special emphasis is laid on functional aspects, such as hearing, balance and facial nerve function. Furthermore, the topics of infection, bleeding, skull base defects, quality of life and indication for revision surgery are discussed. An open communication about complications and pitfalls in ear/lateral skull base surgery among surgeons is a prerequisite for the further advancement of this fascinating field in ENT surgery. This article is meant to be a contribution to this process. PMID:24403973
[Complications and pitfalls in surgery of the ear/lateral skull base].
Schick, B; Dlugaiczyk, J
2013-04-01
Surgery of the ear and the lateral skull base is a fascinating, yet challenging field in otorhinolaryngology. A thorough knowledge of the associated complications and pitfalls is indispensable for the surgeon, not only to provide the best possible care to his patients, but also to further improve his surgical skills.Following a summary about general aspects in pre-, intra- and postoperative care of patients with disorders of the ear/lateral skull base, this article covers the most common pitfalls and complications in stapes surgery, cochlear implantation, surgery of vestibular schwannomas, and jugulotympanal paragangliomas. Based on these exemplary procedures, basic "do's and don'ts" of skull base surgery are explained, which the reader can easily transfer to other disorders. Special emphasis is laid on functional aspects, such as hearing, balance and facial nerve function. Furthermore, the topics of infection, bleeding, skull base defects, quality of life and indication for revision surgery are discussed.An open communication about complications and pitfalls in ear/lateral skull base surgery among surgeons is a prerequisite for the further advancement of this fascinating field in ENT surgery. This article is meant to be a contribution to this process. © Georg Thieme Verlag KG Stuttgart · New York.
Resorption of Autogenous Bone Graft in Cranioplasty: Resorption and Reintegration Failure
Lee, Si Hoon; Lee, Uhn; Park, Cheol Wan; Lee, Sang Gu; Kim, Woo Kyung
2014-01-01
Objective Re-implantation of autologous skull bone has been known to be difficult because of its propensity for resorption. Moreover, the structural characteristics of the area of the defect cannot tolerate physiologic loading, which is an important factor for graft healing. This paper describes our experiences and results with cranioplasty following decompressive craniectomy using autologous bone flaps. Methods In an institutional review, the authors identified 18 patients (11 male and 7 female) in whom autologous cranioplasty was performed after decompressive craniectomy from January 2008 to December 2011. We examined the age, reasons for craniectomy, size of the skull defect, presence of bony resorption, and postoperative complications. Results Postoperative bone resorption occurred in eight cases (44.4%). Among them, two experienced symptomatic breakdown of the autologous bone graft that required a second operation to reconstruct the skull contour using porous polyethylene implant (Medpor®). The incidence of bone resorption was more common in the pediatric group and in those with large cranial defects (>120 cm2). No significant correlation was found with sex, reasons for craniectomy, and cryopreservation period. Conclusion The use of autologous bone flap for reconstruction of a skull defect after decompressive craniectomy is a quick and cost-effective method. But, the resorption rate was greater in children and in patients with large skull defects. As a result, we suggest compressive force of the tightened scalp, young age, large skull defect, the gap between bone flap and bone edge and heat sterilization of autologous bone as risk factors for bone resorption. PMID:27169026
Calvarial defect reconstruction.
Jimenez, D F; Barone, C M
1994-04-01
The history of skull trepanation is almost as old as that of humanity. For thousands of years it has been performed for the treatment of numerous medical maladies. The Andean Incas, early Asians and South Seas Islanders, are amongst the many people to perform calvarial trepanation. Hippocrates described techniques for the use of the trepan in early Greek times. With the production of a skull opening comes the challenge of developing methods for closing the defect. It is in reality, more challenging to repair the defect than to create it. Man, with his never ending ingenuity, has tried to develop many techniques. We will discuss some of them and present our method of choice for closure of skull defects.
Flip-avoiding interpolating surface registration for skull reconstruction.
Xie, Shudong; Leow, Wee Kheng; Lee, Hanjing; Lim, Thiam Chye
2018-03-30
Skull reconstruction is an important and challenging task in craniofacial surgery planning, forensic investigation and anthropological studies. Existing methods typically reconstruct approximating surfaces that regard corresponding points on the target skull as soft constraints, thus incurring non-zero error even for non-defective parts and high overall reconstruction error. This paper proposes a novel geometric reconstruction method that non-rigidly registers an interpolating reference surface that regards corresponding target points as hard constraints, thus achieving low reconstruction error. To overcome the shortcoming of interpolating a surface, a flip-avoiding method is used to detect and exclude conflicting hard constraints that would otherwise cause surface patches to flip and self-intersect. Comprehensive test results show that our method is more accurate and robust than existing skull reconstruction methods. By incorporating symmetry constraints, it can produce more symmetric and normal results than other methods in reconstructing defective skulls with a large number of defects. It is robust against severe outliers such as radiation artifacts in computed tomography due to dental implants. In addition, test results also show that our method outperforms thin-plate spline for model resampling, which enables the active shape model to yield more accurate reconstruction results. As the reconstruction accuracy of defective parts varies with the use of different reference models, we also study the implication of reference model selection for skull reconstruction. Copyright © 2018 John Wiley & Sons, Ltd.
[Congenital skull base defect causing recurrent bacterial meningitis].
Berliner, Elihay; Bar Meir, Maskit; Megged, Orli
2012-08-01
Bacterial meningitis is a life threatening disease. Most patients will experience only one episode throughout life. Children who experience bacterial meningitis more than once, require further immunologic or anatomic evaluation. We report a 9 year old child with five episodes of bacterial meningitis due to a congenital defect of the skull base. A two and a half year old boy first presented to our medical center with pneumococcal meningitis. He was treated with antibiotics and fully recovered. Two months later he presented again with a similar clinical picture. Streptococcus pneumoniae grew in cerebrospinal fluid (CSF) culture. CT scan and later MRI of the brain revealed a defect in the anterior middle fossa floor, with protrusion of brain tissue into the sphenoidal sinus. Corrective surgery was recommended but the parents refused. Three months later, a third episode of pneumococcal meningitis occurred. The child again recovered with antibiotics and this time corrective surgery was performed. Five years later, the boy presented once again with clinical signs and symptoms consistent with bacterial meningitis. CSF culture was positive, but the final identification of the bacteria was conducted by broad spectrum 16S ribosomal RNA PCR (16S rRNA PCR) which revealed a sequence of Neisseria lactamica. CT and MRI showed recurrence of the skull base defect with encephalocele in the sphenoid sinus. The parents again refused neurosurgical intervention. A year later the patient presented with bacterial meningitis. CSF culture obtained after initiation of antibiotics was negative, but actinobacillus was identified in the CSF by 16S rRNA PCR. The patient is scheduled for neurosurgical intervention. In patients with recurrent bacterial meningitis caused by organisms colonizing the oropharynx or nasopharynx, an anatomical defect should be carefully sought and surgically repaired.
Locoregional and Microvascular Free Tissue Reconstruction of the Lateral Skull Base.
Arnaoutakis, Demetri; Kadakia, Sameep; Abraham, Manoj; Lee, Thomas; Ducic, Yadranko
2017-11-01
The goals of reconstruction following any oncologic extirpation are preservation of function, restoration of cosmesis, and avoidance of morbidity. Anatomically, the lateral skull base is complex and conceptually intricate due to its three-dimensional morphology. The temporal bone articulates with five other cranial bones and forms many sutures and foramina through which pass critical neural and vascular structures. Remnant defects following resection of lateral skull base tumors are often not amenable to primary closure. As such, numerous techniques have been described for reconstruction including local rotational muscle flaps, pedicled flaps with skin paddle, or free tissue transfer. In this review, the advantages and disadvantages of each reconstructive method will be discussed as well as their potential complications.
Reconstruction of the anterior skull base after major trauma or extensive tumour resection.
König, Stefan Alexander; Ranguis, Sebastian; Gramlich, Veronika; Spetzger, Uwe
2015-01-01
The authors describe their experience with the reconstruction of complex anterior skull base defects after trauma or tumour resection using a "sandwich" technique with pericranial flap, titanium mesh and TachoSil. Description of surgical anatomy, surgical technique, indications, limitations, complications, specific perioperative considerations and specific information to give to the patient about surgery and potential risks. A summary of ten key points is given. After a bifrontal craniotomy and a subfrontal approach, it is possible to achieve a reliable reconstruction of the anterior skull base in a watertight manner by fixing a pericranial flap or a fascia lata graft to the orbital roofs and planum sphenoidale with an individually tailored titanium mesh and closing the frontobasal dura leasion with TachoSil.
Bolstering the Nasoseptal Flap Using Sphenoid Sinus Fat Packing: A Technical Case Report.
Abou-Al-Shaar, Hussam; Zaidi, Hasan A; Cote, David J; Laws, Edward R
2017-03-01
Resection of extensive skull base lesions often necessitates relatively large dural openings and arachnoid, resulting in skull base defects with the potential for a postoperative cerebrospinal fluid leak. A nasoseptal flap (NSF) is a vascularized graft that has greatly diminished the incidence of cerebrospinal fluid leak. Annealing of flaps against the ventral skull base can be tenuous within the first few days after surgery. We report the use of sphenoid sinus fat packing as a buttress to support the nasoseptal flap during skull base reconstruction. A 37-year-old man presented with pan-hypopituitarism, bitemporal hemianopsia, and imaging consistent with a craniopharyngioma. He underwent an endoscopic endonasal approach with resection of the planum and tuberculum sphenoidale for resection of this mass. An NSF was harvested, and a combination of suprasellar fat packing, tensor fasciae lata graft, and Porex plate along with the flap were used to reconstruct the skull base. Postoperatively, he precipitously experienced copious rhinorrhea necessitating surgical re-exploration. A redundant segment of the NSF had retracted into the sphenoid sinus, and was no longer supported against the ventral skull base. We repositioned the NSF and used sphenoid sinus fat packing to help support the graft against the ventral skull base. A postoperative computed tomographic scan demonstrated a clear delineation between the vascularized graft and the fat packing, confirming proper positioning of the flap. Sphenoid sinus fat packing can be an important technical adjunct in bolstering the nasoseptal flap against the ventral skull base in the tenuous early perioperative period. Copyright © 2016 Elsevier Inc. All rights reserved.
Jaberi, Joby; Gambrell, Kenneth; Tiwana, Paul; Madden, Chris; Finn, Rick
2013-02-01
The goal of secondary cranioplasty is permanent cerebral protection in an esthetically acceptable fashion. Reconstruction of cranial defects can be performed with several different materials. Alloplastic materials, such as preformed methyl-methacrylate (PMMA) cranioplasties, are an alternative frequently used at our institution. This retrospective analysis was designed to review the outcomes of PMMA cranioplasty for skull defect reconstruction. Seventy consecutive patients who had 78 PMMA cranioplasties placed from 2003 through 2010 were identified. Mechanism of injury, location of cranioplasty, type of original repair, postoperative complications, and follow-up time were reviewed. Of the 70 patients, 6 patients had failure and removal of their original PMMA cranioplasty and reinsertion of another, and 2 patients had failure and removal of 2 cranioplasties with replacement of a third, creating a total of 78 PMMA cranioplasties placed. The predominant mechanism of injury was trauma (64%). The most frequent postoperative complication was infection (13%). With the exception of the 2 patients with implant exposure, no patients reported an unacceptable cosmetic result. An overall complication rate of 24% was seen. The results of previous studies have shown that infection and complication rates of cranioplasties accomplished with bone cement are substantially higher, that titanium-based implants may obscure follow-up imaging for tumor patients, and that the outcomes regarding hydroxyapatite-based ceramics, although similar to PMMA, are associated with a much higher cost. PMMA remains a cost-effective and proven method to repair cranial defects that fulfills the goals of cranial reconstruction for skull defects. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. All rights reserved.
Hanson, M; Patel, P M; Betz, C; Olson, S; Panizza, B; Wallwork, B
2015-07-01
To assess nasal morbidity resulting from nasoseptal flap use in the repair of skull base defects in endoscopic anterior skull base surgery. Thirty-six patients awaiting endoscopic anterior skull base surgery were prospectively recruited. A nasoseptal flap was used for reconstruction in all cases. Patients were assessed pre-operatively and 90 days post-operatively via the Sino-Nasal Outcome Test 20 questionnaire and visual analogue scales for nasal obstruction, pain, secretions and smell; endoscopic examination findings and mucociliary clearance times were also recorded. Sino-Nasal Outcome Test 20 questionnaire data and visual analogue scale scores for pain, smell and secretions showed no significant differences between pre- and post-operative outcomes, with visual analogue scale scores for nasal obstruction actually showing a significant improvement (p = 0.0007). A significant deterioration for both flap and non-flap sides was demonstrated post-operatively on endoscopic examination (p = 0.002 and p = 0.02 respectively). Whilst elevation of a nasoseptal flap in endoscopic surgery of the anterior skull base engendered significant clinical deterioration on examination post-operatively, quality of life outcomes showed that no such deterioration was subjectively experienced by the patient. In fact, there was significant nasal airway improvement following nasoseptal flap reconstruction.
Psaltis, Alkis J.; Williams, Ryan A.; Charville, Gregory W.; Dodd, Robert L.
2017-01-01
Klippel-Feil syndrome (KFS) is associated with numerous craniofacial abnormalities but rarely with skull base tumor formation. We report an unusual and dramatic case of a symptomatic, mature skull base teratoma in an adult patient with KFS, with extension through the basisphenoid to obstruct the nasopharynx. This benign lesion was associated with midline palatal and cerebral defects, most notably pituitary and vertebrobasilar arteriolar duplications. A multidisciplinary workup and a complete endoscopic, transnasal surgical approach between otolaryngology and neurosurgery were undertaken. Out of concern for vascular control of the fibrofatty dense tumor stalk at the skull base and need for complete teratoma resection, we successfully employed a tissue resection tool with combined ultrasonic and bipolar diathermy to the tumor pedicle at the sphenoid/clivus junction. No CSF leak or major hemorrhage was noted using this endonasal approach, and no concerning postoperative sequelae were encountered. The patient continues to do well now 3 years after tumor extirpation, with resolution of all preoperative symptoms and absence of teratoma recurrence. KFS, teratoma biology, endocrine gland duplication, and the complex considerations required for successfully addressing this type of advanced skull base pathology are all reviewed herein. PMID:28133560
Maduri, Rodolfo; Viaroli, Edoardo; Levivier, Marc; Daniel, Roy T; Messerer, Mahmoud
2017-01-01
Cranioplasty is considered a simple reconstructive procedure, usually performed in a single stage. In some clinical conditions, such as in children with multifocal flap osteolysis, it could represent a surgical challenge. In these patients, the partially resorbed autologous flap should be removed and replaced with a precustomed prosthesis which should perfectly match the expected bone defect. We describe the technique used for a navigated cranioplasty in a 3-year-old child with multifocal autologous flap osteolysis. We decided to perform a cranioplasty using a custom-made hydroxyapatite porous ceramic flap. The prosthesis was produced with an epoxy resin 3D skull model of the patient, which included a removable flap corresponding to the planned cranioplasty. Preoperatively, a CT scan of the 3D skull model was performed without the removable flap. The CT scan images of the 3D skull model were merged with the preoperative 3D CT scan of the patient and navigated during the cranioplasty to define with precision the cranioplasty margins. After removal of the autologous resorbed flap, the hydroxyapatite prosthesis matched perfectly with the skull defect. The anatomical result was excellent. Thus, the implementation of cranioplasty with image merge navigation of a 3D skull model may improve cranioplasty accuracy, allowing precise anatomic reconstruction in complex skull defect cases. © 2017 S. Karger AG, Basel.
Long-term results following titanium cranioplasty of large skull defects.
Cabraja, Mario; Klein, Martin; Lehmann, Thomas-Nikolas
2009-06-01
Decompressive craniectomy is an established procedure to lower intracranial pressure. Therefore, cranioplasty remains a necessity in neurosurgery as well. If the patient's own bone flap is not available, the surgeon can choose between various alloplast grafts. A review of the literature proves that 4-13.8% of polymethylmethacrylate plates and 2.6-10% of hydroxyapatite-based implants require replacement. In this retrospective study of large skull defects, the authors compared computer-assisted design/computer-assisted modeled (CAD/CAM) titanium implants for cranioplasty with other frequently used materials described in literature. Twenty-six patients underwent cranioplasty with CAD/CAM titanium implants (mean diameter 112 mm). With the aid of visual analog scales, the patients' pain and cosmesis were evaluated 6-12 years (mean 8.1 years) after insertion of the implants. None of the implants had to be removed. Of all patients, 68% declared their outcomes as excellent, 24% as good, 0.8% as fair, and 0% as poor. There was no resulting pain in 84% of the patients, and 88% were satisfied with the cosmetic result, noting > 75 mm on the visual analog scale of cosmesis. All patients would have chosen cranioplasty again, stating an improvement in their quality of life by the calvarial reconstruction. Nevertheless, follow-up images obtained in 4 patients undergoing removal of meningiomas was only suboptimal. With the aid of CAD technology, all currently used alloplastic materials are suited even for large skull defect cranioplasty. Analysis of the authors' data and the literature shows that cranioplasty with CAD/CAM titanium implants provides the lowest rate of complications, reasonable costs, and acceptable postoperative imaging. Polymethylmethacrylate is suited for primary cranioplasty or for long-term follow-up imaging of tumors. Titanium implants seem to be the material of choice for secondary cranioplasty of large skull defects resulting from decompressive craniectomy after trauma or infarction. Expensive HA-based ceramics show no obvious advantage over titanium or PMMA.
Early harvesting of the vascularized pedicled nasoseptal flap during endoscopic skull base surgery.
Eloy, Jean Anderson; Patel, Amit A; Shukla, Pratik A; Choudhry, Osamah J; Liu, James K
2013-01-01
The vascularized pedicled nasoseptal flap (PNSF) represents a successful option for reconstruction of large skull base defects after expanded endoscopic endonasal approaches (EEA). This vascularized flap can be harvested early or late in the operation depending on the anticipation of high-flow CSF leaks. Each harvesting technique (early vs. late) is associated with different advantages and disadvantages. In this study, we evaluate our experience with early harvesting of the PNSF for repair of large skull base defects after EEA. A retrospective review was performed at a tertiary care medical center on patients who underwent early PNSF harvesting during reconstruction of intraoperative high-flow CSF leaks after EEA between December 2008 and March 2012. Demographic data, repair materials, surgical approach, and incidence of PNSF usage were collected. Eighty-seven patients meeting the inclusion criteria were identified. In 86 procedures (98.9%), the PNSF harvested at the beginning of the operation was used. In 1 case (1.1%), the PNSF was not used because a high-flow intraoperative CSF leak was not encountered. This patient had recurrence of intradural disease 8months later, and the previously elevated PNSF was subsequent used after tumor resection. Based on our data, a high-flow CSF leak and need for a PNSF can be accurately anticipated in patients undergoing EEA for skull base lesions. Because of the advantages of early harvesting of the PNSF and the high preoperative predictive value of CSF leak anticipations, this technique represents a feasible harvesting practice for EEA surgeries. Copyright © 2013 Elsevier Inc. All rights reserved.
Cassano, Michele; Felippu, Alexandre
2009-12-01
Endoscopic transnasal approaches to the skull base have revolutionized the treatment of cerebrospinal fluid (CSF) fistulae, making repair less invasive and more effective compared with craniotomy or extracranial techniques. This study evaluated, retrospectively, the results of endoscopic repair of dural defects with the use of mucoperiostal grafts taken from the lower turbinate. Between January 1997 and January 2007, 125 cases of anterior skull base CSF fistulae were treated endoscopically at the Instituto Felippu de Otorrinolaringologia, Sao Paolo, Brazil, and at the Department of Otolaryngology of the University Hospital "Ospedali Riuniti", Foggia, Italy. Fistula closure was achieved by overlay apposition of a lower turbinate mucoperiostal graft fixated with fibrin glue and Surgicell. The etiology of the fistula was accidental trauma in 41 cases, iatrogenic trauma in 29, skull base tumour in 12, and spontaneous in 43. The site of the defect was the sphenoid sinus in 43 patients, the cribriform plate in 42, the anterior ethmoid roof in 21, the posterior ethmoid roof in 17, and the posterior wall of the frontal sinus in 2. The success rate at first attempt was 94.4%; the 7 cases of postoperative recurrent CSF leakage involved patients presenting with spontaneous fistula and elevated intracranial pressure; 5 of these had a body-mass index > 30 and 3 suffered from diabetes mellitus. In our hands, the success rate of endoscopic fistula repair was high, even in defects larger than 2 cm. Success rates may be further improved with accurate diagnosis of elevated intracranial pressure, a contributing factor to failure of spontaneous fistula repair.
Park, Sung Woo; Choi, Jong Woo; Koh, Kyung S; Oh, Tae Suk
2015-08-01
Reconstruction of traumatic orbital wall defects has evolved to restore the original complex anatomy with the rapidly growing use of computer-aided design and prototyping. This study evaluated a mirror-imaged rapid prototype skull model and a pre-molded synthetic scaffold for traumatic orbital wall reconstruction. A single-center retrospective review was performed of patients who underwent orbital wall reconstruction after trauma from 2012 to 2014. Patients were included by admission through the emergency department after facial trauma or by a tertiary referral for post-traumatic orbital deformity. Three-dimensional (3D) computed tomogram-based mirror-imaged reconstruction images of the orbit and an individually manufactured rapid prototype skull model by a 3D printing technique were obtained for each case. Synthetic scaffolds were anatomically pre-molded using the skull model as guide and inserted at the individual orbital defect. Postoperative complications were assessed and 3D volumetric measurements of the orbital cavity were performed. Paired samples t test was used for statistical analysis. One hundred four patients with immediate orbital defect reconstructions and 23 post-traumatic orbital deformity reconstructions were included in this study. All reconstructions were successful without immediate postoperative complications, although there were 10 cases with mild enophthalmos and 2 cases with persistent diplopia. Reoperations were performed for 2 cases of persistent diplopia and secondary touchup procedures were performed to contour soft tissue in 4 cases. Postoperative volumetric measurement of the orbital cavity showed nonsignificant volume differences between the damaged orbit and the reconstructed orbit (21.35 ± 1.93 vs 20.93 ± 2.07 cm(2); P = .98). This protocol was extended to severe cases in which more than 40% of the orbital frame was lost and combined with extensive soft tissue defects. Traumatic orbital reconstruction can be optimized and successful using an individually manufactured rapid prototype skull model and a pre-molded synthetic scaffold by computer-aid design and manufacturing. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Olney, R S; Hoyme, H E; Roche, F; Ferguson, K; Hintz, S; Madan, A
2001-11-01
Schinzel phocomelia syndrome is characterized by limb/pelvis hypoplasia/aplasia: specifically, intercalary limb deficiencies and absent or hypoplastic pelvic bones. The phenotype is similar to that described in a related multiple malformation syndrome known as Al-Awadi/Raas-Rothschild syndrome. The additional important feature of large parietooccipital skull defects without meningocele, encephalocele, or other brain malformation has thus far been reported only in children with Schinzel phocomelia syndrome. We recently evaluated a boy affected with Schinzel phocomelia born to nonconsanguineous healthy parents of Mexican origin. A third-trimester fetal ultrasound scan showed severe limb deficiencies and an absent pelvis. The infant died shortly after birth. Dysmorphology examination, radiographs, and autopsy revealed quadrilateral intercalary limb deficiencies with preaxial toe polydactyly; an absent pelvis and a 7 x 3-cm skull defect; and extraskeletal anomalies including microtia, telecanthus, micropenis with cryptorchidism, renal cysts, stenosis of the colon, and a cleft alveolar ridge. A normal 46,XY karyotype was demonstrated, and autosomal recessive inheritance was presumed on the basis of previously reported families. This case report emphasizes the importance of recognizing severe pelvic and skull deficiencies (either post- or prenatally) in differentiating infants with Schinzel phocomelia from other multiple malformation syndromes that feature intercalary limb defects, including thalidomide embryopathy and Roberts-SC phocomelia. Copyright 2001 Wiley-Liss, Inc.
21 CFR 882.5300 - Methyl methacrylate for cranioplasty.
Code of Federal Regulations, 2010 CFR
2010-04-01
... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of surgery...
The transnasal approach to the skull base. From sinus surgery to skull base surgery
Wagenmann, Martin; Schipper, Jörg
2012-01-01
The indications for endonasal endoscopic approaches to diseases of the skull base and its adjacent structures have expanded considerably during the last decades. This is not only due to improved technical possibilities such as intraoperative navigation, the development of specialized instruments, and the compilation of anatomical studies from the endoscopic perspective but also related to the accumulating experience with endoscopic procedures of the skull base by multidisciplinary centers. Endoscopic endonasal operations permit new approaches to deeply seated lesions and are characterized by a reduced manipulation of neurovascular structures and brain parenchyma while at the same time providing improved visualization. They reduce the trauma caused by the approach, avoid skin incisions and minimize the surgical morbidity. Transnasal endoscopic procedures for the closure of small and large skull base defects have proven to be reliable and more successful than operations with craniotomies. The development of new local and regional vascularized flaps like the Hadad-flap have contributed to this. These reconstructive techniques are furthermore effectively utilized in tumor surgery in this region. This review delineates the classification of expanded endonasal approaches in detail. They provide access to lesions of the anterior, middle and partly also to the posterior cranial fossa. Successful management of these complex procedures requires a close interdisciplinary collaboration as well as continuous education and training of all team members. PMID:22558058
Ohla, Victoria; Bayoumi, Ahmed B; Hefty, Markus; Anderson, Matthew; Kasper, Ekkehard M
2015-03-11
Gorham's disease is a rare osteolytic disorder characterized by progressive resorption of bone and replacement of osseous matrix by a proliferative non-neoplastic vascular or lymphatic tissue. A standardized treatment protocol has not yet been defined due to the unpredictable natural history of the disease and variable clinical presentations. No single treatment has proven to be superior in arresting the course of the disease. Trials have included surgery, radiation and medical therapies using drugs such as calcium salts, vitamin D supplements and hormones. We report on our advantageous experience in the management of this osteolyic disorder in a case when it affected only the skull vault. A brief review of pertinent literature about Gorham's disease with skull involvement is provided. A 25-year-old Caucasian male presented with a skull depression over the left fronto-temporal region. He noticed progressive enlargement of the skull defect associated with local pain and mild headache. Physical examination revealed a tender palpable depression of the fronto-temporal convexity. Conventional X-ray of the skull showed widespread loss of bone substance. Subsequent CT scans showed features of patchy erosions indicative of an underlying osteolysis. MRI also revealed marginal enhancement at the site of the defect. The patient was in need of a pathological diagnosis as well as complex reconstruction of the afflicted area. A density graded CT scan was done to determine the variable degrees of osteolysis and a custom made allograft was designed for cranioplasty preoperatively to allow for a single step excisional craniectomy with synchronous skull repair. Gorham's disease was diagnosed based on histopathological examination. No neurological deficit or wound complications were reported postoperatively. Over a two-year follow up period, the patient had no evidence of local recurrence or other systemic involvement. A single step excisional craniectomy and cranioplasty can be an effective treatment for patients with Gorham's disease affecting the skull vault only. Preoperative planning by a density graded CT aids to design a synthetic bone flap and is beneficial in skull reconstruction. Systemic involvement is variable in this patient's population.
Feng, Weiguo; Choi, Irene; Clouthier, David E.; Niswander, Lee; Williams, Trevor
2013-01-01
Mouse models provide valuable opportunities for probing the underlying pathology of human birth defects. Employing an ENU-based screen for recessive mutations affecting craniofacial anatomy we isolated a mouse strain, Dogface-like (DL), with abnormal skull and snout morphology. Examination of the skull indicated that these mice developed craniosynostosis of the lambdoid suture. Further analysis revealed skeletal defects related to the pathology of basal cell nevus syndrome (BCNS) including defects in development of the limbs, scapula, ribcage, secondary palate, cranial base, and cranial vault. In humans, BCNS is often associated with mutations in the Hedgehog receptor PTCH1 and genetic mapping in DL identified a point mutation at a splice donor site in Ptch1. Using genetic complementation analysis we determined that DL is a hypomorphic allele of Ptch1, leading to increased Hedgehog signaling. Two aberrant transcripts are generated by the mutated Ptch1DL gene, which would be predicted to reduce significantly the levels of functional Patched1 protein. This new Ptch1 allele broadens the mouse genetic reagents available to study the Hedgehog pathway and provides a valuable means to study the underlying skeletal abnormalities in BCNS. In addition, these results strengthen the connection between elevated Hedgehog signaling and craniosynostosis. PMID:23897749
Haen, Pierre; Dubois, Guillaume; Goudot, Patrick; Schouman, Thomas
2018-02-01
Parietal bone grafts are commonly used in cranio-maxillo-facial surgery. Both the outer and the internal layer of the calvarium can be harvested. The bone defect created by this harvesting may induce significant weakening of the skull that has not been extensively evaluated. Our aim was to evaluate the consequences of parietal bone graft harvesting on mechanical properties of the skull using a finite element analysis. Finite elements models of the skull of 3 adult patients were created from CT scans. Parietal external and internal layer harvest models were created. Frontal, lateral, and parietal loading were modeled and von Mises stress distributions were compared. The maximal von Mises stress was higher for models of bone harvesting, both on the whole skull and at the harvested site. Maximal von Mises stress was even higher for models with internal layer defect. Harvesting parietal bone modifies the skull's mechanical strength and can increase the risk of skull fracture, mainly on the harvested site. Outer layer parietal graft harvesting is indicated. Graft harvesting located in the upper part of the parietal bone, close to the sagittal suture and with smooth internal edges and corners should limit the risk of fracture. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Hyperostotic Esthesioneuroblastoma: Rare Variant and Fibrous Dysplasia Mimicker
Knott, Phillip Daniel
2014-01-01
A 65-year-old male presented with a 3-year history of orbital symptoms. An imaging-based diagnosis of fibrous dysplasia involving the skull base was made at another institution. CT showed a diffuse sinonasal mass and ground-glass appearance of the bones of the anterior skull base with bony defects and mucocele formation. MRI demonstrated an accompanying intracranial and orbital rind of soft tissue mass along the hyperostotic bones. FDG-PET showed corresponding intense hypermetabolism. Small cysts were observed at the tumor-brain interface. Biopsy revealed esthesioneuroblastoma with bone infiltration that is compatible with the hyperostotic variant of esthesioneuroblastoma. There are a few cases of hyperostotic esthesioneuroblastoma reported in the literature. PMID:24497807
Eloy, Jean Anderson; Shukla, Pratik A; Choudhry, Osamah J; Singh, Rahul; Liu, James K
2012-12-01
The endoscopic endonasal transcribriform approach (EETA) is a viable alternative option for resection of selected anterior skull base (ASB) tumors. However, this technique results in the creation of large cribriform defects. Some have reported the use of a rigid substitute for ASB reconstruction to prevent postoperative frontal lobe sagging. We evaluate the degree of frontal lobe sagging using our triple-layer technique [fascia lata, acellular dermal allograft, and pedicled nasoseptal flap (PNSF)] without the use of rigid structural reconstruction for large cribriform defects. Retrospective analysis. Nine patients underwent an EETA for resection of large ASB tumors from August 2010 to November 2011. The degree of frontal lobe displacement after EETA, defined as the ASB position, was calculated based on the most inferior position of the frontal lobe relative to the nasion-sellar line defined on preoperative and postoperative imaging. A positive value signified upward displacement, and a negative value represented inferior displacement of the frontal lobe. The average cribriform defect size was 9.3 cm(2) (range, 5.0-13.8 cm(2) ). The average distance of postoperative frontal lobe displacement was 0.2 mm (range, -3.9 to 2.9 mm) without any cases of significant brain sagging. The mean follow-up period was 10.1 months (range, 4-19 months). There were no postoperative CSF leaks. Rigid structural repair may not be necessary for ASB defect repair after endoscopic endonasal resection of the cribriform plate. Our technique for multilayer cranial base reconstruction appears to be satisfactory in preventing delayed frontal lobe sagging. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.
Starnoni, Daniele; Daniel, Roy Thomas; George, Mercy; Messerer, Mahmoud
2017-01-01
Spontaneous meningoencephaloceles of the lateral sphenoid sinus are rare entities, and their peculiar location represents a surgical challenge due to the importance of a wide exposure and skull base reconstruction. They are thought to arise from the congenital base defect of the lateral sphenoid or in some cases have been postulated to represent a rare manifestation of altered cerebrospinal fluid (CSF) dynamics. We report the first case in the literature of a Chiari malformation type I (CMI) and a lateral sphenoid encephalocele, revising the theoretic etiology and surgical technique of endoscopic repair. A 50-year-old woman with a surgical history of symptomatic CMI presented with episodes of spontaneous CSF rhinorrhea. Radiologic investigations revealed a left mesial temporal encephalocele herniating into the lateral recess of the sphenoid sinus and radiologic features of altered CSF dynamics, which may have played an etiologic role. An endoscopic transpterygoid excision of the encephalocele and multilayer skull base repair were performed. The association of spontaneous lateral sphenoid encephaloceles with CMI is distinctly unusual. Predisposing factors and disruption of CSF dynamics may play a major role in the development of these rare complications in patients with CMI. Because of their distinct location, transethmoid or transpterygoid endoscopic approaches represent an excellent surgical technique to treat these lesions thanks to their wide and direct visualization of the entire skull base defect following the encephalocele excision, allowing an adequate multilayer repair and lateral sphenoid recess occlusion. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Anisimov, K. N.; Loginov, A. M.; Gusev, M. P.; Zarubin, S. V.; Nikonov, S. V.; Krasnov, A. V.
2017-12-01
This paper presents the results of physical modelling of the mould powder skull in the gap between an ingot and the mould. Based on the results obtained from this and previous works, the mathematical model of mould powder behaviour in the gap and its influence on formation of surface defects was developed. The results of modelling satisfactorily conform to the industrial data on ingot surface defects.
Free anterolateral thigh flap for reconstruction of major craniofacial defects.
Amin, Ayman; Rifaat, Mohammed; Civantos, Francisco; Weed, Donald; Abu-Sedira, Mohammed; Bassiouny, Mahmoud
2006-02-01
Free-tissue transfer has revolutionized skull-base surgery by expanding the ability to perform cranial base resection and by improving the quality of reconstruction. The anterolateral thigh flap has come recently into use in the field of head and neck reconstruction. Its role in craniofacial and midface reconstruction has not been specifically defined. This study involved a total of 18 patients who were treated over a 5-year period from 1998 to 2003. Seventeen patients had locally advanced head and neck cancer, requiring craniofacial resection, and one patient had a complicated gun shot wound of the forehead. Thirteen patients were treated at the National Cancer Institute, Cairo University, Egypt, and five patients at the University of Miami, Florida. The patients presented with defects of the anterior skull base (5), lateral skull base (3), scalp and calvarium (3), and the midface (7). The anterolateral thigh flap was used as a myocutaneous flap in 11 cases and as a perforator fasciocutaneous flap in seven cases. Musculocutaneous perforators supplied the majority of flaps (17/18). Total flap survival occurred in 17 cases; one patient developed complete flap necrosis. The most commonly used recipient vessels were the facial vessels and the external jugular vein. Major complications included one case with meningitis; the patient died after failure of treatment. Another patient died 6 weeks postoperatively from pulmonary embolism. One patient developed CSF leak that stopped spontaneously. In addition, two patients developed minor wound dehiscence that healed spontaneously. The donor-site wound healed without problems except in two cases. One patient had an incomplete take of the skin graft; the other developed wound infection and superficial sloughing. Both wounds healed spontaneously. In addition to the feasibility of simultaneous flap harvesting with tumor resection, the flap's advantage in skull base reconstruction is its reliable blood supply, which can provide adequate dural cover and protection of the brain. Its size and moderate thickness are suitable for reconstruction of scalp and calvarial defects. The abundance of reliably vascularized fat in the flap may be an advantage in long-term maintenance of the volume of the flap in midface reconstruction. Similar to other soft tissue flaps, additional skeletal reconstruction may still be required to achieve an optimal functional and aesthetic result.
Classification and Microvascular Flap Selection for Anterior Cranial Fossa Reconstruction.
Vargo, James D; Przylecki, Wojciech; Camarata, Paul J; Andrews, Brian T
2018-05-18
Microvascular reconstruction of the anterior cranial fossa (ACF) creates difficult challenges. Reconstructive goals and flap selection vary based on the defect location within the ACF. This study evaluates the feasibility and reliability of free tissue transfer for salvage reconstruction of low, middle, and high ACF defects. A retrospective review was performed. Reconstructions were anatomically classified as low (anterior skull base), middle (frontal bar/sinus), and high (frontal bone/soft tissue). Subjects were evaluated based on pathologic indication and goal, type of flap used, and complications observed. Eleven flaps in 10 subjects were identified and anatomic sites included: low ( n = 5), middle ( n = 3), and high ( n = 3). Eight of 11 reconstructions utilized osteocutaneous flaps including the osteocutaneous radial forearm free flap (OCRFFF) ( n = 7) and fibula ( n = 1). Other reconstructions included a split calvarial graft wrapped within a temporoparietal fascia free flap ( n = 1), latissimus myocutaneous flap ( n = 1), and rectus abdominis myofascial flap ( n = 1). All 11 flaps were successful without microvascular compromise. No complications were observed in the high and middle ACF defect groups. Two of five flaps in the low defect group using OCRFFF flaps failed to achieve surgical goals despite demonstrating healthy flaps upon re-exploration. Complications included persistent cerebrospinal fluid leak ( n = 1) and pneumocephalus ( n = 1), requiring flap repositioning in one subject and a second microvascular flap in the second subject to achieve surgical goals. In our experience, osteocutaneous flaps (especially the OCRFFF) are preferred for complete autologous reconstruction of high and middle ACF defects. Low skull base defects are more difficult to reconstruct, and consideration of free muscle flaps (no bone) should be weighed as an option in this anatomic area. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Changing the surgical dogma in frontal sinus trauma: transnasal endoscopic repair.
Grayson, Jessica W; Jeyarajan, Hari; Illing, Elisa A; Cho, Do-Yeon; Riley, Kristen O; Woodworth, Bradford A
2017-05-01
Management of frontal sinus trauma includes coronal or direct open approaches through skin incisions to either ablate or obliterate the frontal sinus for posterior table fractures and openly reduce/internally fixate fractured anterior tables. The objective of this prospective case-series study was to evaluate outcomes of frontal sinus anterior and posterior table trauma using endoscopic techniques. Prospective evaluation of patients undergoing surgery for frontal sinus fractures was performed. Data were collected regarding demographics, etiology, technique, operative site, length involving the posterior table, size of skull base defects, complications, and clinical follow-up. Forty-six patients (average age, 42 years) with frontal sinus fractures were treated using endoscopic techniques from 2008 to 2016. Mean follow-up was 26 (range, 0.5 to 79) months. Patients were treated primarily with a Draf IIb frontal sinusotomies. Draf III was used in 8 patients. Average fracture defect (length vs width) was 17.1 × 9.1 mm, and the average length involving the posterior table was 13.1 mm. Skull base defects were covered with either nasoseptal flaps or free tissue grafts. One individual required Draf IIb revision, but all sinuses were patent on final examination and all closed reductions of anterior table defects resulted in cosmetically acceptable outcomes. Frontal sinus trauma has traditionally been treated using open approaches. Our findings show that endoscopic management should become part of the management algorithm for frontal sinus trauma, which challenges current surgical dogma regarding mandatory open approaches. © 2017 ARS-AAOA, LLC.
Reconstruction of palatal defect using mucoperiosteal hinge flap and pushback palatoplasty.
Lee, S I; Lee, H S; Hwang, K
2001-11-01
This article describes a simple, new surgical technique to provide a complete two-layer closure of palatal defect resulting from a surgical complication of trans palatal resection of skull base chordoma. The nasal layer was reconstructed with triangular shape oral mucoperiosteal turn over hinge flap based on anterior margin of palatal defect and rectangular shaped lateral nasal mucosal hinge flaps. The oral layer was reconstructed with conventional pushback V-Y advancement 2-flaps palatoplasty. Each layer of the flaps were secured with two key mattress suture for flap coaptation. This technique has some advantages: simple, short operation time, one-stage procedure, no need of osteotomy. It can close small- to medium-sized palatal defect of palate or wide cleft palate and can prevent common complication of oronasal fistula, which could be caused by tension.
Spontaneous nasal cerebrospinal fluid leaks and empty sella syndrome: a clinical association.
Schlosser, Rodney J; Bolger, William E
2003-01-01
Spontaneous, idiopathic nasal meningoencephaloceles are herniations of arachnoid/dura and cerebrospinal fluid (CSF) through anatomically fragile sites within the skull base. Empty sella syndrome occurs when intracranial contents herniate through the sellar diaphragm filling the sella turcica with CSF and giving the radiographic appearance of an absent pituitary gland. The objective of this study was to examine the association between spontaneous encephaloceles/CSF leaks and empty sella syndrome because of their similar clinical features and potential common pathophysiology. Retrospective. Sixteen patients were treated for spontaneous encephaloceles between 1996 and 2001. All 16 patients had associated CSF leaks. Five patients had multiple simultaneous encephaloceles. Fifteen patients with imaging of the sella turcica had empty (10 patients) or partially empty (5 patients) sellas. One patient did not have complete imaging of the sella. Three patients had lumbar punctures with measurement of CSF pressure during computed tomography cisternograms because of multiple skull base defects. Mean CSF pressure was 28.3 cm of water (range, 19-34 cm; normal, 0-15 cm). Thirteen of 16 patients (81%) were obese women (mean body mass index 35.9 kg/m2; normal, <25 kg/m2). Mean follow-up was 14.2 months with 100% success in closure of the defects after one procedure. Spontaneous meningoencephaloceles and CSF leaks are strongly associated with radiographic findings of an empty sella and suggest a common pathophysiology. The underlying condition probably represents a form of intracranial hypertension that exerts hydrostatic pressure at anatomically weakened sites within the skull base. Otolaryngologists should be familiar with this disease entity and the implications intracranial hypertension has on patient management.
Verifying Three-Dimensional Skull Model Reconstruction Using Cranial Index of Symmetry
Kung, Woon-Man; Chen, Shuo-Tsung; Lin, Chung-Hsiang; Lu, Yu-Mei; Chen, Tzu-Hsuan; Lin, Muh-Shi
2013-01-01
Background Difficulty exists in scalp adaptation for cranioplasty with customized computer-assisted design/manufacturing (CAD/CAM) implant in situations of excessive wound tension and sub-cranioplasty dead space. To solve this clinical problem, the CAD/CAM technique should include algorithms to reconstruct a depressed contour to cover the skull defect. Satisfactory CAM-derived alloplastic implants are based on highly accurate three-dimensional (3-D) CAD modeling. Thus, it is quite important to establish a symmetrically regular CAD/CAM reconstruction prior to depressing the contour. The purpose of this study is to verify the aesthetic outcomes of CAD models with regular contours using cranial index of symmetry (CIS). Materials and methods From January 2011 to June 2012, decompressive craniectomy (DC) was performed for 15 consecutive patients in our institute. 3-D CAD models of skull defects were reconstructed using commercial software. These models were checked in terms of symmetry by CIS scores. Results CIS scores of CAD reconstructions were 99.24±0.004% (range 98.47–99.84). CIS scores of these CAD models were statistically significantly greater than 95%, identical to 99.5%, but lower than 99.6% (p<0.001, p = 0.064, p = 0.021 respectively, Wilcoxon matched pairs signed rank test). These data evidenced the highly accurate symmetry of these CAD models with regular contours. Conclusions CIS calculation is beneficial to assess aesthetic outcomes of CAD-reconstructed skulls in terms of cranial symmetry. This enables further accurate CAD models and CAM cranial implants with depressed contours, which are essential in patients with difficult scalp adaptation. PMID:24204566
Albuquerque, Marco Antonio; Gaia, Bruno Felipe; Cavalcanti, Marcelo Gusmão Paraíso
2011-08-01
The aim of this study was to determine the applicability of multislice and cone-beam computerized tomography (CT) in the assessment of bone defects in patients with oral clefts. Bone defects were produced in 9 dry skulls to mimic oral clefts. All defects were modeled with wax. The skulls were submitted to multislice and cone-beam CT. Subsequently, physical measurements were obtained by the Archimedes principle of water displacement of wax models. The results demonstrated that multislice and cone-beam CT showed a high efficiency rate and were considered to be effective for volumetric assessment of bone defects. It was also observed that both CT modalities showed excellent results with high reliability in the study of the volume of bone defects, with no difference in performance between them. The clinical applicability of our research has shown these CT modalities to be immediate and direct, and they is important for the diagnosis and therapeutic process of patients with oral cleft. Copyright © 2011 Mosby, Inc. All rights reserved.
Pérez-García, Carlos; Martín, Yolanda Ruíz; del Hoyo, Alejandra Aguado; Rodríguez, Carlos Marín; Domínguez, Minia Campos
2017-01-01
We report a case of a premature neonate girl with scalp and skull defects and brachydactyly of the feet consistent with an Adams-Oliver syndrome (AOS). The patient had central nervous system abnormalities, such as periventricular calcifications, hypoplastic corpus callosum, and bilateral hemispheric corticosubcortical hemorrhagic lesions. A muscular ventricular septal defect and a portosystemic shunt were diagnosed. To our knowledge, this is the first report of congenital supratentorial grey-white matter junction lesions without dural sinus thrombosis in association with AOS. Some of these lesions may be secondary to birth trauma (given the skull defect) whilst others have a watershed location, perhaps as further evidence of vascular disruption and decreased perfusion during critical periods of fetal brain development as the previously proposed pathogenesis of this syndrome. PMID:28706620
Growth of the skull in young children in Baotou, China.
Hou, Hai-dong; Liu, Ming; Gong, Ke-rui; Shao, Guo; Zhang, Chun-Yang
2014-09-01
There are some controversies about the optimal time to perform skull repair in very young Chinese children because of the rapid skull growth in this stage of life. The purpose of this current study is to describe the characteristics of skull growth and to discuss the optimal time for skull repair in young Chinese children with skull defects. A total of 112 children born in the First Affiliated Hospital of Baotou Medical College were measured for six consecutive years starting in 2006. Cranial length (CL, linear distance between the eyebrows to the pillow tuberosity), cranial width (CW, double-sided linear distance of connection of external auditory canal), ear over the top line (EOTL), the eyebrows-the posterior tuberosity line (EPTL), and head circumference (HC) were measured to describe the skull growth. The most rapid period of skull growth occurs during the first year of life. The second and third most rapid periods are the second and third years, respectively. Then, the skull growth slowed and the values of the skull growth index of 6-year-old children were close to those of adults. Children 0-1 years old should not receive skull repair due to their rapid skull growth. The indexes of children 3 years old or older were close to those of the adult; therefore, 3 years old or older may receive skull repair.
Kaur, Harsimran; Nanda, Aditi; Koli, Dheeraj; Verma, Mahesh; Singh, Hukum; Bishnoi, Ishu; Pathak, Pooja; Gupta, Ankur
2015-06-01
The desired features of a cranioplast include providing an acceptable contour, continuity with the remaining skull (marginal adaptation), improvising the aesthetic outcome, providing a strengthened prosthesis to avoid fracture in case of repeat trauma, and protecting the remaining neurological structures. Combining digital and manual techniques to fabricate a hybrid polymethylmethacrylate cranioplast during the rehabilitation of a pediatric patient with cranial defect has been described. Utilization of digital techniques (rapid prototyping to obtain skull analog) and manual (hand) sculpting of the prosthesis strengthened with glass fiber enabled the authors to fabricate a hybrid cranioplast. Satisfactory outcome was achieved.
Surgical results of cranioplasty using three-dimensional printing technology.
Cheng, Cheng-Hsin; Chuang, Hao-Yu; Lin, Hung-Lin; Liu, Chun-Lin; Yao, Chun-Hsu
2018-05-01
The aim of this research was to evaluate the surgical outcome of a new three-dimensional printing (3DP) technique using prefabrication molds and polymethyl methacrylate (PMMA). The study included 10 patients with large skull defects (>100 cm 2 ) who underwent cranioplasty. The causes of the skull defects were trauma (6), bone resorption (2), tumor (1), and infection (1). Before the operation, computed tomography (CT) scans were used to create a virtual plan, and these were then converted to 3-dimensional (3-D) images. The field of the skull defect was blueprinted by the technicians and operators, and a prefabricated 3-D model was generated. During the operation, a PMMA implant was created using a prefabricated silicone rubber mold and fitted into the cranial defect. All patients were followed up for at least 2 years, and any complications after the cranioplasty were recorded. Only 1 patient suffered a complication, subdural effusion 2 months after cranioplasty, which was successfully treated with a subdural peritoneal shunt. All patients satisfied the criteria for operative outcome and cosmetic effect. There were no episodes of infection or material rejection. The 3DP technology allowed precise, fast, and inexpensive craniofacial reconstruction. This technique may be beneficial for shortening the operation time (and thus reducing exposure time to general anesthesia, and wound exposure time, and blood loss), enhancing preoperative evaluation and simplifying the surgical procedure. Copyright © 2018 Elsevier B.V. All rights reserved.
Supraorbital keyhole surgery for optic nerve decompression and dura repair.
Chen, Yuan-Hao; Lin, Shinn-Zong; Chiang, Yung-Hsiao; Ju, Da-Tong; Liu, Ming-Ying; Chen, Guann-Juh
2004-07-01
Supraorbital keyhole surgery is a limited surgical procedure with reduced traumatic manipulation of tissue and entailing little time in the opening and closing of wounds. We utilized the approach to treat head injury patients complicated with optic nerve compression and cerebrospinal fluid leakage (CSF). Eleven cases of basal skull fracture complicated with either optic nerve compression and/or CSF leakage were surgically treated at our department from February 1995 to June 1999. Six cases had primary optic nerve compression, four had CSF leakage and one case involved both injuries. Supraorbital craniotomy was carried out using a keyhole-sized burr hole plus a small craniotomy. The size of craniotomy approximated 2 x 3 cm2. The optic nerve was decompressed via removal of the optic canal roof and anterior clinoid process with high-speed drills. The defect of dura was repaired with two pieces of tensa fascia lata that were attached on both sides of the torn dural defect with tissue glue. Seven cases with optic nerve injury included five cases of total blindness and two cases of light perception before operation. Vision improved in four cases. The CSF leakage was stopped successfully in all four cases without complication. As optic nerve compression and CSF leakage are skull base lesions, the supraorbital keyhole surgery constitutes a suitable approach. The supraorbital keyhole surgery allows for an anterior approach to the skull base. This approach also allows the treatment of both CSF leakage and optic nerve compression. Our results indicate that supraorbital keyhole operation is a safe and effective method for preserving or improving vision and attenuating CSF leakage following injury.
Castle, Maria; Rivero, Mónica; Marquez, Javier
2013-02-01
The current standard treatment of Ewing's sarcoma is chemotherapy followed by surgery, making an immediate cranial reconstruction in a one-step surgical procedure possible. We describe the technique used to repair a cranial defect after the resection of a primary Ewing's sarcoma of the skull in a one-step surgical procedure. Bone repair with a custom-made cranioplasty immediately after resection of a primary Ewing's sarcoma of the skull avoids deformities and late complications associated with reconstructive surgery after radiotherapy and not interfere with radiotherapy and neither with follow-up. A one-step surgical procedure after chemotherapy for primary Ewing's sarcoma of the skull could be safer, less aggressive and more radical; avoiding deformities and late complications.
Im, Tae-Seop; Lee, Yoon-Soo; Suh, Sang-Jun; Lee, Jeong-Ho; Ryu, Kee-Young; Kang, Dong-Gee
2014-10-01
Although burr hole trephination is a safe and effective surgical option to treat patients with chronic subdural hematoma (CSDH), it often results in a small but undesirable scalp depression from burr hole defect. This study is to evaluate the efficacy of titanium burr hole cover (BHC) for reconstruction of skull defects in these patients. A hundred and ninety-six cases of burr hole trephinations for CSDHs between January 2009 and December 2013 were assigned into two groups; Gelfoam packing only (GPO) and reconstruction using titanium BHC group, according to the modalities of burr hole reconstructions. The incidences and depths of scalp depressions and incidences of postoperative complications such as infections or instrument failures were analyzed in both groups. We also conducted telephone surveys to evaluate the cosmetic and functional outcomes from patient's aspect. Significantly lower incidence (p<0.0001) and smaller mean depth (p<0.0001) of scalp depressions were observed in BHC than GPO group. No statistical differences were seen in postoperative infection rates (p=0.498) between the two groups. There were no instrument failures in BHC group. According to the telephone surveys, 73.9% of respondents with scalp depressions had cosmetic inferiority complexes and 62.3% experienced functional handicaps during activities of daily life. Titanium BHC is highly effective for reconstruction of skull defect after burr hole trephination of CSDH, and provides excellent cosmetic and functional outcomes without significant complications.
Combined treatment of advanced stages of recurrent skin cancer of the head.
Pompucci, Angelo; Rea, Giancarla; Farallo, Eugenio; Salgarello, Marzia; Campanella, Antonino; Fernandez, Eduardo
2004-04-01
The authors investigated whether skull base resection and primary free-flap reconstruction in a single-stage surgery is oncologically effective for treating advanced stages of recurrent skin cancer (RSC) of the head. Eighteen consecutive patients were surgically treated. Twelve of them underwent an anterolateral skull base resection, which was performed using a pterional craniotomy combined with an orbitozygomatic osteotomy. Six patients underwent a posterolateral skull base resection, which was performed using an asterional craniotomy combined with a retrolabyrinthine petrosectomy. The wide postoperative defects were covered with muscular or myocutaneous free flaps. The main factor influencing survival was the extent of the resection: patients with no or minimal residual disease showed a statistically significant longer survival time than those with consistent residual disease. Basal cell carcinoma had a better prognosis than squamous cell carcinoma. A trend toward improved survival was observed in patients classified as T4M0 with negative lymph nodes (N0), but this trend was not statistically significant. Adjuvant radiotherapy significantly influenced both survival time and the rate of local recurrence. The surgical morbidity rate was 27.8%; there were two transient cerebrospinal fluid leaks and three seventh cranial nerve injuries. Late complications included radionecrosis in one patient and skin erosion requiring a second surgery in another patient. No deaths occurred during a 30-day postoperative period. Advances in skull base surgery and free-flap reconstruction allowed the authors to treat patients with advanced-stage RSC of the head in a rather satisfactory manner. Only when it is impossible to achieve no or minimal residual disease should aggressive treatment be considered.
Xia, Delin; Gui, Lai; Zhang, Zhiyong; Lu, Changsheng; Niu, Feng; Jin, Ji; Liu, Xiaoqing
2005-10-01
To investigate the methods of establishing 3-dimensional skull model using electron beam CT (EBCT) data rapid prototyping technique, and to discuss its application in repairing cranio-maxillo-facial trauma. The data were obtained by EBCT continuous volumetric scanning with 1.0 mm slice at thickness. The data were transferred to work-station for 3-dimensional surface reconstruction by computer-aided design software and the images were saved as STL file. The data can be used to control a laser rapid-prototyping device (AFS-320QZ) to construct geometric model. The material for the model construction is a kind of laser-sensitive resin power, which will become a mass when scanned by laser beam. The design and simulation of operation can be done on the model. The image data were transferred to the device slice by slice. Thus a geometric model is constructed according to the image data by repeating this process. Preoperative analysis, surgery simulation and implant of bone defect could be done on this computer-aided manufactured 3D model. One case of cranio-maxillo-facial bone defect resulting from trauma was reconstructed with this method. The EBCT scanning showed that the defect area was 4 cm x 6 cm. The nose was flat and deviated to left. The 3-dimensional skull was reconstructed with EBCT data and rapid prototyping technique. The model can display the structure of 3-dimensional anatomy and their relationship. The prefabricated implant by 3-dimensional model was well-matched with defect. The deformities of flat and deviated nose were corrected. The clinical result was satisfactory after a follow-up of 17 months. The 3-dimensional model of skull can replicate the prototype of disease and play an important role in the diagnosis and simulation of operation for repairing cranio-maxillo-facial trauma.
A giant cranial aneurysmal bone cyst associated with fibrous dysplasia.
Składzieriń, J; Olés, K; Zagólski, O; Moskała, M; Sztuka, M; Strek, P; Wierzchowski, W; Tomik, J
2008-01-01
An aneurysmal bone cyst (ABC) is a rare, benign fibro-osseous lesion, considered a vascular phenomenon secondary to fibrous dysplasia or a giant-cell tumour, and occurs mainly in long bones and vertebrae. In this case report a 16-year-old male presented with massive epistaxis. He was admitted with a 3-year history of chronic rhinitis, headaches, right ocular pain and recurrent epistaxis. CT scans showed a predominantly cystic, expansive mass obstructing both nasal cavities, extending to all paranasal sinuses and both orbits, with evidence of anterior cranial fossa skull base destruction. The patient underwent a craniofacial resection of the tumour performed with an external approach and an immediate reconstruction of the dural defect. Histology confirmed the lesion was an ABC associated with fibrous dysplasia. The patient's recovery was complete. A large facial aneurysmal bone cyst can damage the facial skeleton and skull base, and requires excision by a combined external approach.
Surface smoothing and template partitioning for cranial implant CAD
NASA Astrophysics Data System (ADS)
Min, Kyoung-june; Dean, David
2005-04-01
Employing patient-specific prefabricated implants can be an effective treatment for large cranial defects (i.e., > 25 cm2). We have previously demonstrated the use of Computer Aided Design (CAD) software that starts with the patient"s 3D head CT-scan. A template is accurately matched to the pre-detected skull defect margin. For unilateral cranial defects the template is derived from a left-to-right mirrored skull image. However, two problems arise: (1) slice edge artifacts generated during isosurface polygonalization are inherited by the final implant; and (2) partitioning (i.e., cookie-cutting) the implant surface from the mirrored skull image usually results in curvature discontinuities across the interface between the patient"s defect and the implant. To solve these problems, we introduce a novel space curve-to-surface partitioning algorithm following a ray-casting surface re-sampling and smoothing procedure. Specifically, the ray-cast re-sampling is followed by bilinear interpolation and low-pass filtering. The resulting surface has a highly regular grid-like topological structure of quadrilaterally arranged triangles. Then, we replace the regions to be partitioned with predefined sets of triangular elements thereby cutting the template surface to accurately fit the defect margin at high resolution and without surface curvature discontinuities. Comparisons of the CAD implants for five patients against the manually generated implant that the patient actually received show an average implant-patient gap of 0.45mm for the former and 2.96mm for the latter. Also, average maximum normalized curvature of interfacing surfaces was found to be smoother, 0.043, for the former than the latter, 0.097. This indicates that the CAD implants would provide a significantly better fit.
Martínez Arias, Àngels; Bernal-Sprekelsen, Manuel; Rioja, Elena; Enseñat, Joaquim; Prats-Galino, Alberto; Alobid, Isam
2015-01-01
Cerebrospinal fluid leaks associated to meningoencephaloceles of the sphenoid lateral recess are rare entities. A congenital bony defect at this level results in the persistence of Sternberg's canal, or a lateral craniopharyngeal canal, which is supposed to be the origin of these lesions. Our objective was to show that the endoscopic transpterygoid approach is an effective technique for their treatment. We present a series of 5 cases of meningoencephaloceles of the sphenoid lateral recess treated with endoscopic sinus surgery (4 women and one man; mean age=59, range 37-72 years). Cerebrospinal fluid rhinorrhoea was present in all of them and they all underwent a transpterygoid approach with reconstruction of the skull base. We describe the surgical technique and review the literature. No complications were observed during surgery or the postoperative period. After a mean follow-up of 81 months, only one recurrence was seen. The transpterygoid approach has proven to be effective for the treatment of meningoencephaloceles of the sphenoid lateral recess. Providing wide access to identify the defect, followed by meningoencephalocele ablation, is the key for successful surgery. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robson, M.C.; Zachary, L.S.; Schmidt, D.R.
1989-03-01
Six cases of large defects of the scalp, skull, and dura following tumor ablation and radiation are presented. Each was accompanied by chronic infection in the irradiated defect. Efforts to reconstruct the resulting defects with local flaps were not successful. One-stage reconstruction was then accomplished in each case utilizing a latissimus dorsi musculocutaneous or myo-osteocutaneous free flap transferred by microvascular anastomoses. The versatility of the latissimus dorsi musculocutaneous and/or osseous flap allows single-stage reconstruction of these complex defects.
Congenital malformations of the skull and meninges.
Kanev, Paul M
2007-02-01
The surgery and management of children who have congenital malformations of the skull and meninges require multidisciplinary care and long-term follow-up by multiple specialists in birth defects. The high definition of three-dimensional CT and MRI allows precise surgery planning of reconstruction and management of associated malformations. The reconstruction of meningoencephaloceles and craniosynostosis are challenging procedures that transform the child's appearance. The embryology, clinical presentation, and surgical management of these malformations are reviewed.
Barger, James; Siow, Matthew; Kader, Michael; Phillips, Katherine; Fatterpekar, Girish; Kleinberg, David; Zagzag, David; Sen, Chandranath; Golfinos, John G.; Lebowitz, Richard; Placantonakis, Dimitris G.
2018-01-01
Background: While effective for the repair of large skull base defects, the Hadad-Bassagasteguy nasoseptal flap increases operative time and can result in a several-week period of postoperative crusting during re-mucosalization of the denuded nasal septum. Endoscopic transsphenoidal surgery for pituitary adenoma resection is generally not associated with large dural defects and high-flow cerebrospinal fluid (CSF) leaks requiring extensive reconstruction. Here, we present the posterior nasoseptal flap as a novel technique for closure of skull defects following endoscopic resection of pituitary adenomas. This flap is raised in all surgeries during the transnasal exposure using septal mucoperiosteum that would otherwise be discarded during the posterior septectomy performed in binostril approaches. Methods: We present a retrospective, consecutive case series of 43 patients undergoing endoscopic transsphenoidal resection of a pituitary adenoma followed by posterior nasoseptal flap placement and closure. Main outcome measures were extent of resection and postoperative CSF leak. Results: The mean extent of resection was 97.16 ± 1.03%. Radiographic measurement showed flap length to be adequate. While a defect in the diaphragma sellae and CSF leak were identified in 21 patients during surgery, postoperative CSF leak occurred in only one patient. Conclusions: The posterior nasoseptal flap provides adequate coverage of the surgical defect and is nearly always successful in preventing postoperative CSF leak following endoscopic transsphenoidal resection of pituitary adenomas. The flap is raised from mucoperiosteum lining the posterior nasal septum, which is otherwise resected during posterior septectomy. Because the anterior septal cartilage is not denuded, raising such flaps avoids the postoperative morbidity associated with the larger Hadad-Bassagasteguy nasoseptal flap. PMID:29527390
[Pedicle flaps based on the sphenopalatine artery: anatomical and surgical study].
Gras-Cabrerizo, Juan R; Gras-Albert, Juan R; Monjas-Canovas, Irene; García-Garrigós, Elena; Montserrat-Gili, Joan R; Sánchez del Campo, Francisco; Kolanczak, Katarzyna; Massegur-Solench, Humbert
2014-01-01
Local pedicle flaps based on the sphenopalatine artery make it possible to reconstruct large defects of the skull base (SB). From January 2008 to January 2013, 64 lesions with involvement of SB were analysed. These lesions were treated using endoscopic endonasal approach and required a pedicle flap based on the sphenopalatine artery. In addition, measurements and flexibility of the flaps were examined in 4 cadaveric nasal cavities. Surgical group. Sixty-four nasoseptal flaps (NSF) were used, in 4 cases associated with a middle turbinate flap (MTF), and in 1 case supplemented with an inferior turbinate flap (ITF). Five cerebrospinal fluid fistulas (8%) were noted. Among patients with initial lesions, 7% presented an anosmia. Cadaveric group. The length of the NSF varied between 5.2 cm and 7.7 cm and the width ranged from 3 cm to 4.5 cm. The ITF provided an anterior-posterior distance between 4.2 cm and 5 cm, with a width between 1.2 cm and 2.8 cm. The mean length of MTFs varied between 3.5 cm and 4.2 cm, with a width between 1.4 cm and 1.9 cm. The most versatile local flap for the reconstruction of skull base defects is the NSF, and flaps pedicled to the posterolateral nasal artery offer an excellent alternative. Copyright © 2013 Elsevier España, S.L. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.
Osterix/Sp7 limits cranial bone initiation sites and is required for formation of sutures
Kague, Erika; Roy, Paula; Asselin, Garrett; Hu, Gui; Stanley, Alexandra; Albertson, Craig; Simonet, Jacqueline; Fisher, Shannon
2017-01-01
During growth, individual skull bones overlap at sutures, where osteoblast differentiation and bone deposition occur. Mutations causing skull malformations have revealed some required genes, but many aspects of suture regulation remain poorly understood. We describe a zebrafish mutation in osterix/sp7, which causes a generalized delay in osteoblast maturation. While most of the skeleton is patterned normally, mutants have specific defects in the anterior skull and upper jaw, and the top of the skull comprises a random mosaic of bones derived from individual initiation sites. Osteoblasts at the edges of the bones are highly proliferative and fail to differentiate, consistent with global changes in gene expression. We propose that signals from the bone itself are required for orderly recruitment of precursor cells and growth along the edges. The delay in bone maturation caused by loss of Sp7 leads to unregulated bone formation, revealing a new mechanism for patterning the skull and sutures. PMID:26992365
Intrasphenoidal encephalocele and spontaneous CSF rhinorrhoea.
Daniilidis, J; Vlachtsis, K; Ferekidis, E; Dimitriadis, A
1999-12-01
Intrasphenoidal encephalocele is a rare clinical entity. In the international literature only 16 cases have been reported up today, with female predominance. Clinically they manifest at middle and advanced ages (40-67 years), when spontaneous CSF rhinorrhoea or recurrent meningitis occurs. We present our case, a 46 years old female, who had CSF rhinorrhoea from the right vestibule for 10 months. The diagnosis was based on the history and the high-resolution brain and skull base CT-scanning in conjunction with opaque fluid injection in the subarachnoidal space through a lumbar puncture. She was successfully treated with an operation, through an endonasal trans-ethmoid microendoscopic approach, using the Draf and Stammberger technique. We discuss the pathogenesis of the intrasphenoidal encephalocele, the existence of small occult defects in the skull base, which cause, at the middle and advanced ages, CSF fistula with spontaneous CSF rhinorrhoea and/or recurrent meningitis. Finally we emphasize the advantages of the endonasal surgical approach for the treatment of this condition.
Li, Wei Zhong; Zhang, Mei Chao; Li, Shao Ping; Zhang, Lei Tao; Huang, Yu
2009-06-01
With the advent of CAD/CAM and rapid prototyping (RP), a technical revolution in oral and maxillofacial trauma was promoted to benefit treatment, repair of maxillofacial fractures and reconstruction of maxillofacial defects. For a patient with zygomatico-facial collapse deformity resulting from a zygomatico-orbito-maxillary complex (ZOMC) fracture, CT scan data were processed by using Mimics 10.0 for three-dimensional (3D) reconstruction. The reduction design was aided by 3D virtual imaging and the 3D skull model was reproduced using the RP technique. In line with the design by Mimics, presurgery was performed on the 3D skull model and the semi-coronal incision was taken for reduction of ZOMC fracture, based on the outcome from the presurgery. Postoperative CT and images revealed significantly modified zygomatic collapse and zygomatic arch rise and well-modified facial symmetry. The CAD/CAM and RP technique is a relatively useful tool that can assist surgeons with reconstruction of the maxillofacial skeleton, especially in repairs of ZOMC fracture.
Usefulness of color Doppler sonography in a growing skull fracture: case report.
Yoshioka, H; Sakoda, K; Kohno, H; Hada, H; Kurisu, K
1997-01-01
A case of an 11-month-old infant with a growing skull fracture is described. The patient was admitted with disturbance of consciousness and left hemiparesis after a severe head injury. A pulsating protrusion appeared over the fracture line 1 month later. Color Doppler sonography revealed cerebral herniation and cystic lesion via the bony defect, together with an intracranial arterial flow pattern detected in the extracranial space. Color Doppler sonography was very useful in the diagnosis of growing skull fracture and in the evaluation of the intracranial state, including hemodynamics in this case. Successful surgical treatment was performed on the basis of sonographic data and the patient was discharged 3 months later without motor deficits.
Kim, Bum-Joon; Hong, Ki-Sun; Park, Kyung-Jae; Park, Dong-Hyuk; Chung, Yong-Gu; Kang, Shin-Hyuk
2012-12-01
The prefabrication of customized cranioplastic implants has been introduced to overcome the difficulties of intra-operative implant molding. The authors present a new technique, which consists of the prefabrication of implant molds using three-dimensional (3D) printers and polymethyl-methacrylate (PMMA) casting. A total of 16 patients with large skull defects (>100 cm(2)) underwent cranioplasty between November 2009 and April 2011. For unilateral cranial defects, 3D images of the skull were obtained from preoperative axial 1-mm spiral computed tomography (CT) scans. The image of the implant was generated by a digital subtraction mirror-imaging process using the normal side of the cranium as a model. For bilateral cranial defects, precraniectomy routine spiral CT scan data were merged with postcraniectomy 3D CT images following a smoothing process. Prefabrication of the mold was performed by the 3D printer. Intraoperatively, the PMMA implant was created with the prefabricated mold, and fit into the cranial defect. The median operation time was 184.36±26.07 minutes. Postoperative CT scans showed excellent restoration of the symmetrical contours and curvature of the cranium in all cases. The median follow-up period was 23 months (range, 14-28 months). Postoperative infection was developed in one case (6.2%) who had an open wound defect previously. Customized cranioplasty PMMA implants using 3D printer may be a useful technique for the reconstruction of various cranial defects.
Morice, Anne; Kolb, Frédéric; Picard, Arnaud; Kadlub, Natacha; Puget, Stéphanie
2017-01-01
Reconstruction of complex skull defects requires collaboration between neurosurgeons and plastic surgeons to choose the most appropriate procedure, especially in growing children. The authors describe herein the reconstruction of an extensive traumatic bone and soft tissue defect of the cranial vault in an 11-year-old boy. The size of the defect, quality of the tissues, and patient's initial condition required a 2-stage approach. Ten months after an initial emergency procedure in which lacerated bone and soft tissue were excised, reconstruction was performed. The bone defect, situated on the left frontoparietal region, was 85 cm 2 and was filled by a custom-made porous hydroxyapatite implant. The quality of the overlying soft tissue did not allow the use of classic local and locoregional coverage techniques. A free latissimus dorsi muscle flap branched on the contralateral superficial temporal pedicle was used and left for secondary healing to take advantage of scar retraction and to minimize alopecia. Stable well-vascularized implant coverage as well as an esthetically pleasing skull shape was achieved. Results in this case suggest that concomitant reconstruction of large calvarial defects by cranioplasty with a custom-made hydroxyapatite implant covered by a free latissimus dorsi muscle flap is a safe and efficient procedure in children, provided that there is no underlying infection of the operative site.
Skull base, orbits, temporal bone, and cranial nerves: anatomy on MR imaging.
Morani, Ajaykumar C; Ramani, Nisha S; Wesolowski, Jeffrey R
2011-08-01
Accurate delineation, diagnosis, and treatment planning of skull base lesions require knowledge of the complex anatomy of the skull base. Because the skull base cannot be directly evaluated, imaging is critical for the diagnosis and management of skull base diseases. Although computed tomography (CT) is excellent for outlining the bony detail, magnetic resonance (MR) imaging provides better soft tissue detail and is helpful for evaluating the adjacent meninges, brain parenchyma, and bone marrow of the skull base. Thus, CT and MR imaging are often used together for evaluating skull base lesions. This article focuses on the radiologic anatomy of the skull base pertinent to MR imaging evaluation. Copyright © 2011 Elsevier Inc. All rights reserved.
Tu, Zhanhai; Xiao, Zebin; Zheng, Yingyan; Huang, Hongjie; Yang, Libin; Cao, Dairong
2018-01-01
Background Little is known about the value of computed tomography (CT) and magnetic resonance imaging (MRI) combined with diffusion-weighted imaging (DWI) in distinguishing malignant from benign skull-involved lesions. Purpose To evaluate the discriminative value of DWI combined with conventional CT and MRI for differentiating between benign and malignant skull-involved lesions. Material and Methods CT and MRI findings of 58 patients with pathologically proven skull-involved lesions (43 benign and 15 malignant) were retrospectively reviewed. Conventional CT and MRI characteristics and apparent diffusion coefficient (ADC) value of the two groups were evaluated and compared. Multivariate logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the differential performance of each parameter separately and together. Results The presence of cortical defects or break-through and ill-defined margins were associated with malignant skull-involved lesions (both P < 0.05). Malignant skull-involved lesions demonstrated a significantly lower ADC ( P = 0.016) than benign lesions. ROC curve analyses indicated that a combination of CT, MRI, and DWI with an ADC ≤ 0.703 × 10 -3 mm 2 /s showed optimal sensitivity, while DWI along showed optimal specificity of 88.4% in differentiating between benign and malignant skull-involved lesions. Conclusion The combination of CT, MRI, and DWI can help to differentiate malignant from benign skull-involved lesions. CT + MRI + DWI offers optimal sensitivity, while DWI offers optimal specificity.
Development and validation of technique for in-vivo 3D analysis of cranial bone graft survival
NASA Astrophysics Data System (ADS)
Bernstein, Mark P.; Caldwell, Curtis B.; Antonyshyn, Oleh M.; Ma, Karen; Cooper, Perry W.; Ehrlich, Lisa E.
1997-05-01
Bone autografts are routinely employed in the reconstruction of facial deformities resulting from trauma, tumor ablation or congenital malformations. The combined use of post- operative 3D CT and SPECT imaging provides a means for quantitative in vivo evaluation of bone graft volume and osteoblastic activity. The specific objectives of this study were: (1) Determine the reliability and accuracy of interactive computer-assisted analysis of bone graft volumes based on 3D CT scans; (2) Determine the error in CT/SPECT multimodality image registration; (3) Determine the error in SPECT/SPECT image registration; and (4) Determine the reliability and accuracy of CT-guided SPECT uptake measurements in cranial bone grafts. Five human cadaver heads served as anthropomorphic models for all experiments. Four cranial defects were created in each specimen with inlay and onlay split skull bone grafts and reconstructed to skull and malar recipient sites. To acquire all images, each specimen was CT scanned and coated with Technetium doped paint. For purposes of validation, skulls were landmarked with 1/16-inch ball-bearings and Indium. This study provides a new technique relating anatomy and physiology for the analysis of cranial bone graft survival.
Brain CT; Cranial CT; CT scan - skull; CT scan - head; CT scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... conditions: Birth (congenital) defect of the head or brain Brain infection Brain tumor Buildup of fluid inside ...
Kim, Bum-Joon; Hong, Ki-Sun; Park, Kyung-Jae; Park, Dong-Hyuk; Chung, Yong-Gu
2012-01-01
Objective The prefabrication of customized cranioplastic implants has been introduced to overcome the difficulties of intra-operative implant molding. The authors present a new technique, which consists of the prefabrication of implant molds using three-dimensional (3D) printers and polymethyl-methacrylate (PMMA) casting. Methods A total of 16 patients with large skull defects (>100 cm2) underwent cranioplasty between November 2009 and April 2011. For unilateral cranial defects, 3D images of the skull were obtained from preoperative axial 1-mm spiral computed tomography (CT) scans. The image of the implant was generated by a digital subtraction mirror-imaging process using the normal side of the cranium as a model. For bilateral cranial defects, precraniectomy routine spiral CT scan data were merged with postcraniectomy 3D CT images following a smoothing process. Prefabrication of the mold was performed by the 3D printer. Intraoperatively, the PMMA implant was created with the prefabricated mold, and fit into the cranial defect. Results The median operation time was 184.36±26.07 minutes. Postoperative CT scans showed excellent restoration of the symmetrical contours and curvature of the cranium in all cases. The median follow-up period was 23 months (range, 14-28 months). Postoperative infection was developed in one case (6.2%) who had an open wound defect previously. Conclusion Customized cranioplasty PMMA implants using 3D printer may be a useful technique for the reconstruction of various cranial defects. PMID:23346326
Brand, Y; Lim, E; Waran, V; Prepageran, N
2015-12-01
Endoscopic endonasal techniques have recently become the method of choice in dealing with cerebrospinal fluid leak involving the anterior cranial fossa. However, most surgeons prefer an intracranial approach when leaks involve the middle cranial fossa. This case report illustrates the possibilities of using endoscopic techniques for cerebrospinal fluid leaks involving the middle fossa. A 37-year-old male patient presented with multiple areas of cranial defect with cerebrospinal fluid leak due to osteoradionecrosis following radiation for nasopharyngeal carcinoma 4 years earlier. Clinical examination showed involvement of all cranial nerves except the IInd and XIth nerves on the left side. A prior attempt to repair the cerebrospinal fluid leak with craniotomy was not successful. This case demonstrates the successful endoscopic repair of a large cranial defect with cerebrospinal fluid leak.
The return of Phineas Gage: clues about the brain from the skull of a famous patient.
Damasio, H; Grabowski, T; Frank, R; Galaburda, A M; Damasio, A R
1994-05-20
When the landmark patient Phineas Gage died in 1861, no autopsy was performed, but his skull was later recovered. The brain lesion that caused the profound personality changes for which his case became famous has been presumed to have involved the left frontal region, but questions have been raised about the involvement of other regions and about the exact placement of the lesion within the vast frontal territory. Measurements from Gage's skull and modern neuroimaging techniques were used to reconstitute the accident and determine the probable location of the lesion. The damage involved both left and right prefrontal cortices in a pattern that, as confirmed by Gage's modern counterparts, causes a defect in rational decision making and the processing of emotion.
Blitz, Ari Meir; Aygun, Nafi; Herzka, Daniel A; Ishii, Masaru; Gallia, Gary L
2017-01-01
High-resolution 3D MRI of the skull base allows for a more detailed and accurate assessment of normal anatomic structures as well as the location and extent of skull base pathologies than has previously been possible. This article describes the techniques employed for high-resolution skull base MRI including pre- and post-contrast constructive interference in the steady state (CISS) imaging and their utility for evaluation of the many small structures of the skull base, focusing on those regions and concepts most pertinent to localization of cranial nerve palsies and in providing pre-operative guidance and post-operative assessment. The concept of skull base compartments as a means of conceptualizing the various layers of the skull base and their importance in assessment of masses of the skull base is discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Salvatore, Chibbaro; Fabrice, Vallee; Marco, Marsella; Leonardo, Tigan; Thomas, Lilin; Benoit, Lecuelle; Bernard, George; Pierre, Kehrli; Eric, Vicaut; Paolo, Diemidio
2013-10-01
Decompressive craniectomy (DC) is a procedure performed increasingly often in current neurosurgical practice. Significant perioperative morbidity may be associated to this procedure because of the large skull defect; also, later closure of the skull defect (cranioplasty) may be associated to post-operative morbidity as much as any other reconstructive operation. The authors present a newly conceived/developed device: The "Skull Flap" (SF). This system, placed at the time of the craniectomy, offers the possibility to provide cranial reconstruction sparing patients a second operation. In other words, DC and cranioplasty essentially take place at the same time and in addition, patients retain their own bone flap. The current study conducted on animal models, represents the logical continuation of a prior recent study, realized on cadaver specimens, to assess the efficacy and safety of this recently developed device. This is an experimental pilot study on dogs to assess both safety and efficacy of the SF device. Two groups of experimental raised intracranial pressure animal models underwent DC; in the first group of dogs, the bone flap was left in raised position above the skull defect using the SF device; on the second group the flap was discarded. All dogs underwent transcranial Doppler (TCD) to assess brain perfusion. Head computed tomography (CT) scan to determine flap position was also obtained in the group in which the SF device was placed. SF has proved to be a strong fixation device that allows satisfactory brain decompression by keeping the bone flap elevated from the swollen brain; later on, the SF allows cranial reconstruction in a simple way without requiring a second staged operation. In addition, it is relevant to note that brain perfusion was measured and found to be better in the group receiving the SF (while the flap being in a raised as well as in its natural position) comparing to the other group. The SF device has proved to be very easy to place, well-adaptable to a different type of flaps and ultimately very effective in maintaining satisfactory brain decompression and later on, making easy bone flap repositioning after brain swelling has subsided.
Endoscopic transnasal resection of anterior cranial fossa meningiomas.
de Divitiis, Enrico; Esposito, Felice; Cappabianca, Paolo; Cavallo, Luigi M; de Divitiis, Oreste; Esposito, Isabella
2008-01-01
The extended transnasal approach, a recent surgical advancements for the ventral skull base, allows excellent midline access to and visibility of the anterior cranial fossa, which was previously thought to be approachable only via a transcranial route. The extended transnasal approach allows early decompression of the optic canals, obviates the need for brain retraction, and reduces neurovascular manipulation. Between 2004 and 2007, 11 consecutive patients underwent transnasal resection of anterior cranial fossa meningiomas--4 olfactory groove (OGM) and 7 tuberculum sellae (TSM) meningiomas. Age at surgery, sex, symptoms, and imaging studies were reviewed. Tumor size and tumor extension were estimated, and the anteroposterior, vertical, and horizontal diameters were measred on MR images. Medical records, surgical complications, and outcomes of the patients were collected. A gross-total removal of the lesion was achieved in 10 patients (91%), and in 1 patient with a TSM only a near-total (> 90%) resection was possible. Four patients with preoperative visual function defect had a complete recovery, whereas 3 patients experienced a transient worsening of vision, fully recovered within few days. In 3 patients (2 with TSMs and 1 with an OGM), a postoperative CSF leak occurred, requiring a endoscopic surgery for skull base defect repair. Another patient (a case involving a TSM) developed transient diabetes insipidus. The operative time ranged from 6 to 10 hours in the OGM group and from 4.5 to 9 hours in the TSM group. The mean duration of the hospital stay was 13.5 and 10 days in the OGM and TSM groups, respectively. Six patients (3 with OGMs and 3 with TSMs) required a blood transfusion. Surgery-related death occurred in 1 patient with TSM, in whom the tumor was successfully removed. The technique offers a minimally invasive route to the midline anterior skull base, allowing the surgeon to avoid using brain retraction and reducing manipulation of the large vessels and optic apparatus; hastens postoperative recovery; and improves patient compliance. Further assessment and refinement are required, particularly because of the potential risk of CSF leakage. Other studies and longer follow-up periods are necessary to ascertain the benefits of the technique.
Imaging of the Posterior Skull Base.
Job, Joici; Branstetter, Barton F
2017-01-01
The posterior skull base can be involved by a variety of pathologic processes. They can be broadly classified as: traumatic, neoplastic, vascular, and inflammatory. Pathology in the posterior skull base usually involves the lower cranial nerves, either as a source of pathology or a secondary source of symptoms. This review will categorize pathology arising in the posterior skull base and describe how it affects the skull base itself and surrounding structures. Copyright © 2016 Elsevier Inc. All rights reserved.
Liu, James K; Eloy, Jean Anderson
2018-04-01
We present a pediatric case of a retrochiasmatic craniopharyngioma in the suprasellar region with third ventricular extension that was resected through a purely endoscopic endonasal approach (EEA) via the transplanum transtuberculum corridor. The patient is a 12-year-old boy who presented with progressive visual loss and panhypopituitarism. The EEA allows direct visualization of the undersurface of the optic chiasm and hypothalamus so that safe and meticulous tumor dissection can be performed to preserve these critical neurovascular structures. This video atlas demonstrates the operative technique and surgical nuances of the endoscopic skull base approach, microdissection of the tumor from the critical neurovascular structures, and multilayered reconstruction of the skull base defect with a nasoseptal flap. A gross total resection was achieved, and the patient was neurologically intact with improved visual acuity and visual fields. In summary, the EEA via the transplanum transtuberculum corridor is an important strategy in the armamentarium for surgical management of pediatric craniopharyngiomas. The link to the video can be found at: https://youtu.be/bmgO_PMRHPk .
Designing of skull defect implants using C1 rational cubic Bezier and offset curves
NASA Astrophysics Data System (ADS)
Mohamed, Najihah; Majid, Ahmad Abd; Piah, Abd Rahni Mt; Rajion, Zainul Ahmad
2015-05-01
Some of the reasons to construct skull implant are due to head trauma after an accident or an injury or an infection or because of tumor invasion or when autogenous bone is not suitable for replacement after a decompressive craniectomy (DC). The main objective of our study is to develop a simple method to redesign missing parts of the skull. The procedure begins with segmentation, data approximation, and estimation process of the outer wall by a C1 continuous curve. Its offset curve is used to generate the inner wall. A metaheuristic algorithm, called harmony search (HS) is a derivative-free real parameter optimization algorithm inspired from the musical improvisation process of searching for a perfect state of harmony. In this study, data approximation by a rational cubic Bézier function uses HS to optimize position of middle points and value of the weights. All the phases contribute significantly in making our proposed technique automated. Graphical examples of several postoperative skulls are displayed to show the effectiveness of our proposed method.
Finite element analysis of 6 large PMMA skull reconstructions: A multi-criteria evaluation approach
Ridwan-Pramana, Angela; Marcián, Petr; Borák, Libor; Narra, Nathaniel; Forouzanfar, Tymour; Wolff, Jan
2017-01-01
In this study 6 pre-operative designs for PMMA based reconstructions of cranial defects were evaluated for their mechanical robustness using finite element modeling. Clinical experience and engineering principles were employed to create multiple plan options, which were subsequently computationally analyzed for mechanically relevant parameters under 50N loads: stress, strain and deformation in various components of the assembly. The factors assessed were: defect size, location and shape. The major variable in the cranioplasty assembly design was the arrangement of the fixation plates. An additional study variable introduced was the location of the 50N load within the implant area. It was found that in smaller defects, it was simpler to design a symmetric distribution of plates and under limited variability in load location it was possible to design an optimal for expected loads. However, for very large defects with complex shapes, the variability in the load locations introduces complications to the intuitive design of the optimal assembly. The study shows that it can be beneficial to incorporate multi design computational analyses to decide upon the most optimal plan for a clinical case. PMID:28609471
Finite element analysis of 6 large PMMA skull reconstructions: A multi-criteria evaluation approach.
Ridwan-Pramana, Angela; Marcián, Petr; Borák, Libor; Narra, Nathaniel; Forouzanfar, Tymour; Wolff, Jan
2017-01-01
In this study 6 pre-operative designs for PMMA based reconstructions of cranial defects were evaluated for their mechanical robustness using finite element modeling. Clinical experience and engineering principles were employed to create multiple plan options, which were subsequently computationally analyzed for mechanically relevant parameters under 50N loads: stress, strain and deformation in various components of the assembly. The factors assessed were: defect size, location and shape. The major variable in the cranioplasty assembly design was the arrangement of the fixation plates. An additional study variable introduced was the location of the 50N load within the implant area. It was found that in smaller defects, it was simpler to design a symmetric distribution of plates and under limited variability in load location it was possible to design an optimal for expected loads. However, for very large defects with complex shapes, the variability in the load locations introduces complications to the intuitive design of the optimal assembly. The study shows that it can be beneficial to incorporate multi design computational analyses to decide upon the most optimal plan for a clinical case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stueber, K.; Salcman, M.; Spence, R.J.
1985-08-01
The patient described in this article had a large skull defect under the scalp which had been irradiated during treatment of a malignant brain tumor. The patient desired reconstruction of her defect. To provide good soft-tissue coverage for the bony reconstruction, a free latissimus dorsi musculocutaneous flap was used. The bony defect was partially reconstructed with split-rib grafts. The two parts of the reconstruction were combined into one operation, since it was felt that the well-vascularized muscle would ensure viability of the bone grafts.
Ieva, Antonio Di; Audigé, Laurent; Kellman, Robert M.; Shumrick, Kevin A.; Ringl, Helmut; Prein, Joachim; Matula, Christian
2014-01-01
The AOCMF Classification Group developed a hierarchical three-level craniomaxillofacial classification system with increasing level of complexity and details. The highest level 1 system distinguish four major anatomical units, including the mandible (code 91), midface (code 92), skull base (code 93), and cranial vault (code 94). This tutorial presents the level 2 and more detailed level 3 systems for the skull base and cranial vault units. The level 2 system describes fracture location outlining the topographic boundaries of the anatomic regions, considering in particular the endocranial and exocranial skull base surfaces. The endocranial skull base is divided into nine regions; a central skull base adjoining a left and right side are divided into the anterior, middle, and posterior skull base. The exocranial skull base surface and cranial vault are divided in regions defined by the names of the bones involved: frontal, parietal, temporal, sphenoid, and occipital bones. The level 3 system allows assessing fracture morphology described by the presence of fracture fragmentation, displacement, and bone loss. A documentation of associated intracranial diagnostic features is proposed. This tutorial is organized in a sequence of sections dealing with the description of the classification system with illustrations of the topographical skull base and cranial vault regions along with rules for fracture location and coding, a series of case examples with clinical imaging and a general discussion on the design of this classification. PMID:25489394
Advances in Magnetic Resonance Imaging of the Skull Base
Kirsch, Claudia F.E.
2014-01-01
Introduction Over the past 20 years, magnetic resonance imaging (MRI) has advanced due to new techniques involving increased magnetic field strength and developments in coils and pulse sequences. These advances allow increased opportunity to delineate the complex skull base anatomy and may guide the diagnosis and treatment of the myriad of pathologies that can affect the skull base. Objectives The objective of this article is to provide a brief background of the development of MRI and illustrate advances in skull base imaging, including techniques that allow improved conspicuity, characterization, and correlative physiologic assessment of skull base pathologies. Data Synthesis Specific radiographic illustrations of increased skull base conspicuity including the lower cranial nerves, vessels, foramina, cerebrospinal fluid (CSF) leaks, and effacement of endolymph are provided. In addition, MRIs demonstrating characterization of skull base lesions, such as recurrent cholesteatoma versus granulation tissue or abscess versus tumor, are also provided as well as correlative clinical findings in CSF flow studies in a patient pre- and post-suboccipital decompression for a Chiari I malformation. Conclusions This article illustrates MRI radiographic advances over the past 20 years, which have improved clinicians' ability to diagnose, define, and hopefully improve the treatment and outcomes of patients with underlying skull base pathologies. PMID:25992137
Tarsitano, Achille; Pizzigallo, Angelo; Gessaroli, Manlio; Sturiale, Carmelo; Marchetti, Claudio
2012-02-01
Adenoid cystic carcinoma of the salivary glands has a propensity for perineural invasion, which could favor spread along the major cranial nerves, sometimes to the skull base and through the foramina to the brain parenchyma. This study evaluated the relationship between neural spread and relapse in the skull base. During surgery, we performed multiple biopsies with extemporaneous examination of the major nerves close to the tumor to guide the surgical resection. The percentage of actuarial local control at 5 years for patients with a positive named nerve and skull base infiltration was 12.5%, compared with 90.0% in patients who were named nerve-negative and without infiltration of the skull base (P = .001). Our study shows that local control of disease for patients who are named nerve-positive with skull base infiltration is significantly more complex compared with patients who are named nerve-negative without infiltration of the skull base. Copyright © 2012. Published by Mosby, Inc.
Prospective transfrontal sheep model of skull-base reconstruction using vascularized mucosa.
Mueller, Sarina K; Scangas, George; Amiji, Mansor M; Bleier, Benjamin S
2018-05-01
No high-fidelity animal model exists to examine prospective wound healing following vascularized reconstruction of the skull base. Such a model would require the ability to study the prospective behavior of vascularized mucosal repairs of large dural and arachnoid defects within the intranasal environment. The objective of this study was to therefore develop and validate a novel, in vivo, transfrontal sheep model of cranial base repair using vascularized sinonasal mucosa. Twelve transfrontal craniotomy and 1.5-cm durotomy reconstructions were performed in 60-kg to 70-kg Dorset/Ovis Aries sheep using vascularized mucosa with or without an adjunctive Biodesign™ underlay graft (n = 6 per group). Histologic outcomes were graded (scale, 0 to 4) by a blinded veterinary histopathologist after 7, 14, and 28 days for a range of wound healing parameters. All sheep tolerated the surgery, which required 148 ± 33 minutes. By day 7, the mucosa was fully adherent with complete partitioning of the sinus and intracranial compartments. Fibroblast infiltration and flap neovascularization scores significantly increased between day 7 (0.3 ± 0.5 and 0.0 ± 0.0) and day 28 (4.0 ± 0.0, p = 0.01 and 2.0 ± 0.8, p = 0.01; respectively), while hemorrhage scores significantly decreased from 2.5 ± 0.6 to 0.0 ± 0.0 (p = 0.01). The inflammatory scores were not significantly different between the heterologous graft and control sides. The described sheep model accurately reflects prospective intranasal wound healing following vascularized mucosal reconstruction of dural defects. This model can be used in future studies to examine novel reconstructive materials, tissue glues, and transmucosal drug delivery to the central nervous system. © 2017 ARS-AAOA, LLC.
NASA Astrophysics Data System (ADS)
Ahmed, Rafay; Wing Lun Law, Alan; Cheung, Tsz Wing; Lau, Condon
2017-07-01
Subcritical calvarial defects are important to study bone regeneration during healing. In this study 1mm calvarial defects were created using trephine in the parietal bones of Sprague-Dawley rats (n=7) that served as in vivo defects. Subjects were sacrificed after 7 days and the additional defects were created on the harvested skull with the same method to serve as control defects. Raman spectroscopy is established to investigate mineral/matrix ratio, carbonate/phosphate ratio and crystallinity of three different surfaces; in vivo defects, control defects and normal surface. Results show 21% and 23% decrease in mineral/matrix after 7 days of healing from surface to in vivo and control to in vivo defects, respectively. Carbonate to phosphate ratio was found to be increased by 39% while crystallinity decreased by 26% in both surface to in vivo and control to in vivo defects. This model allows to study the regenerated bone without mechanically perturbing healing surface.
Lopez-Serna, Raul; Gomez-Amador, Juan Luis; Barges-Coll, Juan; Arriada-Mendicoa, Nicasio; Romero-Vargas, Samuel; Ramos-Peek, Miguel; Celis-Lopez, Miguel Angel; Revuelta-Gutierrez, Rogelio; Portocarrero-Ortiz, Lesly
2012-08-01
Human sacrifice became a common cultural trait during the advanced phases of Mesoamerican civilizations. This phenomenon, influenced by complex religious beliefs, included several practices such as decapitation, cranial deformation, and the use of human cranial bones for skull mask manufacturing. Archaeological evidence suggests that all of these practices required specialized knowledge of skull base and upper cervical anatomy. The authors conducted a systematic search for information on skull base anatomical and surgical knowledge among Mesoamerican civilizations. A detailed exposition of these results is presented, along with some interesting information extracted from historical documents and pictorial codices to provide a better understanding of skull base surgical practices among these cultures. Paleoforensic evidence from the Great Temple of Tenochtitlan indicates that Aztec priests used a specialized decapitation technique, based on a deep anatomical knowledge. Trophy skulls were submitted through a stepwise technique for skull mask fabrication, based on skull base anatomical landmarks. Understanding pre-Columbian Mesoamerican religions can only be realized by considering them in their own time and according to their own perspective. Several contributions to medical practice might have arisen from anatomical knowledge emerging from human sacrifice and decapitation techniques.
Skull base bony lesions: Management nuances; a retrospective analysis from a Tertiary Care Centre
Singh, Amit Kumar; Srivastava, Arun Kumar; Sardhara, Jayesh; Bhaisora, Kamlesh Singh; Das, Kuntal Kanti; Mehrotra, Anant; Sahu, Rabi Narayan; Jaiswal, Awadhesh Kumar; Behari, Sanjay
2017-01-01
Background: Skull base lesions are not uncommon, but their management has been challenging for surgeons. There is large no of bony tumors at the skull base which has not been studied in detail as a group. These tumors are difficult not only because of their location but also due to their variability in the involvement of important local structure. Through this retrospective analysis from a Tertiary Care Centre, we are summarizing the details of skull base bony lesions and its management nuances. Materials and Methods: The histopathologically, radiologically, and surgically proven cases of skull base bony tumors or lesions involving bone were analyzed from the neurosurgery, neuropathology record of our Tertiary Care Institute from January 2009 to January 2014. All available preoperative and postoperative details were noted from their case files. The extent of excision was ascertained from operation records and postoperative magnetic resonance imaging if available. Results: We have surgically managed 41 cases of skull base bony tumors. It includes 11 patients of anterior skull base, 13 middle skull base, and 17 posterior skull base bony tumors. The most common bony tumor was chordoma 15 (36.6%), followed by fibrous dysplasia 5 (12.2%), chondrosarcoma (12.2%), and ewings sarcoma-peripheral primitive neuroectodermal tumor (EWS-pPNET) five cases (12.2%) each. There were more malignant lesions (n = 29, 70.7%) at skull base than benign (n = 12, 29.3%) lesions. The surgical approach employed depended on location of tumor and pathology. Total mortality was 8 (20%) of whom 5 patients were of histological proven EWS-pPNET. Conclusions: Bony skull base lesion consists of wide variety of lesions, and requires multispecialty management. The complex lesions required tailored approaches surgery of these lesions. With the advent of microsurgical and endoscopic techniques, and use of navigation better outcomes are being seen, but these lesions require further study for development of proper management plan. PMID:28761532
Skull Base Invasion Patterns and Survival Outcomes of Nonmelanoma Skin Cancers
Dundar, Yusuf; Cannon, Richard B.; Monroe, Marcus M.; Buchmann, Luke Oliver; Hunt, Jason Patrick
2016-01-01
Objective Report routes of skull base invasion for head and neck nonmelanoma skin cancers (NMSCs) and their survival outcomes. Design Retrospective. Participants Ninety patients with NMSC with skull base invasion between 2004 and 2014. Major Outcome Measures Demographic, tumor characteristics, and treatments associated with different types of skull base invasion and disease-specific survival (DSS) and overall survival (OS). Results Perineural invasion (PNI) to the skull base occurred in 69% of patients, whereas 38% had direct skull base invasion. Age, histology, orbital invasion, active immunosuppression, cranial nerve (CN) involved, and type of skull base invasion were significantly associated with DSS and OS (p < 0.05). Patients with basal cell carcinoma (BCC) had significantly improved DSS and OS compared with other histologies (p < 0.05). Patients with CN V PNI had significantly improved DSS and OS compared with CN VII PNI (p < 0.05). Patients with zone II PNI had significantly improved DSS and OS compared with those with direct invasion or zone III PNI (p < 0.05). Nonsurgical therapy was rarely used and is associated with a reduction in DSS and OS (p < 0.05). Conclusion Patterns and survival outcomes for NMSC skull base invasion are reported. Zone II PNI, BCC, and CN V PNI are associated with improved survival outcomes. PMID:28321381
Silva, Rafael Denadai Pigozzi DA; Raposo-Amaral, Cesar Augusto; Guidi, Marcelo Campos; Raposo-Amaral, Cassio Eduardo; Buzzo, Celso Luiz
2017-01-01
to present our experience in the surgical treatment of extensive skullcap defects with customized acrylic implants. we conducted a retrospective analysis of patients with extensive skull defects undergoing acrylic cranioplasties between 2004 and 2013. We carefully selected all patients and classified surgical results based on three scales (craniofacial esthetics, improvement of facial symmetry and need for additional surgery). fifteen patients underwent cranioplasty with intraoperative acrylic implants, whether manually customized (46.67%) or made with prototyped three-dimensional biomodels (53.33%). There were two (13.33%) complications (one infection with implant withdrawal and one seroma). We considered the craniofacial aesthetics excellent (50%), the degree of improvement of craniofacial symmetry satisfactory (57.14%), and the overall mean of surgical results according to the need for new surgeries was 1.5±0.52. cranioplasties of patients with extensive skullcap defects should obey careful and predetermined criteria, both for selection and for the acrylic implant customization method. apresentar nossa experiência no tratamento cirúrgico dos defeitos extensos da calota craniana com implantes de acrílico customizados. análise retrospectiva de pacientes com defeitos extensos da calota craniana submetidos à cranioplastias com acrílico entre 2004 e 2013. Todos os pacientes foram criteriosamente selecionados e os resultados cirúrgicos foram classificados com base em três escalas (estética craniofacial, melhora da simetria facial e necessidade de cirurgia adicional). Quinze pacientes foram submetidos à cranioplastia com implantes de acrílico customizados manualmente no intraoperatório (46,67%) e confeccionados com base em biomodelos tridimensionais prototipados (53,33%). Mesmo respeitando critérios de seleção, houve duas (13,33%) complicações (infecção com retirada do implante e seroma). A estética craniofacial foi considerada excelente (50%), o grau de melhora da simetria craniofacial foi considerado satisfatório (57,14%) e a média global dos resultados cirúrgicos de acordo com a necessidade de novas cirurgias foi 1,5±0,52. as cranioplastias dos pacientes com defeitos da calota craniana extensos devem ser criteriosamente indicadas, obedecendo a critérios pré-determinados de seleção dos pacientes, bem como, do método de customização do implante de acrílico.
Bone up: craniomandibular development and hard-tissue biomineralization in neonate mice.
Thompson, Khari D; Weiss-Bilka, Holly E; McGough, Elizabeth B; Ravosa, Matthew J
2017-10-01
The presence of regional variation in the osteogenic abilities of cranial bones underscores the fact that the mechanobiology of the mammalian skull is more complex than previously recognized. However, the relationship between patterns of cranial bone formation and biomineralization remains incompletely understood. In four strains of mice, micro-computed tomography was used to measure tissue mineral density during perinatal development in three skull regions (calvarium, basicranium, mandible) noted for variation in loading environment, embryological origin, and ossification mode. Biomineralization levels increased during perinatal ontogeny in the mandible and calvarium, but did not increase in the basicranium. Tissue mineral density levels also varied intracranially, with density in the mandible being highest, in the basicranium intermediate, and in the calvarium lowest. Perinatal increases in, and elevated levels of, mandibular biomineralization appear related to the impending postweaning need to resist elevated masticatory stresses. Similarly, perinatal increases in calvarial biomineralization may be linked to ongoing brain expansion, which is known to stimulate sutural bone formation in this region. The lack of perinatal increase in basicranial biomineralization could be a result of earlier developmental maturity in the cranial base relative to other skull regions due to its role in supporting the brain's mass throughout ontogeny. These results suggest that biomineralization levels and age-related trajectories throughout the skull are influenced by the functional environment and ontogenetic processes affecting each region, e.g., onset of masticatory loads in the mandible, whereas variation in embryology and ossification mode may only have secondary effects on patterns of biomineralization. Knowledge of perinatal variation in tissue mineral density, and of normal cranial bone formation early in development, may benefit clinical therapies aiming to correct developmental defects and traumatic injuries in the skull, and more generally characterize loading environments and skeletal adaptations in mammals by highlighting the need for multi-level analyses for evaluating functional performance of cranial bone. Copyright © 2017 Elsevier GmbH. All rights reserved.
Biomaterials for craniofacial reconstruction
Neumann, Andreas; Kevenhoerster, Kevin
2011-01-01
Biomaterials for reconstruction of bony defects of the skull comprise of osteosynthetic materials applied after osteotomies or traumatic fractures and materials to fill bony defects which result from malformation, trauma or tumor resections. Other applications concern functional augmentations for dental implants or aesthetic augmentations in the facial region. For ostheosynthesis, mini- and microplates made from titanium alloys provide major advantages concerning biocompatibility, stability and individual fitting to the implant bed. The necessity of removing asymptomatic plates and screws after fracture healing is still a controversial issue. Risks and costs of secondary surgery for removal face a low rate of complications (due to corrosion products) when the material remains in situ. Resorbable osteosynthesis systems have similar mechanical stability and are especially useful in the growing skull. The huge variety of biomaterials for the reconstruction of bony defects makes it difficult to decide which material is adequate for which indication and for which site. The optimal biomaterial that meets every requirement (e.g. biocompatibility, stability, intraoperative fitting, product safety, low costs etc.) does not exist. The different material types are (autogenic) bone and many alloplastics such as metals (mainly titanium), ceramics, plastics and composites. Future developments aim to improve physical and biological properties, especially regarding surface interactions. To date, tissue engineered bone is far from routine clinical application. PMID:22073101
[The Base of the Skull. Rudolf Virchow between Pathology and Anthropology].
Seemann, Sophie
2016-01-01
Throughout his scientific career, the pathologist and anthropologist Rudolf Virchow (1821-1902) examined countless skulls, gradually changing his perspective on this object of research. Initially, he was mainly concerned with pathologically deformed skulls. From the 1850s onwards, he gradually developed a more anthropological approach, and anthropology increasingly came to dominate his scientific interest. This article shows how different influences became central for the establishment of his specific and dynamic model of the human skull development and its successful application in anthropology. Crucial for this process were Virchow's collaboration with his teacher Robert Froriep (1804-1861) in the department of pathology of the Charité, his research on cretinism and rickets, as well as his description of the base of the skull as the center of skull development. His research work was attended by and showed a reciprocal interaction with the buildup of large skull collections. This article uses Virchow's original publications on skull pathology as well as his still preserved skull specimens from the collection of the Berlin Museum of Medical History at the Charité for an integrated text and object based analysis.
Francaviglia, Natale; Maugeri, Rosario; Odierna Contino, Antonino; Meli, Francesco; Fiorenza, Vito; Costantino, Gabriele; Giammalva, Roberto Giuseppe; Iacopino, Domenico Gerardo
2017-01-01
Cranioplasty represents a challenge in neurosurgery. Its goal is not only plastic reconstruction of the skull but also to restore and preserve cranial function, to improve cerebral hemodynamics, and to provide mechanical protection of the neural structures. The ideal material for the reconstructive procedures and the surgical timing are still controversial. Many alloplastic materials are available for performing cranioplasty and among these, titanium still represents a widely proven and accepted choice. The aim of our study was to present our preliminary experience with a "custom-made" cranioplasty, using electron beam melting (EBM) technology, in a series of ten patients. EBM is a new sintering method for shaping titanium powder directly in three-dimensional (3D) implants. To the best of our knowledge this is the first report of a skull reconstruction performed by this technique. In a 1-year follow-up no postoperative complications have been observed and good clinical and esthetic outcomes were achieved. Costs higher than those for other types of titanium mesh, a longer production process, and the greater expertise needed for this technique are compensated by the achievement of most complex skull reconstructions with a shorter operative time.
Model-based surgical planning and simulation of cranial base surgery.
Abe, M; Tabuchi, K; Goto, M; Uchino, A
1998-11-01
Plastic skull models of seven individual patients were fabricated by stereolithography from three-dimensional data based on computed tomography bone images. Skull models were utilized for neurosurgical planning and simulation in the seven patients with cranial base lesions that were difficult to remove. Surgical approaches and areas of craniotomy were evaluated using the fabricated skull models. In preoperative simulations, hand-made models of the tumors, major vessels and nerves were placed in the skull models. Step-by-step simulation of surgical procedures was performed using actual surgical tools. The advantages of using skull models to plan and simulate cranial base surgery include a better understanding of anatomic relationships, preoperative evaluation of the proposed procedure, increased understanding by the patient and family, and improved educational experiences for residents and other medical staff. The disadvantages of using skull models include the time and cost of making the models. The skull models provide a more realistic tool that is easier to handle than computer-graphic images. Surgical simulation using models facilitates difficult cranial base surgery and may help reduce surgical complications.
Zuckerman, Scott L; Bilsky, Mark H; Laufer, Ilya
2018-05-01
Chordomas are rare primary bone tumors that arise from the axial skeleton. Our objective was to analyze trends in radiation and surgery over time and determine location-based survival predictors for chordomas of the skull base, mobile spine, and sacrum. A retrospective cohort study of the SEER (Surveillance Epidemiology and End Results) database from 1973 to 2013 was conducted. All patients had histologically confirmed chordomas. The principal outcome measure was overall survival (OS). The cohort included 1616 patients: skull base (664), mobile spine (444), and sacrum (508). Skull base tumors presented earliest in life (47.4 years) and sacral tumors presented latest (62.7 years). Rates of radiation remained stable for skull base and mobile spine tumors but declined for sacral tumors (P = 0.006). Rates of surgical resection remained stable for skull base and sacral tumors but declined for mobile spine tumors (P = 0.046). Skull base chordomas had the longest median survival (162 months) compared with mobile spine (94 months) and sacral tumors (87 months). Being married was independently associated with improved OS for skull base tumors (hazard ratio, 0.73; 95% confidence interval, 0.53-0.99; P = 0.044). Surgical resection was independently associated with improved OS for sacral chordomas (hazard ratio, 0.48; 95% confidence interval, 0.34-0.69; P < 0.001). Surgical resection for mobile spine chordomas and radiation for sacral chordomas decreased over time. Patients with skull base tumors survived longer than did patients with mobile spine and sacral chordomas, and surgical resection was associated with improved survival in sacral chordomas only. Understanding the behavior of these tumors can help cranial and spinal surgeons improve treatment in this patient population. Copyright © 2018 Elsevier Inc. All rights reserved.
[Three-dimensional endoscopic endonasal study of skull base anatomy].
Abarca-Olivas, Javier; Monjas-Cánovas, Irene; López-Álvarez, Beatriz; Lloret-García, Jaime; Sanchez-del Campo, Jose; Gras-Albert, Juan Ramon; Moreno-López, Pedro
2014-01-01
Training in dissection of the paranasal sinuses and the skull base is essential for anatomical understanding and correct surgical techniques. Three-dimensional (3D) visualisation of endoscopic skull base anatomy increases spatial orientation and allows depth perception. To show endoscopic skull base anatomy based on the 3D technique. We performed endoscopic dissection in cadaveric specimens fixed with formalin and with the Thiel technique, both prepared using intravascular injection of coloured material. Endonasal approaches were performed with conventional 2D endoscopes. Then we applied the 3D anaglyph technique to illustrate the pictures in 3D. The most important anatomical structures and landmarks of the sellar region under endonasal endoscopic vision are illustrated in 3D images. The skull base consists of complex bony and neurovascular structures. Experience with cadaver dissection is essential to understand complex anatomy and develop surgical skills. A 3D view constitutes a useful tool for understanding skull base anatomy. Copyright © 2012 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.
Application of CUSA Excel ultrasonic aspiration system in resection of skull base meningiomas.
Tang, Hailiang; Zhang, Haishi; Xie, Qing; Gong, Ye; Zheng, Mingzhe; Wang, Daijun; Zhu, Hongda; Chen, Xiancheng; Zhou, Liangfu
2014-12-01
Here, we introduced our short experience on the application of a new CUSA Excel ultrasonic aspiration system, which was provided by Integra Lifesciences corporation, in skull base meningiomas resection. Ten patients with anterior, middle skull base and sphenoid ridge meningioma were operated using the CUSA Excel ultrasonic aspiration system at the Neurosurgery Department of Shanghai Huashan Hospital from August 2014 to October 2014. There were six male and four female patients, aged from 38 to 61 years old (the mean age was 48.5 years old). Five cases with tumor located at anterior skull base, three cases with tumor on middle skull base, and two cases with tumor on sphenoid ridge. All the patents received total resection of meningiomas with the help of this new tool, and the critical brain vessels and nerves were preserved during operations. All the patients recovered well after operation. This new CUSA Excel ultrasonic aspiration system has the advantage of preserving vital brain arteries and cranial nerves during skull base meningioma resection, which is very important for skull base tumor operations. This key step would ensure a well prognosis for patients. We hope the neurosurgeons would benefit from this kind of technique.
Sahoo, Debasis; Deck, Caroline; Yoganandan, Narayan; Willinger, Rémy
2013-12-01
A composite material model for skull, taking into account damage is implemented in the Strasbourg University finite element head model (SUFEHM) in order to enhance the existing skull mechanical constitutive law. The skull behavior is validated in terms of fracture patterns and contact forces by reconstructing 15 experimental cases. The new SUFEHM skull model is capable of reproducing skull fracture precisely. The composite skull model is validated not only for maximum forces, but also for lateral impact against actual force time curves from PMHS for the first time. Skull strain energy is found to be a pertinent parameter to predict the skull fracture and based on statistical (binary logistical regression) analysis it is observed that 50% risk of skull fracture occurred at skull strain energy of 544.0mJ. © 2013 Elsevier Ltd. All rights reserved.
Mori, Kentaro; Yamamoto, Takuji; Oyama, Kazutaka; Ueno, Hideaki; Nakao, Yasuaki; Honma, Keiichirou
2008-12-01
Experience with dissection of the cavernous sinus and the temporal bone is essential for training in skull base surgery, but the opportunities for cadaver dissection are very limited. A modification of a commercially available prototype three-dimensional (3D) skull base model, made by a selective laser sintering method and incorporating surface details and inner bony structures such as the inner ear structures and air cells, is proposed to include artificial dura mater, cranial nerves, venous sinuses, and the internal carotid artery for such surgical training. The transpetrosal approach and epidural cavernous sinus surgery (Dolenc's technique) were performed on this modified model using a high speed drill or ultrasonic bone curette under an operating microscope. The model could be dissected in almost the same way as a real cadaver. The modified 3D skull base model provides a good educational tool for training in skull base surgery.
Harvey Cushing's Approaches to Tumors in His Early Career: From the Skull Base to the Cranial Vault
Pendleton, Courtney; Raza, Shaan M.; Gallia, Gary L.; Quiñones-Hinojosa, Alfredo
2011-01-01
In this report, we review Dr. Cushing's early surgical cases at the Johns Hopkins Hospital, revealing details of his early operative approaches to tumors of the skull base and cranial vault. Following Institutional Review Board approval, and through the courtesy of the Alan Mason Chesney Archives, we reviewed the Johns Hopkins Hospital surgical files from 1896 to 1912. Participants included four adult patients and one child who underwent surgical resection of bony tumors of the skull base and the cranial vault. The main outcome measures were operative approach and condition recorded at the time of discharge. The indications for surgery included unspecified malignant tumor of the basal meninges and temporal bone, basal cell carcinoma, osteoma of the posterior skull base, and osteomas of the frontal and parietofrontal cranial vault. While Cushing's experience with selected skull base pathology has been previously reported, the breadth of his contributions to operative approaches to the skull base has been neglected. PMID:22470271
[Roberts-SC phocomelia syndrome].
Musfeld, D A; Bühler, E M; Heinzl, S
2001-01-01
The Roberts-SC phocomelia syndrome is a rare autosomal recessive inherited disorder clinically manifested by tetraphocomelia, pre- and postnatal growth retardation, and craniofacial abnormalities (skull, eyes, lip, and palate), accompanied at times by centromer puffing and splitting, renal abnormalities, heart defect, clitoral or penile enlargement, and bilateral corneal opacities. Mental retardation is common in surviving patients.
Amanullah, Shabbir; Delva, Nicholas; McRae, Harold; Campbell, Laura A; Cole, Julie
2012-01-01
Head injury is often associated with psychiatric morbidity. While it is well understood that the loss of critical areas of the brain may play a role in cognitive dysfunction and change in personality, head injury can also have profound effects on mood and cognition. The role of medications in the treatment of mood disorders associated with brain injury is well documented, and there is also evidence favoring the use of electroconvulsive therapy (ECT) in this context. However, data are limited on the use of ECT in patients with skull defects or metallic head implants. First, a review of the literature on use of ECT in patients with metallic head implants is provided. Electronic databases and online sites, including PubMed, Cochrane Library of Systematic Reviews, and UpToDate, were used to search for relevant articles and case reports on the use of ECT in patients with and without metallic implants in the head (1964 to 2009). The search terms electroconvulsive, electroconvulsive therapy, ECT, electroshock therapy, EST, head injury, brain injury, metallic plates, metallic implants, skull prosthesis, and depression were used interchangeably. The search produced 7 articles discussing exclusively the use of ECT in patients with a metallic skull plate. Second, the case of the successful and safe use of ECT in an individual with a previous history of brain trauma and metallic plate implantation is described. Most cases of head injury are managed by neurologists and rehabilitation consultants; the more severe cases of depression and other mood disorders tend to be referred for specialist psychiatric care. With greater degrees of deficit following head injury, management becomes more complicated. Our patient showed positive results with ECT, including improvement in depressive features and resolution of suicidal ideas/plans. ECT is an effective and safe alternative in patients with a history of brain trauma and metallic plate implantation who subsequently develop treatment-resistant depression and associated suicidal ideas or plans refractory to management with medications.
Imaging review of cerebrospinal fluid leaks
Vemuri, Naga V; Karanam, Lakshmi S P; Manchikanti, Venkatesh; Dandamudi, Srinivas; Puvvada, Sampath K; Vemuri, Vineet K
2017-01-01
Cerebrospinal fluid (CSF) leak occurs due to a defect in the dura and skull base. Trauma remains the most common cause of CSF leak; however, a significant number of cases are iatrogenic, and result from a complication of functional endoscopic sinus surgery (FESS). Early diagnosis of CSF leak is of paramount importance to prevent life-threatening complications such as brain abscess and meningitis. Imaging plays a crucial role in the detection and characterization of CSF leaks. Three-dimensional, isotropic, high resolution computed tomography (HRCT) accurately detects the site and size of the bony defect. CT cisternography, though invasive, helps accurately identify the site of CSF leak, especially in the presence of multiple bony defects. Magnetic resonance imaging (MRI) accurately detects CSF leaks and associated complications such as the encephaloceles and meningoceles. In this review, we emphasize the importance and usefulness of 3D T2 DRIVE MR cisternography in localizing CSF leaks. This sequence has the advantages of effective bone and fat suppression, decreased artefacts, faster acquisition times, three-dimensional capability, y and high spatial resolution in addition to providing very bright signal from the CSF. PMID:29379240
Imaging review of cerebrospinal fluid leaks.
Vemuri, Naga V; Karanam, Lakshmi S P; Manchikanti, Venkatesh; Dandamudi, Srinivas; Puvvada, Sampath K; Vemuri, Vineet K
2017-01-01
Cerebrospinal fluid (CSF) leak occurs due to a defect in the dura and skull base. Trauma remains the most common cause of CSF leak; however, a significant number of cases are iatrogenic, and result from a complication of functional endoscopic sinus surgery (FESS). Early diagnosis of CSF leak is of paramount importance to prevent life-threatening complications such as brain abscess and meningitis. Imaging plays a crucial role in the detection and characterization of CSF leaks. Three-dimensional, isotropic, high resolution computed tomography (HRCT) accurately detects the site and size of the bony defect. CT cisternography, though invasive, helps accurately identify the site of CSF leak, especially in the presence of multiple bony defects. Magnetic resonance imaging (MRI) accurately detects CSF leaks and associated complications such as the encephaloceles and meningoceles. In this review, we emphasize the importance and usefulness of 3D T2 DRIVE MR cisternography in localizing CSF leaks. This sequence has the advantages of effective bone and fat suppression, decreased artefacts, faster acquisition times, three-dimensional capability, y and high spatial resolution in addition to providing very bright signal from the CSF.
Piezosurgery for the repair of middle cranial fossa meningoencephaloceles.
Acharya, Aanand N; Rajan, Gunesh P
2015-03-01
To describe the use of a piezosurgery medical device to perform a craniotomy and produce a split calvarial graft for the repair of middle cranial fossa meningoencephaloceles. Retrospective case review. Tertiary referral hospital. Ten consecutive patients undergoing middle cranial fossa approach for the repair of meningoencephaloceles. Therapeutic. Intraoperative and postoperative complications, success rate as defined by the ability to fashion a split calvarial graft that achieves complete closure of the tegmen defect. As a secondary outcome measure, evidence of integration of the split calvarial bone graft with the adjacent skull base was assessed. There were no intraoperative or postoperative complications. An appropriately sized calvarial bone graft was produced, and complete closure of the tegmen defect was achieved in all 10 cases. Computed tomography demonstrated evidence of integration of the bone graft in eight cases between 4 and 9 months after surgery. The piezosurgery medical device provides a safe and effective means by which the middle fossa craniotomy and split calvarial bone graft can be produced to repair defects of the middle fossa tegmen, with integration of the bone graft in the majority of cases.
Application of CUSA Excel ultrasonic aspiration system in resection of skull base meningiomas
Tang, Hailiang; Zhang, Haishi; Xie, Qing; Zheng, Mingzhe; Wang, Daijun; Zhu, Hongda; Chen, Xiancheng; Zhou, Liangfu
2014-01-01
Background Here, we introduced our short experience on the application of a new CUSA Excel ultrasonic aspiration system, which was provided by Integra Lifesciences corporation, in skull base meningiomas resection. Methods Ten patients with anterior, middle skull base and sphenoid ridge meningioma were operated using the CUSA Excel ultrasonic aspiration system at the Neurosurgery Department of Shanghai Huashan Hospital from August 2014 to October 2014. There were six male and four female patients, aged from 38 to 61 years old (the mean age was 48.5 years old). Five cases with tumor located at anterior skull base, three cases with tumor on middle skull base, and two cases with tumor on sphenoid ridge. Results All the patents received total resection of meningiomas with the help of this new tool, and the critical brain vessels and nerves were preserved during operations. All the patients recovered well after operation. Conclusions This new CUSA Excel ultrasonic aspiration system has the advantage of preserving vital brain arteries and cranial nerves during skull base meningioma resection, which is very important for skull base tumor operations. This key step would ensure a well prognosis for patients. We hope the neurosurgeons would benefit from this kind of technique. PMID:25561762
Duan, Yuanyuan; Chandran, Ravi; Cherry, Denise
The purpose of this study was to create three-dimensional composite models of quad zygomatic implant-supported maxillary prostheses with a variety of alveolar bone defects around implant sites, and to investigate the stress distribution in the surrounding bone using the finite element analysis (FEA) method. Three-dimensional models of titanium zygomatic implants, maxillary prostheses, and human skulls were created and assembled using Mimics based on microcomputed tomography and cone beam computed tomography images. A variety of additional bone defects were created at the locations of four zygomatic implants to simulate multiple clinical scenarios. The volume meshes were created and exported into FEA software. Material properties were assigned respectively for all the structures, and von Mises stress data were collected and plotted in the postprocessing module. The maximum stress in the surrounding bone was located in the crestal bone around zygomatic implants. The maximum stress in the prostheses was located at the angled area of the implant-abutment connection. The model with anterior defects had a higher peak stress value than the model with posterior defects. All the models with additional bone defects had higher maximum stress values than the control model without additional bone loss. Additional alveolar bone loss has a negative influence on the stress concentration in the surrounding bone of quad zygomatic implant-supported prostheses. More care should be taken if these additional bone defects are at the sites of anterior zygomatic implants.
Management Strategies for Skull Base Inverted Papilloma.
Grayson, Jessica W; Khichi, Sunny S; Cho, Do-Yeon; Riley, Kristen O; Woodworth, Bradford A
2016-07-01
Inverted papilloma attached to the ventral skull base presents a surgical dilemma because surgical removal of the bony pedicle is critical to decrease risk of recurrence. The objective of this study is to evaluate the effectiveness of endoscopic management of skull base inverted papilloma. Case series with planned data collection. Tertiary medical center. Patients with skull base inverted papilloma. Over 7 years, 49 patients with skull base inverted papilloma were referred for surgical resection. Demographics, operative technique, pathology, complications, recurrence, and postoperative follow-up were evaluated. Average age at presentation was 57 years. Twenty-six patients (53%) had prior attempts at resection elsewhere, and 5 had squamous cell carcinoma (SCCA) arising in an inverted papilloma. Six patients (12%) suffered major complications, including skull base osteomyelitis in 2 previously irradiated patients, cerebrospinal fluid leak with pneumocephalus (n = 1), meningitis (n = 1), invasive fungal sinusitis (n = 1), and cerebrovascular accident (n = 1). The mean disease-free interval was 29 months (range, 10-78 months). One patient with SCCA recurred in the nasopharynx (overall 2% recurrence rate). He is disease-free 3 years following endoscopic nasopharyngectomy. Three patients with SCCA had endoscopic resection of the skull base, while 1 subject with inverted papilloma pedicled on the superior orbital roof had an osteoplastic flap in conjunction with a Draf III procedure. All others received endoscopic resection. Removal of the bony pedicle resulted in excellent local control of skull base inverted papillomas. Our experience demonstrates that disease eradication with limited morbidity is attainable with this approach. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.
Endoscopic skull base training using 3D printed models with pre-existing pathology.
Narayanan, Vairavan; Narayanan, Prepageran; Rajagopalan, Raman; Karuppiah, Ravindran; Rahman, Zainal Ariff Abdul; Wormald, Peter-John; Van Hasselt, Charles Andrew; Waran, Vicknes
2015-03-01
Endoscopic base of skull surgery has been growing in acceptance in the recent past due to improvements in visualisation and micro instrumentation as well as the surgical maturing of early endoscopic skull base practitioners. Unfortunately, these demanding procedures have a steep learning curve. A physical simulation that is able to reproduce the complex anatomy of the anterior skull base provides very useful means of learning the necessary skills in a safe and effective environment. This paper aims to assess the ease of learning endoscopic skull base exposure and drilling techniques using an anatomically accurate physical model with a pre-existing pathology (i.e., basilar invagination) created from actual patient data. Five models of a patient with platy-basia and basilar invagination were created from the original MRI and CT imaging data of a patient. The models were used as part of a training workshop for ENT surgeons with varying degrees of experience in endoscopic base of skull surgery, from trainees to experienced consultants. The surgeons were given a list of key steps to achieve in exposing and drilling the skull base using the simulation model. They were then asked to list the level of difficulty of learning these steps using the model. The participants found the models suitable for learning registration, navigation and skull base drilling techniques. All participants also found the deep structures to be accurately represented spatially as confirmed by the navigation system. These models allow structured simulation to be conducted in a workshop environment where surgeons and trainees can practice to perform complex procedures in a controlled fashion under the supervision of experts.
Imaging of skull base lesions.
Kelly, Hillary R; Curtin, Hugh D
2016-01-01
Skull base imaging requires a thorough knowledge of the complex anatomy of this region, including the numerous fissures and foramina and the major neurovascular structures that traverse them. Computed tomography (CT) and magnetic resonance imaging (MRI) play complementary roles in imaging of the skull base. MR is the preferred modality for evaluation of the soft tissues, the cranial nerves, and the medullary spaces of bone, while CT is preferred for demonstrating thin cortical bone structure. The anatomic location and origin of a lesion as well as the specific CT and MR findings can often narrow the differential diagnosis to a short list of possibilities. However, the primary role of the imaging specialist in evaluating the skull base is usually to define the extent of the lesion and determine its relationship to vital neurovascular structures. Technologic advances in imaging and radiation therapy, as well as surgical technique, have allowed for more aggressive approaches and improved outcomes, further emphasizing the importance of precise preoperative mapping of skull base lesions via imaging. Tumors arising from and affecting the cranial nerves at the skull base are considered here. © 2016 Elsevier B.V. All rights reserved.
Microsurgical resection of skull base meningioma-expanding the operative corridor.
Raheja, Amol; Couldwell, William T
2016-11-01
A better understanding of surgical anatomy, marked improvement in illumination devices, provision of improved hemostatic agents, greater availability of more precise surgical instruments, and better modalities for skull base reconstruction have led to an inevitable evolution of skull base neurosurgery. For the past few decades, many skull base neurosurgeons have worked relentlessly to improve the surgical approach and trajectory for the expansion of operative corridor. With the advent of newer techniques and their rapid adaptation, it is foundational, especially for young neurosurgeons, to understand the basics and nuances of modifications of traditional neurosurgical approaches. The goal of this topic review is to discuss the evolution of, concepts in, and technical nuances regarding the operative corridor expansion in the field of skull base surgery for intracranial meningioma as they pertain to achieving optimal functional outcome.
Snyderman, Carl H; Wang, Eric W; Fernandez-Miranda, Juan C; Gardner, Paul A
2017-04-01
The management of sinonasal and ventral skull base malignancies is best performed by a team. Although the composition of the team may vary, it is important to have multidisciplinary representation. There are multiple obstacles, both individual and institutional, that must be overcome to develop a highly functioning team. Adequate training is an important part of team-building and can be fostered with surgical telementoring. A quality improvement program should be incorporated into the activities of a skull base team. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhang, Shu-xu; Han, Peng-hui; Zhang, Guo-qian; Wang, Rui-hao; Ge, Yong-bin; Ren, Zhi-gang; Li, Jian-sheng; Fu, Wen-hai
2014-01-01
Early detection of skull base invasion in nasopharyngeal carcinoma (NPC) is crucial for correct staging, assessing treatment response and contouring the tumor target in radiotherapy planning, as well as improving the patient's prognosis. To compare the diagnostic efficacy of single photon emission computed tomography/computed tomography (SPECT/CT) imaging, magnetic resonance imaging (MRI) and computed tomography (CT) for the detection of skull base invasion in NPC. Sixty untreated patients with histologically proven NPC underwent SPECT/CT imaging, contrast-enhanced MRI and CT. Of the 60 patients, 30 had skull base invasion confirmed by the final results of contrast-enhanced MRI, CT and six-month follow-up imaging (MRI and CT). The diagnostic efficacy of the three imaging modalities in detecting skull base invasion was evaluated. The rates of positive findings of skull base invasion for SPECT/CT, MRI and CT were 53.3%, 48.3% and 33.3%, respectively. The sensitivity, specificity and accuracy were 93.3%, 86.7% and 90.0% for SPECT/CT fusion imaging, 96.7%, 100.0% and 98.3% for contrast-enhanced MRI, and 66.7%, 100.0% and 83.3% for contrast-enhanced CT. MRI showed the best performance for the diagnosis of skull base invasion in nasopharyngeal carcinoma, followed closely by SPECT/CT. SPECT/CT had poorer specificity than that of both MRI and CT, while CT had the lowest sensitivity.
High activity iodine 125 endocurietherapy for recurrent skull base tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, P.P.; Good, R.R.; Leibrock, L.G.
1988-04-15
Experience with endocurietherapy of skull base tumors is reviewed. We present our cases of recurrent pituitary hemangiopericytoma, radiation-induced recurrent meningioma, recurrent clival chordoma, recurrent nasopharyngeal cancer involving the cavernous sinus, and recurrent parotid carcinoma of the skull base which were all successfully retreated with high-activity 125-iodine (I-125) permanent implantation.76 references.
[Endonasal skull base endoscopy].
Simal-Julián, Juan Antonio; Miranda-Lloret, Pablo; Pancucci, Giovanni; Evangelista-Zamora, Rocío; Pérez-Borredá, Pedro; Sanromán-Álvarez, Pablo; Perez-de-Sanromán, Laila; Botella-Asunción, Carlos
2013-01-01
The endoscopic endonasal techniques used in skull base surgery have evolved greatly in recent years. Our study objective was to perform a qualitative systematic review of the likewise systematic reviews in published English language literature, to examine the evidence and conclusions reached in these studies comparing transcranial and endoscopic approaches in skull base surgery. We searched the references on the MEDLINE and EMBASE electronic databases selecting the systematic reviews, meta-analyses and evidence based medicine reviews on skull based pathologies published from January 2000 until January 2013. We focused on endoscopic impact and on microsurgical and endoscopic technique comparisons. Full endoscopic endonasal approaches achieved gross total removal rates of craniopharyngiomas and chordomas higher than those for transcranial approaches. In anterior skull base meningiomas, complete resections were more frequently achieved after transcranial approaches, with a trend in favour of endoscopy with respect to visual prognosis. Endoscopic endonasal approaches minimised the postoperative complications after the treatment of cerebrospinal fluid (CSF) leaks, encephaloceles, meningoceles, craniopharyngiomas and chordomas, with the exception of postoperative CSF leaks. Randomized multicenter studies are necessary to resolve the controversy over endoscopic and microsurgical approaches in skull base surgery. Copyright © 2013 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.
Luo, Fengtao; Xie, Yangli; Xu, Wei; Huang, Junlan; Zhou, Siru; Wang, Zuqiang; Luo, Xiaoqing; Liu, Mi; Chen, Lin; Du, Xiaolan
2017-01-01
Apert syndrome (AS) is a common genetic syndrome in humans characterized with craniosynostosis. Apert patients and mouse models showed abnormalities in sutures, cranial base and brain, that may all be involved in the pathogenesis of skull malformation of Apert syndrome. To distinguish the differential roles of these components of head in the pathogenesis of the abnormal skull morphology of AS, we generated mouse strains specifically expressing mutant FGFR2 in chondrocytes, osteoblasts, and progenitor cells of central nervous system (CNS) by crossing Fgfr2+/P253R-Neo mice with Col2a1-Cre, Osteocalcin-Cre (OC-Cre), and Nestin-Cre mice, respectively. We then quantitatively analyzed the skull and brain morphology of these mutant mice by micro-CT and micro-MRI using Euclidean distance matrix analysis (EDMA). Skulls of Col2a1-Fgfr2+/P253R mice showed Apert syndrome-like dysmorphology, such as shortened skull dimensions along the rostrocaudal axis, shortened nasal bone, and evidently advanced ossification of cranial base synchondroses. The OC-Fgfr2+/P253R mice showed malformation in face at 8-week stage. Nestin-Fgfr2+/P253R mice exhibited increased dorsoventral height and rostrocaudal length on the caudal skull and brain at 8 weeks. Our study indicates that the abnormal skull morphology of AS is caused by the combined effects of the maldevelopment in calvarias, cranial base, and brain tissue. These findings further deepen our knowledge about the pathogenesis of the abnormal skull morphology of AS, and provide new clues for the further analyses of skull phenotypes and clinical management of AS. PMID:28123344
Luo, Fengtao; Xie, Yangli; Xu, Wei; Huang, Junlan; Zhou, Siru; Wang, Zuqiang; Luo, Xiaoqing; Liu, Mi; Chen, Lin; Du, Xiaolan
2017-01-01
Apert syndrome (AS) is a common genetic syndrome in humans characterized with craniosynostosis. Apert patients and mouse models showed abnormalities in sutures, cranial base and brain, that may all be involved in the pathogenesis of skull malformation of Apert syndrome. To distinguish the differential roles of these components of head in the pathogenesis of the abnormal skull morphology of AS, we generated mouse strains specifically expressing mutant FGFR2 in chondrocytes, osteoblasts, and progenitor cells of central nervous system (CNS) by crossing Fgfr2 +/P253R-Neo mice with Col2a1-Cre, Osteocalcin-Cre (OC-Cre), and Nestin-Cre mice, respectively. We then quantitatively analyzed the skull and brain morphology of these mutant mice by micro-CT and micro-MRI using Euclidean distance matrix analysis (EDMA). Skulls of Col2a1-Fgfr2 +/P253R mice showed Apert syndrome-like dysmorphology, such as shortened skull dimensions along the rostrocaudal axis, shortened nasal bone, and evidently advanced ossification of cranial base synchondroses. The OC-Fgfr2 +/P253R mice showed malformation in face at 8-week stage. Nestin-Fgfr2 +/P253R mice exhibited increased dorsoventral height and rostrocaudal length on the caudal skull and brain at 8 weeks. Our study indicates that the abnormal skull morphology of AS is caused by the combined effects of the maldevelopment in calvarias, cranial base, and brain tissue. These findings further deepen our knowledge about the pathogenesis of the abnormal skull morphology of AS, and provide new clues for the further analyses of skull phenotypes and clinical management of AS.
Lumbar subarachnoid drainage in cerebrospinal fluid leaks after lateral skull base surgery.
Allen, Kyle P; Isaacson, Brandon; Purcell, Patricia; Kutz, Joe Walter; Roland, Peter S
2011-12-01
To determine the efficacy of lumbar drainage in managing cerebrospinal fluid (CSF) leak after lateral skull base surgery. Retrospective case review. Academic tertiary referral center. Patients who had a lumbar subarachnoid drain placed after a lateral skull base procedure between July 1999 and February 2010 were included. Patients were identified by searching medical records for lateral skull base approach Current Procedural Terminology codes. The following variables were recorded for each subject: diagnosis, type of lateral skull base operation, duration of lumbar drainage, need for revision surgery, and presence of meningitis. Successful cessation of postoperative CSF leakage. Five hundred eight charts were reviewed, and 63 patients were identified who received a lumbar drain after a lateral skull base operation. The most common diagnosis was acoustic neuroma in 61.9%. The most common skull base approaches were the translabyrinthine, middle fossa, and transpetrosal approaches. Approximately 60.3% of patients had CSF rhinorrhea, 23.8% had an incisional leak, and 14.3% had otorrhea. The mean duration of lumbar drainage was 4.6 days. Forty eight (76.2%) study subjects had resolution of their CSF leak with lumbar drainage. Fifteen patients (23.8%) required revision surgery to stop the CSF leak. Lumbar drainage was successful in 90% of leaks after the translabyrinthine approach but in only 50% of those undergoing a suboccipital approach, which was a statistically significant difference. Postoperative CSF leaks after lateral skull base surgery can be managed with a lumbar subarachnoid drain in a majority of cases but is more successful after the translabyrinthine than the suboccipital approach. Recurrent CSF leaks after lumbar drainage is likely to require a revision operation.
Zhang, Qiu-Hang; Wang, Zhen-Lin; Guo, Hong-Chuan; Kong, Feng; Yan, Bo; Li, Ming-Chu; Chen, Ge; Liang, Jian-Tao; Bao, Yu-Hai; Ling, Feng
2017-01-01
Background: Some problems have been found in the usually adopted combined approach for the removal of intra-extracranial tumors in skull base. Herein, we described a pure endoscopic transnasal or transoral approach (ETA) for the removal of intra-extracranial tumors in various skull base regions. Methods: Retrospectively, clinical data, major surgical complications, pre- and postoperative images, and follow-up information of a series of 85 patients with intra-extracranial tumors in various skull base regions who were treated by surgery via ETA in our skull base center during the past 10 years were reviewed and analyzed. Results: Gross total tumor removal was achieved in 80/85 cases (94.1%) in this study. All 37 cases with tumors in anterior skull base and all 14 cases with tumors in jugular foramen received total tumor removal. Thirteen and three cases with tumors in clivus received total and subtotal tumor removal, respectively. Total and subtotal tumor removal was performed for 16 cases and 2 cases in lateral skull base, respectively. The complications in this study included: cerebrospinal fluid leakage (n = 3), meningitis (n = 3), and new cranial nerve deficits (n = 3; recovered in 3 months after surgery). In the follow-up period of 40–151 months (median: 77 months), seven patients (8.8%) out of the 80 cases of total tumor removal experienced recurrence. Conclusions: Complete resection of intra-extracranial growing tumors in various skull base regions can be achieved via the pure ETA in one stage in selected cases. Surgical procedure for radical removal of tumors is feasible and safe. PMID:29237926
Minimally invasive surgery of the anterior skull base: transorbital approaches
Gassner, Holger G.; Schwan, Franziska; Schebesch, Karl-Michael
2016-01-01
Minimally invasive approaches are becoming increasingly popular to access the anterior skull base. With interdisciplinary cooperation, in particular endonasal endoscopic approaches have seen an impressive expansion of indications over the past decades. The more recently described transorbital approaches represent minimally invasive alternatives with a differing spectrum of access corridors. The purpose of the present paper is to discuss transorbital approaches to the anterior skull base in the light of the current literature. The transorbital approaches allow excellent exposure of areas that are difficult to reach like the anterior and posterior wall of the frontal sinus; working angles may be more favorable and the paranasal sinus system can be preserved while exposing the skull base. Because of their minimal morbidity and the cosmetically excellent results, the transorbital approaches represent an important addition to established endonasal endoscopic and open approaches to the anterior skull base. Their execution requires an interdisciplinary team approach. PMID:27453759
Senck, Sascha; Coquerelle, Michael; Weber, Gerhard W; Benazzi, Stefano
2013-05-01
Despite the development of computer-based methods, cranial reconstruction of very large skull defects remains a challenge particularly if the damage affects the midsagittal region hampering the usage of mirror imaging techniques. This pilot study aims to deliver a new method that goes beyond mirror imaging, giving the possibility to reconstruct crania characterized by large missing areas, which might be useful in the fields of paleoanthropology, bioarcheology, and forensics. We test the accuracy of digital reconstructions in cases where two-thirds or more of a human cranium were missing. A three-dimensional (3D) virtual model of a human cranium was virtually damaged twice to compare two destruction-reconstruction scenarios. In the first case, a small fraction of the midsagittal region was still preserved, allowing the application of mirror imaging techniques. In the second case, the damage affected the complete midsagittal region, which demands a new approach to estimate the position of the midsagittal plane. Reconstructions were carried out using CT scans from a sample of modern humans (12 males and 13 females), to which 3D digital modeling techniques and geometric morphometric methods were applied. As expected, the second simulation showed a larger variability than the first one, which underlines the fact that the individual midsagittal plane is of course preferable in order to minimize the reconstruction error. However, in both simulations the Procrustes mean shape was an effective reference for the reconstruction of the entire cranium, producing models that showed a remarkably low error of about 3 mm, given the extent of missing data. Copyright © 2013 Wiley Periodicals, Inc.
Marshall, Amanda-Lynn; Setty, Pradeep; Hnatiuk, Mark; Pieper, Daniel R
2017-07-01
Frontoethmoidal encephalocele is a congenital abnormality of the anterior skull base involving herniation of cranial contents through a midline skull defect. Patency of the foramen cecum, along with other multifactorial variables, contributes to the development of frontoethmoidal encephaloceles. Because of limited resources, financial constraints, and lack of surgical expertise, repair of frontoethmoidal encephaloceles is limited in developing countries. Between 2008 and 2013 an interdisciplinary team composed of neurosurgeons, craniofacial surgeons, otolaryngologists, plastic surgeons, and nursing personnel, conducted surgical mission trips to Davao City in Mindanao, Philippines. All patients underwent a combined extracranial/intracranial surgical approach, performed in tandem by a neurosurgeon and a craniofacial surgeon, to detach and remove the encephalocele. This procedure was followed by reconstruction of the craniofacial defects. A total of 30 cases of frontoethmoidal encephalocele were repaired between 2008 and 2013 (20 male; 10 female). The average age at operation was 8.7 years, with 7 patients older than 17 years. Of the 3 subtypes, the following breakdown was observed in patients: 18 nasoethmoidal; 9 nasofrontal; and 3 naso-orbital. Several patients showed concurrent including enlarged ventricles, arachnoid cysts (both unilateral and bilateral), and gliotic changes, as well as orbit and bulbus oculi (globe) deformities. There were no operative-associated mortalities or neurologic deficits, infections, or hydrocephalus on follow-up during subsequent trips. Despite the limitations of performing advanced surgery in a developing country, the combined interdisciplinary surgical approach has offered effective treatment to improve physical appearance and psychological well-being in afflicted patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Mimix hydroxyapatite cement use in the reconstruction of the craniofacial skeleton.
Mann, Robert J; Blount, Andrew L; Neaman, Keith C; Korepta, Lindsey
2011-11-01
Reconstruction of the craniofacial skeleton has undergone a significant evolution during the past century. Initially, the use of autogenous bone grafts from various sites was the criterion standard. However, owing to donor site morbidity and lack of sufficient bone for large defects, surgeons have relied on various bone substitutes. Hydroxyapatite (HA) has served as an alternative to autogenous grafts, but questions regarding biocompatibility, risk of infection, and slow set times have hampered its acceptance. This article serves as a review of a single surgeon's experience using HA in the craniofacial skeleton. Eighteen patients receiving HA between March 2000 and November 2006 were observed. Sixteen underwent recontouring of skull-based bone defects, and 2 underwent recontouring for nasal and alveolar defects. The mean amount of HA used in each patient was 30.2 g. For large contour irregularities, the maximum thickness of HA used was 8 mm. The size of bone defects ameliorated averaged 4.8 cm(2). Complications occurred in 3 (16.7%) of 18 patients and included scalp hematoma and superficial cellulitis. In addition, 1 patient developed a facial abscess after placement along the alveolar floor, which necessitated removal. Hydroxyapatite represents a viable alternative to autogenous bone grafts when used in the correct manner. Hydroxyapatite should be used only for smaller defects or used in conjunction with absorbable plates when attempting to fill larger defects. Use of HA for nasal piriform augmentation or alveolar bone grafting should not be considered owing to problems with late infections.
Head and neck injury patterns in fatal falls: epidemiologic and biomechanical considerations.
Freeman, Michael D; Eriksson, Anders; Leith, Wendy
2014-01-01
Fatal falls often involve a head impact, which are in turn associated with a fracture of the skull or cervical spine. Prior authors have noted that the degree of inversion of the victim at the time of impact is an important predictor of the distribution of skull fractures, with skull base fractures more common than skull vault fractures in falls with a high degree of inversion. The majority of fatal fall publications have focused on skull fractures, and no research has described the association between fall circumstances and the distribution of fractures in the skull and neck. In the present study, we accessed data regarding head and neck fractures resulting from fatal falls from a Swedish autopsy database for the years 1992-2010, for the purposes of examining the relationships between skull and cervical spine fracture distribution and the circumstances of the fatal fall. Out of 102,310 medico-legal autopsies performed there were 1008 cases of falls associated with skull or cervical spine fractures. The circumstances of the falls were grouped in 3 statistically homogenous categories; falls occurring at ground level, falls from a height of <3 m or down stairs, and falls from ≥3 m. Only head and neck injuries and fractures that were associated with the fatal CNS injuries were included for study, and categorized as skull vault and skull base fractures, upper cervical injuries (C0-C1 dislocation, C1 and C2 fractures), and lower cervical fractures. Logistic regression modeling revealed increased odds of skull base and lower cervical fracture in the middle and upper fall severity groups, relative to ground level falls (lower cervical <3 m falls, OR = 2.55 [1.32, 4.92]; lower cervical ≥3 m falls, OR = 2.23 [0.98, 5.08]; skull base <3 m falls, OR = 1.82 [1.32, 2.50]; skull base ≥3 m falls, OR = 2.30 [1.55, 3.40]). C0-C1 dislocations were strongly related to fall height, with an OR of 8.3 for ≥3 m falls versus ground level. The findings of increased odds of skull base and lower cervical spine fracture in falls from a height are consistent with prior observations that the risk of such injuries is related to the degree of victim inversion at impact. The finding that C0-C1 dislocations are most common in falls from more than 3 m is unique, an indication that the injuries likely result from high energy shear forces rather than pure tension, as previously thought. Copyright © 2013 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Management of osteomyelitis of the skull base
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benecke, J.E. Jr.
1989-12-01
Osteomyelitis of the skull base is the most severe form of malignant otitis externa. As a result of having treated 13 patients with skull base osteomyelitis over a 4-year period, we have developed a method of staging and monitoring this malady using gallium and technetium scanning techniques. Stage I is localized to soft tissues, stage II is limited osteomyelitis, and stage III represents extensive skull base osteomyelitis. All stages are treated with appropriate antipseudomonal antibiotics. The duration of therapy depends upon the clearing of inflammation as shown on the gallium scan. Each case must be looked at independently and notmore » subjected to an arbitrary treatment protocol.« less
Patel, Chirag R; Fernandez-Miranda, Juan C; Wang, Wei-Hsin; Wang, Eric W
2016-02-01
The anatomy of the skull base is complex with multiple neurovascular structures in a small space. Understanding all of the intricate relationships begins with understanding the anatomy of the sphenoid bone. The cavernous sinus contains the carotid artery and some of its branches; cranial nerves III, IV, VI, and V1; and transmits venous blood from multiple sources. The anterior skull base extends to the frontal sinus and is important to understand for sinus surgery and sinonasal malignancies. The clivus protects the brainstem and posterior cranial fossa. A thorough appreciation of the anatomy of these various areas allows for endoscopic endonasal approaches to the skull base. Copyright © 2016 Elsevier Inc. All rights reserved.
Robotic Anterior and Midline Skull Base Surgery: Preclinical Investigations
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Malley, Bert W.; Weinstein, Gregory S.
Purpose: To develop a minimally invasive surgical technique to access the midline and anterior skull base using the optical and technical advantages of robotic surgical instrumentation. Methods and Materials: Ten experimental procedures focusing on approaches to the nasopharynx, clivus, sphenoid, pituitary sella, and suprasellar regions were performed on one cadaver and one live mongrel dog. Both the cadaver and canine procedures were performed in an approved training facility using the da Vinci Surgical Robot. For the canine experiments, a transoral robotic surgery (TORS) approach was used, and for the cadaver a newly developed combined cervical-transoral robotic surgery (C-TORS) approach wasmore » investigated and compared with standard TORS. The ability to access and dissect tissues within the various areas of the midline and anterior skull base were evaluated, and techniques to enhance visualization and instrumentation were developed. Results: Standard TORS approaches did not provide adequate access to the midline and anterior skull base; however, the newly developed C-TORS approach was successful in providing the surgical access to these regions of the skull base. Conclusion: Robotic surgery is an exciting minimally invasive approach to the skull base that warrants continued preclinical investigation and development.« less
The fallopian canal: a comprehensive review and proposal of a new classification.
Mortazavi, M M; Latif, B; Verma, K; Adeeb, N; Deep, A; Griessenauer, C J; Tubbs, R S; Fukushima, T
2014-03-01
The facial nerve follows a complex course through the skull base. Understanding its anatomy is crucial during standard skull base approaches and resection of certain skull base tumors closely related to the nerve, especially, tumors at the cerebellopontine angle. Herein, we review the fallopian canal and its implications in surgical approaches to the skull base. Furthermore, we suggest a new classification. Based on the anatomy and literature, we propose that the meatal segment of the facial nerve be included as a component of the fallopian canal. A comprehensive knowledge of the course of the facial nerve is important to those who treat patients with pathology of or near this cranial nerve.
Esposito, Felice; Di Rocco, Federico; Zada, Gabriel; Cinalli, Giuseppe; Schroeder, Henry W S; Mallucci, Conor; Cavallo, Luigi M; Decq, Philippe; Chiaramonte, Carmela; Cappabianca, Paolo
2013-12-01
During the past decade, endoscopic intraventricular and skull base operations have become widely used for a variety of evolving indications. A global survey of practicing endoscopic neurosurgeons was performed to characterize patterns of usage regarding endoscopy equipment, instrumentation, and the indications for using image-guided surgery systems (IGSs). An online survey consisting of 8 questions was completed by 235 neurosurgeons with endoscopic surgical experience. Responses were entered into a database and subsequently analyzed. The median number of operations performed per year by intraventricular and skull base endoscopic surgeons was 27 and 25, respectively. Data regarding endoscopic equipment brand, diameter, and length are presented. The most commonly reported indications for IGSs during intraventricular endoscopic surgery were tumor biopsy/resection, intraventricular cyst fenestration, septostomy/pellucidotomy, endoscopic third ventriculostomy, and aqueductal stent placement. Intraventricular surgeons reported using IGSs for all cases in 16.6% and never in 24.4%. Overall, endoscopic skull base surgeons reported using IGSs for all cases in 23.9% and never in 18.9%. The most commonly reported indications for IGSs during endoscopic skull base operations were complex sinus/skull base anatomy, extended approaches, and reoperation. Many variations and permutations for performing intraventricular and skull base endoscopic surgery exist worldwide. Much can be learned by studying the patterns and indications for using various types of equipment and operative adjuncts such as IGSs. Copyright © 2013 Elsevier Inc. All rights reserved.
Relationship between the cranial base and the mandible in artificially deformed skulls.
Ferros, I; Mora, M J; Obeso, I F; Jimenez, P; Martinez-Insua, A
2016-11-01
There is controversy regarding the relationship between mandibular position and alterations of the cranial base that provoke a more anterior location of the glenoid fossa. Artificially deformed skulls display marked alterations of the cranial base. This study evaluates mandibular changes as function of the morphology of the cranial base in these skulls. A geometric morphometric study was performed on lateral cephalometric X-rays of three groups of skulls: 32 with anteroposterior deformity, 17 with circumferential deformity and 39 with no apparent deformity. In artificially deformed skulls, the cranial base was deformed causing the mandibular condyle to be in a more anterior position. There was a complete remodelling of the mandible involving narrowing and elongation of the mandibular ramus, rotation of the corpus of the mandible and increased vertical height of the symphysis. Forward displacement did not occur. Integration between mandible and cranial base is not altered by deformation of the skull. Deformity of the cranial vault exerts an influence on the mandible, supporting the theory of modular units in complete integration. This also supports the theory that mandibular prognathism is a multifactorial result and not a direct effect of displacement of the cranial base. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Low-grade fibrosarcoma of the anterior skull base: endoscopic resection and repair.
Kuhn, Frederick A; Javer, Amin R
2003-01-01
Fibrosarcomas of the paranasal sinuses and skull base are uncommon tumors. Traditionally, "open approach" surgery remains the mainstay for treatment of choice for these tumors. A 49-year-old man underwent resection of a right anterior skull base fibrosarcoma using the endoscopic approach. Close follow-up using both endoscopic and imaging methods over a period of four years has revealed a well-healed skull base with no evidence of recurrence. Significant resistance exists at present for such a technique to deal with malignant diseases of the head and neck but results from advanced centers continue to prove that this may be a technique worth mastering and improving on.
Dimensional, Geometrical, and Physical Constraints in Skull Growth.
Weickenmeier, Johannes; Fischer, Cedric; Carter, Dennis; Kuhl, Ellen; Goriely, Alain
2017-06-16
After birth, the skull grows and remodels in close synchrony with the brain to allow for an increase in intracranial volume. Increase in skull area is provided primarily by bone accretion at the sutures. Additional remodeling, to allow for a change in curvatures, occurs by resorption on the inner surface of the bone plates and accretion on their outer surfaces. When a suture fuses too early, normal skull growth is disrupted, leading to a deformed final skull shape. The leading theory assumes that the main stimulus for skull growth is provided by mechanical stresses. Based on these ideas, we first discuss the dimensional, geometrical, and kinematic synchrony between brain, skull, and suture growth. Second, we present two mechanical models for skull growth that account for growth at the sutures and explain the various observed dysmorphologies. These models demonstrate the particular role of physical and geometrical constraints taking place in skull growth.
Dimensional, Geometrical, and Physical Constraints in Skull Growth
NASA Astrophysics Data System (ADS)
Weickenmeier, Johannes; Fischer, Cedric; Carter, Dennis; Kuhl, Ellen; Goriely, Alain
2017-06-01
After birth, the skull grows and remodels in close synchrony with the brain to allow for an increase in intracranial volume. Increase in skull area is provided primarily by bone accretion at the sutures. Additional remodeling, to allow for a change in curvatures, occurs by resorption on the inner surface of the bone plates and accretion on their outer surfaces. When a suture fuses too early, normal skull growth is disrupted, leading to a deformed final skull shape. The leading theory assumes that the main stimulus for skull growth is provided by mechanical stresses. Based on these ideas, we first discuss the dimensional, geometrical, and kinematic synchrony between brain, skull, and suture growth. Second, we present two mechanical models for skull growth that account for growth at the sutures and explain the various observed dysmorphologies. These models demonstrate the particular role of physical and geometrical constraints taking place in skull growth.
Skull base tumors: a kaleidoscope of challenge.
Khanna, J N; Natrajan, Srivalli; Galinde, Jyotsna
2014-08-01
Resection of skull base lesions has always been riddled with problems like inadequate access, proximity to major vessels, dural tears, cranial nerve damage, and infection. Understanding the modular concept of the facial skeleton has led to the development of transfacial swing osteotomies that facilitates resection in a difficult area with minimal morbidity and excellent cosmetic results. In spite of the current trend toward endonasal endoscopic management of skull base tumors, our series presents nine cases of diverse extensive skull base lesions, 33% of which were recurrent. These cases were approached through different transfacial swing osteotomies through the mandible, a midfacial swing, or a zygomaticotemporal osteotomy as dictated by the three-dimensional spatial location of the lesion, and its extent and proximity to vital structures. Access osteotomies ensured complete removal and good results through the most direct and safe route and good vascular control. This reiterated the fact that transfacial approaches still hold a special place in the management of extensive skull base lesions.
Skull Base Tumors: A Kaleidoscope of Challenge
Khanna, J.N.; Natrajan, Srivalli; Galinde, Jyotsna
2014-01-01
Resection of skull base lesions has always been riddled with problems like inadequate access, proximity to major vessels, dural tears, cranial nerve damage, and infection. Understanding the modular concept of the facial skeleton has led to the development of transfacial swing osteotomies that facilitates resection in a difficult area with minimal morbidity and excellent cosmetic results. In spite of the current trend toward endonasal endoscopic management of skull base tumors, our series presents nine cases of diverse extensive skull base lesions, 33% of which were recurrent. These cases were approached through different transfacial swing osteotomies through the mandible, a midfacial swing, or a zygomaticotemporal osteotomy as dictated by the three-dimensional spatial location of the lesion, and its extent and proximity to vital structures. Access osteotomies ensured complete removal and good results through the most direct and safe route and good vascular control. This reiterated the fact that transfacial approaches still hold a special place in the management of extensive skull base lesions. PMID:25083368
A symbolic shaped-based retrieval of skull images.
Lin, H Jill; Ruiz-Correa, Salvador; Shapiro, Linda G; Cunningham, Michael L; Sze, Raymond W
2005-01-01
In this work, we describe a novel symbolic representation of shapes for quantifying skull abnormalities in children with craniosynostosis. We show the efficacy of our work by demonstrating an application of this representation in shape-based retrieval of skull morphologies. This tool will enable correlation with potential pathogenesis and prognosis in order to enhance medical care.
Skull base erosion and associated complications in sphenoid sinus fungal balls
Meier, Josh C.; Remenschneider, Aaron K.; Sadow, Peter; Chambers, Kyle; Dedmon, Matt; Lin, Derrick T.; Holbrook, Eric H.; Metson, Ralph; Gray, Stacey T.
2016-01-01
Background: Sphenoid sinus fungal balls (SSFB) are rare entities that can result in serious orbital and intracranial complications. There are few published reports of complications that result from SSFB. Objective: To review the incidence of skull base erosion and orbital or intracranial complications in patients who present with SSFB. Methods: A retrospective review was performed of all the patients with SSFB who were treated at the Massachusetts Eye and Ear Infirmary from 2006 to 2014. Presenting clinical data, radiology, operative reports, pathology, and postoperative course were reviewed. Results: Forty-three patients with SSFB were identified. Demographic data were compared between patients with (39.5%) and those without (61.5%) skull base erosion. Two patients underwent emergent surgery for acute complications of SSFB (one patient with blindness, one patient who had a seizure). Both patients with acute complications had evidence of skull base erosion, whereas no patients with an intact skull base developed an orbital or intracranial complication (p = 0.15). All the patients were surgically managed via an endoscopic approach. Conclusion: SSFBs are rare but may cause significant skull base erosion and potentially severe orbital and intracranial complications if not treated appropriately. Endoscopic sphenoidotomy is effective in treating SSFB and should be performed emergently in patients who presented with associated complications. PMID:28683250
Yin, Ziying; Sui, Yi; Trzasko, Joshua D; Rossman, Phillip J; Manduca, Armando; Ehman, Richard L; Huston, John
2018-05-17
To introduce newly developed MR elastography (MRE)-based dual-saturation imaging and dual-sensitivity motion encoding schemes to directly measure in vivo skull-brain motion, and to study the skull-brain coupling in volunteers with these approaches. Six volunteers were scanned with a high-performance compact 3T-MRI scanner. The skull-brain MRE images were obtained with a dual-saturation imaging where the skull and brain motion were acquired with fat- and water-suppression scans, respectively. A dual-sensitivity motion encoding scheme was applied to estimate the heavily wrapped phase in skull by the simultaneous acquisition of both low- and high-sensitivity phase during a single MRE exam. The low-sensitivity phase was used to guide unwrapping of the high-sensitivity phase. The amplitude and temporal phase delay of the rigid-body motion between the skull and brain was measured, and the skull-brain interface was visualized by slip interface imaging (SII). Both skull and brain motion can be successfully acquired and unwrapped. The skull-brain motion analysis demonstrated the motion transmission from the skull to the brain is attenuated in amplitude and delayed. However, this attenuation (%) and delay (rad) were considerably greater with rotation (59 ± 7%, 0.68 ± 0.14 rad) than with translation (92 ± 5%, 0.04 ± 0.02 rad). With SII the skull-brain slip interface was not completely evident, and the slip pattern was spatially heterogeneous. This study provides a framework for acquiring in vivo voxel-based skull and brain displacement using MRE that can be used to characterize the skull-brain coupling system for understanding of mechanical brain protection mechanisms, which has potential to facilitate risk management for future injury. © 2018 International Society for Magnetic Resonance in Medicine.
Image guidance systems for minimally invasive sinus and skull base surgery in children.
Benoit, Margo McKenna; Silvera, V Michelle; Nichollas, Richard; Jones, Dwight; McGill, Trevor; Rahbar, Reza
2009-10-01
The use of image guidance for sinonasal and skull base surgery has been well-characterized in adults but there is limited information on the use of these systems in the pediatric population, despite their widespread use. The aim of this study is to evaluate the use of image guidance systems to facilitate an endoscopic minimally invasive approach to sinonasal and skull base surgery in a pediatric population. A retrospective cohort study was performed at a tertiary pediatric hospital. Thirty-three children presented with complications of sinusitis, tumors, traumatic, or congenital lesions of the skull base and underwent endoscopic surgery using image guidance from March 2000 to April 2007. Patient variables including diagnosis, extent of disease, and complications were extracted from paper and computer charts. Additional surgical variables including set-up time, accuracy, surgeon satisfaction index and number of uses per case were also reviewed. Twenty-eight patients (85%) underwent sinonasal surgery and five (15%) underwent skull base surgery. Indications included infectious complications of acute sinusitis (N=15), neoplasms (N=12), choanal atresia (N=4), and cerebrospinal fluid leak (N=2). Thirty-one patients (94%) required only one procedure. No surgical complications were reported. Surgeon satisfaction, mean accuracy and number of uses per procedure increased over time (p<0.05). Image guidance systems are safe and effective tools that facilitate a minimally invasive approach to sinonasal and skull base surgery in children. Consistent with adult literature, usage and surgeon comfort increased with experience. The additional anatomical information obtained by image guidance systems facilitates a minimally invasive endoscopic approach for sinonasal and skull base pathologies.
Heaton, Chase M; Goldberg, Andrew N; Pletcher, Steven D; Glastonbury, Christine M
2012-07-01
Anatomic variations in skull base anatomy may predispose the surgeon to inadvertent skull base injury with resultant cerebrospinal fluid (CSF) leak during functional endoscopic sinus surgery (ESS). Our objective was to compare preoperative sinus imaging of patients who underwent FESS with and without CSF leak to elucidate these variations. In this retrospective case-control study, 18 patients with CSF leak following FESS for chronic rhinosinusitis (CRS) from 2000 to 2011 were compared to 18 randomly selected patients who underwent preoperative imaging for FESS for CRS. Measurements were obtained from preoperative computed tomography images with specific attention to anatomic differences in cribriform plate and ethmoid roof heights in the coronal plane, and the skull base angle in the sagittal plane. Mean values of measured variables were compared using a nonparametric Mann-Whitney test. When compared to controls, patients with CSF leak demonstrated a greater angle of the skull base in the sagittal plane (P < .001) and a greater slope of the skull base in the coronal plane (P < .006). A lower cribriform height relative to ethmoid roof height was also noted in cases of CSF leak as compared to controls (P < .04). A steep skull base angle in the sagittal plane, a greater slope of the skull base in the coronal plane, and a low cribriform height relative to the ethmoid roof predispose the patient to CSF leak during FESS. Preoperative review of imaging with specific attention paid to these anatomic variations may help to prevent iatrogenic CSF leak. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.
Preformed titanium cranioplasty after resection of skull base meningiomas - a technical note.
Schebesch, Karl-Michael; Höhne, Julius; Gassner, Holger G; Brawanski, Alexander
2013-12-01
Meningiomas of the fronto-basal skull are difficult to manage as the treatment usually includes extensive resection of the lesion, consecutive reconstruction of the meninges and of the skull. Especially after removal of spheno-orbital and sphenoid-wing meningiomas, the cosmetic result is of utmost importance. In this technical note, we present our institutional approach in the treatment of skull base meningiomas, focussing on the reconstruction of the neurocranium with individually preformed titanium cranioplasty (CRANIOTOP(®), CL Instruments, Germany). Two female patients (40 years, 64 years) are presented. Both patients presented with skull base lesions suggestive of meningiomas. The preoperative thin-sliced CT scan was processed to generate a 3D-model of the skull. On it, the resection was mapped and following a simulated resection, the cranioplasty was manufactured. Intra-operatively, the titanium plate served as a template for the skull resection and was implanted after microsurgical tumour removal, consecutively. The cosmetic result was excellent. Immediate postoperative CT scan revealed accurate fitting and complete tumour removal. Control Magnetic Resonance Imaging (MRI) within 12 weeks was possible without any artifacts. The comprehensive approach described indicates only one surgical procedure for tumour removal and for reconstruction of the skull. The titanium plate served as an exact template for complete resection of the osseous parts of the tumour. Cosmetic outcome was excellent and control MRI was possible post operatively. CRANIOTOP(®) cranioplasty is a safe and practical tool for reconstruction of the skull after meningioma surgery. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Endonasal Skull Base Tumor Removal Using Concentric Tube Continuum Robots: A Phantom Study.
Swaney, Philip J; Gilbert, Hunter B; Webster, Robert J; Russell, Paul T; Weaver, Kyle D
2015-03-01
Objectives The purpose of this study is to experimentally evaluate the use of concentric tube continuum robots in endonasal skull base tumor removal. This new type of surgical robot offers many advantages over existing straight and rigid surgical tools including added dexterity, the ability to scale movements, and the ability to rotate the end effector while leaving the robot fixed in space. In this study, a concentric tube continuum robot was used to remove simulated pituitary tumors from a skull phantom. Design The robot was teleoperated by experienced skull base surgeons to remove a phantom pituitary tumor within a skull. Percentage resection was measured by weight. Resection duration was timed. Setting Academic research laboratory. Main Outcome Measures Percentage removal of tumor material and procedure duration. Results Average removal percentage of 79.8 ± 5.9% and average time to complete procedure of 12.5 ± 4.1 minutes (n = 20). Conclusions The robotic system presented here for use in endonasal skull base surgery shows promise in improving the dexterity, tool motion, and end effector capabilities currently available with straight and rigid tools while remaining an effective tool for resecting the tumor.
O'Sullivan, Padraig; Ogbonnaya, Ebere; Kaliaperumal, Chandrasekaran; Marks, Charles
2013-01-01
Haemangiopericytomas are a group of aggressive soft tissue sarcomas that originate from the pericytes in the walls of capillaries. Local invasion of the surrounding structures is not uncommon. Symptoms depend on the location, size and grade of tumour. Coexistence with a benign tumour in the same location is very rare. We report an interesting case of occipital scalp lipoma with an underlying torcular haemangiopericytoma and skull defect. PMID:23761505
Kim, Hak-Jin; Kim, Bong Chul; Kim, Jin-Geun; Zhengguo, Piao; Kang, Sang Hoon; Lee, Sang-Hwy
2014-03-01
The objective of this study was to determine the reliable midsagittal (MS) reference plane in practical ways for the three-dimensional craniofacial analysis on three-dimensional computed tomography images. Five normal human dry skulls and 20 normal subjects without any dysmorphoses or asymmetries were used. The accuracies and stability on repeated plane construction for almost every possible candidate MS plane based on the skull base structures were examined by comparing the discrepancies in distances and orientations from the reference points and planes of the skull base and facial bones on three-dimensional computed tomography images. The following reference points of these planes were stable, and their distribution was balanced: nasion and foramen cecum at the anterior part of the skull base, sella at the middle part, and basion and opisthion at the posterior part. The candidate reference planes constructed using the aforementioned reference points were thought to be reliable for use as an MS reference plane for the three-dimensional analysis of maxillofacial dysmorphosis.
A biocompatible titanium headpost for stabilizing behaving monkeys.
Adams, Daniel L; Economides, John R; Jocson, Cristina M; Horton, Jonathan C
2007-08-01
Many neurophysiological experiments involving monkeys require that the head be stabilized while the animal performs a task. Often a post is attached to the skull to accomplish this goal, using a headcap formed from dental acrylic. We describe a new headpost, developed by refinement of several prototypes, and supply an AutoCAD file to aid in machine shop production. This headpost is fabricated from a single piece of commercially pure titanium. It has a footplate consisting of four limbs arranged in the configuration of a "K." These are bent during surgery to match the curvature of the skull and attached with specialized titanium bone screws. Headposts were implanted in seven rhesus monkeys ranging in age from 2 yr to adult. None has been rejected after up to 17 mo of regular use. They require little or no daily toilette and create only a 0.80-cm(2) defect in the scalp. Computed tomography after implantation showed that the skull undergoes remodeling to embed the footplate in bone. This finding was confirmed by necropsy in two subjects. The outer table of the skull had grown over the titanium footplate, whereas the inner table had thickened to bury the tips of the titanium screws. The remarkable strength of the skull/implant bond was demonstrated by applying increasing amounts of torque to the headpost. At 26.3 Nm, the headpost tore from its metal footplate, but no screws came loose. The excellent performance of this implant is explained by integration of biocompatible titanium into remodeled bone tissue. The headpost is simpler to implant, more securely anchored, easier to maintain, and less obtrusive than devices attached with acrylic.
Saringer, W; Nöbauer-Huhmann, I; Knosp, E
2002-11-01
The authors present a new method for the reconstruction of large or complex-formed cranial bone defects using prefabricated, computer-generated, individual CFRP (carbon fibre reinforced plastics) medical grade implants. CFRP is a composite material containing carbon fibres embedded in an epoxy resin matrix. It is radiolucent, heat-resistant, extremely strong and light (its weight is 20% that of steel), has a modulus of elasticity close to that of bone, and an established biocompatibility. The utilisation of a CAD/CAM (computer aided design/computer aided manufacture) technique based on digitised computed tomography (CT) data, with stereolithographic modelling as intermediate step, enabled the production of individual, prefabricated CFRP medical grade implants with an arithmetical maximum aberration in extension of less than +/-0.25 mm. Between 1995 and February 2002, 29 patients (15 men and 14 women; mean age, 39.9 years; range, 16 to 67 years) underwent cranioplasty with CFRP medical grade implants at the neurosurgical department of the University of Vienna. Twenty-four patients were repaired secondarily (delayed cranioplasty) while 5 were repaired immediately following craniectomy (single stage cranioplasty). All cases were assessed for the accuracy of the intra-operative fit of the implant, restoration of the natural skull contour and aesthetics and adverse symptoms. The intra-operative fit was excellent in 93.1% and good in 6.9% of the implants. In two cases minor adjustments of the bony margin of the defect were required. The operating time for insertion ranged from 16 to 38 minutes, median 21 minutes. Postoperatively, 86.2% of the patients graded the restoration of their natural skull shape and symmetry as excellent while 13.8% termed it good. In one patient a non-space occupying subdural hygroma was found at the follow-up, but required no intervention. Two patients experienced atrophy of the frontal portion of the temporal muscle while one patient had a transient palsy of the frontal branch of the facial nerve. Over the mean follow-up period of 3.3 years (range, 0.08 to 6.8 years), there were no adverse reactions and no plate had to be removed. Individual, prefabricated CFRP medical grade implants may be considered as an alternative to conventionally utilised materials for cranioplasty, in particular in the challenging group of patients with extensive cranial defects or more complex-formed defects of the fronto-orbital or temporo-zygomatic region, guaranteeing short operating times and excellent functional and aesthetic results, which justifies the expense of their production.
Murphy, Ryan J; Liacouras, Peter C; Grant, Gerald T; Wolfe, Kevin C; Armand, Mehran; Gordon, Chad R
2016-11-01
Craniomaxillofacial reconstruction with patient-specific, customized craniofacial implants (CCIs) is ideal for skeletal defects involving areas of aesthetic concern-the non-weight-bearing facial skeleton, temporal skull, and/or frontal-forehead region. Results to date are superior to a variety of "off-the-shelf" materials, but require a protocol computed tomography scan and preexisting defect for computer-assisted design/computer-assisted manufacturing of the CCI. The authors developed a craniomaxillofacial surgical assistance workstation to address these challenges and intraoperatively guide CCI modification for an unknown defect size/shape. First, the surgeon designed an oversized CCI based on his/her surgical plan. Intraoperatively, the surgeon resected the bone and digitized the resection using a navigation pointer. Next, a projector displayed the limits of the craniofacial bone defect onto the prefabricated, oversized CCI for the size modification process; the surgeon followed the projected trace to modify the implant. A cadaveric study compared the standard technique (n = 1) to the experimental technique (n = 5) using surgical time and implant fit. The technology reduced the time and effort needed to resize the oversized CCI by an order of magnitude as compared with the standard manual resizing process. Implant fit was consistently better for the computer-assisted case compared with the control by at least 30%, requiring only 5.17 minutes in the computer-assisted cases compared with 35 minutes for the control. This approach demonstrated improvement in surgical time and accuracy of CCI-based craniomaxillofacial reconstruction compared with previously reported methods. The craniomaxillofacial surgical assistance workstation will provide craniofacial surgeons a computer-assisted technology for effective and efficient single-stage reconstruction when exact craniofacial bone defect sizes are unknown.
Modeling skull's acoustic attenuation and dispersion on photoacoustic signal
NASA Astrophysics Data System (ADS)
Mohammadi, L.; Behnam, H.; Nasiriavanaki, M. R.
2017-03-01
Despite the great promising results of a recent new transcranial photoacoustic brain imaging technology, it has been shown that the presence of the skull severely affects the performance of this imaging modality. In this paper, we investigate the effect of skull on generated photoacoustic signals with a mathematical model. The developed model takes into account the frequency dependence attenuation and acoustic dispersion effects occur with the wave reflection and refraction at the skull surface. Numerical simulations based on the developed model are performed for calculating the propagation of photoacoustic waves through the skull. From the simulation results, it was found that the skull-induced distortion becomes very important and the reconstructed image would be strongly distorted without correcting these effects. In this regard, it is anticipated that an accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in transcranial photoacoustic brain imaging.
Viel, Guido; Cecchetto, Giovanni; Manara, Renzo; Cecchetto, Attilio; Montisci, Massimo
2011-06-01
Patients affected by cranial trauma with depressed skull fractures and increased intracranial pressure generally undergo neurosurgical intervention. Because craniotomy and craniectomy remove skull fragments and generate new fracture lines, they complicate forensic examination and sometimes prevent a clear identification of skull fracture etiology. A 3-dimensional reconstruction based on preoperative computed tomography (CT) scans, giving a picture of the injuries before surgical intervention, can help the forensic examiner in identifying skull fracture origin and the means of production.We report the case of a 41-year-old-man presenting at the emergency department with a depressed skull fracture at the vertex and bilateral subdural hemorrhage. The patient underwent 2 neurosurgical interventions (craniotomy and craniectomy) but died after 40 days of hospitalization in an intensive care unit. At autopsy, the absence of various bone fragments did not allow us to establish if the skull had been stricken by a blunt object or had hit the ground with high kinetic energy. To analyze bone injuries before craniectomy, a 3-dimensional CT reconstruction based on preoperative scans was performed. A comparative analysis between autoptic and radiological data allowed us to differentiate surgical from traumatic injuries. Moreover, based on the shape and size of the depressed skull fracture (measured from the CT reformations), we inferred that the man had been stricken by a cylindric blunt object with a diameter of about 3 cm.
Orbital shape in intentional skull deformations and adult sagittal craniosynostoses.
Sandy, Ronak; Hennocq, Quentin; Nysjö, Johan; Giran, Guillaume; Friess, Martin; Khonsari, Roman Hossein
2018-06-21
Intentional cranial deformations are the result of external mechanical forces exerted on the skull vault that modify the morphology of various craniofacial structures such as the skull base, the orbits and the zygoma. In this controlled study, we investigated the 3D shape of the orbital inner mould and the orbital volume in various types of intentional deformations and in adult non-operated scaphocephaly - the most common type of craniosynostosis - using dedicated morphometric methods. CT scans were performed on 32 adult skulls with intentional deformations, 21 adult skull with scaphocephaly and 17 non-deformed adult skulls from the collections of the Muséum national d'Histoire naturelle in Paris, France. The intentional deformations group included six skulls with Toulouse deformations, eight skulls with circumferential deformations and 18 skulls with antero-posterior deformations. Mean shape models were generated based on a semi-automatic segmentation technique. Orbits were then aligned and compared qualitatively and quantitatively using colour-coded distance maps and by computing the mean absolute distance, the Hausdorff distance, and the Dice similarity coefficient. Orbital symmetry was assessed after mirroring, superimposition and Dice similarity coefficient computation. We showed that orbital shapes were significantly and symmetrically modified in intentional deformations and scaphocephaly compared with non-deformed control skulls. Antero-posterior and circumferential deformations demonstrated a similar and severe orbital deformation pattern resulting in significant smaller orbital volumes. Scaphocephaly and Toulouse deformations had similar deformation patterns but had no effect on orbital volumes. This study showed that intentional deformations and scaphocephaly significantly interact with orbital growth. Our approach was nevertheless not sufficient to identify specific modifications caused by the different types of skull deformations or by scaphocephaly. © 2018 Anatomical Society.
Finite-element modeling of the human neurocranium under functional anatomical aspects.
Mall, G; Hubig, M; Koebke, J; Steinbuch, R
1997-08-01
Due to its functional significance the human skull plays an important role in biomechanical research. The present work describes a new Finite-Element model of the human neurocranium. The dry skull of a middle-aged woman served as a pattern. The model was developed using only the preprocessor (Mentat) of a commercial FE-system (Marc). Unlike that of other FE models of the human skull mentioned in the literature, the geometry in this model was designed according to functional anatomical findings. Functionally important morphological structures representing loci minoris resistentiae, especially the foramina and fissures of the skull base, were included in the model. The results of two linear static loadcase analyses in the region of the skull base underline the importance of modeling from the functional anatomical point of view.
Surgical resection of a huge cemento-ossifying fibroma in skull base by intraoral approach.
Cheng, Xiao-Bing; Li, Yun-Peng; Lei, De-Lin; Li, Xiao-Dong; Tian, Lei
2011-03-01
Cemento-ossifying fibroma, also known as ossifying fibroma, usually occurs in the mandible and less commonly in the maxilla. The huge example in the skull base is even rare. We present a case of a huge cemento-ossifying fibroma arising below the skull base of a 30-year-old woman patient. Radiologic investigations showed a giant, lobulated, heterogeneous calcified hard tissue mass, which is well circumscribed and is a mixture of radiolucent and radiopaque, situated at the rear of the right maxilla to the middle skull base. The tumor expands into the right maxillary sinus and the orbital cavity, fusing with the right maxilla at the maxillary tuberosity and blocking the bilateral choanas, which caused marked proptosis and blurred vision. The tumor was resected successfully by intraoral approach, and pathologic examination confirmed the lesion to be a cemento-ossifying fibroma. This case demonstrates that cemento-ossifying fibroma in the maxilla, not like in the mandible, may appear more aggressive because the extensive growth is unimpeded by anatomic obstacles and that the intraoral approach can be used to excise the tumor in the skull base.
von Sass, Peter Freiherr; Scheckenbach, Kathrin; Wagenmann, Martin; Klenzner, Thomas; Schipper, Joerg; Chaker, Adam
2015-02-01
The increasing amount of medical knowledge and necessity for time-effective teaching and learning have given rise to emerging online, or e-learning, applications. The base of the skull is a challenging anatomic area in the otorhinolaryngology (ORL) department-for both students and lecturers. Technology-enhanced learning might be an expedient approach to benefit both learners and lecturers. To investigate and create for advanced medical students a self-assessed adaptive e-learning application for the skull base within our curriculum of otolaryngology at the University Medical Center of Heinrich Heine University, Düsseldorf, Germany. Pilot approach with prospective evaluation of a newly implemented web-based e-learning simulation. The e-learning application (Student's Interactive Skull-Base Trainer) was made accessible as an elective course to a total of 269 enrolled medical students during the first 2 semesters after web launch. Spatiotemporal independent e-learning application for the skull base. Self-assessed evaluation with focus on general acceptance and personal value as well as usage data analysis. The application was well accepted by the learners. More than 80% of the participating students found the application to be a beneficial tool for enhancing their analytical and clinical problem-solving skills. Although the general matter of the skull base seemed to be of lesser interest, the concept of anchored instructions with the use of high-end, interactive, multimedia-based content was considered to be particularly suitable for this challenging topic. Most of the students would have appreciated an extension of optional e-learning modules. With this pilot approach we were able to implement a useful and now well-accepted tool for blended learning. We showed that it is possible to raise interest even in this very specialized subspecialty of ORL with overall individual learning benefit for the students. There is a demand for more e-learning and web-based simulation to support the existing curricula in a hybrid, blended way.
... ARS HOME ANATOMY Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ... ANATOMY > Sinus Anatomy Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ...
Veeravagu, Anand; Joseph, Richard; Jiang, Bowen; Lober, Robert M; Ludwig, Cassie; Torres, Roland; Singh, Harminder
2013-01-01
Endonasal procedures may be necessary during management of craniofacial trauma. When a skull base fracture is present, these procedures carry a high risk of violating the cranial vault and causing brain injury or central nervous system infection. A 52-year-old bicyclist was hit by an automobile at high speed. He sustained extensive maxillofacial fractures, including frontal and sphenoid sinus fractures (Fig. 1). He presented to the emergency room with brisk nasopharyngeal hemorrhage, and was intubated for airway protection. He underwent emergent stabilization of his nasal epistaxis by placement of a Foley catheter in his left nare and tamponade with the Foley balloon. A six-vessel angiogram showed no evidence of arterial dissection or laceration. Imaging revealed inadvertent insertion of the Foley catheter and deployment of the balloon in the frontal lobe (Fig. 2). The balloon was subsequently deflated and the Foley catheter removed. The patient underwent bifrontal craniotomy for dural repair of CSF leak. He also had placement of a ventriculoperitoneal shunt for development of post-traumatic hydrocephalus. Although the hospital course was a prolonged one, he did make a good neurological recovery. The authors review the literature involving violation of the intracranial compartment with medical devices in the settings of craniofacial trauma. Caution should be exercised while performing any endonasal procedure in the settings of trauma where disruption of the anterior cranial base is possible. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo
2013-01-01
The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337–43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring technique currently exists. PMID:23807573
Surgical outcomes after reoperation for recurrent skull base meningiomas.
Magill, Stephen T; Lee, David S; Yen, Adam J; Lucas, Calixto-Hope G; Raleigh, David R; Aghi, Manish K; Theodosopoulos, Philip V; McDermott, Michael W
2018-05-04
OBJECTIVE Skull base meningiomas are surgically challenging tumors due to the intricate skull base anatomy and the proximity of cranial nerves and critical cerebral vasculature. Many studies have reported outcomes after primary resection of skull base meningiomas; however, little is known about outcomes after reoperation for recurrent skull base meningiomas. Since reoperation is one treatment option for patients with recurrent meningioma, the authors sought to define the risk profile for reoperation of skull base meningiomas. METHODS A retrospective review of 2120 patients who underwent resection of meningiomas between 1985 and 2016 was conducted. Clinical information was extracted from the medical records, radiology data, and pathology data. All records of patients with recurrent skull base meningiomas were reviewed. Demographic data, presenting symptoms, surgical management, outcomes, and complications data were collected. Kaplan-Meier analysis was used to evaluate survival after reoperation. Logistic regression was used to evaluate for risk factors associated with complications. RESULTS Seventy-eight patients underwent 100 reoperations for recurrent skull base meningiomas. Seventeen patients had 2 reoperations, 3 had 3 reoperations, and 2 had 4 or more reoperations. The median age at diagnosis was 52 years, and 64% of patients were female. The median follow-up was 8.5 years. Presenting symptoms included cranial neuropathy, headache, seizure, proptosis, and weakness. The median time from initial resection to first reoperation was 4.4 years and 4.1 years from first to second reoperation. Seventy-two percent of tumors were WHO grade I, 22% were WHO grade II, and 6% were WHO grade III. The sphenoid wing was the most common location (31%), followed by cerebellopontine angle (14%), cavernous sinus (13%), olfactory groove (12%), tuberculum sellae (12%), and middle fossa floor (5%). Forty-four (54%) tumors were ≥ 3 cm in maximum diameter at the time of the first reoperation. In 100 reoperations, 60 complications occurred in 30 cases. Twenty of the 60 complications required surgical intervention (33%). Complications included hydrocephalus (12), CSF leak/pseudomeningocele (11), wound infection (9), postoperative hematoma (4), venous infarction (1), and pneumocephalus (1). Postoperative neurological deficits included new or worsened cranial nerve deficits (10) and hemiparesis (3). There were no perioperative deaths in this series. On multivariate analysis, posterior fossa location was significantly associated with complications (OR 3.45, p = 0.0472). The 1-, 2-, 5-, and 10-year overall survival rates according to Kaplan-Meier analysis after the first reoperation were 94%, 92%, 88%, and 76%, respectively. The median survival after the first reoperation was 17 years. CONCLUSIONS Recurrent skull base meningiomas are surgically challenging tumors, and reoperation is associated with high morbidity and complication rates. Despite these cautionary data, repeat resection of recurrent skull base meningiomas in appropriately selected patients provides excellent long-term survival.
Le, Yali; Chen, Yu; Zhou, Fan; Liu, Guangfu; Huang, Zhanwen; Chen, Yue
2016-10-01
This study compared the diagnostic value of F-fluoride PET-computed tomography (PET-CT) and MRI in skull-base bone erosion in nasopharyngeal carcinoma (NPC) patients. A total of 93 patients with biopsy-confirmed NPC were enrolled, including 68 men and 25 women between 23 and 74 years of age. All patients were evaluated by both F-fluoride PET-CT and MRI, and the interval between the two imaging examinations was less than 20 days. The patients received no treatment either before or between scans. The studies were interpreted by two nuclear medicine physicians or two radiologists with more than 10 years of professional experience who were blinded to both the diagnosis and the results of the other imaging studies. The reference standard was skull-base bone erosion at a 20-week follow-up imaging study. On the basis of the results of the follow-up imaging studies, 52 patients showed skull-base bone erosion. The numbers of true positives, false positives, true negatives, and false negatives with F-fluoride PET-CT were 49, 4, 37, and 3, respectively. The numbers of true positives, false positives, true negatives, and false negatives with MRI were 46, 5, 36, and 6, respectively. The sensitivity, specificity, and crude accuracy of F-fluoride PET-CT were 94.23, 90.24, and 92.47%, respectively; for MRI, these values were 88.46, 87.80, and 88.17%. Of the 52 patients, 43 showed positive findings both on F-fluoride PET-CT and on MRI. Within the patient cohort, F-fluoride PET-CT and MRI detected 178 and 135 bone lesions, respectively. Both F-fluoride PET-CT and MRI have high sensitivity, specificity, and crude accuracy for detecting skull-base bone invasion in patients with NPC. F-fluoride PET-CT detected more lesions than did MRI in the skull-base bone. This suggests that F-fluoride PET-CT has a certain advantage in evaluating the skull-base bone of NPC patients. Combining the two methods could improve the diagnostic accuracy of skull-base bone invasion for NPC.
Todeschini, Alexandre B; Otto, Bradley A; Carrau, Ricardo L; Prevedello, Daniel M
2018-05-28
Meningiomas are the most common primary intracranial tumor, arising from different locations, including the skull base. Despite advances in adjuvant treatments, surgical resection remains the main and best treatment for meningiomas. New surgical strategies, such as the endoscopic endonasal approach, have greatly contributed in achieving maximum and total safe resection, preserving the patient's neurological function. Based on the senior authors large experience and a review of the current literature, we have compiled this chapter. We review the surgical technique used at our institution and the most relevant aspects of patient selection when considering resecting a skull base meningioma using the the EEA. Further consideration is given to some skull base meningiomas arising from specific locations with some case examples. The EEA is not an ideal approach for every skull base meningioma. Careful evaluation of the surrounding neurovascular structures surrounding the tumor is imperative to select the appropriate surgical corridor for a safe resection. Nevertheless, for appropriately selected cases, the endoscopic technique is a very valuable tool with some evidences of being superior to the microscopic transcranial approach. A dual-trained surgeon, in both endoscopic and transcranial approaches, is the best alternative to achieve the best patient outcome.
Craniopagus twins: surgical anatomy and embryology and their implications.
O'Connell, J E
1976-01-01
Craniopagus is of two types, partial and total. In the partial form the union is of limited extent, particularly as regards its depth, and separation can be expected to be followed by the survival of both children to lead normal lives. In the total form, of which three varieties can be recognized, the two brains can be regarded as lying within a single cranium and a series of gross intracranial abnormalities develops. These include deformity of the skull base, deformity and displacement of the cerebrum, and a gross circulatory abnormality. It is considered that these and other abnormalities, unlike the primary defect, which is defined, are secondary ones; explanations for them, based on anatomy and embryology, are put forward. The implications of the various anomalies are discussed and the ethical aspects of attempted separation in these major unions considered. Images PMID:1255206
Missinne, Stefaan J
2014-06-01
The author discusses a previously unknown early sixteenth-century renaissance handmade anatomical miniature skull. The small, naturalistic skull made from an agate (calcedonia) stone mixture (mistioni) shows remarkable osteologic details. Dr. Saban was the first to link the skull to Leonardo. The three-dimensional perspective of and the search for the senso comune are discussed. Anatomical errors both in the drawings of Leonardo and this skull are presented. The article ends with the issue of physiognomy, his grotesque faces, the Perspective Communis and his experimenting c. 1508 with the stone mixture and the human skull. Evidence, including the Italian scale based on Crazie and Braccia, chemical analysis leading to a mine in Volterra and Leonardo's search for the soul in the skull are presented. Written references in the inventory of Salai (1524), the inventory of the Villa Riposo (Raffaello Borghini 1584) and Don Ambrogio Mazenta (1635) are reviewed. The author attributes the skull c. 1508 to Leonardo da Vinci.
Schievink, Wouter I; Schwartz, Marc S; Maya, M Marcel; Moser, Franklin G; Rozen, Todd D
2012-04-01
Spontaneous intracranial hypotension is an important cause of headaches and an underlying spinal CSF leak can be demonstrated in most patients. Whether CSF leaks at the level of the skull base can cause spontaneous intracranial hypotension remains a matter of controversy. The authors' aim was to examine the frequency of skull base CSF leaks as the cause of spontaneous intracranial hypotension. Demographic, clinical, and radiological data were collected from a consecutive group of patients evaluated for spontaneous intracranial hypotension during a 9-year period. Among 273 patients who met the diagnostic criteria for spontaneous intracranial hypotension and 42 who did not, not a single instance of CSF leak at the skull base was encountered. Clear nasal drainage was reported by 41 patients, but a diagnosis of CSF rhinorrhea could not be established. Four patients underwent exploratory surgery for presumed CSF rhinorrhea. In addition, the authors treated 3 patients who had a postoperative CSF leak at the skull base following the resection of a cerebellopontine angle tumor and developed orthostatic headaches; spinal imaging, however, demonstrated the presence of a spinal source of CSF leakage in all 3 patients. There is no evidence for an association between spontaneous intracranial hypotension and CSF leaks at the level of the skull base. Moreover, the authors' study suggests that a spinal source for CSF leakage should even be suspected in patients with orthostatic headaches who have a documented skull base CSF leak.
[Osteogenesis imperfecta in monozygotic twins in Burundi].
Armstrong, O; Karayuba, R; Ngendahayo, L; Habonimana, E
1994-01-01
Little data is available about osteogenesis imperfecta in Black African children. This defect was diagnosed in monozygotic twins from Rwanda who presented multiple fractures, in particular of the femur, when they began to walk. Osteogenesis imperfecta was confirmed by lower limb deformity, presence of wormian bones in the skull, blue sclera, and tooth defects. In addition to the fact that it is uncommon to encounter this condition in monozygotic twins, this case is interesting for several reasons. Was osteogenesis imperfecta in these patients type I, frequent, or type III, exceptional? More importantly, this case stresses the high prevalence of type III in Black Africa which could constitute a hot-bed in the world.
Jones, Ryan M; O'Reilly, Meaghan A; Hynynen, Kullervo
2015-07-01
Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981-5005 (2013)]. A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11-0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors' previous experimental measurements using source-based skull corrections O'Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285-1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood-brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position obtained using source-based corrections. Taken together, these results demonstrate the feasibility of using the method to guide bubble-mediated ultrasound therapies in the brain. The technique may also have application in ultrasound-based cerebral angiography.
Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo
2015-01-01
Purpose: Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981–5005 (2013)]. Methods: A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11–0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. Results: For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors’ previous experimental measurements using source-based skull corrections O’Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285–1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood–brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position obtained using source-based corrections. Conclusions: Taken together, these results demonstrate the feasibility of using the method to guide bubble-mediated ultrasound therapies in the brain. The technique may also have application in ultrasound-based cerebral angiography. PMID:26133635
Li, Zhigang; Liu, Weiguo; Zhang, Jinhuan; Hu, Jingwen
2015-09-01
Skull fracture is one of the most common pediatric traumas. However, injury assessment tools for predicting pediatric skull fracture risk is not well established mainly due to the lack of cadaver tests. Weber conducted 50 pediatric cadaver drop tests for forensic research on child abuse in the mid-1980s (Experimental studies of skull fractures in infants, Z Rechtsmed. 92: 87-94, 1984; Biomechanical fragility of the infant skull, Z Rechtsmed. 94: 93-101, 1985). To our knowledge, these studies contained the largest sample size among pediatric cadaver tests in the literature. However, the lack of injury measurements limited their direct application in investigating pediatric skull fracture risks. In this study, 50 pediatric cadaver tests from Weber's studies were reconstructed using a parametric pediatric head finite element (FE) model which were morphed into subjects with ages, head sizes/shapes, and skull thickness values that reported in the tests. The skull fracture risk curves for infants from 0 to 9 months old were developed based on the model-predicted head injury measures through logistic regression analysis. It was found that the model-predicted stress responses in the skull (maximal von Mises stress, maximal shear stress, and maximal first principal stress) were better predictors than global kinematic-based injury measures (peak head acceleration and head injury criterion (HIC)) in predicting pediatric skull fracture. This study demonstrated the feasibility of using age- and size/shape-appropriate head FE models to predict pediatric head injuries. Such models can account for the morphological variations among the subjects, which cannot be considered by a single FE human model.
Wang, Ruikang K.
2014-01-01
In vivo imaging of mouse brain vasculature typically requires applying skull window opening techniques: open-skull cranial window or thinned-skull cranial window. We report non-invasive 3D in vivo cerebral blood flow imaging of C57/BL mouse by the use of ultra-high sensitive optical microangiography (UHS-OMAG) and Doppler optical microangiography (DOMAG) techniques to evaluate two cranial window types based on their procedures and ability to visualize surface pial vessel dynamics. Application of the thinned-skull technique is found to be effective in achieving high quality images for pial vessels for short-term imaging, and has advantages over the open-skull technique in available imaging area, surgical efficiency, and cerebral environment preservation. In summary, thinned-skull cranial window serves as a promising tool in studying hemodynamics in pial microvasculature using OMAG or other OCT blood flow imaging modalities. PMID:25426632
Harvey Cushing's Treatment of Skull Base Infections: The Johns Hopkins Experience
Somasundaram, Aravind; Pendleton, Courtney; Raza, Shaan M.; Boahene, Kofi; Quinones-Hinojosa, Alfredo
2012-01-01
Objectives In this report, we review Dr. Cushing's early surgical cases at the Johns Hopkins Hospital, revealing details of his early operative approaches to infections of the skull base. Design Following institutional review board (IRB) approval, and through the courtesy of the Alan Mason Chesney Archives, we reviewed the Johns Hopkins Hospital surgical files from 1896 to 1912. Setting The Johns Hopkins Hospital, 1896 to 1912. Participants Eleven patients underwent operative treatment for suspected infections of the skull base. Main Outcome Measures The main outcome measure was operative approach, postoperative mortality, and condition recorded at the time of discharge. Results Eleven patients underwent operative intervention for infections of the skull base. The mean age was 30 years (range: 9 to 63). Of these patients, seven (64%) were female. The mean length of stay was 16.5 days (range: 4 to 34). Postoperatively eight patients were discharged in “well” or “good” condition, one patient remained “unimproved,” and two patients died during their admission. Conclusion Cushing's careful preoperative observation of patients, meticulous operative technique, and judicious use of postoperative drainage catheters contributed to a remarkably low mortality rate in his series of skull base infections. PMID:24083129
Clinical diagnostic dilemma of intracranial germinoma manifesting as wide skull base extension.
Zhou, Zhi-hang; Zhang, Hai-bo; Rao, Jun; Bian, Xiu-wu
2014-09-01
The aims of this study were to present an uncommon intracranial germinoma manifesting as skull base extension and analyze its clinical characteristics to give valuable insight into such uncommon radiologic variant. This is a clinical study of a 15-year-old girl with intracranial germinoma manifesting as skull base extension. Clinical characteristics, magnetic resonance imaging scan observations, pathologic findings, and flow of the treatment procedure were presented and analyzed. She had a 5-month history of diuresis and diplopia. magnetic resonance imaging observation displayed a neoplasm located in the right-side central skull base and suprasellar area with wide extension into the cavernous sinus, intraorbital region, ethmoidal sinus, sphenoid sinus, and pituitary fossa. After administration of contrast medium, strong and heterogeneous enhancement of the mass was observed, with a dural tail sign along the right cerebellar tentorial. Right pterional approach was performed, and intraoperative histologic examination suspected the diagnosis of germinoma; partial resection was achieved, and postoperative radiotherapy was administered. Cranial nerve palsy improved greatly 6 months postoperatively. Although highly unusual, germinoma should be included in the differential diagnosis of all masses with extension along the midline region of skull base, especially when it happens in young female patients.
Thomas, Andrew J; Wiggins, Richard H; Gurgel, Richard K
2017-08-01
To describe a case of metastatic renal cell carcinoma (RCC) masquerading as a jugular foramen paraganglioma (JP). To compare imaging findings between skull base metastatic RCC and histologically proven paraganglioma. A case of unexpected metastatic skull base RCC is reviewed. Computed tomography (CT) and magnetic resonance imaging (MRI) were compared between 3 confirmed cases of JP and our case of metastatic RCC. Diffusion-weighted MRI (DW-MRI) sequences and computed apparent diffusion coefficient (ADC) values were compared between these entities. A 55-year-old man presents with what appears clinically and radiographically to be JP. The tumor was resected, then discovered on postoperative pathology to be metastatic RCC. Imaging was retrospectively compared between 3 histologically confirmed cases of JP and our case of skull base RCC. The RCC metastasis was indistinguishable from JP on CT and traditional MRI but distinct by ADC values calculated from DW-MRI. Metastatic RCC at the skull base may mimic the clinical presentation and radiographic appearance of JP. The MRI finding of flow voids is seen in both paraganglioma and metastatic RCC. Diffusion-weighted MRI is able to distinguish these entities, highlighting its potential utility in distinguishing skull base lesions.
Multi-atlas and label fusion approach for patient-specific MRI based skull estimation.
Torrado-Carvajal, Angel; Herraiz, Joaquin L; Hernandez-Tamames, Juan A; San Jose-Estepar, Raul; Eryaman, Yigitcan; Rozenholc, Yves; Adalsteinsson, Elfar; Wald, Lawrence L; Malpica, Norberto
2016-04-01
MRI-based skull segmentation is a useful procedure for many imaging applications. This study describes a methodology for automatic segmentation of the complete skull from a single T1-weighted volume. The skull is estimated using a multi-atlas segmentation approach. Using a whole head computed tomography (CT) scan database, the skull in a new MRI volume is detected by nonrigid image registration of the volume to every CT, and combination of the individual segmentations by label-fusion. We have compared Majority Voting, Simultaneous Truth and Performance Level Estimation (STAPLE), Shape Based Averaging (SBA), and the Selective and Iterative Method for Performance Level Estimation (SIMPLE) algorithms. The pipeline has been evaluated quantitatively using images from the Retrospective Image Registration Evaluation database (reaching an overlap of 72.46 ± 6.99%), a clinical CT-MR dataset (maximum overlap of 78.31 ± 6.97%), and a whole head CT-MRI pair (maximum overlap 78.68%). A qualitative evaluation has also been performed on MRI acquisition of volunteers. It is possible to automatically segment the complete skull from MRI data using a multi-atlas and label fusion approach. This will allow the creation of complete MRI-based tissue models that can be used in electromagnetic dosimetry applications and attenuation correction in PET/MR. © 2015 Wiley Periodicals, Inc.
[Establishment of a 3D finite element model of human skull using MSCT images and mimics software].
Huang, Ping; Li, Zheng-dong; Shao, Yu; Zou, Dong-hua; Liu, Ning-guo; Li, Li; Chen, Yuan-yuan; Wan, Lei; Chen, Yi-jiu
2011-02-01
To establish a human 3D finite element skull model, and to explore its value in biomechanics analysis. The cadaveric head was scanned and then 3D skull model was created using Mimics software based on 2D CT axial images. The 3D skull model was optimized by preprocessor along with creation of the surface and volume meshes. The stress changes, after the head was struck by an object or the head hit the ground directly, were analyzed using ANSYS software. The original 3D skull model showed a large number of triangles with a poor quality and high similarity with the real head, while the optimized model showed high quality surface and volume meshes with a small number of triangles comparatively. The model could show the local and global stress changes effectively. The human 3D skull model can be established using MSCT and Mimics software and provides a good finite element model for biomechanics analysis. This model may also provide a base for the study of head stress changes following different forces.
Augmented reality-assisted skull base surgery.
Cabrilo, I; Sarrafzadeh, A; Bijlenga, P; Landis, B N; Schaller, K
2014-12-01
Neuronavigation is widely considered as a valuable tool during skull base surgery. Advances in neuronavigation technology, with the integration of augmented reality, present advantages over traditional point-based neuronavigation. However, this development has not yet made its way into routine surgical practice, possibly due to a lack of acquaintance with these systems. In this report, we illustrate the usefulness and easy application of augmented reality-based neuronavigation through a case example of a patient with a clivus chordoma. We also demonstrate how augmented reality can help throughout all phases of a skull base procedure, from the verification of neuronavigation accuracy to intraoperative image-guidance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
1989-04-01
subtraction readout (Klein 1967). This technique was used to investigate the early formation of periapical lesions prior to diagnosis by clinical...have investigated the diagnostic sensitivity of radiographs by determining the size, shape and position of bony lesions that can be visualized in...radiographs. Several studies using created defects in dried skulls have reported that interproximal lesions were not visible as long as the cortical plates
[Chiasma lesions in sport accidents (author's transl)].
Fulmek, R
1975-09-01
With reference to a chiasma contusion, proved at autopsy, sustained by a football player after a temporal impression fracture due to contact of a knee with his skull, the pathological mechanism causing chiasma injuries in blunt head injuries is explained. Finally, from our own experience we report on 2 water-sports accidents sustained by young men (a jump from the trampoline, and a fall during water-skiing) where chiasma-lesions were diagnosed from typical field defects.
Lober, Robert M.; Doan, Adam T.; Matsumoto, Craig I.; Kenning, Tyler J.; Evans, James J.
2016-01-01
Intraoperative neurophysiological monitoring during endoscopic, endonasal approaches to the skull base is both feasible and safe. Numerous reports have recently emerged from the literature evaluating the efficacy of different neuromonitoring tests during endonasal procedures, making them relatively well-studied. The authors report on a comprehensive, multimodality approach to monitoring the functional integrity of at risk nervous system structures, including the cerebral cortex, brainstem, cranial nerves, corticospinal tract, corticobulbar tract, and the thalamocortical somatosensory system during endonasal surgery of the skull base. The modalities employed include electroencephalography, somatosensory evoked potentials, free-running and electrically triggered electromyography, transcranial electric motor evoked potentials, and auditory evoked potentials. Methodological considerations as well as benefits and limitations are discussed. The authors argue that, while individual modalities have their limitations, multimodality neuromonitoring provides a real-time, comprehensive assessment of nervous system function and allows for safer, more aggressive management of skull base tumors via the endonasal route. PMID:27293965
[Anatomy of the skull base and the cranial nerves in slice imaging].
Bink, A; Berkefeld, J; Zanella, F
2009-07-01
Computed tomography (CT) and magnetic resonance imaging (MRI) are suitable methods for examination of the skull base. Whereas CT is used to evaluate mainly bone destruction e.g. for planning surgical therapy, MRI is used to show pathologies in the soft tissue and bone invasion. High resolution and thin slice thickness are indispensible for both modalities of skull base imaging. Detailed anatomical knowledge is necessary even for correct planning of the examination procedures. This knowledge is a requirement to be able to recognize and interpret pathologies. MRI is the method of choice for examining the cranial nerves. The total path of a cranial nerve can be visualized by choosing different sequences taking into account the tissue surrounding this cranial nerve. This article summarizes examination methods of the skull base in CT and MRI, gives a detailed description of the anatomy and illustrates it with image examples.
Genomic and transcriptomic characterization of skull base chordoma
Sa, Jason K.; Lee, In-Hee; Hong, Sang Duk; Kong, Doo-Sik; Nam, Do-Hyun
2017-01-01
Skull base chordoma is a primary rare malignant bone-origin tumor showing relatively slow growth pattern and locally destructive lesions, which can only be characterized by histologic components. There is no available prognostic or therapeutic biomarker to predict clinical outcome or treatment response and the molecular mechanisms underlying chordoma development still remain unexplored. Therefore, we sought out to identify novel somatic variations that are associated with chordoma progression and potentially employed as therapeutic targets. Thirteen skull base chordomas were subjected for whole-exome and/or whole-transcriptome sequencing. In process, we have identified chromosomal aberration in 1p, 7, 10, 13 and 17q, high frequency of functional germline SNP of the T gene, rs2305089 (P = 0.0038) and several recurrent alterations including MUC4, NBPF1, NPIPB15 mutations and novel gene fusion of SAMD5-SASH1 for the first time in skull base chordoma. PMID:27901492
Genomic and transcriptomic characterization of skull base chordoma.
Sa, Jason K; Lee, In-Hee; Hong, Sang Duk; Kong, Doo-Sik; Nam, Do-Hyun
2017-01-03
Skull base chordoma is a primary rare malignant bone-origin tumor showing relatively slow growth pattern and locally destructive lesions, which can only be characterized by histologic components. There is no available prognostic or therapeutic biomarker to predict clinical outcome or treatment response and the molecular mechanisms underlying chordoma development still remain unexplored. Therefore, we sought out to identify novel somatic variations that are associated with chordoma progression and potentially employed as therapeutic targets. Thirteen skull base chordomas were subjected for whole-exome and/or whole-transcriptome sequencing. In process, we have identified chromosomal aberration in 1p, 7, 10, 13 and 17q, high frequency of functional germline SNP of the T gene, rs2305089 (P = 0.0038) and several recurrent alterations including MUC4, NBPF1, NPIPB15 mutations and novel gene fusion of SAMD5-SASH1 for the first time in skull base chordoma.
New tools for sculpting cranial implants in a shared haptic augmented reality environment.
Ai, Zhuming; Evenhouse, Ray; Leigh, Jason; Charbel, Fady; Rasmussen, Mary
2006-01-01
New volumetric tools were developed for the design and fabrication of high quality cranial implants from patient CT data. These virtual tools replace time consuming physical sculpting, mold making and casting steps. The implant is designed by medical professionals in tele-immersive collaboration. Virtual clay is added in the virtual defect area on the CT data using the adding tool. With force feedback the modeler can feel the edge of the defect and fill only the space where no bone is present. A carving tool and a smoothing tool are then used to sculpt and refine the implant. To make a physical evaluation, the skull with simulated defect and the implant are fabricated via stereolithography to allow neurosurgeons to evaluate the quality of the implant. Initial tests demonstrate a very high quality fit. These new haptic volumetric sculpting tools are a critical component of a comprehensive tele-immersive system.
Skull base trauma: diagnosis and management.
Samii, Madjid; Tatagiba, Marcos
2002-03-01
The singular anatomical relationship of the base of the skull is responsible for the particular problems that may arise after injury. Extensive dural laceration and severe neurovascular damage may accompany skull base injuries. Trauma to the anterior skull base is frequently related to the paranasal sinuses, and trauma to the middle and the posterior skull base usually affects the petrous bone. Injury to the anterior fossa including the paranasal sinuses may produce CSF leakage, damage the olfactory nerves, optic nerves, and orbita contents. Fractures may affect the carotid canal, injure the internal carotid artery and result in carotid-cavernous fistula. Trauma to the petrous bone may cause facial palsy and deafness, and CSF leakage with otorrhoea or paradoxal rhinoliquorrhoea. Trauma to the posterior fossa may lacerate the major venous sinuses, and affect the cranio-cervical stability. Each one of these injuries will need a particular strategy. Decision making for management as a whole must consider all aspects, including the fact that these injuries frequently involve polytraumatized patients. Decisions regarding the timing of surgery and the sequence of the surgical procedures must be made with great care. Modern surgical techniques and recent technologies including functional preservation of the olfactory nerves in frontobasal trauma, visual evoked potentials, assisted optic nerve decompression, facial nerve reconstruction, interventional technique for intravascular repair of vascular injuries, and recent developments in cochlea implants and brain stem implants, all contributed significantly to improve outcome and enhance the quality of life of patients. This article reviews basic principles of management of skull base trauma stressing the role of these advanced techniques.
ECM Inspired Coating of Embroidered 3D Scaffolds Enhances Calvaria Bone Regeneration
Rentsch, C.; Rentsch, B.; Heinemann, S.; Bernhardt, R.; Bischoff, B.; Förster, Y.; Scharnweber, D.; Rammelt, S.
2014-01-01
Resorbable polymeric implants and surface coatings are an emerging technology to treat bone defects and increase bone formation. This approach is of special interest in anatomical regions like the calvaria since adults lose the capacity to heal large calvarial defects. The present study assesses the potential of extracellular matrix inspired, embroidered polycaprolactone-co-lactide (PCL) scaffolds for the treatment of 13 mm full thickness calvarial bone defects in rabbits. Moreover the influence of a collagen/chondroitin sulfate (coll I/cs) coating of PCL scaffolds was evaluated. Defect areas filled with autologous bone and empty defects served as reference. The healing process was monitored over 6 months by combining a novel ultrasonographic method, radiographic imaging, biomechanical testing, and histology. The PCL coll I/cs treated group reached 68% new bone volume compared to the autologous group (100%) and the biomechanical stability of the defect area was similar to that of the gold standard. Histological investigations revealed a significantly more homogenous bone distribution over the whole defect area in the PCL coll I/cs group compared to the noncoated group. The bioactive, coll I/cs coated, highly porous, 3-dimensional PCL scaffold acted as a guide rail for new skull bone formation along and into the implant. PMID:25013767
[A case of pycnodysostosis--observation of the skull by CT scan].
Anegawa, S; Bekki, Y; Furukawa, Y; Yokota, S; Torigoe, R
1987-07-01
A 13-year-old boy was presented to the Department of Neurosurgery, Saiseikai Fukuoka General Hospital for further examinations concerning abnormal findings in the skull radiogram taken when he struck his head. His physical features showed some characteristics the same as those of pycnodysostosis as follows--proportionate dwarfism, prominent forehead, short spoon-shaped fingers, bilateral exophthalmos. A skull radiogram revealed widely open cranial sutures with no healing of the fracture and craniotomy which was performed for an acute epidural hematoma 6 years ago. Furthermore, the mandible was hypoplastic with a virtual loss of mandibular angle. CT of the soft tissues showed somewhat dilated cortical sulci and ventricles without any structural abnormalities in the brain. CT of bone algorithm revealed specific characteristics of this disease. The paranasal sinuses were quite hypoplastic. Especially in the maxillary sinuses, frontal sinuses and mastoid air cells, none of developments of sinuses were noted, even though the middle and internal ear seemed to be normal. Moreover, the ethmoid and sphenoid sinuses were noted, although their developments were poor. The appearance of skull base was normal, including the inlets and outlets of cranial nerves or vessels and synchondroses. However, the density of the skull base, especially in the diploe, was higher than normal in Hansfield number. Furthermore, detailed measurements of skull base demonstrated that the skull base itself was also dwarfism. Pycnodysostosis is a generalized skeletal disease whose cardinal features are moderate generalized osteosclerosis and dwarfism. However, the detailed observation on the cranium by CT has not been reported. In our study, the development of sinuses in bones with intramembranous ossification are worse than that with endochondral ossification.(ABSTRACT TRUNCATED AT 250 WORDS)
Grachev, N S; Vorozhtsov, I N
The authors report a clinical case of successful elimination of a recurrent juvenile angiofibroma at the base of the skull (JAFBS) with the application of the optical navigation system and a cold plasma scalpel in the absence of preoperative embolization. It has been demonstrated using the proposed transperygoid approach to the extirpation of the tumour that a recurrent juvenile angiofibroma at the base of the skull can be efficiently removed by means of a modern minimally invasive and at the same time radical surgical method.
Shkarubo, Alexey Nikolaevich; Chernov, Ilia Valerievich; Ogurtsova, Anna Anatolievna; Moshchev, Dmitry Aleksandrovich; Lubnin, Andrew Jurievich; Andreev, Dmitry Nicolaevich; Koval, Konstantin Vladimirovich
2017-02-01
Intraoperative identification of cranial nerves is crucial for safe surgery of skull base tumors. Currently, only a small number of published papers describe the technique of trigger electromyography (t-EMG) in endoscopic endonasal removal of such tumors. To assess the effectiveness of t-EMG in preventing intraoperative cranial nerve damage in endoscopic endonasal surgery of skull base tumors. Nine patients were operated on using the endoscopic endonasal approach within a 1-year period. The tumors included large skull base chordomas and trigeminal neurinomas localized in the cavernous sinus. During the surgical process, cranial nerve identification was carried out using monopolar and bipolar t-EMG methods. Assessment of cranial nerve functional activity was conducted both before and after tumor removal. We mapped 17 nerves in 9 patients. Third, fifth, and sixth cranial nerves were identified intraoperatively. There were no cases of postoperative functional impairment of the mapped cranial nerves. In one case we were unable to get an intraoperative response from the fourth cranial nerve and observed its postoperative transient plegia (the function was normal before surgery). t-EMG allows surgeons to control the safety of cranial nerves both during and after skull base tumor removal. Copyright © 2016 Elsevier Inc. All rights reserved.
Fernandez-Nogueras Jimenez, Francisco J; Segura Fernandez-Nogueras, Miguel; Jouma Katati, Majed; Arraez Sanchez, Miguel Ángel; Roda Murillo, Olga; Sánchez Montesinos, Indalecio
2015-01-01
The role of robotic surgery is well established in various specialties such as urology and general surgery, but not in others such as neurosurgery and otolaryngology. In the case of surgery of the skull base, it has just emerged from an experimental phase. To investigate possible applications of the da Vinci surgical robot in transoral skull base surgery, comparing it with the authors' experience using conventional endoscopic transnasal surgery in the same region. A transoral transpalatal approach to the nasopharynx and medial skull base was performed on 4 cryopreserved cadaver heads. We used the da Vinci robot, a 30° standard endoscope 12mm thick, dual camera and dual illumination, Maryland forceps on the left terminal and curved scissors on the right, both 8mm thick. Bone drilling was performed manually. For the anatomical study of this region, we used 0.5cm axial slices from a plastinated cadaver head. Various skull base structures at different depths were reached with relative ease with the robot terminals Transoral robotic surgery with the da Vinci system provides potential advantages over conventional endoscopic transnasal surgery in the surgical approach to this region. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.
Ishii, Yudo; Tahara, Shigeyuki; Teramoto, Akira; Morita, Akio
2014-01-01
In recent years, resections of midline skull base tumors have been conducted using endoscopic endonasal skull base (EESB) approaches. Nevertheless, many surgeons reported that cerebrospinal fluid (CSF) leakage is still a major complication of these approaches. Here, we report the results of our 42 EESB surgeries and discuss the advantages and limits of this approach for resecting various types of tumors, and also report our technique to overcome CSF leakage. All 42 cases involved midline skull base tumors resected using the EESB technique. Dural incisions were closed using nasoseptal flaps and fascia patch inlay sutures. Total removal of the tumor was accomplished in seven pituitary adenomas (33.3%), five craniopharyngiomas (62.5%), five tuberculum sellae meningiomas (83.3%), three clival chordomas (100%), and one suprasellar ependymoma. Residual regions included the cavernous sinus, the outside of the intracranial part of the internal carotid artery, the lower lateral part of the posterior clivus, and the posterior pituitary stalk. Overall incidence of CSF leakage was 7.1%. Even though the versatility of the approach is limited, EESB surgery has many advantages compared to the transcranial approach for managing mid-line skull base lesions. To avoid CSF leakage, surgeons should have skills and techniques for complete closure, including use of the nasoseptal flap and fascia patch inlay techniques.
Conger, Andrew; Zhao, Fan; Wang, Xiaowen; Eisenberg, Amalia; Griffiths, Chester; Esposito, Felice; Carrau, Ricardo L; Barkhoudarian, Garni; Kelly, Daniel F
2018-05-11
OBJECTIVE The authors previously described a graded approach to skull base repair following endonasal microscopic or endoscope-assisted tumor surgery. In this paper they review their experience with skull base reconstruction in the endoscopic era. METHODS A retrospective review of a single-institution endonasal endoscopic patient database (April 2010-April 2017) was undertaken. Intraoperative CSF leaks were graded based on size (grade 0 [no leak], 1, 2, or 3), and repair technique was documented across grades. The series was divided into 2 epochs based on implementation of a strict perioperative antibiotic protocol and more liberal use of permanent and/or temporary buttresses; repair failure rates and postoperative meningitis rates were assessed for the 2 epochs and compared. RESULTS In total, 551 operations were performed in 509 patients for parasellar pathology, including pituitary adenoma (66%), Rathke's cleft cyst (7%), meningioma (6%), craniopharyngioma (4%), and other (17%). Extended approaches were used in 41% of cases. There were 9 postoperative CSF leaks (1.6%) and 6 cases of meningitis (1.1%). Postoperative leak rates for all 551 operations by grade 0, 1, 2, and 3 were 0%, 1.9%, 3.1%, and 4.8%, respectively. Fat grafts were used in 33%, 84%, 97%, and 100% of grade 0, 1, 2, and 3 leaks, respectively. Pedicled mucosal flaps (78 total) were used in 2.6% of grade 0-2 leaks (combined) and 79.5% of grade 3 leaks (60 nasoseptal and 6 middle turbinate flaps). Nasoseptal flap usage was highest for craniopharyngioma operations (80%) and lowest for pituitary adenoma operations (2%). Two (3%) nasoseptal flaps failed. Contributing factors for the 9 repair failures were BMI ≥ 30 (7/9), lack of buttress (4/9), grade 3 leak (4/9), and postoperative vomiting (4/9). Comparison of the epochs showed that grade 1-3 repair failures decreased from 6/143 (4.1%) to 3/141 (2.1%) and grade 1-3 meningitis rates decreased from 5 (3.5%) to 1 (0.7%) (p = 0.08). Prophylactic lumbar CSF drainage was used in only 4 cases (< 1%), was associated with a higher meningitis rate in grades 1-3 (25% vs 2%), and was discontinued in 2012. Comparison of the 2 epochs showed increase buttress use in the second, with use of a permanent buttress in grade 1 and 3 leaks increasing from 13% to 55% and 32% to 76%, respectively (p < 0.001), and use of autologous septal/keel bone as a permanent buttress in grade 1, 2, and 3 leaks increasing from 15% to 51% (p < 0.001). CONCLUSIONS A graded approach to skull base repair after endonasal surgery remains valid in the endoscopic era. However, the technique has evolved significantly, with further reduction of postoperative CSF leak rates. These data suggest that buttresses are beneficial for repair of most grade 1 and 2 leaks and all grade 3 leaks. Similarly, pedicled flaps appear advantageous for grade 3 leaks, while CSF diversion may be unnecessary and a risk factor for meningitis. High BMI should prompt an aggressive multilayered repair strategy. Achieving repair failure and meningitis rates lower than 1% is a reasonable goal in endoscopic skull base tumor surgery.
Excessive dietary intake of vitamin A reduces skull bone thickness in mice
Öhman, Caroline; Calounova, Gabriela; Rasmusson, Annica; Andersson, Göran; Pejler, Gunnar; Melhus, Håkan
2017-01-01
Calvarial thinning and skull bone defects have been reported in infants with hypervitaminosis A. These findings have also been described in humans, mice and zebrafish with loss-of-function mutations in the enzyme CYP26B1 that degrades retinoic acid (RA), the active metabolite of vitamin A, indicating that these effects are indeed caused by too high levels of vitamin A and that evolutionary conserved mechanisms are involved. To explore these mechanisms, we have fed young mice excessive doses of vitamin A for one week and then analyzed the skull bones using micro computed tomography, histomorphometry, histology and immunohistochemistry. In addition, we have examined the effect of RA on gene expression in osteoblasts in vitro. Compared to a standard diet, a high dietary intake of vitamin A resulted in a rapid and significant reduction in calvarial bone density and suture diastasis. The bone formation rate was almost halved. There was also increased staining of tartrate resistant acid phosphatase in osteocytes and an increased perilacunar matrix area, indicating osteocytic osteolysis. Consistent with this, RA induced genes associated with bone degradation in osteoblasts in vitro. Moreover, and in contrast to other known bone resorption stimulators, vitamin A induced osteoclastic bone resorption on the endocranial surfaces. PMID:28426756
Badachhape, Andrew A; Okamoto, Ruth J; Johnson, Curtis L; Bayly, Philip V
2018-05-17
The objective of this study was to characterize the relationships between motion in the scalp, skull, and brain. In vivo estimates of motion transmission from the skull to the brain may illuminate the mechanics of traumatic brain injury. Because of challenges in directly sensing skull motion, it is useful to know how well motion of soft tissue of the head, i.e., the scalp, can approximate skull motion or predict brain tissue deformation. In this study, motion of the scalp and brain were measured using magnetic resonance elastography (MRE) and separated into components due to rigid-body displacement and dynamic deformation. Displacement estimates in the scalp were calculated using low motion-encoding gradient strength in order to reduce "phase wrapping" (an ambiguity in displacement estimates caused by the 2 π-periodicity of MRE phase contrast). MRE estimates of scalp and brain motion were compared to skull motion estimated from three tri-axial accelerometers. Comparison of the relative amplitudes and phases of harmonic motion in the scalp, skull, and brain of six human subjects indicate that data from scalp-based sensors should be used with caution to estimate skull kinematics, but that fairly consistent relationships exist between scalp, skull, and brain motion. In addition, the measured amplitude and phase relationships of scalp, skull, and brain can be used to evaluate and improve mathematical models of head biomechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Skull's acoustic attenuation and dispersion modeling on photoacoustic signal
NASA Astrophysics Data System (ADS)
Mohammadi, Leila; Behnam, Hamid; Tavakkoli, Jahan; Nasiriavanaki, Mohammadreza
2018-02-01
Despite the promising results of the recent novel transcranial photoacoustic (PA) brain imaging technology, it has been demonstrated that the presence of the skull severely affects the performance of this imaging modality. We theoretically investigate the effects of acoustic heterogeneity induced by skull on the PA signals generated from single particles, with firstly developing a mathematical model for this phenomenon and then explore experimental validation of the results. The model takes into account the frequency dependent attenuation and dispersion effects occur with wave reflection, refraction and mode conversion at the skull surfaces. Numerical simulations based on the developed model are performed for calculating the propagation of photoacoustic waves through the skull. The results show a strong agreement between simulation and ex-vivo study. The findings are as follow: The thickness of the skull is the most PA signal deteriorating factor that affects both its amplitude (attenuation) and phase (distortion). Also we demonstrated that, when the depth of target region is low and it is comparable to the skull thickness, however, the skull-induced distortion becomes increasingly severe and the reconstructed image would be strongly distorted without correcting these effects. It is anticipated that an accurate quantification and modeling of the skull transmission effects would ultimately allow for aberration correction in transcranial PA brain imaging.
Lapchak, Paul A.; Boitano, Paul D.; Butte, Pramod V.; Fisher, David J.; Hölscher, Thilo; Ley, Eric J.; Nuño, Miriam; Voie, Arne H.; Rajput, Padmesh S.
2015-01-01
Background and Purpose Transcranial near-infrared laser therapy (TLT) is a promising and novel method to promote neuroprotection and clinical improvement in both acute and chronic neurodegenerative diseases such as acute ischemic stroke (AIS), traumatic brain injury (TBI), and Alzheimer’s disease (AD) patients based upon efficacy in translational animal models. However, there is limited information in the peer-reviewed literature pertaining to transcranial near-infrared laser transmission (NILT) profiles in various species. Thus, in the present study we systematically evaluated NILT characteristics through the skull of 4 different species: mouse, rat, rabbit and human. Results Using dehydrated skulls from 3 animal species, using a wavelength of 800nm and a surface power density of 700 mW/cm2, NILT decreased from 40.10% (mouse) to 21.24% (rat) to 11.36% (rabbit) as skull thickness measured at bregma increased from 0.44 mm in mouse to 0.83 mm in rat and then 2.11 mm in rabbit. NILT also significantly increased (p<0.05) when animal skulls were hydrated (i.e. compared to dehydrated); but there was no measurable change in thickness due to hydration. In human calvaria, where mean thickness ranged from 7.19 mm at bregma to 5.91 mm in the parietal skull, only 4.18% and 4.24% of applied near-infrared light was transmitted through the skull. There was a slight (9.2-13.4%), but insignificant effect of hydration state on NILT transmission of human skulls, but there was a significant positive correlation between NILT and thickness at bregma and parietal skull, in both hydrated and dehydrated states. Conclusion This is the first systematic study to demonstrate differential NILT through the skulls of 4 different species; with an inverse relationship between NILT and skull thickness. With animal skulls, transmission profiles are dependent upon the hydration state of the skull, with significantly greater penetration through hydrated skulls compared to dehydrated skulls. Using human skulls, we demonstrate a significant correlation between thickness and penetration, but there was no correlation with skull density. The results suggest that TLT should be optimized in animals using novel approaches incorporating human skull characteristics, because of significant variance of NILT profiles directly related to skull thickness. PMID:26039354
A hybrid skull-stripping algorithm based on adaptive balloon snake models
NASA Astrophysics Data System (ADS)
Liu, Hung-Ting; Sheu, Tony W. H.; Chang, Herng-Hua
2013-02-01
Skull-stripping is one of the most important preprocessing steps in neuroimage analysis. We proposed a hybrid algorithm based on an adaptive balloon snake model to handle this challenging task. The proposed framework consists of two stages: first, the fuzzy possibilistic c-means (FPCM) is used for voxel clustering, which provides a labeled image for the snake contour initialization. In the second stage, the contour is initialized outside the brain surface based on the FPCM result and evolves under the guidance of the balloon snake model, which drives the contour with an adaptive inward normal force to capture the boundary of the brain. The similarity indices indicate that our method outperformed the BSE and BET methods in skull-stripping the MR image volumes in the IBSR data set. Experimental results show the effectiveness of this new scheme and potential applications in a wide variety of skull-stripping applications.
Elhadi, Ali M; Kalb, Samuel; Perez-Orribo, Luis; Little, Andrew S; Spetzler, Robert F; Preul, Mark C
2012-08-01
The field of anatomy, one of the most ancient sciences, first evolved in Egypt. From the Early Dynastic Period (3100 BC) until the time of Galen at the end of the 2nd century ad, Egypt was the center of anatomical knowledge, including neuroanatomy. Knowledge of neuroanatomy first became important so that sacred rituals could be performed by ancient Egyptian embalmers during mummification procedures. Later, neuroanatomy became a science to be studied by wise men at the ancient temple of Memphis. As religious conflicts developed, the study of the human body became restricted. Myths started to replace scientific research, squelching further exploration of the human body until Alexander the Great founded the city of Alexandria. This period witnessed a revolution in the study of anatomy and functional anatomy. Herophilus of Chalcedon, Erasistratus of Chios, Rufus of Ephesus, and Galen of Pergamon were prominent physicians who studied at the medical school of Alexandria and contributed greatly to knowledge about the anatomy of the skull base. After the Royal Library of Alexandria was burned and laws were passed prohibiting human dissections based on religious and cultural factors, knowledge of human skull base anatomy plateaued for almost 1500 years. In this article the authors consider the beginning of this journey, from the earliest descriptions of skull base anatomy to the establishment of basic skull base anatomy in ancient Egypt.
Gordon, G M; Steyn, M
2012-03-10
One of the aims of forensic science is to determine the identities of victims of crime. In some cases the investigators may have ideas as to the identities of the victims and in these situations, ante mortem photographs of the victims could be used in order to try and establish identity through skull-photo superimposition. The aim of this study was to evaluate the accuracy of a newly developed digital photographic superimposition technique on a South African sample of cadaver photographs and skulls. Forty facial photographs were selected and for each photo, 10 skulls (including the skull corresponding to the photo) were used for superimposition. The investigator did not know which of the 10 skulls corresponded to the photograph in question. The skulls were scanned 3-dimensionally, using a Cyberware™ Model 3030 Colour-3D Scanhead scanner. The photos were also scanned. Superimposition was done in 3D Studio Max and involved a morphological superimposition, whereby a skull is superimposed over the photo and assessed for a morphological match. Superimposition using selected anatomical landmarks was also performed to assess the match. A total of 400 skull-photo superimpositions were carried out using the morphological assessment and another 400 using the anatomical landmarks. In 85% of cases the correct skull was included in the possible matches for a particular photo using morphological assessment. However, in all of these cases, between zero and three other skulls out of 10 possibilities could also match a specific photo. In the landmark based assessment, the correct skull was included in 80% of cases. Once again, however, between one and seven other skulls out of 10 possibilities also matched the photo. This indicates that skull-photo superimposition has limited use in the identification of human skeletal remains, but may be useful as an initial screening tool. Corroborative techniques should also be used in the identification process. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Radiological features of the skull in Klinefelter's syndrome and male hypogonadism.
Kosowicz, J; Rzymski, K
1975-07-01
Skull radiographs were performed in 21 cases of Klinefelter's syndrome and in 30 cases of eunuchoidism. The radiographic changes of the skull in Klinefelter's syndrome are: temporal flattening, decreased width of the vault, narrowing of the mandible, decreased length of the skull, shortening of the anterior fossa cranii, decrease in the angle of the base, thinning of the vault bones at the major fontanelle, premature and excessive calcification of the coronal suture, deepening of the posterior fossa and shortening of the mandibular rami. In hypogonadotropic eunuchoidism the skull radiographs show: small mastoid processes, fine bones of the vault, small sella turcica, club-shaped clinoid processes, excessive development of sphenoidal sinuses and in the fourth and later decades of life a diminished bone density (osteoporosis).
Unusual case of post-traumatic lingual paraesthesia.
Tekeli, K M; Agrawal, T; Worrall, S F
2008-03-01
We report an unusual case of lingual paraesthesia caused by a fracture of the base of the skull involving the foramen ovale. As far as we know, lingual sensory neuropathy associated purely with a fracture of the base of the skull has not been reported before.
Oostra, Amanda; van Furth, Wouter; Georgalas, Christos
2012-03-01
Skull base surgery has gone through significant changes with the development of extended endoscopic endonasal approaches over the last decade. Initially used for the transphenoidal removal of hypophyseal adenomas, the endoscopic transnasal approach gradually evolved into a way of accessing the whole ventral skull base. Improved visualization, avoidance of brain retraction, the ability to access directly tumours with minimal damage to critical neurosurgical structures as well lack of external scars are among its obvious benefits. However, it presents the surgeons with a number of challenges, including the need to deal endoscopically with potential arterial bleeding, complicated reconstruction requirements as well as the need for a true team approach. In this review drawing from our experience as well as published series, we present an overview of current indications, challenges and limitations of the expanded endonasal approaches to the skull base. © 2012 The Authors. ANZ Journal of Surgery © 2012 Royal Australasian College of Surgeons.
Removal of a foreign body from the skull base using a customized computer-designed guide bar.
Wei, Ran; Xiang-Zhen, Liu; Bing, Guo; Da-Long, Shu; Ze-Ming, Tan
2010-06-01
Foreign bodies located at the base of the skull pose a surgical challenge. Here, a customized computer-designed surgical guide bar was designed to facilitate removal of a skull base foreign body. Within 24h of the patient's presentation, a guide bar and mounting platform were designed to remove a foreign body located adjacent to the transverse process of the atlas and pressing against the internal carotid artery. The foreign body was successfully located and removed using the custom designed guide bar and computer operative planning. Ten months postoperatively the patient was free of complaints and lacked any complications such as restricted opening of the mouth or false aneurysm. The inferior alveolar nerve damage noted immediately postoperatively (a consequence of mandibular osteotomy) was slightly reduced at follow-up, but labial numbness persisted. The navigation tools described herein were successfully employed to aid foreign body removal from the skull base. Copyright (c) 2009 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Subcranial approach in the surgical treatment of anterior skull base trauma.
Schaller, B
2005-04-01
Fractures of the anterior skull base, because of the region's anatomical relationships, are readily complicated by neurological damage to the brain or cranial nerves. This review highlights the use of a subcranial approach in the operative treatment of injuries of the anterior skull base and compares it to the more traditional neurosurgical transcranial approach. The extended anterior subcranial approach takes advantage of the specific features of injuries in this region and allows direct access to the central anterior cranial base in order to repair fractures, close CSF fistulae and relieve of optic nerve compression. It avoids extensive frontal lobe manipulation. The success of the approach in achieving the aims of surgery with low morbidity is reviewed.
NASA Astrophysics Data System (ADS)
Jones, Ryan M.; Hynynen, Kullervo
2016-01-01
Computed tomography (CT)-based aberration corrections are employed in transcranial ultrasound both for therapy and imaging. In this study, analytical and numerical approaches for calculating aberration corrections based on CT data were compared, with a particular focus on their application to transcranial passive imaging. Two models were investigated: a three-dimensional full-wave numerical model (Connor and Hynynen 2004 IEEE Trans. Biomed. Eng. 51 1693-706) based on the Westervelt equation, and an analytical method (Clement and Hynynen 2002 Ultrasound Med. Biol. 28 617-24) similar to that currently employed by commercial brain therapy systems. Trans-skull time delay corrections calculated from each model were applied to data acquired by a sparse hemispherical (30 cm diameter) receiver array (128 piezoceramic discs: 2.5 mm diameter, 612 kHz center frequency) passively listening through ex vivo human skullcaps (n = 4) to emissions from a narrow-band, fixed source emitter (1 mm diameter, 516 kHz center frequency). Measurements were taken at various locations within the cranial cavity by moving the source around the field using a three-axis positioning system. Images generated through passive beamforming using CT-based skull corrections were compared with those obtained through an invasive source-based approach, as well as images formed without skull corrections, using the main lobe volume, positional shift, peak sidelobe ratio, and image signal-to-noise ratio as metrics for image quality. For each CT-based model, corrections achieved by allowing for heterogeneous skull acoustical parameters in simulation outperformed the corresponding case where homogeneous parameters were assumed. Of the CT-based methods investigated, the full-wave model provided the best imaging results at the cost of computational complexity. These results highlight the importance of accurately modeling trans-skull propagation when calculating CT-based aberration corrections. Although presented in an imaging context, our results may also be applicable to the problem of transmit focusing through the skull.
Calvarial reconstruction using high-density porous polyethylene cranial hemispheres
Mokal, Nitin J.; Desai, Mahinoor F.
2011-01-01
Aims: Cranial vault reconstruction can be performed with a variety of autologous or alloplastic materials. We describe our experience using high-density porous polyethylene (HDPE) cranial hemisphere for cosmetic and functional restoration of skull defects. The porous nature of the implant allows soft tissue ingrowth, which decreases the incidence of infection. Hence, it can be used in proximity to paranasal sinuses and where previous alloplastic cranioplasties have failed due to implant infection. Materials and Methods: We used the HDPE implant in seven patients over a three-year period for reconstruction of moderate to large cranial defects. Two patients had composite defects, which required additional soft tissue in the form of free flap and tissue expansion. Results: In our series, decompressive craniectomy following trauma was the commonest aetiology and all defects were located in the fronto-parieto-temporal region. The defect size was 10 cm on average in the largest diameter. All patients had good post-operative cranial contour and we encountered no infections, implant exposure or implant migration. Conclusions: Our results indicate that the biocompatibility and flexibility of the HDPE cranial hemisphere implant make it an excellent alternative to existing methods of calvarial reconstruction. PMID:22279274
Effect of skull flexural properties on brain response during dynamic head loading - biomed 2013.
Harrigan, T P; Roberts, J C; Ward, E E; Carneal, C M; Merkle, A C
2013-01-01
The skull-brain complex is typically modeled as an integrated structure, similar to a fluid-filled shell. Under dynamic loads, the interaction of the skull and the underlying brain, cerebrospinal fluid, and other tissue produces the pressure and strain histories that are the basis for many theories meant to describe the genesis of traumatic brain injury. In addition, local bone strains are of interest for predicting skull fracture in blunt trauma. However, the role of skull flexure in the intracranial pressure response to blunt trauma is complex. Since the relative time scales for pressure and flexural wave transmission across the skull are not easily separated, it is difficult to separate out the relative roles of the mechanical components in this system. This study uses a finite element model of the head, which is validated for pressure transmission to the brain, to assess the influence of skull table flexural stiffness on pressure in the brain and on strain within the skull. In a Human Head Finite Element Model, the skull component was modified by attaching shell elements to the inner and outer surfaces of the existing solid elements that modeled the skull. The shell elements were given the properties of bone, and the existing solid elements were decreased so that the overall stiffness along the surface of the skull was unchanged, but the skull table bending stiffness increased by a factor of 2.4. Blunt impact loads were applied to the frontal bone centrally, using LS-Dyna. The intracranial pressure predictions and the strain predictions in the skull were compared for models with and without surface shell elements, showing that the pressures in the mid-anterior and mid-posterior of the brain were very similar, but the strains in the skull under the loads and adjacent to the loads were decreased 15% with stiffer flexural properties. Pressure equilibration to nearly hydrostatic distributions occurred, indicating that the important frequency components for typical impact loading are lower than frequencies based on pressure wave propagation across the skull. This indicates that skull flexure has a local effect on intracranial pressures but that the integrated effect of a dome-like structure under load is a significant part of load transfer in the skull in blunt trauma.
Transfer of children with isolated linear skull fractures: is it worth the cost?
White, Ian K; Pestereva, Ecaterina; Shaikh, Kashif A; Fulkerson, Daniel H
2016-05-01
OBJECTIVE Children with skull fractures are often transferred to hospitals with pediatric neurosurgical capabilities. Historical data suggest that a small percentage of patients with an isolated skull fracture will clinically decline. However, recent papers have suggested that the risk of decline in certain patients is low. There are few data regarding the financial costs associated with transporting patients at low risk for requiring specialty care. In this study, the clinical outcomes and financial costs of transferring of a population of children with isolated skull fractures to a Level 1 pediatric trauma center over a 9-year period were analyzed. METHODS A retrospective review of all children treated for head injury at Riley Hospital for Children (Indianapolis, Indiana) between 2005 and 2013 was performed. Patients with a skull fracture were identified based on ICD-9 codes. Patients with intracranial hematoma, brain parenchymal injury, or multisystem trauma were excluded. Children transferred to Riley Hospital from an outside facility were identified. The clinical and radiographic outcomes were recorded. A cost analysis was performed on patients who were transferred with an isolated, linear, nondisplaced skull fracture. RESULTS Between 2005 and 2013, a total of 619 pediatric patients with isolated skull fractures were transferred. Of these, 438 (70.8%) patients had a linear, nondisplaced skull fracture. Of these 438 patients, 399 (91.1%) were transferred by ambulance and 39 (8.9%) by helicopter. Based on the current ambulance and helicopter fees, a total of $1,834,727 (an average of $4188.90 per patient) was spent on transfer fees alone. No patient required neurosurgical intervention. All patients recovered with symptomatic treatment; no patient suffered late decline or epilepsy. CONCLUSIONS This study found that nearly $2 million was spent solely on transfer fees for 438 pediatric patients with isolated linear skull fractures over a 9-year period. All patients in this study had good clinical outcomes, and none required neurosurgical intervention. Based on these findings, the authors suggest that, in the absence of abuse, most children with isolated, linear, nondisplaced skull fractures do not require transfer to a Level 1 pediatric trauma center. The authors suggest ideas for further study to refine the protocols for determining which patients require transport.
Skull base tumors: a comprehensive review of transfacial swing osteotomy approaches.
Moreira-Gonzalez, Andrea; Pieper, Daniel R; Cambra, Jorge Balaguer; Simman, Richard; Jackson, Ian T
2005-03-01
Numerous techniques have been proposed for the resection of skull base tumors, each one unique with regard to the region exposed and degree of technical complexity. This study describes the use of transfacial swing osteotomies in accessing lesions located at various levels of the cranial base. Eight patients who underwent transfacial swings for exposure and resection of cranial base lesions between 1996 and 2002 were studied. The mandible was the choice when wide exposure of nasopharyngeal and midline skull base tumors was necessary, especially when they involved the infratemporal fossa. The midfacial swing osteotomy was an option when access to the entire clivus was necessary. An orbital swing approach was used to access large orbital tumors lying inferior to the optic nerve and posterior to the globe, a region that is often difficult to visualize. Gross total tumor excision was possible in all patients. Six patients achieved disease control and two had recurrences. The complications of cerebrospinal fluid leak, infection, hematoma, or cranial nerve damage did not occur. After surgery, some patients experienced temporary symptoms caused by local swelling. The aesthetic result was considered good. Transfacial swing osteotomies provide a wide exposure to tumors that occur in the central skull base area. Excellent knowledge of the detailed anatomy of this region is paramount to the success of this surgery. The team concept is essential; it is built around the craniofacial surgeon and an experienced skull base neurosurgeon.
A fiducial skull marker for precise MRI-based stereotaxic surgery in large animal models.
Glud, Andreas Nørgaard; Bech, Johannes; Tvilling, Laura; Zaer, Hamed; Orlowski, Dariusz; Fitting, Lise Moberg; Ziedler, Dora; Geneser, Michael; Sangill, Ryan; Alstrup, Aage Kristian Olsen; Bjarkam, Carsten Reidies; Sørensen, Jens Christian Hedemann
2017-06-15
Stereotaxic neurosurgery in large animals is used widely in different sophisticated models, where precision is becoming more crucial as desired anatomical target regions are becoming smaller. Individually calculated coordinates are necessary in large animal models with cortical and subcortical anatomical differences. We present a convenient method to make an MRI-visible skull fiducial for 3D MRI-based stereotaxic procedures in larger experimental animals. Plastic screws were filled with either copper-sulfate solution or MRI-visible paste from a commercially available cranial head marker. The screw fiducials were inserted in the animal skulls and T1 weighted MRI was performed allowing identification of the inserted skull marker. Both types of fiducial markers were clearly visible on the MRÍs. This allows high precision in the stereotaxic space. The use of skull bone based fiducial markers gives high precision for both targeting and evaluation of stereotaxic systems. There are no metal artifacts and the fiducial is easily removed after surgery. The fiducial marker can be used as a very precise reference point, either for direct targeting or in evaluation of other stereotaxic systems. Copyright © 2017 Elsevier B.V. All rights reserved.
ISHII, Yudo; TAHARA, Shigeyuki; TERAMOTO, Akira; MORITA, Akio
2014-01-01
In recent years, resections of midline skull base tumors have been conducted using endoscopic endonasal skull base (EESB) approaches. Nevertheless, many surgeons reported that cerebrospinal fluid (CSF) leakage is still a major complication of these approaches. Here, we report the results of our 42 EESB surgeries and discuss the advantages and limits of this approach for resecting various types of tumors, and also report our technique to overcome CSF leakage. All 42 cases involved midline skull base tumors resected using the EESB technique. Dural incisions were closed using nasoseptal flaps and fascia patch inlay sutures. Total removal of the tumor was accomplished in seven pituitary adenomas (33.3%), five craniopharyngiomas (62.5%), five tuberculum sellae meningiomas (83.3%), three clival chordomas (100%), and one suprasellar ependymoma. Residual regions included the cavernous sinus, the outside of the intracranial part of the internal carotid artery, the lower lateral part of the posterior clivus, and the posterior pituitary stalk. Overall incidence of CSF leakage was 7.1%. Even though the versatility of the approach is limited, EESB surgery has many advantages compared to the transcranial approach for managing mid-line skull base lesions. To avoid CSF leakage, surgeons should have skills and techniques for complete closure, including use of the nasoseptal flap and fascia patch inlay techniques. PMID:25446379
Prediction and near-field observation of skull-guided acoustic waves
NASA Astrophysics Data System (ADS)
Estrada, Héctor; Rebling, Johannes; Razansky, Daniel
2017-06-01
Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.
Prediction and near-field observation of skull-guided acoustic waves.
Estrada, Héctor; Rebling, Johannes; Razansky, Daniel
2017-06-21
Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.
Collagen matrix as an inlay in endoscopic skull base reconstruction.
Oakley, G M; Christensen, J M; Winder, M; Jonker, B P; Davidson, A; Steel, T; Teo, C; Harvey, R J
2018-03-01
Multi-layer reconstruction has become standard in endoscopic skull base surgery. The inlay component used can vary among autografts, allografts, xenografts and synthetics, primarily based on surgeon preference. The short- and long-term outcomes of collagen matrix in skull base reconstruction are described. A case series of patients who underwent endoscopic skull base reconstruction with collagen matrix inlay were assessed. Immediate peri-operative outcomes (cerebrospinal fluid leak, meningitis, ventriculitis, intracranial bleeding, epistaxis, seizures) and delayed complications (delayed healing, meningoencephalocele, prolapse of reconstruction, delayed cerebrospinal fluid leak, ascending meningitis) were examined. Of 120 patients (51.0 ± 17.5 years, 41.7 per cent female), peri-operative complications totalled 12.7 per cent (cerebrospinal fluid leak, 3.3 per cent; meningitis, 3.3 per cent; other intracranial infections, 2.5 per cent; intracranial bleeding, 1.7 per cent; epistaxis, 1.7 per cent; and seizures, 0 per cent). Delayed complications did not occur in any patients. Collagen matrix is an effective inlay material. It provides robust long-term separation between sinus and cranial cavities, and avoids donor site morbidity, but carries additional cost.
Turri-Zanoni, Mario; Battaglia, Paolo; Karligkiotis, Apostolos; Lepera, Davide; Zocchi, Jacopo; Dallan, Iacopo; Bignami, Maurizio; Castelnuovo, Paolo
2017-04-01
Despite the development of functional endoscopic endonasal surgery, there are still areas of the maxillary sinus that remain technically difficult to access using a standard middle meatal antrostomy as well as deep-seated skull base lesions requiring expanded transmaxillary approaches. All patients who underwent transnasal endoscopic partial maxillectomy (TEPM) in a single institution from 2000 to 2014 were retrospectively reviewed. The TEPM was classified into 5 types according to the anatomic structures progressively removed and to the access provided. The TEPM was performed in 1378 patients for the management of: inflammatory diseases in 513 cases (37%), benign sinonasal tumors in 425 cases (31%), skull base malignancies in 285 cases (21%), and as a corridor to address deep-seated skull base lesions in 155 cases (11%). The TEPM is a stepwise approach offering increasing access that can be tailored to different maxillary, sinonasal, and skull base pathologies with minimal morbidity for patients. © 2016 Wiley Periodicals, Inc. Head Neck 39: 754-766, 2017. © 2016 Wiley Periodicals, Inc.
Lower trapezius flap for recalcitrant wounds of the posterior skull and spine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seyfer, A.E.
1988-05-01
The lower trapezius muscle and musculocutaneous flap has been useful in providing a reliable, expeditious closure for compromised defects of the upper spine and dorsal calvarium. It has been successfully employed in 6 patients as a one-stage procedure, all of whom had recalcitrant, postoperative wounds that failed to heal. It provides serviceable tissue that is able to withstand additional radiotherapy and also offers useful palliation without apparent disability. Pertinent anatomical and clinical considerations are discussed.
Grisold, Wolfgang; Grisold, Anna
2014-01-01
Background Neuro-oncologists are familiar with primary brain tumors, intracerebral metastases meningeal carcinomatosis and extracerebral intracranial tumors as meningeoma. For these conditions, and also some other rare tumor entities several treatment options exist. Cancer can also involve structures around the brain as the dura, the base of the skull, the cavities of the skull and tissue around the bony skull, the skin, the tissue of the neck. and either compress, invade or spread in the central or peripheral nervous system. Methods A systematic literature research was conducted determining symptoms and signs, tumor sites of nerve invasion, tumor types, diagnostic techniques, mechanisms of nerve invasion, and important differential diagnosis. Additional cases from own experience were added for illustration. Results The mechanisms of tumor invasion of cranial nerves is heterogenous and not only involves several types of invasion, but also spread along the cranial nerves in antero- and retrograde fashion and even spread into different nerve territories via anastomosis. In addition the concept of angiosomas may have an influence on the spread of metastases. Conclusion In addition to the well described tumor spread in meningeal carcinomatosis and base of the skull metastases, dural spread, lesions of the bony skull, the cavities of the skull and skin of the face and tissue of the neck region need to be considered, and have an impact on therapeutic decisions. PMID:26034610
Montes-Restrepo, Victoria; Carrette, Evelien; Strobbe, Gregor; Gadeyne, Stefanie; Vandenberghe, Stefaan; Boon, Paul; Vonck, Kristl; Mierlo, Pieter van
2016-07-01
We investigated the influence of different skull modeling approaches on EEG source imaging (ESI), using data of six patients with refractory temporal lobe epilepsy who later underwent successful epilepsy surgery. Four realistic head models with different skull compartments, based on finite difference methods, were constructed for each patient: (i) Three models had skulls with compact and spongy bone compartments as well as air-filled cavities, segmented from either computed tomography (CT), magnetic resonance imaging (MRI) or a CT-template and (ii) one model included a MRI-based skull with a single compact bone compartment. In all patients we performed ESI of single and averaged spikes marked in the clinical 27-channel EEG by the epileptologist. To analyze at which time point the dipole estimations were closer to the resected zone, ESI was performed at two time instants: the half-rising phase and peak of the spike. The estimated sources for each model were validated against the resected area, as indicated by the postoperative MRI. Our results showed that single spike analysis was highly influenced by the signal-to-noise ratio (SNR), yielding estimations with smaller distances to the resected volume at the peak of the spike. Although averaging reduced the SNR effects, it did not always result in dipole estimations lying closer to the resection. The proposed skull modeling approaches did not lead to significant differences in the localization of the irritative zone from clinical EEG data with low spatial sampling density. Furthermore, we showed that a simple skull model (MRI-based) resulted in similar accuracy in dipole estimation compared to more complex head models (based on CT- or CT-template). Therefore, all the considered head models can be used in the presurgical evaluation of patients with temporal lobe epilepsy to localize the irritative zone from low-density clinical EEG recordings.
From shape to cells: mouse models reveal mechanisms altering palate development in Apert syndrome
Martínez-Abadías, Neus; Holmes, Greg; Pankratz, Talia; Wang, Yingli; Zhou, Xueyan; Jabs, Ethylin Wang; Richtsmeier, Joan T.
2013-01-01
SUMMARY Apert syndrome is a congenital disorder characterized by severe skull malformations and caused by one of two missense mutations, S252W and P253R, on fibroblast growth factor receptor 2 (FGFR2). The molecular bases underlying differential Apert syndrome phenotypes are still poorly understood and it is unclear why cleft palate is more frequent in patients carrying the S252W mutation. Taking advantage of Apert syndrome mouse models, we performed a novel combination of morphometric, histological and immunohistochemical analyses to precisely quantify distinct palatal phenotypes in Fgfr2+/S252W and Fgfr2+/P253R mice. We localized regions of differentially altered FGF signaling and assessed local cell patterns to establish a baseline for understanding the differential effects of these two Fgfr2 mutations. Palatal suture scoring and comparative 3D shape analysis from high resolution μCT images of 120 newborn mouse skulls showed that Fgfr2+/S252W mice display relatively more severe palate dysmorphologies, with contracted and more separated palatal shelves, a greater tendency to fuse the maxillary-palatine sutures and aberrant development of the inter-premaxillary suture. These palatal defects are associated with suture-specific patterns of abnormal cellular proliferation, differentiation and apoptosis. The posterior region of the developing palate emerges as a potential target for therapeutic strategies in clinical management of cleft palate in Apert syndrome patients. PMID:23519026
Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound
NASA Astrophysics Data System (ADS)
Mueller, Jerel K.; Ai, Leo; Bansal, Priya; Legon, Wynn
2017-12-01
Objective. Transcranial focused ultrasound is an emerging field for human non-invasive neuromodulation, but its dosing in humans is difficult to know due to the skull. The objective of the present study was to establish modeling methods based on medical images to assess skull differences between individuals on the wave propagation of ultrasound. Approach. Computational models of transcranial focused ultrasound were constructed using CT and MR scans to solve for intracranial pressure. We explored the effect of including the skull base in models, different transducer placements on the head, and differences between 250 kHz or 500 kHz acoustic frequency for both female and male models. We further tested these features using linear, nonlinear, and elastic simulations. To better understand inter-subject skull thickness and composition effects we evaluated the intracranial pressure maps between twelve individuals at two different skull sites. Main results. Nonlinear acoustic simulations resulted in virtually identical intracranial pressure maps with linear acoustic simulations. Elastic simulations showed a difference in max pressures and full width half maximum volumes of 15% at most. Ultrasound at an acoustic frequency of 250 kHz resulted in the creation of more prominent intracranial standing waves compared to 500 kHz. Finally, across twelve model human skulls, a significant linear relationship to characterize intracranial pressure maps was not found. Significance. Despite its appeal, an inherent problem with the use of a noninvasive transcranial ultrasound method is the difficulty of knowing intracranial effects because of the skull. Here we develop detailed computational models derived from medical images of individuals to simulate the propagation of neuromodulatory ultrasound across the skull and solve for intracranial pressure maps. These methods allow for a much better understanding of the intracranial effects of ultrasound for an individual in order to ensure proper targeting and more tightly control dosing.
Imaging of the central skull base.
Borges, Alexandra
2009-08-01
The central skull base (CSB) constitutes a frontier between the extracranial head and neck and the middle cranial fossa. The anatomy of this region is complex, containing most of the bony foramina and canals of the skull base traversed by several neurovascular structures that can act as routes of spread for pathologic processes. Lesions affecting the CSB can be intrinsic to its bony-cartilaginous components; can arise from above, within the intracranial compartment; or can arise from below, within the extracranial head and neck. Crosssectional imaging is indispensable in the diagnosis, treatment planning, and follow-up of patients with CSB lesions. This review focuses on a systematic approach to this region based on an anatomic division that takes into account the major tissue constituents of the CSB.
Imaging of the central skull base.
Borges, Alexandra
2009-11-01
The central skull base (CSB) constitutes a frontier between the extracranial head and neck and the middle cranial fossa. The anatomy of this region is complex, containing most of the bony foramina and canals of the skull base traversed by several neurovascular structures that can act as routes of spread for pathologic processes. Lesions affecting the CSB can be intrinsic to its bony-cartilaginous components; can arise from above, within the intracranial compartment; or can arise from below, within the extracranial head and neck. Crosssectional imaging is indispensable in the diagnosis, treatment planning, and follow-up of patients with CSB lesions. This review focuses on a systematic approach to this region based on an anatomic division that takes into account the major tissue constituents of the CSB.
Harnet, J C; Lombardi, T; Manière-Ezvan, A; Chamorey, E; Kahn, J L
2013-11-01
The aim of this study was to investigate the transversal relationships between two cephalometric landmarks and lines on the face using ovale, rotundum, greater palatine and infra-orbital foramina as references. Thirty-four children dry skulls, 19 males and 15 females aged 0-6 years, were examined by computed tomography scanning by using constructed tomographic axial and frontal planes. The cephalometric transversal dimensions of the face skull were measured between the right and left landmarks from the orbital lateral wall and from the zygomatic arch. The cephalometric transversal dimensions of the base skull were measured between the right and left ovale, rotundum, greater palatine and infra-orbital foramina. Statistical analysis using partial correlations, regardless of the age, showed strong relationships (p < 0.05) among transversal measurements with nerve canal openings and transversal distances of skull face. We showed that the cranial base transversal growth was very strongly related to facial transversal growth from the postnatal period up to 6 years of age.
Falland-Cheung, Lisa; Waddell, J Neil; Chun Li, Kai; Tong, Darryl; Brunton, Paul
2017-04-01
Conducting in vitro research for forensic, impact and injury simulation modelling generally involves the use of a skull simulant with mechanical properties similar to those found in the human skull. For this study epoxy resin, fibre filled epoxy resin, 3D-printing filaments (PETG, PLA) and self-cure acrylic denture base resin were used to fabricate the specimens (n=20 per material group), according to ISO 527-2 IBB and ISO20795-1. Tensile and flexural testing in a universal testing machine was used to measure their tensile/flexural elastic modulus and strength. The results showed that the epoxy resin and fibre filled epoxy resin had similar tensile elastic moduli (no statistical significant difference) with lower values observed for the other materials. The fibre filled epoxy resin had a considerably higher flexural elastic modulus and strength, possibly attributed to the presence of fibres. Of the simulants tested, epoxy resin had an elastic modulus and flexural strength close to that of mean human skull values reported in the literature, and thus can be considered as a suitable skull simulant for a skin/skull/brain model for lower impact forces that do not exceed the fracture stress. For higher impact forces a 3D printing filament (PLA) may be a more suitable skull simulant material, due to its closer match to fracture stresses found in human skull bone. Influencing factors were also anisotropy, heterogeneity and viscoelasticity of human skull bone and simulant specimens. Copyright © 2017 Elsevier Ltd. All rights reserved.
Outcomes in head and neck reconstruction by surgical site and donor site.
Frederick, John W; Sweeny, Larissa; Carroll, William R; Peters, Glenn E; Rosenthal, Eben L
2013-07-01
Define surgical outcomes of specific donor sites for free tissue transfer in head and neck reconstruction. Retrospective cohort review at an academic tertiary care center. A review was made of free tissue transfer procedures performed at a university-based tertiary care facility from October 2004 to April 2011. A total of 1,051 patients underwent six types of free flaps: fasciocutaneous radial forearm (53%), osteocutaneous radial forearm (16%), rectus abdominis (11%), fibula (10%), anterior lateral thigh (7%), and latissimus dorsi (2%). Demographic data were collected, and outcomes measured were: length of hospital stay, flap viability, and major complications (infection, fistula, and hematoma). Of the 1,051 flaps performed, the most common operative site was oral cavity (40%, n = 414) followed by hypopharynx/larynx (22%, n = 234), cutaneous (20%, n = 206), oropharynx (9%, n = 98), midface (7%, n = 76), and skull base (2%, n = 23). The median hospital stay was 7.9 days (range, 1-76), and the overall failure rate was 2.8%. Cutaneous defects required the shortest length of hospitalization (5.8 days, P < .0001), a low free flap failure rate (1.5%, n = 3), and limited major complications (6%, n = 12). Conversely, oropharynx defects were associated with the longest hospitalization (8.9 days). Midface defects had a high incidence of complications (15%, n = 11, P = .10). Defects above the angle of the mandible had higher overall complications when compared to below. Similarly, reconstruction for primary or recurrent cancer had a total failure rate of 2.5%, whereas secondary reconstruction and radionecrosis had a failure rate of 4.0% (P = .29). Additionally, there was no statistical difference between outcomes based on donor site. This review demonstrates that certain subsets of patients are at higher risk for complications after free tissue transfer. Patients undergoing free flap reconstruction for cutaneous defects have substantially shorter hospital stays and are at lower risk of flap complications, whereas reconstruction for radionecrosis and secondary reconstruction tend to have higher overall flap failure rates. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
Outcomes in head and neck reconstruction by surgical site and donor site
Frederick, JW; Sweeny, L; Carroll, WR; Peters, GE; Rosenthal, EL
2012-01-01
Objective Define surgical outcomes of specific donor sites for free tissue transfer in head and neck reconstruction. Design Retrospective cohort review Setting Academic tertiary care center. Patients A review of free tissue transfer procedures performed at a university-based tertiary care facility from October 2004 to April 2011. A total of 1051 patients underwent 6 types of free flaps: fasciocutaneous radial forearm (53%), osteocutaneous radial forearm (16%), rectus abdominus (11%), fibula (10%), anterior lateral thigh (7%), and latissimus dorsi (2%). Main Outcome Measures Demographic data was collected and outcomes measured were: length of hospital stay, flap viability, and major complications (infection, fistula, and hematoma). Results Of the 1051 flaps performed, the most common operative site was oral cavity (40% n=414) followed by hypopharynx/larynx (22%, n=234), cutaneous (20%, n=206), oropharynx (9%, n= 98), mid-face (7%, n= 76), and skull base (2%, n=23). The median hospital stay was 7.9 days (range 1-76) and the overall failure rate was 2.8%. Cutaneous defects required the shortest length of hospitalization (5.8 days, P< .0001), a low free flap failure rate (1.5%, n= 3), and limited major complications (6%, n= 12). Conversely, oropharynx defects were associated with the longest hospitalization (8.9 days). While midface defects had a high incidence of complications (15%, n= 11, P=.10). Defects above the angle of the mandible had higher overall complications when compared to below. Similarly, reconstruction for primary or recurrent cancer had a total failure rate of 2.5% while secondary reconstruction and radionecrosis had a failure rate of 4.0% (P=.29). Additionally, there was no statistical difference between outcomes based on donor site. Conclusions This review demonstrates that certain subsets of patients are at higher risk for complications after free tissue transfer. Patients undergoing free flap reconstruction for cutaneous defects have substantially shorter hospital stays and are at lower risk of flap complications, while reconstruction for radionecrosis or secondary reconstruction tend to have higher overall flap failure rates. PMID:23686870
Jayaprakash, Paul T; Hashim, Natassha; Yusop, Ridzuan Abd Aziz Mohd
2015-08-01
Video vision mixer based skull-photo superimposition is a popular method for identifying skulls retrieved from unidentified human remains. A report on the reliability of the superimposition method suggested increased failure rates of 17.3 to 32% to exclude and 15 to 20% to include skulls while using related and unrelated face photographs. Such raise in failures prompted an analysis of the methods employed for the research. The protocols adopted for assessing the reliability are seen to vary from those suggested by the practitioners in the field. The former include overlaying the skull- and face-images on the basis of morphology by relying on anthropometric landmarks on the front plane of the face-images and evaluating the goodness of match depending on mix-mode images; the latter consist of orienting the skull considering landmarks on both the eye and ear planes of the face- and skull-images and evaluating the match utilizing images seen in wipe-mode in addition to those in mix-mode. Superimposition of a skull with face-images of five living individuals in two sets of experiments, one following the procedure described for the research on reliability and the other applying the methods suggested by the practitioners has shown that overlaying the images on the basis of morphology depending on the landmarks on the front plane alone and assessing the match in mix-mode fails to exclude the skull. However, orienting the skull relying on the relationship between the anatomical landmarks on the skull- and face-images such as Whitnall's tubercle and exocanthus in the front (eye) plane and the porion and tragus in the rear (ear) plane as well as assessing the match using wipe-mode images enables excluding that skull while superimposing with the same set of face-images. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schulz-Ertner, Daniela
In skull base tumors associated with a low radiosensitivity for conventional radiotherapy (RT), irradiation with proton or carbon ion beams facilitates a safe and accurate application of high tumor doses due to the favorable beam localization properties of these particle beams. Cranial nerves, the brain stem and normal brain tissue can at the same time be optimally spared.
A new custom made bioceramic implant for the repair of large and complex craniofacial bone defects.
Brie, Joël; Chartier, Thierry; Chaput, Christophe; Delage, Cyrille; Pradeau, Benjamin; Caire, François; Boncoeur, Marie-Paule; Moreau, Jean-Jacques
2013-07-01
Neurosurgery and Maxillofacial Surgery Departments of Limoges University Hospital Centre have developed a new concept of a custom made ceramic implant in hydroxyapatite (HA) for the reconstruction of large and complex craniofacial bone defects (more than 25 cm(2)). The manufacturing process of the implants used a stereolithography technique that produces implants with three-dimensional shapes derived directly from the scan file of the patient's skull without moulding or machining. Eight patients received 8 implants between 2005 and 2008. The surgical procedure is simple and fast. The post-operative follow-up was 12 months. No major complications (infection or fracture of the implant) were observed. The cosmetic result was considered satisfactory by both patients and surgeons. These new implants are well suited for reconstruction of large craniofacial bone defects (greater than 25 cm(2)) in adults and children over 8 years. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Li, Fang-Da; Gao, Zhi-Qiang; Ren, Hua-Liang; Liu, Chang-Wei; Song, Xiao-Jun; Li, Yan-Feng; Zheng, Yue-Hong
2016-04-01
Reconstruction of the internal carotid artery (ICA) is an operative challenge for lesions involving the lateral skull base because of excessive blood loss, intraoperative cranial nerve injury, and difficulties in cerebral protection. Between January 2010 and October 2014, 9 patients with vascular lesions at the lateral skull base were treated with a "pre-reconstruction" technique, which means reconstruction of the ICA in advance of excising the lesions. All operations were technically successful with no mortality or strokes. The mean blood loss was 921 ± 210 mL. The mean total clamping time was 18 ± 5 minutes. Among the 5 patients without invasion of specific cranial nerves, no long-term sequelae occurred during the follow-up period ranging from 11 to 54 months. With less blood loss, slighter cranial nerve injuries, and shorter clamping time, the "pre-reconstruction" technique was safe and effective for the treatment of vascular lesions at the lateral skull base. © 2016 Wiley Periodicals, Inc. Head Neck 38: E1562-E1567, 2016. © 2016 Wiley Periodicals, Inc.
Laws, Edward R; Barkhoudarian, Garni
2014-12-01
As interest and enthusiasm for the use of the endoscope in transsphenoidal anterior skull base and pituitary surgery increases, neurosurgeons are increasingly adopting endoscopic technology and associated novel concepts. Often this involves a transition from the standard operating microscope as the main means of visualization to the operating endoscope (2D or 3D) during surgery. The authors' experience with this transition is described, including the rationale, advantages and disadvantages of the two surgical techniques. The successful use of endoscopic surgery for a large variety of pathological problems involving the anterior skull base and the pituitary region is presented. Perceived advantages for the patient and the surgeon are described, as is the occasional need for transition back to the microscopic approach. The endoscopic approach and its allied technology are here to stay. They are useful and occasionally preferable methods for treating a variety of suitable lesions involving the anterior skull base. The importance of incorporating the basic principles of skull base surgery is emphasized. Copyright © 2014 Elsevier Inc. All rights reserved.
Intraoperative Magnetic Resonance Imaging in Skull Base Surgery: A Review of 71 Consecutive Cases.
Ashour, Ramsey; Reintjes, Stephen; Park, Michael S; Sivakanthan, Sananthan; van Loveren, Harry; Agazzi, Siviero
2016-09-01
Although intraoperative magnetic resonance imaging (iMRI) increasingly is used during glioma resection, its role in skull base surgery has not been well documented. In this study, we evaluate our experience with iMRI for skull base surgery. Medical records were reviewed retrospectively on all neurosurgical cases performed at our institution in the IMRIS iMRI suite between April 2014 and July 2015. During the study period, the iMRI suite was used for 71 skull base tumors. iMRI was performed in 23 of 71 cases. Additional tumor resection was pursued after scanning in 7 of 23 patients. There was a significant difference in procedure length between the scanned versus nonscanned groups, and this was likely attributable to a greater proportion of petroclival meningiomas in the scanned group. Further analyses revealed significant increases in procedure length for the following scanned subgroups: anterolateral approach, anterolateral and petroclival lesion locations, and meningiomas. The rate of non-neurologic complications was significantly greater in the scanned group, particularly for patients with tumors >3 cm. Despite the unique challenges associated with skull base tumor surgery, iMRI can be safely obtained while adding a modest although not prohibitive amount of time to the procedure. The immediate evidence of residual tumor with a patient still in position to have additional resection may influence the surgeon to alter the surgical plan and attempt further resection in a critical area. Copyright © 2016 Elsevier Inc. All rights reserved.
Ma, Jun; Su, Shaobo; Yue, Shuyuan; Zhao, Yan; Li, Yonggang; Chen, Xiaochen; Ma, Hui
2016-01-01
To visualize cranial nerves (CNs) using diffusion tensor imaging (DTI) with special parameters. This study also involved the evaluation of preoperative estimates and intraoperative confirmation of the relationship between nerves and tumor by verifying the accuracy of visualization. 3T magnetic resonance imaging scans including 3D-FSPGR, FIESTA, and DTI were used to collect information from 18 patients with skull base tumor. DTI data were integrated into the 3D slicer for fiber tracking and overlapped anatomic images to determine course of nerves. 3D reconstruction of tumors was achieved to perform neighboring, encasing, and invading relationship between lesion and nerves. Optic pathway including the optic chiasm could be traced in cases of tuberculum sellae meningioma and hypophysoma (pituitary tumor). The oculomotor nerve, from the interpeduncular fossa out of the brain stem to supraorbital fissure, was clearly visible in parasellar meningioma cases. Meanwhile, cisternal parts of trigeminal nerve and abducens nerve, facial nerve were also imaged well in vestibular schwannomas and petroclival meningioma cases. The 3D-spatial relationship between CNs and skull base tumor estimated preoperatively by tumor modeling and tractography corresponded to the results determined during surgery. Supported by DTI and 3D slicer, preoperative 3D reconstruction of most CNs related to skull base tumor is feasible in pathological circumstances. We consider DTI Technology to be a useful tool for predicting the course and location of most CNs, and syntopy between them and skull base tumor.
Fractionated external beam radiotherapy of skull base metastases with cranial nerve involvement.
Dröge, L H; Hinsche, T; Canis, M; Alt-Epping, B; Hess, C F; Wolff, H A
2014-02-01
Skull base metastases frequently appear in a late stage of various tumor entities and cause pain and neurological disorders which strongly impair patient quality of life. This study retrospectively analyzed fractionated external beam radiotherapy (EBRT) as a palliative treatment approach with special respect to neurological outcome, feasibility and acute toxicity. A total of 30 patients with skull base metastases and cranial nerve disorders underwent EBRT with a mean total dose of 31.6 Gy. Neurological status was assessed before radiotherapy, during radiotherapy and 2 weeks afterwards categorizing orbital, parasellar, middle fossa, jugular foramen and occipital condyle involvement and associated clinical syndromes. Neurological outcome was scored as persistence of symptoms, partial response, good response and complete remission. Treatment-related toxicity and overall survival were assessed. Before EBRT 37 skull base involvement syndromes were determined with 4 patients showing more than 1 syndrome. Of the patients 81.1 % responded to radiotherapy with 10.8 % in complete remission, 48.6 % with good response and 21.6 % with partial response. Grade 1 toxicity of the skin occurred in two patients and grade 1 hematological toxicity in 1 patient under concurrent chemoradiotherapy. Median overall survival was 3.9 months with a median follow-up of 45 months. The use of EBRT for skull base metastases with symptomatic involvement of cranial nerves is marked by good therapeutic success in terms of neurological outcome, high feasibility and low toxicity rates. These findings underline EBRT as the standard therapeutic approach in the palliative setting.
Dolati, Parviz; Gokoglu, Abdulkerim; Eichberg, Daniel; Zamani, Amir; Golby, Alexandra; Al-Mefty, Ossama
2015-01-01
Background: Skull base tumors frequently encase or invade adjacent normal neurovascular structures. For this reason, optimal tumor resection with incomplete knowledge of patient anatomy remains a challenge. Methods: To determine the accuracy and utility of image-based preoperative segmentation in skull base tumor resections, we performed a prospective study. Ten patients with skull base tumors underwent preoperative 3T magnetic resonance imaging, which included thin section three-dimensional (3D) space T2, 3D time of flight, and magnetization-prepared rapid acquisition gradient echo sequences. Imaging sequences were loaded in the neuronavigation system for segmentation and preoperative planning. Five different neurovascular landmarks were identified in each case and measured for accuracy using the neuronavigation system. Each segmented neurovascular element was validated by manual placement of the navigation probe, and errors of localization were measured. Results: Strong correspondence between image-based segmentation and microscopic view was found at the surface of the tumor and tumor-normal brain interfaces in all cases. The accuracy of the measurements was 0.45 ± 0.21 mm (mean ± standard deviation). This information reassured the surgeon and prevented vascular injury intraoperatively. Preoperative segmentation of the related cranial nerves was possible in 80% of cases and helped the surgeon localize involved cranial nerves in all cases. Conclusion: Image-based preoperative vascular and neural element segmentation with 3D reconstruction is highly informative preoperatively and could increase the vigilance of neurosurgeons for preventing neurovascular injury during skull base surgeries. Additionally, the accuracy found in this study is superior to previously reported measurements. This novel preliminary study is encouraging for future validation with larger numbers of patients. PMID:26674155
Dolati, Parviz; Gokoglu, Abdulkerim; Eichberg, Daniel; Zamani, Amir; Golby, Alexandra; Al-Mefty, Ossama
2015-01-01
Skull base tumors frequently encase or invade adjacent normal neurovascular structures. For this reason, optimal tumor resection with incomplete knowledge of patient anatomy remains a challenge. To determine the accuracy and utility of image-based preoperative segmentation in skull base tumor resections, we performed a prospective study. Ten patients with skull base tumors underwent preoperative 3T magnetic resonance imaging, which included thin section three-dimensional (3D) space T2, 3D time of flight, and magnetization-prepared rapid acquisition gradient echo sequences. Imaging sequences were loaded in the neuronavigation system for segmentation and preoperative planning. Five different neurovascular landmarks were identified in each case and measured for accuracy using the neuronavigation system. Each segmented neurovascular element was validated by manual placement of the navigation probe, and errors of localization were measured. Strong correspondence between image-based segmentation and microscopic view was found at the surface of the tumor and tumor-normal brain interfaces in all cases. The accuracy of the measurements was 0.45 ± 0.21 mm (mean ± standard deviation). This information reassured the surgeon and prevented vascular injury intraoperatively. Preoperative segmentation of the related cranial nerves was possible in 80% of cases and helped the surgeon localize involved cranial nerves in all cases. Image-based preoperative vascular and neural element segmentation with 3D reconstruction is highly informative preoperatively and could increase the vigilance of neurosurgeons for preventing neurovascular injury during skull base surgeries. Additionally, the accuracy found in this study is superior to previously reported measurements. This novel preliminary study is encouraging for future validation with larger numbers of patients.
Amelot, Aymeric; Trunet, Stephanie; Degos, Vincent; André, Olivier; Dionnet, Aurore; Cornu, Philippe; Hans, Stéphane; Chauvet, Dorian
2015-10-01
The role of transoral robotic surgery (TORS) in the skull base emerges and represents the natural progression toward miniinvasive resections in confined spaces. The accessibility of the sella via TORS has been recently described on fresh human cadavers. An anatomic study is mandatory to know if this approach would be feasible in the majority of patients regardless of their oral morphological features. From 30 skull base CT scans from patients who were asked to open their mouth as wide as they can, we measured specific dimensions of the oral cavity and the skull base, such as length of the palate, mouth opening and distance from the sella to the palate. All data were acquired on a sagittal midline plane and on a 25° rotation plane, which simulated the axis of the robotic instruments. Looking at the projection of the dental palatine line on the sella, we studied possible predictive factors of sellar accessibility and tried to bring objective data for surgical feasibility. We also proposed an angle α to study the working angle at the skull base. We observed that the maximal mouth opening was a good predictive factor of sellar accessibility by TORS (p < 0.05). The mouth aperture threshold value for a good sensitivity, over 80 %, was comparable to the mean value of mouth opening in our series, 38.9 and 39.4 mm respectively. Moreover, we showed a statistically significant increase of the working angle α at the skull base comparing the lateral access to the midline one (p < 0.05). This seemed to quantitatively demonstrate that the robotic arms placed at the labial commissure of the mouth can reach the sella. From these anatomical features and previous cadaveric dissections, we assume that TORS may be feasible on a majority of patients to remove pituitary adenomas.
Mielke, Dorothee; Mayfrank, Lothar; Psychogios, Marios Nikos; Rohde, Veit
2014-04-01
Many approaches to the anterior skull base have been reported. Frequently used are the pterional, the unilateral or bilateral frontobasal, the supraorbital and the frontolateral approach. Recently, endoscopic transnasal approaches have become more popular. The benefits of each approach has to be weighted against its complications and limitations. The aim of this study was to investigate if the anterior interhemispheric approach (AIA) could be a safe and effective alternative approach to tumorous and non-tumorous lesions of the anterior skull base. We screened the operative records of all patients with an anterior skull base lesion undergoing transcranial surgery. We have used the AIA in 61 patients. These were exclusively patients with either olfactory groove meningioma (OGM) (n = 43), ethmoidal dural arteriovenous fistula (dAVF) ( n = 6) or frontobasal fractures of the anterior midline with cerebrospinal fluid (CSF) leakage ( n = 12). Patient records were evaluated concerning accessibility of the lesion, realization of surgical aims (complete tumor removal, dAVF obliteration, closure of the dural tear), and approach related complications. The use of the AIA exclusively in OGMs, ethmoidal dAVFs and midline frontobasal fractures indicated that we considered lateralized frontobasal lesions not suitable to be treated successfully. If restricted to these three pathologies, the AIA is highly effective and safe. The surgical aim (complete tumor removal, complete dAVF occlusion, no rhinorrhea) was achieved in all patients. The complication rate was 11.5 % (wound infection (n = 2; 3.2 %), contusion of the genu of the corpus callosum, subdural hygroma, epileptic seizure, anosmia and asymptomatic bleed into the tumor cavity (n = 1 each). Only the contusion of the corpus callosum was directly related to the approach (1.6 %). Olfaction, if present before surgery, was preserved in all patients, except one (1.6 %). The AIA is an effective and a safe approach to tumorous, vascular and traumatic pathologies of the midline anterior skull base. This approach should be part of the armamentarium of skull base surgeons.
Properties and architecture of the sperm whale skull amphitheatre.
Alam, Parvez; Amini, Shahrouz; Tadayon, Maryam; Miserez, Ali; Chinsamy, Anusuya
2016-02-01
The sperm whale skull amphitheatre cradles an enormous two-tonne spermaceti organ. The amphitheatre separates this organ from the cranium and the cervical vertebrae that lie in close proximity to the base of the skull. Here, we elucidate that this skull amphitheatre is an elastic, flexible, triple-layered structure with mechanical properties that are conjointly guided by bone histology and the characteristics of pore space. We contend that the amphitheatre will flex elastically to equilibrate forces transmitted via the spermaceti organ that arise through diving. We find that collisions from sperm whale aggression do not cause the amphitheatre to bend, but rather localise stress to the base of the amphitheatre on its anterior face. We consider, therefore, that the uniquely thin and extended construction of the amphitheatre, has relevance as an energy absorptive structure in diving. Copyright © 2015 Elsevier GmbH. All rights reserved.
Miller, G Wilson; Eames, Matthew; Snell, John; Aubry, Jean-François
2015-05-01
Transcranial magnetic resonance-guided focused ultrasound (TcMRgFUS) brain treatment systems compensate for skull-induced beam aberrations by adjusting the phase and amplitude of individual ultrasound transducer elements. These corrections are currently calculated based on a preacquired computed tomography (CT) scan of the patient's head. The purpose of the work presented here is to demonstrate the feasibility of using ultrashort echo-time magnetic resonance imaging (UTE MRI) instead of CT to calculate and apply aberration corrections on a clinical TcMRgFUS system. Phantom experiments were performed in three ex-vivo human skulls filled with tissue-mimicking hydrogel. Each skull phantom was imaged with both CT and UTE MRI. The MR images were then segmented into "skull" and "not-skull" pixels using a computationally efficient, threshold-based algorithm, and the resulting 3D binary skull map was converted into a series of 2D virtual CT images. Each skull was mounted in the head transducer of a clinical TcMRgFUS system (ExAblate Neuro, Insightec, Israel), and transcranial sonications were performed using a power setting of approximately 750 acoustic watts at several different target locations within the electronic steering range of the transducer. Each target location was sonicated three times: once using aberration corrections calculated from the actual CT scan, once using corrections calculated from the MRI-derived virtual CT scan, and once without applying any aberration correction. MR thermometry was performed in conjunction with each 10-s sonication, and the highest single-pixel temperature rise and surrounding-pixel mean were recorded for each sonication. The measured temperature rises were ∼ 45% larger for aberration-corrected sonications than for noncorrected sonications. This improvement was highly significant (p < 10(-4)). The difference between the single-pixel peak temperature rise and the surrounding-pixel mean, which reflects the sharpness of the thermal focus, was also significantly larger for aberration-corrected sonications. There was no significant difference between the sonication results achieved using CT-based and MR-based aberration correction. The authors have demonstrated that transcranial focal heating can be significantly improved in vitro by using UTE MRI to compute skull-induced ultrasound aberration corrections. Their results suggest that UTE MRI could be used instead of CT to implement such corrections on current 0.7 MHz clinical TcMRgFUS devices. The MR image acquisition and segmentation procedure demonstrated here would add less than 15 min to a clinical MRgFUS treatment session.
Morales, F; Maillo, A; Díaz-Alvarez, A; Merino, M; Muñoz-Herrera, A; Hernández, J; Santamarta, D
2005-12-01
The aim of this study was to build a preoperative predictive system which could provide reliable information about: 1 degrees which skull base meningiomas can be total or partially removed, and 2 degrees their surgical outcome. Patient histories and imaging data were reviewed retrospectively from 85 consecutive skull base meningiomas patients who underwent surgery from 1990 and 2002. From the preoperative data, nine variables were selected for conventional statistical analysis as regards their relationship with: 1 degrees total vs partial tumor resection and 2 degrees with patients outcome according to the degree of tumour removal. From the nine variables analysed only two had a statistical association with the type of tumour resection performed (total vs partial) and the patient outcome: 1) arteries encasement and 2) cranial nerves involvement. Upon correlating these two variables with the type of tumour resection performed (total vs partial) and with the Karnofsky'scale to evaluate patients surgical outcome, the following grading groups were identified: Grade I: skull base meningiomas which did not involve cranial nerves or artery or only encased one artery or one cranial nerve. In these cases the incidence of gross tumour resection was 98.3% (p< 0.0001) and the perspective to reach 70 points in the Karnofsky'scale was of 96.5% ( p=0.001). Grade II: skull base meningiomas which involved one cranial nerve and encased, at least, two main cerebral arteries. In these cases, the frequency of total resection, decreased to 83.3% (p<0.0001) and the probability to reach 70 points in the Karnofsky'scale was 70.6% (p=0.001). Grade III: skull base meningiomas which involved two or more cranial nerves and encased several arteries In this group, the frequency of a total resection was of 42.9% (p<0.0001) and the probability of reaching 70 points in the Karnofsky'scale was only 60% (p=0.001). We propose a preoperative grading system for skull base meningiomas that helps predicting both whether total or partial tumor removal will be achieved during surgery and the immediate postsurgical outcome of the patient. In applying this predictive system we will be able to reduce surgical morbidity, to advance the possibility of a radiosurgical treatment and give a more precise information to the patients and their families about our surgical decision-making process.
Congenital muscle dystrophy and diet consistency affect mouse skull shape differently.
Spassov, Alexander; Toro-Ibacache, Viviana; Krautwald, Mirjam; Brinkmeier, Heinrich; Kupczik, Kornelius
2017-11-01
The bones of the mammalian skull respond plastically to changes in masticatory function. However, the extent to which muscle function affects the growth and development of the skull, whose regions have different maturity patterns, remains unclear. Using muscle dissection and 3D landmark-based geometric morphometrics we investigated the effect of changes in muscle function established either before or after weaning, on skull shape and muscle mass in adult mice. We compared temporalis and masseter mass and skull shape in mice with a congenital muscle dystrophy (mdx) and wild type (wt) mice fed on either a hard or a soft diet. We found that dystrophy and diet have distinct effects on the morphology of the skull and the masticatory muscles. Mdx mice show a flattened neurocranium with a more dorsally displaced foramen magnum and an anteriorly placed mandibular condyle compared with wt mice. Compared with hard diet mice, soft diet mice had lower masseter mass and a face with more gracile features as well as labially inclined incisors, suggesting reduced bite strength. Thus, while the early-maturing neurocranium and the posterior portion of the mandible are affected by the congenital dystrophy, the late-maturing face including the anterior part of the mandible responds to dietary differences irrespective of the mdx mutation. Our study confirms a hierarchical, tripartite organisation of the skull (comprising neurocranium, face and mandible) with a modular division based on development and function. Moreover, we provide further experimental evidence that masticatory loading is one of the main environmental stimuli that generate craniofacial variation. © 2017 Anatomical Society.
New Insights into the Skull of Istiodactylus latidens (Ornithocheiroidea, Pterodactyloidea)
Witton, Mark P.
2012-01-01
The skull of the Cretaceous pterosaur Istiodactylus latidens, a historically important species best known for its broad muzzle of interlocking, lancet-shaped teeth, is almost completely known from the broken remains of several individuals, but the length of its jaws remains elusive. Estimates of I. latidens jaw length have been exclusively based on the incomplete skull of NHMUK R3877 and, perhaps erroneously, reconstructed by assuming continuation of its broken skull pieces as preserved in situ. Here, an overlooked jaw fragment of NHMUK R3877 is redescribed and used to revise the skull reconstruction of I. latidens. The new reconstruction suggests a much shorter skull than previously supposed, along with a relatively tall orbital region and proportionally slender maxilla, a feature documented in the early 20th century but ignored by all skull reconstructions of this species. These features indicate that the skull of I. latidens is particularly distinctive amongst istiodactylids and suggests greater disparity between I. latidens and I. sinensis than previously appreciated. A cladistic analysis of istiodactylid pterosaurs incorporating new predicted I. latidens skull metrics suggests Istiodactylidae is constrained to five species (Liaoxipterus brachyognathus, Lonchengpterus zhoai, Nurhachius ignaciobritoi, Istiodactylus latidens and Istiodactylus sinensis) defined by their distinctive dentition, but excludes the putative istiodactylids Haopterus gracilis and Hongshanopterus lacustris. Istiodactylus latidens, I. sinensis and Li. brachyognathus form an unresolved clade of derived istiodactylids, and the similarity of comparable remains of I. sinensis and Li. brachyognathus suggest further work into their taxonomy and classification is required. The new skull model of I. latidens agrees with the scavenging habits proposed for these pterosaurs, with much of their cranial anatomy converging on that of habitually scavenging birds. PMID:22470442
Lesson to be remembered from a skull base tumor.
Briet, C; Bernard, F; Rodien, P
2017-09-01
The natural history of giant prolactinomas is not known. While it is commonly accepted that the enlargement of microadenoma is rare and more limited than macroadenoma, it is so far uncommon that macroadenoma progress to giant adenoma. Thus, spontaneous enlargement of adenomas is poorly documented. We report the unusual history of undiagnosed microprolactinoma, revealed 12years later at the stage of a giant adenoma presenting as a skull base tumor. This unique observation provides information on the natural history of giant adenomas and arguments for particular attention to microadenomas with signs of invasion. Moreover, this clinical case highlights the need for a prolactin dosage for all midline skull base tumors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Wurm, Gabriele; Tomancok, Berndt; Holl, Kurt; Trenkler, Johannes
2004-12-01
The aim of this study was to evaluate the value of carbon fiber reinforced polymer (CFRP) cranial implants produced by means of 3-dimensional (3D) stereolithography (SL) and template modeling for reconstructions of complex or extensive cranial defects. A series of 41 cranioplasties with individual CFRP implants was performed in 37 patients between April 1996 and November 2002. Only patients with complex and/or large cranial defects were included, most of them having extended scarring or dural calcification and poor quality of the overlying soft-tissue cover after infection or multiple preceding operations. Involvement of frontal sinus, a known risk factor for complications after cranioplasty, was the case in 21 patients (51.2%). A computer-based 3D model of the skull with the bony defect was generated by means of stereolithography after acquisition, evaluation and transfer of the patient's helical computed tomography (CT) data. A wax template of the defect that was used to design the individual prosthesis-shape was invested in dental stone. Then, the cranial implant was fabricated out of CFRP by loosen mold. Reconstruction of defects measuring up to 17 x 9 cm was performed. The intra-operative fit of the implants was excellent in 36 (87.8%), good in 1 (2.4%), and fair in 4 (9.8%) of the cases. Problems of implant fit occurred because of extended scarring and poor quality of soft-tissue cover. Adverse reactions were observed in 5 patients (1 subdural, 1 subcutaneous hematoma, 2 infections, 1 allergic reaction). Excellent contours and a solid stable reconstruction have been maintained in 30 out of 35 remaining plates (mean follow-up 3.6 years). No adverse effects concerning postoperative imaging, the accuracy of electroencephalograms and radiation therapy have been observed. The authors believe that this relatively new technique represents an advance in the management of complex and large cranial defects, but seems less suitable for simple defects because of cost-intensive techniques. Because of the high mechanical strength, biocompatibility, innovative design, and especially radiolucency, CFRP implants should, however, be considered in smaller defects if further imaging investigations or irradiation therapies are necessary.
Custom implant design for large cranial defects.
Marreiros, Filipe M M; Heuzé, Y; Verius, M; Unterhofer, C; Freysinger, W; Recheis, W
2016-12-01
The aim of this work was to introduce a computer-aided design (CAD) tool that enables the design of large skull defect (>100 [Formula: see text]) implants. Functional and aesthetically correct custom implants are extremely important for patients with large cranial defects. For these cases, preoperative fabrication of implants is recommended to avoid problems of donor site morbidity, sufficiency of donor material and quality. Finally, crafting the correct shape is a non-trivial task increasingly complicated by defect size. We present a CAD tool to design such implants for the neurocranium. A combination of geometric morphometrics and radial basis functions, namely thin-plate splines, allows semiautomatic implant generation. The method uses symmetry and the best fitting shape to estimate missing data directly within the radiologic volume data. In addition, this approach delivers correct implant fitting via a boundary fitting approach. This method generates a smooth implant surface, free of sharp edges that follows the main contours of the boundary, enabling accurate implant placement in the defect site intraoperatively. The present approach is evaluated and compared to existing methods. A mean error of 89.29 % (72.64-100 %) missing landmarks with an error less or equal to 1 mm was obtained. In conclusion, the results show that our CAD tool can generate patient-specific implants with high accuracy.
Costa, Neusa M F; Yassuda, Debora H; Sader, Marcia S; Fernandes, Gustavo V O; Soares, Glória D A; Granjeiro, José M
2016-04-01
Beta-tricalcium phosphate (β-TCP) is one of the most widely employed bioresorbable materials for bone repair since it shows excellent biological compatibility, osteoconductivity and resorbability. The incorporation of divalent cations such as magnesium onto the β-TCP structure (β-TCMP) may improve the biological response to the material through the release of bioactive ions. The objective of this study was to evaluate, on a rat calvarial critical size grafting model, the bone regeneration process using β-TCP and β-TMCP granules by histomorphometric analysis. Results demonstrated that six months after bone grafting, the association of GBR (guided bone regeneration) using a membrane (GenDerm®) and granules of β-TCP and β-TCMP significantly improves bone repair in the treatment of critical-size defect in rat skulls, in comparison to untreated defects or GBR alone, leading to a bone level approximately four to five-fold greater than in the blood clot group. The β-TCMP+GenDerm® membrane group presented 40.5% of the defect area filled by newly-formed bone, even at the central part of the defect, rather than only at the border, as seen in the other experimental groups. Copyright © 2015 Elsevier B.V. All rights reserved.
Pásztor, Emil
2010-01-01
The anatomy of the human body based on a special teleological system is one of the greatest miracles of the world. The skull's primary function is the defence of the brain, so every alteration or disease of the brain results in some alteration of the skull. This analogy is to be identified even in the human embryo. Proportions of the 22 bones constituting the skull and of sizes of sutures are not only the result of the phylogeny, but those of the ontogeny as well. E.g. the age of the skeletons in archaeological findings could be identified according to these facts. Present paper outlines the ontogeny and development of the tissues of the skull, of the structure of the bone-tissue, of the changes of the size of the skull and of its parts during the different periods of human life, reflecting to the aesthetics of the skull as well. "Only the human scull can give me an impression of beauty. In spite of all genetical colseness, a skull of a chimpanzee cannot impress me aesthetically"--author confesses. In the second part of the treatise those authors are listed, who contributed to the perfection of our knowledge regarding the skull. First of all the great founder of modern anatomy, Andreas Vesalius, then Pierre Paul Broca, Jacob Benignus Winslow are mentioned here. The most important Hungarian contributors were as follow: Sámuel Rácz, Pál Bugát or--the former assistant of Broca--Aurél Török. A widely used tool for measurement of the size of the skull, the craniometer was invented by the latter. The members of the family Lenhossék have had also important results in this field of research, while descriptive anatomy of the skull was completed by microsopical anatomy thanks the activity of Géza Mihálkovits.
Localized intraoperative virtual endoscopy (LIVE) for surgical guidance in 16 skull base patients.
Haerle, Stephan K; Daly, Michael J; Chan, Harley; Vescan, Allan; Witterick, Ian; Gentili, Fred; Zadeh, Gelareh; Kucharczyk, Walter; Irish, Jonathan C
2015-01-01
Previous preclinical studies of localized intraoperative virtual endoscopy-image-guided surgery (LIVE-IGS) for skull base surgery suggest a potential clinical benefit. The first aim was to evaluate the registration accuracy of virtual endoscopy based on high-resolution magnetic resonance imaging under clinical conditions. The second aim was to implement and assess real-time proximity alerts for critical structures during skull base drilling. Patients consecutively referred for sinus and skull base surgery were enrolled in this prospective case series. Five patients were used to check registration accuracy and feasibility with the subsequent 11 patients being treated under LIVE-IGS conditions with presentation to the operating surgeon (phase 2). Sixteen skull base patients were endoscopically operated on by using image-based navigation while LIVE-IGS was tested in a clinical setting. Workload was quantitatively assessed using the validated National Aeronautics and Space Administration Task Load Index (NASA-TLX) questionnaire. Real-time localization of the surgical drill was accurate to ~1 to 2 mm in all cases. The use of 3-mm proximity alert zones around the carotid arteries and optic nerve found regular clinical use, as the median minimum distance between the tracked drill and these structures was 1 mm (0.2-3.1 mm) and 0.6 mm (0.2-2.5 mm), respectively. No statistical differences were found in the NASA-TLX indicators for this experienced surgical cohort. Real-time proximity alerts with virtual endoscopic guidance was sufficiently accurate under clinical conditions. Further clinical evaluation is required to evaluate the potential surgical benefits, particularly for less experienced surgeons or for teaching purposes. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Reilly, Meaghan A., E-mail: moreilly@sri.utoront
Purpose: Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to themore » ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. Methods: A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. Results: The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). Conclusions: If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.« less
O'Reilly, Meaghan A; Jones, Ryan M; Birman, Gabriel; Hynynen, Kullervo
2016-09-01
Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available.
O’Reilly, Meaghan A.; Jones, Ryan M.; Birman, Gabriel; Hynynen, Kullervo
2016-01-01
Purpose: Transcranial focused ultrasound (FUS) shows great promise for a range of therapeutic applications in the brain. Current clinical investigations rely on the use of magnetic resonance imaging (MRI) to monitor treatments and for the registration of preoperative computed tomography (CT)-data to the MR images at the time of treatment to correct the sound aberrations caused by the skull. For some applications, MRI is not an appropriate choice for therapy monitoring and its cost may limit the accessibility of these treatments. An alternative approach, using high frequency ultrasound measurements to localize the skull surface and register CT data to the ultrasound treatment space, for the purposes of skull-related phase aberration correction and treatment targeting, has been developed. Methods: A prototype high frequency, hemispherical sparse array was fabricated. Pulse-echo measurements of the surface of five ex vivo human skulls were made, and the CT datasets of each skull were obtained. The acoustic data were used to rigidly register the CT-derived skull surface to the treatment space. The ultrasound-based registrations of the CT datasets were compared to the gold-standard landmark-based registrations. Results: The results show on an average sub-millimeter (0.9 ± 0.2 mm) displacement and subdegree (0.8° ± 0.4°) rotation registration errors. Numerical simulations predict that registration errors on this scale will result in a mean targeting error of 1.0 ± 0.2 mm and reduction in focal pressure of 1.0% ± 0.6% when targeting a midbrain structure (e.g., hippocampus) using a commercially available low-frequency brain prototype device (InSightec, 230 kHz brain system). Conclusions: If combined with ultrasound-based treatment monitoring techniques, this registration method could allow for the development of a low-cost transcranial FUS treatment platform to make this technology more widely available. PMID:27587036
Deng, Qingqiong; Zhou, Mingquan; Wu, Zhongke; Shui, Wuyang; Ji, Yuan; Wang, Xingce; Liu, Ching Yiu Jessica; Huang, Youliang; Jiang, Haiyan
2016-02-01
Craniofacial reconstruction recreates a facial outlook from the cranium based on the relationship between the face and the skull to assist identification. But craniofacial structures are very complex, and this relationship is not the same in different craniofacial regions. Several regional methods have recently been proposed, these methods segmented the face and skull into regions, and the relationship of each region is then learned independently, after that, facial regions for a given skull are estimated and finally glued together to generate a face. Most of these regional methods use vertex coordinates to represent the regions, and they define a uniform coordinate system for all of the regions. Consequently, the inconsistence in the positions of regions between different individuals is not eliminated before learning the relationships between the face and skull regions, and this reduces the accuracy of the craniofacial reconstruction. In order to solve this problem, an improved regional method is proposed in this paper involving two types of coordinate adjustments. One is the global coordinate adjustment performed on the skulls and faces with the purpose to eliminate the inconsistence of position and pose of the heads; the other is the local coordinate adjustment performed on the skull and face regions with the purpose to eliminate the inconsistence of position of these regions. After these two coordinate adjustments, partial least squares regression (PLSR) is used to estimate the relationship between the face region and the skull region. In order to obtain a more accurate reconstruction, a new fusion strategy is also proposed in the paper to maintain the reconstructed feature regions when gluing the facial regions together. This is based on the observation that the feature regions usually have less reconstruction errors compared to rest of the face. The results demonstrate that the coordinate adjustments and the new fusion strategy can significantly improve the craniofacial reconstructions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A QI Initiative to Reduce Hospitalization for Children With Isolated Skull Fractures.
Lyons, Todd W; Stack, Anne M; Monuteaux, Michael C; Parver, Stephanie L; Gordon, Catherine R; Gordon, Caroline D; Proctor, Mark R; Nigrovic, Lise E
2016-06-01
Although children with isolated skull fractures rarely require acute interventions, most are hospitalized. Our aim was to safely decrease the hospitalization rate for children with isolated skull fractures. We designed and executed this multifaceted quality improvement (QI) initiative between January 2008 and July 2015 to reduce hospitalization rates for children ≤21 years old with isolated skull fractures at a single tertiary care pediatric institution. We defined an isolated skull fracture as a skull fracture without intracranial injury. The QI intervention consisted of 2 steps: (1) development and implementation of an evidence-based guideline, and (2) dissemination of a provider survey designed to reinforce guideline awareness and adherence. Our primary outcome was hospitalization rate and our balancing measure was hospital readmission within 72 hours. We used standard statistical process control methodology to assess change over time. To assess for secular trends, we examined admission rates for children with an isolated skull fracture in the Pediatric Health Information System administrative database. We identified 321 children with an isolated skull fracture with a median age of 11 months (interquartile range 5-16 months). The baseline admission rate was 71% (179/249, 95% confidence interval, 66%-77%) and decreased to 46% (34/72, 95% confidence interval, 35%-60%) after implementation of our QI initiative. No child was readmitted after discharge. The admission rate in our secular trend control group remained unchanged at 78%. We safely reduced the hospitalization rate for children with isolated skull fractures without an increase in the readmissions. Copyright © 2016 by the American Academy of Pediatrics.
Puccio, Benjamin; Pooley, James P; Pellman, John S; Taverna, Elise C; Craddock, R Cameron
2016-10-25
Skull-stripping is the procedure of removing non-brain tissue from anatomical MRI data. This procedure can be useful for calculating brain volume and for improving the quality of other image processing steps. Developing new skull-stripping algorithms and evaluating their performance requires gold standard data from a variety of different scanners and acquisition methods. We complement existing repositories with manually corrected brain masks for 125 T1-weighted anatomical scans from the Nathan Kline Institute Enhanced Rockland Sample Neurofeedback Study. Skull-stripped images were obtained using a semi-automated procedure that involved skull-stripping the data using the brain extraction based on nonlocal segmentation technique (BEaST) software, and manually correcting the worst results. Corrected brain masks were added into the BEaST library and the procedure was repeated until acceptable brain masks were available for all images. In total, 85 of the skull-stripped images were hand-edited and 40 were deemed to not need editing. The results are brain masks for the 125 images along with a BEaST library for automatically skull-stripping other data. Skull-stripped anatomical images from the Neurofeedback sample are available for download from the Preprocessed Connectomes Project. The resulting brain masks can be used by researchers to improve preprocessing of the Neurofeedback data, as training and testing data for developing new skull-stripping algorithms, and for evaluating the impact on other aspects of MRI preprocessing. We have illustrated the utility of these data as a reference for comparing various automatic methods and evaluated the performance of the newly created library on independent data.
[Development of a Striatal and Skull Phantom for Quantitative 123I-FP-CIT SPECT].
Ishiguro, Masanobu; Uno, Masaki; Miyazaki, Takuma; Kataoka, Yumi; Toyama, Hiroshi; Ichihara, Takashi
123 Iodine-labelled N-(3-fluoropropyl) -2β-carbomethoxy-3β-(4-iodophenyl) nortropane ( 123 I-FP-CIT) single photon emission computerized tomography (SPECT) images are used for differential diagnosis such as Parkinson's disease (PD). Specific binding ratio (SBR) is affected by scattering and attenuation in SPECT imaging, because gender and age lead to changes in skull density. It is necessary to clarify and correct the influence of the phantom simulating the the skull. The purpose of this study was to develop phantoms that can evaluate scattering and attenuation correction. Skull phantoms were prepared based on the measuring the results of the average computed tomography (CT) value, average skull thickness of 12 males and 16 females. 123 I-FP-CIT SPECT imaging of striatal phantom was performed with these skull phantoms, which reproduced normal and PD. SPECT images, were reconstructed with scattering and attenuation correction. SBR with partial volume effect corrected (SBR act ) and conventional SBR (SBR Bolt ) were measured and compared. The striatum and the skull phantoms along with 123 I-FP-CIT were able to reproduce the normal accumulation and disease state of PD and further those reproduced the influence of skull density on SPECT imaging. The error rate with the true SBR, SBR act was much smaller than SBR Bolt . The effect on SBR could be corrected by scattering and attenuation correction even if the skull density changes with 123 I-FP-CIT on SPECT imaging. The combination of triple energy window method and CT-attenuation correction method would be the best correction method for SBR act .
Pediatric Clival Chordoma: A Curable Disease that Conforms to Collins' Law.
Rassi, Marcio S; Hulou, M Maher; Almefty, Kaith; Bi, Wenya Linda; Pravdenkova, Svetlana; Dunn, Ian F; Smith, Timothy R; Al-Mefty, Ossama
2018-05-01
Skull base chordomas in children are extremely rare. Their course, management, and outcome have not been defined. To describe the preeminent clinical and radiological features in a series of pediatric patients with skull base chordomas and analyze the outcome of a cohort who underwent uniform treatment. We emphasize predictors of overall survival and progression-free survival, which aligns with Collins' law for embryonal tumors. Thirty-one patients with a mean age of 10.7 yr (range 0.8-22) harboring skull base chordomas were evaluated. We retrospectively analyzed the outcomes and prognostic factors for 18 patients treated by the senior author, with uniform management of surgery with the aim of gross total resection and adjuvant proton-beam radiotherapy. Mean follow-up was 119.2 mo (range 8-263). Abducens nerve palsy was the most common presenting symptom. Imaging disclosed large tumors that often involve multiple anatomical compartments. Patients undergoing gross total resection had significantly increased progression-free survival (P = .02) and overall survival (P = .05) compared with those having subtotal resection. Those who lived through the period of risk for recurrence without disease progression had a higher probability of living entirely free of progression (P = .03; odds ratio = 16.0). Age, sex, and histopathological variant did not yield statistical significance in survival. Long-term overall and progression-free survival in children harboring skull base chordomas can be achieved with gross surgical resection and proton-beam radiotherapy, despite an advanced stage at presentation. Collins' law does apply to pediatric skull base chordomas, and children with this disease have a high hope for cure.
Safety of drilling for clinoidectomy and optic canal unroofing in anterior skull base surgery.
Spektor, Sergey; Dotan, Shlomo; Mizrahi, Cezar José
2013-06-01
Skull base drilling is a necessary and important element of skull base surgery; however, drilling around vulnerable neurovascular structures has certain risks. We aimed to assess the frequency of complications related to drilling the anterior skull base in the area of the optic nerve (ON) and internal carotid artery (ICA), in a large series of patients. We included anterior skull base surgeries performed from 2000 to 2012 that demanded unroofing of the optic canal, with extra- or intradural clinoidectomy and/or drilling of the clinoidal process and lateral aspect of the tuberculum sella. Data was retrieved from a prospective database and supplementary retrospective file review. Our IRB waived the requirement for informed consent. The nature and location of pathology, clinical presentation, surgical techniques, surgical morbidity and mortality, pre- and postoperative vision, and neurological outcomes were reviewed. There were 205 surgeries, including 22 procedures with bilateral optic canal unroofing (227 optic canals unroofed). There was no mortality, drilling-related vascular damage, or brain trauma. Complications possibly related to drilling included CSF leak (6 patients, 2.9 %), new ipsilateral blindness (3 patients, 1.5 %), visual deterioration (3 patients, 1.5 %), and transient oculomotor palsy (5 patients, 2.4 %). In all patients with new neuropathies, the optic and oculomotor nerves were manipulated during tumor removal; thus, new deficits could have resulted from drilling, or tumor dissection, or both. Drilling of the clinoid process and tuberculum sella, and optic canal unroofing are important surgical techniques, which may be performed relatively safely by a skilled neurosurgeon.
The accuracy of an electromagnetic navigation system in lateral skull base approaches.
Komune, Noritaka; Matsushima, Ken; Matsuo, Satoshi; Safavi-Abbasi, Sam; Matsumoto, Nozomu; Rhoton, Albert L
2017-02-01
Image-guided optical tracking systems are being used with increased frequency in lateral skull base surgery. Recently, electromagnetic tracking systems have become available for use in this region. However, the clinical accuracy of the electromagnetic tracking system has not been examined in lateral skull base surgery. This study evaluates the accuracy of electromagnetic navigation in lateral skull base surgery. Cadaveric and radiographic study. Twenty cadaveric temporal bones were dissected in a surgical setting under a commercially available, electromagnetic surgical navigation system. The target registration error (TRE) was measured at 28 surgical landmarks during and after performing the standard translabyrinthine and middle cranial fossa surgical approaches to the internal acoustic canal. In addition, three demonstrative procedures that necessitate navigation with high accuracy were performed; that is, canalostomy of the superior semicircular canal from the middle cranial fossa, 1 cochleostomy from the middle cranial fossa, 2 and infralabyrinthine approach to the petrous apex. 3 RESULTS: Eleven of 17 (65%) of the targets in the translabyrinthine approach and five of 11 (45%) of the targets in the middle fossa approach could be identified in the navigation system with TRE of less than 0.5 mm. Three accuracy-dependent procedures were completed without anatomical injury of important anatomical structures. The electromagnetic navigation system had sufficient accuracy to be used in the surgical setting. It was possible to perform complex procedures in the lateral skull base under the guidance of the electromagnetically tracked navigation system. N/A. Laryngoscope, 2016 127:450-459, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Conde-Díaz, Cristina; Llenas-García, Jara; Parra Grande, Mónica; Terol Esclapez, Gertrudis; Masiá, Mar; Gutiérrez, Félix
2017-02-21
Skull base osteomyelitis is an uncommon disease that usually complicates a malignant external otitis with temporal bone involvement. It affects predominantly diabetic and immunocompromised males and has a high mortality rate. Pseudomonas aeruginosa is the most common causative organism. Currently, there is no consensus about the best therapeutic option. Here we describe a case of severe skull base osteomyelitis caused by Pseudomonas aeruginosa with progressive palsy of cranial nerves that was successfully managed with prolonged outpatient continuous infusion of ceftazidime plus oral ciprofloxacin. A 69-year-old Caucasian man presented with dysphagia, headache, and weight loss. He complained of left earache and purulent otorrhea. Over the following weeks he developed progressive palsy of IX, X, VI, and XII cranial nerves and papilledema. A petrous bone computed tomography scan showed a mass in the left jugular foramen with a strong lytic component that expanded to the cavum. A biopsy was then performed and microbiological cultures grew Pseudomonas aeruginosa. After 6 weeks of parenteral antibiotic treatment, our patient was discharged and treatment was continued with a domiciliary continuous infusion of a beta-lactam through a peripherally inserted central catheter, along with an oral fluoroquinolone for 10 months. Both radiological and clinical responses were excellent. Skull base osteomyelitis is a life-threating condition; clinical suspicion and correct microbiological identification are key to achieve an accurate and timely diagnosis. Due to the poor outcome of Pseudomonas aeruginosa skull base osteomyelitis, prolonged outpatient parenteral antibiotic therapy administered by continuous infusion could be a valuable option for these patients.
Borg, Anouk; Kirkman, Matthew A; Choi, David
2016-11-01
Endoscopic skull base surgery is becoming more popular as an approach to the anterior skull base for tumors and cerebrospinal fluid (CSF) fistulae. It offers the advantages of better cosmesis and improved quality of life after surgery. We reviewed the complication rates reported in the literature. A literature search was performed in the electronic database Ovid MEDLINE (1950 to August 25, 2015) with the search item "([Anterior] AND Skull base surgery) AND endoscopic." We identified 82 relevant studies that included 7460 cases. An average overall complication rate of 17.1% (range 0%-68.0%) and a mortality rate of 0.4% (0%-10.0%) were demonstrated in a total of 82 studies that included 7460 cases. The average CSF leak rate for all studies was 8.9% (0%-40.0%) with meningiomas and clival lesions having the greatest CSF leak rates. The most frequent benign pathology encountered was pituitary adenomas (n = 3720, 49.8% of all cases) and the most frequent malignant tumor was esthesioneuroblastoma (n = 120, 1.6% of all cases). Studies that included only CSF fistula repairs had a lower average total complication rate (12.9%) but a greater rate of meningitis compared with studies that reported mixed pathology (2.4% vs. 1.3%). A trend towards a lower total complication rate with increasing study size was observed. The endoscopic approach is an increasingly accepted technique for anterior skull base tumor surgery and is associated with acceptable complication rates. Increasing experience with this technique can decrease rates of complications. Copyright © 2016 Elsevier Inc. All rights reserved.
Vyas, Urvi; Ghanouni, Pejman; Halpern, Casey H; Elias, Jeff; Pauly, Kim Butts
2016-09-01
In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen human subjects. Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. The simulated skull efficiency using individual-specific heterogeneous models predicts well (R(2) = 0.84) the experimental energy efficiency. This paper presents a simulation model to predict the variation in thermal responses measured in clinical ctMRGFYS treatments while being computationally feasible.
Vyas, Urvi; Ghanouni, Pejman; Halpern, Casey H.; Elias, Jeff; Pauly, Kim Butts
2016-01-01
Purpose: In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen human subjects. Methods: Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. Results: The simulated skull efficiency using individual-specific heterogeneous models predicts well (R2 = 0.84) the experimental energy efficiency. Conclusions: This paper presents a simulation model to predict the variation in thermal responses measured in clinical ctMRGFYS treatments while being computationally feasible. PMID:27587047
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vyas, Urvi, E-mail: urvi.vyas@gmail.com; Ghanouni,
Purpose: In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen humanmore » subjects. Methods: Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. Results: The simulated skull efficiency using individual-specific heterogeneous models predicts well (R{sup 2} = 0.84) the experimental energy efficiency. Conclusions: This paper presents a simulation model to predict the variation in thermal responses measured in clinical ctMRGFYS treatments while being computationally feasible.« less
Pervasive genetic integration directs the evolution of human skull shape.
Martínez-Abadías, Neus; Esparza, Mireia; Sjøvold, Torstein; González-José, Rolando; Santos, Mauro; Hernández, Miquel; Klingenberg, Christian Peter
2012-04-01
It has long been unclear whether the different derived cranial traits of modern humans evolved independently in response to separate selection pressures or whether they resulted from the inherent morphological integration throughout the skull. In a novel approach to this issue, we combine evolutionary quantitative genetics and geometric morphometrics to analyze genetic and phenotypic integration in human skull shape. We measured human skulls in the ossuary of Hallstatt (Austria), which offer a unique opportunity because they are associated with genealogical data. Our results indicate pronounced covariation of traits throughout the skull. Separate simulations of selection for localized shape changes corresponding to some of the principal derived characters of modern human skulls produced outcomes that were similar to each other and involved a joint response in all of these traits. The data for both genetic and phenotypic shape variation were not consistent with the hypothesis that the face, cranial base, and cranial vault are completely independent modules but relatively strongly integrated structures. These results indicate pervasive integration in the human skull and suggest a reinterpretation of the selective scenario for human evolution where the origin of any one of the derived characters may have facilitated the evolution of the others. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Citardi, Martin J.; Herrmann, Brian; Hollenbeak, Chris S.; Stack, Brendan C.; Cooper, Margaret; Bucholz, Richard D.
2001-01-01
Traditionally, cadaveric studies and plain-film cephalometrics provided information about craniomaxillofacial proportions and measurements; however, advances in computer technology now permit software-based review of computed tomography (CT)-based models. Distances between standardized anatomic points were measured on five dried human skulls with standard scientific calipers (Geneva Gauge, Albany, NY) and through computer workstation (StealthStation 2.6.4, Medtronic Surgical Navigation Technology, Louisville, CO) review of corresponding CT scans. Differences in measurements between the caliper and CT model were not statistically significant for each parameter. Measurements obtained by computer workstation CT review of the cranial skull base are an accurate representation of actual bony anatomy. Such information has important implications for surgical planning and clinical research. ImagesFigure 1Figure 2Figure 3 PMID:17167599
Chen, Hongxu; Li, Pengcheng; Liu, Zhiyong; Xu, Jianguo; Hui, Xuhui
2015-01-01
Primary benign fibrous histiocytoma (BFH) at the skull is extremely rare. Here we report a case of a 22-year-old man presented with a 1-year history of progressive enlargement subcutaneous mass on the right side of the fronto-temporo-parietal region without symptoms. The tumor was radical resected through craniotomy and the bone defect was repaired by pre-plasticity titanium mesh. Histopathologic examination confirmed a benign fibrous histiocytoma, and no signs of tumor recurrence were detected at 3-year follow-up. PMID:26823894
Aoki, N
1991-06-01
A 52-year-old male underwent lumboperitoneal shunting after external decompressive craniectomy. His postoperative course was accompanied by remarkable displacement of the intracranial structures to the opposite side of craniectomy. This phenomenon, probably caused by the siphon effect of cerebrospinal fluid shunting, resolved after cranioplasty. This observation provides the evidence casting doubt on the presence of the siphon effect due to atmospheric pressure in patients without the association of skull defect or open cranial sutures.
Marsac, L; Chauvet, D; La Greca, R; Boch, A-L; Chaumoitre, K; Tanter, M; Aubry, J-F
2017-09-01
Transcranial brain therapy has recently emerged as a non-invasive strategy for the treatment of various neurological diseases, such as essential tremor or neurogenic pain. However, treatments require millimetre-scale accuracy. The use of high frequencies (typically ≥1 MHz) decreases the ultrasonic wavelength to the millimetre scale, thereby increasing the clinical accuracy and lowering the probability of cavitation, which improves the safety of the technique compared with the use of low-frequency devices that operate at 220 kHz. Nevertheless, the skull produces greater distortions of high-frequency waves relative to low-frequency waves. High-frequency waves require high-performance adaptive focusing techniques, based on modelling the wave propagation through the skull. This study sought to optimise the acoustical modelling of the skull based on computed tomography (CT) for a 1 MHz clinical brain therapy system. The best model tested in this article corresponded to a maximum speed of sound of 4000 m.s -1 in the skull bone, and it restored 86% of the optimal pressure amplitude on average in a collection of six human skulls. Compared with uncorrected focusing, the optimised non-invasive correction led to an average increase of 99% in the maximum pressure amplitude around the target and an average decrease of 48% in the distance between the peak pressure and the selected target. The attenuation through the skulls was also assessed within the bandwidth of the transducers, and it was found to vary in the range of 10 ± 3 dB at 800 kHz and 16 ± 3 dB at 1.3 MHz.
Zeinalizadeh, Mehdi; Sadrehosseini, Seyed Mousa; Habibi, Zohreh; Nejat, Farideh; Silva, Harley Brito da; Singh, Harminder
2017-03-01
OBJECTIVE Congenital transsphenoidal encephaloceles are rare malformations, and their surgical treatment remains challenging. This paper reports 3 cases of transsphenoidal encephalocele in 8- to 24-month-old infants, who presented mainly with airway obstruction, respiratory distress, and failure to thrive. METHODS The authors discuss the surgical management of these lesions via a minimally invasive endoscopic endonasal approach, as compared with the traditional transcranial and transpalatal approaches. A unique endonasal management algorithm for these lesions is outlined. The lesions were repaired with no resection of the encephalocele sac, and the cranial base defects were reconstructed with titanium mesh plates and vascular nasoseptal flaps. RESULTS Reduction of the encephalocele and reconstruction of the skull base was successfully accomplished in all 3 cases, with favorable results. CONCLUSIONS The described endonasal management algorithm for congenital transsphenoidal encephaloceles is a safe, viable alternative to traditional transcranial and transpalatal approaches, and avoids much of the morbidity associated with these open techniques.
Preoperative Embolization of Skull Base Meningiomas: Outcomes in the Onyx Era.
Przybylowski, Colin J; Baranoski, Jacob F; See, Alfred P; Flores, Bruno C; Almefty, Rami O; Ding, Dale; Chapple, Kristina M; Sanai, Nader; Ducruet, Andrew F; Albuquerque, Felipe C
2018-05-09
Preoperative embolization may facilitate skull base meningioma resection, but its safety and efficacy in the Onyx era have not been investigated. In this retrospective cohort study, we evaluated the outcomes of preoperative embolization of skull base meningiomas using Onyx as the primary embolysate. We queried an endovascular database for patients with skull base meningiomas who underwent preoperative embolization at our institution in 2007-2017. Patient, tumor, procedure, and outcome data were analyzed. Twenty-eight patients (28 meningiomas) underwent successful preoperative meningioma embolization. The mean patient age ± SD was 56 ± 13 years, and 18 patients (64%) were women. The mean tumor size was 49 cm 3 . There were 1, 2, or 3 arterial pedicles embolized in 21 cases (75%), 6 cases (21%), and 1 case (4%), respectively. The embolized pedicles included branches of the middle meningeal artery in 19 cases (68%), the internal maxillary artery in 8 cases (29%), the ascending pharyngeal artery in 2 cases (7%), and the posterior auricular, ophthalmic, occipital, and anterior cerebral arteries in 1 case each (4%). The embolysates used were Onyx alone in 20 cases (71%), n-butyl cyanoacrylate alone in 3 cases (11%), coils/particles and Onyx/n-butyl cyanoacrylate in 2 cases each (7%), and Onyx and coils in 1 case (4%). The median degree of tumor devascularization was 60%. Significant neurologic morbidity occurred in 1 patient (4%) who developed symptomatic peritumoral edema after Onyx embolization. For appropriately selected skull base meningiomas supplied by dura mater-based arterial pedicles without distal cranial nerve supply, preoperative embolization with current embolysate technology affords substantial tumor devascularization with a low complication rate. Copyright © 2018 Elsevier Inc. All rights reserved.
Earliest Directly-Dated Human Skull-Cups
Bello, Silvia M.; Parfitt, Simon A.; Stringer, Chris B.
2011-01-01
Background The use of human braincases as drinking cups and containers has extensive historic and ethnographic documentation, but archaeological examples are extremely rare. In the Upper Palaeolithic of western Europe, cut-marked and broken human bones are widespread in the Magdalenian (∼15 to 12,000 years BP) and skull-cup preparation is an element of this tradition. Principal Findings Here we describe the post-mortem processing of human heads at the Upper Palaeolithic site of Gough's Cave (Somerset, England) and identify a range of modifications associated with the production of skull-cups. New analyses of human remains from Gough's Cave demonstrate the skilled post-mortem manipulation of human bodies. Results of the research suggest the processing of cadavers for the consumption of body tissues (bone marrow), accompanied by meticulous shaping of cranial vaults. The distribution of cut-marks and percussion features indicates that the skulls were scrupulously 'cleaned' of any soft tissues, and subsequently modified by controlled removal of the facial region and breakage of the cranial base along a sub-horizontal plane. The vaults were also ‘retouched’, possibly to make the broken edges more regular. This manipulation suggests the shaping of skulls to produce skull-cups. Conclusions Three skull-cups have been identified amongst the human bones from Gough's Cave. New ultrafiltered radiocarbon determinations provide direct dates of about 14,700 cal BP, making these the oldest directly dated skull-cups and the only examples known from the British Isles. PMID:21359211
Craniofacial resection and its role in the management of sinonasal malignancies.
Taghi, Ali; Ali, Ahmed; Clarke, Peter
2012-09-01
Sinonasal malignancy is rare, and its presentation is commonly late. There is a wide variety of pathologies with varying natural histories and survival rates. Anatomy of the skull base is extremely complex and tumors are closely related to orbits, frontal lobes and cavernous sinus. Anatomical detail and the late presentation render surgical management a challenging task. A thorough understanding of anatomy and pathology combined with modern neuroimaging and reliable reconstruction within a multidisciplinary team is imperative to carry out skull base surgery effectively. While endoscopic approaches are gaining credibility, clearly, it will be some time before meaningful comparisons with craniofacial resection can be made. Until then, craniofacial resection will remain the gold standard for managing the sinonasal malignancies of the anterior skull base, as it has proved to be safe and effective.
Flow-diverter in radiation-induced skull base carotid blowout syndrome: do not write it off!
Anil, Gopinathan; Zhang, Junwei; Ong, Yew Kwang; Hui, Francis
2017-10-01
Post-radiotherapy carotid blowout syndrome (CBS) of the skull base is a rare but often catastrophic complication of head and neck malignancies. The existing literature on the treatment of this condition with flow-diverting devices (FDD) is extremely limited and disappointing. We present a case of impending CBS in a patient previously irradiated for nasopharyngeal cancer that was successfully treated with use of multiple FDDs, adjunctive endonasal packing and delayed reinforcement with pedicled naso-septal flap, yielding an excellent outcome at 14-months follow-up. Notwithstanding the discouraging results in literature, our anecdotal experience suggests that endovascular reconstruction using FDD could be an option with long-term viability in post-radiotherapy CBS involving the skull base when reinforced with a vascularised naso-septal flap.
Khalatbari, Mahmoud Reza; Hamidi, Mehrdokht; Moharamzad, Yashar; Setayesh, Ali; Amirjamshidi, Abbas
2013-01-01
Brown tumor is a bone lesion secondary to hyperparathyroidism of various etiologies. Skeletal involvement in primary hyperparathyroidism secondary to parathyroid adenoma is very uncommon and brown tumor has become extremely a rare clinical entity. Hyperparathyroidism is usually associated with high levels of serum calcium. Brown tumor as the only and initial symptom of normocalcemic primary hyperparathyroidism is extremely rare. Moreover, involvement of the skull base and the orbit is exceedingly rare. The authors would report three cases of brown tumor of the anterior skull base that were associated with true normocalcemic primary hyperparathyroidism. Clinical manifestations, neuroimaging findings, pathological findings, diagnosis and treatment of the patients are discussed and the relevant literature is reviewed.
NASA Astrophysics Data System (ADS)
Chang, You; Kim, Namkeun; Stenfelt, Stefan
2015-12-01
Bone conduction (BC) is the transmission of sound to the inner ear through the bones of the skull. This type of transmission is used in humans fitted with BC hearing aids as well as to classify between conductive and sensorineural hearing losses. The objective of the present study is to develop a finite-element (FE) model of the human skull based on cryosectional images of a female cadaver head in order to gain better understanding of the sound transmission. Further, the BC behavior was validated in terms of sound transmission against experimental data published in the literature. Results showed the responses of the simulated skull FE model were consistent with the experimentally reported data.
Readability analysis of internet-based patient information regarding skull base tumors.
Misra, Poonam; Kasabwala, Khushabu; Agarwal, Nitin; Eloy, Jean Anderson; Liu, James K
2012-09-01
Readability is an important consideration in assessing healthcare-related literature. In order for a source of information to be the most beneficial to patients, it should be written at a level appropriate for the audience. The National Institute of Health recommends that health literature be written at a maximum level of sixth grade. This is not uniformly found in current health literature, putting patients with lower reading levels at a disadvantage. In February 2012, healthcare-oriented education resources were retrieved from websites obtained using the Google search phrase skull base tumors. Of the first 25 consecutive, unique website hits, 18 websites were found to contain information for patients. Ten different assessment scales were utilized to assess the readability of the patient-specific web pages. Patient-oriented material found online for skull base tumors was written at a significantly higher level than the reading level of the average US patient. The average reading level of this material was found to be at a minimum of eleventh grade across all ten scales. Health related material related to skull base tumors available through the internet can be improved to reach a larger audience without sacrificing the necessary information. Revisions of this material can provide significant benefit for average patients and improve their health care.
Sreenath, Satyan B; Rawal, Rounak B; Zanation, Adam M
2014-01-01
The posterior skull base and the nasopharynx have historically represented technically difficult regions to approach surgically given their central anatomical locations. Through continued improvements in endoscopic instrumentation and technology, the expanded endonasal approach (EEA) has introduced a new array of surgical options in the management of pathology involving these anatomically complex areas. Similarly, the transoral robotic surgical (TORS) approach was introduced as a minimally invasive surgical option to approach tongue base, nasopharyngeal, parapharyngeal, and laryngeal lesions. Although both the EEA and the TORS approach have been extensively described as viable surgical options in managing nasopharyngeal and centrally located head and neck pathology, both endonasal and transoral techniques have inherent limitations. Given these limitations, several institutions have published feasibility studies with the combined EEA and TORS approaches for a variety of skull base and nasopharyngeal pathologies. In this article, the authors present their clinical experience with the combined endonasal and transoral approach through a case series presentation, and discuss advantages and limitations of this approach for surgical management of the middle and posterior skull base and nasopharynx. In addition, a presentation is included of a unique, simultaneous endonasal and transoral dissection of the nasopharynx through an innovative intraoperative setup.
Lau, Steven K M; Patel, Kunal; Kim, Teddy; Knipprath, Erik; Kim, Gwe-Ya; Cerviño, Laura I; Lawson, Joshua D; Murphy, Kevin T; Sanghvi, Parag; Carter, Bob S; Chen, Clark C
2017-04-01
Frameless, surface imaging guided radiosurgery (SIG-RS) is a novel platform for stereotactic radiosurgery (SRS) wherein patient positioning is monitored in real-time through infra-red camera tracking of facial topography. Here we describe our initial clinical experience with SIG-RS for the treatment of benign neoplasms of the skull base. We identified 48 patients with benign skull base tumors consecutively treated with SIG-RS at a single institution between 2009 and 2011. Patients were diagnosed with meningioma (n = 22), vestibular schwannoma (n = 20), or nonfunctional pituitary adenoma (n = 6). Local control and treatment-related toxicity were retrospectively assessed. Median follow-up was 65 months (range 61-72 months). Prescription doses were 12-13 Gy in a single fraction (n = 18), 8 Gy × 3 fractions (n = 6), and 5 Gy × 5 fractions (n = 24). Actuarial tumor control rate at 5 years was 98%. No grade ≥3 treatment-related toxicity was observed. Grade ≤2 toxicity was associated with symptomatic lesions (p = 0.049) and single fraction treatment (p = 0.005). SIG-RS for benign skull base tumors produces clinical outcomes comparable to conventional frame-based SRS techniques while enhancing patient comfort.
Peris-Celda, Maria; Pinheiro-Neto, Carlos Diogenes; Funaki, Takeshi; Fernandez-Miranda, Juan C.; Gardner, Paul; Snyderman, Carl; Rhoton, Albert L.
2013-01-01
Objective Reconstruction of large clival defects after an endoscopic endonasal procedure is challenging. The objective is to analyze the morphology, indications, and limitations of the extended nasoseptal flap, which adds the nasal floor and inferior meatus mucosa, compared with the standard nasoseptal flap, for clival reconstruction. Design Twenty-seven sides of formalin-fixed anatomical specimens and 13 computed tomography (CT) scans were used. Under 0-degree endoscopic visualization, a standard flap on one side and an extended flap on the other side were performed, as well as exposure of the sella, cavernous sinus, and clival dura mater. Coverage of both flaps was assessed, and they were incised and extracted for measurements. Results The extended flap has two parts: septal and inferior meatal. The extended flaps are 20 mm longer and add 774 mm2 of mucosal area. They cover a clival defect from tuberculum to foramen magnum in 66.6% cases and from below the sella in 91.6%. They cover both parasellar and paraclival segments of the internal carotid arteries. The lateral inferior limits are the medial aspect of the hypoglossal canals and Eustachian tubes. CT scans can predict the need or limitation of an extended nasoseptal flap. Conclusions The nasal floor and inferior meatus mucosa adds a significant area for reconstruction of the clivus. A defect laterally beyond the hypoglossal canals is not likely covered with this variation of the flap. Preoperative CT scans are useful to guide the reconstruction techniques. PMID:24436940
Bai, Chen; Ji, Meiling; Bouakaz, Ayache; Zong, Yujin; Wan, Mingxi
2018-05-01
For investigating human transcranial ultrasound imaging (TUI) through the temporal bone, an intact human skull is needed. Since it is complex and expensive to obtain one, it requires that experiments are performed without excision or abrasion of the skull. Besides, to mimic blood circulation for the vessel target, cellulose tubes generally fit the vessel simulation with straight linear features. These issues, which limit experimental studies, can be overcome by designing a 3-D-printed skull model with acoustic and dimensional properties that match a real skull and a vessel model with curve and bifurcation. First, the optimal printing material which matched a real skull in terms of the acoustic attenuation coefficient and sound propagation velocity was identified at 2-MHz frequency, i.e., 7.06 dB/mm and 2168.71 m/s for the skull while 6.98 dB/mm and 2114.72 m/s for the printed material, respectively. After modeling, the average thickness of the temporal bone in the printed skull was about 1.8 mm, while it was to 1.7 mm in the real skull. Then, a vascular phantom was designed with 3-D-printed vessels of low acoustic attenuation (0.6 dB/mm). It was covered with a porcine brain tissue contained within a transparent polyacrylamide gel. After characterizing the acoustic consistency, based on the designed skull model and vascular phantom, vessels with inner diameters of 1 and 0.7 mm were distinguished by resolution enhanced imaging with low frequency. Measurements and imaging results proved that the model and phantom are authentic and viable alternatives, and will be of interest for TUI, high intensity focused ultrasound, or other therapy studies.
Assessment of the RIVET fixation system for cranioplasty using the pull-out technique.
Sakamoto, Yoshiaki; Minabe, Toshiharu; Kato, Tatsuya; Kishi, Kazuo
2015-03-01
Cranioplasty using custom-made hydroxyapatite (HAP) ceramic implants is a common procedure to repair skull defects. However, commercially available titanium screws are only minimally stabilized due to characteristic brittleness. We developed the RIVET technique which involves fixing a bioabsorbable plate atop a HAP block using bioabsorbable screws extending beyond both layers, and evaluated fixation strength using the pull-out test and microtomography. Three experimental conditions were compared: a non-RIVET group, RIVET group, and dry skull control group. Pull-out strength significantly differed across groups (non-RIVET group, 1.33 ± 1.21 kgf; RIVET group, 4.46 ± 0.84 kgf; and control group, 6.99 ± 1.14 kgf, P < 0.01). Microtomography of the dry skull control group revealed thread grooves fitted to the screws. The non-RIVET and RIVET groups presented fewer thread grooves than the control group, and the screws did not fit perfectly to the HAP block. However, fixation in the RIVET group was more stable, as the rivet was firmly lodged into the implant. In conclusion, by melting and creating the rivet, pull-out strength can be increased and rigid stabilization of HAP can be obtained. This technique uses commercially available absorbable plate and screws, and thus can be used widely in clinical applications involving HAP blocks with different porosities and thicknesses. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Occipital condyle syndrome secondary to bone metastases from rectal cancer.
Marruecos, J; Conill, C; Valduvieco, I; Vargas, M; Berenguer, J; Maurel, J
2008-01-01
Skull-base metastases are very unfrequent. Occipital condyle syndrome (OCS) is usually underdiagnosed. Until now few cases have been reported in the literature. We present a 71-year-old woman with metastatic rectum adenocarcinoma, with right occipital headache and ipsilateral hypoglossal palsy, diagnosed by computed tomography and magnetic resonance imaging of OCS due to a skull-base metastasis and treated with radiation therapy.
Bekelis, Kimon; Valdés, Pablo A.; Erkmen, Kadir; Leblond, Frederic; Kim, Anthony; Wilson, Brian C.; Harris, Brent T.; Paulsen, Keith D.; Roberts, David W.
2011-01-01
Object Complete resection of skull base meningiomas provides patients with the best chance for a cure; however, surgery is frequently difficult given the proximity of lesions to vital structures, such as cranial nerves, major vessels, and venous sinuses. Accurate discrimination between tumor and normal tissue is crucial for optimal tumor resection. Qualitative assessment of protoporphyrin IX (PpIX) fluorescence following the exogenous administration of 5-aminolevulinic acid (ALA) has demonstrated utility in malignant glioma resection but limited use in meningiomas. Here the authors demonstrate the use of ALA-induced PpIX fluorescence guidance in resecting a skull base meningioma and elaborate on the advantages and disadvantages provided by both quantitative and qualitative fluorescence methodologies in skull base meningioma resection. Methods A 52-year-old patient with a sphenoid wing WHO Grade I meningioma underwent tumor resection as part of an institutional review board–approved prospective study of fluorescence-guided resection. A surgical microscope modified for fluorescence imaging was used for the qualitative assessment of visible fluorescence, and an intraoperative probe for in situ fluorescence detection was utilized for quantitative measurements of PpIX. The authors assessed the detection capabilities of both the qualitative and quantitative fluorescence approaches. Results The patient harboring a sphenoid wing meningioma with intraorbital extension underwent radical resection of the tumor with both visibly and nonvisibly fluorescent regions. The patient underwent a complete resection without any complications. Some areas of the tumor demonstrated visible fluorescence. The quantitative probe detected neoplastic tissue better than the qualitative modified surgical microscope. The intraoperative probe was particularly useful in areas that did not reveal visible fluorescence, and tissue from these areas was confirmed as tumor following histopathological analysis. Conclusions Fluorescence-guided resection may be a useful adjunct in the resection of skull base meningiomas. The use of a quantitative intraoperative probe to detect PpIX concentration allows more accurate determination of neoplastic tissue in meningiomas than visible fluorescence and is readily applicable in areas, such as the skull base, where complete resection is critical but difficult because of the vital structures surrounding the pathology. PMID:21529179
A PCA-Based method for determining craniofacial relationship and sexual dimorphism of facial shapes.
Shui, Wuyang; Zhou, Mingquan; Maddock, Steve; He, Taiping; Wang, Xingce; Deng, Qingqiong
2017-11-01
Previous studies have used principal component analysis (PCA) to investigate the craniofacial relationship, as well as sex determination using facial factors. However, few studies have investigated the extent to which the choice of principal components (PCs) affects the analysis of craniofacial relationship and sexual dimorphism. In this paper, we propose a PCA-based method for visual and quantitative analysis, using 140 samples of 3D heads (70 male and 70 female), produced from computed tomography (CT) images. There are two parts to the method. First, skull and facial landmarks are manually marked to guide the model's registration so that dense corresponding vertices occupy the same relative position in every sample. Statistical shape spaces of the skull and face in dense corresponding vertices are constructed using PCA. Variations in these vertices, captured in every principal component (PC), are visualized to observe shape variability. The correlations of skull- and face-based PC scores are analysed, and linear regression is used to fit the craniofacial relationship. We compute the PC coefficients of a face based on this craniofacial relationship and the PC scores of a skull, and apply the coefficients to estimate a 3D face for the skull. To evaluate the accuracy of the computed craniofacial relationship, the mean and standard deviation of every vertex between the two models are computed, where these models are reconstructed using real PC scores and coefficients. Second, each PC in facial space is analysed for sex determination, for which support vector machines (SVMs) are used. We examined the correlation between PCs and sex, and explored the extent to which the choice of PCs affects the expression of sexual dimorphism. Our results suggest that skull- and face-based PCs can be used to describe the craniofacial relationship and that the accuracy of the method can be improved by using an increased number of face-based PCs. The results show that the accuracy of the sex classification is related to the choice of PCs. The highest sex classification rate is 91.43% using our method. Copyright © 2017 Elsevier Ltd. All rights reserved.
Curth, Stefan; Fischer, Martin S; Kupczik, Kornelius
2017-11-01
The temporomandibular joint (TMJ) conducts and restrains masticatory movements between the mammalian cranium and the mandible. Through this functional integration, TMJ morphology in wild mammals is strongly correlated with diet, resulting in a wide range of TMJ variations. However, in artificially selected and closely related domestic dogs, dietary specialisations between breeds can be ruled out as a diversifying factor although they display an enormous variation in TMJ morphology. This raises the question of the origin of this variation. Here we hypothesise that, even in the face of reduced functional demands, TMJ shape in dogs can be predicted by skull form; i.e. that the TMJ is still highly integrated in the dog skull. If true, TMJ variation in the dog would be a plain by-product of the enormous cranial variation in dogs and its genetic causes. We addressed this hypothesis using geometric morphometry on a data set of 214 dog and 60 wolf skulls. We digitized 53 three-dimensional landmarks of the skull and the TMJ on CT-based segmentations and compared (1) the variation between domestic dog and wolf TMJs (via principal component analysis) and (2) the pattern of covariation of skull size, flexion and rostrum length with TMJ shape (via regression of centroid size on shape and partial least squares analyses). We show that the TMJ in domestic dogs is significantly more diverse than in wolves: its shape covaries significantly with skull size, flexion and rostrum proportions in patterns which resemble those observed in primates. Similar patterns in canids, which are carnivorous, and primates, which are mostly frugivorous imply the existence of basic TMJ integration patterns which are independent of dietary adaptations. However, only limited amounts of TMJ variation in dogs can be explained by simple covariation with overall skull geometry. This implies that the final TMJ shape is gained partially independently of the rest of the skull. Copyright © 2017 Elsevier GmbH. All rights reserved.
Beer-Furlan, André; Balsalobre, Leonardo; Vellutini, Eduardo A S; Stamm, Aldo C
2016-01-01
Maffucci syndrome is a nonhereditary disorder in which patients develop multiple enchondromas and cutaneous, visceral, or soft tissue hemangiomas. The potential malignant progression of enchondroma into a secondary chondrosarcoma is a well-known fact. Nevertheless, chondrosarcoma located at the skull base in patients with Maffuci syndrome is a very rare condition, with only 18 cases reported in the literature. We report 2 other cases successfully treated through an expanded endoscopic endonasal approach and discuss the condition based on the literature review. Skull base chondrosarcoma associated with Maffucci syndrome is a rare condition. The disease cannot be cured, therefore surgical treatment should be performed in symptomatic patients aiming for maximal tumor resection with function preservation. The endoscopic endonasal approach is a safe and reliable alternative for the management of these tumors. Copyright © 2016 Elsevier Inc. All rights reserved.
Roohi, Fereydoon; Mann, David; Kula, Roger W
2005-06-01
Paget's disease of bone is a chronic progressive skeletal disorder usually occurring in the long bones and skull of older adults and elderly persons. In the skull, softening of the skull base may lead to basilar impression and consequently obstruction of the cerebrospinal fluid through the basilar cisterns, resulting ventricular enlargement in association with gait difficulties, incontinence and dementia: a syndrome resembling normal pressure hydrocephalus. The optimal management of hydrocephalus associated with Paget's disease of the skull is not well documented and is still debated. We report a patient with hydrocephalic dementia linked to Paget's disease of the skull who showed marked sustained improvement in her neurological condition after ventriculo-peritoneal shunt insertion. We have now followed this patient for 6 years. Our experience supports the view that ventricular shunting is the procedure of choice for treating hydrocephalus linked to the Paget's disease of bone and is best carried out in the early stages of the illness.
Non-Invasive Transcranial Brain Therapy Guided by CT Scans: an In Vivo Monkey Study
NASA Astrophysics Data System (ADS)
Marquet, F.; Pernot, M.; Aubry, J.-F.; Montaldo, G.; Tanter, M.; Boch, A.-L.; Kujas, M.; Seilhean, D.; Fink, M.
2007-05-01
Brain therapy using focused ultrasound remains very limited due to the strong aberrations induced by the skull. A minimally invasive technique using time-reversal was validated recently in-vivo on 20 sheeps. But such a technique requires a hydrophone at the focal point for the first step of the time-reversal procedure. A completely noninvasive therapy requires a reliable model of the acoustic properties of the skull in order to simulate this first step. 3-D simulations based on high-resolution CT images of a skull have been successfully performed with a finite differences code developed in our Laboratory. Thanks to the skull porosity, directly extracted from the CT images, we reconstructed acoustic speed, density and absorption maps and performed the computation. Computed wavefronts are in good agreement with experimental wavefronts acquired through the same part of the skull and this technique was validated in-vitro in the laboratory. A stereotactic frame has been designed and built in order to perform non invasive transcranial focusing in vivo. Here we describe all the steps of our new protocol, from the CT-scans to the therapy treatment and the first in vivo results on a monkey will be presented. This protocol is based on protocols already existing in radiotherapy.
Müller, Uta; Kubik-Huch, Rahel A; Ares, Carmen; Hug, Eugen B; Löw, Roland; Valavanis, Antonios; Ahlhelm, Frank J
2016-02-01
Chordoma and chondrosarcoma are locally invasive skull base tumors with similar clinical symptoms and anatomic imaging features as reported in the literature. To determine differentiation of chordoma and chondrosarcoma of the skull base with conventional magnetic resonance imaging (cMRI) and diffusion-weighted MR imaging (DWI) in comparison to histopathological diagnosis. This retrospective study comprised 96 (chordoma, n = 64; chondrosarcoma, n = 32) patients with skull base tumors referred to the Paul Scherrer Institute (PSI) for proton therapy. cMRI signal intensities of all tumors were investigated. In addition, median apparent diffusion coefficient (ADC) values were measured in a subgroup of 19 patients (chordoma, n = 11; chondrosarcoma, n = 8). The majority 81.2% (26/32) of chondrosarcomas displayed an off-midline growth pattern, 18.8% (6/32) showed clival invasion, 18.8% (6/32) were located more centrally. Only 4.7% (3/64) of chordomas revealed a lateral clival origin. Using cMRI no significant differences in MR signal intensities were observed in contrast to significantly different ADC values (subgroup of 19/96 patients examined by DWI), with the highest mean value of 2017.2 × 10(-6 )mm(2)/s (SD, 139.9( )mm(2)/s) for chondrosarcoma and significantly lower value of 1263.5 × 10(-6 )mm(2)/s (SD, 100.2 × 10(-6 )mm(2)/s) for chordoma (P = 0.001/median test). An off-midline growth pattern can differentiate chondrosarcoma from chordoma on cMRI in a majority of patients. Additional DWI is a promising tool for the differentiation of these skull base tumors. © The Foundation Acta Radiologica 2015.
Early Stage olfactory neuroblastoma and the impact of resecting dura and olfactory bulb.
Mays, Ashley C; Bell, Diana; Ferrarotto, Renata; Phan, Jack; Roberts, Dianna; Fuller, Clifton D; Frank, Steven J; Raza, Shaan M; Kupferman, Michael E; DeMonte, Franco; Hanna, Ehab Y; Su, Shirley Y
2018-06-01
Compare outcomes of patients with olfactory neuroblastoma (ONB) without skull base involvement treated with and without resection of the dura and olfactory bulb. Retrospective review of ONB patients treated from 1992 to 2013 at the MD Anderson Cancer Center (The University of Texas, Houston, Texas, U.S.A.). Primary outcomes were overall and disease-free survival. Thirty-five patients were identified. Most patients had Kadish A/B. tumors (97%), Hyams grade 2 (70%), with unilateral involvement (91%), and arising from the nasal cavity (68%). Tumor involved the mucosa abutting the skull base in 42% of patients. Twenty-five patients (71%) received surgery and radiation, whereas the remainder had surgery alone. Five patients (14%) had bony skull base resection, and eight patients (23%) had resection of bony skull base, dura, and olfactory bulb. Surgical margins were grossly positive in one patient (3%) and microscopically positive in four patients (12%). The 5- and 10-year overall survival were 93% and 81%, respectively. The 5- and 10-year disease-free survival (DFS) were 89% and 78%, respectively. Bony cribriform plate resection was associated with better DFS (P = 0.05), but dura and olfactory bulb resection was not (P = 0.11). There was a trend toward improved DFS in patients with negative resection margins (P = 0.19). Surgical modality (open vs. endoscopic) and postoperative radiotherapy did not impact DFS. Most Kadish A/B ONB tumors have low Hyams grade, unilateral involvement, and favorable survival outcomes. Resection of the dura and olfactory bulb is not oncologically advantageous in patients without skull base involvement who are surgically treated with negative resection margins and cribriform resection. 4. Laryngoscope, 128:1274-1280, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Matloob, Samir A; Nasir, Haleema A; Choi, David
2016-08-01
Chordomas are rare tumours affecting the skull base. There is currently no clear consensus on the post-surgical radiation treatments that should be used after maximal tumour resection. However, high-dose proton beam therapy is an accepted option for post-operative radiotherapy to maximise local control, and in the UK, National Health Service approval for funding abroad is granted for specific patient criteria. To review the indications and efficacy of proton beam therapy in the management of skull base chordomas. The primary outcome measure for review was the efficacy of proton beam therapy in the prevention of local occurrence. A systematic review of English and non-English articles using MEDLINE (1946-present) and EMBASE (1974-present) databases was performed. Additional studies were reviewed when referenced in other studies and not available on these databases. Search terms included chordoma or chordomas. The PRISMA guidelines were followed for reporting our findings as a systematic review. A total of 76 articles met the inclusion and exclusion criteria for this review. Limitations included the lack of documentation of the extent of primary surgery, tumour size, and lack of standardised outcome measures. Level IIb/III evidence suggests proton beam therapy given post operatively for skull base chordomas results in better survival with less damage to surrounding tissue. Proton beam therapy is a grade B/C recommended treatment modality for post-operative radiation therapy to skull base chordomas. In comparison to other treatment modalities long-term local control and survival is probably improved with proton beam therapy. Further, studies are required to directly compare proton beam therapy to other treatment modalities in selected patients.
Barrett, Thomas F; Dyvorne, Hadrien A; Padormo, Francesco; Pawha, Puneet S; Delman, Bradley N; Shrivastava, Raj K; Balchandani, Priti
2017-07-01
Successful endoscopic endonasal surgery for the resection of skull base tumors is reliant on preoperative imaging to delineate pathology from the surrounding anatomy. The increased signal-to-noise ratio afforded by 7-T MRI can be used to increase spatial and contrast resolution, which may lend itself to improved imaging of the skull base. In this study, we apply a 7-T imaging protocol to patients with skull base tumors and compare the images with clinical standard of care. Images were acquired at 7 T on 11 patients with skull base lesions. Two neuroradiologists evaluated clinical 1.5-, 3-, and 7-T scans for detection of intracavernous cranial nerves and internal carotid artery (ICA) branches. Detection rates were compared. Images were used for surgical planning and uploaded to a neuronavigation platform and used to guide surgery. Image analysis yielded improved detection rates of cranial nerves and ICA branches at 7 T. The 7-T images were successfully incorporated into preoperative planning and intraoperative neuronavigation. Our study represents the first application of 7-T MRI to the full neurosurgical workflow for endoscopic endonasal surgery. We detected higher rates of cranial nerves and ICA branches at 7-T MRI compared with 3- and 1.5-T MRI, and found that integration of 7 T into surgical planning and guidance was feasible. These results suggest a potential for 7-T MRI to reduce surgical complications. Future studies comparing standardized 7-, 3-, and 1.5-T MRI protocols in a larger number of patients are warranted to determine the relative benefit of 7-T MRI for endonasal endoscopic surgical efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.
Barrett, Thomas F; Dyvorne, Hadrien A; Padormo, Francesco; Pawha, Puneet S; Delman, Bradley N; Shrivastava, Raj K; Balchandani, Priti
2018-01-01
Background Successful endoscopic endonasal surgery for the resection of skull base tumors is reliant on preoperative imaging to delineate pathology from the surrounding anatomy. The increased signal-to-noise ratio afforded by 7T MRI can be used to increase spatial and contrast resolution, which may lend itself to improved imaging of skull base. In this study, we apply a 7T imaging protocol to patients with skull base tumors and compare the images to clinical standard of care. Methods Images were acquired at 7T on 11 patients with skull base lesions. Two neuroradiologists evaluated clinical 1.5T, 3T, and 7T scans for detection of intracavernous cranial nerves and ICA branches. Detection rates were compared. Images were utilized for surgical planning and uploaded to a neuronavigation platform and used to guide surgery. Results Image analysis yielded improved detection rates of cranial nerves and ICA branches at 7T. 7T images were successfully incorporated into preoperative planning and intraoperative neuronavigation. Conclusion Our study represents the first application of 7T MRI to the full neurosurgical workflow for endoscopic endonasal surgery. We detected higher rates of cranial nerves and ICA branches at 7T MRI compared to 3T and 1.5 T, and found that integration of 7T into surgical planning and guidance was feasible. These results suggest a potential for 7T MRI to reduce surgical complications. Future studies comparing standardized 7T, 3T, and 1.5 T MRI protocols in a larger number of patients are warranted to determine the relative benefit of 7T MRI for endonasal endoscopic surgical efficacy. PMID:28359922
Diprosopia/dicephalia in calves in northern Italy: clinical and aetio-pathological features.
Biasibetti, E; D'Angelo, A; Bellino, C; Gay, L; Gianella, P; Capucchio, M T
2011-12-01
Cephalic parapagia, a rare congenital anomaly caused by the fusion of two monozygotic embryos, is characterized by a single body and a spectrum of duplication of craniofacial structures. The authors describe the clinical and pathological aspects of the parapagus conjoined twin defect in nine calves referred to the Department of Animal Pathology, Turin, between 1999 and 2009. The majority of the calves (eight cases) presented two snouts that shared three or four eyes (diprosopia); one calf presented two separate skulls fused at the foramen magnum (dicephalia). Bilateral inferior brachygnathia was observed in four calves. Post-mortem examination of the skull revealed complete brain duplication with fusion at the caudal portion of the brainstem in all calves. Histological features of the cerebral hemispheres and brainstem were normal; moderate disorganization of the cerebellar cortex was noted in two cases. Cardiac malformations were observed in three calves. No aetiologic cause was determined. This article underscores the importance of diprosopia in cattle species and suggests the need for more detailed investigations to better understand its pathogenesis. © 2011 Blackwell Verlag GmbH.
A missense mutation in Fgfr1 causes ear and skull defects in hush puppy mice.
Calvert, Jennifer A; Dedos, Skarlatos G; Hawker, Kelvin; Fleming, Michelle; Lewis, Morag A; Steel, Karen P
2011-06-01
The hush puppy mouse mutant has been shown previously to have skull and outer, middle, and inner ear defects, and an increase in hearing threshold. The fibroblast growth factor receptor 1 (Fgfr1) gene is located in the region of chromosome 8 containing the mutation. Sequencing of the gene in hush puppy heterozygotes revealed a missense mutation in the kinase domain of the protein (W691R). Homozygotes were found to die during development, at approximately embryonic day 8.5, and displayed a phenotype similar to null mutants. Reverse transcription PCR indicated a decrease in Fgfr1 transcript in heterozygotes and homozygotes. Generation of a construct containing the mutation allowed the function of the mutated receptor to be studied. Immunocytochemistry showed that the mutant receptor protein was present at the cell membrane, suggesting normal expression and trafficking. Measurements of changes in intracellular calcium concentration showed that the mutated receptor could not activate the IP(3) pathway, in contrast to the wild-type receptor, nor could it initiate activation of the Ras/MAP kinase pathway. Thus, the hush puppy mutation in fibroblast growth factor receptor 1 appears to cause a loss of receptor function. The mutant protein appears to have a dominant negative effect, which could be due to it dimerising with the wild-type protein and inhibiting its activity, thus further reducing the levels of functional protein. A dominant modifier, Mhspy, which reduces the effect of the hush puppy mutation on pinna and stapes development, has been mapped to the distal end of chromosome 7 and may show imprinting.
Dauber, Andrew; Lafranchi, Stephen H; Maliga, Zoltan; Lui, Julian C; Moon, Jennifer E; McDeed, Cailin; Henke, Katrin; Zonana, Jonathan; Kingman, Garrett A; Pers, Tune H; Baron, Jeffrey; Rosenfeld, Ron G; Hirschhorn, Joel N; Harris, Matthew P; Hwa, Vivian
2012-11-01
Microcephalic primordial dwarfism (MPD) is a rare, severe form of human growth failure in which growth restriction is evident in utero and continues into postnatal life. Single causative gene defects have been identified in a number of patients with MPD, and all involve genes fundamental to cellular processes including centrosome functions. The objective of the study was to find the genetic etiology of a novel presentation of MPD. The design of the study was whole-exome sequencing performed on two affected sisters in a single family. Molecular and functional studies of a candidate gene were performed using patient-derived primary fibroblasts and a zebrafish morpholino oligonucleotides knockdown model. Two sisters presented with a novel subtype of MPD, including severe intellectual disabilities. NIN, encoding Ninein, a centrosomal protein critically involved in asymmetric cell division, was identified as a candidate gene, and functional impacts in fibroblasts and zebrafish were studied. From 34,606 genomic variants, two very rare missense variants in NIN were identified. Both probands were compound heterozygotes. In the zebrafish, ninein knockdown led to specific and novel defects in the specification and morphogenesis of the anterior neuroectoderm, resulting in a deformity of the developing cranium with a small, squared skull highly reminiscent of the human phenotype. We identified a novel clinical subtype of MPD in two sisters who have rare variants in NIN. We show, for the first time, that reduction of ninein function in the developing zebrafish leads to specific deficiencies of brain and skull development, offering a developmental basis for the myriad phenotypes in our patients.
Esteve-Altava, Borja; Boughner, Julia C.; Diogo, Rui; Villmoare, Brian A.; Rasskin-Gutman, Diego
2015-01-01
Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates. PMID:25992690
Murphy, Ryan J; Basafa, Ehsan; Hashemi, Sepehr; Grant, Gerald T; Liacouras, Peter; Susarla, Srinivas M; Otake, Yoshito; Santiago, Gabriel; Armand, Mehran; Gordon, Chad R
2015-08-01
The aesthetic and functional outcomes surrounding Le Fort-based, face-jaw-teeth transplantation have been suboptimal, often leading to posttransplant class II/III skeletal profiles, palatal defects, and "hybrid malocclusion." Therefore, a novel technology-real-time cephalometry-was developed to provide the surgical team instantaneous, intraoperative knowledge of three-dimensional dentoskeletal parameters. Mock face-jaw-teeth transplantation operations were performed on plastic and cadaveric human donor/recipient pairs (n = 2). Preoperatively, cephalometric landmarks were identified on donor/recipient skeletons using segmented computed tomographic scans. The computer-assisted planning and execution workstation tracked the position of the donor face-jaw-teeth segment in real time during the placement/inset onto recipient, reporting pertinent hybrid cephalometric parameters from any movement of donor tissue. The intraoperative data measured through real-time cephalometry were compared to posttransplant measurements for accuracy assessment. In addition, posttransplant cephalometric relationships were compared to planned outcomes to determine face-jaw-teeth transplantation success. Compared with postoperative data, the real-time cephalometry-calculated intraoperative measurement errors were 1.37 ± 1.11 mm and 0.45 ± 0.28 degrees for the plastic skull and 2.99 ± 2.24 mm and 2.63 ± 1.33 degrees for the human cadaver experiments. These results were comparable to the posttransplant relations to planned outcome (human cadaver experiment, 1.39 ± 1.81 mm and 2.18 ± 1.88 degrees; plastic skull experiment, 1.06 ± 0.63 mm and 0.53 ± 0.39 degrees). Based on this preliminary testing, real-time cephalometry may be a valuable adjunct for adjusting and measuring "hybrid occlusion" in face-jaw-teeth transplantation and other orthognathic surgical procedures.
Skull Base Cerebrospinal Fluid Leakage Control with a Fibrin-Based Composite Tissue Adhesive
Rock, Jack P.; Sierra, David H.; Castro-Moure, Frederico; Jiang, Feng
1996-01-01
Cerebrospinal fluid (CSF) leaks can be responsible for significant patient morbidity and mortality. While the majority of leaks induced after head trauma will seal without intervention, spontaneous or surgically-induced leaks often require operative repair. Many modifications on standard surgical technique are available for repair of CSF fistulae, but none assures adequate closure. We have studied the efficacy of a novel fibrin-based composite tissue adhesive (CTA) for closure of experimentally-induced CSF leaks in rats. Fistulae were created in two groups of animals. Two weeks after creation of the leaks, the animals were sacrificed and analyzed for persistence of leak. A 58% leakage rate was noted in the control group (n = 12), and no leaks were noted in the experimental group closed after application of CTA to the surgical defect followed by skin closure (n = 11). Comparing the control group to the experimental group, results were statistically significant (p = 0.015). These data suggest that CTA may be effective as an adjunct for the closure of CSF fistulae. ImagesFigure 2Figure 3 PMID:17170969
Basilar skull fracture; Depressed skull fracture; Linear skull fracture ... Skull fractures may occur with head injuries . The skull provides good protection for the brain. However, a severe impact ...
Severe complication of posterior nasal packing: Case Report.
Pinto, José Antônio; Cintra, Pedro Paulo Vivacqua da Cunha; Sônego, Thiago Branco; Leal, Carolina de Farias Aires; Artico, Marina Spadari; Soares, Josemar Dos Santos
2012-10-01
Severe Epistaxis is common in patients with head trauma, especially when associated with multiple fractures of the face and skull base. Several methods of controlling bleeding that can be imposed. The anterior nasal tapenade associated with posterior Foley catheter is one of the most widespread, and the universal availability of necessary materials or their apparent ease of execution. Case report on control of severe epistaxis after severe TBI, with posterior nasal packing by Foley catheter and control tomography showing multiple fractures of the skull base and penetration of the probe into the brain parenchyma. This is a rare but possible complication in the treatment of severe nose bleeds associated with fracture of the skull base. This brief report highlights risks related to the method and suggests some care to prevent complications related through a brief literature review.
The Ardipithecus ramidus skull and its implications for hominid origins.
Suwa, Gen; Asfaw, Berhane; Kono, Reiko T; Kubo, Daisuke; Lovejoy, C Owen; White, Tim D
2009-10-02
The highly fragmented and distorted skull of the adult skeleton ARA-VP-6/500 includes most of the dentition and preserves substantial parts of the face, vault, and base. Anatomical comparisons and micro-computed tomography-based analysis of this and other remains reveal pre-Australopithecus hominid craniofacial morphology and structure. The Ardipithecus ramidus skull exhibits a small endocranial capacity (300 to 350 cubic centimeters), small cranial size relative to body size, considerable midfacial projection, and a lack of modern African ape-like extreme lower facial prognathism. Its short posterior cranial base differs from that of both Pan troglodytes and P. paniscus. Ar. ramidus lacks the broad, anteriorly situated zygomaxillary facial skeleton developed in later Australopithecus. This combination of features is apparently shared by Sahelanthropus, showing that the Mio-Pliocene hominid cranium differed substantially from those of both extant apes and Australopithecus.
A retrospective study of skull base neoplasia in 42 dogs.
Rissi, Daniel R
2015-11-01
This study describes the prevalence and distribution of 42 cases of skull base neoplasia in dogs between 2000 and 2014. The average age of affected individuals was 9.5 years, and there was no sex or breed predisposition. The most common skull base neoplasms were meningioma (25 cases) and pituitary adenoma (9 cases). Less common tumors included craniopharyngioma (2 cases), nerve sheath tumor (2 cases), and 1 case each of pituitary carcinoma, meningeal oligodendrogliomatosis, presumed nasal or sinonasal carcinoma, and multilobular tumor of bone. All neoplasms caused some degree of compression of adjacent structures. The distribution of the tumors was greatest in the sellar region (n = 18), followed by the paranasal region (n = 12), caudal cranial fossa (n = 10), central cranial fossa (n = 1), and rostral cranial fossa (n = 1). © 2015 The Author(s).
Joo, Sung Pil; Kim, Tae Sun; Moon, Hyung Sik
2014-05-01
There are several reports in the literature of postoperative ischemic events due to swelling of the temporalis muscle after indirect revascularization surgery. Here, we report our surgical technique for preventing ischemic events during the acute postoperative recovery period in moyamoya patients. We used various types of titanium mesh to cover the bony defect area in 8 patients (10 operations) with moyamoya disease. The mesh was cut and manipulated according to the shape of the bony defect. Surgical results were favorable, with no newly developed ischemic event or infarction in the acute recovery period. The mesh formed an outer table of skull, so there was no compressive effect on the temporalis muscle and no cosmetic defects. The titanium mesh appears to be effective and useful for prevention of ischemic insult in the treatment of moyamoya disease. The choice of this procedure depends on both the operative findings of temporalis muscle thickness and the status of ischemic vulnerability of moyamoya brain. Georg Thieme Verlag KG Stuttgart · New York.
Jukkola, A; Kauppila, S; Risteli, L; Vuopala, K; Risteli, J; Leisti, J; Pajunen, L
1998-06-01
We describe the clinical findings and biochemical features of a male child suffering from a so far undescribed lethal connective tissue disorder characterised by extreme hypermobility of the joints, lax skin, cataracts, severe growth retardation, and insufficient production of type I and type III procollagens. His features are compared with Ehlers-Danlos type IV, De Barsy syndrome, and geroderma osteodysplastica, as these disorders show some symptoms and signs shared with our patient. The child died because of failure of the connective tissue structures joining the skull and the spine, leading to progressive spinal stenosis. The aortic valve was translucent and insufficient. The clinical symptoms and signs, together with histological findings, suggested a collagen defect. Studies on both skin fibroblast cultures and the patient's serum showed reduced synthesis of collagen types I and III at the protein and RNA levels. The sizes of the mRNAs and newly synthesised proteins were normal, excluding gross structural abnormalities. These findings are not in accordance with any other collagen defect characterised so far.
Morphometry and CT measurements of useful bony landmarks of skull base.
Ray, Biswabina; Rajagopal, K V; Rajesh, T; Gayathri, B M V; D'Souza, A S; Swarnashri, J V; Saxena, Alok
2011-01-01
Aim of this study was to determine the distance between Henle's spine (HS) on the temporal bone to the clinically important bony landmarks on the dry skulls that will act as a guide in various surgical procedures on skull base. Distances from the head of malleus (HOM) to surgically relevant landmarks were also studied on CT images. Thirty-nine adult preserved dry skulls were studied bilaterally. The parapetrosal triangle bounded by spinopterygoidal, bispinal and the midsagittal lines was identified. The location of the HS and its distance from the various important anatomical structures were measured. In addition, five CT images, where distances from the HOM to various anatomical landmarks were measured. The mean and range of distances from the HS to various important anatomical landmarks on the spinopterygoidal line, bispinal line and in the parapetrosal triangle were tabulated. The mean and range of CT-based measurements of distances from HOM to other anatomical landmarks were also noted. The knowledge of unvarying relationship of the HS and the HOM to the various structures of the skull would assume significance while planning surgeries around the temporal bone by guiding the direction and degree of bone removal. Statistical differences between the two genders showed significant difference only in the distance between the HS to the medial margin of the external orifice of carotid canal. Therefore, these landmarks can also be applied as references for various surgeries of middle cranial fossa, as well as transpetrosal and transmastoid approaches.
Assessment of craniometric traits in South Indian dry skulls for sex determination.
Ramamoorthy, Balakrishnan; Pai, Mangala M; Prabhu, Latha V; Muralimanju, B V; Rai, Rajalakshmi
2016-01-01
The skeleton plays an important role in sex determination in forensic anthropology. The skull bone is considered as the second best after the pelvic bone in sex determination due to its better retention of morphological features. Different populations have varying skeletal characteristics, making population specific analysis for sex determination essential. Hence the objective of this investigation is to obtain the accuracy of sex determination using cranial parameters of adult skulls to the highest percentage in South Indian population and to provide a baseline data for sex determination in South India. Seventy adult preserved human skulls were taken and based on the morphological traits were classified into 43 male skulls and 27 female skulls. A total of 26 craniometric parameters were studied. The data were analyzed by using the SPSS discriminant function. The analysis of stepwise, multivariate, and univariate discriminant function gave an accuracy of 77.1%, 85.7%, and 72.9% respectively. Multivariate direct discriminant function analysis classified skull bones into male and female with highest levels of accuracy. Using stepwise discriminant function analysis, the most dimorphic variable to determine sex of the skull, was biauricular breadth followed by weight. Subjecting the best dimorphic variables to univariate discriminant analysis, high levels of accuracy of sexual dimorphism was obtained. Percentage classification of high accuracies were obtained in this study indicating high level of sexual dimorphism in the crania, setting specific discriminant equations for the gender determination in South Indian people. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Jeffery, Nathan; Berkovitz, B K B
2002-08-15
The skeleton of Caroline Crachami is a rare historical example of primordial microcephalic dwarfism (PMD). Studies show the condition to be heterogeneous, with at least three types, for which the assessment criteria rely on descriptive evaluations and/or simple measures with regard to cranial features. Advances in noninvasive imaging allow for a more complete morphometric examination of the skull of Caroline Crachami with the aim of clarifying aspects of the condition. In the present study, the skull of Caroline Crachami was three-dimensionally imaged with computed tomography (CT) and reconstructed in virtual space. Coordinates for a number of measurements were taken to represent interesting anatomies with an emphasis on those measures not easily replicated on the skull itself. Volumes of the endocranial cavity and sella turcica were also computed. These data were compared with normative values taken from the literature and measured from CT images of the Bosma collection. Findings indicate that the general size of the skull is equivalent to that of a 6- to 8-month-old, that the endocranial volume and cranial base angle are commensurate with that of a newborn, and that the sella volume is the same as that for an 8- to 15-month-old. Apart from these traits, the skull was well proportioned and within the range of normal variation for a skull aged between 2-9 years. We conclude that further quantitative analysis on related skulls is warranted in the study of PMD using the methods and techniques described. Copyright 2002 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Aghdasi, Nava; Li, Yangming; Berens, Angelique; Moe, Kris S.; Bly, Randall A.; Hannaford, Blake
2015-03-01
Minimally invasive neuroendoscopic surgery provides an alternative to open craniotomy for many skull base lesions. These techniques provides a great benefit to the patient through shorter ICU stays, decreased post-operative pain and quicker return to baseline function. However, density of critical neurovascular structures at the skull base makes planning for these procedures highly complex. Furthermore, additional surgical portals are often used to improve visualization and instrument access, which adds to the complexity of pre-operative planning. Surgical approach planning is currently limited and typically involves review of 2D axial, coronal, and sagittal CT and MRI images. In addition, skull base surgeons manually change the visualization effect to review all possible approaches to the target lesion and achieve an optimal surgical plan. This cumbersome process relies heavily on surgeon experience and it does not allow for 3D visualization. In this paper, we describe a rapid pre-operative planning system for skull base surgery using the following two novel concepts: importance-based highlight and mobile portal. With this innovation, critical areas in the 3D CT model are highlighted based on segmentation results. Mobile portals allow surgeons to review multiple potential entry portals in real-time with improved visualization of critical structures located inside the pathway. To achieve this we used the following methods: (1) novel bone-only atlases were manually generated, (2) orbits and the center of the skull serve as features to quickly pre-align the patient's scan with the atlas, (3) deformable registration technique was used for fine alignment, (4) surgical importance was assigned to each voxel according to a surgical dictionary, and (5) pre-defined transfer function was applied to the processed data to highlight important structures. The proposed idea was fully implemented as independent planning software and additional data are used for verification and validation. The experimental results show: (1) the proposed methods provided greatly improved planning efficiency while optimal surgical plans were successfully achieved, (2) the proposed methods successfully highlighted important structures and facilitated planning, (3) the proposed methods require shorter processing time than classical segmentation algorithms, and (4) these methods can be used to improve surgical safety for surgical robots.
Quality assurance of multiport image-guided minimally invasive surgery at the lateral skull base.
Nau-Hermes, Maria; Schmitt, Robert; Becker, Meike; El-Hakimi, Wissam; Hansen, Stefan; Klenzner, Thomas; Schipper, Jörg
2014-01-01
For multiport image-guided minimally invasive surgery at the lateral skull base a quality management is necessary to avoid the damage of closely spaced critical neurovascular structures. So far there is no standardized method applicable independently from the surgery. Therefore, we adapt a quality management method, the quality gates (QG), which is well established in, for example, the automotive industry and apply it to multiport image-guided minimally invasive surgery. QG divide a process into different sections. Passing between sections can only be achieved if previously defined requirements are fulfilled which secures the process chain. An interdisciplinary team of otosurgeons, computer scientists, and engineers has worked together to define the quality gates and the corresponding criteria that need to be fulfilled before passing each quality gate. In order to evaluate the defined QG and their criteria, the new surgery method was applied with a first prototype at a human skull cadaver model. We show that the QG method can ensure a safe multiport minimally invasive surgical process at the lateral skull base. Therewith, we present an approach towards the standardization of quality assurance of surgical processes.
Quality Assurance of Multiport Image-Guided Minimally Invasive Surgery at the Lateral Skull Base
Nau-Hermes, Maria; Schmitt, Robert; Becker, Meike; El-Hakimi, Wissam; Hansen, Stefan; Klenzner, Thomas; Schipper, Jörg
2014-01-01
For multiport image-guided minimally invasive surgery at the lateral skull base a quality management is necessary to avoid the damage of closely spaced critical neurovascular structures. So far there is no standardized method applicable independently from the surgery. Therefore, we adapt a quality management method, the quality gates (QG), which is well established in, for example, the automotive industry and apply it to multiport image-guided minimally invasive surgery. QG divide a process into different sections. Passing between sections can only be achieved if previously defined requirements are fulfilled which secures the process chain. An interdisciplinary team of otosurgeons, computer scientists, and engineers has worked together to define the quality gates and the corresponding criteria that need to be fulfilled before passing each quality gate. In order to evaluate the defined QG and their criteria, the new surgery method was applied with a first prototype at a human skull cadaver model. We show that the QG method can ensure a safe multiport minimally invasive surgical process at the lateral skull base. Therewith, we present an approach towards the standardization of quality assurance of surgical processes. PMID:25105146
Isolated Petroclival Craniopharyngioma with Aggressive Skull Base Destruction
Lee, Young-Hen; Lim, Dong-Jun; Park, Jung-Yul; Chung, Yong-Gu; Kim, Young-Sik
2009-01-01
We report a rare case of petroclival craniopharyngioma with no connection to the sellar or suprasellar region. MRI and CT images revealed a homogenously enhancing retroclival solid mass with aggressive skull base destruction, mimicking chordoma or aggressive sarcoma. However, there was no calcification or cystic change found in the mass. Here, we report the clinical features and radiographic investigation of this uncommon craniopharyngioma arising primarily in the petroclival region. PMID:19881982
Balloon-assisted embolization of skull base meningioma with liquid embolic agent.
Abdel Kerim, Amr; Bonneville, Fabrice; Jean, Betty; Cornu, Philippe; LeJean, Lise; Chiras, Jacques
2010-01-01
The authors report a novel technique of balloon-assisted embolization of a skull base meningioma supplied by a branch of the cavernous segment of the internal carotid artery using liquid embolic agent. A temporarily inflated balloon distal to the meningioma's feeding vessel may improve the access to this small branch and may reduce the chances of unintended reflux during delivery of the liquid embolic agent.
Fiaschi, Pietro; Pavanello, Marco; Imperato, Alessia; Dallolio, Villiam; Accogli, Andrea; Capra, Valeria; Consales, Alessandro; Cama, Armando; Piatelli, Gianluca
2016-06-01
OBJECTIVE Cranioplasty is a reconstructive procedure used to restore skull anatomy and repair skull defects. Optimal skull reconstruction is a challenge for neurosurgeons, and the strategy used to achieve the best result remains a topic of debate, especially in pediatric patients for whom the continuing skull growth makes the choice of material more difficult. When the native bone flap, which is universally accepted as the preferred option in pediatric patients, is unavailable, the authors' choice of prosthetic material is a polymethylmethacrylate (PMMA) implant designed using a custom-made technique. In this paper the authors present the results of their clinical series of 12 custom-made PMMA implants in pediatric patients. METHODS A retrospective study of the patients who had undergone cranioplasty at Gaslini Children's Hospital between 2006 and 2013 was conducted. A total of 12 consecutive cranioplasties in 12 patients was reviewed, in which a patient-specific PMMA implant was manufactured using a virtual 3D model and then transformed into a physical model using selective laser sintering or 3D printing. All patients or parents were administered a questionnaire to assess how the patient/parent judged the aesthetic result. RESULTS Patient age at craniectomy ranged from 5 months to 12.5 years, with a mean age of 84.33 months at cranioplasty. The mean extension of the custom-made plastic was 56.83 cm(2). The mean time between craniectomy and cranioplasty was 9.25 months. The mean follow-up duration was 55.7 months. No major complications were recorded; 3 patients experienced minor/moderate complications (prosthesis dislocation, granuloma formation, and fluid collection). CONCLUSIONS In this patient series, PMMA resulted in an extremely low complication rate and the custom-made technique was associated with an excellent grade of patient or parent satisfaction on long-term follow up.
Incidental Findings on Cone Beam Computed Tomography Studies outside of the Maxillofacial Skeleton
2016-01-01
Objective. To define the presence and prevalence of incidental findings in and around the base of skull from large field-of-view CBCT of the maxillofacial region and to determine their clinical importance. Methods. Four hundred consecutive large fields of view CBCT scans viewed from January 1, 2007, to January 1, 2014, were retrospectively evaluated for incidental findings of the cervical vertebrae and surrounding structures. Findings were categorized into cervical vertebrae, intracranial, soft tissue, airway, carotid artery, lymph node, and skull base findings. Results. A total of 653 incidental findings were identified in 309 of the 400 CBCT scans. The most prevalent incidental findings were soft tissue calcifications (29.71%), followed by intracranial calcifications (27.11%), cervical vertebrae (20.06%), airway (11.49%), external carotid artery calcification (10.41%), lymph node calcification (0.77%), subcutaneous tissue calcification and calcified tendonitis of the longus colli muscle (0.3%), and skull base finding (0.15%). A significant portion of the incidental findings (31.24%) required referral, 17.76% required monitoring, and 51% did not require either. Conclusion. A comprehensive review of the CBCT images beyond the region of interest, especially incidental findings in the base of skull, cervical vertebrae, pharyngeal airway, and soft tissue, is necessary to avoid overlooking clinically significant lesions. PMID:27462350
Conley, David B.; Tan, Bruce; Bendok, Bernard R.; Batjer, H. Hunt; Chandra, Rakesh; Sidle, Douglas; Rahme, Rudy J.; Adel, Joseph G.; Fishman, Andrew J.
2011-01-01
Precise and safe management of complex skull base lesions can be enhanced by intraoperative computed tomography (CT) scanning. Surgery in these areas requires real-time feedback of anatomic landmarks. Several portable CT scanners are currently available. We present a comparison of our clinical experience with three portable scanners in skull base and craniofacial surgery. We present clinical case series and the participants were from the Northwestern Memorial Hospital. Three scanners are studied: one conventional multidetector CT (MDCT), two digital flat panel cone-beam CT (CBCT) devices. Technical considerations, ease of use, image characteristics, and integration with image guidance are presented for each device. All three scanners provide good quality images. Intraoperative scanning can be used to update the image guidance system in real time. The conventional MDCT is unique in its ability to resolve soft tissue. The flat panel CBCT scanners generally emit lower levels of radiation and have less metal artifact effect. In this series, intraoperative CT scanning was technically feasible and deemed useful in surgical decision-making in 75% of patients. Intraoperative portable CT scanning has significant utility in complex skull base surgery. This technology informs the surgeon of the precise extent of dissection and updates intraoperative stereotactic navigation. PMID:22470270
da Silva, Carlos Eduardo; da Silva, Vinicius Duval; da Silva, Jefferson Luis Braga
2014-01-01
Objective The identification of cranial nerves is one of the most challenging goals in the dissection of skull base meningiomas. The authors present an application of sodium fluorescein (SF) in skull base meningiomas with the purpose of improving the identification of cranial nerves. Design A prospective study within-subjects design. Setting Hospital Ernesto Dornelles, Porto Alegre, Brazil. Participants Patients with skull base meningiomas. Main Outcomes Measures Cranial nerve identification. Results The group of nine meningiomas was composed of one cavernous sinus, three petroclival, one tuberculum sellae, two sphenoid wing, one olfactory groove, and one temporal floor meningioma. The SF enhancement in all tumors was strong, and the contrast with cranial nerves clearly evident. There were one definite olfactory nerve deficit, one transient abducens deficit, and one definite hemiparesis. All lesions were resected (Simpson grades 1 and 2). The analysis of the difference of the delta SF wavelength between the meningiomas and cranial nerve contrast was performed by the Wilcoxon signed rank test and showed p = 0.011. Conclusions The contrast between the enhanced meningiomas and cranial nerves was evident and assisted in the visualization and microsurgical dissection of these structures. The anatomical preservation of these structures was improved using the contrast. PMID:27054056
da Silva, Carlos Eduardo; da Silva, Vinicius Duval; da Silva, Jefferson Luis Braga
2014-08-01
Objective The identification of cranial nerves is one of the most challenging goals in the dissection of skull base meningiomas. The authors present an application of sodium fluorescein (SF) in skull base meningiomas with the purpose of improving the identification of cranial nerves. Design A prospective study within-subjects design. Setting Hospital Ernesto Dornelles, Porto Alegre, Brazil. Participants Patients with skull base meningiomas. Main Outcomes Measures Cranial nerve identification. Results The group of nine meningiomas was composed of one cavernous sinus, three petroclival, one tuberculum sellae, two sphenoid wing, one olfactory groove, and one temporal floor meningioma. The SF enhancement in all tumors was strong, and the contrast with cranial nerves clearly evident. There were one definite olfactory nerve deficit, one transient abducens deficit, and one definite hemiparesis. All lesions were resected (Simpson grades 1 and 2). The analysis of the difference of the delta SF wavelength between the meningiomas and cranial nerve contrast was performed by the Wilcoxon signed rank test and showed p = 0.011. Conclusions The contrast between the enhanced meningiomas and cranial nerves was evident and assisted in the visualization and microsurgical dissection of these structures. The anatomical preservation of these structures was improved using the contrast.
Cannon, Richard B; Wiggins, Richard H; Witt, Benjamin L; Dundar, Yusuf; Johnston, Tawni M; Hunt, Jason P
2017-01-01
Objectives Low-grade sinonasal sarcoma with neural and myogenic features (LGSSNMF) is a new, rare tumor. Our goal is to describe the imaging characteristics and surgical outcomes of this unique skull base malignancy. Design Retrospective case series. Setting Academic medical center. Participants There were three patients who met inclusion criteria with a confirmed LGSSNMF. Main Outcome Measures Imaging and histopathological characteristics, treatments, survival and recurrence outcomes, complications, morbidity, and mortality. Results Patients presented with diplopia, facial discomfort, a supraorbital mass, and nasal obstruction. Magnetic resonance imaging and computed tomography imaging in all cases showed an enhancing sinonasal mass with associated hyperostotic bone formation that involved the frontal sinus, invaded the lamina papyracea and anterior skull base, and had intracranial extension. One patient underwent a purely endoscopic surgical resection and the second underwent a craniofacial resection, while the last is pending treatment. All patients recovered well, without morbidity or long-term complications, and are currently without evidence of disease (mean follow-up of 2.1 years). One patient recurred after 17 months and underwent a repeat endoscopic skull base and dural resection. Conclusions The surgical outcomes and imaging of this unique, locally aggressive skull base tumor are characterized.
Friedrich, D T; Sommer, F; Scheithauer, M O; Greve, J; Hoffmann, T K; Schuler, P J
2017-12-01
Objective Advanced transnasal sinus and skull base surgery remains a challenging discipline for head and neck surgeons. Restricted access and space for instrumentation can impede advanced interventions. Thus, we present the combination of an innovative robotic endoscope guidance system and a specific endoscope with adjustable viewing angle to facilitate transnasal surgery in a human cadaver model. Materials and Methods The applicability of the robotic endoscope guidance system with custom foot pedal controller was tested for advanced transnasal surgery on a fresh frozen human cadaver head. Visualization was enabled using a commercially available endoscope with adjustable viewing angle (15-90 degrees). Results Visualization and instrumentation of all paranasal sinuses, including the anterior and middle skull base, were feasible with the presented setup. Controlling the robotic endoscope guidance system was effectively precise, and the adjustable endoscope lens extended the view in the surgical field without the common change of fixed viewing angle endoscopes. Conclusion The combination of a robotic endoscope guidance system and an advanced endoscope with adjustable viewing angle enables bimanual surgery in transnasal interventions of the paranasal sinuses and the anterior skull base in a human cadaver model. The adjustable lens allows for the abandonment of fixed-angle endoscopes, saving time and resources, without reducing the quality of imaging.
Lateral skull base approaches in the management of benign parapharyngeal space tumors.
Prasad, Sampath Chandra; Piccirillo, Enrico; Chovanec, Martin; La Melia, Claudio; De Donato, Giuseppe; Sanna, Mario
2015-06-01
To evaluate the role of lateral skull base approaches in the management of benign parapharyngeal space tumors and to propose an algorithm for their surgical approach. Retrospective study of patients with benign parapharyngeal space tumors. The clinical features, radiology and preoperative management of skull base neurovasculature, the surgical approaches and overall results were recorded. 46 patients presented with 48 tumors. 12 were prestyloid and 36 poststyloid. 19 (39.6%) tumors were paragangliomas, 15 (31.25%) were schwannomas and 11 (23%) were pleomorphic adenomas. Preoperative embolization was performed in 19, stenting of the internal carotid artery in 4 and permanent balloon occlusion in 2 patients. 19 tumors were approached by the transcervical, 13 by transcervical-transparotid, 5 by transcervical-transmastoid, 6, 1 and 2 tumors by the infratemporal fossa approach types A, B and D, respectively. Total radical tumor removal was achieved in 46 (96%) of the cases. Lateral skull base approaches have an advantage over other approaches in the management of benign tumors of the parapharyngeal space due to the fact that they provide excellent exposure with less morbidity. The use of microscope combined with bipolar cautery reduces morbidity. Stenting of internal carotid artery gives a chance for complete tumor removal with arterial preservation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Hush puppy: a new mouse mutant with pinna, ossicle, and inner ear defects.
Pau, Henry; Fuchs, Helmut; de Angelis, Martin Hrabé; Steel, Karen P
2005-01-01
Deafness can be associated with abnormalities of the pinna, ossicles, and cochlea. The authors studied a newly generated mouse mutant with pinna defects and asked whether these defects are associated with peripheral auditory or facial skeletal abnormalities, or both. Furthermore, the authors investigated where the mutation responsible for these defects was located in the mouse genome. The hearing of hush puppy mutants was assessed by Preyer reflex and electrophysiological measurement. The morphological features of their middle and inner ears were investigated by microdissection, paint-filling of the labyrinth, and scanning electron microscopy. Skeletal staining of skulls was performed to assess the craniofacial dimensions. Genome scanning was performed using microsatellite markers to localize the mutation to a chromosomal region. Some hush puppy mutants showed early onset of hearing impairment. They had small, bat-like pinnae and normal malleus but abnormal incus and stapes. Some mutants had asymmetrical defects and showed reduced penetrance of the ear abnormalities. Paint-filling of newborns' inner ears revealed no morphological abnormality, although half of the mice studied were expected to carry the mutation. Reduced numbers of outer hair cells were demonstrated in mutants' cochlea on scanning electron microscopy. Skeletal staining showed that the mutants have significantly shorter snouts and mandibles. Genome scan revealed that the mutation lies on chromosome 8 between markers D8Mit58 and D8Mit289. The study results indicate developmental problems of the first and second branchial arches and otocyst as a result of a single gene mutation. Similar defects are found in humans, and hush puppy provides a mouse model for investigation of such defects.
Kyriakou, Adamos; Neufeld, Esra; Werner, Beat; Székely, Gábor; Kuster, Niels
2015-01-01
Transcranial focused ultrasound (tcFUS) is an attractive noninvasive modality for neurosurgical interventions. The presence of the skull, however, compromises the efficiency of tcFUS therapy, as its heterogeneous nature and acoustic characteristics induce significant distortion of the acoustic energy deposition, focal shifts, and thermal gain decrease. Phased-array transducers allow for partial compensation of skull-induced aberrations by application of precalculated phase and amplitude corrections. An integrated numerical framework allowing for 3D full-wave, nonlinear acoustic and thermal simulations has been developed and applied to tcFUS. Simulations were performed to investigate the impact of skull aberrations, the possibility of extending the treatment envelope, and adverse secondary effects. The simulated setup comprised an idealized model of the ExAblate Neuro and a detailed MR-based anatomical head model. Four different approaches were employed to calculate aberration corrections (analytical calculation of the aberration corrections disregarding tissue heterogeneities; a semi-analytical ray-tracing approach compensating for the presence of the skull; two simulation-based time-reversal approaches with and without pressure amplitude corrections which account for the entire anatomy). These impact of these approaches on the pressure and temperature distributions were evaluated for 22 brain-targets. While (semi-)analytical approaches failed to induced high pressure or ablative temperatures in any but the targets in the close vicinity of the geometric focus, simulation-based approaches indicate the possibility of considerably extending the treatment envelope (including targets below the transducer level and locations several centimeters off the geometric focus), generation of sharper foci, and increased targeting accuracy. While the prediction of achievable aberration correction appears to be unaffected by the detailed bone-structure, proper consideration of inhomogeneity is required to predict the pressure distribution for given steering parameters. Simulation-based approaches to calculate aberration corrections may aid in the extension of the tcFUS treatment envelope as well as predict and avoid secondary effects (standing waves, skull heating). Due to their superior performance, simulationbased techniques may prove invaluable in the amelioration of skull-induced aberration effects in tcFUS therapy. The next steps are to investigate shear-wave-induced effects in order to reliably exclude secondary hot-spots, and to develop comprehensive uncertainty assessment and validation procedures.
Langer, Pierre; Black, Cameron; Egan, Padraig; Fitzpatrick, Noel
2018-06-22
To date, calvarial defects in dogs have traditionally been addressed with different types of implants including bone allograft, polymethylmethacrylate and titanium mesh secured with conventional metallic fixation methods. This report describes the use of an absorbable and non absorbable novel polymer fixation method, Bonewelding® technology, in combination with titanium mesh for the repair of calvarial defects in two dogs. The clinical outcomes and comparative complication using resorbable and non-resorbable thermoplastic pins were compared. This report of two cases documents the repair of a traumatic calvarial fracture in an adult male Greyhound and a cranioplasty following frontal bone tumor resection in an adult female Cavalier King Charles Spaniel with the use of a commercially available titanium mesh secured with an innovative thermoplastic polymer screw system (Bonewelding®). The treatment combination aimed to restore cranial structure, sinus integrity and cosmetic appearance. A mouldable titanium mesh was cut to fit the bone defect of the frontal bone and secured with either resorbable or non-resorbable polymer pins using Bonewelding® technology. Gentamycin-impregnated collagen sponge was used intraoperatively to assist with sealing of the frontal sinuses. Calvarial fracture and post-operative implant positioning were advised using computed tomography. A satisfactory restoration of skull integrity and cosmetic result was achieved, and long term clinical outcome was deemed clinically adequate with good patient quality of life. Postoperative complications including rostral mesh uplift with minor associated clinical signs were encountered when resorbable pins were used. No postoperative complications were experienced in non-resorbable pins at 7 months follow-up, by contrast mesh uplift was noted 3 weeks post-procedure in the case treated using absorbable pins. The report demonstrates the innovative use of sonic-activated polymer pins (Bonewelding® technology) alongside titanium mesh is a suitable alternative technique for skull defect repair in dogs. The use of Bonewelding® may offer advantages in reduction of surgical time. Further, ultrasonic pin application may be less invasive than alternative metallic fixation and potentially reduces bone trauma. Polymer systems may offer enhanced mesh-bone integration when compared to traditional metallic implants. The use of polymer pins demonstrates initial potential as a fixation method in cranioplasty. Initial findings in a single case comparison indicate a possible advantage in the use of non-absorbable over the absorbable systems to circumvent complications associated with variable polymer degradation, further long term studies with higher patient numbers are required before reliable conclusions can be made.
Archer, Jacob B; Sun, Hai; Bonney, Phillip A; Zhao, Yan Daniel; Hiebert, Jared C; Sanclement, Jose A; Little, Andrew S; Sughrue, Michael E; Theodore, Nicholas; James, Jeffrey; Safavi-Abbasi, Sam
2016-03-01
This article introduces a classification scheme for extensive traumatic anterior skull base fracture to help stratify surgical treatment options. The authors describe their multilayer repair technique for cerebrospinal fluid (CSF) leak resulting from extensive anterior skull base fracture using a combination of laterally pediculated temporalis fascial-pericranial, nasoseptal-pericranial, and anterior pericranial flaps. Retrospective chart review identified patients treated surgically between January 2004 and May 2014 for anterior skull base fractures with CSF fistulas. All patients were treated with bifrontal craniotomy and received pedicled tissue flaps. Cases were classified according to the extent of fracture: Class I (frontal bone/sinus involvement only); Class II (extent of involvement to ethmoid cribriform plate); and Class III (extent of involvement to sphenoid bone/sinus). Surgical repair techniques were tailored to the types of fractures. Patients were assessed for CSF leak at follow-up. The Fisher exact test was applied to investigate whether the repair techniques were associated with persistent postoperative CSF leak. Forty-three patients were identified in this series. Thirty-seven (86%) were male. The patients' mean age was 33 years (range 11-79 years). The mean overall length of follow-up was 14 months (range 5-45 months). Six fractures were classified as Class I, 8 as Class II, and 29 as Class III. The anterior pericranial flap alone was used in 33 patients (77%). Multiple flaps were used in 10 patients (3 salvage) (28%)--1 with Class II and 9 with Class III fractures. Five (17%) of the 30 patients with Class II or III fractures who received only a single anterior pericranial flap had persistent CSF leak (p < 0.31). No CSF leak was found in patients who received multiple flaps. Although postoperative CSF leak occurred only in high-grade fractures with single anterior flap repair, this finding was not significant. Extensive anterior skull base fractures often require aggressive treatment to provide the greatest long-term functional and cosmetic benefits. Several vascularized tissue flaps can be used, either alone or in combination. Vascularized flaps are an ideal substrate for cranial base repair. Dual and triple flap techniques that combine the use of various anterior, lateral, and nasoseptal flaps allow for a comprehensive arsenal in multilayered skull base repair and salvage therapy for extensive and severe fractures.
Severe complication of posterior nasal packing: Case Report
Pinto, José Antônio; Cintra, Pedro Paulo Vivacqua da Cunha; Sônego, Thiago Branco; Leal, Carolina de Farias Aires; Artico, Marina Spadari; Soares, Josemar dos Santos
2012-01-01
Summary Introduction: Severe Epistaxis is common in patients with head trauma, especially when associated with multiple fractures of the face and skull base. Several methods of controlling bleeding that can be imposed. The anterior nasal tapenade associated with posterior Foley catheter is one of the most widespread, and the universal availability of necessary materials or their apparent ease of execution. Methods: Case report on control of severe epistaxis after severe TBI, with posterior nasal packing by Foley catheter and control tomography showing multiple fractures of the skull base and penetration of the probe into the brain parenchyma. Conclusion: This is a rare but possible complication in the treatment of severe nose bleeds associated with fracture of the skull base. This brief report highlights risks related to the method and suggests some care to prevent complications related through a brief literature review. PMID:25991984
Chawla, S; Bowman, J; Gandhi, M; Panizza, B
2017-01-01
The skull base is a highly complex anatomical region that provides passage for important nerves and vessels as they course into and out of the cranial cavity. Key to the management of pathology in this region is a thorough understanding of the anatomy, with its variations, and the relationship of various neurovascular structures to the pathology in question. Targeted high-resolution magnetic resonance imaging on high field strength magnets can enable the skull base surgeon to understand this intricate relationship and deal with the pathology from a position of relative advantage. With the help of case studies, this paper illustrates the application of specialised magnetic resonance techniques to study pathology of the orbital apex in particular. The fine anatomical detail provided gives surgeons the ability to design an endonasal endoscopic procedure appropriate to the anatomy of the pathology.
Chittiboina, Prashant; Banerjee, Anirban Deep; Nanda, Anil
2011-01-01
We performed a trauma database analysis to identify the effect of concomitant cranial injuries on outcome in patients with fractures of the axis. We identified patients with axis fractures over a 14-year period. A binary outcome measure was used. Univariate and multiple logistic regression analysis were performed. There were 259 cases with axis fractures. Closed head injury was noted in 57% and skull base trauma in 14%. Death occurred in 17 cases (6%). Seventy-two percent had good outcome. Presence of abnormal computed tomography head findings, skull base fractures, and visceral injury was significantly associated with poor outcome. Skull base injury in association with fractures of the axis is a significant independent predictor of worse outcomes, irrespective of the severity of the head injury. We propose that presence of concomitant cranial and upper vertebral injuries require careful evaluation in view of the associated poor prognosis. PMID:22470268
Hepatocellular carcinoma metastasizing to the skull base involving multiple cranial nerves.
Kim, Soo Ryang; Kanda, Fumio; Kobessho, Hiroshi; Sugimoto, Koji; Matsuoka, Toshiyuki; Kudo, Masatoshi; Hayashi, Yoshitake
2006-11-07
We describe a rare case of HCV-related recurrent multiple hepatocellular carcinoma (HCC) metastasizing to the skull base involving multiple cranial nerves in a 50-year-old woman. The patient presented with symptoms of ptosis, fixation of the right eyeball, and left abducens palsy, indicating disturbances of the right oculomotor and trochlear nerves and bilateral abducens nerves. Brain contrast-enhanced computed tomography (CT) revealed an ill-defined mass with abnormal enhancement around the sella turcica. Brain magnetic resonance imaging (MRI) disclosed that the mass involved the clivus, cavernous sinus, and petrous apex. On contrast-enhanced MRI with gadolinium-chelated contrast medium, the mass showed inhomogeneous intermediate enhancement. The diagnosis of metastatic HCC to the skull base was made on the basis of neurological findings and imaging studies including CT and MRI, without histological examinations. Further studies may provide insights into various methods for diagnosing HCC metastasizing to the craniospinal area.
Calvarial and skull base metastases: expanding the clinical utility of Gamma Knife surgery.
Kotecha, Rupesh; Angelov, Lilyana; Barnett, Gene H; Reddy, Chandana A; Suh, John H; Murphy, Erin S; Neyman, Gennady; Chao, Samuel T
2014-12-01
Traditionally, the treatment of choice for patients with metastases to the calvaria or skull base has been conventional radiation therapy. Because patients with systemic malignancies are also at risk for intracranial metastases, the utility of Gamma Knife surgery (GKS) for these patients has been explored to reduce excess radiation exposure to the perilesional brain parenchyma. The purpose of this study was to report the efficacy of GKS for the treatment of calvarial metastases and skull base lesions. The authors performed a retrospective chart review of 21 patients with at least 1 calvarial or skull base metastatic lesion treated with GKS during 2001-2013. For 7 calvarial lesions, a novel technique, in which a bolus was placed over the treatment site, was used. For determination of local control or disease progression, radiation therapy data were examined and posttreatment MR images and oncology records were reviewed. Survival times from the date of procedure were estimated by using Kaplan-Meier analyses. The median patient age at treatment was 57 years (range 29-84 years). A total of 19 (90%) patients received treatment for single lesions, 1 patient received treatment for 3 lesions, and 1 patient received treatment for 4 lesions. The most common primary tumor was breast cancer (24% of patients). Per lesion, the median clinical and radiographic follow-up times were 10.3 months (range 0-71.9 months) and 7.1 months (range 0-61.3 months), respectively. Of the 26 lesions analyzed, 14 (54%) were located in calvarial bones and 12 (46%) were located in the skull base. The median lesion volume was 5.3 cm(3) (range 0.3-55.6 cm(3)), and the median prescription margin dose was 15 Gy (range 13-24 Gy). The median overall survival time for all patients was 35.9 months, and the 1-year local control rate was 88.9% (95% CI 74.4%-100%). Local control rates did not differ between lesions treated with the bolus technique and those treated with traditional methods or between calvarial lesions and skull base lesions (p > 0.05). Of the 3 patients for whom local treatment failed, 1 patient received no further treatment and 2 patients responded to salvage chemotherapy. Subsequent brain parenchymal metastases developed in 2 patients, who then underwent GKS. GKS is an effective treatment modality for patients with metastases to the calvarial bones or skull base. For patients with superficial calvarial lesions, a novel approach with bolus application resulted in excellent rates of local control. GKS provides an effective therapeutic alternative to conventional radiation therapy and should be considered for patients at risk for calvarial metastases and brain parenchymal metastases.
Method for noninvasive intracranial pressure measurement
Sinha, Dipen N.
2000-01-01
An ultrasonic-based method for continuous, noninvasive intracranial pressure (ICP) measurement and monitoring is described. The stress level in the skull bone is affected by pressure. This also changes the interfacial conditions between the dura matter and the skull bone. Standing waves may be set up in the skull bone and the layers in contact with the bone. At specific frequencies, there are resonance peaks in the response of the skull which can be readily detected by sweeping the excitation frequency on an excitation transducer in contact with a subject's head, while monitoring the standing wave characteristics from the signal received on a second, receiving transducer similarly in contact with the subject's head. At a chosen frequency, the phase difference between the excitation signal and the received signal can be determined. This difference can be related to the intracranial pressure and changes therein.
Somasundaram, Karuppanagounder; Ezhilarasan, Kamalanathan
2015-01-01
To develop an automatic skull stripping method for magnetic resonance imaging (MRI) of human head scans. The proposed method is based on gray scale transformation and morphological operations. The proposed method has been tested with 20 volumes of normal T1-weighted images taken from Internet Brain Segmentation Repository. Experimental results show that the proposed method gives better results than the popular skull stripping methods Brain Extraction Tool and Brain Surface Extractor. The average value of Jaccard and Dice coefficients are 0.93 and 0.962 respectively. In this article, we have proposed a novel skull stripping method using intensity transformation and morphological operations. This is a low computational complexity method but gives competitive or better results than that of the popular skull stripping methods Brain Surface Extractor and Brain Extraction Tool.
A metric analysis of Mumbai region (India) crania.
Salve, Vishal M; Chandrashekhar, C H
2012-10-01
The human skull has been studied both metrically and non- metrically previously. These studies have thrown light on the functional and morphological aspect of the skull. Cranial index and other cranial indices are useful in differentiation of racial and gender difference. As studies on sexual dimorphism of cranium were very few we have taken this study to find out the differences in cranial index, vertical index and transverse vertical index of male and female crania at Mumbai region. This study was carried out on 210 (150 males and 60 females) dry human skulls available in department of anatomy of four Medical Colleges in Mumbai. The mean and SD of cranial index were 74.23 +/- 4.06; for males: 73.19 +/- 3.76, and for females: 76.84 +/- 3.63. The mean and SD of transverse vertical index were 100.84 +/- 6.31; for males: 102.19 +/- 6.15, and for females: 97.46 +/- 5.41. The difference between cranial index (p = 0.000000) and transverse vertical index (p = 0.000019) of male and female skulls were significant. The results of the present study show that majority of male skulls of Mumbai region belong to dolicocephalic group and majority of female skulls to mesocephalic.The result of present study shows that majority of male skulls of Mumbai region belong to acrocranial group (based on transverse vertical index). This data can be useful for forensic medicine experts, plastic surgeons, anatomist and oral surgeons for clinical and research purpose.
Brachygnathia superior and degenerative joint disease: a new lethal syndrome in Angus calves.
Jayo, M; Leipold, H W; Dennis, S M; Eldridge, F E
1987-03-01
Brachygnathia superior and generalized diarthrodial degenerative joint disease were seen in 17 related, purebred Angus calves ranging in age from 2 days to 4 months. Craniometrical studies revealed decreased maxillary and palatine bone lengths and increased cranial, skull, and facial indices. Radiological evaluation of major appendicular joints demonstrated lipping of the joint margins with osteophyte formation, sclerosis of subchondral bone, and narrowing of joint spaces. Synovial fluid evaluation indicated joint degeneration but no etiologic agent. Rheumatoid factor analysis of plasma was negative. Grossly, all major appendicular joints were defective including the atlanto-occipital articulation. Lesions ranged from loss of surface luster to erosions and deep ulcers with eburnation of the subchondral bone and secondary proliferative synovitis. Histological changes were degeneration of the articular cartilage matrix, chondrocyte necrosis, flaking and fibrillation, chondrone formation, erosions and ulcers of the articular cartilage with subchondral bone sclerosis, vascular invasion with fibrosis, and chronic, nonsuppurative, proliferative synovitis. Growth plates had defective chondrocyte proliferation and hypertrophy with aberrant ossification of calcified cartilaginous matrix. Histochemical analysis of cartilage and bone failed to incriminate which component was defective, glycosaminoglycan or collagen, but indicated different distribution or absence of one or the other. Genealogic studies revealed a genetic basis for the new defect.
Estimation of skull table thickness with clinical CT and validation with microCT.
Lillie, Elizabeth M; Urban, Jillian E; Weaver, Ashley A; Powers, Alexander K; Stitzel, Joel D
2015-01-01
Brain injuries resulting from motor vehicle crashes (MVC) are extremely common yet the details of the mechanism of injury remain to be well characterized. Skull deformation is believed to be a contributing factor to some types of traumatic brain injury (TBI). Understanding biomechanical contributors to skull deformation would provide further insight into the mechanism of head injury resulting from blunt trauma. In particular, skull thickness is thought be a very important factor governing deformation of the skull and its propensity for fracture. Current computed tomography (CT) technology is limited in its ability to accurately measure cortical thickness using standard techniques. A method to evaluate cortical thickness using cortical density measured from CT data has been developed previously. This effort validates this technique for measurement of skull table thickness in clinical head CT scans using two postmortem human specimens. Bone samples were harvested from the skulls of two cadavers and scanned with microCT to evaluate the accuracy of the estimated cortical thickness measured from clinical CT. Clinical scans were collected at 0.488 and 0.625 mm in plane resolution with 0.625 mm thickness. The overall cortical thickness error was determined to be 0.078 ± 0.58 mm for cortical samples thinner than 4 mm. It was determined that 91.3% of these differences fell within the scanner resolution. Color maps of clinical CT thickness estimations are comparable to color maps of microCT thickness measurements, indicating good quantitative agreement. These data confirm that the cortical density algorithm successfully estimates skull table thickness from clinical CT scans. The application of this technique to clinical CT scans enables evaluation of cortical thickness in population-based studies. © 2014 Anatomical Society.
Fornel, Rodrigo; Cordeiro-Estrela, Pedro; de Freitas, Thales Renato O.
2018-01-01
Abstract We tested the association between chromosomal polymorphism and skull shape and size variation in two groups of the subterranean rodent Ctenomys. The hypothesis is based on the premise that chromosomal rearrangements in small populations, as it occurs in Ctenomys, produce reproductive isolation and allow the independent diversification of populations. The mendocinus group has species with low chromosomal diploid number variation (2n=46-48), while species from the torquatus group have a higher karyotype variation (2n=42-70). We analyzed the shape and size variation of skull and mandible by a geometric morphometric approach, with univariate and multivariate statistical analysis in 12 species from mendocinus and torquatus groups of the genus Ctenomys. We used 763 adult skulls in dorsal, ventral, and lateral views, and 515 mandibles in lateral view and 93 landmarks in four views. Although we expected more phenotypic variation in the torquatus than the mendocinus group, our results rejected the hypothesis of an association between chromosomal polymorphism and skull shape and size variation. Moreover, the torquatus group did not show more variation than mendocinus. Habitat heterogeneity associated to biomechanical constraints and other factors like geography, phylogeny, and demography, may affect skull morphological evolution in Ctenomys. PMID:29668015
The Skeletal Site-Specific Role of Connective Tissue Growth Factor in Prenatal Osteogenesis
Lambi, Alex G.; Pankratz, Talia L.; Mundy, Christina; Gannon, Maureen; Barbe, Mary F.; Richtsmeier, Joan T.; Popoff, Steven N.
2013-01-01
Background Connective tissue growth factor (CTGF/CCN2) is a matricellular protein that is highly expressed during bone development. Mice with global CTGF ablation (knockout, KO) have multiple skeletal dysmorphisms and perinatal lethality. A quantitative analysis of the bone phenotype has not been conducted. Results We demonstrated skeletal site-specific changes in growth plate organization, bone microarchitecture, and shape and gene expression levels in CTGF KO compared with wild-type mice. Growth plate malformations included reduced proliferation zone and increased hypertrophic zone lengths. Appendicular skeletal sites demonstrated decreased metaphyseal trabecular bone, while having increased mid-diaphyseal bone and osteogenic expression markers. Axial skeletal analysis showed decreased bone in caudal vertebral bodies, mandibles, and parietal bones in CTGF KO mice, with decreased expression of osteogenic markers. Analysis of skull phenotypes demonstrated global and regional differences in CTGF KO skull shape resulting from allometric (size-based) and nonallometric shape changes. Localized differences in skull morphology included increased skull width and decreased skull length. Dysregulation of the transforming growth factor-β-CTGF axis coupled with unique morphologic traits provides a potential mechanistic explanation for the skull phenotype. Conclusions We present novel data on a skeletal phenotype in CTGF KO mice, in which ablation of CTGF causes site-specific aberrations in bone formation. PMID:23073844
Utsuno, Hajime; Kageyama, Toru; Uchida, Keiichi; Kibayashi, Kazuhiko; Sakurada, Koichi; Uemura, Koichi
2016-02-01
Skull-photo superimposition is a technique used to identify the relationship between the skull and a photograph of a target person: and facial reconstruction reproduces antemortem facial features from an unknown human skull, or identifies the facial features of unknown human skeletal remains. These techniques are based on soft tissue thickness and the relationships between soft tissue and the skull, i.e., the position of the ear and external acoustic meatus, pupil and orbit, nose and nasal aperture, and lips and teeth. However, the ear and nose region are relatively difficult to identify because of their structure, as the soft tissues of these regions are lined with cartilage. We attempted to establish a more accurate method to determine the position of the nasal tip from the skull. We measured the height of the maxilla and mid-lower facial region in 55 Japanese men and generated a regression equation from the collected data. We obtained a result that was 2.0±0.99mm (mean±SD) distant from the true nasal tip, when applied to a validation set consisting of another 12 Japanese men. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Ruan, J S; Prasad, P
1995-08-01
A skull-brain finite element model of the human head has been coupled with a multilink rigid body model of the Hybrid III dummy. The experimental coupled model is intended to represent anatomically a 50th percentile human to the extent the dummy and the skull-brain model represent a human. It has been verified by simulating several human cadaver head impact tests as well as dummy head 'impacts" during barrier crashes in an automotive environment. Skull-isostress and brain-isostrain response curves were established based on model calibration of experimental human cadaver tolerance data. The skull-isostress response curve agrees with the JARI Human Head Impact Tolerance Curve for skull fracture. The brain-isostrain response curve predicts a higher G level for concussion than does the JARI concussion curve and the Wayne State Tolerance Curve at the longer time duration range. Barrier crash simulations consist of belted dummies impacting an airbag, a hard and soft steering wheel hub, and no head contact with vehicle interior components. Head impact force, intracranial pressures and strains, skull stress, and head center-of-gravity acceleration were investigated as injury parameters. Head injury criterion (HIC) was also calculated along with these parameters. Preliminary results of the model simulations in those impact conditions are discussed.
A watertight acrylic-free titanium recording chamber for electrophysiology in behaving monkeys
Economides, John R.; Jocson, Cristina M.; Parker, John M.; Horton, Jonathan C.
2011-01-01
Neurophysiological recording in alert monkeys requires the creation of a permanent aperture in the skull for repeated insertion of microelectrodes. Most laboratories use polymethyl methacrylate to attach a recording chamber over the skull opening. Here, we describe a titanium chamber that fastens to the skull with screws, using no polymethyl methacrylate. The gap between the base of the chamber and the skull is filled with hydroxyapatite, forming a watertight gasket. As the chamber base osseointegates with the skull, the hydroxyapatite is replaced with bone. Rather than having a finite lifetime, the recording chamber becomes more firmly anchored the longer it is in place. It has a small footprint, low profile, and needs little maintenance to control infection. Toilette consists of occasional application of betadine to clean the scalp margin, followed by application of neomycin, polymyxin, and bacitracin ointment. Antibiotic is also placed inside the chamber to suppress bacterial proliferation. Thickening of the dura within the chamber can be prevented by regular application of mitocycin C and/or bevacizumab, an antibody against vascular endothelial growth factor. By conducting an e-mail survey, this protocol for chamber maintenance was compared with procedures used in 37 other vision research laboratories. Refinement of appliances and techniques used for recordings in awake monkeys promises to increase the pace of scientific discovery and to benefit animal welfare. PMID:21676928
Diet and morphology of extant and recently extinct northern bears
Mattson, David J.
1998-01-01
I examined the relationship of diets to skull morphology of extant northern bears and used this information to speculate on diets of the recently extinct cave (Ursus spelaeus) and short-faced (Arctodus simus) bears. Analyses relied upon published skull measurements and food habits of Asiatic (U. thibetanus) and American (U. americanus) black bears, polar bears (U. maritimus), various subspecies of brown bears (U. arctos), and the giant panda (Ailuropoda melanoleuca). Principal components analysis showed major trends in skull morphology related to size, crushing force, and snout shape. Giant pandas, short-faced bears, cave bears, and polar bears exhibited extreme features along these gradients. Diets of brown bears in colder, often non-forested environments were distinguished by large volumes of roots, foliage, and vertebrates, while diets of the 2 black bear species and brown bears occupying broadleaf forests contained greater volumes of mast and invertebrates and overlapped considerably. Fractions of fibrous foods in feces (foliage and roots) were strongly related to skull morphology (R2=0.97)">(R2=0.97). Based on this relationship, feces of cave and short-faced bears were predicted to consist almost wholly of foliage, roots, or both. I hypothesized that cave bears specialized in root grubbing. In contrast, based upon body proportions and features of the ursid digestive tract, I hypothesized that skull features associated with crushing force facilitated a carnivorous rather than herbivorous diet for short-faced bears.
Scalp and skull influence on near infrared photon propagation in the Colin27 brain template.
Strangman, Gary E; Zhang, Quan; Li, Zhi
2014-01-15
Near-infrared neuromonitoring (NIN) is based on near-infrared spectroscopy (NIRS) measurements performed through the intact scalp and skull. Despite the important effects of overlying tissue layers on the measurement of brain hemodynamics, the influence of scalp and skull on NIN sensitivity are not well characterized. Using 3555 Monte Carlo simulations, we estimated the sensitivity of individual continuous-wave NIRS measurements to brain activity over the entire adult human head by introducing a small absorption perturbation to brain gray matter and quantifying the influence of scalp and skull thickness on this sensitivity. After segmenting the Colin27 template into five tissue types (scalp, skull, cerebrospinal fluid, gray matter and white matter), the average scalp thickness was 6.9 ± 3.6 mm (range: 3.6-11.2mm), while the average skull thickness was 6.0 ± 1.9 mm (range: 2.5-10.5mm). Mean NIN sensitivity - defined as the partial path length through gray matter divided by the total photon path length - ranged from 0.06 (i.e., 6% of total path length) at a 20mm source-detector separation, to over 0.19 at 50mm separations. NIN sensitivity varied substantially around the head, with occipital pole exhibiting the highest NIRS sensitivity to gray matter, whereas inferior frontal regions had the lowest sensitivity. Increased scalp and skull thickness were strongly associated with decreased sensitivity to brain tissue. Scalp thickness always exhibited a slightly larger effect on sensitivity than skull thickness, but the effect of both varied with SD separation. We quantitatively characterize sensitivity around the head as well as the effects of scalp and skull, which can be used to interpret NIN brain activation studies as well as guide the design, development and optimization of NIRS devices and sensors. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hauptman, Jason S., E-mail: jhauptman@mednet.ucla.edu; Barkhoudarian, Garni; Safaee, Michael
2012-06-01
Purpose: Intracranial chordomas and chondrosarcomas are histologically low-grade, locally invasive tumors that infiltrate the skull base. Currently, consensus therapy includes surgical resection and adjuvant radiotherapy. Radiation delivery is typically limited by the proximity of these tumors to critical skull base structures. Methods: This is a retrospective review of 13 cases of chordomas and 2 cases of chondroid chondrosarcomas of the skull based treated with linear accelerator stereotactic radiotherapy (SRT, n = 10) or stereotactic radiosurgery (SRS, n = 5). The average time to the most recent follow-up visit was 4.5 years. The tumor characteristics, treatment details, and outcomes were recorded.more » Each radiation plan was reviewed, and the dosage received by the brainstem, optic apparatus, and pituitary was calculated. Results: Of the 10 patients treated with SRT, 6 were found to have unchanged or decreased tumor size as determined from radiographic follow-up. Of the 5 patients treated with SRS, 3 were found to have stable or unchanged tumors at follow-up. The complications included 1 SRT patient who developed endocrinopathy, 2 patients (1 treated with SRS and the other with SRT), who developed cranial neuropathy, and 1 SRS patient who developed visual deficits. Additionally, 1 patient who received both SRS and SRT within 2 years for recurrence experienced transient medial temporal lobe radiation changes that resolved. Conclusions: Where proton beam therapy is unavailable, linear accelerator-based SRT or radiosurgery remains a safe option for adjuvant therapy of chordomas and chondrosarcomas of the skull base. The exposure of the optic apparatus, pituitary stalk, and brainstem must be considered during planning to minimize complications. If the optic apparatus is included in the 80% isodose line, it might be best to fractionate therapy. Exposure of the pituitary stalk should be kept to <30 Gy to minimize endocrine dysfunction. Brainstem exposure should be limited to <60 Gy in fractions.« less
Skull counting in late stages after internal contamination by actinides.
Tani, Kotaro; Shutt, Arron; Kurihara, Osamu; Kosako, Toshiso
2015-02-01
Monitoring preparation for internal contamination with actinides (e.g. Pu and Am) is required to assess internal doses at nuclear fuel cycle-related facilities. In this paper, the authors focus on skull counting in case of single-incident inhalation of (241)Am and propose an effective procedure for skull counting with an existing system, taking into account the biokinetic behaviour of (241)Am in the human body. The predicted response of the system to skull counting under a certain counting geometry was found to be only ∼1.0 × 10(-5) cps Bq(-1) 1y after intake. However, this disadvantage could be remedied by repeated measurements of the skull during the late stage of the intake due to the predicted response reaching a plateau at about the 1000th day after exposure and exceeding that in the lung counting. Further studies are needed for the development of a new detection system with higher sensitivity to perform reliable internal dose estimations based on direct measurements. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Porro, Laura B.; Rayfield, Emily J.; Clack, Jennifer A.
2015-01-01
The early tetrapod Acanthostega gunnari is an iconic fossil taxon exhibiting skeletal morphology reflecting the transition of vertebrates from water onto land. Computed tomography data of two Acanthostega skulls was segmented using visualization software to digitally separate bone from matrix and individual bones of the skull from each other. A revised description of cranial and lower jaw anatomy in this taxon based on CT data includes new details of sutural morphology, the previously undescribed quadrate and articular bones, and the mandibular symphysis. Sutural morphology is used to infer loading regime in the skull during feeding, and suggests Acanthostega used its anterior jaws to initially seize prey while smaller posterior teeth were used to restrain struggling prey during ingestion. Novel methods were used to repair and retrodeform the skull, resulting in a three-dimensional digital reconstruction that features a longer postorbital region and more strongly hooked anterior lower jaw than previous attempts while supporting the presence of a midline gap between the nasals and median rostrals. PMID:25760343
Liu, Yuan; Yu, Jiang; Bai, Jie; Gu, Jin-song; Cai, Bin; Zhou, Xia
2013-12-01
To study the effects of cuttlefish bone-bone morphogenetic protein (BMP) composite material on osteogenesis and revascularization of bone defect in rats. The cuttlefish bone was formed into cylinder with the diameter of about 5 mm and height of about 2 mm after the shell was removed, and then it was soaked in the recombinant human BMP 2 to make a cuttlefish bone-BMP (CBB) composite material. Thirty SD rats, with a defect of skull in every rat, were divided into the CBB and pure cuttlefish bone (PCB) groups according to the random number table, with 15 rats in each group. The rats in the group CBB and group PCB were transplanted with the corresponding material to repair the skull defect. At post transplantation week (PTW) 4, 6, and 8, 5 rats from every group were sacrificed by exsanguination, and ink perfusion was performed. One day later, all the transplants and part of the skull surrounding the defect were harvested, and general observation was conducted at the same time. The specimens were paraffin sectioned for HE staining and Masson staining. The area of microvessel and the area of newborn bone were observed and analyzed through histopathological techniques and image collection system. Data were processed with the analysis of variance of factorial design and LSD test. The correlation between the area of microvessel and the area of newborn bone of the group CBB was analyzed with Pearson correlation analysis. (1) The general observation of the transplant region showed that the transplants were encapsulated by a capsule of fibrous connective tissue. The texture of capsule was soft and relatively thick at PTW 4. The texture was tenacious and thin, but rather compact at PTW 6 and 8. The transplants became gelatinous at PTW 4, and similar to the cartilage tissue at PTW 6 and 8. (2) Histological observation showed that the structure of the transplants in two groups was damaged at PTW 4. A moderate quantity of inflammatory cell infiltration could be observed. The amounts of the primary bone trabeculae and microvessels in group CBB were more abundant than those of group PCB, while the number of osteoclasts was less than those of group PCB. At PTW 6, the inflammatory cell infiltration in the transplants in both groups decreased obviously, the cuttlefish bone was found to be further degraded, and the number of newborn microvessels was increased. There were mature bone trabeculae around the transplants in both groups. And there were also mature bone trabeculae in the degraded CBB in group CBB. At PTW 8, the inflammatory reaction in the transplants in both groups disappeared; there were more mature bone trabeculae; the structure of the cuttlefish bone was found to be damaged basically. Bone trabeculae in group PCB were found around the transplant, while the bone trabeculae could be observed not only around the transplant but also in the degraded CBB in group CBB. The amount of the microvessels in group CBB was still larger than that of group PCB. (3) From PTW 4 to 8, the area of microvessel in group CBB [(63 ± 4), ( 136 ± 36), ( 347 ± 31) µm(2)] was larger than that in group PCB [(44 ± 7), (73 ± 4), (268 ± 42) µm(2), P < 0.05 or P < 0.01]. From PTW 4 to 8, the area of newborn bone in group CBB [(236 ± 26), (339 ± 42), (553 ± 40) µm(2)] was larger than that in group PCB [(137 ± 15), (243 ± 21), (445 ± 29) µm(2), with P values all below 0.01]. (4) The relation between the area of microvessel and the area of newborn bone was significantly positive (r = 0.948, P = 0.001). The CBB may exert good effect on osteogenesis and vascularization of rats with bone defect. It is a good three dimensional scaffold in bone tissue engineering.
Tamura, Manabu; Kogo, Kasei; Masuo, Osamu; Oura, Yoshinori; Matsumoto, Hiroyuki; Fujita, Koji; Nakao, Naoyuki; Uematsu, Yuji; Itakura, Toru; Chernov, Mikhail; Hayashi, Motohiro; Muragaki, Yoshihiro; Iseki, Hiroshi
2013-12-01
Background Aneurysm formation after stereotactic irradiation of skull base tumors is rare. The formation and rupture of an internal carotid artery (ICA) aneurysm in a patient with skull base Ewing sarcoma/primitive neuroectodermal tumor (PNET), who underwent surgery followed by multiple courses of intensity-modulated radiation therapy (IMRT) and chemotherapy, is described. Case Description A 25-year-old man presented with a sinonasal tumor with intraorbital and intracranial growth. At that time cerebral angiography did not reveal any vascular abnormalities. The lesion was resected subtotally. Histopathologic diagnosis was Ewing sarcoma/PNET. The patient underwent multiple courses of chemotherapy and three courses of IMRT at 3, 28, and 42 months after initial surgery. The total biologically effective dose delivered to the right ICA was 220.2 Gy. Seven months after the third IMRT, the patient experienced profound nasal bleeding that resulted in hypovolemic shock. Angiography revealed a ruptured right C4-C5 aneurysm and irregular stenotic changes of the ICA. Lifesaving endovascular trapping of the right ICA was done. The patient recovered well after surgery but died due to tumor recurrence 6 months later. Conclusion Excessive irradiation of the ICA may occasionally result in aneurysm formation, which should be borne in mind during stereotactic irradiation of malignant skull base tumors.
García-Garrigós, Elena; Arenas-Jiménez, Juan José; Monjas-Cánovas, Irene; Abarca-Olivas, Javier; Cortés-Vela, Jesús Julián; De La Hoz-Rosa, Javier; Guirau-Rubio, Maria Dolores
2015-01-01
In the last 2 decades, endoscopic endonasal transsphenoidal surgery has become the most popular choice of neurosurgeons and otolaryngologists to treat lesions of the skull base, with minimal invasiveness, lower incidence of complications, and lower morbidity and mortality rates compared with traditional approaches. The transsphenoidal route is the surgical approach of choice for most sellar tumors because of the relationship of the sphenoid bone to the nasal cavity below and the pituitary gland above. More recently, extended approaches have expanded the indications for transsphenoidal surgery by using different corridors leading to specific target areas, from the crista galli to the spinomedullary junction. Computer-assisted surgery is an evolving technology that allows real-time anatomic navigation during endoscopic surgery by linking preoperative triplanar radiologic images and intraoperative endoscopic views, thus helping the surgeon avoid damage to vital structures. Preoperative computed tomography is the preferred modality to show bone landmarks and vascular structures. Radiologists play an important role in surgical planning by reporting extension of sphenoid pneumatization, recesses and septations of the sinus, and other relevant anatomic variants. Radiologists should understand the relationships of the sphenoid bone and skull base structures, anatomic variants, and image-guided neuronavigation techniques to prevent surgical complications and allow effective treatment of skull base lesions with the endoscopic endonasal transsphenoidal approach. ©RSNA, 2015.
Gâteau, Jérôme; Marsac, Laurent; Pernot, Mathieu; Aubry, Jean-Francois; Tanter, Mickaël; Fink, Mathias
2010-01-01
Brain treatment through the skull with High Intensity Focused Ultrasound (HIFU) can be achieved with multichannel arrays and adaptive focusing techniques such as time-reversal. This method requires a reference signal to be either emitted by a real source embedded in brain tissues or computed from a virtual source, using the acoustic properties of the skull derived from CT images. This non-invasive computational method focuses with precision, but suffers from modeling and repositioning errors that reduce the accessible acoustic pressure at the focus in comparison with fully experimental time-reversal using an implanted hydrophone. In this paper, this simulation-based targeting has been used experimentally as a first step for focusing through an ex vivo human skull at a single location. It has enabled the creation of a cavitation bubble at focus that spontaneously emitted an ultrasonic wave received by the array. This active source signal has allowed 97%±1.1% of the reference pressure (hydrophone-based) to be restored at the geometrical focus. To target points around the focus with an optimal pressure level, conventional electronic steering from the initial focus has been combined with bubble generation. Thanks to step by step bubble generation, the electronic steering capabilities of the array through the skull were improved. PMID:19770084
LaFranchi, Stephen H.; Maliga, Zoltan; Lui, Julian C.; Moon, Jennifer E.; McDeed, Cailin; Henke, Katrin; Zonana, Jonathan; Kingman, Garrett A.; Pers, Tune H.; Baron, Jeffrey; Rosenfeld, Ron G.; Hirschhorn, Joel N.; Harris, Matthew P.; Hwa, Vivian
2012-01-01
Context: Microcephalic primordial dwarfism (MPD) is a rare, severe form of human growth failure in which growth restriction is evident in utero and continues into postnatal life. Single causative gene defects have been identified in a number of patients with MPD, and all involve genes fundamental to cellular processes including centrosome functions. Objective: The objective of the study was to find the genetic etiology of a novel presentation of MPD. Design: The design of the study was whole-exome sequencing performed on two affected sisters in a single family. Molecular and functional studies of a candidate gene were performed using patient-derived primary fibroblasts and a zebrafish morpholino oligonucleotides knockdown model. Patients: Two sisters presented with a novel subtype of MPD, including severe intellectual disabilities. Main Outcome Measures: NIN, encoding Ninein, a centrosomal protein critically involved in asymmetric cell division, was identified as a candidate gene, and functional impacts in fibroblasts and zebrafish were studied. Results: From 34,606 genomic variants, two very rare missense variants in NIN were identified. Both probands were compound heterozygotes. In the zebrafish, ninein knockdown led to specific and novel defects in the specification and morphogenesis of the anterior neuroectoderm, resulting in a deformity of the developing cranium with a small, squared skull highly reminiscent of the human phenotype. Conclusion: We identified a novel clinical subtype of MPD in two sisters who have rare variants in NIN. We show, for the first time, that reduction of ninein function in the developing zebrafish leads to specific deficiencies of brain and skull development, offering a developmental basis for the myriad phenotypes in our patients. PMID:22933543
NASA Astrophysics Data System (ADS)
Huang, Chao; Nie, Liming; Schoonover, Robert W.; Guo, Zijian; Schirra, Carsten O.; Anastasio, Mark A.; Wang, Lihong V.
2012-06-01
A challenge in photoacoustic tomography (PAT) brain imaging is to compensate for aberrations in the measured photoacoustic data due to their propagation through the skull. By use of information regarding the skull morphology and composition obtained from adjunct x-ray computed tomography image data, we developed a subject-specific imaging model that accounts for such aberrations. A time-reversal-based reconstruction algorithm was employed with this model for image reconstruction. The image reconstruction methodology was evaluated in experimental studies involving phantoms and monkey heads. The results establish that our reconstruction methodology can effectively compensate for skull-induced acoustic aberrations and improve image fidelity in transcranial PAT.
[Application of neuroendoscope in the treatment of skull base chordoma].
Zhang, Ya-Zhuo; Wang, Zong-Cheng; Zong, Xu-Yi; Wang, Xin-Sheng; Gui, Song-Bai; Zhao, Peng; Li, Chu-Zhong; He, Yue; Wang, Hong-Yun
2011-07-05
To further explore the application, approach, indication and prognosis of neuroendoscope treatment for skull base chordoma. A total of 101 patients of skull base chordoma were admitted at our hospital from May 2000 to April 2010. There were 59 males and 42 females. Their major clinical manifestations included headache, cranial nerve damage and dyspnea. They were classified according to the patterns of tumor growth: Type I (n = 13): tumor location at a single component of skull base, i. e. clivus or sphenoid sinus with intact cranial dura; Type II (n = 56): tumor involving more than two components of skull e. g clivus, sphenoid and nasal/oral cavity, etc. But there was no intracranial invasion; Type III (n = 32) : tumor extending widely and intradurally forming compression of brain stems and multiple cranial nerves. Based on the types of chordoma, different endoscopic approaches were employed, viz. transnasal, transoral, trans-subtemporal fossa and plus microsurgical craniotomy for staging in some complex cases. Among all patients, total resection was achieved (n = 19), subtotal (n = 58) and partial (n = 24). In partial resection cases, 16 cases were considered to be subtotal due to a second-stage operation. Most cases had conspicuous clinical improvements. Self-care recovery within one week post-operation accounted for 58.4%, two weeks 30.7%, one month 6.9% and more than one month 1.9%. Postoperative complications occurred in 13 cases (12.8%) and included CSF leakage (n = 4) cranial nerve palsy (n = 5), hemorrhagic nasal wounds (n = 3) and delayed intracranial hemorrhage (n = 1). All of these were cured or improved after an appropriate treatment. A follow-up of 6 - 60 months was conducted in 56 cases. Early detection and early treatment are crucial for achieving a better outcome in chordoma. Neuroendoscopic treatment plays an important role in managing those complicated cases. Precise endoscopic techniques plus different surgical approaches and staging procedures are required to improve the post-operative quality of life for patients.
Ito, Eiji; Ichikawa, Masahiro; Itakura, Takeshi; Ando, Hitoshi; Matsumoto, Yuka; Oda, Keiko; Sato, Taku; Watanabe, Tadashi; Sakuma, Jun; Saito, Kiyoshi
2013-01-01
Dysphasia is one of the most serious complications of skull base surgeries and results from damage to the brainstem and/or cranial nerves involved in swallowing. Here, the authors propose a method to monitor the function of the vagus nerve using endotracheal tube surface electrodes and transcranial electrical stimulation during skull base surgeries. Fifteen patients with skull base or brainstem tumors were enrolled. The authors used surface electrodes of an endotracheal tube to record compound electromyographic responses from the vocalis muscle. Motor neurons were stimulated using corkscrew electrodes placed subdermally on the scalp at C3 and C4. During surgery, the operator received a warning when the amplitude of the vagal motor evoked potential (MEP) decreased to less than 50% of the control level. After surgery, swallowing function was assessed clinically using grading criteria. In 5 patients, vagal MEP amplitude permanently deteriorated to less than 50% of the control level on the right side when meningiomas were dissected from the pons or basilar artery, or when a schwannoma was dissected from the vagal rootlets. These 5 patients had postoperative dysphagia. At 4 weeks after surgery, 2 patients still had dysphagia. In 2 patients, vagal MEPs of one side transiently disappeared when the tumors were dissected from the brainstem or the vagal rootlets. After surgery, both patients had dysphagia, which recovered in 4 weeks. In 7 patients, MEP amplitude was consistent, maintaining more than 50% of the control level throughout the operative procedures. After surgery all 7 patients were neurologically intact with normal swallowing function. Vagal MEP monitoring with transcranial electrical stimulation and endotracheal tube electrode recording was a safe and effective method to provide continuous real-time information on the integrity of both the supranuclear and infranuclear vagal pathway. This method is useful to prevent intraoperative injury of the brainstem corticobulbar tract or the vagal rootlets and to avoid the postoperative dysphagia that is often associated with brainstem or skull base surgeries.
Zweckberger, Klaus; Hallek, Eveline; Vogt, Lidia; Giese, Henrik; Schick, Uta; Unterberg, Andreas W
2017-12-01
OBJECTIVE Resection of skull base tumors is challenging. The introduction of alternative treatment options, such as radiotherapy, has sparked discussion regarding outcome in terms of quality of life and neuropsychological deficits. So far, however, no prospective data are available on this topic. METHODS A total of 58 patients with skull base meningiomas who underwent surgery for the first time were enrolled in this prospective single-center trial. The average age of the patients was 56.4 ± 12.5 years. Seventy-nine percent of the tumors were located within the anterior skull base. Neurological examinations and neuropsychological testing were performed at 3 time points: 1 day prior to surgery (T1), 3-5 months after surgery (T2), and 9-12 months after surgery (T3). The average follow-up duration was 13.8 months. Neuropsychological assessment consisted of quality of life, depression and anxiety, verbal learning and memory, cognitive speed, attention and concentration, figural memory, and visual-motor speed. RESULTS Following surgery, 23% of patients showed transient neurological deficits and 12% showed permanent new neurological deficits with varying grades of manifestation. Postoperative quality of life, however, remained stable and was slightly improved at follow-up examinations at T3 (60.6 ± 21.5 vs 63.6 ± 24.1 points), and there was no observed effect on anxiety and depression. Long-term verbal memory, working memory, and executive functioning were slightly affected within the first months following surgery and appeared to be the most vulnerable to impairment by the tumor or the resection but were stable or improved in the majority of patients at long-term follow-up examinations after 1 year. CONCLUSIONS This report describes the first prospective study of neuropsychological outcomes following resection of skull base meningiomas and, as such, contributes to a better understanding of postoperative impairment in these patients. Despite deterioration in a minority of patients on subscales of the measures used, the majority demonstrated stable or improved outcome at follow-up assessments.
Maimbourg, Guillaume; Houdouin, Alexandre; Deffieux, Thomas; Tanter, Mickael; Aubry, Jean-François
2018-01-16
The development of multi-element arrays for better control of the shape of ultrasonic beams has opened the way for focusing through highly aberrating media, such as the human skull. As a result, the use of brain therapy with transcranial-focused ultrasound has rapidly grown. Although effective, such technology is expensive. We propose a disruptive, low-cost approach that consists of focusing a 1 MHz ultrasound beam through a human skull with a single-element transducer coupled with a tailored silicone acoustic lens cast in a 3D-printed mold and designed using computed tomography-based numerical acoustic simulation. We demonstrate on N = 3 human skulls that adding lens-based aberration correction to a single-element transducer increases the deposited energy on the target 10 fold.
NASA Astrophysics Data System (ADS)
Maimbourg, Guillaume; Houdouin, Alexandre; Deffieux, Thomas; Tanter, Mickael; Aubry, Jean-François
2018-01-01
The development of multi-element arrays for better control of the shape of ultrasonic beams has opened the way for focusing through highly aberrating media, such as the human skull. As a result, the use of brain therapy with transcranial-focused ultrasound has rapidly grown. Although effective, such technology is expensive. We propose a disruptive, low-cost approach that consists of focusing a 1 MHz ultrasound beam through a human skull with a single-element transducer coupled with a tailored silicone acoustic lens cast in a 3D-printed mold and designed using computed tomography-based numerical acoustic simulation. We demonstrate on N = 3 human skulls that adding lens-based aberration correction to a single-element transducer increases the deposited energy on the target 10 fold.
Chandran, Arun; Biswas, Shubhabrata; Hartley, James Leon; Nahser, Hans Christean; Lancaster, Jeffrey; Puthuran, Mani
2016-10-01
A bleeding vertebral artery pseudoaneurysm is a rare cause of haemoptysis. Pseudoaneurysm can arise due to radionecrosis from previous radiotherapy in the base of skull and neck region and may present with haemoptysis many years later. It is important to be aware of this entity in the work-up of haemoptysis, particularly in patients with previous base of skull and neck radiotherapy. Our patient was successfully treated with endovascular occlusion. © The Author(s) 2016.
Long, Jennifer; Roberts, David J H; Pickering, James D
2014-01-01
Neuroanatomy teaching at the University of Leeds includes the examination of isolated brains by students working in small groups. This requires the prosected brains to exhibit all 12 pairs of cranial nerves. Traditional methods of removing the brain from the skull involve elevating the frontal lobes and cutting each cranial nerve as the brain is reflected posteriorly. This can leave a substantial length of each nerve attached to the skull base rather than to the removed brain. We have found a posterior approach more successful. In this study, five adult heads were disarticulated at the level of the thyroid cartilage and placed, prone, in a head stand. A wedge of bone from the occipital region was removed before the cerebellum and brainstem were elevated to visualize the cranial nerves associated with the medulla oblongata, cerebellopontine angle and mesencephalic-pontine junction prior to cutting them as close to the skull as possible. Five brains were successfully removed from the skull, each having a full complement of cranial nerves of good length attached to them. This approach significantly increases the length and number of cranial nerves remaining attached to the brain, which supports student education. For integration into head and neck dissection courses, careful consideration will be required to ensure the necks are suitably dissected and to decide whether the cranial nerves are best left attached to the skull base or brain. Copyright © 2013 Wiley Periodicals, Inc.
Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo
2014-01-01
Standing wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30 cm diameter with 15 cm radius of curvature, low frequency (230 kHz), hemispherical transcranial Magnetic Resonance guided Focused Ultrasound (MRgFUS) phased-array. Experimental and simulation studies were conducted with changing aperture size and f-number configurations of the phased array, and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and anti-nodes of standing wave produced by the small aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number. PMID:22049360
NASA Astrophysics Data System (ADS)
Jung, Mi-Kyung; Kim, Su-Gwan; Oh, Ji-Su; Jin, Seung-Chan; Lee, Sook-Young; Jang, Eun-Sook; Piao, Zheng-Gang; Lim, Sung-Chul; Jeong, Mi-Ae
2012-01-01
Erbium-doped yttrium aluminum garnet (Er:YAG) lasers have been used in dentistry for cutting bone and removal of caries. The purpose of this study was to evaluate the bone healing in a skull defect prepared in rats using various instruments including Er:YAG laser. The 7 mm calvarial defects were created in 45 rats and 45 rats were divided into three groups (n = 15): a high-speed rotation engine with carbide round bur (2-mm diameter), a low-speed rotation engine with carbide round bur (2-mm diameter), and an Er:YAG laser. Specimens obtained after 3 days or 4 or 8 weeks were submitted for histological analysis. Three days after surgery, no bone formation had occurred in any of the groups. Four weeks after surgery, 90 ±8.16% new bone formation was observed in the high-speed group, and 8 weeks after surgery, 100 ±0% new bone formation was observed in the low- and high-speed groups. There were significant differences among the periods after surgery, but no significant differences were observed among final results with in different device groups.
Influence of the cranial base flexion on Class I, II and III malocclusions: a systematic review.
Almeida, Kélei Cristina Mathias de; Raveli, Taísa Boamorte; Vieira, Camila Ivini Viana; Santos-Pinto, Ary Dos; Raveli, Dirceu Barnabé
2017-01-01
The aim of this study was to perform a systematic review on the morphological characteristics of the skull base (flexion, anterior length and posterior length) and the concomitant development of malocclusions, by comparing differences in dimorphism, ethnicity and age. The articles were selected by means of electronic search on BBO, MEDLINE and LILACS databases from 1966 to 2016. A qualitative evaluation of the methodologies used on the articles was also performed. Although the literature on this topic is abundant, only 16 articles were selected for the present systematic review. The cranial base angle itself does not seem to play a significant role in the development of malocclusions. In fact, the cranial base angle is relatively stable at the ages of 5 to 15 years. A more obtuse angle at the skull base, in association or not with a greater anterior length of the cranial base, can contribute to the development of Class II division 1 malocclusions. On the other hand, a more acute angle at the skull base can contribute to a more anterior positioning of the mandible and to the development of Class III malocclusions.
Influence of the cranial base flexion on Class I, II and III malocclusions: a systematic review
de Almeida, Kélei Cristina Mathias; Raveli, Taísa Boamorte; Vieira, Camila Ivini Viana; dos Santos-Pinto, Ary; Raveli, Dirceu Barnabé
2017-01-01
ABSTRACT Objective: The aim of this study was to perform a systematic review on the morphological characteristics of the skull base (flexion, anterior length and posterior length) and the concomitant development of malocclusions, by comparing differences in dimorphism, ethnicity and age. Methods: The articles were selected by means of electronic search on BBO, MEDLINE and LILACS databases from 1966 to 2016. A qualitative evaluation of the methodologies used on the articles was also performed. Results: Although the literature on this topic is abundant, only 16 articles were selected for the present systematic review. The cranial base angle itself does not seem to play a significant role in the development of malocclusions. In fact, the cranial base angle is relatively stable at the ages of 5 to 15 years. Conclusions: A more obtuse angle at the skull base, in association or not with a greater anterior length of the cranial base, can contribute to the development of Class II division 1 malocclusions. On the other hand, a more acute angle at the skull base can contribute to a more anterior positioning of the mandible and to the development of Class III malocclusions. PMID:29160345
Blank, Marissa C.; Roman, Brian B.; Henkelman, R. Mark; Millen, Kathleen J.
2012-01-01
The mammalian brain and skull develop concurrently in a coordinated manner, consistently producing a brain and skull that fit tightly together. It is common that abnormalities in one are associated with related abnormalities in the other. However, this is not always the case. A complete characterization of the relationship between brain and skull phenotypes is necessary to understand the mechanisms that cause them to be coordinated or divergent and to provide perspective on the potential diagnostic or prognostic significance of brain and skull phenotypes. We demonstrate the combined use of magnetic resonance imaging and microcomputed tomography for analysis of brain and skull phenotypes in the mouse. Co-registration of brain and skull images allows comparison of the relationship between phenotypes in the brain and those in the skull. We observe a close fit between the brain and skull of two genetic mouse models that both show abnormal brain and skull phenotypes. Application of these three-dimensional image analyses in a broader range of mouse mutants will provide a map of the relationships between brain and skull phenotypes generally and allow characterization of patterns of similarities and differences. PMID:22947655
Automated human skull landmarking with 2D Gabor wavelets
NASA Astrophysics Data System (ADS)
de Jong, Markus A.; Gül, Atilla; de Gijt, Jan Pieter; Koudstaal, Maarten J.; Kayser, Manfred; Wolvius, Eppo B.; Böhringer, Stefan
2018-05-01
Landmarking of CT scans is an important step in the alignment of skulls that is key in surgery planning, pre-/post-surgery comparisons, and morphometric studies. We present a novel method for automatically locating anatomical landmarks on the surface of cone beam CT-based image models of human skulls using 2D Gabor wavelets and ensemble learning. The algorithm is validated via human inter- and intra-rater comparisons on a set of 39 scans and a skull superimposition experiment with an established surgery planning software (Maxilim). Automatic landmarking results in an accuracy of 1–2 mm for a subset of landmarks around the nose area as compared to a gold standard derived from human raters. These landmarks are located in eye sockets and lower jaw, which is competitive with or surpasses inter-rater variability. The well-performing landmark subsets allow for the automation of skull superimposition in clinical applications. Our approach delivers accurate results, has modest training requirements (training set size of 30–40 items) and is generic, so that landmark sets can be easily expanded or modified to accommodate shifting landmark interests, which are important requirements for the landmarking of larger cohorts.
Medical diagnosis imaging systems: image and signal processing applications aided by fuzzy logic
NASA Astrophysics Data System (ADS)
Hata, Yutaka
2010-04-01
First, we describe an automated procedure for segmenting an MR image of a human brain based on fuzzy logic for diagnosing Alzheimer's disease. The intensity thresholds for segmenting the whole brain of a subject are automatically determined by finding the peaks of the intensity histogram. After these thresholds are evaluated in a region growing, the whole brain can be identified. Next, we describe a procedure for decomposing the obtained whole brain into the left and right cerebral hemispheres, the cerebellum and the brain stem. Our method then identified the whole brain, the left cerebral hemisphere, the right cerebral hemisphere, the cerebellum and the brain stem. Secondly, we describe a transskull sonography system that can visualize the shape of the skull and brain surface from any point to examine skull fracture and some brain diseases. We employ fuzzy signal processing to determine the skull and brain surface. The phantom model, the animal model with soft tissue, the animal model with brain tissue, and a human subjects' forehead is applied in our system. The all shapes of the skin surface, skull surface, skull bottom, and brain tissue surface are successfully determined.
Richardus, Renate A.; Jansen, Jeroen C.; Steens, Stefan C. A.; Arend, Sandra M.
2011-01-01
We report two immigrants with tuberculosis of the skull base and a review of the literature. A Somalian man presented with bilateral otitis media, hearing loss, and facial and abducens palsy. Imaging showed involvement of both mastoid and petrous bones, extending via the skull base to the nasopharynx, suggesting tuberculosis which was confirmed by characteristic histology and positive auramine staining, while Ziehl-Neelsen staining and PCR were negative. A Sudanese man presented with torticollis and deviation of the uvula due to paresis of N. IX and XI. Imaging showed a retropharyngeal abscess and lysis of the clivus. Histology, acid-fast staining, and PCR were negative. Both patients had a positive Quantiferon TB Gold in-tube result and improved rapidly after empiric treatment for tuberculosis. Cultures eventually yielded M. tuberculosis. These unusual cases exemplify the many faces of tuberculosis and the importance to include tuberculosis in the differential diagnosis of unexplained problems. PMID:21541186
Caldas, Ana Rita; Brandao, Mariana; Paula, Filipe Seguro; Castro, Elsa; Farinha, Fatima; Marinho, Antonio
2012-01-01
Hypertrophic cranial pachymeningitis (HCP) is an uncommon disorder characterized by localized or diffuse thickening of the dura mater, and it usually presents with multiple cranial neurophaties. It has been associated with a variety of inflammatory, infectious, traumatic, toxic and neoplasic diseases, when no specific cause is found the process is called idiopathic. The infectious cases occur in patients under systemic immunosuppression, which have an evident contiguous source or those who have undergone neurosurgical procedures. We describe a case of a 62-year-old immunosuppressed woman with diabetes and rheumatoid arthritis, which had HCP and osteomyelitis of the skull base caused by pseudomonas aeruginosa, presenting with headache and diplopia. We believe this is the second documented case of pachymeningitis secondary to this microorganism. As a multifactorial disease, it is essencial to determine the specific causative agent of HCP before making treatment decisions, and great care is needed with immunocompromised patients. Keywords Pseudomonas aeruginosa; Hypertrophic pachymeningitis; Ophtalmoplegia, optical neuropathy; Osteomyelitis; Skull base PMID:22505989
Direct phase projection and transcranial focusing of ultrasound for brain therapy.
Pinton, Gianmarco F; Aubry, Jean-Francois; Tanter, Mickaël
2012-06-01
Ultrasound can be used to noninvasively treat the human brain with hyperthermia by focusing through the skull. To obtain an accurate focus, especially at high frequencies (>500 kHz), the phase of the transmitted wave must be modified to correct the aberrations introduced by the patient's individual skull morphology. Currently, three-dimensional finite-difference time-domain simulations are used to model a point source at the target. The outward-propagating wave crosses the measured representation of the human skull and is recorded at the therapy array transducer locations. The signal is then time reversed and experimentally transmitted back to its origin. These simulations are resource intensive and add a significant delay to treatment planning. Ray propagation is computationally efficient because it neglects diffraction and only describes two propagation parameters: the wave's direction and the phase. We propose a minimal method that is based only on the phase. The phase information is projected from the external skull surface to the array locations. This replaces computationally expensive finite-difference computations with an almost instantaneous direct phase projection calculation. For the five human skull samples considered, the phase distribution outside of the skull is shown to vary by less than λ/20 as it propagates over a 5 cm distance and the validity of phase projection is established over these propagation distances. The phase aberration introduced by the skull is characterized and is shown to have a good correspondence with skull morphology. The shape of this aberration is shown to have little variation with propagation distance. The focusing quality with the proposed phase-projection algorithm is shown to be indistinguishable from the gold-standard full finite-difference simulation. In conclusion, a spherical wave that is aberrated by the skull has a phase propagation that can be accurately described as radial, even after it has been distorted. By combining finite-difference simulations with a phase-projection algorithm, the time required for treatment planning is significantly reduced. The correlation length of the phase is used to validate the algorithm and it can also be used to provide guiding parameters for clinical array transducer design in terms of transducer spacing and phase error.
Diaz, Roberto Jose; Guduk, Mustafa; Romagnuolo, Rocco; Smith, Christian A; Northcott, Paul; Shih, David; Berisha, Fitim; Flanagan, Adrienne; Munoz, David G; Cusimano, Michael D; Pamir, M Necmettin; Rutka, James T
2012-09-01
Chordoma is a rare tumor arising in the sacrum, clivus, or vertebrae. It is often not completely resectable and shows a high incidence of recurrence and progression with shortened patient survival and impaired quality of life. Chemotherapeutic options are limited to investigational therapies at present. Therefore, adjuvant therapy for control of tumor recurrence and progression is of great interest, especially in skull base lesions where complete tumor resection is often not possible because of the proximity of cranial nerves. To understand the extent of genetic instability and associated chromosomal and gene losses or gains in skull base chordoma, we undertook whole-genome single-nucleotide polymorphism microarray analysis of flash frozen surgical chordoma specimens, 21 from the clivus and 1 from C1 to C2 vertebrae. We confirm the presence of a deletion at 9p involving CDKN2A, CDKN2B, and MTAP but at a much lower rate (22%) than previously reported for sacral chordoma. At a similar frequency (21%), we found aneuploidy of chromosome 3. Tissue microarray immunohistochemistry demonstrated absent or reduced fragile histidine triad (FHIT) protein expression in 98% of sacral chordomas and 67%of skull base chordomas. Our data suggest that chromosome 3 aneuploidy and epigenetic regulation of FHIT contribute to loss of the FHIT tumor suppressor in chordoma. The finding that FHIT is lost in a majority of chordomas provides new insight into chordoma pathogenesis and points to a potential new therapeutic target for this challenging neoplasm.
Jacquesson, Timothée; Mertens, Patrick; Berhouma, Moncef; Jouanneau, Emmanuel; Simon, Emile
2017-01-01
Skull base architecture is tough to understand because of its 3D complex shape and its numerous foramen, reliefs or joints. It is especially true for the sphenoid bone whom central location hinged with most of skull base components is unique. Recently, technological progress has led to develop new pedagogical tools. This way, we bought a new real-time three-dimensional insight of the sphenoid bone that could be useful for the teacher, the student and the surgeon. High-definition photography was taken all around an isolated dry skull base bone prepared with Beauchêne's technique. Pictures were then computed to provide an overview with rotation and magnification on demand. From anterior, posterior, lateral or oblique views and from in out looks, anatomical landmarks and subtleties were described step by step. Thus, the sella turcica, the optic canal, the superior orbital fissure, the sphenoid sinus, the vidian canal, pterygoid plates and all foramen were clearly placed relative to the others at each face of the sphenoid bone. In addition to be the first report of the 360 Photography tool, perspectives are promising as the development of a real-time interactive tridimensional space featuring the sphenoid bone. It allows to turn around the sphenoid bone and to better understand its own special shape, numerous foramen, neurovascular contents and anatomical relationships. This new technological tool may further apply for surgical planning and mostly for strengthening a basic anatomical knowledge firstly introduced.
The olfactory fascia: an evo-devo concept of the fibrocartilaginous nose.
Jankowski, Roger; Rumeau, Cécile; de Saint Hilaire, Théophile; Tonnelet, Romain; Nguyen, Duc Trung; Gallet, Patrice; Perez, Manuela
2016-12-01
Evo-devo is the science that studies the link between evolution of species and embryological development. This concept helps to understand the complex anatomy of the human nose. The evo-devo theory suggests the persistence in the adult of an anatomical entity, the olfactory fascia, that unites the cartilages of the nose to the olfactory mucosa. We dissected two fresh specimens. After resecting the superficial tissues of the nose, dissection was focused on the disarticulation of the fibrocartilaginous noses from the facial and skull base skeleton. Dissection shows two fibrocartilaginous sacs that were invaginated side-by-side in the midface and attached to the anterior skull base. These membranous sacs were separated in the midline by the perpendicular plate of the ethmoid. Their walls contained the alar cartilages and the lateral expansions of the septolateral cartilage, which we had to separate from the septal cartilage. The olfactory mucosa was located inside their cranial ends. The olfactory fascia is a continuous membrane uniting the nasal cartilages to the olfactory mucosa. Its origin can be found in the invagination and differentiation processes of the olfactory placodes. The fibrous portions of the olfactory fascia may be described as ligaments that unit the different components of the olfactory fascia one to the other and the fibrocartilaginous nose to the facial and skull base skeleton. The basicranial ligaments, fixing the fibrocartilaginous nose to the skull base, represent key elements in the concept of septorhinoplasty by disarticulation.
Mori, Yoshimasa; Hashizume, Chisa; Kobayashi, Tatsuya; Shibamoto, Yuta; Kosaki, Katsura; Nagai, Aiko
2010-06-01
Skull base metastases are challenging situations because they often involve critical structures such as cranial nerves. We evaluated the role of stereotactic radiotherapy (SRT) which can give high doses to the tumors sparing normal structures. We treated 11 cases of skull base metastases from other visceral carcinomas. They had neurological symptoms due to cranial nerve involvement including optic nerve (3 patients), oculomotor (3), trigeminal (6), abducens (1), facial (4), acoustic (1), and lower cranial nerves (1). The interval between the onset of cranial nerve symptoms and Novalis SRT was 1 week to 7 months. Eleven tumors of 8-112 ml in volume were treated by Novalis SRT with 30-50 Gy in 10-14 fractions. The tumors were covered by 90-95% isodose. Imaging and clinical follow-up has been obtained in all 11 patients for 5-36 months after SRT. Seven patients among 11 died from primary carcinoma or other visceral metastases 9-36 months after Novalis SRT. All 11 metastatic tumors were locally controlled until the end of the follow-up time or patient death, though retreatment for re-growth was done in 1 patient. In 10 of 11 patients, cranial nerve deficits were improved completely or partially. In some patients, the cranial nerve symptoms were relieved even during the period of fractionated SRT. Novalis SRT is thought to be safe and effective treatment for skull base metastases with involvement of cranial nerves and it may improve cranial nerve symptoms quickly.
Construction of a three-dimensional interactive model of the skull base and cranial nerves.
Kakizawa, Yukinari; Hongo, Kazuhiro; Rhoton, Albert L
2007-05-01
The goal was to develop an interactive three-dimensional (3-D) computerized anatomic model of the skull base for teaching microneurosurgical anatomy and for operative planning. The 3-D model was constructed using commercially available software (Maya 6.0 Unlimited; Alias Systems Corp., Delaware, MD), a personal computer, four cranial specimens, and six dry bones. Photographs from at least two angles of the superior and lateral views were imported to the 3-D software. Many photographs were needed to produce the model in anatomically complex areas. Careful dissection was needed to expose important structures in the two views. Landmarks, including foramen, bone, and dura mater, were used as reference points. The 3-D model of the skull base and related structures was constructed using more than 300,000 remodeled polygons. The model can be viewed from any angle. It can be rotated 360 degrees in any plane using any structure as the focal point of rotation. The model can be reduced or enlarged using the zoom function. Variable transparencies could be assigned to any structures so that the structures at any level can be seen. Anatomic labels can be attached to the structures in the 3-D model for educational purposes. This computer-generated 3-D model can be observed and studied repeatedly without the time limitations and stresses imposed by surgery. This model may offer the potential to create interactive surgical exercises useful in evaluating multiple surgical routes to specific target areas in the skull base.
Expanded Endoscopic Endonasal Approaches to Skull Base Meningiomas
Prosser, J. Drew; Vender, John R.; Alleyne, Cargill H.; Solares, C. Arturo
2012-01-01
Anterior cranial base meningiomas have traditionally been addressed via frontal or frontolateral approaches. However, with the advances in endoscopic endonasal treatment of pituitary lesions, the transphenoidal approach is being expanded to address lesions of the petrous ridge, anterior clinoid, clivus, sella, parasellar region, tuberculum, planum, olfactory groove, and crista galli regions. The expanded endoscopic endonasal approach (EEEA) has the advantage of limiting brain retraction and resultant brain edema, as well as minimizing manipulation of neural structures. Herein, we describe the techniques of transclival, transphenoidal, transplanum, and transcribiform resections of anterior skull base meningiomas. Selected cases are presented. PMID:23730542
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ares, Carmen, E-mail: carmen.ares@psi.c; Hug, Eugen B.; Lomax, Antony J.
2009-11-15
Purpose: To evaluate effectiveness and safety of spot-scanning-based proton radiotherapy (PT) in skull-base chordomas and chondrosarcomas. Methods and Materials: Between October 1998 and November 2005, 64 patients with skull-base chordomas (n = 42) and chondrosarcomas (n = 22) were treated at Paul Scherrer Institute with PT using spot-scanning technique. Median total dose for chordomas was 73.5 Gy(RBE) and 68.4 Gy(RBE) for chondrosarcomas at 1.8-2.0 Gy(RBE) dose per fraction. Local control (LC), disease specific survival (DSS), and overall survival (OS) rates were calculated. Toxicity was assessed according to CTCAE, v. 3.0. Results: Mean follow-up period was 38 months (range, 14-92 months).more » Five patients with chordoma and one patient with chondrosarcoma experienced local recurrence. Actuarial 5-year LC rates were 81% for chordomas and 94% for chondrosarcomas. Brainstem compression at the time of PT (p = 0.007) and gross tumor volume >25 mL (p = 0.03) were associated with lower LC rates. Five years rates of DSS and OS were 81% and 62% for chordomas and 100% and 91% for chondrosarcomas, respectively. High-grade late toxicity consisted of one patient with Grade 3 and one patient with Grade 4 unilateral optic neuropathy, and two patients with Grade 3 central nervous system necrosis. No patient experienced brainstem toxicity. Actuarial 5-year freedom from high-grade toxicity was 94%. Conclusions: Our data indicate safety and efficacy of spot-scanning based PT for skull-base chordomas and chondrosarcomas. With target definition, dose prescription and normal organ tolerance levels similar to passive-scattering based PT series, complication-free, tumor control and survival rates are at present comparable.« less
NASA Astrophysics Data System (ADS)
Yeh, Chi-Yuan; Tung, Chuan-Jung; Chao, Tsi-Chain; Lin, Mu-Han; Lee, Chung-Chi
2014-11-01
The purpose of this study was to examine dose distribution of a skull base tumor and surrounding critical structures in response to high dose intensity-modulated radiosurgery (IMRS) with Monte Carlo (MC) simulation using a dual resolution sandwich phantom. The measurement-based Monte Carlo (MBMC) method (Lin et al., 2009) was adopted for the study. The major components of the MBMC technique involve (1) the BEAMnrc code for beam transport through the treatment head of a Varian 21EX linear accelerator, (2) the DOSXYZnrc code for patient dose simulation and (3) an EPID-measured efficiency map which describes non-uniform fluence distribution of the IMRS treatment beam. For the simulated case, five isocentric 6 MV photon beams were designed to deliver a total dose of 1200 cGy in two fractions to the skull base tumor. A sandwich phantom for the MBMC simulation was created based on the patient's CT scan of a skull base tumor [gross tumor volume (GTV)=8.4 cm3] near the right 8th cranial nerve. The phantom, consisted of a 1.2-cm thick skull base region, had a voxel resolution of 0.05×0.05×0.1 cm3 and was sandwiched in between 0.05×0.05×0.3 cm3 slices of a head phantom. A coarser 0.2×0.2×0.3 cm3 single resolution (SR) phantom was also created for comparison with the sandwich phantom. A particle history of 3×108 for each beam was used for simulations of both the SR and the sandwich phantoms to achieve a statistical uncertainty of <2%. Our study showed that the planning target volume (PTV) receiving at least 95% of the prescribed dose (VPTV95) was 96.9%, 96.7% and 99.9% for the TPS, SR, and sandwich phantom, respectively. The maximum and mean doses to large organs such as the PTV, brain stem, and parotid gland for the TPS, SR and sandwich MC simulations did not show any significant difference; however, significant dose differences were observed for very small structures like the right 8th cranial nerve, right cochlea, right malleus and right semicircular canal. Dose volume histogram (DVH) analyses revealed much smoother DVH curves for the dual resolution sandwich phantom when compared to the SR phantom. In conclusion, MBMC simulations using a dual resolution sandwich phantom improved simulation spatial resolution for skull base IMRS therapy. More detailed dose analyses for small critical structures can be made available to help in clinical judgment.
Pavanello, Marco; Piatelli, Gianluca; Ravegnani, Marcello; Consales, Alessandro; Rossi, Andrea; Nozza, Paolo; Milanaccio, Claudia; Carbone, Marco; Cama, Armando
2007-06-01
Cystic angiomatosis of the skull and spine is an exceptionally rare, benign vascular lesion. Both the vertebral bones and the skull may be affected. Diagnosis and treatment of this disease is multidisciplinary. Histological examination is ultimately required to make a diagnosis. When the craniocervical junction is involved, the site of biopsy should be carefully selected so as to reduce procedure-related morbidity, including cerebrospinal fluid leakage and spinal deformity. We present a case report of a 4-year-old boy with cystic angiomatosis of the skull base and upper cervical spine associated with a Chiari I malformation and provide a review of the pertinent literature.
Prince, Martin; Acosta, Daisy; Dangour, Alan D; Uauy, Ricardo; Guerra, Mariella; Huang, Yueqin; Jacob, KS; Llibre Rodriguez, Juan J.; Salas, Aquiles; Sosa, Ana Luisa; Williams, Joseph D.; Acosta, Isaac; Albanese, Emiliano; Dewey, Michael E.; Ferri, Cleusa P.; Stewart, Robert; Gaona, Ciro; Jotheeswaran, AT.; Senthil Kumar, P; Li, Shuran; Llibre Guerra, Juan C.; Rodriguez, Diana; Rodriguez, Guillermina
2017-01-01
Background Adult leg length is influenced by nutrition in the first few years of life. Adult head circumference is an indicator of brain growth. There is a limited literature linking short legs and small skulls to an increased risk for cognitive impairment and dementia in late life. Methods One phase cross-sectional surveys of all over 65 year old residents (n=14,960) in 11 catchment areas in China, India, Cuba, Dominican Republic, Venezuela, Mexico and Peru. The cross-culturally validated 10/66 dementia diagnosis, and a sociodemographic and risk factor questionnaire were administered to all participants, and anthropometric measures taken. Poisson regression was used to calculate prevalence ratios for the effect of leg length and skull circumference upon 10/66 Dementia, controlling for age, gender, education and family history of dementia. Results The pooled meta-analysed fixed effect for leg length (highest vs. lowest quarter) was 0.82 (95% CI, 0.68-0.98) and for skull circumference 0.75 (95% CI, 0.63-0.89). While point estimates varied between sites, the proportion of the variability attributable to heterogeneity between studies as opposed to sampling error (I2) was 0% for leg length and 22% for skull circumference. The effects were independent and not mediated by family history of dementia. The effect of skull circumference was not modified by educational level or gender, and the effect of leg length was not modified by gender. Conclusions Since leg length and skull circumference are said to remain stable throughout adulthood into old age, reverse causality is an unlikely explanation for the findings. Early life nutritional programming, as well as neurodevelopment may protect against neurodegeneration. PMID:20701817
Marečková, Klára; Chakravarty, M Mallar; Huang, Mei; Lawrence, Claire; Leonard, Gabriel; Perron, Michel; Pike, Bruce G; Richer, Louis; Veillette, Suzanne; Pausova, Zdenka; Paus, Tomáš
2013-10-01
In our previous work, we described facial features associated with a successful recognition of the sex of the face (Marečková et al., 2011). These features were based on landmarks placed on the surface of faces reconstructed from magnetic resonance (MR) images; their position was therefore influenced by both soft tissue (fat and muscle) and bone structure of the skull. Here, we ask whether bone structure has dissociable influences on observers' identification of the sex of the face. To answer this question, we used a novel method of studying skull morphology using MR images and explored the relationship between skull features, facial features, and sex recognition in a large sample of adolescents (n=876; including 475 adolescents from our original report). To determine whether skull features mediate the relationship between facial features and identification accuracy, we performed mediation analysis using bootstrapping. In males, skull features mediated fully the relationship between facial features and sex judgments. In females, the skull mediated this relationship only after adjusting facial features for the amount of body fat (estimated with bioimpedance). While body fat had a very slight positive influence on correct sex judgments about male faces, there was a robust negative influence of body fat on the correct sex judgments about female faces. Overall, these results suggest that craniofacial bone structure is essential for correct sex judgments about a male face. In females, body fat influences negatively the accuracy of sex judgments, and craniofacial bone structure alone cannot explain the relationship between facial features and identification of a face as female. Copyright © 2013 Elsevier Inc. All rights reserved.
Freeman, Jacob L; Sampath, Raghuram; Casey, Michael A; Quattlebaum, Steven Craig; Ramakrishnan, Vijay R; Youssef, A Samy
2016-08-01
Fixed retraction of the internal carotid artery (ICA) has previously been described for use during transcranial microscopic surgery. We report the novel use of a self-retaining microvascular retractor for static repositioning and protection of the ICA during expanded endonasal endoscopic approaches to the paramedian skull base. The transmaxillary, transpterygoid approach was performed in five cadaver heads (ten sides). The self-retaining microvascular retractor was used to laterally reposition the pterygopalatine fossa contents during exposure of the pterygoid base/plates and the paraclival ICA to expose the petrous apex. Maximum ICA retraction distance was measured in the x-axis for all ten sides. The average horizontal distance of ICA retraction measured at the mid-paraclival segment for all ten sides was 4.75 mm. In all cases, the carotid artery was repositioned without injury to the vessel or disruption of the surrounding neurovascular structures. Static repositioning of the ICA and other delicate neurovascular structures was effectively performed during endonasal, endoscopic cadaveric surgery of the skull base and has potential merits in live patients.
Profico, Antonio; Piras, Paolo; Buzi, Costantino; Di Vincenzo, Fabio; Lattarini, Flavio; Melchionna, Marina; Veneziano, Alessio; Raia, Pasquale; Manzi, Giorgio
2017-12-01
The evolutionary relationship between the base and face of the cranium is a major topic of interest in primatology. Such areas of the skull possibly respond to different selective pressures. Yet, they are often said to be tightly integrated. In this paper, we analyzed shape variability in the cranial base and the facial complex in Cercopithecoidea and Hominoidea. We used a landmark-based approach to single out the effects of size (evolutionary allometry), morphological integration, modularity, and phylogeny (under Brownian motion) on skull shape variability. Our results demonstrate that the cranial base and the facial complex exhibit different responses to different factors, which produces a little degree of morphological integration between them. Facial shape variation appears primarily influenced by body size and sexual dimorphism, whereas the cranial base is mostly influenced by functional factors. The different adaptations affecting the two modules suggest they are best studied as separate and independent units, and that-at least when dealing with Catarrhines-caution must be posed with the notion of strong cranial integration that is commonly invoked for the evolution of their skull shape. © 2017 Wiley Periodicals, Inc.
Device and method for skull-melting depth measurement
Lauf, R.J.; Heestand, R.L.
1993-02-09
A method of skull-melting comprises the steps of: (a) providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice connecting the interior and the underside; (b) disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; (c) providing a signal energy transducer in signal communication with the waveguide; (d) introducing into the vessel a molten working material; (e) carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; (f) activating the signal energy transducer so that a signal is propagated through the waveguide; and, (g) controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.
Device and method for skull-melting depth measurement
Lauf, Robert J.; Heestand, Richard L.
1993-01-01
A method of skull-melting comprises the steps of: a. providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice in connecting the interior and the underside; b. disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; c. providing a signal energy transducer in signal communication with the waveguide; d. introducing into the vessel a molten working material; e. carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; f. activating the signal energy transducer so that a signal is propagated through the waveguide; and, g. controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.
Morphological evaluation of clefts of the lip, palate, or both in dogs.
Peralta, Santiago; Fiani, Nadine; Kan-Rohrer, Kimi H; Verstraete, Frank J M
2017-08-01
OBJECTIVE To systematically characterize the morphology of cleft lip, cleft palate, and cleft lip and palate in dogs. ANIMALS 32 client-owned dogs with clefts of the lip (n = 5), palate (23), or both (4) that had undergone a CT or cone-beam CT scan of the head prior to any surgical procedures involving the oral cavity or face. PROCEDURES Dog signalment and skull type were recorded. The anatomic form of each defect was characterized by use of a widely used human oral-cleft classification system on the basis of CT findings and clinical images. Other defect morphological features, including shape, relative size, facial symmetry, and vomer involvement, were also recorded. RESULTS 9 anatomic forms of cleft were identified. Two anatomic forms were identified in the 23 dogs with cleft palate, in which differences in defect shape and size as well as vomer abnormalities were also evident. Seven anatomic forms were observed in 9 dogs with cleft lip or cleft lip and palate, and most of these dogs had incisive bone abnormalities and facial asymmetry. CONCLUSIONS AND CLINICAL RELEVANCE The morphological features of congenitally acquired cleft lip, cleft palate, and cleft lip and palate were complex and varied among dogs. The features identified here may be useful for surgical planning, developing of clinical coding schemes, or informing genetic, embryological, or clinical research into birth defects in dogs and other species.
[Clinical and ossification outcome of custom-made hydroxyapatite prothese for large skull defect].
Hardy, H; Tollard, E; Derrey, S; Delcampe, P; Péron, J-M; Fréger, P; Proust, F
2012-02-01
Cranioplasty is an everyday concern in neurosurgery, especially in decompressive craniectomy cases. Our surgical team uses custom-made hydroxyapatite implants for large and/or complex defects. Eight patients had a custom-made prosthesis. Each of them has been reviewed by an independent observer. Each patient described his feeling of satisfaction, using a questionnaire, graduated from "A" (really satisfied) to "D" (unsatisfied). Each of them also underwent a CT-scan (helicoidal acquisition, 0.6mm thick for multiplanar reconstruction) to evaluate qualitatively the ossification graduated from "0" (no ossification) to "5" (continuous ossification). Maximal under-prosthetic bone thickness, intra-prosthetic calcic density were also reported. Supervision delay was 43.7 months [6-99 months], average defect surface was 85.5 cm(2) [27.6-137.6 cm(2)], the craniectomy etiologies were intracranial hypertension (seven patients) and calvarial invasion (one patient). Implant tolerance was reparted in "A" score (50%) and "B" score (50%). Concerning ossification, six patients (75%) had a score of "2" or less and two patients had a score of "3" or "4". Hydroxyapatite custom-made implants for cranioplasty appear to be ideal for good aesthetic and tolerance results, but their ossification is hardly analyzed due to the prosthesis density higher than the bone's density. This is why we recommend them for children and in cases of complex defects such as pterion location. Copyright © 2011. Published by Elsevier Masson SAS.
Stapleton, Amanda L; Tyler-Kabara, Elizabeth C; Gardner, Paul A; Snyderman, Carl H; Wang, Eric W
2017-02-01
To determine the risk factors associated with cerebrospinal fluid (CSF) leak following endoscopic endonasal surgery (EES) for pediatric skull base lesions. Retrospective chart review of pediatric patients (ages 1 month to 18 years) treated for skull base lesions with EES from 1999 to 2014. Five pathologies were reviewed: craniopharyngioma, clival chordoma, pituitary adenoma, pituitary carcinoma, and Rathke's cleft cyst. Fisher's exact tests were used to evaluate the different factors to determine which had a statistically higher risk of leading to a post-operative CSF leak. 55 pediatric patients were identified who underwent 70 EES's for tumor resection. Of the 70 surgeries, 47 surgeries had intraoperative CSF leaks that were repaired at the time of surgery. 11 of 47 (23%) surgeries had post-operative CSF leaks that required secondary operative repair. Clival chordomas had the highest CSF leak rate at 36%. There was no statistical difference in leak rate based on the type of reconstruction, although 28% of cases that used a vascularized flap had a post-operative leak, whereas only 9% of those cases not using a vascularized flap had a leak. Post-operative hydrocephalus and perioperative use of a lumbar drain were not significant risk factors. Pediatric patients with an intra-operative CSF leak during EES of the skull base have a high rate of post-operative CSF leaks. Clival chordomas appear to be a particularly high-risk group. The use of vascularized flaps and perioperative lumbar drains did not statistically decrease the rate of post-operative CSF leak. Copyright © 2017 Elsevier B.V. All rights reserved.
The pioneering contribution of italian surgeons to skull base surgery.
Priola, Stefano M; Raffa, Giovanni; Abbritti, Rosaria V; Merlo, Lucia; Angileri, Filippo F; La Torre, Domenico; Conti, Alfredo; Germanò, Antonino; Tomasello, Francesco
2014-01-01
The origin of neurosurgery as a modern, successful, and separate branch of surgery could be dated back to the end of the 19th century. The most important development of surgery occurred in Europe, particularly in Italy, where there was a unique environment, allowing brilliant open-minded surgeons to perform, with success, neurosurgical operations. Neurosurgery began at the skull base. In everyday practice, we still pay tribute to early Italian neuroanatomists and pioneer neurosurgeons who represented a starting point in a new, obscure, and still challenging field of medicine and surgery during their times. In this paper, we report at a glance the contributions of Tito Vanzetti from Padua (1809-1888), for his operation on a destructive skull base cyst that had, indeed, an intracranial expansion; of Davide Giordano (1864-1954) from Venice, who described the first transnasal approach to the pituitary gland; and, most importantly, of Francesco Durante from Messina (1844-1934), who was the first surgeon in the history of neurosurgery to successfully remove a cranial base meningioma. They carried out the first detailed reported surgical excision of intracranial lesions at the skull base, diagnosed only through clinical signs; used many of the advances of the 19th century; and conceived and performed new operative strategies and approaches. Their operations were radical enough to allow the patient to survive the surgery and, in the case of Durante, for the first time, to obtain more than 12 years of good survival at a time when a tumor of this type would have been fatal. Copyright © 2014 Elsevier Inc. All rights reserved.
Lau, Tsz; Kaneko, Yuji; van Loveren, Harry; Borlongan, Cesario V.
2012-01-01
Moderate to severe traumatic brain injury (TBI) often results in malformations to the skull. Aesthetic surgical maneuvers may offer normalized skull structure, but inconsistent surgical closure of the skull area accompanies TBI. We examined whether wound closure by replacement of skull flap and bone wax would allow aesthetic reconstruction of the TBI-induced skull damage without causing any detrimental effects to the cortical tissue. Adult male Sprague-Dawley rats were subjected to TBI using the controlled cortical impact (CCI) injury model. Immediately after the TBI surgery, animals were randomly assigned to skull flap replacement with or without bone wax or no bone reconstruction, then were euthanized at five days post-TBI for pathological analyses. The skull reconstruction provided normalized gross bone architecture, but 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin staining results revealed larger cortical damage in these animals compared to those that underwent no surgical maneuver at all. Brain swelling accompanied TBI, especially the severe model, that could have relieved the intracranial pressure in those animals with no skull reconstruction. In contrast, the immediate skull reconstruction produced an upregulation of the edema marker aquaporin-4 staining, which likely prevented the therapeutic benefits of brain swelling and resulted in larger cortical infarcts. Interestingly, TBI animals introduced to a delay in skull reconstruction (i.e., 2 days post-TBI) showed significantly reduced edema and infarcts compared to those exposed to immediate skull reconstruction. That immediate, but not delayed, skull reconstruction may exacerbate TBI-induced cortical tissue damage warrants a careful consideration of aesthetic repair of the skull in TBI. PMID:22438975
Jiang, JingLe; Marathe, Amar R.; Keene, Jennifer C.; Taylor, Dawn M.
2016-01-01
Background Custom-fitted skull replacement pieces are often used after a head injury or surgery to replace damaged bone. Chronic brain recordings are beneficial after injury/surgery for monitoring brain health and seizure development. Embedding electrodes directly in these artificial skull replacement pieces would be a novel, low-risk way to perform chronic brain monitoring in these patients. Similarly, embedding electrodes directly in healthy skull would be a viable minimally-invasive option for many other neuroscience and neurotechnology applications requiring chronic brain recordings. New Method We demonstrate a preclinical testbed that can be used for refining electrode designs embedded in artificial skull replacement pieces or for embedding directly into the skull itself. Options are explored to increase the surface area of the contacts without increasing recording contact diameter to maximize recording resolution. Results Embedding electrodes in real or artificial skull allows one to lower electrode impedance without increasing the recording contact diameter by making use of conductive channels that extend into the skull. The higher density of small contacts embedded in the artificial skull in this testbed enables one to optimize electrode spacing for use in real bone. Comparison with Existing Methods For brain monitoring applications, skull-embedded electrodes fill a gap between electroencephalograms recorded on the scalp surface and the more invasive epidural or subdural electrode sheets. Conclusions Embedding electrodes into the skull or in skull replacement pieces may provide a safe, convenient, minimally-invasive alternative for chronic brain monitoring. The manufacturing methods described here will facilitate further testing of skull-embedded electrodes in animal models. PMID:27979758
Jiang, JingLe; Marathe, Amar R; Keene, Jennifer C; Taylor, Dawn M
2017-02-01
Custom-fitted skull replacement pieces are often used after a head injury or surgery to replace damaged bone. Chronic brain recordings are beneficial after injury/surgery for monitoring brain health and seizure development. Embedding electrodes directly in these artificial skull replacement pieces would be a novel, low-risk way to perform chronic brain monitoring in these patients. Similarly, embedding electrodes directly in healthy skull would be a viable minimally-invasive option for many other neuroscience and neurotechnology applications requiring chronic brain recordings. We demonstrate a preclinical testbed that can be used for refining electrode designs embedded in artificial skull replacement pieces or for embedding directly into the skull itself. Options are explored to increase the surface area of the contacts without increasing recording contact diameter to maximize recording resolution. Embedding electrodes in real or artificial skull allows one to lower electrode impedance without increasing the recording contact diameter by making use of conductive channels that extend into the skull. The higher density of small contacts embedded in the artificial skull in this testbed enables one to optimize electrode spacing for use in real bone. For brain monitoring applications, skull-embedded electrodes fill a gap between electroencephalograms recorded on the scalp surface and the more invasive epidural or subdural electrode sheets. Embedding electrodes into the skull or in skull replacement pieces may provide a safe, convenient, minimally-invasive alternative for chronic brain monitoring. The manufacturing methods described here will facilitate further testing of skull-embedded electrodes in animal models. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reish, O.; Berry, S.A.; King, R.A.
We report on a patient with duplication of 7p15{r_arrow}pter and review of the literature. Patients with partial duplication of the distal 7p, including only the distal segment 7p15{r_arrow}pter, have a syndrome comparable to that of patients with a larger or complete duplication of 7p. This suggests that the critical region for the dup(7p) phenotype is restricted to 7p15{r_arrow}pter. The complete clinical phenotype of dup (7)(p15{r_arrow}pter) includes mental retardation, skull anomalies, large anterior fontanel, cardiovascular defects, joint dislocation and contraction, and gastrointestinal and genital defects. Recognition of the clinical spectrum in patients with a smaller duplication 7p, and the assignment ofmore » this critical region, should prove valuable for accurate counseling, prediction of outcome, and further gene mapping. 33 refs., 3 figs., 2 tabs.« less
3D shape recovery of a newborn skull using thin-plate splines.
Lapeer, R J; Prager, R W
2000-01-01
The objective of this paper is to construct a mesh-model of a newborn skull for finite element analysis to study its deformation when subjected to the forces present during labour. The current state of medical imaging technology has reached a level which allows accurate visualisation and shape recovery of biological organs and body-parts. However, a sufficiently large set of medical images cannot always be obtained, often because of practical or ethical reasons, and the requirement to recover the shape of the biological object of interest has to be met by other means. Such is the case for a newborn skull. A method to recover the three-dimensional (3D) shape from (minimum) two orthogonal atlas images of the object of interest and a homologous object is described. This method is based on matching landmarks and curves on the orthogonal images of the object of interest with corresponding landmarks and curves on the homologous or 'master'-object which is fully defined in 3D space. On the basis of this set of corresponding landmarks, a thin-plate spline function can be derived to warp from the 'master'-object space to the 'slave'-object space. This method is applied to recover the 3D shape of a newborn skull. Images from orthogonal view-planes are obtained from an atlas. The homologous object is an adult skull, obtained from CT-images made available by the Visible Human Project. After shape recovery, a mesh-model of the newborn skull is generated.
Skull removal in MR images using a modified artificial bee colony optimization algorithm.
Taherdangkoo, Mohammad
2014-01-01
Removal of the skull from brain Magnetic Resonance (MR) images is an important preprocessing step required for other image analysis techniques such as brain tissue segmentation. In this paper, we propose a new algorithm based on the Artificial Bee Colony (ABC) optimization algorithm to remove the skull region from brain MR images. We modify the ABC algorithm using a different strategy for initializing the coordinates of scout bees and their direction of search. Moreover, we impose an additional constraint to the ABC algorithm to avoid the creation of discontinuous regions. We found that our algorithm successfully removed all bony skull from a sample of de-identified MR brain images acquired from different model scanners. The obtained results of the proposed algorithm compared with those of previously introduced well known optimization algorithms such as Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) demonstrate the superior results and computational performance of our algorithm, suggesting its potential for clinical applications.
Study on the criteria for assessing skull-face correspondence in craniofacial superimposition.
Ibáñez, Oscar; Valsecchi, Andrea; Cavalli, Fabio; Huete, María Isabel; Campomanes-Alvarez, Blanca Rosario; Campomanes-Alvarez, Carmen; Vicente, Ricardo; Navega, David; Ross, Ann; Wilkinson, Caroline; Jankauskas, Rimantas; Imaizumi, Kazuhiko; Hardiman, Rita; Jayaprakash, Paul Thomas; Ruiz, Elena; Molinero, Francisco; Lestón, Patricio; Veselovskaya, Elizaveta; Abramov, Alexey; Steyn, Maryna; Cardoso, Joao; Humpire, Daniel; Lusnig, Luca; Gibelli, Daniele; Mazzarelli, Debora; Gaudio, Daniel; Collini, Federica; Damas, Sergio
2016-11-01
Craniofacial superimposition has the potential to be used as an identification method when other traditional biological techniques are not applicable due to insufficient quality or absence of ante-mortem and post-mortem data. Despite having been used in many countries as a method of inclusion and exclusion for over a century it lacks standards. Thus, the purpose of this research is to provide forensic practitioners with standard criteria for analysing skull-face relationships. Thirty-seven experts from 16 different institutions participated in this study, which consisted of evaluating 65 criteria for assessing skull-face anatomical consistency on a sample of 24 different skull-face superimpositions. An unbiased statistical analysis established the most objective and discriminative criteria. Results did not show strong associations, however, important insights to address lack of standards were provided. In addition, a novel methodology for understanding and standardizing identification methods based on the observation of morphological patterns has been proposed. Crown Copyright © 2016. Published by Elsevier Ireland Ltd. All rights reserved.
Cho, Hanna; Kim, Jin Su; Choi, Jae Yong; Ryu, Young Hoon; Lyoo, Chul Hyoung
2014-01-01
We developed a new computed tomography (CT)-based spatial normalization method and CT template to demonstrate its usefulness in spatial normalization of positron emission tomography (PET) images with [(18)F] fluorodeoxyglucose (FDG) PET studies in healthy controls. Seventy healthy controls underwent brain CT scan (120 KeV, 180 mAs, and 3 mm of thickness) and [(18)F] FDG PET scans using a PET/CT scanner. T1-weighted magnetic resonance (MR) images were acquired for all subjects. By averaging skull-stripped and spatially-normalized MR and CT images, we created skull-stripped MR and CT templates for spatial normalization. The skull-stripped MR and CT images were spatially normalized to each structural template. PET images were spatially normalized by applying spatial transformation parameters to normalize skull-stripped MR and CT images. A conventional perfusion PET template was used for PET-based spatial normalization. Regional standardized uptake values (SUV) measured by overlaying the template volume of interest (VOI) were compared to those measured with FreeSurfer-generated VOI (FSVOI). All three spatial normalization methods underestimated regional SUV values by 0.3-20% compared to those measured with FSVOI. The CT-based method showed slightly greater underestimation bias. Regional SUV values derived from all three spatial normalization methods were correlated significantly (p < 0.0001) with those measured with FSVOI. CT-based spatial normalization may be an alternative method for structure-based spatial normalization of [(18)F] FDG PET when MR imaging is unavailable. Therefore, it is useful for PET/CT studies with various radiotracers whose uptake is expected to be limited to specific brain regions or highly variable within study population.
Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei
2016-01-01
Objective To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. Materials and Methods In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. Results The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. Conclusion The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon’s skills and knowledge, not as a substitute. PMID:26757365
Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei
2016-01-01
To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon's skills and knowledge, not as a substitute.
Aberrant growth of maxillary canine teeth in male babirusa (genus Babyrousa).
Macdonald, Alastair A
2018-04-01
A worldwide survey of babirusa skulls curated in museum and private collections located 431 that were from adult males and had retained at least one maxillary canine tooth. Eighty-three of these skulls were identified as exhibiting aberrant maxillary canine tooth growth. Twenty-four of the skulls represented babirusa from Buru and the Sula Islands, and forty-five skulls represented babirusa from Sulawesi and the Togian Islands. The remaining series of fourteen babirusa skulls originally came from zoo animals. Fifteen skulls showed anomalous alveolar and tooth rotation in a median plane. Twenty-nine skulls had maxillary canine teeth that did not grow symmetrically towards the median plane of the cranium. Fourteen skulls showed evidence that the tips of one or both maxillary canine teeth had eroded the nasal bones. Twenty-one skulls had maxillary canine teeth that had eroded the frontal bones. The teeth of two skulls had eroded a parietal bone. One skull had two maxillary canines arising from an adjacent pair of alveoli on the left side of the cranium. Three skulls exhibited alveoli with no formed maxillary canine teeth in them. Analysis suggested that approximately 12% of the adult male babirusa in the wild experience erosion of the cranial bony tissues as a result of maxillary canine tooth growth. There was no skeletal evidence that maxillary canine teeth penetrate the eye. Crown Copyright © 2018. Published by Elsevier Masson SAS. All rights reserved.
21 CFR 882.4460 - Neurosurgical head holder (skull clamp).
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Neurosurgical head holder (skull clamp). 882.4460... holder (skull clamp). (a) Identification. A neurosurgical head holder (skull clamp) is a device used to clamp the patient's skull to hold head and neck in a particular position during surgical procedures. (b...
21 CFR 882.4750 - Skull punch.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Skull punch. 882.4750 Section 882.4750 Food and... NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4750 Skull punch. (a) Identification. A skull punch is a device used to punch holes through a patient's skull to allow fixation of cranioplasty plates or...
21 CFR 882.4030 - Skull plate anvil.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Skull plate anvil. 882.4030 Section 882.4030 Food... DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4030 Skull plate anvil. (a) Identification. A skull plate anvil is a device used to form alterable skull plates in the proper shape to fit...
Lin, Ryan P; Weitzel, Erik Kent; Chen, Philip G; McMains, Kevin Christopher; Chang, Daniel R; Braxton, Ernest E; Majors, Jacob; Bunegin, Leon
2016-10-01
The objective of this study was to determine failure pressures of 6 rhinologic repair techniques of large skull base/dural defects in a controlled, ex vivo model. Failure pressures of 6 dural repairs in a porcine model were studied using a closed testing apparatus; 24-mm × 19-mm dural defects were created; 40-mm × 34-mm grafts composed of porcine Duragen (Integra), fascia lata, and Biodesign (Cook) were used either with or without Tisseel (Baxter International Inc.) to create 6 repairs: Duragen/no glue (D/NG), Duragen/Tisseel (D/T), fascia lata/no glue (FL/NG), fascia lata/Tisseel (FL/T), Biodesign/no glue (B/NG), and Biodesign/Tisseel (B/T). Saline was infused at 30 mL/hour, applying even force to the underside of the graft until repair failure. Five trials were performed per repair type for a total of 30 repairs. Mean failure pressures were as follows: D/NG 1.361 ± 0.169 cmH 2 O; D/T 9.127 ± 1.805 cmH 2 O; FL/NG 0.200 ± 0.109 cmH 2 O; FL/T 7.833 ± 2.657 cmH 2 O; B/NG 0.299 ± 0.109 cmH 2 O; and B/T 2.67 ± 0.619 cmH 2 O. There were statistically significant differences between glued (Tisseel) and non-glued repairs for each repair category (p < 0.05). All glued repairs performed better than non-glued repairs. Both D/T and FL/T repairs performed better than B/T repairs. No repair tolerated pressures throughout the full range of adult supine intracranial pressure. © 2016 ARS-AAOA, LLC.
Cipitria, Amaia; Boettcher, Kathrin; Schoenhals, Sophia; Garske, Daniela S; Schmidt-Bleek, Katharina; Ellinghaus, Agnes; Dienelt, Anke; Peters, Anja; Mehta, Manav; Madl, Christopher M; Huebsch, Nathaniel; Mooney, David J; Duda, Georg N
2017-09-15
In-situ tissue regeneration aims to utilize the body's endogenous healing capacity through the recruitment of host stem or progenitor cells to an injury site. Stromal cell-derived factor-1α (SDF-1α) is widely discussed as a potent chemoattractant. Here we use a cell-free biomaterial-based approach to (i) deliver SDF-1α for the recruitment of endogenous bone marrow-derived stromal cells (BMSC) into a critical-sized segmental femoral defect in rats and to (ii) induce hydrogel stiffness-mediated osteogenic differentiation in-vivo. Ionically crosslinked alginate hydrogels with a stiffness optimized for osteogenic differentiation were used. Fast-degrading porogens were incorporated to impart a macroporous architecture that facilitates host cell invasion. Endogenous cell recruitment to the defect site was successfully triggered through the controlled release of SDF-1α. A trend for increased bone volume fraction (BV/TV) and a significantly higher bone mineral density (BMD) were observed for gels loaded with SDF-1α, compared to empty gels at two weeks. A trend was also observed, albeit not statistically significant, towards matrix stiffness influencing BV/TV and BMD at two weeks. However, over a six week time-frame, these effects were insufficient for bone bridging of a segmental femoral defect. While mechanical cues combined with ex-vivo cell encapsulation have been shown to have an effect in the regeneration of less demanding in-vivo models, such as cranial defects of nude rats, they are not sufficient for a SDF-1α mediated in-situ regeneration approach in segmental femoral defects of immunocompetent rats, suggesting that additional osteogenic cues may also be required. Stromal cell-derived factor-1α (SDF-1α) is a chemoattractant used to recruit host cells for tissue regeneration. The concept that matrix stiffness can direct mesenchymal stromal cell (MSC) differentiation into various lineages was described a decade ago using in-vitro experiments. Recently, alginate hydrogels with an optimized stiffness and ex-vivo encapsulated MSCs were shown to have an effect in the regeneration of skull defects of nude rats. Here, we apply this material system, loaded with SDF-1α and without encapsulated MSCs, to (i) recruit endogenous cells and (ii) induce stiffness-mediated osteogenic differentiation in-vivo, using as model system a load-bearing femoral defect in immunocompetent rats. While a cell-free approach is of great interest from a translational perspective, the current limitations are described. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Contrast enhancement in EIT imaging of the brain.
Nissinen, A; Kaipio, J P; Vauhkonen, M; Kolehmainen, V
2016-01-01
We consider electrical impedance tomography (EIT) imaging of the brain. The brain is surrounded by the poorly conducting skull which has low conductivity compared to the brain. The skull layer causes a partial shielding effect which leads to weak sensitivity for the imaging of the brain tissue. In this paper we propose an approach based on the Bayesian approximation error approach, to enhance the contrast in brain imaging. With this approach, both the (uninteresting) geometry and the conductivity of the skull are embedded in the approximation error statistics, which leads to a computationally efficient algorithm that is able to detect features such as internal haemorrhage with significantly increased sensitivity and specificity. We evaluate the approach with simulations and phantom data.
Skull fractures may occur with head injuries. Although the skull is both tough and resilient and provides excellent ... or blow can result in fracture of the skull and may be accompanied by injury to the ...
Paleoneurosurgical aspects of Proto-Bulgarian artificial skull deformations.
Enchev, Yavor; Nedelkov, Grigoriy; Atanassova-Timeva, Nadezhda; Jordanov, Jordan
2010-12-01
Paleoneurosurgery represents a comparatively new developing direction of neurosurgery dealing with archaeological skull and spine finds and studying their neurosurgical aspects. Artificial skull deformation, as a bone artifact, naturally has been one of the main paleoneurosurgical research topics. Traditionally, the relevant neurosurgical literature has analyzed in detail the intentional skull deformations in South America's tribes. However, little is known about the artificial skull deformations of the Proto-Bulgarians, and what information exists is mostly due to anthropological studies. The Proto-Bulgarians originated from Central Asia, and distributed their skull deformation ritual on the Balkan Peninsula by their migration and domination. Proto-Bulgarian artificial skull deformation was an erect or oblique form of the anular type, and was achieved by 1 or 2 pressure bandages that were tightened around a newborn's head for a sufficiently long period. The intentional skull deformation in Proto-Bulgarians was not associated with neurological deficits and/or mental retardation. No indirect signs of chronic elevated intracranial pressure were found on the 3D CT reconstruction of the artificially deformed skulls.
Al Kaissi, Ali; Ben Chehida, Farid; Ben Ghachem, Maher; Klaushofer, Klaus; Grill, Franz
2008-06-01
A study on a pair of male sibs to reach for the etiological understanding of unusual skull base/spine maldevelopment. Previously, radiographs alone were used to formulate this diagnosis. Here, three-dimensional computed tomography (3D CT) studies further clarified the typical diagnostic findings associated with spondylocostal dysostosis (SCD). Interestingly, patients with SCD are at increased risk for diffuse skull base/cervical fusion syndromes and can result in severe neurologic deficits associated with any degree of trauma. Classically SCD is defined as a skeletal dysplasia with clinical and radiologic manifestations, consisting of short neck and trunk, nonprogressive scoliosis and abnormalities of vertebral segmentation and of the ribs. Radiograms have been adopted as the only modality for the classification and prognostication of patients with SCD. Detailed clinical and radiographic examinations were undertaken with emphasis on the significance of the 3D CT scanning. We observed extensive fusion of the clivus with the cervical/entire spine, resulting in a remarkable solid, immobile, and fixed bony ankylosis of extremely serious outcome. Patients with spondylcostal dysostosis are predisposed to develop extensive skull-base-cervical spine fusion. The latter might lead to the development of a solid, immobile, and fixed bony ankylosis. In children/adults trivial injuries and/or high-energy trauma can lead to serious intracranial and spinal cord injury. Comprehensive orthopedic and neurosurgeons management must follow the recognition of these anomalies. To the best of our knowledge, no previous CT studies of the spine have been published in patients with SCD.
A clinical pilot study of a modular video-CT augmentation system for image-guided skull base surgery
NASA Astrophysics Data System (ADS)
Liu, Wen P.; Mirota, Daniel J.; Uneri, Ali; Otake, Yoshito; Hager, Gregory; Reh, Douglas D.; Ishii, Masaru; Gallia, Gary L.; Siewerdsen, Jeffrey H.
2012-02-01
Augmentation of endoscopic video with preoperative or intraoperative image data [e.g., planning data and/or anatomical segmentations defined in computed tomography (CT) and magnetic resonance (MR)], can improve navigation, spatial orientation, confidence, and tissue resection in skull base surgery, especially with respect to critical neurovascular structures that may be difficult to visualize in the video scene. This paper presents the engineering and evaluation of a video augmentation system for endoscopic skull base surgery translated to use in a clinical study. Extension of previous research yielded a practical system with a modular design that can be applied to other endoscopic surgeries, including orthopedic, abdominal, and thoracic procedures. A clinical pilot study is underway to assess feasibility and benefit to surgical performance by overlaying CT or MR planning data in realtime, high-definition endoscopic video. Preoperative planning included segmentation of the carotid arteries, optic nerves, and surgical target volume (e.g., tumor). An automated camera calibration process was developed that demonstrates mean re-projection accuracy (0.7+/-0.3) pixels and mean target registration error of (2.3+/-1.5) mm. An IRB-approved clinical study involving fifteen patients undergoing skull base tumor surgery is underway in which each surgery includes the experimental video-CT system deployed in parallel to the standard-of-care (unaugmented) video display. Questionnaires distributed to one neurosurgeon and two otolaryngologists are used to assess primary outcome measures regarding the benefit to surgical confidence in localizing critical structures and targets by means of video overlay during surgical approach, resection, and reconstruction.
Das, Subinoy; Maeso, Patricia A; Figueroa, Ramon E; Senior, Brent A; Delgaudio, John M; Sillers, Michael J; Schlosser, Rod J; Kountakis, Stilianos E
2008-01-01
This study was performed to assess the feasibility of using intraoperative computed tomography (CT) to provide real-time updates to image guidance systems (IGSs) during surgery. The xCAT ENT portable intraoperative CT scanner (Xoran Technologies, Ann Arbor, MI) was used to acquire scans before, midway, and at the end of six cadaver dissections during the Southern States Rhinology Course, Augusta, GA, in October 2006. These scans were used to recalibrate three different IGSs used during the dissection. Time measurements were recorded and dosimetry was obtained from the cornea, sphenoid sinus (near the optic chiasm), and from the operative field during acquisition of the images. IGS accuracy was determined at the skull base and lamina papyracea. Surgeons were interviewed on benefits of real-time updates to the IGS after completion of dissections. The xCAT ENT scanner was compatible with all three IGS platforms. The average time to update the IGS was 13 minutes. Radiation doses to the cornea were 620 mrad per scan, and optic chiasm was 800 mrad/scan. The accuracy at the anterior skull base improved from 1.58 to 0.62 mm (p=0.026). The accuracy at the posterior skull base improved from 1.46 to 0.71 mm (p=0.014). The accuracy at the lamina was not significantly changed. Intraoperative portable CT scanning with real-time IGS updates is feasible and likely would add little additional time. Accuracy is improved at the skull base. Prospective studies on actual patients are warranted.
Required Reading: The Most Impactful Articles in Endoscopic Endonasal Skull Base Surgery.
Zhang, Michael; Singh, Harminder; Almodovar-Mercado, Gustavo J; Anand, Vijay K; Schwartz, Theodore H
2016-08-01
Endoscopic endonasal skull base surgery has become widely accepted in neurosurgery and otolaryngology over the last 15 years. However, there has yet to be a formal curation of the most impactful articles for an introductory curriculum to its technical evolution. The Science Citation Index Expanded was used to generate a citation rank list (October 2015) on articles relevant to endoscopic skull base surgery. The top 35 cited articles overall, as well as the top 15 since 2009, were identified. Journal, year, author, study population, article format, and level of evidence were compiled. Additional surgeon experts were polled and made recommendations for significant contributions to the literature. The top 35 publications ranged from 98 to 467 citations and were published in 10 different journals. Four articles had more than 250 citations. A period of frequent contribution occurred between 2005 and 2009, when 21/35 reports were published. 18/35 articles were case series, and 13/35 were technical reports. There were 11/35 articles focused primarily on pituitary surgery and 10/35 on extrasellar lesions. The top 15 articles since 2009 had 8/15 articles focused on extrasellar lesions. Polled surgeons consistently identified the most prominently cited articles, and their recommendations drew attention to cerebrospinal fluid leak as well as extrasellar management. Identification of the most cited works within endoscopic endonasal skull base surgery shows greater anatomic access and safety over the last 2 decades. These articles can serve as an educational tool for novices or midlevel practitioners wishing to obtain a greater understanding of the field. Copyright © 2016 Elsevier Inc. All rights reserved.
Robust Skull-Stripping Segmentation Based on Irrational Mask for Magnetic Resonance Brain Images.
Moldovanu, Simona; Moraru, Luminița; Biswas, Anjan
2015-12-01
This paper proposes a new method for simple, efficient, and robust removal of the non-brain tissues in MR images based on an irrational mask for filtration within a binary morphological operation framework. The proposed skull-stripping segmentation is based on two irrational 3 × 3 and 5 × 5 masks, having the sum of its weights equal to the transcendental number π value provided by the Gregory-Leibniz infinite series. It allows maintaining a lower rate of useful pixel loss. The proposed method has been tested in two ways. First, it has been validated as a binary method by comparing and contrasting with Otsu's, Sauvola's, Niblack's, and Bernsen's binary methods. Secondly, its accuracy has been verified against three state-of-the-art skull-stripping methods: the graph cuts method, the method based on Chan-Vese active contour model, and the simplex mesh and histogram analysis skull stripping. The performance of the proposed method has been assessed using the Dice scores, overlap and extra fractions, and sensitivity and specificity as statistical methods. The gold standard has been provided by two neurologist experts. The proposed method has been tested and validated on 26 image series which contain 216 images from two publicly available databases: the Whole Brain Atlas and the Internet Brain Segmentation Repository that include a highly variable sample population (with reference to age, sex, healthy/diseased). The approach performs accurately on both standardized databases. The main advantage of the proposed method is its robustness and speed.
Shkarubo, A N; Ogurtsova, A A; Moshchev, D A; Lubnin, A Yu; Andreev, D N; Koval', K V; Chernov, I V
2016-01-01
Intraoperative identification of the cranial nerves is a useful technique in removal of skull base tumors through the endoscopic endonasal approach. Searching through the scientific literature found one pilot study on the use of triggered electromyography (t-EMG) for identification of the VIth nerve in endonasal endoscopic surgery of skull base tumors (D. San-Juan, et al, 2014). The study objective was to prevent iatrogenic injuries to the cranial nerves without reducing the completeness of tumor tissue resection. In 2014, 5 patients were operated on using the endoscopic endonasal approach. Surgeries were performed for large skull base chordomas (2 cases) and trigeminal nerve neurinomas located in the cavernous sinus (3). Intraoperatively, identification of the cranial nerves was performed by triggered electromyography using a bipolar electrode (except 1 case of chordoma where a monopolar electrode was used). Evaluation of the functional activity of the cranial nerves was carried out both preoperatively and postoperatively. Tumor resection was total in 4 out of 5 cases and subtotal (chordoma) in 1 case. Intraoperatively, the IIIrd (2 patients), Vth (2), and VIth (4) cranial nerves were identified. No deterioration in the function of the intraoperatively identified nerves was observed in the postoperative period. In one case, no responses from the VIth nerve on the right (in the cavernous sinus region) were intraoperatively obtained, and deep paresis (up to plegia) of the nerve-innervated muscles developed in the postoperative period. The nerve function was not impaired before surgery. The t-EMG technique is promising and requires further research.
X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... Chernecky CC, Berger BJ. Radiography of skull, chest, and cervical spine - diagnostic. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. ...
Murphy, Ryan J.; Basafa, Ehsan; Hashemi, Sepehr; Grant, Gerald T.; Liacouras, Peter; Susarla, Srinivas M.; Otake, Yoshito; Santiago, Gabriel; Armand, Mehran; Gordon, Chad R.
2016-01-01
Background The aesthetic and functional outcomes surrounding Le Fort–based, face-jaw-teeth transplantation have been suboptimal, often leading to posttransplant class II/III skeletal profiles, palatal defects, and “hybrid malocclusion.” Therefore, a novel technology—real-time cephalometry—was developed to provide the surgical team instantaneous, intraoperative knowledge of three-dimensional dentoskeletal parameters. Methods Mock face-jaw-teeth transplantation operations were performed on plastic and cadaveric human donor/recipient pairs (n = 2). Preoperatively, cephalometric landmarks were identified on donor/recipient skeletons using segmented computed tomographic scans. The computer-assisted planning and execution workstation tracked the position of the donor face-jaw-teeth segment in real time during the placement/inset onto recipient, reporting pertinent hybrid cephalometric parameters from any movement of donor tissue. The intraoperative data measured through real-time cephalometry were compared to posttransplant measurements for accuracy assessment. In addition, posttransplant cephalometric relationships were compared to planned outcomes to determine face-jaw-teeth transplantation success. Results Compared with postoperative data, the real-time cephalometry–calculated intraoperative measurement errors were 1.37 ± 1.11 mm and 0.45 ± 0.28 degrees for the plastic skull and 2.99 ± 2.24 mm and 2.63 ± 1.33 degrees for the human cadaver experiments. These results were comparable to the posttransplant relations to planned outcome (human cadaver experiment, 1.39 ± 1.81 mm and 2.18 ± 1.88 degrees; plastic skull experiment, 1.06 ± 0.63 mm and 0.53 ± 0.39 degrees). Conclusion Based on this preliminary testing, real-time cephalometry may be a valuable adjunct for adjusting and measuring “hybrid occlusion” in face-jaw-teeth transplantation and other orthognathic surgical procedures. PMID:26218382
[Microsurgical removal of olfactory groove meningiomas].
Liang, Ri-Sheng; Zhou, Liang-Fu; Mao, Ying; Zhang, Rong; Yang, Wei-Zhong
2011-01-01
To explore an effective method for further improving the surgical results of treatment of olfactory groove meningiomas. Sixty seven cases of olfactory groove meningiomas were treated by microneurosurgery, among which fifty seven were de novo cases, eight were recurrent tumors and the other two re-recurrent cases. Modified Derome approach was used in 12 cases, bilateral subfrontal approach in 28 cases, modified pterional approach in 21 cases and unilateral subfrontal approach in six cases. Tumors were resected microsurgically with radical removal of invaded dura, bone, and paranasal sinus mucosa. Reconstruction was performed in patients with skull base defect. Simpson grade I removal was accomplished in 59 cases, grade II in seven cases and grade IV in one case. Among 57 patients with de novo tumor, Simpson I resection was accomplished in 54 cases. Postoperative rhinorrhea and intracranial infection occurred in one case and was cured after temporal lumbar CSF drainage and antibiotic therapy. Two patients (2.9%) died within one month after operation, i.e.one aged patient of heart failure and the other of severe hypothalamus complication. Forty seven patients (72.3%) were followed up from one to ten years with an average of five years and four months. With the exception of two cases died, among the alive 45 patients, there were only three patients with tumor recurrence, which had undergone Simpson II or IV tumor resection. No recurrence was found in cases with Simpson I tumor removal. Previous blurred vision was not improved in three patients, hemiparalysis in two patients, and the other patients recovered well, resuming previous jobs or being able to take care themselves. Total tumor removal (Simpson I) should be the surgical goal for treatment of olfactory groove meningiomas, especially for de novo cases. An appropriate approach is fundamental in the effort to remove an OGM totally. Appropriate anterior skull base reconstruction with vascularized material is important and mandatory.
A large, switchable optical clearing skull window for cerebrovascular imaging
Zhang, Chao; Feng, Wei; Zhao, Yanjie; Yu, Tingting; Li, Pengcheng; Xu, Tonghui; Luo, Qingming; Zhu, Dan
2018-01-01
Rationale: Intravital optical imaging is a significant method for investigating cerebrovascular structure and function. However, its imaging contrast and depth are limited by the turbid skull. Tissue optical clearing has a great potential for solving this problem. Our goal was to develop a transparent skull window, without performing a craniotomy, for use in assessing cerebrovascular structure and function. Methods: Skull optical clearing agents were topically applied to the skulls of mice to create a transparent window within 15 min. The clearing efficacy, repeatability, and safety of the skull window were then investigated. Results: Imaging through the optical clearing skull window enhanced both the contrast and the depth of intravital imaging. The skull window could be used on 2-8-month-old mice and could be expanded from regional to bi-hemispheric. In addition, the window could be repeatedly established without inducing observable inflammation and metabolic toxicity. Conclusion: We successfully developed an easy-to-handle, large, switchable, and safe optical clearing skull window. Combined with various optical imaging techniques, cerebrovascular structure and function can be observed through this optical clearing skull window. Thus, it has the potential for use in basic research on the physiopathologic processes of cortical vessels. PMID:29774069
Dixon, Benjamin J; Daly, Michael J; Chan, Harley; Vescan, Allan; Witterick, Ian J; Irish, Jonathan C
2014-04-01
Image-guided surgery (IGS) systems are frequently utilized during cranial base surgery to aid in orientation and facilitate targeted surgery. We wished to assess the performance of our recently developed localized intraoperative virtual endoscopy (LIVE)-IGS prototype in a preclinical setting prior to deployment in the operating room. This system combines real-time ablative instrument tracking, critical structure proximity alerts, three-dimensional virtual endoscopic views, and intraoperative cone-beam computed tomographic image updates. Randomized-controlled trial plus qualitative analysis. Skull base procedures were performed on 14 cadaver specimens by seven fellowship-trained skull base surgeons. Each subject performed two endoscopic transclival approaches; one with LIVE-IGS and one using a conventional IGS system in random order. National Aeronautics and Space Administration Task Load Index (NASA-TLX) scores were documented for each dissection, and a semistructured interview was recorded for qualitative assessment. The NASA-TLX scores for mental demand, effort, and frustration were significantly reduced with the LIVE-IGS system in comparison to conventional navigation (P < .05). The system interface was judged to be intuitive and most useful when there was a combination of high spatial demand, reduced or absent surface landmarks, and proximity to critical structures. The development of auditory icons for proximity alerts during the trial better informed the surgeon while limiting distraction. The LIVE-IGS system provided accurate, intuitive, and dynamic feedback to the operating surgeon. Further refinements to proximity alerts and visualization settings will enhance orientation while limiting distraction. The system is currently being deployed in a prospective clinical trial in skull base surgery. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
Huempfner-Hierl, Heike; Bohne, Alexander; Wollny, Gert; Sterker, Ina; Hierl, Thomas
2015-10-01
Clinical studies report on vision impairment after blunt frontal head trauma. A possible cause is damage to the optic nerve bundle within the optic canal due to microfractures of the anterior skull base leading to indirect traumatic optic neuropathy. A finite element study simulating impact forces on the paramedian forehead in different grades was initiated. The set-up consisted of a high-resolution skull model with about 740 000 elements, a blunt impactor and was solved in a transient time-dependent simulation. Individual bone material parameters were calculated for each volume element to increase realism. Results showed stress propagation from the frontal impact towards the optic foramen and the chiasm even at low-force fist-like impacts. Higher impacts produced stress patterns corresponding to typical fracture patterns of the anterior skull base including the optic canal. Transient simulation discerned two stress peaks equalling oscillation. It can be concluded that even comparatively low stresses and oscillation in the optic foramen may cause micro damage undiscerned by CT or MRI explaining consecutive vision loss. Higher impacts lead to typical comminuted fractures, which may affect the integrity of the optic canal. Finite element simulation can be effectively used in studying head trauma and its clinical consequences. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Skull base osteomyelitis: current microbiology and management.
Spielmann, P M; Yu, R; Neeff, M
2013-01-01
Skull base osteomyelitis typically presents in an immunocompromised patient with severe otalgia and otorrhoea. Pseudomonas aeruginosa is the commonest pathogenic micro-organism, and reports of resistance to fluoroquinolones are now emerging, complicating management. We reviewed our experience of this condition, and of the local pathogenic organisms. A retrospective review from 2004 to 2011 was performed. Patients were identified by their admission diagnostic code, and computerised records examined. Twenty patients were identified. A facial palsy was present in 12 patients (60 per cent). Blood cultures were uniformly negative, and culture of ear canal granulations was non-diagnostic in 71 per cent of cases. Pseudomonas aeruginosa was isolated in only 10 (50 per cent) cases; one strain was resistant to ciprofloxacin but all were sensitive to ceftazidime. Two cases of fungal skull base osteomyelitis were identified. The mortality rate was 15 per cent. The patients' treatment algorithm is presented. Our treatment algorithm reflects the need for multidisciplinary input, early microbial culture of specimens, appropriate imaging, and prolonged and systemic antimicrobial treatment. Resolution of infection must be confirmed by close follow up and imaging.
Thermal Model to Investigate the Temperature in Bone Grinding for Skull Base Neurosurgery
Zhang, Lihui; Tai, Bruce L.; Wang, Guangjun; Zhang, Kuibang; Sullivan, Stephen; Shih, Albert J.
2013-01-01
This study develops a thermal model utilizing the inverse heat transfer method (IHTM) to investigate the bone grinding temperature created by a spherical diamond tool used for skull base neurosurgery. Bone grinding is a critical procedure in the expanded endonasal approach to remove the cranial bone and access to the skull base tumor via nasal corridor. The heat is generated during grinding and could damage the nerve or coagulate the blood in the carotid artery adjacent to the bone. The finite element analysis is adopted to investigate the grinding-induced bone temperature rise. The heat source distribution is defined by the thermal model, and the temperature distribution is solved using the IHTM with experimental inputs. Grinding experiments were conducted on a bovine cortical bone with embedded thermocouples. Results show significant temperature rise in bone grinding. Using 50°C as the threshold, the thermal injury can propagate about 3 mm in the traverse direction, and 3 mm below the ground surface under the dry grinding condition. The presented methodology demonstrated the capability of being a thermal analysis tool for bone grinding study. PMID:23683875
Rowe, Steven P; Zinreich, S James; Fishman, Elliot K
2018-06-01
Three-dimensional (3D) visualizations of volumetric data from CT have gained widespread clinical acceptance and are an important method for evaluating complex anatomy and pathology. Recently, cinematic rendering (CR), a new 3D visualization methodology, has become available. CR utilizes a lighting model that allows for the production of photorealistic images from isotropic voxel data. Given how new this technique is, studies to evaluate its clinical utility and any potential advantages or disadvantages relative to other 3D methods such as volume rendering have yet to be published. In this pictorial review, we provide examples of normal calvarial, maxillofacial, and skull base anatomy and pathological conditions that highlight the potential for CR images to aid in patient evaluation and treatment planning. The highly detailed images and nuanced shadowing that are intrinsic to CR are well suited to the display of the complex anatomy in this region of the body. We look forward to studies with CR that will ascertain the ultimate value of this methodology to evaluate calvarium, maxillofacial, and skull base morphology as well as other complex anatomic structures.
Abdul Jalil, Muhammad Fahmi; Story, Rowan D; Rogers, Myron
2017-05-01
Minimally invasive approaches to the central skull base have been popularized over the last decade and have to a large extent displaced 'open' procedures. However, traditional skull base surgery still has its role especially when dealing with a large clival chordoma where maximal surgical resection is the principal goal to maximize patient survival. In this paper, we present a case of a 25year-old male patient with chordoma in the inferior clivus which was initially debulked via a transnasal endoscopic approach. He unfortunately had a large recurrence of tumor requiring re-do resection. With the aim to achieve maximal surgical resection, we then chose the technique of a transoral approach with Le Fort 1 maxillotomy and midline palatal split. Post-operative course for the patient was uneventful and post-operative MRI confirmed significant debulking of the clival lesion. The technique employed for the surgical procedure is presented here in detail as is our experience over two decades using this technique for tumors, inflammatory lesions and congenital abnormalities at the cranio-cervical junction. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Giant Pliosaurid Skull from the Late Jurassic of England
Benson, Roger B. J.; Evans, Mark; Smith, Adam S.; Sassoon, Judyth; Moore-Faye, Scott; Ketchum, Hilary F.; Forrest, Richard
2013-01-01
Pliosaurids were a long-lived and cosmopolitan group of marine predators that spanned 110 million years and occupied the upper tiers of marine ecosystems from the Middle Jurassic until the early Late Cretaceous. A well-preserved giant pliosaurid skull from the Late Jurassic Kimmeridge Clay Formation of Dorset, United Kingdom, represents a new species, Pliosaurus kevani. This specimen is described in detail, and the taxonomy and systematics of Late Jurassic pliosaurids is revised. We name two additional new species, Pliosaurus carpenteri and Pliosaurus westburyensis, based on previously described relatively complete, well-preserved remains. Most or all Late Jurassic pliosaurids represent a globally distributed monophyletic group (the genus Pliosaurus, excluding ‘Pliosaurus’ andrewsi). Despite its high species diversity, and geographically widespread, temporally extensive occurrence, Pliosaurus shows relatively less morphological and ecological variation than is seen in earlier, multi-genus pliosaurid assemblages such as that of the Middle Jurassic Oxford Clay Formation. It also shows less ecological variation than the pliosaurid-like Cretaceous clade Polycotylidae. Species of Pliosaurus had robust skulls, large body sizes (with skull lengths of 1.7–2.1 metres), and trihedral or subtrihedral teeth suggesting macropredaceous habits. Our data support a trend of decreasing length of the mandibular symphysis through Late Jurassic time, as previously suggested. This may be correlated with increasing adaptation to feeding on large prey. Maximum body size of pliosaurids increased from their first appearance in the Early Jurassic until the Early Cretaceous (skull lengths up to 2360 mm). However, some reduction occurred before their final extinction in the early Late Cretaceous (skull lengths up to 1750 mm). PMID:23741520
Borghi, Alessandro; Rodgers, Will; Schievano, Silvia; Ponniah, Allan; Jeelani, Owase; Dunaway, David
2018-01-01
Treatment of unicoronal craniosynostosis is a surgically challenging problem, due to the involvement of coronal suture and cranial base, with complex asymmetries of the calvarium and orbit. Several techniques for correction have been described, including surgical bony remodeling, early strip craniotomy with orthotic helmet remodeling and distraction. Current distraction devices provide unidirectional forces and have had very limited success. Nitinol is a shape memory alloy that can be programmed to the shape of a patient-specific anatomy by means of thermal treatment.In this work, a methodology to produce a nitinol patient-specific distractor is presented: computer tomography images of a 16-month-old patient with unicoronal craniosynostosis were processed to create a 3-dimensional model of his skull and define the ideal shape postsurgery. A mesh was produced from a nitinol sheet, formed to the ideal skull shape and heat treated to be malleable at room temperature. The mesh was afterward deformed to be attached to a rapid prototyped plastic skull, replica of the patient initial anatomy. The mesh/skull construct was placed in hot water to activate the mesh shape memory property: the deformed plastic skull was computed tomography scanned for comparison of its shape with the initial anatomy and with the desired shape, showing that the nitinol mesh had been able to distract the plastic skull to a shape close to the desired one.The shape-memory properties of nitinol allow for the design and production of patient-specific devices able to deliver complex, preprogrammable shape changes.
Nowinski, Wieslaw L; Thaung, Thant Shoon Let; Chua, Beng Choon; Yi, Su Hnin Wut; Ngai, Vincent; Yang, Yili; Chrzan, Robert; Urbanik, Andrzej
2015-05-15
Although the adult human skull is a complex and multifunctional structure, its 3D, complete, realistic, and stereotactic atlas has not yet been created. This work addresses the construction of a 3D interactive atlas of the adult human skull spatially correlated with the brain, cranial nerves, and intracranial vasculature. The process of atlas construction included computed tomography (CT) high-resolution scan acquisition, skull extraction, skull parcellation, 3D disarticulated bone surface modeling, 3D model simplification, brain-skull registration, 3D surface editing, 3D surface naming and color-coding, integration of the CT-derived 3D bony models with the existing brain atlas, and validation. The virtual skull model created is complete with all 29 bones, including the auditory ossicles (being among the smallest bones). It contains all typical bony features and landmarks. The created skull model is superior to the existing skull models in terms of completeness, realism, and integration with the brain along with blood vessels and cranial nerves. This skull atlas is valuable for medical students and residents to easily get familiarized with the skull and surrounding anatomy with a few clicks. The atlas is also useful for educators to prepare teaching materials. It may potentially serve as a reference aid in the reading and operating rooms. Copyright © 2015 Elsevier B.V. All rights reserved.
Modelling and Experiment Based on a Navigation System for a Cranio-Maxillofacial Surgical Robot.
Duan, Xingguang; Gao, Liang; Wang, Yonggui; Li, Jianxi; Li, Haoyuan; Guo, Yanjun
2018-01-01
In view of the characteristics of high risk and high accuracy in cranio-maxillofacial surgery, we present a novel surgical robot system that can be used in a variety of surgeries. The surgical robot system can assist surgeons in completing biopsy of skull base lesions, radiofrequency thermocoagulation of the trigeminal ganglion, and radioactive particle implantation of skull base malignant tumors. This paper focuses on modelling and experimental analyses of the robot system based on navigation technology. Firstly, the transformation relationship between the subsystems is realized based on the quaternion and the iterative closest point registration algorithm. The hand-eye coordination model based on optical navigation is established to control the end effector of the robot moving to the target position along the planning path. The closed-loop control method, "kinematics + optics" hybrid motion control method, is presented to improve the positioning accuracy of the system. Secondly, the accuracy of the system model was tested by model experiments. And the feasibility of the closed-loop control method was verified by comparing the positioning accuracy before and after the application of the method. Finally, the skull model experiments were performed to evaluate the function of the surgical robot system. The results validate its feasibility and are consistent with the preoperative surgical planning.
Modelling and Experiment Based on a Navigation System for a Cranio-Maxillofacial Surgical Robot
Duan, Xingguang; Gao, Liang; Li, Jianxi; Li, Haoyuan; Guo, Yanjun
2018-01-01
In view of the characteristics of high risk and high accuracy in cranio-maxillofacial surgery, we present a novel surgical robot system that can be used in a variety of surgeries. The surgical robot system can assist surgeons in completing biopsy of skull base lesions, radiofrequency thermocoagulation of the trigeminal ganglion, and radioactive particle implantation of skull base malignant tumors. This paper focuses on modelling and experimental analyses of the robot system based on navigation technology. Firstly, the transformation relationship between the subsystems is realized based on the quaternion and the iterative closest point registration algorithm. The hand-eye coordination model based on optical navigation is established to control the end effector of the robot moving to the target position along the planning path. The closed-loop control method, “kinematics + optics” hybrid motion control method, is presented to improve the positioning accuracy of the system. Secondly, the accuracy of the system model was tested by model experiments. And the feasibility of the closed-loop control method was verified by comparing the positioning accuracy before and after the application of the method. Finally, the skull model experiments were performed to evaluate the function of the surgical robot system. The results validate its feasibility and are consistent with the preoperative surgical planning. PMID:29599948
Pubertal neurocranium growth in thymectomized rats.
Rino, W; Teixeira, D
1979-01-01
Differences in neurocranium growth at puberty were studied in rats of both sexes thymectomized and sham-thymectomized at 2, 4, 6, 8, 10, 12 and 14 days of age and in controls of matched age and sex; skull length, width and height, and skull base length and face length were measured. The neurocranium of the thymectomized rats was significantly smaller than that of the sham-thymectomized and control rats of both sexes and in all age-groups.
Kempińska-Podhorodecka, Agnieszka; Knap, Oktawian; Parafiniuk, Mirosław
2007-01-01
During excavation works carried in the Old Town by the Archaeological Museum in Gdańsk, human remains were found which date back to the turn of the 12th and 13th centuries. On the basis of Gdańsk townsmen's skulls, Forensic Medicine Department, Pomeranian Medical University (PAM) performed the skull based face reconstruction of 8 individuals. In this study, we wanted to present possibilities of using Gierasimow reconstruction method for museum goals. Reconstruction is an anthropological method which aims at reconstructing bony elements of a skull and head soft tissue. The most commonly employed modern way of reconstruction is Gierasimow's method which is based on the observation of soft tissue thickness and its dependence on the form and level of development of different skull areas. Standards for tissue thickness were elaborated for various points (along the profile and transverse sections); they were based on the examination of soft tissue thickness performed on the corpse (for each sex separately). Deviations from the standards result from racial affiliation, age, and the level of development of adequate skull areas. The research scheme includes determination of sex and age, and collection of the detailed craniometrical and cranioscopic data with comprehensive description of the features which can affect the appearance of soft parts. After relevant measurements are done, the muscles are modeled. During the following stage, soft tissue thickness is marked in particular points as stalks and ridges. Next they are joined together to achieve the final effect of reconstruction. From this moment, finishing works are continued by a sculptor in cooperation with an anthropologist. The results of research conducted by anthropologists, anatomists, morphologists, physicians and criminologists are of great importance and they convey both cognitive and practical meaning. Reconstructions appeal to human imagination, and for that reason they are also addressed to non-professional audience.
Curtis, Neil; Jones, Marc E. H.; Shi, Junfen; O'Higgins, Paul; Evans, Susan E.; Fagan, Michael J.
2011-01-01
The vertebrate skull evolved to protect the brain and sense organs, but with the appearance of jaws and associated forces there was a remarkable structural diversification. This suggests that the evolution of skull form may be linked to these forces, but an important area of debate is whether bone in the skull is minimised with respect to these forces, or whether skulls are mechanically “over-designed” and constrained by phylogeny and development. Mechanical analysis of diapsid reptile skulls could shed light on this longstanding debate. Compared to those of mammals, the skulls of many extant and extinct diapsids comprise an open framework of fenestrae (window-like openings) separated by bony struts (e.g., lizards, tuatara, dinosaurs and crocodiles), a cranial form thought to be strongly linked to feeding forces. We investigated this link by utilising the powerful engineering approach of multibody dynamics analysis to predict the physiological forces acting on the skull of the diapsid reptile Sphenodon. We then ran a series of structural finite element analyses to assess the correlation between bone strain and skull form. With comprehensive loading we found that the distribution of peak von Mises strains was particularly uniform throughout the skull, although specific regions were dominated by tensile strains while others were dominated by compressive strains. Our analyses suggest that the frame-like skulls of diapsid reptiles are probably optimally formed (mechanically ideal: sufficient strength with the minimal amount of bone) with respect to functional forces; they are efficient in terms of having minimal bone volume, minimal weight, and also minimal energy demands in maintenance. PMID:22216358
Degrange, Federico J.; Tambussi, Claudia P.; Moreno, Karen; Witmer, Lawrence M.; Wroe, Stephen
2010-01-01
The South American phorusrhacid bird radiation comprised at least 18 species of small to gigantic terrestrial predators for which there are no close modern analogs. Here we perform functional analyses of the skull of the medium-sized (∼40 kg) patagornithine phorusrhacid Andalgalornis steulleti (upper Miocene–lower Pliocene, Andalgalá Formation, Catamarca, Argentina) to assess its mechanical performance in a comparative context. Based on computed tomographic (CT) scanning and morphological analysis, the skull of Andalgalornis steulleti is interpreted as showing features reflecting loss of intracranial immobility. Discrete anatomical attributes permitting such cranial kinesis are widespread phorusrhacids outgroups, but this is the first clear evidence of loss of cranial kinesis in a gruiform bird and may be among the best documented cases among all birds. This apomorphic loss is interpreted as an adaptation for enhanced craniofacial rigidity, particularly with regard to sagittal loading. We apply a Finite Element approach to a three-dimensional (3D) model of the skull. Based on regression analysis we estimate the bite force of Andalgalornis at the bill tip to be 133 N. Relative to results obtained from Finite Element Analysis of one of its closest living relatives (seriema) and a large predatory bird (eagle), the phorusrhacid's skull shows relatively high stress under lateral loadings, but low stress where force is applied dorsoventrally (sagittally) and in “pullback” simulations. Given the relative weakness of the skull mediolaterally, it seems unlikely that Andalgalornis engaged in potentially risky behaviors that involved subduing large, struggling prey with its beak. We suggest that it either consumed smaller prey that could be killed and consumed more safely (e.g., swallowed whole) or that it used multiple well-targeted sagittal strikes with the beak in a repetitive attack-and-retreat strategy. PMID:20805872
Facial image of Biblical Jews from Israel.
Kobyliansky, E; Balueva, T; Veselovskaya, E; Arensburg, B
2008-06-01
The present report deals with reconstructing the facial shapes of ancient inhabitants of Israel based on their cranial remains. The skulls of a male from the Hellenistic period and a female from the Roman period have been reconstructed. They were restored using the most recently developed programs in anthropological facial reconstruction, especially that of the Institute of Ethnology and Anthropology of the Russian Academy of Sciences (Balueva & Veselovskaya 2004). The basic craniometrical measurements of the two skulls were measured according to Martin & Saller (1957) and compared to the data from three ancient populations of Israel described by Arensburg et al. (1980): that of the Hellenistic period dating from 332 to 37 B.C., that of the Roman period, from 37 B.C. to 324 C.E., and that of the Byzantine period that continued until the Arab conquest in 640 C.E. Most of this osteological material was excavated in the Jordan River and the Dead Sea areas. A sample from the XVIIth century Jews from Prague (Matiegka 1926) was also used for osteometrical comparisons. The present study will characterize not only the osteological morphology of the material, but also the facial appearance of ancient inhabitants of Israel. From an anthropometric point of view, the two skulls studied here definitely belong to the same sample from the Hellenistic, Roman, and Byzantine populations of Israel as well as from Jews from Prague. Based on its facial reconstruction, the male skull may belong to the large Mediterranean group that inhabited this area from historic to modern times. The female skull also exhibits all the Mediterranean features but, in addition, probably some equatorial (African) mixture manifested by the shape of the reconstructed nose and the facial prognatism.
Ferré, J C; Chevalier, C; Robert, R; Degrez, J; Le Cloarec, A Y; Legoux, R; Orio, E; Barbin, J Y
1989-01-01
Using thick sections of the base of the skull and face their mechanical structure is viewed from the engineering aspect and the anatomic solutions evolved are compared with those selected by Aerospatiale engineers for the concept and development of the Airbus. It is concluded that the anterior and middle cranial fossae, together with the face, constitute an inseparable mechanical assembly each of whose component units participate in the rigidity of the others. Since this mechanical assembly must provide maximal rigidity for minimal weight, this suggests that aeronautical solutions should throw much light on the detail of construction of the skull and face. Indeed, the rigidity and lightness of the latter are obtained by means of solutions familiar in aeronautics: the reliance on thin-shelled beams with a honeycomb filling, the diploe analogous to a preconstrained composite or sandwich structure, a system of frames, struts and stiffeners, and the use of fillets at the sites of junction of struts.
Lehn, Alexander Christoph; Lettieri, Jennie; Grimley, Rohan
2012-05-01
Fractures of the skull base can cause lower cranial nerve palsies because of involvement of the nerves as they traverse the skull. A variety of syndromes have been described, often involving multiple nerves. These are most commonly unilateral, and only a handful of cases of bilateral cranial nerve involvement have been reported. We describe a 64-year-old man with occipital condylar fracture complicated by bilateral palsies of IX and X nerves associated with dramatic physiological derangement causing severe management challenges. Apart from debilitating postural hypotension, he developed dysphagia, severe gastrointestinal dysmotility, issues with airway protection as well as airway obstruction, increased oropharyngeal secretions and variable respiratory control. This is the first report of a patient with traumatic bilateral cranial nerve IX and X nerve palsies. This detailed report and the summary of all 6 previous case reports of traumatic bilateral lower cranial nerve palsies illustrate clinical features, treatment strategies, and outcomes of these rare events.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Wang, Yizhe; Zhou, Wenzheng; Zhang, Ji; Jian, Xiqi
2017-03-01
To provide a reference for the HIFU clinical therapeutic planning, the temperature distribution and lesion volume are analyzed by the numerical simulation. The adopted numerical simulation is based on a transcranial ultrasound therapy model, including an 8 annular-element curved phased array transducer. The acoustic pressure and temperature elevation are calculated by using the approximation of Westervelt Formula and the Pennes Heat Transfer Equation. In addition, the Time Reversal theory and eliminating hot spot technique are combined to optimize the temperature distribution. With different input powers and exposure times, the lesion volume is evaluated based on temperature threshold theory. The lesion region could be restored at the expected location by the time reversal theory. Although the lesion volume reduces after eliminating the peak temperature in the skull and more input power and exposure time is required, the injury of normal tissue around skull could be reduced during the HIFU therapy. The prediction of thermal deposition in the skull and the lesion region could provide a reference for clinical therapeutic dose.
Chan, Yat Chun; Au-Yeung, Kwan Leong
2017-04-22
A 7-year-old boy presented to the emergency department with bilateral bloody otorrhoea after falling from his scooter. Skull base fracture was suspected. CT showed no evidence of skull base fracture but bilateral mandibular condyle and external acoustic canals fractures. We report this case to illustrate a rare possibility of bilateral external acoustic canal fracture associated with condylar fracture in trauma patients presented with bloody otorrhoea. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Skull base lesions: extracranial origins.
Mosier, Kristine M
2013-10-01
A number of extracranial anatomical sites, including the nasopharynx, paranasal sinuses, and masticator space, may give rise to lesions involving the skull base. Implicit in the nature of an invasive lesion, the majority of these lesions are malignant. Accordingly, for optimal patient outcomes and treatment planning, it is imperative to include a search pattern for extracranial sites and to assess accurately the character and extent of these diverse lesions. Of particular importance to radiologists are lesions arising from each extracranial site, the search patterns, and relevant information important to convey to the referring clinician. Copyright © 2013 Elsevier Inc. All rights reserved.
Degenerative Pannus Mimicking Clival Chordoma Resected via an Endoscopic Transnasal Approach.
Khaldi, Ahmad; Griauzde, Julius; Duckworth, Edward A M
2011-05-01
Lesions of the lower clivus represent a technically challenging subset of skull base disease that requires careful treatment. A 75-year-old woman with tongue atrophy was referred for resection of a presumed clival chordoma. The lesion was resected via an endoscopic transnasal transclival approach with no complications. Pathology revealed only chronic inflammatory tissue consistent with a degenerative pannus. Degenerative pannus should be included in the differential diagnosis of lower clival extradural lesions. The endoscopic transnasal transclival corridor should be considered for resection of such lesions as an alternative to larger, more morbid, traditional skull base approaches.
Degenerative Pannus Mimicking Clival Chordoma Resected via an Endoscopic Transnasal Approach
Khaldi, Ahmad; Griauzde, Julius; Duckworth, Edward A.M.
2011-01-01
Lesions of the lower clivus represent a technically challenging subset of skull base disease that requires careful treatment. A 75-year-old woman with tongue atrophy was referred for resection of a presumed clival chordoma. The lesion was resected via an endoscopic transnasal transclival approach with no complications. Pathology revealed only chronic inflammatory tissue consistent with a degenerative pannus. Degenerative pannus should be included in the differential diagnosis of lower clival extradural lesions. The endoscopic transnasal transclival corridor should be considered for resection of such lesions as an alternative to larger, more morbid, traditional skull base approaches. PMID:23984195
Endoscopic Removal of a Bullet in Rosenmuller Fossa: Case Report
Burks, Joshua D.; Glenn, Chad A.; Conner, Andrew K.; Bonney, Phillip A.; Sanclement, Jose A.; Sughrue, Michael E.
2016-01-01
Fractures of the anterior skull base may occur in gunshot victims and can result in traumatic cerebrospinal fluid (CSF) leak. Less commonly, CSF leaks occur days or even weeks after the trauma occurred. Here, we present the case of a 21-year-old man with a delayed-onset, traumatic CSF leak secondary to a missile injury that left a bullet fragment in the Rosenmuller fossa. The patient was treated successfully with endoscopic, endonasal extraction of the bullet, and repair with a nasal septal flap. Foreign bodies lodged in Rosenmuller fossa can be successfully treated with endoscopic skull base surgery. PMID:27330924
NASA Astrophysics Data System (ADS)
Estrada, Héctor; Rebling, Johannes; Razansky, Daniel
2017-02-01
The skull bone, a curved solid multilayered plate protecting the brain, constitutes a big challenge for the use of ultrasound-mediated techniques in neuroscience. Ultrasound waves incident from water or soft biological tissue are mostly reflected when impinging on the skull. To this end, skull properties have been characterized for both high-intensity focused ultrasound (HIFU) operating in the narrowband far-field regime and optoacoustic imaging applications. Yet, no study has been conducted to characterize the near-field of water immersed skulls. We used the thermoelastic effect with a 532 nm pulsed laser to trigger a wide range of broad-band ultrasound modes in a mouse skull. In order to capture the waves propagating in the near-field, a thin hydrophone was scanned in close proximity to the skull's surface. While Leaky pseudo-Lamb waves and grazing-angle bulk water waves are clearly visible in the spatio-temporal data, we were only able to identify skull-guided acoustic waves after dispersion analysis in the wavenumber-frequency space. The experimental data was found to be in a reasonable agreement with a flat multilayered plate model.
Abdulai, Ae; Iddrissu, Mi; Dakurah, Tk
2006-03-01
Summary This is a retrospective review of the record charts. A joint study by maxillofacial and neurosurgical units, department of surgery, Korle Bu Teaching Hospital, Accra, Ghana, a tertiary and premier health care centre. Seventeen consecutive patients with various cranial defects treated using prefabricated acrylic methyl methacrylate implants. The cranioplasty on all the patients took place at an average of about 12 months after the initial surgery. These included complications during and after surgery. X-ray views of the skull, ranging from true lateral to anterior-posterior, were taken at follow-up and examined to ascertain the stability of the graft by looking out for any adverse bony changes around it or loosening of any of the steel sutures securing it to the skull. A total of 17 patients (5 males and 12 females) with a mean age of 30.4 years were treated. Follow-up period ranged from 9 months to two years. In all cases the surgical procedure was uneventful and the cosmetic results were good. There was no significant change in the size and shape of the preformed methyl methacrylate implant after autoclaving. Cranioplasty using prefabricated acrylic methyl methacrylate implants apart from being affordable also ensure shorter operative time and good aesthetic result.
Prenatal diagnosis of herniated Dandy-Walker cysts.
Lee, Wesley; Vettraino, Ivana M; Comstock, Christine H; Lal, Nirish; Kazmierczak, Chris; Shetty, Anil; Raff, Gil; Zakalik, Karol; Romero, Roberto
2005-06-01
The purpose of this series is to describe the prenatal diagnosis and pregnancy outcome of fetuses affected with Dandy-Walker malformation in which a posterior cyst herniated through a bony defect of the occipital skull, foramen magnum, or both. Two- and 3-dimensional sonography were used to examine 2 fetuses with poorly delineated cerebellar structures and a large posterior cystic neck mass. Fetal magnetic resonance imaging (MRI) was added to this evaluation as a complementary diagnostic modality. Three-dimensional sonography helped characterize the precise site of cyst herniation through the occipital skull or foramen magnum. Fetal MRI confirmed the sonographic findings. Neonatal MRI studies identified heterotopic gray matter as evidence of a neuronal migration disorder in both fetuses. The second fetus also had agenesis of the corpus callosum. Retrospective review of the fetal MRI (25.9 weeks' menstrual age) and 3-dimensional sonographic (18.7 weeks' menstrual age) studies confirmed ventricular wall nodularity involving the occipital horns of the second fetus. The antenatal detection of a large posterior cystic neck mass and a poorly defined or nonvisualized cerebellar vermis suggest Dandy-Walker malformation with a herniated cyst. Three-dimensional sonography and fetal MRI are important adjunctive methods that can be used to evaluate the herniation site and a possible neuronal migrational disorder.
Gedrange, Tomasz
2016-01-01
The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen) and unmodified (PLA-wt, PCL-wt), were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions. PMID:27597965
Gredes, Tomasz; Kunath, Franziska; Gedrange, Tomasz; Kunert-Keil, Christiane
2016-01-01
The aim of this study was to examine the osteogenic potential of new flax covering materials. Bone defects were created on the skull of forty rats. Materials of pure PLA and PCL and their composites with flax fibers, genetically modified producing PHB (PLA-transgen, PCL-transgen) and unmodified (PLA-wt, PCL-wt), were inserted. The skulls were harvested after four weeks and subjected to histological examination. The percentage of bone regeneration by using PLA was less pronounced than after usage of pure PCL in comparison with controls. After treatment with PCL-transgen, a large amount of new formed bone could be found. In contrast, PCL-wt decreased significantly the bone regeneration, compared to the other tested groups. The bone covers made of pure PLA had substantially less influence on bone regeneration and the bone healing proceeded with a lot of connective tissue, whereas PLA-transgen and PLA-wt showed nearly comparable amount of new formed bone. Regarding the histological data, the hypothesis could be proposed that PCL and its composites have contributed to a higher quantity of the regenerated bone, compared to PLA. The histological studies showed comparable bone regeneration processes after treatment with tested covering materials, as well as in the untreated bone lesions.
Derivation of the mammalian skull vault
MORRISS-KAY, GILLIAN M.
2001-01-01
This review describes the evolutionary history of the mammalian skull vault as a basis for understanding its complex structure. Current information on the developmental tissue origins of the skull vault bones (mesoderm and neural crest) is assessed for mammals and other tetrapods. This information is discussed in the context of evolutionary changes in the proportions of the skull vault bones at the sarcopterygian-tetrapod transition. The dual tissue origin of the skull vault is considered in relation to the molecular mechanisms underlying osteogenic cell proliferation and differentiation in the sutural growth centres and in the proportionate contributions of different sutures to skull growth. PMID:11523816
Mohamed, Reda
2018-04-23
Common opossums ( Didelphis marsupialis ) are found throughout the Caribbean island of Trinidad and Tobago. The present work was conducted on 10 skulls and mandibles of the common opossum to describe the osteology and foramina of these skulls and mandibles grossly and radiographically. The information that is garnered can be used to detect, diagnose, and treat head affections, as well as for comparative studies with the skulls and mandibles of other similar species. The skulls and mandibles were prepared and cleaned using standard method. All of the characteristic features of various standards views of the skulls bones, including dorsal, lateral, caudal and midsagittal, and the lateral and caudal views of the mandibles as well as the foramina of the skulls and mandibles were described and discussed. Each skull was divided into long facial and short cranial regions. No supraorbital foramen was observed in the skulls. The tympanic bulla was absent while there was the tympanic process of the alisphenoid. The temporal process of the zygomatic bone, zygomatic process of maxilla, and zygomatic process of the squamosal bone formed the zygomatic arch. The dental formula was confirmed. The bones and foramina of the skull and mandible were similar to other marsupial species and were homologue to that of other mammals.
Coexistence of Wormian Bones With Metopism, and Vice Versa, in Adult Skulls.
Cirpan, Sibel; Aksu, Funda; Mas, Nuket; Magden, Abdurrahman Orhan
2016-03-01
The aim of the study is to investigate coexistence of Wormian bones with metopism, and vice versa, in adult skulls. A total of 160 dry adult human skulls of unknown sex and ages were randomly selected from the Gross Anatomy Laboratory of Medical School of Dokuz Eylul University. The skulls were examined for presence of metopism, Wormian bones (WB), and coexistence of WBs with metopism and vice versa. Topographic distribution of the WBs was macroscopically evaluated within the skulls including metopism. The photographs were being taken with Canon 400B (55 mm objective). The frequency of metopism and WBs in 160 skulls is 7.50% (12/160) and 59.3% (95/160), respectively, P < 0.05 (). The incidence of coexistence of WBs with metopism was found as 11 of 12 skulls (91.66%), whereas the incidence of coexistence of metopism with WBs was found as 11 of 95 skulls (11.58%), P < 0.05 (). There were totally 23 sutures including WBs in 11 skulls, which had metopism (). The number (%) of metopic skulls for each specific suture including WBs were found as: 11 lamdoid sutures in 7/11 (63.63%) skulls, 4 lambda in 4/11 (36.36%) skulls, 2 asterion in 2/11 (18.18%) skulls, 1 squamous in 1/11 (9.09%) skull, 2 sagittal in 2/11 (18.18%) skulls, and 3 parieromsatoid sutures in 2/11 (18.18%) skulls (). The distribution of these 23 WBs in sutures of 11 skulls including metopisms is determined as follows: 11/23 (47.82%) WBs at lambdoid sutures [5/23 (21.74%) at the right lambdoid sutures and 6/23 (26.08%) at the left lambdoid sutures, and 4 pair of 11 WBs bilaterally located]; 4 (17.39%) WBs at lambda; 2/23 (8.69%) WBs at asterion [1/23 (4.34%) at the right asterion and 1/23 (4.34%) at the left asterion of 2 diverse skulls]; 2/23 (8.69%) WBs at sagittal sutures; 1/23 (4.34%) WBs at the left squamous suture; 3/23 (13.04%) WBs at parietomastoid sutures [2/23 (8.69%) at the right parietomastoid sutures and 1/23 (4.34%) at the left parietomastoid suture and 1 pair of them bilaterally located; , ].(Figure is included in full-text article.)(Table is included in full-text article.)(Table is included in full-text article.) : There was a significant difference in rates between coexistence of WBs with metopism (11/12, 91.66%) and coexistence of metopism with WBs (11/95, 11.58%). The factors leading to metopism may also lead to WBs, whereas that the factors leading to WBs may not lead to metopism.
Stenroos, Matti; Hauk, Olaf
2013-01-01
The conductivity profile of the head has a major effect on EEG signals, but unfortunately the conductivity for the most important compartment, skull, is only poorly known. In dipole modeling studies, errors in modeled skull conductivity have been considered to have a detrimental effect on EEG source estimation. However, as dipole models are very restrictive, those results cannot be generalized to other source estimation methods. In this work, we studied the sensitivity of EEG and combined MEG + EEG source estimation to errors in skull conductivity using a distributed source model and minimum-norm (MN) estimation. We used a MEG/EEG modeling set-up that reflected state-of-the-art practices of experimental research. Cortical surfaces were segmented and realistically-shaped three-layer anatomical head models were constructed, and forward models were built with Galerkin boundary element method while varying the skull conductivity. Lead-field topographies and MN spatial filter vectors were compared across conductivities, and the localization and spatial spread of the MN estimators were assessed using intuitive resolution metrics. The results showed that the MN estimator is robust against errors in skull conductivity: the conductivity had a moderate effect on amplitudes of lead fields and spatial filter vectors, but the effect on corresponding morphologies was small. The localization performance of the EEG or combined MEG + EEG MN estimator was only minimally affected by the conductivity error, while the spread of the estimate varied slightly. Thus, the uncertainty with respect to skull conductivity should not prevent researchers from applying minimum norm estimation to EEG or combined MEG + EEG data. Comparing our results to those obtained earlier with dipole models shows that general judgment on the performance of an imaging modality should not be based on analysis with one source estimation method only. PMID:23639259
Modelling human skull growth: a validated computational model
Marghoub, Arsalan; Johnson, David; Khonsari, Roman H.; Fagan, Michael J.; Moazen, Mehran
2017-01-01
During the first year of life, the brain grows rapidly and the neurocranium increases to about 65% of its adult size. Our understanding of the relationship between the biomechanical forces, especially from the growing brain, the craniofacial soft tissue structures and the individual bone plates of the skull vault is still limited. This basic knowledge could help in the future planning of craniofacial surgical operations. The aim of this study was to develop a validated computational model of skull growth, based on the finite-element (FE) method, to help understand the biomechanics of skull growth. To do this, a two-step validation study was carried out. First, an in vitro physical three-dimensional printed model and an in silico FE model were created from the same micro-CT scan of an infant skull and loaded with forces from the growing brain from zero to two months of age. The results from the in vitro model validated the FE model before it was further developed to expand from 0 to 12 months of age. This second FE model was compared directly with in vivo clinical CT scans of infants without craniofacial conditions (n = 56). The various models were compared in terms of predicted skull width, length and circumference, while the overall shape was quantified using three-dimensional distance plots. Statistical analysis yielded no significant differences between the male skull models. All size measurements from the FE model versus the in vitro physical model were within 5%, with one exception showing a 7.6% difference. The FE model and in vivo data also correlated well, with the largest percentage difference in size being 8.3%. Overall, the FE model results matched well with both the in vitro and in vivo data. With further development and model refinement, this modelling method could be used to assist in preoperative planning of craniofacial surgery procedures and could help to reduce reoperation rates. PMID:28566514
Modelling human skull growth: a validated computational model.
Libby, Joseph; Marghoub, Arsalan; Johnson, David; Khonsari, Roman H; Fagan, Michael J; Moazen, Mehran
2017-05-01
During the first year of life, the brain grows rapidly and the neurocranium increases to about 65% of its adult size. Our understanding of the relationship between the biomechanical forces, especially from the growing brain, the craniofacial soft tissue structures and the individual bone plates of the skull vault is still limited. This basic knowledge could help in the future planning of craniofacial surgical operations. The aim of this study was to develop a validated computational model of skull growth, based on the finite-element (FE) method, to help understand the biomechanics of skull growth. To do this, a two-step validation study was carried out. First, an in vitro physical three-dimensional printed model and an in silico FE model were created from the same micro-CT scan of an infant skull and loaded with forces from the growing brain from zero to two months of age. The results from the in vitro model validated the FE model before it was further developed to expand from 0 to 12 months of age. This second FE model was compared directly with in vivo clinical CT scans of infants without craniofacial conditions ( n = 56). The various models were compared in terms of predicted skull width, length and circumference, while the overall shape was quantified using three-dimensional distance plots. Statistical analysis yielded no significant differences between the male skull models. All size measurements from the FE model versus the in vitro physical model were within 5%, with one exception showing a 7.6% difference. The FE model and in vivo data also correlated well, with the largest percentage difference in size being 8.3%. Overall, the FE model results matched well with both the in vitro and in vivo data. With further development and model refinement, this modelling method could be used to assist in preoperative planning of craniofacial surgery procedures and could help to reduce reoperation rates. © 2017 The Author(s).
Yaryhin, Oleksandr; Werneburg, Ingmar
2018-06-08
The sand lizard, Lacerta agilis, is a classical model species in herpetology. Its adult skull anatomy and its embryonic development are well known. The description of its fully formed primordial skull by Ernst Gaupp, in 1900, was a key publication in vertebrate morphology and influenced many comparative embryologists. Based on recent methodological considerations, we restudied the early cranial development of this species starting as early as the formation of mesenchymal condensations up to the fully formed chondrocranium. We traced the formation of the complex chondrocranial architecture in detail, clarified specific homologies for the first time, and uncovered major differences to old textbook descriptions. Comparison with other lacertid lizards revealed a very similar genesis of the primordial skull. However, we detected shifts in the developmental timing of particular cartilaginous elements, mainly in the nasal region, which may correlate to specific ecological adaptation in the adults. Late timing of nasal elements might be an important innovation for the successful wide range distribution of the well-known sand lizard. © 2018 Wiley Periodicals, Inc.
Curtis, Neil; Jones, Marc E H; Shi, Junfen; O'Higgins, Paul; Evans, Susan E; Fagan, Michael J
2011-01-01
The vertebrate skull evolved to protect the brain and sense organs, but with the appearance of jaws and associated forces there was a remarkable structural diversification. This suggests that the evolution of skull form may be linked to these forces, but an important area of debate is whether bone in the skull is minimised with respect to these forces, or whether skulls are mechanically "over-designed" and constrained by phylogeny and development. Mechanical analysis of diapsid reptile skulls could shed light on this longstanding debate. Compared to those of mammals, the skulls of many extant and extinct diapsids comprise an open framework of fenestrae (window-like openings) separated by bony struts (e.g., lizards, tuatara, dinosaurs and crocodiles), a cranial form thought to be strongly linked to feeding forces. We investigated this link by utilising the powerful engineering approach of multibody dynamics analysis to predict the physiological forces acting on the skull of the diapsid reptile Sphenodon. We then ran a series of structural finite element analyses to assess the correlation between bone strain and skull form. With comprehensive loading we found that the distribution of peak von Mises strains was particularly uniform throughout the skull, although specific regions were dominated by tensile strains while others were dominated by compressive strains. Our analyses suggest that the frame-like skulls of diapsid reptiles are probably optimally formed (mechanically ideal: sufficient strength with the minimal amount of bone) with respect to functional forces; they are efficient in terms of having minimal bone volume, minimal weight, and also minimal energy demands in maintenance. © 2011 Curtis et al.
Does skull morphology constrain bone ornamentation? A morphometric analysis in the Crocodylia.
Clarac, F; Souter, T; Cubo, J; de Buffrénil, V; Brochu, C; Cornette, R
2016-08-01
Previous quantitative assessments of the crocodylians' dermal bone ornamentation (this ornamentation consists of pits and ridges) has shown that bone sculpture results in a gain in area that differs between anatomical regions: it tends to be higher on the skull table than on the snout. Therefore, a comparative phylogenetic analysis within 17 adult crocodylian specimens representative of the morphological diversity of the 24 extant species has been performed, in order to test if the gain in area due to ornamentation depends on the skull morphology, i.e. shape and size. Quantitative assessment of skull size and shape through geometric morphometrics, and of skull ornamentation through surface analyses, produced a dataset that was analyzed using phylogenetic least-squares regression. The analyses reveal that none of the variables that quantify ornamentation, be they on the snout or the skull table, is correlated with the size of the specimens. Conversely, there is more disparity in the relationships between skull conformations (longirostrine vs. brevirostrine) and ornamentation. Indeed, both parameters GApit (i.e. pit depth and shape) and OArelat (i.e. relative area of the pit set) are negatively correlated with snout elongation, whereas none of the values quantifying ornamentation on the skull table is correlated with skull conformation. It can be concluded that bone sculpture on the snout is influenced by different developmental constrains than on the skull table and is sensible to differences in the local growth 'context' (allometric processes) prevailing in distinct skull parts. Whatever the functional role of bone ornamentation on the skull, if any, it seems to be restricted to some anatomical regions at least for the longirostrine forms that tend to lose ornamentation on the snout. © 2016 Anatomical Society.
Sim, Sook Young; Kim, Hyun Gi; Yoon, Soo Han; Choi, Jong Wook; Cho, Sung Min; Choi, Mi Sun
2017-12-01
Diastatic skull fractures (DSFs) in children are difficult to detect in skull radiographs before they develop into growing skull fractures; therefore, little information is available on this topic. However, recent advances in 3-dimensional (3D) computed tomography (CT) imaging technology have enabled more accurate diagnoses of almost all forms of skull fracture. The present study was undertaken to document the clinical characteristics of DSFs in children and to determine whether 3D CT enhances diagnostic accuracy. Two hundred and ninety-two children younger than 12 years with skull fractures underwent simple skull radiography, 2-dimensional (2D) CT, and 3DCT. Results were compared with respect to fracture type, location, associated lesions, and accuracy of diagnosis. DSFs were diagnosed in 44 (15.7%) of children with skull fractures. Twenty-two patients had DSFs only, and the other 22 had DSFs combined with compound or mixed skull fractures. The most common fracture locations were the occipitomastoid (25%) and lambdoid (15.9%). Accompanying lesions consisted of subgaleal hemorrhages (42/44), epidural hemorrhages (32/44), pneumocephalus (17/44), and subdural hemorrhages (3/44). A total of 17 surgical procedures were performed on 15 of the 44 patients. Fourteen and 19 patients were confirmed to have DSFs by skull radiography and 2D CT, respectively, but 3D CT detected DSFs in 43 of the 44 children (P < 0.001). 3D CT was found to be markedly superior to skull radiography or 2D CT for detecting DSFs. This finding indicates that 3D CT should be used routinely rather than 2D CT for the assessment of pediatric head trauma. Copyright © 2017 Elsevier Inc. All rights reserved.
Esteve-Altava, Borja; Rasskin-Gutman, Diego
2015-07-20
Bone fusion has occurred repeatedly during skull evolution in all tetrapod lineages, leading to a reduction in the number of bones and an increase in their morphological complexity. The ontogeny of the human skull includes also bone fusions as part of its normal developmental process. However, several disruptions might cause premature closure of cranial sutures (craniosynostosis), reducing the number of bones and producing new skull growth patterns that causes shape changes. Here, we compare skull network models of a normal newborn with different craniosynostosis conditions, the normal adult stage, and phylogenetically reconstructed forms of a primitive tetrapod, a synapsid, and a placental mammal. Changes in morphological complexity of newborn-to-synostosed skulls are two to three times less than in newborn-to-adult; and even smaller when we compare them to the increases among the reconstructed ancestors in the evolutionary transitions. In addition, normal, synostosed, and adult human skulls show the same connectivity modules: facial and cranial. Differences arise in the internal structure of these modules. In the adult skull the facial module has an internal hierarchical organization, whereas the cranial module has a regular network organization. However, all newborn forms, normal and synostosed, do not reach such kind of internal organization. We conclude that the subtle changes in skull complexity at the developmental scale can change the modular substructure of the newborn skull to more integrated modules in the adult skull, but is not enough to generate radical changes as it occurs at a macroevolutionary scale. The timing of closure of craniofacial sutures, together with the conserved patterns of morphological modularity, highlights a potential relation between the premature fusion of bones and the evolution of the shape of the skull in hominids.
Molding of top skull in the treatment of Apert syndrome.
Shen, Weimin; Cui, Jie; Chen, Jianbin; Weiping, Shen
2015-03-01
Patients with Apert syndrome have bilateral coronal craniosynostosis, along with a distinguishing feature of their many deformity, called tower skull. Surgical correction of this deformity is the mainstay of treatment. We describe 3 patients molded top skull after front bone osteotomy orbital bar advancement. This successfully restricted growth of their top skull while allowing growth in other dimensions. Utilization of top-skull molding after cranial surgery shows promise of satisfaction in this setting.
Arterial relationships to the nerves and some rigid structures in the posterior cranial fossa.
Surchev, N
2008-09-01
The close relationships between the cranial nerves and the arterial vessels in the posterior cranial fossa are one of the predisposing factors for artery-nerve compression. The aim of this study was to examine the relationships of the vertebral and basilar arteries to some skull and dural structures and the nerves in the posterior cranial fossa. For this purpose, the skull bases and brains of 70 cadavers were studied. The topographic relationships of the vertebral and basilar arteries to the cranial nerves in the posterior cranial fossa were studied and the distances between the arteries and some osseous formations were measured. The most significant variations in arterial position were registered in the lower half of the basilar artery. Direct contact with an artery was established for the hypoglossal canal, jugular tubercle, and jugular foramen. The results reveal additional information about the relationships of the nerves and arteries to the skull and dural formations in the posterior cranial fossa. New quantitative information is given to illustrate them. The conditions for possible artery-nerve compression due to arterial dislocation are discussed and two groups (lines) of compression points are suggested. The medial line comprises of the brain stem points, usually the nerve root entry/exit zone. The lateral line includes the skull eminences, on which the nerves lie, or skull and dural foramina through which they exit the cranial cavity. (c) 2008 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Mendoza, Carlos S.; Safdar, Nabile; Myers, Emmarie; Kittisarapong, Tanakorn; Rogers, Gary F.; Linguraru, Marius George
2013-02-01
Craniosynostosis (premature fusion of skull sutures) is a severe condition present in one of every 2000 newborns. Metopic craniosynostosis, accounting for 20-27% of cases, is diagnosed qualitatively in terms of skull shape abnormality, a subjective call of the surgeon. In this paper we introduce a new quantitative diagnostic feature for metopic craniosynostosis derived optimally from shape analysis of CT scans of the skull. We built a robust shape analysis pipeline that is capable of obtaining local shape differences in comparison to normal anatomy. Spatial normalization using 7-degree-of-freedom registration of the base of the skull is followed by a novel bone labeling strategy based on graph-cuts according to labeling priors. The statistical shape model built from 94 normal subjects allows matching a patient's anatomy to its most similar normal subject. Subsequently, the computation of local malformations from a normal subject allows characterization of the points of maximum malformation on each of the frontal bones adjacent to the metopic suture, and on the suture itself. Our results show that the malformations at these locations vary significantly (p<0.001) between abnormal/normal subjects and that an accurate diagnosis can be achieved using linear regression from these automatic measurements with an area under the curve for the receiver operating characteristic of 0.97.
Pierce, S E; Angielczyk, K D; Rayfield, E J
2009-01-01
Variation in modern crocodilian and extinct thalattosuchian crocodylomorph skull morphology is only weakly correlated with phylogeny, implying that factors other than evolutionary proximity play important roles in determining crocodile skull shape. To further explore factors potentially influencing morphological differentiation within the Thalattosuchia, we examine teleosaurid and metriorhynchid skull shape variation within a mechanical and dietary context using a combination of finite element modelling and multivariate statistics. Patterns of stress distribution through the skull were found to be very similar in teleosaurid and metriorhynchid species, with stress peaking at the posterior constriction of the snout and around the enlarged supratemporal fenestrae. However, the magnitudes of stresses differ, with metriorhynchids having generally stronger skulls. As with modern crocodilians, a strong linear relationship between skull length and skull strength exists, with short-snouted morphotypes experiencing less stress through the skull than long-snouted morphotypes under equivalent loads. Selection on snout shape related to dietary preference was found to work in orthogonal directions in the two families: diet is associated with snout length in teleosaurids and with snout width in metriorhynchids, suggesting that teleosaurid skulls were adapted for speed of attack and metriorhynchid skulls for force production. Evidence also indicates that morphological and functional differentiation of the skull occurred as a result of dietary preference, allowing closely related sympatric species to exploit a limited environment. Comparisons of the mechanical performance of the thalattosuchian skull with extant crocodilians show that teleosaurids and long-snouted metriorhynchids exhibit stress magnitudes similar to or greater than those of long-snouted modern forms, whereas short-snouted metriorhynchids display stress magnitudes converging on those found in short-snouted modern species. As a result, teleosaurids and long-snouted metriorhynchids were probably restricted to lateral attacks of the head and neck, but short-snouted metriorhynchids may have been able to employ the grasp and shake and/or ‘death roll’ feeding and foraging behaviours. PMID:19702868
ERIC Educational Resources Information Center
Slesnick, Irwin L.
1988-01-01
Disguises a lesson about skulls with some fun to cause less fear among students. Outlines strategies, questions, and answers for use. Includes a skull mask which can be photocopied and distributed to students as a learning tool and a fun Halloween treat. Also shown is a picture of skull parts. (RT)
Study of mastoid canals and grooves in north karnataka human skulls.
Hadimani, Gavishiddappa Andanappa; Bagoji, Ishwar Basavantappa
2013-08-01
This study was undertaken to observe the frequency of mastoid canals and grooves in north Karnataka dry human skulls. 100 dry human skulls of unknown age and sex from the department of Anatomy were selected and observed for the present study. The mastoid regions of dry skulls were observed for the presence of mastoid canals and grooves, if any. A metallic wire was passed through the canal for its confirmation and then the length was measured. The Mastoid canals were present in 53% of the total 100 skulls observed either bilaterally or unilaterally. Mastoid grooves were present in 18% of the total skulls (100) observed. Double mastoid canal was found in 01% of total skull studied and both Mastoid canals & Mastoid grooves together were present in 02% of the total skulls (100) observed. The knowledge of mastoid canals and grooves is very important for otolaryngologists and neurosurgeons. Because they contain an arterial branch of occipital artery with its accompanying vein which is liable to injury resulting into severe bleeding.
Melamed, Itay; Tubbs, R Shane; Payner, Troy D; Cohen-Gadol, Aaron A
2009-08-01
Exposure of the cavernous sinus or anterior parahippocampus often involves a wide exposure of the temporal lobe and mobilization of the temporalis muscle associated with temporal lobe retraction. The authors present a cadaveric study to illustrate the feasibility, advantages and landmarks necessary to perform a trans-zygomatic middle fossa approach to lesions around the cavernous sinus and anterior parahippocampus. The authors performed bilateral trans-zygomatic middle fossae exposures to reach the cavernous sinus and parahippocampus in five cadavers (10 sides). We assessed the morbidity associated with this procedure and compared the indications, advantages, and disadvantages of this method versus more extensive skull base approaches. A vertical linear incision along the middle portion of the zygomatic arch was extended one finger breadth inferior to the inferior edge of the zygomatic arch. Careful dissection inferior to the arch allowed preservation of facial nerve branches. A zygomatic osteotomy was followed via a linear incision through the temporalis muscle and exposure of the middle cranial fossa floor. A craniotomy along the inferolateral temporal bone and middle fossa floor allowed extradural dissection along the middle fossa floor and exposure of the cavernous sinus including all three divisions of the trigeminal nerve. Intradural inspection demonstrated adequate exposure of the parahippocampus. Exposure of the latter required minimal or no retraction of the temporal lobe. The trans-zygomatic middle fossa approach is a simplified skull base exposure using a linear incision, which may avoid the invasivity of more extensive skull base approaches while providing an adequate corridor for resection of cavernous sinus and parahippocampus lesions. The advantages of this approach include its efficiency, ease, minimalism, preservation of the temporalis muscle, and minimal retraction of the temporal lobe.
Favier, Valentin; Zemiti, Nabil; Caravaca Mora, Oscar; Subsol, Gérard; Captier, Guillaume; Lebrun, Renaud; Crampette, Louis; Mondain, Michel; Gilles, Benjamin
2017-01-01
Endoscopic skull base surgery allows minimal invasive therapy through the nostrils to treat infectious or tumorous diseases. Surgical and anatomical education in this field is limited by the lack of validated training models in terms of geometric and mechanical accuracy. We choose to evaluate several consumer-grade materials to create a patient-specific 3D-printed skull base model for anatomical learning and surgical training. Four 3D-printed consumer-grade materials were compared to human cadaver bone: calcium sulfate hemihydrate (named Multicolor), polyamide, resin and polycarbonate. We compared the geometric accuracy, forces required to break thin walls of materials and forces required during drilling. All materials had an acceptable global geometric accuracy (from 0.083mm to 0.203mm of global error). Local accuracy was better in polycarbonate (0.09mm) and polyamide (0.15mm) than in Multicolor (0.90mm) and resin (0.86mm). Resin and polyamide thin walls were not broken at 200N. Forces needed to break Multicolor thin walls were 1.6-3.5 times higher than in bone. For polycarbonate, forces applied were 1.6-2.5 times higher. Polycarbonate had a mode of fracture similar to the cadaver bone. Forces applied on materials during drilling followed a normal distribution except for the polyamide which was melted. Energy spent during drilling was respectively 1.6 and 2.6 times higher on bone than on PC and Multicolor. Polycarbonate is a good substitute of human cadaver bone for skull base surgery simulation. Thanks to short lead times and reasonable production costs, patient-specific 3D printed models can be used in clinical practice for pre-operative training, improving patient safety.
Endoscopic endonasal surgery for benign fibro-osseous lesions of the pediatric skull base.
Stapleton, Amanda L; Tyler-Kabara, Elizabeth C; Gardner, Paul A; Snyderman, Carl H
2015-09-01
To describe the presentation, treatment, and outcomes of benign fibro-osseous tumors involving the skull base in a pediatric population. Retrospective chart review from January 2002 to September 2013 of pediatric patients (ages 0-18 years) who underwent endoscopic endonasal surgery (EES) for benign fibro-osseous tumors involving the skull base. Fourteen patients were identified with an age range of 2.7 to 17.9 years (mean, 12.5 years). Six juvenile ossifying fibromas, five benign fibro-osseous lesions, two osteomas, and one fibrous dysplasia were treated. Ocular symptoms and nasal obstruction were the most common presenting symptoms in nine (64%) and six (43%) of patients, respectively; five (36%) presented with proptosis and four (29%) with diplopia. Two (14%) patients had cranial nerve VI palsy. Transsellar and transclival approaches were used in five (36%) of patients. Orbital and optic nerve decompressions were the most common components of the approaches performed in nine (64%) of the surgeries. Gross total resection (GTR) was achieved with single-stage surgery in 10 (71%) patients; two additional patients underwent staged GTR. Two intraoperative cerebrospinal fluid (CSF) leaks occurred and were repaired endoscopically. There were no postoperative CSF leaks or infectious complications. Two patients had transient diplopia, and two had transient diabetes insipidus, all of which resolved. The mean follow-up was 13.8 months. Two patients had a recurrence, and both required additional EES achieving GTR. EES for benign fibro-osseous tumors of the skull base is a safe and effective treatment for excision of these lesions in the pediatric population. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.