Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain
NASA Astrophysics Data System (ADS)
Helbig, N.; Löwe, H.; Mayer, B.; Lehning, M.
2010-09-01
A model that computes the surface radiation balance for all sky conditions in complex terrain is presented. The spatial distribution of direct and diffuse sky radiation is determined from observations of incident global radiation, air temperature, and relative humidity at a single measurement location. Incident radiation under cloudless sky is spatially derived from a parameterization of the atmospheric transmittance. Direct and diffuse sky radiation for all sky conditions are obtained by decomposing the measured global radiation value. Spatial incident radiation values under all atmospheric conditions are computed by adjusting the spatial radiation values obtained from the parametric model with the radiation components obtained from the decomposition model at the measurement site. Topographic influences such as shading are accounted for. The radiosity approach is used to compute anisotropic terrain reflected radiation. Validations of the shortwave radiation balance model are presented in detail for a day with cloudless sky. For a day with overcast sky a first validation is presented. Validation of a section of the horizon line as well as of individual radiation components is performed with high-quality measurements. A new measurement setup was designed to determine terrain reflected radiation. There is good agreement between the measurements and the modeled terrain reflected radiation values as well as with incident radiation values. A comparison of the model with a fully three-dimensional radiative transfer Monte Carlo model is presented. That validation reveals a good agreement between modeled radiation values.
Global horizontal irradiance clear sky models : implementation and analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Joshua S.; Hansen, Clifford W.; Reno, Matthew J.
2012-03-01
Clear sky models estimate the terrestrial solar radiation under a cloudless sky as a function of the solar elevation angle, site altitude, aerosol concentration, water vapor, and various atmospheric conditions. This report provides an overview of a number of global horizontal irradiance (GHI) clear sky models from very simple to complex. Validation of clear-sky models requires comparison of model results to measured irradiance during clear-sky periods. To facilitate validation, we present a new algorithm for automatically identifying clear-sky periods in a time series of GHI measurements. We evaluate the performance of selected clear-sky models using measured data from 30 differentmore » sites, totaling about 300 site-years of data. We analyze the variation of these errors across time and location. In terms of error averaged over all locations and times, we found that complex models that correctly account for all the atmospheric parameters are slightly more accurate than other models, but, primarily at low elevations, comparable accuracy can be obtained from some simpler models. However, simpler models often exhibit errors that vary with time of day and season, whereas the errors for complex models vary less over time.« less
The National Solar Radiation Database (NSRDB): A Brief Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron M; Sengupta, Manajit; Lopez, Anthony
This poster presents a high-level overview of the National Solar Radiation Database (NSRDB). The NSRDB uses the physics-based model (PSM), which was developed using: adapted PATMOS-X model for cloud identification and properties, REST-2 model for clear-sky conditions, and NREL's Fast All-sky Radiation Model for Solar Applications (FARMS) for cloudy-sky Global Horizontal Irradiance (GHI) solar irradiance calculations.
eGSM: A extended Sky Model of Diffuse Radio Emission
NASA Astrophysics Data System (ADS)
Kim, Doyeon; Liu, Adrian; Switzer, Eric
2018-01-01
Both cosmic microwave background and 21cm cosmology observations must contend with astrophysical foreground contaminants in the form of diffuse radio emission. For precise cosmological measurements, these foregrounds must be accurately modeled over the entire sky Ideally, such full-sky models ought to be primarily motivated by observations. Yet in practice, these observations are limited, with data sets that are observed not only in a heterogenous fashion, but also over limited frequency ranges. Previously, the Global Sky Model (GSM) took some steps towards solving the problem of incomplete observational data by interpolating over multi-frequency maps using principal component analysis (PCA).In this poster, we present an extended version of GSM (called eGSM) that includes the following improvements: 1) better zero-level calibration 2) incorporation of non-uniform survey resolutions and sky coverage 3) the ability to quantify uncertainties in sky models 4) the ability to optimally select spectral models using Bayesian Evidence techniques.
A simplified model of all-sky artificial sky glow derived from VIIRS Day/Night band data
NASA Astrophysics Data System (ADS)
Duriscoe, Dan M.; Anderson, Sharolyn J.; Luginbuhl, Christian B.; Baugh, Kimberly E.
2018-07-01
We present a simplified method using geographic analysis tools to predict the average artificial luminance over the hemisphere of the night sky, expressed as a ratio to the natural condition. The VIIRS Day/Night Band upward radiance data from the Suomi NPP orbiting satellite was used for input to the model. The method is based upon a relation between sky glow brightness and the distance from the observer to the source of upward radiance. This relationship was developed using a Garstang radiative transfer model with Day/Night Band data as input, then refined and calibrated with ground-based all-sky V-band photometric data taken under cloudless and low atmospheric aerosol conditions. An excellent correlation was found between observed sky quality and the predicted values from the remotely sensed data. Thematic maps of large regions of the earth showing predicted artificial V-band sky brightness may be quickly generated with modest computing resources. We have found a fast and accurate method based on previous work to model all-sky quality. We provide limitations to this method. The proposed model meets requirements needed by decision makers and land managers of an easy to interpret and understand metric of sky quality.
Modelling and Display of the Ultraviolet Sky
NASA Astrophysics Data System (ADS)
Daniels, J.; Henry, R.; Murthy, J.; Allen, M.; McGlynn, T. A.; Scollick, K.
1994-12-01
A computer program is currently under development to model in 3D - one dimension of which is wavelength - all the known and major speculated sources of ultraviolet (900 A - 3100 A ) radiation over the celestial sphere. The software is being written in Fortran 77 and IDL and currently operates under IRIX (the operating system of the Silicon Graphics Iris Machine); all output models are in FITS format. Models along with display software will become available to the astronomical community. The Ultraviolet Sky Model currently includes the Zodiacal Light, Point Sources of Emission, and the Diffuse Galactic Light. The Ultraviolet Sky Model is currently displayed using SkyView: a package under development at NASA/ GSFC, which allows users to retrieve and display publically available all-sky astronomical survey data (covering many wavebands) over the Internet. We present a demonstration of the SkyView display of the Ultraviolet Model. The modelling is a five year development project: the work illustrated here represents product output at the end of year one. Future work includes enhancements to the current models and incorporation of the following models: Galactic Molecular Hydrogen Fluorescence; Galactic Highly Ionized Atomic Line Emission; Integrated Extragalactic Light; and speculated sources in the intergalactic medium such as Ionized Plasma and radiation from Non-Baryonic Particle Decay. We also present a poster which summarizes the components of the Ultraviolet Sky Model and outlines a further package that will be used to display the Ultraviolet Model. This work is supported by United States Air Force Contract F19628-93-K-0004. Dr J. Daniels is supported with a post-doctoral Fellowship from the Leverhulme Foundation, London, United Kingdom. We are also grateful for the encouragement of Dr Stephen Price (Phillips Laboratory, Hanscomb Air Force Base, MA)
Spatial Model of Sky Brightness Magnitude in Langkawi Island, Malaysia
NASA Astrophysics Data System (ADS)
Redzuan Tahar, Mohammad; Kamarudin, Farahana; Umar, Roslan; Khairul Amri Kamarudin, Mohd; Sabri, Nor Hazmin; Ahmad, Karzaman; Rahim, Sobri Abdul; Sharul Aikal Baharim, Mohd
2017-03-01
Sky brightness is an essential topic in the field of astronomy, especially for optical astronomical observations that need very clear and dark sky conditions. This study presents the spatial model of sky brightness magnitude in Langkawi Island, Malaysia. Two types of Sky Quality Meter (SQM) manufactured by Unihedron are used to measure the sky brightness on a moonless night (or when the Moon is below the horizon), when the sky is cloudless and the locations are at least 100 m from the nearest light source. The selected locations are marked by their GPS coordinates. The sky brightness data obtained in this study were interpolated and analyzed using a Geographic Information System (GIS), thus producing a spatial model of sky brightness that clearly shows the dark and bright sky areas in Langkawi Island. Surprisingly, our results show the existence of a few dark sites nearby areas of high human activity. The sky brightness of 21.45 mag arcsec{}-2 in the Johnson-Cousins V-band, as the average of sky brightness equivalent to 2.8 × {10}-4{cd} {{{m}}}-2 over the entire island, is an indication that the island is, overall, still relatively dark. However, the amount of development taking place might reduce the number in the near future as the island is famous as a holiday destination.
NASA Astrophysics Data System (ADS)
Wagner, R.; Norman, M. L.
Here we present a working example of a Basic SkyNode serving theoretical data. The data is taken from the Simulated Cluster Archive (SCA), a set of simulated X-ray clusters, where each cluster was computed using four different physics models. The LCA Theory SkyNode (LCATheory) tables contain columns of the integrated physical properties of the clusters at various redshifts. The ease of setting up a Theory SkyNode is an important result, because it represents a clear way to present theory data to the Virtual Observatory. Also, our Theory SkyNode provides a prototype for additional simulated object catalogs, which will be created from other simulations by our group, and hopefully others.
(EDMUNDS, WA) WILDLAND FIRE EMISSIONS MODELING: INTEGRATING BLUESKY AND SMOKE
This presentation is a status update of the BlueSky emissions modeling system. BlueSky-EM has been coupled with the Sparse Matrix Operational Kernel Emissions (SMOKE) system, and is now available as a tool for estimating emissions from wildland fires
Full-sky, High-resolution Maps of Interstellar Dust
NASA Astrophysics Data System (ADS)
Meisner, Aaron Michael
We present full-sky, high-resolution maps of interstellar dust based on data from the Wide-field Infrared Survey Explorer (WISE) and Planck missions. We describe our custom processing of the entire WISE 12 micron All-Sky imaging data set, and present the resulting 15 arcsecond resolution, full-sky map of diffuse Galactic dust emission, free of compact sources and other contaminating artifacts. Our derived 12 micron dust map offers angular resolution far superior to that of all other existing full-sky, infrared dust emission maps, revealing a wealth of small-scale filamentary structure. We also apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. We derive full-sky 6.1 arcminute resolution maps of dust optical depth and temperature by fitting this two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 micron data. In doing so, we obtain the first ever full-sky 100-3000 GHz Planck-based thermal dust emission model, as well as a dust temperature correction with ~10 times enhanced angular resolution relative to DIRBE-based temperature maps. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales. Future work will focus on combining our WISE 12 micron dust map and Planck dust model to create a next-generation, full-sky dust extinction map with angular resolution several times better than Schlegel et al. (1998).
Automatic Rotational Sky Quality Meter (R-SQM) Design and Software for Astronomical Observatories
NASA Astrophysics Data System (ADS)
Dogan, E.; Ozbaldan, E. E.; Shameoni, Niaei M.; Yesilyaprak, C.
2016-12-01
We have presented the new design of Sky Quality Meter (SQM) device that is an automatic rotational model of sky quality meter (R-SQM) carried out by DAG (Eastern Anatolia Observatory) Technical Team. R-SQM is required for determining the long-term changes of sky quality of an astronomical observatory and consists of four SQM devices mounted on a rotating shaft with different angles for scanning all sky. This system is controlled by a Raspberry Pi control card and a step motor with its driver and a special software.
Sky coverage modeling for the whole sky for laser guide star multiconjugate adaptive optics.
Wang, Lianqi; Andersen, David; Ellerbroek, Brent
2012-06-01
The scientific productivity of laser guide star adaptive optics systems strongly depends on the sky coverage, which describes the probability of finding natural guide stars for the tip/tilt wavefront sensor(s) to achieve a certain performance. Knowledge of the sky coverage is also important for astronomers planning their observations. In this paper, we present an efficient method to compute the sky coverage for the laser guide star multiconjugate adaptive optics system, the Narrow Field Infrared Adaptive Optics System (NFIRAOS), being designed for the Thirty Meter Telescope project. We show that NFIRAOS can achieve more than 70% sky coverage over most of the accessible sky with the requirement of 191 nm total rms wavefront.
NASA Technical Reports Server (NTRS)
Kiehl, J. T.; Briegleb, B. P.
1992-01-01
The clear sky greenhouse effect is defined in terms of the outgoing longwave clear sky flux at the top of the atmosphere. Recently, interest in the magnitude of the clear sky greenhouse effect has increased due to the archiving of the clear sky flux quantity through the Earth Radiation Budget Experiment (ERBE). The present study investigates to what degree of accuracy this flux can be analyzed by using independent atmospheric and surface data in conjunction with a detailed longwave radiation model. The conclusion from this comparison is that for most regions over oceans the analyzed fluxes agree to within the accuracy of the ERBE-retrieved fluxes (+/- 5 W/sq m). However, in regions where deep convective activity occurs, the ERBE fluxes are significantly higher (10-15 W/sq m) than the calculated fluxes. This bias can arise from either cloud contamination problems or variability in water vapor amount. It is argued that the use of analyzed fluxes may provide a more consistent clear sky flux data set for general circulation modeling validation. Climate implications from the analyzed fluxes are explored. Finally, results for obtaining longwave surface fluxes over the oceans are presented.
Identification of periods of clear sky irradiance in time series of GHI measurements
Reno, Matthew J.; Hansen, Clifford W.
2016-01-18
In this study, we present a simple algorithm for identifying periods of time with broadband global horizontal irradiance (GHI) similar to that occurring during clear sky conditions from a time series of GHI measurements. Other available methods to identify these periods do so by identifying periods with clear sky conditions using additional measurements, such as direct or diffuse irradiance. Our algorithm compares characteristics of the time series of measured GHI with the output of a clear sky model without requiring additional measurements. We validate our algorithm using data from several locations by comparing our results with those obtained from amore » clear sky detection algorithm, and with satellite and ground-based sky imagery.« less
Identification of periods of clear sky irradiance in time series of GHI measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reno, Matthew J.; Hansen, Clifford W.
In this study, we present a simple algorithm for identifying periods of time with broadband global horizontal irradiance (GHI) similar to that occurring during clear sky conditions from a time series of GHI measurements. Other available methods to identify these periods do so by identifying periods with clear sky conditions using additional measurements, such as direct or diffuse irradiance. Our algorithm compares characteristics of the time series of measured GHI with the output of a clear sky model without requiring additional measurements. We validate our algorithm using data from several locations by comparing our results with those obtained from amore » clear sky detection algorithm, and with satellite and ground-based sky imagery.« less
An infrared sky model based on the IRAS point source data
NASA Technical Reports Server (NTRS)
Cohen, Martin; Walker, Russell; Wainscoat, Richard; Volk, Kevin; Walker, Helen; Schwartz, Deborah
1990-01-01
A detailed model for the infrared point source sky is presented that comprises geometrically and physically realistic representations of the galactic disk, bulge, spheroid, spiral arms, molecular ring, and absolute magnitudes. The model was guided by a parallel Monte Carlo simulation of the Galaxy. The content of the galactic source table constitutes an excellent match to the 12 micrometer luminosity function in the simulation, as well as the luminosity functions at V and K. Models are given for predicting the density of asteroids to be observed, and the diffuse background radiance of the Zodiacal cloud. The model can be used to predict the character of the point source sky expected for observations from future infrared space experiments.
Redundant Calibration: breaking the constraints of limited sky information
NASA Astrophysics Data System (ADS)
Joseph, Ronniy C.
2018-05-01
The latest generation of low frequency radio interferometers, e.g. LOFAR, MWA, PAPER, has been pushing down the detection limits on the hydrogen signal from the Epoch of Reionisation. However, due to the challenges posed by foregrounds and instrumental systematics the signal has eluded detection thus far. To overcome these challenges we require a detailed understanding of the calibration of these relatively new telescopes. This led to a renewed interest in redundant calibration. Classical calibration schemes depend on sky models based on limited knowledge of the low frequency sky. Redundant calibration, however, allows us to escape our ignorance as it is sky model independent. We will review the field of redundant calibration, and present work we have undertaken to understand the limitations of this calibration method.
Weather and atmosphere observation with the ATOM all-sky camera
NASA Astrophysics Data System (ADS)
Jankowsky, Felix; Wagner, Stefan
2015-03-01
The Automatic Telescope for Optical Monitoring (ATOM) for H.E.S.S. is an 75 cm optical telescope which operates fully automated. As there is no observer present during observation, an auxiliary all-sky camera serves as weather monitoring system. This device takes an all-sky image of the whole sky every three minutes. The gathered data then undergoes live-analysis by performing astrometric comparison with a theoretical night sky model, interpreting the absence of stars as cloud coverage. The sky monitor also serves as tool for a meteorological analysis of the observation site of the the upcoming Cherenkov Telescope Array. This overview covers design and benefits of the all-sky camera and additionally gives an introduction into current efforts to integrate the device into the atmosphere analysis programme of H.E.S.S.
Suhai, Bence; Horváth, Gábor
2004-09-01
We present the first high-resolution maps of Rayleigh behavior in clear and cloudy sky conditions measured by full-sky imaging polarimetry at the wavelengths of 650 nm (red), 550 nm (green), and 450 nm (blue) versus the solar elevation angle thetas. Our maps display those celestial areas at which the deviation deltaalpha = /alphameas - alphaRyleigh/ is below the threshold alphathres = 5 degrees, where alphameas is the angle of polarization of skylight measured by full-sky imaging polarimetry, and alphaRayleigh is the celestial angle of polarization calculated on the basis of the single-scattering Rayleigh model. From these maps we derived the proportion r of the full sky for which the single-scattering Rayleigh model describes well (with an accuracy of deltaalpha = 5 degrees) the E-vector alignment of skylight. Depending on thetas, r is high for clear skies, especially for low solar elevations (40% < r < 70% for thetas < or = 13 degrees). Depending on the cloud cover and the solar illumination, r decreases more or less under cloudy conditions, but sometimes its value remains remarkably high, especially at low solar elevations (rmax = 69% for thetas = 0 degrees). The proportion r of the sky that follows the Rayleigh model is usually higher for shorter wavelengths under clear as well as cloudy sky conditions. This partly explains why the shorter wavelengths are generally preferred by animals navigating by means of the celestial polarization. We found that the celestial E-vector pattern generally follows the Rayleigh pattern well, which is a fundamental hypothesis in the studies of animal orientation and human navigation (e.g., in aircraft flying near the geomagnetic poles and using a polarization sky compass) with the use of the celestial alpha pattern.
Solar Resource Assessment with Sky Imagery and a Virtual Testbed for Sky Imager Solar Forecasting
NASA Astrophysics Data System (ADS)
Kurtz, Benjamin Bernard
In recent years, ground-based sky imagers have emerged as a promising tool for forecasting solar energy on short time scales (0 to 30 minutes ahead). Following the development of sky imager hardware and algorithms at UC San Diego, we present three new or improved algorithms for sky imager forecasting and forecast evaluation. First, we present an algorithm for measuring irradiance with a sky imager. Sky imager forecasts are often used in conjunction with other instruments for measuring irradiance, so this has the potential to decrease instrumentation costs and logistical complexity. In particular, the forecast algorithm itself often relies on knowledge of the current irradiance which can now be provided directly from the sky images. Irradiance measurements are accurate to within about 10%. Second, we demonstrate a virtual sky imager testbed that can be used for validating and enhancing the forecast algorithm. The testbed uses high-quality (but slow) simulations to produce virtual clouds and sky images. Because virtual cloud locations are known, much more advanced validation procedures are possible with the virtual testbed than with measured data. In this way, we are able to determine that camera geometry and non-uniform evolution of the cloud field are the two largest sources of forecast error. Finally, with the assistance of the virtual sky imager testbed, we develop improvements to the cloud advection model used for forecasting. The new advection schemes are 10-20% better at short time horizons.
Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Manajit; Gotseff, Peter
2013-12-01
This report describes an intercomparison of three popular broadband clear sky solar irradiance model results with measured data, as well as satellite-based model clear sky results compared to measured clear sky data. The authors conclude that one of the popular clear sky models (the Bird clear sky model developed by Richard Bird and Roland Hulstrom) could serve as a more accurate replacement for current satellite-model clear sky estimations. Additionally, the analysis of the model results with respect to model input parameters indicates that rather than climatological, annual, or monthly mean input data, higher-time-resolution input parameters improve the general clear skymore » model performance.« less
NASA Astrophysics Data System (ADS)
Obreschkow, D.; Klöckner, H.-R.; Heywood, I.; Levrier, F.; Rawlings, S.
2009-10-01
We present a sky simulation of the atomic H I-emission line and the first 10 12C16O rotational emission lines of molecular gas in galaxies beyond the Milky Way. The simulated sky field has a comoving diameter of 500 h -1 Mpc; hence, the actual field of view depends on the (user-defined) maximal redshift z max; e.g., for z max = 10, the field of view yields ~4 × 4 deg2. For all galaxies, we estimate the line fluxes, line profiles, and angular sizes of the H I and CO-emission lines. The galaxy sample is complete for galaxies with cold hydrogen masses above 108 M sun. This sky simulation builds on a semi-analytic model of the cosmic evolution of galaxies in a Λ cold dark matter (ΛCDM) cosmology. The evolving CDM distribution was adopted from the Millennium Simulation, an N-body CDM simulation in a cubic box with a side length of 500 h -1 Mpc. This side length limits the coherence scale of our sky simulation: it is long enough to allow the extraction of the baryon acoustic oscillations in the galaxy power spectrum, yet the position and amplitude of the first acoustic peak will be imperfectly defined. This sky simulation is a tangible aid to the design and operation of future telescopes, such as the Square Kilometre Array, Large Millimeter Telescope, and Atacama Large Millimeter/Submillimeter Array. The results presented in this paper have been restricted to a graphical representation of the simulated sky and fundamental dN/dz analyses for peak flux density limited and total flux limited surveys of H I and CO. A key prediction is that H I will be harder to detect at redshifts z gsim 2 than predicted by a no-evolution model. The future verification or falsification of this prediction will allow us to qualify the semi-analytic models. -SAX-Sky"
Bridging the Radiative Transfer Models for Meteorology and Solar Energy Applications
NASA Astrophysics Data System (ADS)
Xie, Y.; Sengupta, M.
2017-12-01
Radiative transfer models are used to compute solar radiation reaching the earth surface and play an important role in both meteorology and solar energy studies. Therefore, they are designed to meet the needs of specialized applications. For instance, radiative transfer models for meteorology seek to provide more accurate cloudy-sky radiation compared to models used in solar energy that are geared towards accuracy in clear-sky conditions associated with the maximum solar resource. However, models for solar energy applications are often computationally faster, as the complex solution of the radiative transfer equation is parameterized by atmospheric properties that can be acquired from surface- or satellite-based observations. This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to combine the advantages of radiative transfer models designed for meteorology and solar energy applictions. A fast all-sky radiation model, FARMS-NIT, was developed to efficiently compute narrowband all-sky irradiances over inclined photovoltaic (PV) panels. This new model utilizes the optical preperties from a solar energy model, SMARTS, to computes surface radiation by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. For cloudy-sky conditions, cloud bidirectional transmittance functions (BTDFs) are provided by a precomputed lookup table (LUT) by LibRadtran. Our initial results indicate that FARMS-NIT has an accuracy that is similar to LibRadtran, a highly accurate multi-stream model, but is significantly more efficient. The development and validation of this model will be presented.
An optical to IR sky brightness model for the LSST
NASA Astrophysics Data System (ADS)
Yoachim, Peter; Coughlin, Michael; Angeli, George Z.; Claver, Charles F.; Connolly, Andrew J.; Cook, Kem; Daniel, Scott; Ivezić, Željko; Jones, R. Lynne; Petry, Catherine; Reuter, Michael; Stubbs, Christopher; Xin, Bo
2016-07-01
To optimize the observing strategy of a large survey such as the LSST, one needs an accurate model of the night sky emission spectrum across a range of atmospheric conditions and from the near-UV to the near-IR. We have used the ESO SkyCalc Sky Model Calculator1, 2 to construct a library of template spectra for the Chilean night sky. The ESO model includes emission from the upper and lower atmosphere, scattered starlight, scattered moonlight, and zodiacal light. We have then extended the ESO templates with an empirical fit to the twilight sky emission as measured by a Canon all-sky camera installed at the LSST site. With the ESO templates and our twilight model we can quickly interpolate to any arbitrary sky position and date and return the full sky spectrum or surface brightness magnitudes in the LSST filter system. Comparing our model to all-sky observations, we find typical residual RMS values of +/-0.2-0.3 magnitudes per square arcsecond.
Global Sky Model (GSM): A Model of Diffuse Galactic Radio Emission from 10 MHz to 100 GHz
NASA Astrophysics Data System (ADS)
de Oliveira-Costa, Angelica; Tegmark, Max; Gaensler, B. M.; Jonas, Justin; Landecker, T. L.; Reich, Patricia
2010-11-01
Understanding diffuse Galactic radio emission is interesting both in its own right and for minimizing foreground contamination of cosmological measurements. Cosmic Microwave Background experiments have focused on frequencies > 10 GHz, whereas 21 cm tomography of the high redshift universe will mainly focus on < 0.2 GHz, for which less is currently known about Galactic emission. Motivated by this, we present a global sky model derived from all publicly available total power large-area radio surveys, digitized with optical character recognition when necessary and compiled into a uniform format, as well as the new Villa Elisa data extending the 1.4 GHz map to the entire sky. We quantify statistical and systematic uncertainties in these surveys by comparing them with various global multi-frequency model fits. We find that a principal component based model with only three components can fit the 11 most accurate data sets (at 10, 22, 45 & 408 MHz and 1.4, 2.3, 23, 33, 41, 61, 94 GHz) to an accuracy around 1%-10% depending on frequency and sky region. The data compilation and software returning a predicted all-sky map at any frequency from 10 MHz to 100 GHz are publicly available at the link below.
NASA Astrophysics Data System (ADS)
Aubé, M.; Simoneau, A.; Wainscoat, R.; Nelson, L.
2018-05-01
The goal of this study is to evaluate the current level of light pollution in the night sky at the Haleakala Observatory on the island of Maui in Hawaii. This is accomplished with a numerical model that was tested in the first International Dark Sky Reserve located in Mont-Mégantic National Park in Canada. The model uses ground data on the artificial light sources present in the region of study, geographical data, and remotely sensed data for: 1) the nightly upward radiance; 2) the terrain elevation; and, 3) the ground spectral reflectance of the region. The results of the model give a measure of the current state of the sky spectral radiance at the Haleakala Observatory. Then, using the current state as a reference point, multiple light conversion plans are elaborated and evaluated using the model. We can thus estimate the expected impact of each conversion plan on the night sky radiance spectrum. A complete conversion to white (LEDs) with (CCT) of 4000K and 3000K are contrasted with a conversion using (PC) amber (LEDs). We include recommendations concerning the street lamps to be used in sensitive areas like the cities of Kahului and Kihei and suggest best lighting practices related to the color of lamps used at night.
NASA Astrophysics Data System (ADS)
Qin, Zilong; Chen, Mingli; Zhu, Baoyou; Du, Ya-ping
2017-01-01
An improved ray theory and transfer matrix method-based model for a lightning electromagnetic pulse (LEMP) propagating in Earth-ionosphere waveguide (EIWG) is proposed and tested. The model involves the presentation of a lightning source, parameterization of the lower ionosphere, derivation of a transfer function representing all effects of EIWG on LEMP sky wave, and determination of attenuation mode of the LEMP ground wave. The lightning source is simplified as an electric point dipole standing on Earth surface with finite conductance. The transfer function for the sky wave is derived based on ray theory and transfer matrix method. The attenuation mode for the ground wave is solved from Fock's diffraction equations. The model is then applied to several lightning sferics observed in central China during day and night times within 1000 km. The results show that the model can precisely predict the time domain sky wave for all these observed lightning sferics. Both simulations and observations show that the lightning sferics in nighttime has a more complicated waveform than in daytime. Particularly, when a LEMP propagates from east to west (Φ = 270°) and in nighttime, its sky wave tends to be a double-peak waveform (dispersed sky wave) rather than a single peak one. Such a dispersed sky wave in nighttime may be attributed to the magneto-ionic splitting phenomenon in the lower ionosphere. The model provides us an efficient way for retrieving the electron density profile of the lower ionosphere and hence to monitor its spatial and temporal variations via lightning sferics.
Towards the intrahour forecasting of direct normal irradiance using sky-imaging data.
Nou, Julien; Chauvin, Rémi; Eynard, Julien; Thil, Stéphane; Grieu, Stéphane
2018-04-01
Increasing power plant efficiency through improved operation is key in the development of Concentrating Solar Power (CSP) technologies. To this end, one of the most challenging topics remains accurately forecasting the solar resource at a short-term horizon. Indeed, in CSP plants, production is directly impacted by both the availability and variability of the solar resource and, more specifically, by Direct Normal Irradiance (DNI). The present paper deals with a new approach to the intrahour forecasting (the forecast horizon [Formula: see text] is up to [Formula: see text] ahead) of DNI, taking advantage of the fact that this quantity can be split into two terms, i.e. clear-sky DNI and the clear sky index. Clear-sky DNI is forecasted from DNI measurements, using an empirical model (Ineichen and Perez, 2002) combined with a persistence of atmospheric turbidity. Moreover, in the framework of the CSPIMP (Concentrating Solar Power plant efficiency IMProvement) research project, PROMES-CNRS has developed a sky imager able to provide High Dynamic Range (HDR) images. So, regarding the clear-sky index, it is forecasted from sky-imaging data, using an Adaptive Network-based Fuzzy Inference System (ANFIS). A hybrid algorithm that takes inspiration from the classification algorithm proposed by Ghonima et al. (2012) when clear-sky anisotropy is known and from the hybrid thresholding algorithm proposed by Li et al. (2011) in the opposite case has been developed to the detection of clouds. Performance is evaluated via a comparative study in which persistence models - either a persistence of DNI or a persistence of the clear-sky index - are included. Preliminary results highlight that the proposed approach has the potential to outperform these models (both persistence models achieve similar performance) in terms of forecasting accuracy: over the test data used, RMSE (the Root Mean Square Error) is reduced of about [Formula: see text], with [Formula: see text], and [Formula: see text], with [Formula: see text].
A model of the 8-25 micron point source infrared sky
NASA Technical Reports Server (NTRS)
Wainscoat, Richard J.; Cohen, Martin; Volk, Kevin; Walker, Helen J.; Schwartz, Deborah E.
1992-01-01
We present a detailed model for the IR point-source sky that comprises geometrically and physically realistic representations of the Galactic disk, bulge, stellar halo, spiral arms (including the 'local arm'), molecular ring, and the extragalactic sky. We represent each of the distinct Galactic components by up to 87 types of Galactic source, each fully characterized by scale heights, space densities, and absolute magnitudes at BVJHK, 12, and 25 microns. The model is guided by a parallel Monte Carlo simulation of the Galaxy at 12 microns. The content of our Galactic source table constitutes a good match to the 12 micron luminosity function in the simulation, as well as to the luminosity functions at V and K. We are able to produce differential and cumulative IR source counts for any bandpass lying fully within the IRAS Low-Resolution Spectrometer's range (7.7-22.7 microns as well as for the IRAS 12 and 25 micron bands. These source counts match the IRAS observations well. The model can be used to predict the character of the point source sky expected for observations from IR space experiments.
VLITE Surveys the Sky: A 340 MHz Companion to the VLA Sky Survey (VLASS)
NASA Astrophysics Data System (ADS)
Peters, Wendy; Clarke, Tracy; Brisken, Walter; Cotton, William; Richards, Emily E.; Giacintucci, Simona; Kassim, Namir
2018-01-01
The VLA Low Band Ionosphere and Transient Experiment (VLITE;
BlueSky Cloud - rapid infrastructure capacity using Amazon's Cloud for wildfire emergency response
NASA Astrophysics Data System (ADS)
Haderman, M.; Larkin, N. K.; Beach, M.; Cavallaro, A. M.; Stilley, J. C.; DeWinter, J. L.; Craig, K. J.; Raffuse, S. M.
2013-12-01
During peak fire season in the United States, many large wildfires often burn simultaneously across the country. Smoke from these fires can produce air quality emergencies. It is vital that incident commanders, air quality agencies, and public health officials have smoke impact information at their fingertips for evaluating where fires and smoke are and where the smoke will go next. To address the need for this kind of information, the U.S. Forest Service AirFire Team created the BlueSky Framework, a modeling system that predicts concentrations of particle pollution from wildfires. During emergency response, decision makers use BlueSky predictions to make public outreach and evacuation decisions. The models used in BlueSky predictions are computationally intensive, and the peak fire season requires significantly more computer resources than off-peak times. Purchasing enough hardware to run the number of BlueSky Framework runs that are needed during fire season is expensive and leaves idle servers running the majority of the year. The AirFire Team and STI developed BlueSky Cloud to take advantage of Amazon's virtual servers hosted in the cloud. With BlueSky Cloud, as demand increases and decreases, servers can be easily spun up and spun down at a minimal cost. Moving standard BlueSky Framework runs into the Amazon Cloud made it possible for the AirFire Team to rapidly increase the number of BlueSky Framework instances that could be run simultaneously without the costs associated with purchasing and managing servers. In this presentation, we provide an overview of the features of BlueSky Cloud, describe how the system uses Amazon Cloud, and discuss the costs and benefits of moving from privately hosted servers to a cloud-based infrastructure.
NASA Technical Reports Server (NTRS)
Redemann, J.; Livingston, J.; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; LeBlanc, S.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.;
2014-01-01
We have developed a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. We compare the spatio-temporal distribution of our multi-sensor aerosol retrievals and calculations of seasonal clear-sky aerosol radiative forcing based on the aerosol retrievals to values derived from four models that participated in the latest AeroCom model intercomparison initiative. We find significant inter-model differences, in particular for the aerosol single scattering albedo, which can be evaluated using the multi-sensor A-Train retrievals. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.
The Python Sky Model: software for simulating the Galactic microwave sky
NASA Astrophysics Data System (ADS)
Thorne, B.; Dunkley, J.; Alonso, D.; Næss, S.
2017-08-01
We present a numerical code to simulate maps of Galactic emission in intensity and polarization at microwave frequencies, aiding in the design of cosmic microwave background experiments. This python code builds on existing efforts to simulate the sky by providing an easy-to-use interface and is based on publicly available data from the WMAP (Wilkinson Microwave Anisotropy Probe) and Planck satellite missions. We simulate synchrotron, thermal dust, free-free and anomalous microwave emission over the whole sky, in addition to the cosmic microwave background, and include a set of alternative prescriptions for the frequency dependence of each component, for example, polarized dust with multiple temperatures and a decorrelation of the signals with frequency, which introduce complexity that is consistent with current data. We also present a new prescription for adding small-scale realizations of these components at resolutions greater than current all-sky measurements. The usefulness of the code is demonstrated by forecasting the impact of varying foreground complexity on the recovered tensor-to-scalar ratio for the LiteBIRD satellite. The code is available at: https://github.com/bthorne93/PySM_public.
NASA Astrophysics Data System (ADS)
Redemann, J.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Russell, P. B.; LeBlanc, S. E.; Vaughan, M.; Ferrare, R. A.; Hostetler, C. A.; Rogers, R. R.; Burton, S. P.; Torres, O.; Remer, L. A.; Stier, P.; Schutgens, N.
2014-12-01
We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). For the first time, we present comparisons of our multi-sensor aerosol direct radiative forcing estimates to values derived from a subset of models that participated in the latest AeroCom initiative. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.
A new model of the microwave polarized sky for CMB experiments
NASA Astrophysics Data System (ADS)
Hervías-Caimapo, Carlos; Bonaldi, Anna; Brown, Michael L.
2016-10-01
We present a new model of the microwave sky in polarization that can be used to simulate data from cosmic microwave background polarization experiments. We exploit the most recent results from the Planck satellite to provide an accurate description of the diffuse polarized foreground synchrotron and thermal dust emission. Our model can include the two mentioned foregrounds, and also a constructed template of Anomalous Microwave Emission. Several options for the frequency dependence of the foregrounds can be easily selected, to reflect our uncertainties and to test the impact of different assumptions. Small angular scale features can be added to the foreground templates to simulate high-resolution observations. We present tests of the model outputs to show the excellent agreement with Planck and Wilkinson Microwave Anisotropy Probe (WMAP) data. We determine the range within which the foreground spectral indices can be varied to be consistent with the current data. We also show forecasts for a high-sensitivity, high-resolution full-sky experiment such as the Cosmic ORigin Explorer. Our model is released as a PYTHON script that is quick and easy to use, available at http://www.jb.man.ac.uk/chervias.
The LWA1 Low Frequency Sky Survey
NASA Astrophysics Data System (ADS)
Dowell, Jayce; Taylor, Gregory B.; LWA Collaboration
2015-01-01
The LWA1 Low Frequency Sky Survey is a survey of the sky visible from the first station of the Long Wavelength Array (LWA1) across the frequency range of 35 to 80 MHz. The primary motivation behind this effort is to improve our understanding of the sky at these frequencies. In particular, an understanding of the low frequency foreground emission is necessary for work on detecting the epoch of reionization and the cosmic dark ages where the foreground signal dwarfs the expected redshifted HI signal by many orders of magnitude (Pritchard & Loeb 2012, Rep. Prog. Phys., 75, 086901). The leading model for the sky in the frequency range of 20 to 200 MHz is the Global Sky Model (GSM) by de Oliveria-Costas et al. (2008, MNRAS, 288, 247). This model is based upon a principle component analysis of 11 sky maps ranging in frequency from 10 MHz to 94 GHz. Of these 11 maps, only four are below 1 GHz; 10 MHz from Caswell (1976, MNRAS, 177, 601), 22 MHz from Roger et al. (1999, A&AS, 137, 7), 45 MHz from Alvarez et al. (1997, A&AS, 124, 315) and Maeda et al. (1999, A&AS, 140, 145), and 408 MHz from Haslam et al. (1982, A&AS, 47, 1). Thus, within this model, the region of interest to both cosmic dawn and the epoch of reionization is largely unconstrained based on the available survey data, and are also limited in terms of the spatial coverage and calibration. A self-consistent collection of maps is necessary for both our understanding of the sky and the removal of the foregrounds that mask the redshifted 21-cm signal.We present the current state of the survey and discuss the imaging and calibration challenges faced by dipole arrays that are capable of imaging nearly 2π steradians of sky simultaneously over a large fractional bandwidth.Construction of the LWA has been supported by the Office of Naval Research under Contract N00014-07-C-0147. Support for operations and continuing development of the LWA1 is provided by the National Science Foundation under grants AST-1139963 and AST-1139974 of the University Radio Observatory program.
An Effective Method for Modeling Two-dimensional Sky Background of LAMOST
NASA Astrophysics Data System (ADS)
Haerken, Hasitieer; Duan, Fuqing; Zhang, Jiannan; Guo, Ping
2017-06-01
Each CCD of LAMOST accommodates 250 spectra, while about 40 are used to observe sky background during real observations. How to estimate the unknown sky background information hidden in the observed 210 celestial spectra by using the known 40 sky spectra is the problem we solve. In order to model the sky background, usually a pre-observation is performed with all fibers observing sky background. We use the observed 250 skylight spectra as training data, where those observed by the 40 fibers are considered as a base vector set. The Locality-constrained Linear Coding (LLC) technique is utilized to represent the skylight spectra observed by the 210 fibers with the base vector set. We also segment each spectrum into small parts, and establish the local sky background model for each part. Experimental results validate the proposed method, and show the local model is better than the global model.
An All Sky Instantaneous Shortwave Solar Radiation Model for Mountainous Terrain
NASA Astrophysics Data System (ADS)
Zhang, S.; Li, X.; She, J.
2017-12-01
In mountainous terrain, solar radiation shows high heterogeneity in space and time because of strong terrain shading effects and significant variability of cloud cover. While existing GIS-based solar radiation models simulate terrain shading effects with relatively high accuracy and models based on satellite datasets consider fine scale cloud attenuation processes, none of these models have considered the geometrical relationships between sun, cloud, and terrain, which are important over mountainous terrain. In this research we propose sky cloud maps to represent cloud distribution in a hemispherical sky using MODIS cloud products. By overlaying skyshed (visible area in the hemispherical sky derived from DEM), sky map, and sky cloud maps, we are able to consider both terrain shading effects and anisotropic cloud attenuation in modeling instantaneous direct and diffuse solar radiation in mountainous terrain. The model is evaluated with field observations from three automatic weather stations in the Tizinafu watershed in the Kunlun Mountains of northwestern China. Overall, under all sky conditions, the model overestimates instantaneous global solar radiation with a mean absolute relative difference (MARD) of 22%. The model is also evaluated under clear sky (clearness index of more than 0.75) and partly cloudy sky (clearness index between 0.35 and 0.75) conditions with MARDs of 5.98% and 23.65% respectively. The MARD for very cloudy sky (clearness index less than 0.35) is relatively high. But these days occur less than 1% of the time. The model is sensitive to DEM data error, algorithms used in delineating skyshed, and errors in MODIS atmosphere and cloud products. Our model provides a novel approach for solar radiation modeling in mountainous areas.
NASA Technical Reports Server (NTRS)
Redemann, J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rozenhaimer, M.; LeBlanc, S.; Vaughan, M.; Stier, P.; Schutgens, N.
2017-01-01
We describe a technique for combining multiple A-Train aerosol data sets, namely MODIS spectral AOD (aerosol optical depth), OMI AAOD (absorption aerosol optical depth) and CALIOP aerosol backscatter retrievals (hereafter referred to as MOC retrievals) to estimate full spectral sets of aerosol radiative properties, and ultimately to calculate the 3-D distribution of direct aerosol radiative effects (DARE). We present MOC results using almost two years of data collected in 2007 and 2008, and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the MODIS Collection 6 AOD data derived with the dark target and deep blue algorithms has extended the coverage of the MOC retrievals towards higher latitudes. The MOC aerosol retrievals agree better with AERONET in terms of the single scattering albedo (ssa) at 441 nm than ssa calculated from OMI and MODIS data alone, indicating that CALIOP aerosol backscatter data contains information on aerosol absorption. We compare the spatio-temporal distribution of the MOC retrievals and MOC-based calculations of seasonal clear-sky DARE to values derived from four models that participated in the Phase II AeroCom model intercomparison initiative. Overall, the MOC-based calculations of clear-sky DARE at TOA over land are smaller (less negative) than previous model or observational estimates due to the inclusion of more absorbing aerosol retrievals over brighter surfaces, not previously available for observationally-based estimates of DARE. MOC-based DARE estimates at the surface over land and total (land and ocean) DARE estimates at TOA are in between previous model and observational results. Comparisons of seasonal aerosol property to AeroCom Phase II results show generally good agreement best agreement with forcing results at TOA is found with GMI-MerraV3. We discuss sampling issues that affect the comparisons and the major challenges in extending our clear-sky DARE results to all-sky conditions. We present estimates of clear-sky and all-sky DARE and show uncertainties that stem from the assumptions in the spatial extrapolation and accuracy of aerosol and cloud properties, in the diurnal evolution of these properties, and in the radiative transfer calculations.
Sky camera geometric calibration using solar observations
Urquhart, Bryan; Kurtz, Ben; Kleissl, Jan
2016-09-05
A camera model and associated automated calibration procedure for stationary daytime sky imaging cameras is presented. The specific modeling and calibration needs are motivated by remotely deployed cameras used to forecast solar power production where cameras point skyward and use 180° fisheye lenses. Sun position in the sky and on the image plane provides a simple and automated approach to calibration; special equipment or calibration patterns are not required. Sun position in the sky is modeled using a solar position algorithm (requiring latitude, longitude, altitude and time as inputs). Sun position on the image plane is detected using a simple image processing algorithm. Themore » performance evaluation focuses on the calibration of a camera employing a fisheye lens with an equisolid angle projection, but the camera model is general enough to treat most fixed focal length, central, dioptric camera systems with a photo objective lens. Calibration errors scale with the noise level of the sun position measurement in the image plane, but the calibration is robust across a large range of noise in the sun position. In conclusion, calibration performance on clear days ranged from 0.94 to 1.24 pixels root mean square error.« less
NASA Technical Reports Server (NTRS)
Liang, Z.; Fixsen, D. J.; Gold, B.
2012-01-01
We show that a one-component variable-emissivity-spectral-index model (the free- model) provides more physically motivated estimates of dust temperature at the Galactic polar caps than one- or two-component fixed-emissivity-spectral-index models (fixed- models) for interstellar dust thermal emission at far-infrared and millimeter wavelengths. For the comparison we have fit all-sky one-component dust models with fixed or variable emissivity spectral index to a new and improved version of the 210-channel dust spectra from the COBE-FIRAS, the 100-240 micrometer maps from the COBE-DIRBE and the 94 GHz dust map from the WMAP. The best model, the free-alpha model, is well constrained by data at 60-3000 GHz over 86 per cent of the total sky area. It predicts dust temperature (T(sub dust)) to be 13.7-22.7 (plus or minus 1.3) K, the emissivity spectral index (alpha) to be 1.2-3.1 (plus or minus 0.3) and the optical depth (tau) to range 0.6-46 x 10(exp -5) with a 23 per cent uncertainty. Using these estimates, we present all-sky evidence for an inverse correlation between the emissivity spectral index and dust temperature, which fits the relation alpha = 1/(delta + omega (raised dot) T(sub dust) with delta = -.0.510 plus or minus 0.011 and omega = 0.059 plus or minus 0.001. This best model will be useful to cosmic microwave background experiments for removing foreground dust contamination and it can serve as an all-sky extended-frequency reference for future higher resolution dust models.
Investigating Galactic Structure with COBE/DIRBE and Simulation
NASA Technical Reports Server (NTRS)
Cohen, Martin
1999-01-01
In this work I applied the current version of the SKY model of the point source sky to the interpretation of the diffuse all-sky emission observed by COBE/DIRBE (Cosmic Background Explorer Satellite/Diffuse Infrared Background Experiment). The goal was to refine the SKY model using the all-sky DIRBE maps of the Galaxy, in order that a search could be made for an isotropic cosmic background."Faint Source Model" [FSM] was constructed to remove Galactic fore ground stars from the ZSMA products. The FSM mimics SKY version 1 but it was inadequate to seek cosmic background emission because of the sizeable residual emission in the ZSMA products after this starlight subtraction. At this point I can only support that such models are currently inadequate to reveal a cosmic background. Even SKY5 yields the same disappointing result.
Planck intermediate results: XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations
Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; ...
2016-02-09
In this paper, we present all-sky modelling of the high resolution Planck, IRAS, and WISE infrared (IR) observations using the physical dust model presented by Draine & Li in 2007 (DL, ApJ, 657, 810). We study the performance and results of this model, and discuss implications for future dust modelling. The present work extends the DL dust modelling carried out on nearby galaxies using Herschel and Spitzer data to Galactic dust emission. We employ the DL dust model to generate maps of the dust mass surface density Σ Md, the dust optical extinction A V, and the starlight intensity heatingmore » the bulk of the dust, parametrized by U min. The DL model reproduces the observed spectral energy distribution (SED) satisfactorily over most of the sky, with small deviations in the inner Galactic disk and in low ecliptic latitude areas, presumably due to zodiacal light contamination. In the Andromeda galaxy (M31), the present dust mass estimates agree remarkably well (within 10%) with DL estimates based on independent Spitzer and Herschel data. We compare the DL optical extinction A V for the diffuse interstellar medium (ISM) with optical estimates for approximately 2 × 10 5 quasi-stellar objects (QSOs) observed inthe Sloan Digital Sky Survey (SDSS). The DL A V estimates are larger than those determined towards QSOs by a factor of about 2, which depends on U min. The DL fitting parameter U min, effectively determined by the wavelength where the SED peaks, appears to trace variations in the far-IR opacity of the dust grains per unit A V, and not only in the starlight intensity. These results show that some of the physical assumptions of the DL model will need to be revised. To circumvent the model deficiency, we propose an empirical renormalization of the DL A V estimate, dependent of U min, which compensates for the systematic differences found with QSO observations. This renormalization, made to match the A V estimates towards QSOs, also brings into agreement the DL A V estimates with those derived for molecular clouds from the near-IR colours of stars in the 2 micron all sky survey (2MASS). The DL model and the QSOs data are also used to compress the spectral information in the Planck and IRAS observations for the diffuse ISM to a family of 20 SEDs normalized per A V, parameterized by U min, which may be used to test and empirically calibrate dust models. Finally, the family of SEDs and the maps generated with the DL model are made public in the Planck Legacy Archive.« less
NASA Astrophysics Data System (ADS)
Kim, M. J.; Jin, J.; McCarty, W.; Todling, R.; Holdaway, D. R.; Gelaro, R.
2014-12-01
The NASA Global Modeling and Assimilation Office (GMAO) works to maximize the impact of satellite observations in the analysis and prediction of climate and weather through integrated Earth system modeling and data assimilation. To achieve this goal, the GMAO undertakes model and assimilation development, generates products to support NASA instrument teams and the NASA Earth science program. Currently Atmospheric Data Assimilation System (ADAS) in the Goddard Earth Observing System Model, Version 5(GEOS-5) system combines millions of observations and short-term forecasts to determine the best estimate, or analysis, of the instantaneous atmospheric state. However, ADAS has been geared towards utilization of observations in clear sky conditions and the majority of satellite channel data affected by clouds are discarded. Microwave imager data from satellites can be a significant source of information for clouds and precipitation but the data are presently underutilized, as only surface rain rates from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) are assimilated with small weight assigned in the analysis process. As clouds and precipitation often occur in regions with high forecast sensitivity, improvements in the temperature, moisture, wind and cloud analysis of these regions are likely to contribute to significant gains in numerical weather prediction accuracy. This presentation is intended to give an overview of GMAO's recent progress in assimilating the all-sky GPM Microwave Imager (GMI) radiance data in GEOS-5 system. This includes development of various new components to assimilate cloud and precipitation affected data in addition to data in clear sky condition. New observation operators, quality controls, moisture control variables, observation and background error models, and a methodology to incorporate the linearlized moisture physics in the assimilation system are described. In addition preliminary results showing impacts of assimilating all-sky GMI data on GEOS-5 forecasts are discussed.
NASA Astrophysics Data System (ADS)
Zagoni, M.
2017-12-01
Over the past fifteen years, the NASA Clouds and the Earth's Radiant Energy System (CERES) satellite mission has provided the scientific community with the most reliable Earth radiation budget data. This presentation offers quantitative assessment of the published CERES Energy Balanced and Filled (EBAF) Edition 2.8 and Edition 4.0 data products, and reveals several internal patterns, ratios and regularities within the annual global mean flux components of the all-sky and clear-sky surface and atmospheric energy budgets. The found patterns, among others, include: (i) direct relationships between the top-of-atmosphere (TOA) radiative and surface radiative and non-radiative fluxes (contradicting the expectation that TOA and surface fluxes are physically decoupled); (ii) integer ratios and relationships between the absorbed and emitted surface and atmospheric energy flow elements; and (iii) definite connections among the clear-sky and the all-sky shortwave, longwave and non-radiative (turbulent) flux elements and the corresponding greenhouse effect. Comparison between the EBAF Ed2.8 and Ed4.0 SFC and TOA data products and trend analyses of the normalized clear-sky and all-sky greenhouse factors are presented. Longwave cloud radiative effect (LW CRE) proved to be playing a principal role in organizing the found numerical patterns in the surface and atmospheric energy flow components. All of the revealed structures are quantitatively valid within the one-sigma range of uncertainty of the involved individual flux elements. This presentation offers a conceptual framework to interpret the found relationships and shows how the observed CERES fluxes can be deduced from this proposed physical model. An important conclusion drawn from our analysis is that the internal atmospheric and surface energy flow system forms a definite structure and seems to be more constrained to the incoming solar energy than previously thought.
NASA Astrophysics Data System (ADS)
Aoki, K.
2016-12-01
Aerosols and cloud play an important role in the climate change. We started the long-term monitoring of aerosol and cloud optical properties since 1990's by using sky radiometer (POM-01, 02; Prede Co. Ltd., Japan). We provide the information, in this presentation, on the aerosol optical properties with respect to their temporal and spatial variability in Japan site (ex. Sapporo, Toyama, Kasuga and etc). The global distributions of aerosols have been derived from earth observation satellite and have been simulated in numerical models, which assume optical parameters. However, these distributions are difficult to derive because of variability in time and space. Therefore, Aerosol optical properties were investigated using the measurements from ground-based and ship-borne sky radiometer. The sky radiometer is an automatic instrument that takes observations only in daytime under the clear sky conditions. Observation of diffuse solar intensity interval was made every ten or five minutes by once. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability in Japan area. In this study, we present the temporal and spatial variability of Aerosol optical properties at several Japan sites, applied to validation of satellite and numerical models. This project is validation satellite of GCOM-C, JAXA. The GCOM-C satellite scheduled to be launched in early 2017.
Simulated cosmic microwave background maps at 0.5 deg resolution: Basic results
NASA Technical Reports Server (NTRS)
Hinshaw, G.; Bennett, C. L.; Kogut, A.
1995-01-01
We have simulated full-sky maps of the cosmic microwave background (CMB) anisotropy expected from cold dark matter (CDM) models at 0.5 deg and 1.0 deg angular resolution. Statistical properties of the maps are presented as a function of sky coverage, angular resolution, and instrument noise, and the implications of these results for observability of the Doppler peak are discussed. The rms fluctuations in a map are not a particularly robust probe of the existence of a Doppler peak; however, a full correlation analysis can provide reasonable sensitivity. We find that sensitivity to the Doppler peak depends primarily on the fraction of sky covered, and only secondarily on the angular resolution and noise level. Color plates of the simulated maps are presented to illustrate the anisotropies.
CONCAM's Fuzzy-Logic All-Sky Star Recognition Algorithm
NASA Astrophysics Data System (ADS)
Shamir, L.; Nemiroff, R. J.
2004-05-01
One of the purposes of the global Night Sky Live (NSL) network of fisheye CONtinuous CAMeras (CONCAMs) is to monitor and archive the entire bright night sky, track stellar variability, and search for transients. The high quality of raw CONCAM data allows automation of stellar object recognition, although distortions of the fisheye lens and frequent slight shifts in CONCAM orientations can make even this seemingly simple task formidable. To meet this challenge, a fuzzy logic based algorithm has been developed that transforms (x,y) image coordinates in the CCD frame into fuzzy right ascension and declination coordinates for use in matching with star catalogs. Using a training set of reference stars, the algorithm statically builds the fuzzy logic model. At runtime, the algorithm searches for peaks, and then applies the fuzzy logic model to perform the coordinate transformation before choosing the optimal star catalog match. The present fuzzy-logic algorithm works much better than our first generation, straightforward coordinate transformation formula. Following this essential step, algorithms dealing with the higher level data products can then provide a stream of photometry for a few hundred stellar objects visible in the night sky. Accurate photometry further enables the computation of all-sky maps of skyglow and opacity, as well as a search for uncataloged transients. All information is stored in XML-like tagged ASCII files that are instantly copied to the public domain and available at http://NightSkyLive.net. Currently, the NSL software detects stars and creates all-sky image files from eight different locations around the globe every 3 minutes and 56 seconds.
Assessment of simulation of radiation in NCEP Climate Forecasting System (CFS V2)
NASA Astrophysics Data System (ADS)
Goswami, Tanmoy; Rao, Suryachandra A.; Hazra, Anupam; Chaudhari, Hemantkumar S.; Dhakate, Ashish; Salunke, Kiran; Mahapatra, Somnath
2017-09-01
The objective of this study is to identify and document the radiation biases in the latest National Centers for Environment Prediction (NCEP), Climate Forecasting System (CFSv2) and to investigate the probable reasons for these biases. This analysis is made over global and Indian domain under all-sky and clear-sky conditions. The impact of increasing the horizontal resolution of the atmospheric model on these biases is also investigated by comparing results of two different horizontal resolution versions of CFSv2 namely T126 and T382. The difference between the top of the atmosphere and surface energy imbalance in T126 (T382) is 3.49 (2.78) W/m2. This reduction of bias in the high resolution model is achieved due to lesser low cloud cover, resulting more surface insolation, and due to more latent heat fluxes at the surface. Compared to clear sky simulations, all sky simulations exhibit larger biases suggesting that the cloud covers are not simulated well in the model. The annual mean high level cloud cover is over estimated over the global as well as the Indian domain. This overestimation over the Indian domain is also present during JJAS. There is also evidence that both of the models have insufficient water vapour in their atmosphere. This study suggests that in order to improve the model's mean radiation climatology, simulation of clouds in the model also needs to be improved, and future model development activities should focus on this aspect.
Pomozi, I; Horváth, G; Wehner, R
2001-09-01
One of the biologically most important parameters of the cloudy sky is the proportion P of the celestial polarization pattern available for use in animal navigation. We evaluated this parameter by measuring the polarization patterns of clear and cloudy skies using 180 degrees (full-sky) imaging polarimetry in the red (650 nm), green (550 nm) and blue (450 nm) ranges of the spectrum under clear and partly cloudy conditions. The resulting data were compared with the corresponding celestial polarization patterns calculated using the single-scattering Rayleigh model. We show convincingly that the pattern of the angle of polarization (e-vectors) in a clear sky continues underneath clouds if regions of the clouds and parts of the airspace between the clouds and the earth surface (being shady at the position of the observer) are directly lit by the sun. The scattering and polarization of direct sunlight on the cloud particles and in the air columns underneath the clouds result in the same e-vector pattern as that present in clear sky. This phenomenon can be exploited for animal navigation if the degree of polarization is higher than the perceptual threshold of the visual system, because the angle rather than the degree of polarization is the most important optical cue used in the polarization compass. Hence, the clouds reduce the extent of sky polarization pattern that is useful for animal orientation much less than has hitherto been assumed. We further demonstrate quantitatively that the shorter the wavelength, the greater the proportion of celestial polarization that can be used by animals under cloudy-sky conditions. As has already been suggested by others, this phenomenon may solve the ultraviolet paradox of polarization vision in insects such as hymenopterans and dipterans. The present study extends previous findings by using the technique of 180 degrees imaging polarimetry to measure and analyse celestial polarization patterns.
Daytime Water Detection Based on Sky Reflections
NASA Technical Reports Server (NTRS)
Rankin, Arturo; Matthies, Larry; Bellutta, Paolo
2011-01-01
A water body s surface can be modeled as a horizontal mirror. Water detection based on sky reflections and color variation are complementary. A reflection coefficient model suggests sky reflections dominate the color of water at ranges > 12 meters. Water detection based on sky reflections: (1) geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground (2) predicts if the ground pixel is water based on color similarity and local terrain features. Water detection has been integrated on XUVs.
Analytic expressions for the black-sky and white-sky albedos of the cosine lobe model.
Goodin, Christopher
2013-05-01
The cosine lobe model is a bidirectional reflectance distribution function (BRDF) that is commonly used in computer graphics to model specular reflections. The model is both simple and physically plausible, but physical quantities such as albedo have not been related to the parameterization of the model. In this paper, analytic expressions for calculating the black-sky and white-sky albedos from the cosine lobe BRDF model with integer exponents will be derived, to the author's knowledge for the first time. These expressions for albedo can be used to place constraints on physics-based simulations of radiative transfer such as high-fidelity ray-tracing simulations.
Analysis of the Best-Fit Sky Model Produced Through Redundant Calibration of Interferometers
NASA Astrophysics Data System (ADS)
Storer, Dara; Pober, Jonathan
2018-01-01
21 cm cosmology provides unique insights into the formation of stars and galaxies in the early universe, and particularly the Epoch of Reionization. Detection of the 21 cm line is challenging because it is generally 4-5 magnitudes weaker than the emission from foreground sources, and therefore the instruments used for detection must be carefully designed and calibrated. 21 cm cosmology is primarily conducted using interferometers, which are difficult to calibrate because of their complex structure. Here I explore the relationship between sky-based calibration, which relies on an accurate and comprehensive sky model, and redundancy-based calibration, which makes use of redundancies in the orientation of the interferometer's dishes. In addition to producing calibration parameters, redundant calibration also produces a best fit model of the sky. In this work I examine that sky model and explore the possibility of using that best fit model as an additional input to improve on sky-based calibration.
NASA Astrophysics Data System (ADS)
Wang, Xin; Gao, Jun; Fan, Zhiguo; Roberts, Nicholas W.
2016-06-01
We present a computationally inexpensive analytical model for simulating celestial polarization patterns in variable conditions. We combine both the singularity theory of Berry et al (2004 New J. Phys. 6 162) and the intensity model of Perez et al (1993 Sol. Energy 50 235-245) such that our single model describes three key sets of data: (1) the overhead distribution of the degree of polarization as well as the existence of neutral points in the sky; (2) the change in sky polarization as a function of the turbidity of the atmosphere; and (3) sky polarization patterns as a function of wavelength, calculated in this work from the ultra-violet to the near infra-red. To verify the performance of our model we generate accurate reference data using a numerical radiative transfer model and statistical comparisons between these two methods demonstrate no significant difference in almost all situations. The development of our analytical model provides a novel method for efficiently calculating the overhead skylight polarization pattern. This provides a new tool of particular relevance for our understanding of animals that use the celestial polarization pattern as a source of visual information.
PROBING THE DARK AGES AT z ∼ 20: THE SCI-HI 21 cm ALL-SKY SPECTRUM EXPERIMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voytek, Tabitha C.; Natarajan, Aravind; Peterson, Jeffrey B.
2014-02-10
We present first results from the SCI-HI experiment, which we used to measure the all-sky-averaged 21 cm brightness temperature in the redshift range 14.8 < z < 22.7. The instrument consists of a single broadband sub-wavelength size antenna and a sampling system for real-time data processing and recording. Preliminary observations were completed in 2013 June at Isla Guadalupe, a Mexican biosphere reserve located in the Pacific Ocean. The data was cleaned to excise channels contaminated by radio frequency interference, and the system response was calibrated by comparing the measured brightness temperature to the Global Sky Model of the Galaxy and bymore » independent measurement of Johnson noise from a calibration terminator. We present our results, discuss the cosmological implications, and describe plans for future work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.
In this paper, we present all-sky modelling of the high resolution Planck, IRAS, and WISE infrared (IR) observations using the physical dust model presented by Draine & Li in 2007 (DL, ApJ, 657, 810). We study the performance and results of this model, and discuss implications for future dust modelling. The present work extends the DL dust modelling carried out on nearby galaxies using Herschel and Spitzer data to Galactic dust emission. We employ the DL dust model to generate maps of the dust mass surface density Σ Md, the dust optical extinction A V, and the starlight intensity heatingmore » the bulk of the dust, parametrized by U min. The DL model reproduces the observed spectral energy distribution (SED) satisfactorily over most of the sky, with small deviations in the inner Galactic disk and in low ecliptic latitude areas, presumably due to zodiacal light contamination. In the Andromeda galaxy (M31), the present dust mass estimates agree remarkably well (within 10%) with DL estimates based on independent Spitzer and Herschel data. We compare the DL optical extinction A V for the diffuse interstellar medium (ISM) with optical estimates for approximately 2 × 10 5 quasi-stellar objects (QSOs) observed inthe Sloan Digital Sky Survey (SDSS). The DL A V estimates are larger than those determined towards QSOs by a factor of about 2, which depends on U min. The DL fitting parameter U min, effectively determined by the wavelength where the SED peaks, appears to trace variations in the far-IR opacity of the dust grains per unit A V, and not only in the starlight intensity. These results show that some of the physical assumptions of the DL model will need to be revised. To circumvent the model deficiency, we propose an empirical renormalization of the DL A V estimate, dependent of U min, which compensates for the systematic differences found with QSO observations. This renormalization, made to match the A V estimates towards QSOs, also brings into agreement the DL A V estimates with those derived for molecular clouds from the near-IR colours of stars in the 2 micron all sky survey (2MASS). The DL model and the QSOs data are also used to compress the spectral information in the Planck and IRAS observations for the diffuse ISM to a family of 20 SEDs normalized per A V, parameterized by U min, which may be used to test and empirically calibrate dust models. Finally, the family of SEDs and the maps generated with the DL model are made public in the Planck Legacy Archive.« less
Searching for concentric low variance circles in the cosmic microwave background
NASA Astrophysics Data System (ADS)
DeAbreu, Adam; Contreras, Dagoberto; Scott, Douglas
2015-12-01
In a recent paper, Gurzadyan & Penrose claim to have found directions in the sky around which there are multiple concentric sets of annuli with anomalously low variance in the cosmic microwave background (CMB). These features are presented as evidence for a particular theory of the pre-Big Bang Universe. We are able to reproduce the analysis these authors presented for data from the WMAP satellite and we confirm the existence of these apparently special directions in the newer Planck data. However, we also find that these features are present at the same level of abundance in simulated Gaussian CMB skies, i.e., they are entirely consistent with the predictions of the standard cosmological model.
Tropical rainforest response to marine sky brightening climate engineering
NASA Astrophysics Data System (ADS)
Muri, Helene; Niemeier, Ulrike; Kristjánsson, Jón Egill
2015-04-01
Tropical forests represent a major atmospheric carbon dioxide sink. Here the gross primary productivity (GPP) response of tropical rainforests to climate engineering via marine sky brightening under a future scenario is investigated in three Earth system models. The model response is diverse, and in two of the three models, the tropical GPP shows a decrease from the marine sky brightening climate engineering. Partial correlation analysis indicates precipitation to be important in one of those models, while precipitation and temperature are limiting factors in the other. One model experiences a reversal of its Amazon dieback under marine sky brightening. There, the strongest partial correlation of GPP is to temperature and incoming solar radiation at the surface. Carbon fertilization provides a higher future tropical rainforest GPP overall, both with and without climate engineering. Salt damage to plants and soils could be an important aspect of marine sky brightening.
Hot spots in the microwave sky
NASA Technical Reports Server (NTRS)
Vittorio, Nicola; Juszkiewicz, Roman
1987-01-01
Tha assumption that the cosmic background fluctuations can be approximated as a random Gaussian field implies specific predictions for the radiation temperature pattern. Using this assumption, the abundances and angular sizes are calculated for regions of various levels of brightness expected to appear in the sky. Different observational strategies are assessed in the context of these results. Calculations for both large-angle and small-angle anisotropy generated by scale-invariant fluctuations in a flat universe are presented. Also discussed are simple generalizations to open cosmological models.
Local effects of partly-cloudy skies on solar and emitted radiations
NASA Technical Reports Server (NTRS)
Whitney, D. A.; Griffin, T. J.
1983-01-01
Atmospheric aerosol and turbidity measurements were analyzed and the results are presented. The correlation of global insolation with cloud cover fractions for the first complete year's data set was completed. A theoretical model was developed to parameterize the effects of local aerosols upon insolation received at the ground using satellite radiometric data and insolation measurements under clear sky conditions. A February data set, composed of one minute integrated global insolation and direct solar irradiances, cloud cover fractions, meteorological data from nearby weather stations, and GOES East satellite radiometric data was collected to test the model and used to calculate the effects of local aerosols.
NASA Astrophysics Data System (ADS)
Krzyścin, J. W.; Jaroslawski, J.; Sobolewski, P.
2001-10-01
A forecast of the UV index for the following day is presented. The standard approach to the UV index modelling is applied, i.e., the clear-sky UV index is multiplied by the UV cloud transmission factor. The input to the clear-sky model (tropospheric ultraviolet and visible-TUV model, Madronich, in: M. Tevini (Ed.), Environmental Effects of Ultraviolet Radiation, Lewis Publisher, Boca Raton, /1993, p. 17) consists of the total ozone forecast (by a regression model using the observed and forecasted meteorological variables taken as the initial values of aviation (AVN) global model and their 24-hour forecasts, respectively) and aerosols optical depth (AOD) forecast (assumed persistence). The cloud transmission factor forecast is inferred from the 24-h AVN model run for the total (Sun/+sky) solar irradiance at noon. The model is validated comparing the UV index forecasts with the observed values, which are derived from the daily pattern of the UV erythemal irradiance taken at Belsk (52°N,21°E), Poland, by means of the UV Biometer Solar model 501A for the period May-September 1999. Eighty-one percent and 92% of all forecasts fall into /+/-1 and /+/-2 index unit range, respectively. Underestimation of UV index occurs only in 15%. Thus, the model gives a high security in Sun protection for the public. It is found that in /~35% of all cases a more accurate forecast of AOD is needed to estimate the daily maximum of clear-sky irradiance with the error not exceeding 5%. The assumption of the persistence of the cloud characteristics appears as an alternative to the 24-h forecast of the cloud transmission factor in the case when the AVN prognoses are not available.
Sky Subtraction with Fiber-Fed Spectrograph
NASA Astrophysics Data System (ADS)
Rodrigues, Myriam
2017-09-01
"Historically, fiber-fed spectrographs had been deemed inadequate for the observation of faint targets, mainly because of the difficulty to achieve high accuracy on the sky subtraction. The impossibility to sample the sky in the immediate vicinity of the target in fiber instruments has led to a commonly held view that a multi-object fibre spectrograph cannot achieve an accurate sky subtraction under 1% contrary to their slit counterpart. The next generation of multi-objects spectrograph at the VLT (MOONS) and the planed MOS for the E-ELT (MOSAIC) are fiber-fed instruments, and are aimed to observed targets fainter than the sky continuum level. In this talk, I will present the state-of-art on sky subtraction strategies and data reduction algorithm specifically developed for fiber-fed spectrographs. I will also present the main results of an observational campaign to better characterise the sky spatial and temporal variations ( in particular the continuum and faint sky lines)."
Recent Characterization of the Night-Sky Irradiance in the Visible/Near-Infrared Spectral Band
NASA Astrophysics Data System (ADS)
Moore, Carolynn; Wood, Michael; Bender, Edward; Hart, Steve
2018-01-01
The U.S. Army RDECOM CERDEC NVESD has made numerous characterizations of the night sky over the past 45 years. Up until the last four years, the measurement devices were highly detector-limited, which led to low spectral resolution, marginal sensitivity in no-moon conditions, and the need for inferential analysis of the resulting data. In 2014, however, the PhotoResearch Model PR-745 spectro-radiometer established a new state of the art for measurement of the integrated night-sky irradiance over the Visible-to-Near-Infrared (VNIR) spectral band (400-1050nm). This has enabled characterization of no-moon night-sky irradiance with a spectral bandwidth less than 15 nanometers, even when this irradiance is attenuated by heavy clouds or forest canopy. Since 2014, we have conducted a series of night-sky data collections at remote sites across the United States. The resulting data has provided new insights into natural radiance variations, cultural lighting impacts, and the spectrally-varying attenuation caused by cloud cover and forest canopy. Several new metrics have also been developed to provide insight into these newly-found components and temporal variations. The observations, findings and conclusions of the above efforts will be presented, including planned near-term efforts to further characterize the night-sky irradiance in the Visible/Near-Infrared spectral band.
Moon night sky brightness simulation for the Xinglong station
NASA Astrophysics Data System (ADS)
Yao, Song; Zhang, Hao-Tong; Yuan, Hai-Long; Zhao, Yong-Heng; Dong, Yi-Qiao; Bai, Zhong-Rui; Deng, Li-Cai; Lei, Ya-Juan
2013-10-01
Using a sky brightness monitor at the Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences, we collected data from 22 dark clear nights and 90 moon nights. We first measured the sky brightness variation with time for dark nights and found a clear correlation between sky brightness and human activity. Then with a modified sky brightness model of moon nights and data from these nights, we derived the typical value for several important parameters in the model. With these results, we calculated the sky brightness distribution under a given moon condition for the Xinglong station. Furthermore, we simulated the sky brightness distribution of a moon night for a telescope with a 5° field of view (such as LAMOST). These simulations will be helpful for determining the limiting magnitude and exposure time, as well as planning the survey for LAMOST during moon nights.
A NEAR-INFRARED SPECTROSCOPIC SURVEY OF COOL WHITE DWARFS IN THE SLOAN DIGITAL SKY SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilic, Mukremin; Kowalski, Piotr M.; Von Hippel, Ted
2009-07-15
We present near-infrared photometric observations of 15 and spectroscopic observations of 38 cool white dwarfs (WDs). This is the largest near-infrared spectroscopic survey of cool WDs to date. Combining the Sloan Digital Sky Survey photometry and our near-infrared data, we perform a detailed model atmosphere analysis. The spectral energy distributions of our objects are explained fairly well by model atmospheres with temperatures ranging from 6300 K down to 4200 K. Two WDs show significant absorption in the infrared, and are best explained with mixed H/He atmosphere models. Based on the up-to-date model atmosphere calculations by Kowalski and Saumon, we findmore » that the majority of the stars in our sample have hydrogen-rich atmospheres. We do not find any pure helium atmosphere WDs below 5000 K, and we find a trend of increasing hydrogen to helium ratio with decreasing temperature. These findings present an important challenge to understanding the spectral evolution of WDs.« less
Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.
NASA Astrophysics Data System (ADS)
Gubler, S.; Gruber, S.; Purves, R. S.
2012-06-01
As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR) and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR). In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB) stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM) in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night. We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD) and the relative root mean squared deviance (RMSD) of the clear-sky global SDR scatter between between -2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations to local conditions reduces MBD and RMSD strongly compared to using the published values of the parameters, resulting in relative MBD and RMSD of less than 5% respectively 10% for the best parameterizations. The best results to estimate cloud transmissivity during nighttime were obtained by linearly interpolating the average of the cloud transmissivity of the four hours of the preceeding afternoon and the following morning. Model uncertainty can be caused by different errors such as code implementation, errors in input data and in estimated parameters, etc. The influence of the latter (errors in input data and model parameter uncertainty) on model outputs is determined using Monte Carlo. Model uncertainty is provided as the relative standard deviation σrel of the simulated frequency distributions of the model outputs. An optimistic estimate of the relative uncertainty σrel resulted in 10% for the clear-sky direct, 30% for diffuse, 3% for global SDR, and 3% for the fitted all-sky LDR.
A Machine-Learning-Driven Sky Model.
Satylmys, Pynar; Bashford-Rogers, Thomas; Chalmers, Alan; Debattista, Kurt
2017-01-01
Sky illumination is responsible for much of the lighting in a virtual environment. A machine-learning-based approach can compactly represent sky illumination from both existing analytic sky models and from captured environment maps. The proposed approach can approximate the captured lighting at a significantly reduced memory cost and enable smooth transitions of sky lighting to be created from a small set of environment maps captured at discrete times of day. The author's results demonstrate accuracy close to the ground truth for both analytical and capture-based methods. The approach has a low runtime overhead, so it can be used as a generic approach for both offline and real-time applications.
The global mean energy balance under cloud-free conditions
NASA Astrophysics Data System (ADS)
Wild, Martin; Hakuba, Maria; Folini, Dois; Ott, Patricia; Long, Charles
2017-04-01
A long standing problem of climate models is their overestimation of surface solar radiation not only under all-sky, but also under clear-sky conditions (Wild et al. 1995, Wild et al. 2006). This overestimation reduced over time in consecutive model generations due to the simulation of stronger atmospheric absorption. Here we analyze the clear sky fluxes of the latest climate model generation from the Coupled Model Intercomparison Project Phase 5 (CMIP5) against an expanded and updated set of direct observations from the Baseline Surface Radiation Network (BSRN). Clear sky climatologies from these sites have been composed based on the Long and Ackermann (2000) clear sky detection algorithm (Hakuba et al. 2017), and sampling issues when comparing with model simulated clear sky fluxes have been analyzed in Ott (2017). Overall, the overestimation of clear sky insolation in the CMIP5 models is now merely 1-2 Wm-2 in the multimodel mean, compared to 4 Wm-2 in CMIP3 and 6 Wm-2 in AMIPII (Wild et al. 2006). Still a considerable spread in the individual model biases is apparent, ranging from -2 Wm-2 to 10 Wm-2 when averaged over 53 globally distributed BSRN sites. This bias structure is used to infer best estimates for present day global mean clear sky insolation, following an approach developped in Wild et al. (2013, 2015, Clim. Dyn.) for all sky fluxes. Thereby the flux biases in the various models are linearly related to their respective global means. A best estimate can then be inferred from the linear regression at the intersect where the bias against the surface observations becomes zero. This way we obtain a best estimate of 247 Wm-2 for the global mean insolation at the Earth surface under cloud free conditions, and a global mean absorbed solar radiation of 214 Wm-2 in the cloud-free atmosphere, assuming a global mean surface albedo of 13.5%. Combined with a best estimate for the net influx of solar radiation at the Top of Atmosphere under cloud free conditions from CERES EBAF of 286 Wm-2, this leaves an amount of 72 Wm-2 absorbed solar radiation in the cloud free atmosphere. The 72 Wm-2 closely match our best estimate for the global mean cloud-free atmospheric absorption in Wild et al. JGR (2006) based on older models and their biases against much fewer direct observation. This indicates that the estimate of global mean solar absorption in the cloud free atmosphere slightly above 70 Wm-2 is fairly robust. In comparison, the global mean solar absorption under all sky conditions was estimated in Wild et al. (2015) at 80 Wm-2 based on the same approach. The difference between the all- and clear-sky absorption represents the cloud radiative effect on the atmospheric absorption, and is thus estimated here to be around 8 Wm-2. This is similar in magnitude to the 11 Wm-2 derived by Hakuba et al. (2017) when averaged over the atmospheric cloud effect determined at 36 BSRN station. We applied the same methodology also for the longwave fluxes. Thereby we obtained a best estimate for the global mean clear sky downward longwave flux at the Earth surface of 214 Wm-2. Together with a surface and TOA upward longwave flux of 398 Wm-2 and 266 Wm-2, respectively, this leaves an atmospheric longwave divergence under clear sky conditions of 182 Wm-2. Selected related references: Hakuba, M. Z., Folini, D., Wild, M., Long, C. N., Schaepman-Strub, G., and Stephens, G.L., 2017: Cloud Effects on Atmospheric Solar Absorption in Light of Most Recent Surface and Satellite Measurements. AIP Conf. Proc. (in press). Ott, P., 2017: Master Thesis at ETH Zurich (in prep.). Wild, M., Ohmura, A., Gilgen, H., and Roeckner, E., 1995: Validation of GCM simulated radiative fluxes using surface observations. J. Climate, 8, 1309-1324. Wild, M., Long, C.N., and Ohmura, A., 2006: Evaluation of clear-sky solar fluxes in GCMs participating in AMIP and IPCC-AR4 from a surface perspective. J. Geophys. Res., 111, D01104, doi:10.1029/2005JD006118. Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E.G., and König-Langlo, G., 2013: The global energy balance from a surface perspective. Climate Dynamics, 40, 3107-3134. Wild, M., Folini, D., Hakuba, M., Schär, C., Seneviratne, S.I., Kato, S., Rutan, D., Ammann, C., Wood, E.F., and König-Langlo, G., 2015: The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models, Climate Dynamics, 3393-3429, 44, DOI 10.1007/s00382-014-2430-z.
Searching for concentric low variance circles in the cosmic microwave background
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeAbreu, Adam; Contreras, Dagoberto; Scott, Douglas, E-mail: adeabreu@sfu.ca, E-mail: dagocont@phas.ubc.ca, E-mail: dscott@phas.ubc.ca
In a recent paper, Gurzadyan and Penrose claim to have found directions in the sky around which there are multiple concentric sets of annuli with anomalously low variance in the cosmic microwave background (CMB). These features are presented as evidence for a particular theory of the pre-Big Bang Universe. We are able to reproduce the analysis these authors presented for data from the WMAP satellite and we confirm the existence of these apparently special directions in the newer Planck data. However, we also find that these features are present at the same level of abundance in simulated Gaussian CMB skies,more » i.e., they are entirely consistent with the predictions of the standard cosmological model.« less
Daytime Sky Brightness Characterization for Persistent GEO SSA
NASA Astrophysics Data System (ADS)
Thomas, G.; Cobb, R. G.
Space Situational Awareness (SSA) is fundamental to operating in space. SSA for collision avoidance ensures safety of flight for both government and commercial spacecraft through persistent monitoring. A worldwide network of optical and radar sensors gather satellite ephemeris data from the nighttime sky. Current practice for daytime satellite tracking is limited exclusively to radar as the brightening daytime sky prevents the use of visible-band optical sensors. Radar coverage is not pervasive and results in significant daytime coverage gaps in SSA. To mitigate these gaps, optical telescopes equipped with sensors in the near-infrared band (0.75-0.9m) may be used. The diminished intensity of the background sky radiance in the near-infrared band may allow for daylight tracking further into the twilight hours. To determine the performance of a near-infrared sensor for daylight custody, the sky background radiance must first be characterized spectrally as a function of wavelength. Using a physics-based atmospheric model with access to near-real time weather, we developed a generalized model for the apparent sky brightness of the Geostationary satellite belt. The model results are then compared to measured data collected from Dayton, OH through various look and Sun angles for model validation and spectral sky radiance quantification in the visible and near-infrared bands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinzey, Bruce R.; Perrin, Tess E.; Miller, Naomi J.
A significant amount of public attention has recently focused on perceived impacts of converting street lighting from incumbent lamp-based products to LED technology. Much of this attention pertains to the higher content of short wavelength light (commonly referred to as "blue light") of LEDs and its attendant influences on sky glow (a brightening of the night sky that can interfere with astronomical observation and may be associated with a host of other issues). The complexity of this topic leads to common misunderstandings and misperceptions among the public, and for this reason the U.S. Department of Energy Solid-State Lighting Program embarkedmore » on a study of sky glow using a well-established astronomical model to investigate some of the primary factors influencing sky glow. This report details the results of the investigation and attempts to present those results in terms accessible to the general lighting community. The report also strives to put the results into a larger context, and help educate interested readers on various topics relevant to the issues being discussed.« less
Spinning projectile's attitude measurement with LW infrared radiation under sea-sky background
NASA Astrophysics Data System (ADS)
Xu, Miaomiao; Bu, Xiongzhu; Yu, Jing; He, Zilu
2018-05-01
With the further development of infrared radiation research in sea-sky background and the requirement of spinning projectile's attitude measurement, the sea-sky infrared radiation field is used to carry out spinning projectile's attitude angle instead of inertial sensors. Firstly, the generation mechanism of sea-sky infrared radiation is analysed. The mathematical model of sea-sky infrared radiation is deduced in LW (long wave) infrared 8 ∼ 14 μm band by calculating the sea surface and sky infrared radiation. Secondly, according to the movement characteristics of spinning projectile, the attitude measurement model of infrared sensors on projectile's three axis is established. And the feasibility of the model is analysed by simulation. Finally, the projectile's attitude calculation algorithm is designed to improve the attitude angle estimation accuracy. The results of semi-physical experiments show that the segmented interactive algorithm estimation error of pitch and roll angle is within ±1.5°. The attitude measurement method is effective and feasible, and provides accurate measurement basis for the guidance of spinning projectile.
NASA Technical Reports Server (NTRS)
Strong, Andrew W.; Moskalenko, Igor V.; Reimer, Olaf
2004-01-01
We present a study of the compatibility of some current models of the diffuse Galactic continuum gamma-rays with EGRET data. A set of regions sampling the whole sky is chosen to provide a comprehensive range of tests. The range of EGRET data used is extended to 100 GeV. The models are computed with our GALPROP cosmic-ray propagation and gamma-ray production code. We confirm that the "conventional model" based on the locally observed electron and nucleon spectra is inadequate, for all sky regions. A conventional model plus hard sources in the inner Galaxy is also inadequate, since this cannot explain the GeV excess away from the Galactic plane. Models with a hard electron injection spectrum are inconsistent with the local spectrum even considering the expected fluctuations; they are also inconsistent with the EGRET data above 10 GeV. We present a new model which fits the spectrum in all sky regions adequately. Secondary antiproton data were used to fix the Galactic average proton spectrum, while the electron spectrum is adjusted using the spectrum of diffuse emission it- self. The derived electron and proton spectra are compatible with those measured locally considering fluctuations due to energy losses, propagation, or possibly de- tails of Galactic structure. This model requires a much less dramatic variation in the electron spectrum than models with a hard electron injection spectrum, and moreover it fits the y-ray spectrum better and to the highest EGRET energies. It gives a good representation of the latitude distribution of the y-ray emission from the plane to the poles, and of the longitude distribution. We show that secondary positrons and electrons make an essential contribution to Galactic diffuse y-ray emission.
Takács, Péter; Barta, András; Pye, David; Horváth, Gábor
2017-10-20
When the sun is near the horizon, a circular band with approximately vertically polarized skylight is formed at 90° from the sun, and this skylight is only weakly reflected from the region of the water surface around the Brewster's angle (53° from the nadir). Thus, at low solar heights under a clear sky, an extended dark patch is visible on the water surface when one looks toward the north or south quarter perpendicular to the solar vertical. In this work, we study the radiance distribution of this so-called Brewster's dark patch (BDP) in still water as functions of the solar height and sky conditions. We calculate the pattern of reflectivity R of a water surface for a clear sky and obtain from this idealized situation the shape of the BDP. From three full-sky polarimetric pictures taken about a clear, a partly cloudy, and an overcast sky, we determine the R pattern and compose from that synthetic color pictures showing how the radiance distribution of skylight reflected at the water surface and the BDPs would look under these sky conditions. We also present photographs taken without a linearly polarizing filter about the BDP. Finally, we show a 19th century painting on which a river is seen with a dark region of the water surface, which can be interpreted as an artistic illustration of the BDP.
Searching for white dwarfs candidates in Sloan Digital Sky Survey Data
NASA Astrophysics Data System (ADS)
Należyty, Mirosław; Majczyna, Agnieszka; Ciechanowska, Anna; Madej, Jerzy
2009-06-01
Large amount of observational spectroscopic data are recently available from different observational projects, like Sloan Digital Sky Survey. It's become more urgent to identify white dwarfs stars based on data itself i.e. without modelling white dwarf atmospheres. In particular, existing methods of white dwarfs identification presented in Kleinman et al. (2004) and in Eisenstein et al. (2006) did not allow to find all the white dwarfs in examined data. We intend to test various criteria of searching for white dwarf candidates, based on photometric and spectral features.
Comparison of Measured Galactic Background Radiation at L-Band with Model
NASA Technical Reports Server (NTRS)
LeVine, David M.; Abraham, Saji; Kerr, Yann H.; Wilson, William J.; Skou, Niels; Sobjaerg, Sten
2004-01-01
Radiation from the celestial sky in the spectral window at 1.413 GHz is strong and an accurate accounting of this background radiation is needed for calibration and retrieval algorithms. Modern radio astronomy measurements in this window have been converted into a brightness temperature map of the celestial sky at L-band suitable for such applications. This paper presents a comparison of the background predicted by this map with the measurements of several modern L-band remote sensing radiometer Keywords-Galactic background, microwave radiometry; remote sensing;
MSDS sky reference and preamplifier study
NASA Technical Reports Server (NTRS)
Larsen, L.; Stewart, S.; Lambeck, P.
1974-01-01
The major goals in re-designing the Multispectral Scanner and Data System (MSDS) sky reference are: (1) to remove the sun-elevation angle and aircraft-attitude angle dependence from the solar-sky illumination measurement, and (2) to obtain data on the optical state of the atmosphere. The present sky reference is dependent on solar elevation and provides essentially no information on important atmospheric parameters. Two sky reference designs were tested. One system is built around a hyperbolic mirror and the reflection approach. A second approach to a sky reference utilizes a fish-eye lens to obtain a 180 deg field of view. A detailed re-design of the present sky reference around the fish-eye approach, even with its limitations, is recommended for the MSDS system. A preamplifier study was undertaken to find ways of improving the noise-equivalent reflectance by reducing the noise level for silicon detector channels on the MSDS.
Van Breukelen, Boris M; Thouement, Héloïse A A; Stack, Philip E; Vanderford, Mindy; Philp, Paul; Kuder, Tomasz
2017-09-01
Reactive transport modeling of multi-element, compound-specific isotope analysis (CSIA) data has great potential to quantify sequential microbial reductive dechlorination (SRD) and alternative pathways such as oxidation, in support of remediation of chlorinated solvents in groundwater. As a key step towards this goal, a model was developed that simulates simultaneous carbon, chlorine, and hydrogen isotope fractionation during SRD of trichloroethene, via cis-1,2-dichloroethene (and trans-DCE as minor pathway), and vinyl chloride to ethene, following Monod kinetics. A simple correction term for individual isotope/isotopologue rates avoided multi-element isotopologue modeling. The model was successfully validated with data from a mixed culture Dehalococcoides microcosm. Simulation of Cl-CSIA required incorporation of secondary kinetic isotope effects (SKIEs). Assuming a limited degree of intramolecular heterogeneity of δ 37 Cl in TCE decreased the magnitudes of SKIEs required at the non-reacting Cl positions, without compromising the goodness of model fit, whereas a good fit of a model involving intramolecular CCl bond competition required an unlikely degree of intramolecular heterogeneity. Simulation of H-CSIA required SKIEs in H atoms originally present in the reacting compounds, especially for TCE, together with imprints of strongly depleted δ 2 H during protonation in the products. Scenario modeling illustrates the potential of H-CSIA for source apportionment. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Wild Fire Emissions for the NOAA Operational HYSPLIT Smoke Model
NASA Astrophysics Data System (ADS)
Huang, H. C.; ONeill, S. M.; Ruminski, M.; Shafran, P.; McQueen, J.; DiMego, G.; Kondragunta, S.; Gorline, J.; Huang, J. P.; Stunder, B.; Stein, A. F.; Stajner, I.; Upadhayay, S.; Larkin, N. K.
2015-12-01
Particulate Matter (PM) generated from forest fires often lead to degraded visibility and unhealthy air quality in nearby and downstream areas. To provide near-real time PM information to the state and local agencies, the NOAA/National Weather Service (NWS) operational HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) smoke modeling system (NWS/HYSPLIT smoke) provides the forecast of smoke concentration resulting from fire emissions driven by the NWS North American Model 12 km weather predictions. The NWS/HYSPLIT smoke incorporates the U.S. Forest Service BlueSky Smoke Modeling Framework (BlueSky) to provide smoke fire emissions along with the input fire locations from the NOAA National Environmental Satellite, Data, and Information Service (NESDIS)'s Hazard Mapping System fire and smoke detection system. Experienced analysts inspect satellite imagery from multiple sensors onboard geostationary and orbital satellites to identify the location, size and duration of smoke emissions for the model. NWS/HYSPLIT smoke is being updated to use a newer version of USFS BlueSky. The updated BlueSky incorporates the Fuel Characteristic Classification System version 2 (FCCS2) over the continental U.S. and Alaska. FCCS2 includes a more detailed description of fuel loadings with additional plant type categories. The updated BlueSky also utilizes an improved fuel consumption model and fire emission production system. For the period of August 2014 and June 2015, NWS/HYSPLIT smoke simulations show that fire smoke emissions with updated BlueSky are stronger than the current operational BlueSky in the Northwest U.S. For the same comparisons, weaker fire smoke emissions from the updated BlueSky were observed over the middle and eastern part of the U.S. A statistical evaluation of NWS/HYSPLIT smoke predicted total column concentration compared to NOAA NESDIS GOES EAST Aerosol Smoke Product retrievals is underway. Preliminary results show that using the newer version of BlueSky leads to improved performance of NWS/HYSPLIT-smoke for June 2015. These results are partially due to the default fuel loading selected for Canadian fires that lead to stronger fire emissions there. The use of more realistic Canadian fuel loading may improve NWS/HYSPLIT smoke forecast.
Parameterizing Grid-Averaged Longwave Fluxes for Inhomogeneous Marine Boundary Layer Clouds
NASA Technical Reports Server (NTRS)
Barker, Howard W.; Wielicki, Bruce A.
1997-01-01
This paper examines the relative impacts on grid-averaged longwave flux transmittance (emittance) for Marine Boundary Layer (MBL) cloud fields arising from horizontal variability of optical depth tau and cloud sides, First, using fields of Landsat-inferred tau and a Monte Carlo photon transport algorithm, it is demonstrated that mean all-sky transmittances for 3D variable MBL clouds can be computed accurately by the conventional method of linearly weighting clear and cloudy transmittances by their respective sky fractions. Then, the approximations of decoupling cloud and radiative properties and assuming independent columns are shown to be adequate for computation of mean flux transmittance. Since real clouds have nonzero geometric thicknesses, cloud fractions A'(sub c) presented to isotropic beams usually exceed the more familiar vertically projected cloud fractions A(sub c). It is shown, however, that when A(sub c)less than or equal to 0.9, biases for all-sky transmittance stemming from use of A(sub c) as opposed to A'(sub c) are roughly 2-5 times smaller than, and opposite in sign to, biases due to neglect of horizontal variability of tau. By neglecting variable tau, all-sky transmittances are underestimated often by more than 0.1 for A(sub c) near 0.75 and this translates into relative errors that can exceed 40% (corresponding errors for all-sky emittance are about 20% for most values of A(sub c). Thus, priority should be given to development of General Circulation Model (GCM) parameterizations that account for the effects of horizontal variations in unresolved tau, effects of cloud sides are of secondary importance. On this note, an efficient stochastic model for computing grid-averaged cloudy-sky flux transmittances is furnished that assumes that distributions of tau, for regions comparable in size to GCM grid cells, can be described adequately by gamma distribution functions. While the plane-parallel, homogeneous model underestimates cloud transmittance by about an order of magnitude when 3D variable cloud transmittances are less than or equal to 0.2 and by approx. 20% to 100% otherwise, the stochastic model reduces these biases often by more than 80%.
Sparse estimation of model-based diffuse thermal dust emission
NASA Astrophysics Data System (ADS)
Irfan, Melis O.; Bobin, Jérôme
2018-03-01
Component separation for the Planck High Frequency Instrument (HFI) data is primarily concerned with the estimation of thermal dust emission, which requires the separation of thermal dust from the cosmic infrared background (CIB). For that purpose, current estimation methods rely on filtering techniques to decouple thermal dust emission from CIB anisotropies, which tend to yield a smooth, low-resolution, estimation of the dust emission. In this paper, we present a new parameter estimation method, premise: Parameter Recovery Exploiting Model Informed Sparse Estimates. This method exploits the sparse nature of thermal dust emission to calculate all-sky maps of thermal dust temperature, spectral index, and optical depth at 353 GHz. premise is evaluated and validated on full-sky simulated data. We find the percentage difference between the premise results and the true values to be 2.8, 5.7, and 7.2 per cent at the 1σ level across the full sky for thermal dust temperature, spectral index, and optical depth at 353 GHz, respectively. A comparison between premise and a GNILC-like method over selected regions of our sky simulation reveals that both methods perform comparably within high signal-to-noise regions. However, outside of the Galactic plane, premise is seen to outperform the GNILC-like method with increasing success as the signal-to-noise ratio worsens.
ISS images for Observatory protection
NASA Astrophysics Data System (ADS)
Sánchez de Miguel, Alejandro; Zamorano, Jaime
2015-08-01
Light pollution is the main factor of degradation of the astronomical quality of the sky along the history. Astronomical observatories have been monitoring how the brightness of the sky varies using photometric measures of the night sky brightness mainly at zenith. Since the sky brightness depends in other factors such as sky glow, aerosols, solar activity and the presence of celestial objects, the continuous increase of light pollution in these enclaves is difficult to trace except when it is too late.Using models of light dispersion on the atmosphere one can determine which light pollution sources are increasing the sky brightness at the observatories. The input satellite data has been provided by DMSP/OLS and SNPP/VIIRS. Unfortunately their panchromatic bands (color blinded) are not useful to detect in which extension the increase is due to the dramatic change produced by the irruption of LED technology in outdoor lighting. The only instrument in the space that is able to distinguish between the various lighting technologies are the DSLR cameras used by the astronauts onboard the ISS.Current status for some astronomical observatories that have been imaged from the ISS is presented. We are planning to send an official request to NASA with a plan to get images for the most important astronomical observatories. We ask support for this proposal by the astronomical community and especially by the US-based researchers.
INTEGRAL/IBIS 7-year All-Sky Hard X-ray Survey. I. Image reconstruction
NASA Astrophysics Data System (ADS)
Krivonos, R.; Revnivtsev, M.; Tsygankov, S.; Sazonov, S.; Vikhlinin, A.; Pavlinsky, M.; Churazov, E.; Sunyaev, R.
2010-09-01
This paper is the first in a series devoted to the hard X-ray whole sky survey performed by the INTEGRAL observatory over seven years. Here we present an improved method for image reconstruction with the IBIS coded mask telescope. The main improvements are related to the suppression of systematic effects that strongly limit sensitivity in the region of the Galactic plane (GP), especially in the crowded field of the Galactic center (GC). We extended the IBIS/ISGRI background model to take into account the Galactic ridge X-ray emission (GRXE). To suppress residual systematic artifacts on a reconstructed sky image, we applied nonparametric sky image filtering based on wavelet decomposition. The implemented modifications of the sky reconstruction method decrease the systematic noise in the ~20 Ms deep field of GC by ~44%, and practically remove it from the high-latitude sky images. New observational data sets, along with an improved reconstruction algorithm, allow us to conduct the hard X-ray survey with the best currently available minimal sensitivity 3.7 × 10-12 erg s-1 cm-2 ~ 0.26 mCrab in the 17-60 keV band at a 5σ detection level. The survey covers 90% of the sky down to the flux limit of 6.2 × 10-11 erg s-1 cm-2 (~4.32 mCrab) and 10% of the sky area down to the flux limit of 8.6 × 10-12 erg s-1 cm-2 (~0.60 mCrab). Based on observations with INTEGRAL, an ESA project with the instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic, and Poland, and with the participation of Russia and the USA.
Estimation of clear-sky insolation using satellite and ground meteorological data
NASA Technical Reports Server (NTRS)
Staylor, W. F.; Darnell, W. L.; Gupta, S. K.
1983-01-01
Ground based pyranometer measurements were combined with meteorological data from the Tiros N satellite in order to estimate clear-sky insolations at five U.S. sites for five weeks during the spring of 1979. The estimates were used to develop a semi-empirical model of clear-sky insolation for the interpretation of input data from the Tiros Operational Vertical Sounder (TOVS). Using only satellite data, the estimated standard errors in the model were about 2 percent. The introduction of ground based data reduced errors to around 1 percent. It is shown that although the errors in the model were reduced by only 1 percent, TOVS data products are still adequate for estimating clear-sky insolation.
SkyNet: A Modular Nuclear Reaction Network Library
NASA Astrophysics Data System (ADS)
Lippuner, Jonas; Roberts, Luke F.
2017-12-01
Almost all of the elements heavier than hydrogen that are present in our solar system were produced by nuclear burning processes either in the early universe or at some point in the life cycle of stars. In all of these environments, there are dozens to thousands of nuclear species that interact with each other to produce successively heavier elements. In this paper, we present SkyNet, a new general-purpose nuclear reaction network that evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. SkyNet is free and open source, and aims to be easy to use and flexible. Any list of isotopes can be evolved, and SkyNet supports different types of nuclear reactions. SkyNet is modular so that new or existing physics, like nuclear reactions or equations of state, can easily be added or modified. Here, we present in detail the physics implemented in SkyNet with a focus on a self-consistent transition to and from nuclear statistical equilibrium to non-equilibrium nuclear burning, our implementation of electron screening, and coupling of the network to an equation of state. We also present comprehensive code tests and comparisons with existing nuclear reaction networks. We find that SkyNet agrees with published results and other codes to an accuracy of a few percent. Discrepancies, where they exist, can be traced to differences in the physics implementations.
ERIC Educational Resources Information Center
Kelly, William E.
2010-01-01
The relation between reading for pleasure, night-sky watching interest, and openness to experience were examined in a sample of 129 college students. Results of a path analysis examining a mediation model indicated that the influence of night-sky interest on reading for pleasure was not mediated by the broad personality domain openness to…
Wang, Xin; Gao, Jun; Fan, Zhiguo
2014-02-01
It is surprising that many insect species use only the ultraviolet (UV) component of the polarized skylight for orientation and navigation purposes, while both the intensity and the degree of polarization of light from the clear sky are lower in the UV than at longer (blue, green, red) wavelengths. Why have these insects chosen the UV part of the polarized skylight? This strange phenomenon is called the "UV-sky-pol paradox". Although earlier several speculations tried to resolve this paradox, they did this without any quantitative data. A theoretical and computational model has convincingly explained why it is advantageous for certain animals to detect celestial polarization in the UV. We performed a sky-polarimetric approach and built a polarized skylight sensor that models the processing of polarization signals by insect photoreceptors. Using this model sensor, we carried out measurements under clear and cloudy sky conditions. Our results showed that light from the cloudy sky has maximal degree of polarization in the UV. Furthermore, under both clear and cloudy skies the angle of polarization of skylight can be detected with a higher accuracy. By this, we corroborated empirically the soundness of the earlier computational resolution of the UV-sky-pol paradox.
NASA Astrophysics Data System (ADS)
Wang, Xin; Gao, Jun; Fan, Zhiguo
2014-02-01
It is surprising that many insect species use only the ultraviolet (UV) component of the polarized skylight for orientation and navigation purposes, while both the intensity and the degree of polarization of light from the clear sky are lower in the UV than at longer (blue, green, red) wavelengths. Why have these insects chosen the UV part of the polarized skylight? This strange phenomenon is called the "UV-sky-pol paradox". Although earlier several speculations tried to resolve this paradox, they did this without any quantitative data. A theoretical and computational model has convincingly explained why it is advantageous for certain animals to detect celestial polarization in the UV. We performed a sky-polarimetric approach and built a polarized skylight sensor that models the processing of polarization signals by insect photoreceptors. Using this model sensor, we carried out measurements under clear and cloudy sky conditions. Our results showed that light from the cloudy sky has maximal degree of polarization in the UV. Furthermore, under both clear and cloudy skies the angle of polarization of skylight can be detected with a higher accuracy. By this, we corroborated empirically the soundness of the earlier computational resolution of the UV-sky-pol paradox.
A new technique for measuring aerosols with moonlight observations and a sky background model
NASA Astrophysics Data System (ADS)
Jones, Amy; Noll, Stefan; Kausch, Wolfgang; Kimeswenger, Stefan; Szyszka, Ceszary; Unterguggenberger, Stefanie
2014-05-01
There have been an ample number of studies on aerosols in urban, daylight conditions, but few for remote, nocturnal aerosols. We have developed a new technique for investigating such aerosols using our sky background model and astronomical observations. With a dedicated observing proposal we have successfully tested this technique for nocturnal, remote aerosol studies. This technique relies on three requirements: (a) sky background model, (b) observations taken with scattered moonlight, and (c) spectrophotometric standard star observations for flux calibrations. The sky background model was developed for the European Southern Observatory and is optimized for the Very Large Telescope at Cerro Paranal in the Atacama desert in Chile. This is a remote location with almost no urban aerosols. It is well suited for studying remote background aerosols that are normally difficult to detect. Our sky background model has an uncertainty of around 20 percent and the scattered moonlight portion is even more accurate. The last two requirements are having astronomical observations with moonlight and of standard stars at different airmasses, all during the same night. We had a dedicated observing proposal at Cerro Paranal with the instrument X-Shooter to use as a case study for this method. X-Shooter is a medium resolution, echelle spectrograph which covers the wavelengths from 0.3 to 2.5 micrometers. We observed plain sky at six different distances (7, 13, 20, 45, 90, and 110 degrees) to the Moon for three different Moon phases (between full and half). Also direct observations of spectrophotometric standard stars were taken at two different airmasses for each night to measure the extinction curve via the Langley method. This is an ideal data set for testing this technique. The underlying assumption is that all components, other than the atmospheric conditions (specifically aerosols and airglow), can be calculated with the model for the given observing parameters. The scattered moonlight model is designed for the average atmospheric conditions at Cerro Paranal. The Mie scattering is calculated for the average distribution of aerosol particles, but this input can be modified. We can avoid the airglow emission lines, and near full Moon the airglow continuum can be ignored. In the case study, by comparing the scattered moonlight for the various angles and wavelengths along with the extinction curve from the standard stars, we can iteratively find the optimal aerosol size distribution for the time of observation. We will present this new technique, the results from this case study, and how it can be implemented for investigating aerosols using the X-Shooter archive and other astronomical archives.
NASA Astrophysics Data System (ADS)
Perkins, S. J.; Marais, P. C.; Zwart, J. T. L.; Natarajan, I.; Tasse, C.; Smirnov, O.
2015-09-01
We present Montblanc, a GPU implementation of the Radio interferometer measurement equation (RIME) in support of the Bayesian inference for radio observations (BIRO) technique. BIRO uses Bayesian inference to select sky models that best match the visibilities observed by a radio interferometer. To accomplish this, BIRO evaluates the RIME multiple times, varying sky model parameters to produce multiple model visibilities. χ2 values computed from the model and observed visibilities are used as likelihood values to drive the Bayesian sampling process and select the best sky model. As most of the elements of the RIME and χ2 calculation are independent of one another, they are highly amenable to parallel computation. Additionally, Montblanc caters for iterative RIME evaluation to produce multiple χ2 values. Modified model parameters are transferred to the GPU between each iteration. We implemented Montblanc as a Python package based upon NVIDIA's CUDA architecture. As such, it is easy to extend and implement different pipelines. At present, Montblanc supports point and Gaussian morphologies, but is designed for easy addition of new source profiles. Montblanc's RIME implementation is performant: On an NVIDIA K40, it is approximately 250 times faster than MEQTREES on a dual hexacore Intel E5-2620v2 CPU. Compared to the OSKAR simulator's GPU-implemented RIME components it is 7.7 and 12 times faster on the same K40 for single and double-precision floating point respectively. However, OSKAR's RIME implementation is more general than Montblanc's BIRO-tailored RIME. Theoretical analysis of Montblanc's dominant CUDA kernel suggests that it is memory bound. In practice, profiling shows that is balanced between compute and memory, as much of the data required by the problem is retained in L1 and L2 caches.
NASA Astrophysics Data System (ADS)
Wild, M.; Hakuba, M. Z.; Folini, D.; Ott, P.; Long, C. N.
2017-12-01
Clear sky fluxes in the latest generation of Global Climate Models (GCM) from CMIP5 still vary largely particularly at the Earth's surface, covering in their global means a range of 16 and 24 Wm-2 in the surface downward clear sky shortwave (SW) and longwave radiation, respectively. We assess these fluxes with monthly clear sky reference climatologies derived from more than 40 Baseline Surface Radiation Network (BSRN) sites based on Long and Ackermann (2000) and Hakuba et al. (2015). The comparison is complicated by the fact that the monthly SW clear sky BSRN reference climatologies are inferred from measurements under true cloud-free conditions, whereas the GCM clear sky fluxes are calculated continuously at every timestep solely by removing the clouds, yet otherwise keeping the prevailing atmospheric composition (e.g. water vapor, temperature, aerosols) during the cloudy conditions. This induces the risk of biases in the GCMs just due to the additional sampling of clear sky fluxes calculated under atmospheric conditions representative for cloudy situations. Thereby, a wet bias may be expected in the GCMs compared to the observational references, which may induce spurious low biases in the downward clear sky SW fluxes. To estimate the magnitude of these spurious biases in the available monthly mean fields from 40 CMIP5 models, we used their respective multi-century control runs, and searched therein for each month and each BSRN station the month with the lowest cloud cover. The deviations of the clear sky fluxes in this month from their long-term means have then be used as indicators of the magnitude of the abovementioned sampling biases and as correction factors for an appropriate comparison with the BSRN climatologies, individually applied for each model and BSRN site. The overall correction is on the order of 2 Wm-2. This revises our best estimate for the global mean surface downward SW clear sky radiation, previously at 249 Wm-2 infered from the GCM clear sky flux fields and their biases compared to the BSRN climatologies, now to 247 Wm-2 including this additional correction. 34 out of 40 CMIP5 GCMs exceed this reference value. With a global mean surface albedo of 13 % and net TOA SW clear sky flux of 287 Wm-2 from CERES-EBAF this results in a global mean clear sky surface and atmospheric SW absorption of 214 and 73 Wm-2, respectively.
Sky Fest: A Model of Successful Scientist Participation in E/PO
NASA Astrophysics Data System (ADS)
Dalton, H.; Shipp, S. S.; Shaner, A. J.; LaConte, K.; Shupla, C. B.
2014-12-01
Participation in outreach events is an easy way for scientists to get involved with E/PO and reach many people with minimal time commitment. At the Lunar and Planetary Institute (LPI) in Houston, Texas, the E/PO team holds Sky Fest outreach events several times a year. These events each have a science content theme and include several activities for children and their parents, night sky viewing through telescopes, and scientist presentations. LPI scientists have the opportunity to participate in Sky Fest events either by helping lead an activity or by giving the scientist presentation (a short lecture and/or demonstration). Scientists are involved in at least one preparation meeting before the event. This allows them to ask questions, understand what activity they will be leading, and learn the key points that they should be sharing with the public, as well as techniques for effectively teaching members of the public about the event topic. During the event, each activity is run by one E/PO specialist and one scientist, enabling the scientist to learn about effective E/PO practices from the E/PO specialist and the E/PO specialist to get more science information about the event topic. E/PO specialists working together with scientists at stations provides a more complete, richer experience for event participants. Surveys of event participants have shown that interacting one-on-one with scientists is often one of their favorite parts of the events. Interviews with scientists indicated that they enjoyed Sky Fest because there was very little time involved on their parts outside of the actual event; the activities were created and/or chosen by the E/PO professionals, and setup for the events was completed before they arrived. They also enjoyed presenting their topic to people without a background in science, and who would not have otherwise sought out the information that was presented.
Influence of clouds on UV-B penetration to the earth's surface
NASA Technical Reports Server (NTRS)
Green, A. E. S.
1979-01-01
Radiometric measurements of cloud influence on ultraviolet B radiation (UV-B) were obtained. Mathematical models of the influence were defined to lay the groundwork for the construction of the global UV-B climatology from satellite determined ozone data. More refined measurements comparing UV-B radiation with total solar radiation were carried out. The cloudy case is referred to the cloudless sky irradiance and convenient transmission ratios are given An approach to the inversion of scattering data is summarized. An improved characterization of the UV-B radiation from a cloudless sky is also presented.
The Galactic interstellar medium: foregrounds and star formation
NASA Astrophysics Data System (ADS)
Miville-Deschênes, Marc-Antoine
2018-05-01
This review presents briefly two aspects of Galactic interstellar medium science that seem relevant for studying EoR. First, we give some statistical properties of the Galactic foreground emission in the diffuse regions of the sky. The properties of the emission observed in projection on the plane of the sky are then related to how matter is organised along the line of sight. The diffuse atomic gas is multi-phase, with dense filamentary structures occupying only about 1% of the volume but contributing to about 50% of the emission. The second part of the review presents aspect of structure formation in the Galactic interstellar medium that could be relevant for the subgrid physics used to model the formation of the first stars.
Nightscape Photography Reclaims the Natural Sky
NASA Astrophysics Data System (ADS)
Tafreshi, Babak
2015-08-01
Nightscape photos and timelapse videos, where the Earth & sky are framed together with an astronomical purpose, support the dark skies activities by improving public awareness. TWAN or The World at Night program (www.twanight.org) presents the world's best collection of such landscape astrophotos and aims to introduce the night sky as a part of nature, an essential element of our living environment besides being the astronomers lab. The nightscape images also present views of our civilizations landmarks, both natural and historic sites, against the night-time backdrop of stars, planets, and celestial events. In this context TWAN is a bridge between art, science and culture.TWAN images contribute to programs such as the Dark Sky Parks by the International Dark Sky Association or Starlight reserves by assisting local efforts in better illustrating their dark skies and by producing stunning images that not only educate the local people on their night sky heritage also communicate with the governments that are responsible to support the dark sky area.Since 2009 TWAN organizes the world's largest annual photo contest on nightscape imaging, in collaboration with the Dark Skies Awareness, National Optical Astronomy Observatory, and Astronomers Without Borders. The International Earth & Sky Photo Contest promotes the photography that documents the beauty of natural skies against the problem of light pollution. In 2014 the entries received from about 50 countries and the contest result news was widely published in the most popular sources internationally.*Babak A. Tafreshi is a photographer and science communicator. He is the creator of The World At Night program, and a contributing photographer to the National Geographic, Sky&Telescope magazine, and the European Southern Observatory. http://twanight.org/tafreshi
An efficient method for removing point sources from full-sky radio interferometric maps
NASA Astrophysics Data System (ADS)
Berger, Philippe; Oppermann, Niels; Pen, Ue-Li; Shaw, J. Richard
2017-12-01
A new generation of wide-field radio interferometers designed for 21-cm surveys is being built as drift scan instruments allowing them to observe large fractions of the sky. With large numbers of antennas and frequency channels, the enormous instantaneous data rates of these telescopes require novel, efficient, data management and analysis techniques. The m-mode formalism exploits the periodicity of such data with the sidereal day, combined with the assumption of statistical isotropy of the sky, to achieve large computational savings and render optimal analysis methods computationally tractable. We present an extension to that work that allows us to adopt a more realistic sky model and treat objects such as bright point sources. We develop a linear procedure for deconvolving maps, using a Wiener filter reconstruction technique, which simultaneously allows filtering of these unwanted components. We construct an algorithm, based on the Sherman-Morrison-Woodbury formula, to efficiently invert the data covariance matrix, as required for any optimal signal-to-noise ratio weighting. The performance of our algorithm is demonstrated using simulations of a cylindrical transit telescope.
Calibration of the COBE FIRAS instrument
NASA Technical Reports Server (NTRS)
Fixsen, D. J.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Hewagama, T.; Isaacman, R. B.; Jensen, K. A.; Mather, J. C.; Massa, D. L.; Meyer, S. S.
1994-01-01
The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite was designed to accurately measure the spectrum of the cosmic microwave background radiation (CMBR) in the frequency range 1-95/cm with an angular resolution of 7 deg. We describe the calibration of this instrument, including the method of obtaining calibration data, reduction of data, the instrument model, fitting the model to the calibration data, and application of the resulting model solution to sky observations. The instrument model fits well for calibration data that resemble sky condition. The method of propagating detector noise through the calibration process to yield a covariance matrix of the calibrated sky data is described. The final uncertainties are variable both in frequency and position, but for a typical calibrated sky 2.6 deg square pixel and 0.7/cm spectral element the random detector noise limit is of order of a few times 10(exp -7) ergs/sq cm/s/sr cm for 2-20/cm, and the difference between the sky and the best-fit cosmic blackbody can be measured with a gain uncertainty of less than 3%.
Tropospheric haze and colors of the clear daytime sky.
Lee, Raymond L
2015-02-01
To casual observers, haze's visible effects on clear daytime skies may seem mundane: significant scattering by tropospheric aerosols visibly (1) reduces the luminance contrast of distant objects and (2) desaturates sky blueness. However, few published measurements of hazy-sky spectra and chromaticities exist to compare with these naked-eye observations. Hyperspectral imaging along sky meridians of clear and hazy skies at one inland and two coastal sites shows that they have characteristic colorimetric signatures of scattering and absorption by haze aerosols. In addition, a simple spectral transfer function and a second-order scattering model of skylight reveal the net spectral and colorimetric effects of haze.
Google Sky: A Digital View of the Night Sky
NASA Astrophysics Data System (ADS)
Connolly, A. Scranton, R.; Ornduff, T.
2008-11-01
From its inception Astronomy has been a visual science, from careful observations of the sky using the naked eye, to the use of telescopes and photographs to map the distribution of stars and galaxies, to the current era of digital cameras that can image the sky over many decades of the electromagnetic spectrum. Sky in Google Earth (http://earth.google.com) and Google Sky (http://www.google.com/sky) continue this tradition, providing an intuitive visual interface to some of the largest astronomical imaging surveys of the sky. Streaming multi-color imagery, catalogs, time domain data, as well as annotating interesting astronomical sources and events with placemarks, podcasts and videos, Sky provides a panchromatic view of the universe accessible to anyone with a computer. Beyond a simple exploration of the sky Google Sky enables users to create and share content with others around the world. With an open interface available on Linux, Mac OS X and Windows, and translations of the content into over 20 different languages we present Sky as the embodiment of a virtual telescope for discovery and sharing the excitement of astronomy and science as a whole.
NASA Astrophysics Data System (ADS)
Thorne, Ben; Alonso, David; Naess, Sigurd; Dunkley, Jo
2017-04-01
PySM generates full-sky simulations of Galactic foregrounds in intensity and polarization relevant for CMB experiments. The components simulated are thermal dust, synchrotron, AME, free-free, and CMB at a given Nside, with an option to integrate over a top hat bandpass, to add white instrument noise, and to smooth with a given beam. PySM is based on the large-scale Galactic part of Planck Sky Model code and uses some of its inputs
NASA Astrophysics Data System (ADS)
Jain, Rahul; Vaughan, Joseph; Heitkamp, Kyle; Ramos, Charleston; Claiborn, Candis; Schreuder, Maarten; Schaaf, Mark; Lamb, Brian
The post-harvest burning of agricultural fields is commonly used to dispose of crop residue and provide other desired services such as pest control. Despite careful regulation of burning, smoke plumes from field burning in the Pacific Northwest commonly degrade air quality, particularly for rural populations. In this paper, ClearSky, a numerical smoke dispersion forecast system for agricultural field burning that was developed to support smoke management in the Inland Pacific Northwest, is described. ClearSky began operation during the summer through fall burn season of 2002 and continues to the present. ClearSky utilizes Mesoscale Meteorological Model version 5 (MM5v3) forecasts from the University of Washington, data on agricultural fields, a web-based user interface for defining burn scenarios, the Lagrangian CALPUFF dispersion model and web-served animations of plume forecasts. The ClearSky system employs a unique hybrid source configuration, which treats the flaming portion of a field as a buoyant line source and the smoldering portion of the field as a buoyant area source. Limited field observations show that this hybrid approach yields reasonable plume rise estimates using source parameters derived from recent field burning emission field studies. The performance of this modeling system was evaluated for 2003 by comparing forecast meteorology against meteorological observations, and comparing model-predicted hourly averaged PM 2.5 concentrations against observations. Examples from this evaluation illustrate that while the ClearSky system can accurately predict PM 2.5 surface concentrations due to field burning, the overall model performance depends strongly on meteorological forecast error. Statistical evaluation of the meteorological forecast at seven surface stations indicates a strong relationship between topographical complexity near the station and absolute wind direction error with wind direction errors increasing from approximately 20° for sites in open areas to 70° or more for sites in very complex terrain. The analysis also showed some days with good forecast meteorology with absolute mean error in wind direction less than 30° when ClearSky correctly predicted PM 2.5 surface concentrations at receptors affected by field burns. On several other days with similar levels of wind direction error the model did not predict apparent plume impacts. In most of these cases, there were no reported burns in the vicinity of the monitor and, thus, it appeared that other, non-reported burns were responsible for the apparent plume impact at the monitoring site. These cases do not provide information on the performance of the model, but rather indicate that further work is needed to identify all burns and to improve burn reports in an accurate and timely manner. There were also a number of days with wind direction errors exceeding 70° when the forecast system did not correctly predict plume behavior.
NASA Astrophysics Data System (ADS)
Sivo, Gaetano; Kulcsár, Caroline; Conan, Jean-Marc; Raynaud, Henri-François; Gendron, Éric; Basden, Alastair; Gratadour, Damien; Morris, Tim; Petit, Cyril; Meimon, Serge; Rousset, Gérard; Garrel, Vincent; Neichel, Benoit; van Dam, Marcos; Marin, Eduardo; Carrasco, Rodrigo; Schirmer, Mischa; Rambold, William; Moreno, Cristian; Montes, Vanessa; Hardie, Kayla; Trujillo, Chad
2015-01-01
Adaptive optics provides real time correction of wavefront perturbations on ground-based telescopes and allow to reach the diffraction limit performances. Optimizing control and performance is a key issue for ever more demanding instruments on ever larger telescopes affected not only by atmospheric turbulence, but also by vibrations, windshake and tracking errors. Linear Quadratic Gaussian control achieves optimal correction when provided with a temporal model of the disturbance. We present in this paper the first on-sky results of a Kalman filter based LQG control with vibration mitigation on the CANARY instrument at the Nasmyth platform of the 4.2-m William Herschel Telescope (La Palma, Spain). The results demonstrate a clear improvement of performance for full LQG compared with standard integrator control, and assess the additional improvement brought by vibration filtering with a tip-tilt model identified from on-sky data (by 10 points of Strehl ratio), thus validating the strategy retained on the instrument SPHERE (eXtreme-AO system for extra-solar planets detection and characterization) at the VLT. The MOAO on-sky pathfinder CANARY features two AO configurations that have both been tested: single- conjugated AO and multi-object AO with NGS and NGS+ Rayleigh LGS, together with vibration mitigation on tip and tilt modes. We finally present the ongoing development done to commission such a control law on a regular Sodium laser Multi-Conjuagated Adaptive Optics (MCAO) system GeMS at the 8-m Gemini South Telescope. This implementation does not require new hardware and is already available in the real-time computer.
NASA Technical Reports Server (NTRS)
Redemann, Jens; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; Burton, S.; Livingston, J.;
2014-01-01
We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) measurements for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). We discuss some of the challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed. We also discuss a methodology for using the multi-sensor aerosol retrievals for aerosol type classification based on advanced clustering techniques. The combination of research results permits conclusions regarding the attribution of aerosol radiative forcing to aerosol type.
Touch the Cosmos: The 2012 International Earth and Sky Photo Contest
NASA Astrophysics Data System (ADS)
Walker, C. E.; Tafreshi, B.; Simmons, M.
2013-04-01
In April 2012, the National Optical Astronomy Observatory in partnership with The World At Night organized the Third International Earth and Sky Photo Contest on the importance of preserving dark skies for the Dark Skies Awareness theme of Global Astronomy Month. At the Fall 2012 ASP conference, a presentation on the Earth and Sky Photo Contest was made. The intended outcomes of the 10-minute oral talk were 1) to inspire visual learners to be more aware of the disappearing starry night sky due to light pollution, 2) to provide some basic understanding of what the issues are surrounding light pollution, 3) to provide incentive to get people to participate in the photo contest as a way of promoting dark skies awareness and 4) to provide a stepping stone to more active involvement in dark skies preservation. With more than half of the world's population in cities, Earth and Sky photos of dark, starry skies offer the next best thing to being there.
Bayesian analysis of anisotropic cosmologies: Bianchi VIIh and WMAP
NASA Astrophysics Data System (ADS)
McEwen, J. D.; Josset, T.; Feeney, S. M.; Peiris, H. V.; Lasenby, A. N.
2013-12-01
We perform a definitive analysis of Bianchi VIIh cosmologies with Wilkinson Microwave Anisotropy Probe (WMAP) observations of the cosmic microwave background (CMB) temperature anisotropies. Bayesian analysis techniques are developed to study anisotropic cosmologies using full-sky and partial-sky masked CMB temperature data. We apply these techniques to analyse the full-sky internal linear combination (ILC) map and a partial-sky masked W-band map of WMAP 9 yr observations. In addition to the physically motivated Bianchi VIIh model, we examine phenomenological models considered in previous studies, in which the Bianchi VIIh parameters are decoupled from the standard cosmological parameters. In the two phenomenological models considered, Bayes factors of 1.7 and 1.1 units of log-evidence favouring a Bianchi component are found in full-sky ILC data. The corresponding best-fitting Bianchi maps recovered are similar for both phenomenological models and are very close to those found in previous studies using earlier WMAP data releases. However, no evidence for a phenomenological Bianchi component is found in the partial-sky W-band data. In the physical Bianchi VIIh model, we find no evidence for a Bianchi component: WMAP data thus do not favour Bianchi VIIh cosmologies over the standard Λ cold dark matter (ΛCDM) cosmology. It is not possible to discount Bianchi VIIh cosmologies in favour of ΛCDM completely, but we are able to constrain the vorticity of physical Bianchi VIIh cosmologies at (ω/H)0 < 8.6 × 10-10 with 95 per cent confidence.
A Regional, Multi-Stakeholder Collaboration for Dark-Sky Protection in Flagstaff, Arizona
NASA Astrophysics Data System (ADS)
Hall, Jeffrey C.
2018-01-01
Flagstaff, Arizona is home to almost $200M in astronomical assets, including Lowell Observatory's 4.3-meter Discovery Channel Telescope and the Navy Precision Optical Interferometer, a partnership of Lowell, the U. S. Naval Observatory, and the Naval Research Laboratory. The City of Flagstaff and surrounding Coconino County have comprehensive and effective dark-sky ordinances, but continued regional growth has the potential to degrade the area's dark skies to a level at which observatory missions could be compromised. As a result, a wide array of stakeholders (the observatories, the City, the County, local dark-sky advocates, the business and tourism communities, the national parks and monuments, the Navajo Nation, the U. S. Navy, and others) have engaged in three complementary efforts to ensure that Flagstaff and Coconino County protect the area's dark skies while meeting the needs of the various communities and providing for continued growth and development. In this poster, I will present the status of Flagstaff's conversion to LED outdoor lighting, the Mission Compatibility Study carried out by the Navy to evaluate the dark-sky effects of buildout in Flagstaff, and the Joint Land Use Study (JLUS) presently underway among all the aforementioned stakeholders. Taken in sum, the efforts represent a comprehensive and constructive approach to dark-sky preservation region-wide, and they show what can be achieved when a culture of dark-sky protection is present and deliberate efforts are undertaken to maintain it for decades to come.
NASA Astrophysics Data System (ADS)
Zhang, T.; Stackhouse, P. W., Jr.; Westberg, D. J.
2017-12-01
The NASA Prediction of Worldwide Energy Resource (POWER) Surface meteorology and Solar Energy (SSE) provides solar direct normal irradiance (DNI) data as well as a variety of other solar parameters. The currently available DNIs are monthly means on a quasi-equal-area grid system with grid boxes roughly equivalent to 1 degree longitude by 1 degree latitude around the equator from July 1983 to June 2005, and the data were derived from the GEWEX Surface Radiation Budget (SRB) monthly mean global horizontal irradiance (GHI, Release 3) and regression analysis of the Baseline Surface Radiation Network (BSRN) data. To improve the quality of the DNI data and push the temporal coverage of the data to near present, we have applied a modified version of the DIRINDEX global-to-beam model to the GEWEX SRB (Release 3) all-sky and clear-sky 3-hourly GHI data and derived their DNI counterparts for the period from July 1983 to December 2007. The results have been validated against the BSRN data. To further expand the data in time to near present, we are now applying the DIRINDEX model to the Clouds and the Earth's Radiant Energy System (CERES) data. The CERES SYN1deg (Edition 4A) offers hourly all-sky and clear-sky GHIs on a 1 degree longitude by 1 degree latitude grid system from March 2000 to October 2016 as of this writing. Comparisons of the GHIs with their BSRN counterparts show remarkable agreements. Besides the GHIs, the inputs will also include the atmospheric water vapor and surface pressure from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and the aerosol optical depth from the Max-Planck Institute Climatology (MAC-v1). Based on the performance of the DIRINDEX model with the GEWEX SRB GHI data, we expect at least equally good or even better results. In this paper, we will show the derived hourly, daily, and monthly mean DNIs from the CERES SYN1deg hourly GHIs from March 2000 to October 2016 and how they compare with the BSRN data.
[The backgroud sky subtraction around [OIII] line in LAMOST QSO spectra].
Shi, Zhi-Xin; Comte, Georges; Luo, A-Li; Tu, Liang-Ping; Zhao, Yong-Heng; Wu, Fu-Chao
2014-11-01
At present, most sky-subtraction methods focus on the full spectrum, not the particular location, especially for the backgroud sky around [OIII] line which is very important to low redshift quasars. A new method to precisely subtract sky lines in local region is proposed in the present paper, which sloves the problem that the width of Hβ-[OIII] line is effected by the backgroud sky subtraction. The exprimental results show that, for different redshift quasars, the spectral quality has been significantly improved using our method relative to the original batch program by LAMOST. It provides a complementary solution for the small part of LAMOST spectra which are not well handled by LAMOST 2D pipeline. Meanwhile, This method has been used in searching for candidates of double-peaked Active Galactic Nuclei.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philipona, J. R.; Dutton, Ellsworth G.; Stoffel, T.
2001-06-04
Because atmospheric longwave radiation is one of the most fundamental elements of an expected climate change, there has been a strong interest in improving measurements and model calculations in recent years. Important questions are how reliable and consistent are atmospheric longwave radiation measurements and calculations and what are the uncertainties? The First International Pyrgeometer and Absolute Sky-scanning Radiometer Comparison, which was held at the Atmospheric Radiation Measurement program's Souther Great Plains site in Oklahoma, answers these questions at least for midlatitude summer conditions and reflects the state of the art for atmospheric longwave radiation measurements and calculations. The 15 participatingmore » pyrgeometers were all calibration-traced standard instruments chosen from a broad international community. Two new chopped pyrgeometers also took part in the comparison. And absolute sky-scanning radiometer (ASR), which includes a pyroelectric detector and a reference blackbody source, was used for the first time as a reference standard instrument to field calibrate pyrgeometers during clear-sky nighttime measurements. Owner-provided and uniformly determined blackbody calibration factors were compared. Remarkable improvements and higher pyrgeometer precision were achieved with field calibration factors. Results of nighttime and daytime pyrgeometer precision and absolute uncertainty are presented for eight consecutive days of measurements, during which period downward longwave irradiance varied between 260 and 420 W m-2. Comparisons between pyrgeometers and the absolute ASR, the atmospheric emitted radiance interferometer, and radiative transfer models LBLRTM and MODTRAN show a surprisingly good agreement of <2 W m-2 for nighttime atmospheric longwave irradiance measurements and calculations.« less
Song, Yingchao; Luo, Haibo; Ma, Junkai; Hui, Bin; Chang, Zheng
2018-04-01
Sky detection plays an essential role in various computer vision applications. Most existing sky detection approaches, being trained on ideal dataset, may lose efficacy when facing unfavorable conditions like the effects of weather and lighting conditions. In this paper, a novel algorithm for sky detection in hazy images is proposed from the perspective of probing the density of haze. We address the problem by an image segmentation and a region-level classification. To characterize the sky of hazy scenes, we unprecedentedly introduce several haze-relevant features that reflect the perceptual hazy density and the scene depth. Based on these features, the sky is separated by two imbalance SVM classifiers and a similarity measurement. Moreover, a sky dataset (named HazySky) with 500 annotated hazy images is built for model training and performance evaluation. To evaluate the performance of our method, we conducted extensive experiments both on our HazySky dataset and the SkyFinder dataset. The results demonstrate that our method performs better on the detection accuracy than previous methods, not only under hazy scenes, but also under other weather conditions.
Song, Yingchao; Luo, Haibo; Ma, Junkai; Hui, Bin; Chang, Zheng
2018-01-01
Sky detection plays an essential role in various computer vision applications. Most existing sky detection approaches, being trained on ideal dataset, may lose efficacy when facing unfavorable conditions like the effects of weather and lighting conditions. In this paper, a novel algorithm for sky detection in hazy images is proposed from the perspective of probing the density of haze. We address the problem by an image segmentation and a region-level classification. To characterize the sky of hazy scenes, we unprecedentedly introduce several haze-relevant features that reflect the perceptual hazy density and the scene depth. Based on these features, the sky is separated by two imbalance SVM classifiers and a similarity measurement. Moreover, a sky dataset (named HazySky) with 500 annotated hazy images is built for model training and performance evaluation. To evaluate the performance of our method, we conducted extensive experiments both on our HazySky dataset and the SkyFinder dataset. The results demonstrate that our method performs better on the detection accuracy than previous methods, not only under hazy scenes, but also under other weather conditions. PMID:29614778
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaggero, Daniele; Urbano, Alfredo; Valli, Mauro
We compute the γ-ray and neutrino diffuse emission of the Galaxy on the basis of a recently proposed phenomenological model characterized by radially dependent cosmic-ray (CR) transport properties. We show how this model, designed to reproduce both Fermi-LAT γ-ray data and local CR observables, naturally reproduces the anomalous TeV diffuse emission observed by Milagro in the inner Galactic plane. Above 100 TeV our picture predicts a neutrino flux that is about five (two) times larger than the neutrino flux computed with conventional models in the Galactic Center region (full-sky). Explaining in that way up to ∼25% of the flux measuredmore » by IceCube, we reproduce the full-sky IceCube spectrum adding an extra-Galactic component derived from the muonic neutrinos flux in the northern hemisphere. We also present precise predictions for the Galactic plane region where the flux is dominated by the Galactic emission.« less
NASA Technical Reports Server (NTRS)
1973-01-01
An analysis of Very Low Frequency propagation in the atmosphere in the 10-14 kHz range leads to a discussion of some of the more significant causes of phase perturbation. The method of generating sky-wave corrections to predict the Omega phase is discussed. Composite Omega is considered as a means of lane identification and of reducing Omega navigation error. A simple technique for generating trapezoidal model (T-model) phase prediction is presented and compared with the Navy predictions and actual phase measurements. The T-model prediction analysis illustrates the ability to account for the major phase shift created by the diurnal effects on the lower ionosphere. An analysis of the Navy sky-wave correction table is used to provide information about spatial and temporal correlation of phase correction relative to the differential mode of operation.
NASA Technical Reports Server (NTRS)
Kim, Min-Jeong; Jin, Jianjun; McCarty, Will; El Akkraoui, Amal; Todling, Ricardo; Gelaro, Ron
2018-01-01
Many numerical weather prediction (NWP) centers assimilate radiances affected by clouds and precipitation from microwave sensors, with the expectation that these data can provide critical constraints on meteorological parameters in dynamically sensitive regions to make significant impacts on forecast accuracy for precipitation. The Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center assimilates all-sky microwave radiance data from various microwave sensors such as all-sky GPM Microwave Imager (GMI) radiance in the Goddard Earth Observing System (GEOS) atmospheric data assimilation system (ADAS), which includes the GEOS atmospheric model, the Gridpoint Statistical Interpolation (GSI) atmospheric analysis system, and the Goddard Aerosol Assimilation System (GAAS). So far, most of NWP centers apply same large data thinning distances, that are used in clear-sky radiance data to avoid correlated observation errors, to all-sky microwave radiance data. For example, NASA GMAO is applying 145 km thinning distances for most of satellite radiance data including microwave radiance data in which all-sky approach is implemented. Even with these coarse observation data usage in all-sky assimilation approach, noticeable positive impacts from all-sky microwave data on hurricane track forecasts were identified in GEOS-5 system. The motivation of this study is based on the dynamic thinning distance method developed in our all-sky framework to use of denser data in cloudy and precipitating regions due to relatively small spatial correlations of observation errors. To investigate the benefits of all-sky microwave radiance on hurricane forecasts, several hurricane cases selected between 2016-2017 are examined. The dynamic thinning distance method is utilized in our all-sky approach to understand the sources and mechanisms to explain the benefits of all-sky microwave radiance data from various microwave radiance sensors like Advanced Microwave Sounder Unit (AMSU-A), Microwave Humidity Sounder (MHS), and GMI on GEOS-5 analyses and forecasts of various hurricanes.
SkyMapper Southern Survey: First Data Release (DR1)
NASA Astrophysics Data System (ADS)
Wolf, Christian; Onken, Christopher A.; Luvaul, Lance C.; Schmidt, Brian P.; Bessell, Michael S.; Chang, Seo-Won; Da Costa, Gary S.; Mackey, Dougal; Martin-Jones, Tony; Murphy, Simon J.; Preston, Tim; Scalzo, Richard A.; Shao, Li; Smillie, Jon; Tisserand, Patrick; White, Marc C.; Yuan, Fang
2018-02-01
We present the first data release of the SkyMapper Southern Survey, a hemispheric survey carried out with the SkyMapper Telescope at Siding Spring Observatory in Australia. Here, we present the survey strategy, data processing, catalogue construction, and database schema. The first data release dataset includes over 66 000 images from the Shallow Survey component, covering an area of 17 200 deg2 in all six SkyMapper passbands uvgriz, while the full area covered by any passband exceeds 20 000 deg2. The catalogues contain over 285 million unique astrophysical objects, complete to roughly 18 mag in all bands. We compare our griz point-source photometry with Pan-STARRS1 first data release and note an RMS scatter of 2%. The internal reproducibility of SkyMapper photometry is on the order of 1%. Astrometric precision is better than 0.2 arcsec based on comparison with Gaia first data release. We describe the end-user database, through which data are presented to the world community, and provide some illustrative science queries.
Large-angle correlations in the cosmic microwave background
NASA Astrophysics Data System (ADS)
Efstathiou, George; Ma, Yin-Zhe; Hanson, Duncan
2010-10-01
It has been argued recently by Copi et al. 2009 that the lack of large angular correlations of the CMB temperature field provides strong evidence against the standard, statistically isotropic, inflationary Lambda cold dark matter (ΛCDM) cosmology. We compare various estimators of the temperature correlation function showing how they depend on assumptions of statistical isotropy and how they perform on the Wilkinson Microwave Anisotropy Probe (WMAP) 5-yr Internal Linear Combination (ILC) maps with and without a sky cut. We show that the low multipole harmonics that determine the large-scale features of the temperature correlation function can be reconstructed accurately from the data that lie outside the sky cuts. The reconstructions are only weakly dependent on the assumed statistical properties of the temperature field. The temperature correlation functions computed from these reconstructions are in good agreement with those computed from the ILC map over the whole sky. We conclude that the large-scale angular correlation function for our realization of the sky is well determined. A Bayesian analysis of the large-scale correlations is presented, which shows that the data cannot exclude the standard ΛCDM model. We discuss the differences between our results and those of Copi et al. Either there exists a violation of statistical isotropy as claimed by Copi et al., or these authors have overestimated the significance of the discrepancy because of a posteriori choices of estimator, statistic and sky cut.
Imaging spectropolarimetry of cloudy skies
NASA Astrophysics Data System (ADS)
Pust, Nathan; Shaw, Joseph A.
2006-05-01
The polarization state of atmospheric radiance varies with cloudiness and cloud type. We have developed a dual-field-of-view imaging spectro-polarimeter for measuring atmospheric polarization in five spectral bands from 450 to 700 nm. This instrument improves the acquisition time of past full-sky digital camera designs to 400 ms using liquid crystal variable retarders (LCVRs). The system can be used to measure polarization with either fisheye or telephoto optics, allowing studies of all-sky and target polarization. We present and describe measurements of sky polarization with clear and variably cloudy sky conditions. In clear skies, we observe a slight upward trend of the degree of polarization with wavelength, in agreement with previous observations. Presence of clouds generally reduces both cloudy sky and surrounding clear sky degree of polarization. The polarization measured from a cloud often reflects only the Rayleigh scattering between the instrument and the cloud, but some of our recent data shows partially polarized cloud scattering.
Applicability of ASHRAE clear-sky model based on solar-radiation measurements in Saudi Arabia
NASA Astrophysics Data System (ADS)
Abouhashish, Mohamed
2017-06-01
The constants of the ASHRAE clear sky model predict high values of the hourly beam radiation and very low values of the hourly diffuse radiation when used for locations in Saudi Arabia. Eight measurement stations in different locations are used to obtain new clearness factors for the model. The procedure depends on the comparison of monthly direct normal radiation (DNI) and diffuse horizontal radiation (DHI) between the measurement and the calculated values. Two factors are obtained CNb, CNd for every month to adjust the calculated clear sky radiation in order to consider the effects of local weather conditions. A simple and practical simulation model for solar geometry is designed using Microsoft Visual Basic platform, the model simulates the solar angles and radiation components according to ASHRAE model. The comparison of the calculated data with the first year of measurements indicate that the attenuation of site clearness is variable across the locations and from month to month, showing the clearest skies in the north and northwestern parts of the Kingdom especially during summer months.
The BlueSky Smoke Modeling Framework: Recent Developments
NASA Astrophysics Data System (ADS)
Sullivan, D. C.; Larkin, N.; Raffuse, S. M.; Strand, T.; ONeill, S. M.; Leung, F. T.; Qu, J. J.; Hao, X.
2012-12-01
BlueSky systems—a set of decision support tools including SmartFire and the BlueSky Framework—aid public policy decision makers and scientific researchers in evaluating the air quality impacts of fires. Smoke and fire managers use BlueSky systems in decisions about prescribed burns and wildland firefighting. Air quality agencies use BlueSky systems to support decisions related to air quality regulations. We will discuss a range of recent improvements to the BlueSky systems, as well as examples of applications and future plans. BlueSky systems have the flexibility to accept basic fire information from virtually any source and can reconcile multiple information sources so that duplication of fire records is eliminated. BlueSky systems currently apply information from (1) the National Oceanic and Atmospheric Administration's (NOAA) Hazard Mapping System (HMS), which represents remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR), and Geostationary Operational Environmental Satellites (GOES); (2) the Monitoring Trends in Burn Severity (MTBS) interagency project, which derives fire perimeters from Landsat 30-meter burn scars; (3) the Geospatial Multi-Agency Coordination Group (GeoMAC), which produces helicopter-flown burn perimeters; and (4) ground-based fire reports, such as the ICS-209 reports managed by the National Wildfire Coordinating Group. Efforts are currently underway to streamline the use of additional ground-based systems, such as states' prescribed burn databases. BlueSky systems were recently modified to address known uncertainties in smoke modeling associated with (1) estimates of biomass consumption derived from sparse fuel moisture data, and (2) models of plume injection heights. Additional sources of remotely sensed data are being applied to address these issues as follows: - The National Aeronautics and Space Administration's (NASA) Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis Real-Time (TMPA-RT) data set is being used to improve dead fuel moisture estimates. - EastFire live fuel moisture estimates, which are derived from NASA's MODIS direct broadcast, are being used to improve live fuel moisture estimates. - NASA's Multi-angle Imaging Spectroradiometer (MISR) stereo heights are being used to improve estimates of plume injection heights. Further, the Fire Location and Modeling of Burning Emissions (FLAMBÉ) model was incorporated into the BlueSky Framework as an alternative means of calculating fire emissions. FLAMBÉ directly estimates emissions on the basis of fire detections and radiance measures from NASA's MODIS and NOAA's GOES satellites. (The authors gratefully acknowledge NASA's Applied Sciences Program [Grant Nos. NN506AB52A and NNX09AV76G)], the USDA Forest Service, and the Joint Fire Science Program for their support.)
NASA Technical Reports Server (NTRS)
Hausrath, E. M.; Ming, D. W.; Peretyazhko, T.; Rampe, E. B.
2017-01-01
Water flowing through sediments at Gale Crater, Mars created environments that were likely habitable, and sampled basin-wide hydrological systems. However, many questions remain about these environments and the fluids that generated them. Measurements taken by the Mars Science Laboratory Curiosity of multiple fracture zones can help constrain the environments that formed them because they can be compared to nearby associated parent material (Figure 1). For example, measurements of altered fracture zones from the target Greenhorn in the Stimson sandstone can be compared to parent material measured in the nearby Big Sky target, allowing constraints to be placed on the alteration conditions that formed the Greenhorn target from the Big Sky target. Similarly, CheMin measurements of the powdered < 150 micron fraction from the drillhole at Big Sky and sample from the Rocknest eolian deposit indicate that the mineralogies are strikingly similar. The main differences are the presence of olivine in the Rocknest eolian deposit, which is absent in the Big Sky target, and the presence of far more abundant Fe oxides in the Big Sky target. Quantifying the changes between the Big Sky target and the Rocknest eolian deposit can therefore help us understand the diagenetic changes that occurred forming the Stimson sedimentary unit. In order to interpret these aqueous changes, we performed reactive transport modeling of 1) the formation of the Big Sky target from a Rocknest eolian deposit-like parent material, and 2) the formation of the Greenhorn target from the Big Sky target. This work allows us to test the relationships between the targets and the characteristics of the aqueous conditions that formed the Greenhorn target from the Big Sky target, and the Big Sky target from a Rocknest eolian deposit-like parent material.
Measurement of CIB power spectra over large sky areas from Planck HFI maps
NASA Astrophysics Data System (ADS)
Mak, Daisy Suet Ying; Challinor, Anthony; Efstathiou, George; Lagache, Guilaine
2017-04-01
We present new measurements of the power spectra of the cosmic infrared background (CIB) anisotropies using the Planck 2015 full-mission High frequency instrument data at 353, 545 and 857 GHz over 20 000 deg2. We use techniques similar to those applied for the cosmological analysis of Planck, subtracting dust emission at the power spectrum level. Our analysis gives stable solutions for the CIB power spectra with increasing sky coverage up to about 50 per cent of the sky. These spectra agree well with H I-cleaned spectra from Planck measured on much smaller areas of sky with low Galactic dust emission. At 545 and 857 GHz, our CIB spectra agree well with those measured from Herschel data. We find that the CIB spectra at ℓ ≳ 500 are well fitted by a power-law model for the clustered CIB, with a shallow index γcib = 0.53 ± 0.02. This is consistent with the CIB results at 217 GHz from the cosmological parameter analysis of Planck. We show that a linear combination of the 545 and 857 GHz Planck maps is dominated by the CIB fluctuations at multipoles ℓ ≳ 300.
Clear-sky narrowband albedos derived from VIRS and MODIS
NASA Astrophysics Data System (ADS)
Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Arduini, Robert F.
2004-02-01
The Clouds and Earth"s Radiant Energy System (CERES) project is using multispectral imagers, the Visible Infrared Scanner (VIRS) on the tropical Rainfall Measuring Mission (TRMM) satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra, operating since spring 2000, and Aqua, operating since summer 2002, to provide cloud and clear-sky properties at various wavelengths. This paper presents the preliminary results of an analysis of the CERES clear-sky reflectances to derive a set top-of-atmosphere clear sky albedo for 0.65, 0.86, 1.6, 2.13 μm, for all major surface types using the combined MODIS and VIRS datasets. The variability of snow albedo with surface type is examined using MODIS data. Snow albedo was found to depend on the vertical structure of the vegetation. At visible wavelengths, it is least for forested areas and greatest for smooth desert and tundra surfaces. At 1.6 and 2.1-μm, the snow albedos are relatively insensitive to the underlying surface because snow decreases the reflectance. Additional analyses using all of the MODIS results will provide albedo models that should be valuable for many remote sensing, simulation and radiation budget studies.
An High Resolution Near-Earth Objects Population Enabling Next-Generation Search Strategies
NASA Technical Reports Server (NTRS)
Tricaico, Pasquale; Beshore, E. C.; Larson, S. M.; Boattini, A.; Williams, G. V.
2010-01-01
Over the past decade, the dedicated search for kilometer-size near-Earth objects (NEOs), potentially hazardous objects (PHOs), and potential Earth impactors has led to a boost in the rate of discoveries of these objects. The catalog of known NEOs is the fundamental ingredient used to develop a model for the NEOs population, either by assessing and correcting for the observational bias (Jedicke et al., 2002), or by evaluating the migration rates from the NEOs source regions (Bottke et al., 2002). The modeled NEOs population is a necessary tool used to track the progress in the search of large NEOs (Jedicke et al., 2003) and to try to predict the distribution of the ones still undiscovered, as well as to study the sky distribution of potential Earth impactors (Chesley & Spahr, 2004). We present a method to model the NEOs population in all six orbital elements, on a finely grained grid, allowing us the design and test of targeted and optimized search strategies. This method relies on the observational data routinely reported to the Minor Planet Center (MPC) by the Catalina Sky Survey (CSS) and by other active NEO surveys over the past decade, to determine on a nightly basis the efficiency in detecting moving objects as a function of observable quantities including apparent magnitude, rate of motion, airmass, and galactic latitude. The cumulative detection probability is then be computed for objects within a small range in orbital elements and absolute magnitude, and the comparison with the number of know NEOs within the same range allows us to model the population. When propagated to the present epoch and projected on the sky plane, this provides the distribution of the missing large NEOs, PHOs, and potential impactors.
NASA Astrophysics Data System (ADS)
Aubé, M.; Simoneau, A.
2018-05-01
Illumina is one of the most physically detailed artificial night sky brightness model to date. It has been in continuous development since 2005 [1]. In 2016-17, many improvements were made to the Illumina code including an overhead cloud scheme, an improved blocking scheme for subgrid obstacles (trees and buildings), and most importantly, a full hyperspectral modeling approach. Code optimization resulted in significant reduction in execution time enabling users to run the model on standard personal computers for some applications. After describing the new schemes introduced in the model, we give some examples of applications for a peri-urban and a rural site both located inside the International Dark Sky reserve of Mont-Mégantic (QC, Canada).
Light pollution: measuring and modelling skyglow. An application in two Portuguese reserves
NASA Astrophysics Data System (ADS)
Lima, Raul Cerveira Pinto Sousa
Outdoors human-made lighting at night causes sky glow, one of the effects of light pollution. Sky glow is rising with the growth of world population. Urban inhabitants are increasingly deprived from a starry sky. However, since light propagates to regions far from where it is produced, light pollution spreads to places where few or none artificial light at night existed, disturbing the quality of the night sky. In this work we assess for the first time the sky brightness of two regions in Portugal, the Peneda-Geres National Park, and the recently created Starlight Reserve Dark Sky® Alqueva. We used a portable unit, a Unihedron Sky Quality Meter-L (SQM-L), to measure the luminance of the night sky. We also tested the SQM-L in a laboratory to a more thorough analysis of the device, and to check the effect of polarization on the unit, suggested by our observations and other users. Our results suggest that the SQM-L is not affected by any measurable effect of polarization, but some guidelines to use the SQM-L in the field are provided based on our work. The data from the field measurement was used to compare to one light pollution propagation model (Kocifaj, 2007), using VIIRS DNB satellite upwards radiance as input to the model. The results obtained from the model are favourably compared to the field measurements. We proceeded to a set of tests with the model to find the best fit. Our best results were achieved by analysing the data by night rather than the global set of data. Our first results were used to apply to the classification of the region of Alqueva to a Starlight Tourism Destination. That classification was attained during the course of this work (December 2011). A guideline on the Peneda-Geres National Park was also implemented after our first results were provided. We believe we have achieved a set of results in a set of parallel issues all related to light pollution that we hope may contribute to the current knowledge on this area of research.
The World at Night (TWAN) in Photos and Videos
Meteors Comets Eclipses Conjunctions Atmospheric Mars Saturn Constellations Locations & People World Heritages World Observatories Save Dark Skies Stargazers Cityscape Southern Sky Special Techniques Sky in Europe Middle East Polar Regions The World At Night (TWAN) is an international effort to present stunning
NASA Astrophysics Data System (ADS)
Kawara, Kimiaki; Matsuoka, Yoshiki; Sano, Kei; Brandt, Timothy D.; Sameshima, Hiroaki; Tsumura, Kohji; Oyabu, Shinki; Ienaka, Nobuyuki
2017-04-01
We present an analysis of the blank-sky spectra observed with the Faint Object Spectrograph on board the Hubble Space Telescope. We study the diffuse sky emission from ultraviolet to optical wavelengths, which is composed of zodiacal light (ZL), diffuse Galactic light (DGL), and residual emission. The observations were performed towards 54 fields distributed widely over the sky, with spectral coverage from 0.2 to 0.7 μm. In order to avoid contaminating light from earthshine, we use the data collected only in orbital nighttime. The observed intensity is decomposed into the ZL, DGL, and residual emission, in eight photometric bands spanning our spectral coverage. We found that the derived ZL reflectance spectrum is flat in the optical, which indicates major contribution of C-type asteroids to the interplanetary dust (IPD). In addition, the ZL reflectance spectrum has an absorption feature at ∼0.3 μm. The shape of the DGL spectrum is consistent with those found in earlier measurements and model predictions. While the residual emission contains a contribution from the extragalactic background light, we found that the spectral shape of the residual looks similar to the ZL spectrum. Moreover, its optical intensity is much higher than that measured from beyond the IPD cloud by Pioneer 10/11, and also than that of the integrated galaxy light. These findings may indicate the presence of an isotropic ZL component, which is missed in the conventional ZL models.
The w-effect in interferometric imaging: from a fast sparse measurement operator to superresolution
NASA Astrophysics Data System (ADS)
Dabbech, A.; Wolz, L.; Pratley, L.; McEwen, J. D.; Wiaux, Y.
2017-11-01
Modern radio telescopes, such as the Square Kilometre Array, will probe the radio sky over large fields of view, which results in large w-modulations of the sky image. This effect complicates the relationship between the measured visibilities and the image under scrutiny. In algorithmic terms, it gives rise to massive memory and computational time requirements. Yet, it can be a blessing in terms of reconstruction quality of the sky image. In recent years, several works have shown that large w-modulations promote the spread spectrum effect. Within the compressive sensing framework, this effect increases the incoherence between the sensing basis and the sparsity basis of the signal to be recovered, leading to better estimation of the sky image. In this article, we revisit the w-projection approach using convex optimization in realistic settings, where the measurement operator couples the w-terms in Fourier and the de-gridding kernels. We provide sparse, thus fast, models of the Fourier part of the measurement operator through adaptive sparsification procedures. Consequently, memory requirements and computational cost are significantly alleviated at the expense of introducing errors on the radio interferometric data model. We present a first investigation of the impact of the sparse variants of the measurement operator on the image reconstruction quality. We finally analyse the interesting superresolution potential associated with the spread spectrum effect of the w-modulation, and showcase it through simulations. Our c++ code is available online on GitHub.
NASA Astrophysics Data System (ADS)
Storm, Emma; Weniger, Christoph; Calore, Francesca
2017-08-01
We present SkyFACT (Sky Factorization with Adaptive Constrained Templates), a new approach for studying, modeling and decomposing diffuse gamma-ray emission. Like most previous analyses, the approach relies on predictions from cosmic-ray propagation codes like GALPROP and DRAGON. However, in contrast to previous approaches, we account for the fact that models are not perfect and allow for a very large number (gtrsim 105) of nuisance parameters to parameterize these imperfections. We combine methods of image reconstruction and adaptive spatio-spectral template regression in one coherent hybrid approach. To this end, we use penalized Poisson likelihood regression, with regularization functions that are motivated by the maximum entropy method. We introduce methods to efficiently handle the high dimensionality of the convex optimization problem as well as the associated semi-sparse covariance matrix, using the L-BFGS-B algorithm and Cholesky factorization. We test the method both on synthetic data as well as on gamma-ray emission from the inner Galaxy, |l|<90o and |b|<20o, as observed by the Fermi Large Area Telescope. We finally define a simple reference model that removes most of the residual emission from the inner Galaxy, based on conventional diffuse emission components as well as components for the Fermi bubbles, the Fermi Galactic center excess, and extended sources along the Galactic disk. Variants of this reference model can serve as basis for future studies of diffuse emission in and outside the Galactic disk.
On the limitations of statistical absorption studies with the Sloan Digital Sky Surveys I-III
NASA Astrophysics Data System (ADS)
Lan, Ting-Wen; Ménard, Brice; Baron, Dalya; Johnson, Sean; Poznanski, Dovi; Prochaska, J. Xavier; O'Meara, John M.
2018-07-01
We investigate the limitations of statistical absorption measurements with the Sloan Digital Sky Survey (SDSS) optical spectroscopic surveys. We show that changes in the data reduction strategy throughout different data releases have led to a better accuracy at long wavelengths, in particular for sky line subtraction, but a degradation at short wavelengths with the emergence of systematic spectral features with an amplitude of about 1 per cent. We show that these features originate from inaccuracy in the fitting of modelled F-star spectra used for flux calibration. The best-fitting models for those stars are found to systematically overestimate the strength of metal lines and underestimate that of Lithium. We also identify the existence of artefacts due to masking and interpolation procedures at the wavelengths of the hydrogen Balmer series leading to the existence of artificial Balmer α absorption in all SDSS optical spectra. All these effects occur in the rest frame of the standard stars and therefore present Galactic longitude variations due to the rotation of the Galaxy. We demonstrate that the detection of certain weak absorption lines reported in the literature is solely due to calibration effects. Finally, we discuss new strategies to mitigate these issues.
What does it mean to manage sky survey data? A model to facilitate stakeholder conversations
NASA Astrophysics Data System (ADS)
Sands, Ashley E.; Darch, Peter T.
2016-06-01
Astronomy sky surveys, while of great scientific value independently, can be deployed even more effectively when multiple sources of data are combined. Integrating discrete datasets is a non-trivial exercise despite investments in standard data formats and tools. Creating and maintaining data and associated infrastructures requires investments in technology and expertise. Combining data from multiple sources necessitates a common understanding of data, structures, and goals amongst relevant stakeholders.We present a model of Astronomy Stakeholder Perspectives on Data. The model is based on 80 semi-structured interviews with astronomers, computational astronomers, computer scientists, and others involved in the building or use of the Sloan Digital Sky Survey (SDSS) and Large Synoptic Survey Telescope (LSST). Interviewees were selected to ensure a range of roles, institutional affiliations, career stages, and level of astronomy education. Interviewee explanations of data were analyzed to understand how perspectives on astronomy data varied by stakeholder.Interviewees described sky survey data either intrinsically or extrinsically. “Intrinsic” descriptions of data refer to data as an object in and of itself. Respondents with intrinsic perspectives view data management in one of three ways: (1) “Medium” - securing the zeros and ones from bit rot; (2) “Scale” - assuring that changes in state are documented; or (3) “Content” - ensuring the scientific validity of the images, spectra, and catalogs.“Extrinsic” definitions, in contrast, define data in relation to other forms of information. Respondents with extrinsic perspectives view data management in one of three ways: (1) “Source” - supporting the integrity of the instruments and documentation; (2) “Relationship” - retaining relationships between data and their analytical byproducts; or (3) “Use” - ensuring that data remain scientifically usable.This model shows how data management can mean different things to different stakeholders at different times. The model is valuable to those who build and maintain infrastructures because it can be used as a tool to facilitate recognition, understanding, and thus communication between relevant astronomy data stakeholders.
Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions
NASA Astrophysics Data System (ADS)
Hess, M.; Koepke, P.
2008-02-01
A method is presented to calculate UV irradiances on inclined surfaces that additionally takes into account the influence of sky obstructions caused by obstacles such as mountains, houses, trees, or umbrellas. Thus the method allows calculating the impact of UV radiation on biological systems, such as for instance the human skin or eye, in any natural or artificial environment. The method, a combination of radiation models, is explained and the correctness of its results is demonstrated. The effect of a natural skyline is shown for an Alpine ski area, where the UV irradiance even on a horizontal surface may increase due to reflection at snow by more than 10%. In contrast in a street canyon the irradiance on a horizontal surface is reduced down to 30% in shadow and to about 75% for a position in the sun.
Impacts of field of view configuration of Cross-track Infrared Sounder on clear-sky observations.
Wang, Likun; Chen, Yong; Han, Yong
2016-09-01
Hyperspectral infrared radiance measurements from satellite sensors contain valuable information on atmospheric temperature and humidity profiles and greenhouse gases, and therefore are directly assimilated into numerical weather prediction (NWP) models as inputs for weather forecasting. However, data assimilations in current operational NWP models still mainly rely on cloud-free observations due to the challenge of simulating cloud-contaminated radiances when using hyperspectral radiances. The limited spatial coverage of the 3×3 field of views (FOVs) in one field of regard (FOR) (i.e., spatial gap among FOVs) as well as relatively large footprint size (14 km) in current Cross-track Infrared Sounder (CrIS) instruments limits the amount of clear-sky observations. This study explores the potential impacts of future CrIS FOV configuration (including FOV size and spatial coverage) on the amount of clear-sky observations by simulation experiments. The radiance measurements and cloud mask products (VCM) from the Visible Infrared Imager Radiometer Suite (VIIRS) are used to simulate CrIS clear-sky observation under different FOV configurations. The results indicate that, given the same FOV coverage (e.g., 3×3), the percentage of clear-sky FOVs and the percentage of clear-sky FORs (that contain at least one clear-sky FOV) both increase as the FOV size decreases. In particular, if the CrIS FOV size were reduced from 14 km to 7 km, the percentage of clear-sky FOVs increases from 9.02% to 13.51% and the percentage of clear-sky FORs increases from 18.24% to 27.51%. Given the same FOV size but with increasing FOV coverage in each FOR, the clear-sky FOV observations increases proportionally with the increasing sampling FOVs. Both reducing FOV size and increasing FOV coverage can result in more clear-sky FORs, which benefit data utilization of NWP data assimilation.
Adding a solar-radiance function to the Hošek-Wilkie skylight model.
Hošek, Lukáš; Wilkie, Alexander
2013-01-01
One prerequisite for realistic renderings of outdoor scenes is the proper capturing of the sky's appearance. Currently, an explicit simulation of light scattering in the atmosphere isn't computationally feasible, and won't be in the foreseeable future. Captured luminance patterns have proven their usefulness in practice but can't meet all user needs. To fill this capability gap, computer graphics technology has employed analytical models of sky-dome luminance patterns for more than two decades. For technical reasons, such models deal with only the sky dome's appearance, though, and exclude the solar disc. The widely used model proposed by Arcot Preetham and colleagues employed a separately derived analytical formula for adding a solar emitter of suitable radiant intensity. Although this yields reasonable results, the formula is derived in a manner that doesn't exactly match the conditions in their sky-dome model. But the more sophisticated a skylight model is and the more subtly it can represent different conditions, the more the solar radiance should exactly match the skylight's conditions. Toward that end, researchers propose a solar-radiance function that exactly matches a recently published high-quality analytical skylight model.
Sky radiance at a coastline and effects of land and ocean reflectivities
NASA Astrophysics Data System (ADS)
Kreuter, Axel; Blumthaler, Mario; Tiefengraber, Martin; Kift, Richard; Webb, Ann R.
2017-12-01
We present a unique case study of the spectral sky radiance distribution above a coastline. Results are shown from a measurement campaign in Italy involving three diode array spectroradiometers which are compared to 3-D model simulations from the Monte Carlo model MYSTIC. On the coast, the surrounding is split into two regions, a diffusely reflecting land surface and a water surface which features a highly anisotropic reflectance function. The reflectivities and hence the resulting radiances are a nontrivial function of solar zenith and azimuth angle and wavelength. We show that for low solar zenith angles (SZAs) around noon, the higher land albedo causes the sky radiance at 20° above the horizon to increase by 50 % in the near infrared at 850 nm for viewing directions towards the land with respect to the ocean. Comparing morning and afternoon radiances highlights the effect of the ocean's sun glint at high SZA, which contributes around 10 % to the measured radiance ratios. The model simulations generally agree with the measurements to better than 10 %. We investigate the individual effects of model input parameters representing land and ocean albedo and aerosols. Different land and ocean bi-directional reflectance functions (BRDFs) do not generally improve the model agreement. However, consideration of the uncertainties in the diurnal variation of aerosol optical depth can explain the remaining discrepancies between measurements and model. We further investigate the anisotropy effect of the ocean BRDF which is featured in the zenith radiances. Again, the uncertainty of the aerosol loading is dominant and obscures the modelled sun glint effect of 7 % at 650 nm. Finally, we show that the effect on the zenith radiance is restricted to a few kilometres from the coastline by model simulations along a perpendicular transect and by comparing the radiances at the coast to those measured at a site 15 km inland. Our findings are relevant to, for example, ground-based remote sensing of aerosol characteristics, since a common technique is based on sky radiance measurements along the solar almucantar.
NASA Astrophysics Data System (ADS)
Moreno, H. A.; Ogden, F. L.; Alvarez, L. V.
2016-12-01
This research work presents a methodology for estimating terrain slope degree, aspect (slope orientation) and total incoming solar radiation from Triangular Irregular Network (TIN) terrain models. The algorithm accounts for self shading and cast shadows, sky view fractions for diffuse radiation, remote albedo and atmospheric backscattering, by using a vectorial approach within a topocentric coordinate system and establishing geometric relations between groups of TIN elements and the sun position. A normal vector to the surface of each TIN element describes slope and aspect while spherical trigonometry allows computingunit vector defining the position of the sun at each hour and day of the year. Thus, a dot product determines the radiation flux at each TIN element. Cast shadows are computed by scanning the projection of groups of TIN elements in the direction of the closest perpendicular plane to the sun vector only in the visible horizon range. Sky view fractions are computed by a simplified scanning algorithm from the highest to the lowest triangles along prescribed directions and visible distances, useful to determine diffuse radiation. Finally, remotealbedo is computed from the sky view fraction complementary functions for prescribed albedo values of the surrounding terrain only for significant angles above the horizon. The sensitivity of the different radiative components is tested a in a moutainuous watershed in Wyoming, to seasonal changes in weather and surrounding albedo (snow). This methodology represents an improvement on the current algorithms to compute terrain and radiation values on triangular-based models in an accurate and efficient manner. All terrain-related features (e.g. slope, aspect, sky view fraction) can be pre-computed and stored for easy access for a subsequent, progressive-in-time, numerical simulation.
The impact of modelling errors on interferometer calibration for 21 cm power spectra
NASA Astrophysics Data System (ADS)
Ewall-Wice, Aaron; Dillon, Joshua S.; Liu, Adrian; Hewitt, Jacqueline
2017-09-01
We study the impact of sky-based calibration errors from source mismodelling on 21 cm power spectrum measurements with an interferometer and propose a method for suppressing their effects. While emission from faint sources that are not accounted for in calibration catalogues is believed to be spectrally smooth, deviations of true visibilities from model visibilities are not, due to the inherent chromaticity of the interferometer's sky response (the 'wedge'). Thus, unmodelled foregrounds, below the confusion limit of many instruments, introduce frequency structure into gain solutions on the same line-of-sight scales on which we hope to observe the cosmological signal. We derive analytic expressions describing these errors using linearized approximations of the calibration equations and estimate the impact of this bias on measurements of the 21 cm power spectrum during the epoch of reionization. Given our current precision in primary beam and foreground modelling, this noise will significantly impact the sensitivity of existing experiments that rely on sky-based calibration. Our formalism describes the scaling of calibration with array and sky-model parameters and can be used to guide future instrument design and calibration strategy. We find that sky-based calibration that downweights long baselines can eliminate contamination in most of the region outside of the wedge with only a modest increase in instrumental noise.
Gender Roles and Night-Sky Watching among College Students
ERIC Educational Resources Information Center
Kelly, William E.; McGee, Catherine M.
2012-01-01
The present study investigated the relationship between gender roles and night-sky watching in a sample of college students (N=161). The Bem Sex-Role Inventory (BSRI) and the Noctcaelador Inventory (NI) were used to investigate the differences between gender role groups for night-sky watching. The results supported the hypothesis that androgynous…
The Impact of Light Pollution Education through a Global Star-Hunting Campaign and Classroom Curricu
NASA Astrophysics Data System (ADS)
Walker, C. E.; Buxner, S.; Pompea, S. M.
2012-12-01
The emphasis of the international citizen-science, star-hunting campaign, GLOBE at Night, and its accompanying Dark Skies Rangers activities is to increase public awareness on issues of light pollution. An on-line evaluation survey was administered to 585 people who participated in a GLOBE at Night and/or Dark Skies Rangers workshop and had received a Dark Skies Education Kit over the last 5 years. The survey was conducted to help improve the dark sky education programs and was administered and assessed by an external evaluator. Results will be presented on the usefulness of the programs, workshops and associated materials (e.g., the Dark Skies Rangers activities, materials, kit). Results will also include the evaluation of the GLOBE at Night campaigns, the use of these resources in the classroom, and the educators' impressions of student learning outcomes. Session participants will: 1) Learn about ongoing efforts to evaluate a large citizen science project; 2) Learn about usefulness of Dark Sky products for a variety of educational providers; 3) Learn how to apply the presented techniques to their own outreach activities.
Modelling Complex Fenestration Systems using physical and virtual models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thanachareonkit, Anothai; Scartezzini, Jean-Louis
2010-04-15
Physical or virtual models are commonly used to visualize the conceptual ideas of architects, lighting designers and researchers; they are also employed to assess the daylighting performance of buildings, particularly in cases where Complex Fenestration Systems (CFS) are considered. Recent studies have however revealed a general tendency of physical models to over-estimate this performance, compared to those of real buildings; these discrepancies can be attributed to several reasons. In order to identify the main error sources, a series of comparisons in-between a real building (a single office room within a test module) and the corresponding physical and virtual models wasmore » undertaken. The physical model was placed in outdoor conditions, which were strictly identical to those of the real building, as well as underneath a scanning sky simulator. The virtual model simulations were carried out by way of the Radiance program using the GenSky function; an alternative evaluation method, named Partial Daylight Factor method (PDF method), was also employed with the physical model together with sky luminance distributions acquired by a digital sky scanner during the monitoring of the real building. The overall daylighting performance of physical and virtual models were assessed and compared. The causes of discrepancies between the daylighting performance of the real building and the models were analysed. The main identified sources of errors are the reproduction of building details, the CFS modelling and the mocking-up of the geometrical and photometrical properties. To study the impact of these errors on daylighting performance assessment, computer simulation models created using the Radiance program were also used to carry out a sensitivity analysis of modelling errors. The study of the models showed that large discrepancies can occur in daylighting performance assessment. In case of improper mocking-up of the glazing for instance, relative divergences of 25-40% can be found in different room locations, suggesting that more light is entering than actually monitored in the real building. All these discrepancies can however be reduced by making an effort to carefully mock up the geometry and photometry of the real building. A synthesis is presented in this article which can be used as guidelines for daylighting designers to avoid or estimate errors during CFS daylighting performance assessment. (author)« less
First photometric study of two southern eclipsing binaries IS Tel and DW Aps
NASA Astrophysics Data System (ADS)
Özer, S.; Sürgit, D.; Erdem, A.; Öztürk, O.
2017-02-01
The paper presents the first photometric analysis of two southern eclipsing binary stars, IS Tel and DW Aps. Their V light curves from the All Sky Automated Survey were modelled by using Wilson-Devinney method. The final models give these two Algol-like binary stars as having detached configurations. Absolute parameters of the components of the systems were also estimated.
Death of Darkness: Artificial Sky Brightness in the Anthropocene
NASA Astrophysics Data System (ADS)
Zender, C. S.
2016-12-01
Many species (including ours) need darkness to survive and thrive yet light pollution in the anthropocene has received scant attention in Earth System Models (ESMs). Anthropogenic aerosols can brighten background sky brightness and reduce the contrast between skylight and starlight. These are both aesthetic and health-related issues due to their accompanying disruption of circadian rhythms. We quantify aerosol contributions to light pollution using a single-column night sky model, NiteLite, suitable for implementation in ESMs. NiteLite accounts for physiologcal (photopic and scotopic vision, retinal diameter/age), anthropogenic (light and aerosol pollution properties), and natural (surface albedo, trace gases) effects on background brightness and threshold visibility. We find that stratospheric aerosol injection contemplated as a stop-gap measure to counter global warming would increase night-sky brightness by about 25%, and thus eliminate last pristine dark sky areas on Earth. Our results suggest that ESMs incorporate light pollution so that associated societal impacts can be better quantified and included in policy deliberations.
Daytime sky polarization calibration limitations
NASA Astrophysics Data System (ADS)
Harrington, David M.; Kuhn, Jeffrey R.; Ariste, Arturo López
2017-01-01
The daytime sky has recently been demonstrated as a useful calibration tool for deriving polarization cross-talk properties of large astronomical telescopes. The Daniel K. Inouye Solar Telescope and other large telescopes under construction can benefit from precise polarimetric calibration of large mirrors. Several atmospheric phenomena and instrumental errors potentially limit the technique's accuracy. At the 3.67-m AEOS telescope on Haleakala, we performed a large observing campaign with the HiVIS spectropolarimeter to identify limitations and develop algorithms for extracting consistent calibrations. Effective sampling of the telescope optical configurations and filtering of data for several derived parameters provide robustness to the derived Mueller matrix calibrations. Second-order scattering models of the sky show that this method is relatively insensitive to multiple-scattering in the sky, provided calibration observations are done in regions of high polarization degree. The technique is also insensitive to assumptions about telescope-induced polarization, provided the mirror coatings are highly reflective. Zemax-derived polarization models show agreement between the functional dependence of polarization predictions and the corresponding on-sky calibrations.
An evaluation of skylight polarization patterns for navigation.
Ma, Tao; Hu, Xiaoping; Zhang, Lilian; Lian, Junxiang; He, Xiaofeng; Wang, Yujie; Xian, Zhiwen
2015-03-10
Skylight polarization provides a significant navigation cue for certain polarization-sensitive animals. However, the precision of the angle of polarization (AOP) of skylight for vehicle orientation is not clear. An evaluation of AOP must be performed before it is utilized. This paper reports an evaluation of AOP of skylight by measuring the skylight polarization patterns of clear and cloudy skies using a full-sky imaging polarimetry system. AOP measurements of skylight are compared with the pattern calculated by the single-scattering Rayleigh model and these differences are quantified. The relationship between the degree of polarization (DOP) and the deviation of AOP of skylight is thoroughly studied. Based on these, a solar meridian extracted method is presented. The results of experiments reveal that the DOP is a key parameter to indicate the accuracy of AOP measurements, and all the output solar meridian orientations extracted by our method in both clear and cloudy skies can achieve a high accuracy for vehicle orientation.
An Evaluation of Skylight Polarization Patterns for Navigation
Ma, Tao; Hu, Xiaoping; Zhang, Lilian; Lian, Junxiang; He, Xiaofeng; Wang, Yujie; Xian, Zhiwen
2015-01-01
Skylight polarization provides a significant navigation cue for certain polarization-sensitive animals. However, the precision of the angle of polarization (AOP) of skylight for vehicle orientation is not clear. An evaluation of AOP must be performed before it is utilized. This paper reports an evaluation of AOP of skylight by measuring the skylight polarization patterns of clear and cloudy skies using a full-sky imaging polarimetry system. AOP measurements of skylight are compared with the pattern calculated by the single-scattering Rayleigh model and these differences are quantified. The relationship between the degree of polarization (DOP) and the deviation of AOP of skylight is thoroughly studied. Based on these, a solar meridian extracted method is presented. The results of experiments reveal that the DOP is a key parameter to indicate the accuracy of AOP measurements, and all the output solar meridian orientations extracted by our method in both clear and cloudy skies can achieve a high accuracy for vehicle orientation. PMID:25763652
Neutrino tomography - Tevatron mapping versus the neutrino sky. [for X-rays of earth interior
NASA Technical Reports Server (NTRS)
Wilson, T. L.
1984-01-01
The feasibility of neutrino tomography of the earth's interior is discussed, taking the 80-GeV W-boson mass determined by Arnison (1983) and Banner (1983) into account. The opacity of earth zones is calculated on the basis of the preliminary reference earth model of Dziewonski and Anderson (1981), and the results are presented in tables and graphs. Proposed tomography schemes are evaluated in terms of the well-posedness of the inverse-Radon-transform problems involved, the neutrino generators and detectors required, and practical and economic factors. The ill-posed schemes are shown to be infeasible; the well-posed schemes (using Tevatrons or the neutrino sky as sources) are considered feasible but impractical.
Sky Brightness During Eclipses: A Compendium from the Literature
1974-08-05
86 25. Absolute Values of Luminance of the Terrain and the Sky 88 26. Sky Brightness From Film No. 1 89 27. Sky Brightness From Film No. 2 89 28...these twilight equivalents when dust is present in the r.tmosphere are also difficult. Both involve the passage of light through long path lengths...purposes." Ilford-Selo, HP-3 isopan film with a sensitivity of 800 H & D was used. The measurement of the photographs was performed by means of a
Night Sky Brightness at San Pedro Martir Observatory
NASA Astrophysics Data System (ADS)
Plauchu-Frayn, I.; Richer, M. G.; Colorado, E.; Herrera, J.; Córdova, A.; Ceseña, U.; Ávila, F.
2017-03-01
We present optical UBVRI zenith night sky brightness measurements collected on 18 nights during 2013 to 2016 and SQM measurements obtained daily over 20 months during 2014 to 2016 at the Observatorio Astronómico Nacional on the Sierra San Pedro Mártir (OAN-SPM) in México. The UBVRI data is based upon CCD images obtained with the 0.84 m and 2.12 m telescopes, while the SQM data is obtained with a high-sensitivity, low-cost photometer. The typical moonless night sky brightness at zenith averaged over the whole period is U = 22.68, B = 23.10, V = 21.84, R = 21.04, I = 19.36, and SQM = 21.88 {mag} {{arcsec}}-2, once corrected for zodiacal light. We find no seasonal variation of the night sky brightness measured with the SQM. The typical night sky brightness values found at OAN-SPM are similar to those reported for other astronomical dark sites at a similar phase of the solar cycle. We find a trend of decreasing night sky brightness with decreasing solar activity during period of the observations. This trend implies that the sky has become darker by Δ U = 0.7, Δ B = 0.5, Δ V = 0.3, Δ R=0.5 mag arcsec-2 since early 2014 due to the present solar cycle.
Planck 2015 results. X. Diffuse component separation: Foreground maps
NASA Astrophysics Data System (ADS)
Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Orlando, E.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.´5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, R.; Ade, P. A. R.; Aghanim, N.
We report that Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps andmore » the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100–353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.« less
Planck 2015 results: X. Diffuse component separation: Foreground maps
Adam, R.; Ade, P. A. R.; Aghanim, N.; ...
2016-09-20
We report that Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps andmore » the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100–353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.« less
Sky distribution of artificial sources in the galactic belt of advanced cosmic life.
Heidmann, J
1994-12-01
In line with the concept of the galactic belt of advanced life, we evaluate the sky distribution of detectable artificial sources, using a simple astrophysical model. The best region to search is the median band of the Milky Way in the Vulpecula-Cygnus region, together with a narrower one in Carina. Although this work was done in view of a proposal to send a SETI probe at a gravitational focus of the Sun, we recommend these sky regions particularly for the searches of the sky survey type.
Flat-Sky Pseudo-Cls Analysis for Weak Gravitational Lensing
NASA Astrophysics Data System (ADS)
Asgari, Marika; Taylor, Andy; Joachimi, Benjamin; Kitching, Thomas D.
2018-05-01
We investigate the use of estimators of weak lensing power spectra based on a flat-sky implementation of the 'Pseudo-CI' (PCl) technique, where the masked shear field is transformed without regard for masked regions of sky. This masking mixes power, and 'E'-convergence and 'B'-modes. To study the accuracy of forward-modelling and full-sky power spectrum recovery we consider both large-area survey geometries, and small-scale masking due to stars and a checkerboard model for field-of-view gaps. The power spectrum for the large-area survey geometry is sparsely-sampled and highly oscillatory, which makes modelling problematic. Instead, we derive an overall calibration for large-area mask bias using simulated fields. The effects of small-area star masks can be accurately corrected for, while the checkerboard mask has oscillatory and spiky behaviour which leads to percent biases. Apodisation of the masked fields leads to increased biases and a loss of information. We find that we can construct an unbiased forward-model of the raw PCls, and recover the full-sky convergence power to within a few percent accuracy for both Gaussian and lognormal-distributed shear fields. Propagating this through to cosmological parameters using a Fisher-Matrix formalism, we find we can make unbiased estimates of parameters for surveys up to 1,200 deg2 with 30 galaxies per arcmin2, beyond which the percent biases become larger than the statistical accuracy. This implies a flat-sky PCl analysis is accurate for current surveys but a Euclid-like survey will require higher accuracy.
The sky as a topic in science education
NASA Astrophysics Data System (ADS)
Galili, Igal; Weizman, Ayelet; Cohen, Ariel
2004-07-01
The concepts of sky and visibility distance, as perceived by different learners, are investigated for the first time as a subject of a science education research. Mental models of students with regard to the subject were elicited. They were interpreted in terms of two-level hierarchy: schemes and facets-of-knowledge (defined in the paper). Our results suggest that many students do not consider sky to be a scientific (physical) concept. The majority perceives the sky as having an oblate profile. Among the parameters that determine this profile were mentioned daytime, atmosphere, geometry of the situation, and weather conditions. The students hold two major explanatory views (schemes) with regard to the sky: the sky is the atmosphere and the sky is the appearance of space. With regard to the visibility distance, the two following schemes prevail: vision weakens with the distance and natural obstacles determine vision distance. No significant correlation was found between the views regarding the sky appearance and the vision distance. Students do not relate Moon illusion to the profile of sky or visibility distance. The notions of sky and visibility distance are argued for inclusion into science curriculum, and implications of the findings to a constructivist instruction of the considered concepts and phenomena are discussed.
NASA Astrophysics Data System (ADS)
Schmidt, T.; Kalisch, J.; Lorenz, E.; Heinemann, D.
2015-10-01
Clouds are the dominant source of variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the world-wide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a shortest-term global horizontal irradiance (GHI) forecast experiment based on hemispheric sky images. A two month dataset with images from one sky imager and high resolutive GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series in different cloud scenarios. Overall, the sky imager based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depend strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.
Cool White Dwarfs Found in the UKIRT Infrared Deep Sky Survey
NASA Astrophysics Data System (ADS)
Leggett, S. K.; Lodieu, N.; Tremblay, P.-E.; Bergeron, P.; Nitta, A.
2011-07-01
We present the results of a search for cool white dwarfs in the United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). The UKIDSS LAS photometry was paired with the Sloan Digital Sky Survey to identify cool hydrogen-rich white dwarf candidates by their neutral optical colors and blue near-infrared colors, as well as faint reduced proper motion magnitudes. Optical spectroscopy was obtained at Gemini Observatory and showed the majority of the candidates to be newly identified cool degenerates, with a small number of G- to K-type (sub)dwarf contaminants. Our initial search of 280 deg2 of sky resulted in seven new white dwarfs with effective temperature T eff ≈ 6000 K. The current follow-up of 1400 deg2 of sky has produced 13 new white dwarfs. Model fits to the photometry show that seven of the newly identified white dwarfs have 4120 K <=T eff <= 4480 K, and cooling ages between 7.3 Gyr and 8.7 Gyr; they have 40 km s-1 <= v tan <= 85 km s-1 and are likely to be thick disk 10-11 Gyr-old objects. The other half of the sample has 4610 K <=T eff <= 5260 K, cooling ages between 4.3 Gyr and 6.9 Gyr, and 60 km s-1 <= v tan <= 100 km s-1. These are either thin disk remnants with unusually high velocities, or lower-mass remnants of thick disk or halo late-F or G stars.
NASA Astrophysics Data System (ADS)
Kivalov, Sergey N.; Fitzjarrald, David R.
2018-02-01
Cloud shadows lead to alternating light and dark periods at the surface, with the most abrupt changes occurring in the presence of low-level forced cumulus clouds. We examine multiyear irradiance time series observed at a research tower in a midlatitude mixed deciduous forest (Harvard Forest, Massachusetts, USA: 42.53{°}N, 72.17{°}W) and one made at a similar tower in a tropical rain forest (Tapajós National Forest, Pará, Brazil: 2.86{°}S, 54.96{°}W). We link the durations of these periods statistically to conventional meteorological reports of sky type and cloud height at the two forests and present a method to synthesize the surface irradiance time series from sky-type information. Four classes of events describing distinct sequential irradiance changes at the transition from cloud shadow and direct sunlight are identified: sharp-to-sharp, slow-to-slow, sharp-to-slow, and slow-to-sharp. Lognormal and the Weibull statistical distributions distinguish among cloudy-sky types. Observers' qualitative reports of `scattered' and `broken' clouds are quantitatively distinguished by a threshold value of the ratio of mean clear to cloudy period durations. Generated synthetic time series based on these statistics adequately simulate the temporal "radiative forcing" linked to sky type. Our results offer a quantitative way to connect the conventional meteorological sky type to the time series of irradiance experienced at the surface.
C-BASS: The C-Band All Sky Survey
NASA Astrophysics Data System (ADS)
Pearson, Timothy J.; C-BASS Collaboration
2016-06-01
The C-Band All Sky Survey (C-BASS) is a project to image the whole sky at a wavelength of 6 cm (frequency 5 GHz), measuring both the brightness and the polarization of the sky. Correlation polarimeters are mounted on two separate telescopes, one at the Owens Valley Observatory (OVRO) in California and another in South Africa, allowing C-BASS to map the whole sky. The OVRO instrument has completed observations for the northern part of the survey. We are working on final calibration of intensity and polarization. The southern instrument has recently started observations for the southern part of the survey from its site at Klerefontein near Carnarvon in South Africa. The principal aim of C-BASS is to allow the subtraction of polarized Galactic synchrotron emission from the data produced by CMB polarization experiments, such as WMAP, Planck, and dedicated B-mode polarization experiments. In addition it will contribute to studies of: (1) the local (< 1 kpc) Galactic magnetic field and cosmic-ray propagation; (2) the distribution of the anomalous dust emission, its origin and the physical processes that affect it; (3) modeling of Galactic total intensity emission, which may allow CMB experiments access to the currently inaccessible region close to the Galactic plane. Observations at many wavelengths from radio to infrared are needed to fully understand the foregrounds. At 5 GHz, C-BASS maps synchrotron polarization with minimal corruption by Faraday rotation, and complements the full-sky maps from WMAP and Planck. I will present the project status, show results of component separation in selected sky regions, and describe the northern survey data products.C-BASS (http://www.astro.caltech.edu/cbass/) is a collaborative project between the Universities of Oxford and Manchester in the UK, the California Institute of Technology (supported by the National Science Foundation and NASA) in the USA, the Hartebeesthoek Radio Astronomy Observatory (supported by the Square Kilometre Array project) in South Africa, and the King Abdulaziz City for Science and Technology (KACST) in Saudi Arabia.
SkyGlowNet as a Vehicle for STEM Education
NASA Astrophysics Data System (ADS)
Flurchick, K. M.; Craine, E. R.; Culver, R. B.; Deal, S.; Foster, C.
2013-06-01
SkyGlowNet is an emerging network of internet-enabled sky brightness meters (iSBM) that continuously record and log sky brightness at the zenith of each network node site. Also logged are time and weather information. These data are polled at a user-defined frequency, typically about every 45 seconds. The data are uploaded to the SkyGlowNet website, initially to a proprietary area where the data for each institution are embargoed for one or two semesters as students conduct research projects with their data. When released from embargo, the data are moved to another area where they can be accessed by all SkyGlowNet participants. Some of the data are periodically released to a public area on the website. In this presentation we describe the data formats and provide examples of both data content and the structure of the website. Early data from two nodes in the SkyGlowNet have been characterized, both quantitatively and qualitatively, by undergraduate students at NCAT. A summary of their work is presented here. These analyses are of utility in helping those new to looking at these data to understand how to interpret them. In particular, we demonstrate differences between effects on light at night and sky brightness due to astronomical cycles, atmospheric phenomena, and artificial lighting. Quantitative characterization of the data includes statistical analyses of parsed segments of the temporal data stream. An attempt is made to relate statistical metrics to specific types of phenomena.
Variability of adjacency effects in sky reflectance measurements.
Groetsch, Philipp M M; Gege, Peter; Simis, Stefan G H; Eleveld, Marieke A; Peters, Steef W M
2017-09-01
Sky reflectance R sky (λ) is used to correct in situ reflectance measurements in the remote detection of water color. We analyzed the directional and spectral variability in R sky (λ) due to adjacency effects against an atmospheric radiance model. The analysis is based on one year of semi-continuous R sky (λ) observations that were recorded in two azimuth directions. Adjacency effects contributed to R sky (λ) dependence on season and viewing angle and predominantly in the near-infrared (NIR). For our test area, adjacency effects spectrally resembled a generic vegetation spectrum. The adjacency effect was weakly dependent on the magnitude of Rayleigh- and aerosol-scattered radiance. The reflectance differed between viewing directions 5.4±6.3% for adjacency effects and 21.0±19.8% for Rayleigh- and aerosol-scattered R sky (λ) in the NIR. Under which conditions in situ water reflectance observations require dedicated correction for adjacency effects is discussed. We provide an open source implementation of our method to aid identification of such conditions.
Sky Glow from Cities: The Army Illumination Model v2
2011-09-01
magnetic field and is negligible. Zodiacal light is sunlight scattered by interplanetary dust and contributes up to half the brightness of the ...Sky Glow from Cities: The Army Illumination Model v2 by Richard C. Shirkey ARL-TR-5719 September 2011...Approved for public release; distribution is unlimited. NOTICES Disclaimers The
Observations and Modelling of the Zodiacal Light
NASA Astrophysics Data System (ADS)
Kelsall, T.
1994-12-01
The DIRBE instrument on the COBE satellite performed a full-sky survey in ten bands covering the spectral range from 1.25 to 240 microns, and made measurements of the polarization from 1.25 to 3.5 microns. These observations provide a wealth of data on the radiations from the interplanetary dust cloud (IPD). The presentation covers the observations, the model-independent findings, and the results from the extensive efforts of the DIRBE team to model the IPD. Emphasis is placed on describing the importance of correctly accounting for the IPD contribution to the observed-sky signal for the purpose of detecting the cosmic infrared background. (*) The NASA/Goddard Space Flight Center (GSFC) is responsible for the design, development, and operation of the COBE mission. GSFC is also responsible for the development of the analysis software and for the production of the mission data sets. Scientific guidance is provided by the COBE Science Working Group. The COBE program is supported by the Astrophysics Division of NASA's Office of Space Science.
The Nonhomogeneous Poisson Process for Fast Radio Burst Rates
Lawrence, Earl; Wiel, Scott Vander; Law, Casey; ...
2017-08-30
This paper presents the non-homogeneous Poisson process (NHPP) for modeling the rate of fast radio bursts (FRBs) and other infrequently observed astronomical events. The NHPP, well-known in statistics, can model dependence of the rate on both astronomical features and the details of an observing campaign. This is particularly helpful for rare events like FRBs because the NHPP can combine information across surveys, making the most of all available information. The goal of the paper is two-fold. First, it is intended to be a tutorial on the use of the NHPP. Second, we build an NHPP model that incorporates beam patternsmore » and a power law flux distribution for the rate of FRBs. Using information from 12 surveys including 15 detections, we find an all-sky FRB rate of 587 events per sky per day above a flux of 1 Jy (95% CI: 272, 924) and a flux power-law index of 0:91 (95% CI: 0.57, 1.25).« less
Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions
NASA Astrophysics Data System (ADS)
Hess, M.; Koepke, P.
2008-07-01
A method is presented to calculate UV irradiances on inclined surfaces that additionally takes into account the influence of sky obstructions caused by obstacles such as mountains, houses, trees, or umbrellas. With this method it is thus possible to calculate the impact of UV radiation on biological systems, such as, for instance, the human skin or eye, in any natural or artificial environment. The method, which consists of a combination of radiation models, is explained here and the accuracy of its results is demonstrated. The effect of a natural skyline is shown for an Alpine ski area, where the UV irradiance even on a horizontal surface may increase due to reflection from snow by more than 10 percent. In contrast, in a street canyon the irradiance on a horizontal surface is reduced to 30% in shadow and to about 75% for a position in the sun.
Semi-blind Bayesian inference of CMB map and power spectrum
NASA Astrophysics Data System (ADS)
Vansyngel, Flavien; Wandelt, Benjamin D.; Cardoso, Jean-François; Benabed, Karim
2016-04-01
We present a new blind formulation of the cosmic microwave background (CMB) inference problem. The approach relies on a phenomenological model of the multifrequency microwave sky without the need for physical models of the individual components. For all-sky and high resolution data, it unifies parts of the analysis that had previously been treated separately such as component separation and power spectrum inference. We describe an efficient sampling scheme that fully explores the component separation uncertainties on the inferred CMB products such as maps and/or power spectra. External information about individual components can be incorporated as a prior giving a flexible way to progressively and continuously introduce physical component separation from a maximally blind approach. We connect our Bayesian formalism to existing approaches such as Commander, spectral mismatch independent component analysis (SMICA), and internal linear combination (ILC), and discuss possible future extensions.
The Impact of Assimilation of GPM Clear Sky Radiance on HWRF Hurricane Track and Intensity Forecasts
NASA Astrophysics Data System (ADS)
Yu, C. L.; Pu, Z.
2016-12-01
The impact of GPM microwave imager (GMI) clear sky radiances on hurricane forecasting is examined by ingesting GMI level 1C recalibrated brightness temperature into the NCEP Gridpoint Statistical Interpolation (GSI)- based ensemble-variational hybrid data assimilation system for the operational Hurricane Weather Research and Forecast (HWRF) system. The GMI clear sky radiances are compared with the Community Radiative Transfer Model (CRTM) simulated radiances to closely study the quality of the radiance observations. The quality check result indicates the presence of bias in various channels. A static bias correction scheme, in which the appropriate bias correction coefficients for GMI data is evaluated by applying regression method on a sufficiently large sample of data representative to the observational bias in the regions of concern, is used to correct the observational bias in GMI clear sky radiances. Forecast results with and without assimilation of GMI radiance are compared using hurricane cases from recent hurricane seasons (e.g., Hurricane Joaquin in 2015). Diagnoses of data assimilation results show that the bias correction coefficients obtained from the regression method can correct the inherent biases in GMI radiance data, significantly reducing observational residuals. The removal of biases also allows more data to pass GSI quality control and hence to be assimilated into the model. Forecast results for hurricane Joaquin demonstrates that the quality of analysis from the data assimilation is sensitive to the bias correction, with positive impacts on the hurricane track forecast when systematic biases are removed from the radiance data. Details will be presented at the symposium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storm, Emma; Weniger, Christoph; Calore, Francesca, E-mail: e.m.storm@uva.nl, E-mail: c.weniger@uva.nl, E-mail: francesca.calore@lapth.cnrs.fr
We present SkyFACT (Sky Factorization with Adaptive Constrained Templates), a new approach for studying, modeling and decomposing diffuse gamma-ray emission. Like most previous analyses, the approach relies on predictions from cosmic-ray propagation codes like GALPROP and DRAGON. However, in contrast to previous approaches, we account for the fact that models are not perfect and allow for a very large number (∼> 10{sup 5}) of nuisance parameters to parameterize these imperfections. We combine methods of image reconstruction and adaptive spatio-spectral template regression in one coherent hybrid approach. To this end, we use penalized Poisson likelihood regression, with regularization functions that aremore » motivated by the maximum entropy method. We introduce methods to efficiently handle the high dimensionality of the convex optimization problem as well as the associated semi-sparse covariance matrix, using the L-BFGS-B algorithm and Cholesky factorization. We test the method both on synthetic data as well as on gamma-ray emission from the inner Galaxy, |ℓ|<90{sup o} and | b |<20{sup o}, as observed by the Fermi Large Area Telescope. We finally define a simple reference model that removes most of the residual emission from the inner Galaxy, based on conventional diffuse emission components as well as components for the Fermi bubbles, the Fermi Galactic center excess, and extended sources along the Galactic disk. Variants of this reference model can serve as basis for future studies of diffuse emission in and outside the Galactic disk.« less
The isotropic radio background revisited
NASA Astrophysics Data System (ADS)
Fornengo, Nicolao; Lineros, Roberto A.; Regis, Marco; Taoso, Marco
2014-04-01
We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.
NASA Astrophysics Data System (ADS)
Wang, P.; Knap, W. H.; Kuipers Munneke, P.; Stammes, P.
2009-04-01
During the last two decades, several attempts have been made to achieve agreement between clear-sky shortwave broadband irradiance models and surface measurements of direct and diffuse irradiance. In general, models and measurements agreed well for the direct component but closing the gap for diffuse irradiances remained problematic. The number of studies reporting a satisfactory degree of closure for both direct and diffuse irradiance is still limited, which motivated us to perform the study presented here. In this paper a clear-sky shortwave closure analysis is presented for the Baseline Surface Radiation Network (BSRN) site of Cabauw, the Netherlands (51.97 °N, 4.93 °E). The analysis is based on an exceptional period of fine weather in the first half of May 2008 during the Intensive Measurement Period At the Cabauw Tower (IMPACT), an activity of the European Integrated project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI). Although IMPACT produced a wealth of data, it was decided to conduct the closure analysis using routine measurements only, provided by BSRN and the Aerosol Robotic Network (AERONET), completed with radiosonde obervations. The rationale for this pragmatic approach is the possibility of applying the method presented here to other periods and (BSRN) sites, where routine measurements are readily available, without having to deal with the investments and restrictions of an intensive observation period. The analysis is based on a selection of 72 comparisons on 6 days between BSRN measurements and Doubling Adding KNMI (DAK) model simulations of direct, diffuse, and global irradiance. The data span a wide range of aerosol properties, water vapour columns, and solar zenith angles. The model input consisted of operational Aerosol Robotic Network (AERONET) aerosol products and radiosonde data. On the basis of these data excellent closure was obtained: the mean differences between model and measurements are 2 W/m2 (+0.2%) for direct irradiance, 1 W/m2 (+0.8%) for diffuse irradiance, and 2 W/m2 (+0.3%) for global irradiance.
Mining the SDSS SkyServer SQL queries log
NASA Astrophysics Data System (ADS)
Hirota, Vitor M.; Santos, Rafael; Raddick, Jordan; Thakar, Ani
2016-05-01
SkyServer, the Internet portal for the Sloan Digital Sky Survey (SDSS) astronomic catalog, provides a set of tools that allows data access for astronomers and scientific education. One of SkyServer data access interfaces allows users to enter ad-hoc SQL statements to query the catalog. SkyServer also presents some template queries that can be used as basis for more complex queries. This interface has logged over 330 million queries submitted since 2001. It is expected that analysis of this data can be used to investigate usage patterns, identify potential new classes of queries, find similar queries, etc. and to shed some light on how users interact with the Sloan Digital Sky Survey data and how scientists have adopted the new paradigm of e-Science, which could in turn lead to enhancements on the user interfaces and experience in general. In this paper we review some approaches to SQL query mining, apply the traditional techniques used in the literature and present lessons learned, namely, that the general text mining approach for feature extraction and clustering does not seem to be adequate for this type of data, and, most importantly, we find that this type of analysis can result in very different queries being clustered together.
Reconstruction of Sky Illumination Domes from Ground-Based Panoramas
NASA Astrophysics Data System (ADS)
Coubard, F.; Lelégard, L.; Brédif, M.; Paparoditis, N.; Briottet, X.
2012-07-01
The knowledge of the sky illumination is important for radiometric corrections and for computer graphics applications such as relighting or augmented reality. We propose an approach to compute environment maps, representing the sky radiance, from a set of ground-based images acquired by a panoramic acquisition system, for instance a mobile-mapping system. These images can be affected by important radiometric artifacts, such as bloom or overexposure. A Perez radiance model is estimated with the blue sky pixels of the images, and used to compute additive corrections in order to reduce these radiometric artifacts. The sky pixels are then aggregated in an environment map, which still suffers from discontinuities on stitching edges. The influence of the quality of estimated sky radiance on the simulated light signal is measured quantitatively on a simple synthetic urban scene; in our case, the maximal error for the total sensor radiance is about 10%.
Mental Stress: Neurophysiology and Its Regulation by Sudarshan Kriya Yoga.
Chandra, Sushil; Jaiswal, Amit Kumar; Singh, Ram; Jha, Devendra; Mittal, Alok Prakash
2017-01-01
The present study focuses on analyzing the effects of Sudarshan Kriya yoga (SKY) on EEG as well as ECG signals for stress regulation. To envision the regulation of stress Determination Test (DT) has been used. We have chosen a control group for contriving a cogent comparison that could be corroborated using statistical tests. A total of 20 subjects were taken in the study, of which 10 were allotted to a control group. Electroencephalograph was taken during a DT task, before and after SKY the sky session with 30 days of SKY session given to the experimental group. No SKY was given to the control group. We quantified mental stress using EEG, ECG and DT synergistically and used SKY to regulate it. We observed that alpha band power decreases in the frontal lobe of the brain with increasing mental stress while frontal brain asymmetry decreases with increasing stress tolerance. These EEG, ECG and DT shows a significant decrement in mental stress and improvement in cognitive performance after SKY, indicating SKY as a good alternative of medication for stress management.
NASA Astrophysics Data System (ADS)
McConnochie, T. H.; Smith, M. D.; Wolff, M. J.; Bender, S. C.; Lemmon, M. T.; Wiens, R. C.; Maurice, S.; Gasnault, O.; Lasue, J.; Meslin, P. Y.; Harri, A. M.; Genzer, M.; Kemppinen, O.; Martinez, G.; DeFlores, L. P.; Blaney, D. L.; Johnson, J. R.; Bell, J. F., III; Trainer, M. G.; Lefèvre, F.; Atreya, S. K.; Mahaffy, P. R.; Wong, M. H.; Franz, H. B.; Guzewich, S.; Villanueva, G. L.; Khayat, A. S.
2017-12-01
The Mars Science Laboratory's (MSL) ChemCam spectrometer measures atmospheric aerosol properties and gas abundances by operating in passive mode and observing scattered sky light at two different elevation angles. We have previously [e. g. 1, 2] presented the methodology and results of these ChemCam Passive Sky observations. Here we will focus on three of the more surprising results that we have obtained: (1) depletion of the column water vapor at Gale Crater relative to that of the surrounding region combined with a strong enhancement of the local column water vapor relative to pre-dawn in-situ measurements, (2) an interannual change in the effective particle size of dust aerosol during the aphelion season, and (3) apparent seasonal and interannual variability in molecular oxygen that differs significantly from the expected behavior of a non-condensable trace gas and differs significantly from global climate model expectations. The ChemCam passive sky water vapor measurements are quite robust but their interpretation depends on the details of measurements as well as on the types of water vapor vertical distributions that can be produced by climate models. We have a high degree of confidence in the dust particle size changes but since aerosol results in general are subject to a variety of potential systematic effects our particle size results would benefit from confirmation by other techniques [c.f. 3]. For the ChemCam passive sky molecular oxygen results we are still working to constrain the uncertainties well enough to confirm the observed surprising behavior, motivated by similarly surprising atmospheric molecular oxygen variability observed by MSL's Sample Analysis at Mars (SAM) instrument [4]. REFERENCES: [1] McConnochie, et al. (2017), Icarus (submitted). [2] McConnochie, et al. (2017), abstract # 3201, The 6th International Workshop on the Mars Atmosphere: Granada, Spain. [3] Vicente-Retortillo et al. (2017), GRL, 44. [4] Trainer et al. (2017), 2017 AGU Fall Meeting.
Clear-Sky Narrowband Albedo Variations Derived from VIRS and MODIS Data
NASA Technical Reports Server (NTRS)
Sun-Mack, Sunny; Chen, Yan; Arduini, Robert F.; Minnis, Patrick
2004-01-01
A critical parameter for detecting clouds and aerosols and for retrieving their microphysical properties is the clear-sky radiance. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the visible (VIS; 0.63 m) and near-infrared (NIR; 1.6 or 2.13 m) channels available on same satellites as the CERES scanners. Another channel often used for cloud and aerosol, and vegetation cover retrievals is the vegetation (VEG; 0.86- m) channel that has been available on the Advanced Very High Resolution Radiometer (AVHRR) for many years. Generally, clear-sky albedo for a given surface type is determined for conditions when the vegetation is either thriving or dormant and free of snow. Snow albedo is typically estimated without considering the underlying surface type. The albedo for a surface blanketed by snow, however, should vary with surface type because the vegetation often emerges from the snow to varying degrees depending on the vertical dimensions of the vegetation. For example, a snowcovered prairie will probably be brighter than a snowcovered forest because the snow typically falls off the trees exposing the darker surfaces while the snow on a grassland at the same temperatures will likely be continuous and, therefore, more reflective. Accounting for the vegetation-induced differences should improve the capabilities for distinguishing snow and clouds over different surface types and facilitate improvements in the accuracy of radiative transfer calculations between the snow-covered surface and the atmosphere, eventually leading to improvements in models of the energy budgets over land. This paper presents a more complete analysis of the CERES spectral clear-sky reflectances to determine the variations in clear-sky top-of-atmosphere (TOA) albedos for both snow-free and snow-covered surfaces for four spectral channels using data from Terra and Aqua.. The results should be valuable for improved cloud retrievals and for modeling radiation fields.
The super greenhouse effect in a warming world: the role of dynamics and thermodynamics
NASA Astrophysics Data System (ADS)
Kashinath, Karthik; O'Brien, Travis; Collins, William
2016-04-01
Over warm tropical oceans the increase in greenhouse trapping with increasing SST can be faster than that of the surface emission, resulting in a decrease in clear sky outgoing longwave radiation at the top of the atmosphere (OLR) when SST increases, also known as the super greenhouse effect (SGE). If the SGE is directly linked to SST changes, there are profound implications for positive climate feedbacks in the tropics. We show that CMIP5 models perform well in simulating the observed clear-sky greenhouse effect in the present day. Using global warming experiments we show that the onset and shutdown SST of the SGE, as well as the magnitude of the SGE, increase as the convective threshold SST increases. To account for an increasing convective threshold SST we use an invariant coordinate for convection proposed in a recent study [Williams et al., GRL (2009)]. However, even after accounting for the increase in tropical SST (by normalizing the SGE by surface emission) and accounting for the increase in the threshold temperature for convection (by using the invariant coordinate) we find that the models predict a distinct increase in the clear-sky greenhouse effect in a warmed world. This suggests that thermodynamics (i.e. SST) plays a crucial role in regulating the increasing clear sky greenhouse effect in a warming world. We use theoretical arguments to estimate this increase in SGE and derive its dependence on SST. Finally, as shown in previous studies, we confirm that the increase in the clear-sky greenhouse effect is primarily due to upper tropospheric moistening. Although the absolute increase in upper tropospheric water vapor is small compared to that of the lower troposphere, since the absorptivity scales with fractional changes in water vapor, the contribution of the upper troposphere is more significant, as shown by Chung et al., PNAS (2014).
NASA Astrophysics Data System (ADS)
Stier, P.; Schutgens, N. A. J.; Bian, H.; Boucher, O.; Chin, M.; Ghan, S.; Huneeus, N.; Kinne, S.; Lin, G.; Myhre, G.; Penner, J. E.; Randles, C.; Samset, B.; Schulz, M.; Yu, H.; Zhou, C.
2012-09-01
Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in nine participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.51 W m-2 and the inter-model standard deviation is 0.70 W m-2, corresponding to a relative standard deviation of 15%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.26 W m-2, and the standard deviation increases to 1.21 W m-2, corresponding to a significant relative standard deviation of 96%. However, the top-of-atmosphere forcing variability owing to absorption is low, with relative standard deviations of 9% clear-sky and 12% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment, demonstrates that host model uncertainties could explain about half of the overall sulfate forcing diversity of 0.13 W m-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention.
NASA Astrophysics Data System (ADS)
Pipkin, Ashley; Duriscoe, Dan M.; Lughinbuhl, Christian
2017-01-01
Artificial light at night, when observed at some distance from a city, results in a dome of sky glow, brightest at the horizon. The spectral power distribution of electric light utilized will determine its color of the light dome and the amount of light will determine its brightness. Recent outdoor lighting technologies have included blue-rich light emitting diode (LED) sources that may increase the relative amount of blue to green light in sky glow compared to typical high pressure sodium (HPS) sources with warmer spectra. Measuring and monitoring this effect is important to the preservation of night sky visual quality as seen from undeveloped areas outside the city, such as parks or other protected areas, since the dark-adapted human eye is more sensitive to blue and green. We present a method using a wide field CCD camera which images the entire sky in both Johnson V and B photometric bands. Standard stars within the images are used for calibration. The resulting all-sky brightness maps, and a derived B-V color index map, provide a means to assess and track the impact of specific outdoor lighting practices. We also present example data from several cities, including Las Vegas, Nevada, Flagstaff, Arizona, and Cheyenne, Wyoming.
The MICE Grand Challenge light-cone simulation - III. Galaxy lensing mocks from all-sky lensing maps
NASA Astrophysics Data System (ADS)
Fosalba, P.; Gaztañaga, E.; Castander, F. J.; Crocce, M.
2015-02-01
In Paper I of this series, we presented a new N-body light-cone simulation from the MICE Collaboration, the MICE Grand Challenge (MICE-GC), containing about 70 billion dark-matter particles in a (3 h-1 Gpc)3 comoving volume, from which we built halo and galaxy catalogues using a Halo Occupation Distribution and Halo Abundance Matching technique, as presented in the companion Paper II. Given its large volume and fine mass resolution, the MICE-GC simulation also allows an accurate modelling of the lensing observables from upcoming wide and deep galaxy surveys. In the last paper of this series (Paper III), we describe the construction of all-sky lensing maps, following the `Onion Universe' approach, and discuss their properties in the light-cone up to z = 1.4 with sub-arcminute spatial resolution. By comparing the convergence power spectrum in the MICE-GC to lower mass-resolution (i.e. particle mass ˜1011 h-1 M⊙) simulations, we find that resolution effects are at the 5 per cent level for multipoles ℓ ˜ 103 and 20 per cent for ℓ ˜ 104. Resolution effects have a much lower impact on our simulation, as shown by comparing the MICE-GC to recent numerical fits by Takahashi. We use the all-sky lensing maps to model galaxy lensing properties, such as the convergence, shear, and lensed magnitudes and positions, and validate them thoroughly using galaxy shear auto and cross-correlations in harmonic and configuration space. Our results show that the galaxy lensing mocks here presented can be used to accurately model lensing observables down to arcminute scales. Accompanying this series of papers, we make a first public data release of the MICE-GC galaxy mock, the MICECAT v1.0, through a dedicated web-portal for the MICE simulations, http://cosmohub.pic.es, to help developing and exploiting the new generation of astronomical surveys.
NASA Astrophysics Data System (ADS)
Luccini, E.; Cede, A.; Piacentini, R. D.
The analysis of ground-based measurements of solar erythemal ultraviolet (UV) irradiance with a Solar Light 501 biometer, and total (300-3000nm) irradiance with an Eppley B&W pyranometer at the Argentine Antarctic Base ``Almirante Brown'', Paradise Bay (64.9°S, 62.9°W, 10ma.s.l.) is presented. Measurement period extends from February 16 to March 28 2000. A relatively high mean albedo and a very clean atmosphere characterise the place. Sky conditions were of generally high cloud cover percentage. Clear-sky irradiance for each day was estimated with model calculations, and the effect of the cloudiness was studied through the ratio of measured to clear-sky value (r). Two particular cases were analysed: overcast sky without precipitation and overcast sky with rain or slight snowfall, the last one presenting frequently dense fog. Total irradiance was more attenuated than UV by the homogeneous cloudiness, obtaining mean r values of 0.54 for erythemal irradiance and 0.30 for total irradiance in the first case (without precipitation) and 0.27 and 0.17 respectively in the second case (with precipitation). Mean r values for the complete period were 0.58 for erythemal irradiance and 0.43 for total irradiance. Erythemal and total daily insolations reduce quickly at this epoch due to the increase of the noon solar zenith angle and the decrease of daylight time. Additionally, they were strongly modulated by cloudiness. Measured maxima were 2.71kJ/m2 and 18.42MJ/m2 respectively. Measurements were compared with satellite data. TOMS-inferred erythemal daily insolation shows the typical underestimation with respect to ground measurements at regions of high mean albedo. Measured mean total daily insolation agrees with climatological satellite data for the months of the campaign.
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP1) Observations: Galactic Foreground Emission
NASA Technical Reports Server (NTRS)
Gold, B.; Bennett, C.L.; Larson, D.; Hill, R.S.; Odegard, N.; Weiland, J.L.; Hinshaw, G.; Kogut, A.; Wollack, E.; Page, L.;
2008-01-01
We present a new estimate of foreground emission in the WMAP data, using a Markov chain Monte Carlo (MCMC) method. The new technique delivers maps of each foreground component for a variety of foreground models, error estimates of the uncertainty of each foreground component, and provides an overall goodness-of-fit measurement. The resulting foreground maps are in broad agreement with those from previous techniques used both within the collaboration and by other authors. We find that for WMAP data, a simple model with power-law synchrotron, free-free, and thermal dust components fits 90% of the sky with a reduced X(sup 2) (sub v) of 1.14. However, the model does not work well inside the Galactic plane. The addition of either synchrotron steepening or a modified spinning dust model improves the fit. This component may account for up to 14% of the total flux at Ka-band (33 GHz). We find no evidence for foreground contamination of the CMB temperature map in the 85% of the sky used for cosmological analysis.
NASA Astrophysics Data System (ADS)
Navarro, Manuel
2014-05-01
This paper presents a model of how children generate concrete concepts from perception through processes of differentiation and integration. The model informs the design of a novel methodology (evolutionary maps or emaps), whose implementation on certain domains unfolds the web of itineraries that children may follow in the construction of concrete conceptual knowledge and pinpoints, for each conception, the architecture of the conceptual change that leads to the scientific concept. Remarkably, the generative character of its syntax yields conceptions that, if unknown, amount to predictions that can be tested experimentally. Its application to the diurnal cycle (including the sun's trajectory in the sky) indicates that the model is correct and the methodology works (in some domains). Specifically, said emap predicts a number of exotic trajectories of the sun in the sky that, in the experimental work, were drawn spontaneously both on paper and a dome. Additionally, the application of the emaps theoretical framework in clinical interviews has provided new insight into other cognitive processes. The field of validity of the methodology and its possible applications to science education are discussed.
Luminet, Jean-Pierre; Weeks, Jeffrey R; Riazuelo, Alain; Lehoucq, Roland; Uzan, Jean-Philippe
2003-10-09
The current 'standard model' of cosmology posits an infinite flat universe forever expanding under the pressure of dark energy. First-year data from the Wilkinson Microwave Anisotropy Probe (WMAP) confirm this model to spectacular precision on all but the largest scales. Temperature correlations across the microwave sky match expectations on angular scales narrower than 60 degrees but, contrary to predictions, vanish on scales wider than 60 degrees. Several explanations have been proposed. One natural approach questions the underlying geometry of space--namely, its curvature and topology. In an infinite flat space, waves from the Big Bang would fill the universe on all length scales. The observed lack of temperature correlations on scales beyond 60 degrees means that the broadest waves are missing, perhaps because space itself is not big enough to support them. Here we present a simple geometrical model of a finite space--the Poincaré dodecahedral space--which accounts for WMAP's observations with no fine-tuning required. The predicted density is Omega(0) approximately 1.013 > 1, and the model also predicts temperature correlations in matching circles on the sky.
Retrieval of Total Ozone Amounts from Zenith-Sky Intensities in the Ultraviolet Region
NASA Technical Reports Server (NTRS)
Bojkov, B. R.; Bhartia, P. K.; Hilsenrath, E.; Labow, G. J.
2004-01-01
A new method to determine the total ozone column from zenith-sky intensities in the ultraviolet region has been developed for the Shuttle Solar Backscatter Ultraviolet Spectrometer (SSBUV) operating at the NASA Goddard Space Flight Center. The total ozone column amounts are derived by comparing the ratio of measured intensities from three wavelengths with the equivalent ratios calculated by a radiative transfer model. The differences between the retrieved ozone column amounts and the collocated Brewer double monochromator are within 2% for the measurement period beginning in April 2001. The methodology, as well as the influences of the ozone profiles, aerosols, surface albedo, and the solar zenith angle on the retrieved total ozone amounts will be presented.
Dark Skies: Local Success, Global Challenge
NASA Astrophysics Data System (ADS)
Lockwood, G. W.
2009-01-01
The Flagstaff, Arizona 1987 lighting code reduced the growth rate of man-made sky glow by a third. Components of the code include requirements for full cutoff lighting, lumens per acre limits in radial zones around observatories, and use of low-pressure sodium monochromatic lighting for roadways and parking lots. Broad public acceptance of Flagstaff's lighting code demonstrates that dark sky preservation has significant appeal and few visibility or public safety negatives. An inventory by C. Luginbuhl et al. of the light output and shielding of a sampling of various zoning categories (municipal, commercial, apartments, single-family residences, roadways, sports facilities, industrial, etc.), extrapolated over the entire city, yields a total output of 139 million lumens. Commercial and industrial sources account for 62% of the total. Outdoor sports lighting increases the total by 24% on summer evenings. Flagstaff's per capita lumen output is 2.5 times greater than the nominal 1,000 lumens per capita assumed by R. Garstang in his early sky glow modeling work. We resolved the discrepancy with respect to Flagstaff's measured sky glow using an improved model that includes substantial near ground attenuation by foliage and structures. A 2008 university study shows that astronomy contributes $250M annually to Arizona's economy. Another study showed that the application of lighting codes throughout Arizona could reduce energy consumption significantly. An ongoing effort led by observatory directors statewide will encourage lighting controls in currently unregulated metropolitan areas whose growing sky glow threatens observatory facilities more than 100 miles away. The national press (New York Times, the New Yorker, the Economist, USA Today, etc.) have publicized dark sky issues but frequent repetition of the essential message and vigorous action will be required to steer society toward darker skies and less egregious waste.
Dark Skies Awareness Programs for the International Year of Astronomy
NASA Astrophysics Data System (ADS)
Walker, C. E.; Pompea, S. M.
2008-12-01
The loss of a dark night sky as a natural resource is a growing concern. It impacts not only astronomical research, but also our environment in terms of ecology, health, safety, economics and energy conservation. For this reason, "Dark Skies are a Universal Resource" is a cornerstone project for the U.S. International Year of Astronomy (IYA) program in 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved in a variety of dark skies-related programs. These programs focus on citizen-scientist sky-brightness monitoring programs, a planetarium show, podcasting, social networking, a digital photography contest, the Good Neighbor Lighting Program, Earth Hour, National Dark Skies Week, a traveling exhibit, a video tutorial, Dark Skies Discovery Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy, and a Quiet Skies program. Many similar programs are available internationally through the "Dark Skies Awareness" Global Cornerstone Project. Working groups for both the national and international dark skies cornerstone projects are being chaired by the National Optical Astronomy Observatory (NOAO). The presenters from NOAO will provide the "know-how" and the means for session participants to become community advocates in promoting Dark Skies programs as public events at their home institutions. Participants will be able to get information on jump-starting their education programs through the use of well-developed instructional materials and kits. For more information, visit http://astronomy2009.us/darkskies/ and http://www.darkskiesawareness.org/.
MAXI/GSC 7-year Source Catalog
NASA Astrophysics Data System (ADS)
Ueda, Y.; Kawamuro, T.; Hori, T.; Shidatsu, M.; Tanimoto, A.; MAXI Team
2017-10-01
Monitor of All-sky X-ray Image (MAXI) on the International Space Station has been continuously observing the X-ray sky since its launch in 2009. The MAXI survey has achieved the best sensitivity in the 4-10 keV band as an all sky X-ray mission, and is complementary to the ROSAT all sky survey (<2 keV) and hard X-ray (>10 keV) surveys performed with Swift and INTEGRAL. Here we present the latest source catalog of MAXI/Gas Slit Camera (GSC) constructed from the first 7-year data, which is an extension of the 37-month catalog of the high Galactic-latitude sky (Hiroi et al. 2013). We summarize statistical properties of the X-ray sources and results of cross identification with other catalogs.
NASA Astrophysics Data System (ADS)
Schmidt, Thomas; Kalisch, John; Lorenz, Elke; Heinemann, Detlev
2016-03-01
Clouds are the dominant source of small-scale variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the worldwide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a very short term global horizontal irradiance (GHI) forecast experiment based on hemispheric sky images. A 2-month data set with images from one sky imager and high-resolution GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series into different cloud scenarios. Overall, the sky-imager-based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depends strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability, which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.
All-Sky Microwave Imager Data Assimilation at NASA GMAO
NASA Technical Reports Server (NTRS)
Kim, Min-Jeong; Jin, Jianjun; El Akkraoui, Amal; McCarty, Will; Todling, Ricardo; Gu, Wei; Gelaro, Ron
2017-01-01
Efforts in all-sky satellite data assimilation at the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center have been focused on the development of GSI configurations to assimilate all-sky data from microwave imagers such as the GPM Microwave Imager (GMI) and Global Change Observation Mission-Water (GCOM-W) Advanced Microwave Scanning Radiometer 2 (AMSR-2). Electromagnetic characteristics associated with their wavelengths allow microwave imager data to be relatively transparent to atmospheric gases and thin ice clouds, and highly sensitive to precipitation. Therefore, GMAOs all-sky data assimilation efforts are primarily focused on utilizing these data in precipitating regions. The all-sky framework being tested at GMAO employs the GSI in a hybrid 4D-EnVar configuration of the Goddard Earth Observing System (GEOS) data assimilation system, which will be included in the next formal update of GEOS. This article provides an overview of the development of all-sky radiance assimilation in GEOS, including some performance metrics. In addition, various projects underway at GMAO designed to enhance the all-sky implementation will be introduced.
MEqTrees Telescope and Radio-sky Simulations and CPU Benchmarking
NASA Astrophysics Data System (ADS)
Shanmugha Sundaram, G. A.
2009-09-01
MEqTrees is a Python-based implementation of the classical Measurement Equation, wherein the various 2×2 Jones matrices are parametrized representations in the spatial and sky domains for any generic radio telescope. Customized simulations of radio-source sky models and corrupt Jones terms are demonstrated based on a policy framework, with performance estimates derived for array configurations, ``dirty''-map residuals and processing power requirements for such computations on conventional platforms.
2012-01-01
discrimination at live-UXO sites. Namely, under this project first we developed and implemented advanced, physically complete forward EMI models such as, the...detection and discrimination at live-UXO sites. Namely, under this project first we developed and implemented advanced, physically complete forward EMI...Shubitidze of Sky Research and Dartmouth College, conceived, implemented , and tested most of the approaches presented in this report. He developed
Integrating paleoecology and genetics of bird populations in two sky island archipelagos.
McCormack, John E; Bowen, Bonnie S; Smith, Thomas B
2008-06-27
Genetic tests of paleoecological hypotheses have been rare, partly because recent genetic divergence is difficult to detect and time. According to fossil plant data, continuous woodland in the southwestern USA and northern Mexico became fragmented during the last 10,000 years, as warming caused cool-adapted species to retreat to high elevations. Most genetic studies of resulting 'sky islands' have either failed to detect recent divergence or have found discordant evidence for ancient divergence. We test this paleoecological hypothesis for the region with intraspecific mitochondrial DNA and microsatellite data from sky-island populations of a sedentary bird, the Mexican jay (Aphelocoma ultramarina). We predicted that populations on different sky islands would share common, ancestral alleles that existed during the last glaciation, but that populations on each sky island, owing to their isolation, would contain unique variants of postglacial origin. We also predicted that divergence times estimated from corrected genetic distance and a coalescence model would post-date the last glacial maximum. Our results provide multiple independent lines of support for postglacial divergence, with the predicted pattern of shared and unique mitochondrial DNA haplotypes appearing in two independent sky-island archipelagos, and most estimates of divergence time based on corrected genetic distance post-dating the last glacial maximum. Likewise, an isolation model based on multilocus gene coalescence indicated postglacial divergence of five pairs of sky islands. In contrast to their similar recent histories, the two archipelagos had dissimilar historical patterns in that sky islands in Arizona showed evidence for older divergence, suggesting different responses to the last glaciation. This study is one of the first to provide explicit support from genetic data for a postglacial divergence scenario predicted by one of the best paleoecological records in the world. Our results demonstrate that sky islands act as generators of genetic diversity at both recent and historical timescales and underscore the importance of thorough sampling and the use of loci with fast mutation rates to studies that test hypotheses concerning recent genetic divergence.
The night sky brightness at McDonald Observatory
NASA Technical Reports Server (NTRS)
Kalinowski, J. K.; Roosen, R. G.; Brandt, J. C.
1975-01-01
Baseline observations of the night sky brightness in B and V are presented for McDonald Observatory. In agreement with earlier work by Elvey and Rudnick (1937) and Elvey (1943), significant night-to-night and same-night variations in sky brightness are found. Possible causes for these variations are discussed. The largest variation in sky brightness found during a single night is approximately a factor of two, a value which corresponds to a factor-of-four variation in airglow brightness. The data are used to comment on the accuracy of previously published surface photometry of M 81.
2007-06-01
4.2 Creating the Skybox and Terrain Model .........................................................................7 4.3 Creating New Textures... Skybox and Terrain Model The next step was to build a sky box. Since it already resided in Raven Shield, the creation of the sky box was limited to
Validation of the McClear clear-sky model in desert conditions with three stations in Israel
NASA Astrophysics Data System (ADS)
Lefèvre, Mireille; Wald, Lucien
2016-03-01
The new McClear clear-sky model, a fast model based on a radiative transfer solver, exploits the atmospheric properties provided by the EU-funded Copernicus Atmosphere Monitoring Service (CAMS) to estimate the solar direct and global irradiances received at ground level in cloud-free conditions at any place any time. The work presented here focuses on desert conditions and compares the McClear irradiances to coincident 1 min measurements made in clear-sky conditions at three stations in Israel which are distant from less than 100 km. The bias for global irradiance is comprised between 2 and 32 W m-2, i.e. between 0 and 4 % of the mean observed irradiance (approximately 830 W m-2). The RMSE ranges from 30 to 41 W m-2 (4 %) and the squared correlation coefficient is greater than 0.976. The bias for the direct irradiance at normal incidence (DNI) is comprised between -68 and +13 W m-2, i.e. between -8 and 2 % of the mean observed DNI (approximately 840 W m-2). The RMSE ranges from 53 (7 %) to 83 W m-2 (10 %). The squared correlation coefficient is close to 0.6. The performances are similar for the three sites for the global irradiance and for the DNI to a lesser extent, demonstrating the robustness of the McClear model combined with CAMS products. These results are discussed in the light of those obtained by McClear for other desert areas in Egypt and United Arab Emirates.
On-Sky Demonstration of a Fluid Atmospheric Dispersion Corrector
NASA Astrophysics Data System (ADS)
Zheng, J.; Saunders, W.; Lawrence, J. S.; Richards, S.
2013-02-01
The first on-sky demonstration of a fluid atmospheric dispersion corrector (FADC) is presented using the Anglo-Australian Telescope at Siding Spring Observatory. The atmospheric dispersion correction was observed with a three-colour CCD camera at the telescope’s Cassegrain focus. The FADC contains a pair of immiscible fluids in a small glass container placed very close to the telescope focal plane. A pair of fluid prisms is formed and the apex of the two prisms varies with telescope zenith angle because of gravity. Three chemicals were identified and tested for this purpose. We experimentally measured the FADC dispersion properties versus zenith angle and it is shown that its dispersion follows the tan(Z) law. We have been able to observe 6 stars at different zenith angles and show that the FADC can correct atmospheric dispersion up to 1‧‧ at a zenith angle of 52° across the visible spectral range of 400-700 nm. It is demonstrated that an FADC can function as a passive atmospheric dispersion corrector without any moving parts. Our on-sky measurement results show excellent agreement with the optical ray-tracing model.
NASA Astrophysics Data System (ADS)
Lamy, Kévin; Portafaix, Thierry; Brogniez, Colette; Godin-Beekmann, Sophie; Bencherif, Hassan; Morel, Béatrice; Pazmino, Andrea; Metzger, Jean Marc; Auriol, Frédérique; Deroo, Christine; Duflot, Valentin; Goloub, Philippe; Long, Charles N.
2018-01-01
Surface ultraviolet radiation (SUR) is not an increasing concern after the implementation of the Montreal Protocol and the recovery of the ozone layer (Morgenstern et al., 2008). However, large uncertainties remain in the prediction of future changes of SUR (Bais et al., 2015). Several studies pointed out that UV-B impacts the biosphere (Erickson et al., 2015), especially the aquatic system, which plays a central part in the biogeochemical cycle (Hader et al., 2007). It can affect phytoplankton productivity (Smith and Cullen, 1995). This influence can result in either positive or negative feedback on climate (Zepp et al., 2007). Global circulation model simulations predict an acceleration of the Brewer-Dobson circulation over the next century (Butchart, 2014), which would lead to a decrease in ozone levels in the tropics and an enhancement at higher latitudes (Hegglin and Shepherd, 2009). Reunion Island is located in the tropics (21° S, 55° E), in a part of the world where the amount of ozone in the ozone column is naturally low. In addition, this island is mountainous and the marine atmosphere is often clean with low aerosol concentrations. Thus, measurements show much higher SUR than at other sites at the same latitude or at midlatitudes. Ground-based measurements of SUR have been taken on Reunion Island by a Bentham DTMc300 spectroradiometer since 2009. This instrument is affiliated with the Network for the Detection of Atmospheric Composition Change (NDACC). In order to quantify the future evolution of SUR in the tropics, it is necessary to validate a model against present observations. This study is designed to be a preliminary parametric and sensitivity study of SUR modelling in the tropics. We developed a local parameterisation using the Tropospheric Ultraviolet and Visible Model (TUV; Madronich, 1993) and compared the output of TUV to multiple years of Bentham spectral measurements. This comparison started in early 2009 and continued until 2016. Only clear-sky SUR was modelled, so we needed to sort out the clear-sky measurements. We used two methods to detect cloudy conditions: the first was based on an observer's hourly report on the sky cover, while the second was based on applying Long and Ackerman (2000)'s algorithm to broadband pyranometer data to obtain the cloud fraction and then discriminating clear-sky windows on SUR measurements. Long et al. (2006)'s algorithm, with the co-located pyranometer data, gave better results for clear-sky filtering than the observer's report. Multiple model inputs were tested to evaluate the model sensitivity to different parameters such as total ozone column, aerosol optical properties, extraterrestrial spectrum or ozone cross section. For total column ozone, we used ground-based measurements from the SAOZ (Système d'Analyse par Observation Zénithale) spectrometer and satellite measurements from the OMI and SBUV instruments, while ozone profiles were derived from radio-soundings and the MLS ozone product. Aerosol optical properties came from a local aerosol climatology established using a Cimel photometer. Since the mean difference between various inputs of total ozone column was small, the corresponding response on UVI modelling was also quite small, at about 1 %. The radiative amplification factor of total ozone column on UVI was also compared for observations and the model. Finally, we were able to estimate UVI on Reunion Island with, at best, a mean relative difference of about 0.5 %, compared to clear-sky observations.
ROTSE All-Sky Surveys for Variable Stars. I. Test Fields
NASA Astrophysics Data System (ADS)
Akerlof, C.; Amrose, S.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Hills, J.; Kehoe, R.; Lee, B.; Marshall, S.; McKay, T.; Pawl, A.; Schaefer, J.; Szymanski, J.; Wren, J.
2000-04-01
The Robotic Optical Transient Search Experiment I (ROTSE-I) experiment has generated CCD photometry for the entire northern sky in two epochs nightly since 1998 March. These sky patrol data are a powerful resource for studies of astrophysical transients. As a demonstration project, we present first results of a search for periodic variable stars derived from ROTSE-I observations. Variable identification, period determination, and type classification are conducted via automatic algorithms. In a set of nine ROTSE-I sky patrol fields covering roughly 2000 deg2, we identify 1781 periodic variable stars with mean magnitudes between mv=10.0 and mv=15.5. About 90% of these objects are newly identified as variable. Examples of many familiar types are presented. All classifications for this study have been manually confirmed. The selection criteria for this analysis have been conservatively defined and are known to be biased against some variable classes. This preliminary study includes only 5.6% of the total ROTSE-I sky coverage, suggesting that the full ROTSE-I variable catalog will include more than 32,000 periodic variable stars.
NASA Astrophysics Data System (ADS)
Smith, Malcolm G.
2016-10-01
This session opened with a crucial explanation by Michel Cotte of how astronomers first need to understand how to apply UNESCO World Heritage Criteria if they want to motivate their government(s) to make the case to UNESCO for World Heritage recognition. UNESCO World Heritage cannot be obtained just to protect dark skies. Much more detail of this and the other presentations in this session, along with many images, can be found at the session website: http://www.noao.edu/education/IAUGA2015FM21. The next speaker, John Hearnshaw, described the Aoraki Mackenzie International Dark Sky Reserve and the work it carries out . This was followed by a wide-ranging summary (by Dan Duriscoe and Nate Ament) of the U.S. National Park Service (NPS) Night Skies Program. The abstract of Cipriano's Marin's paper, ``Developing Starlight connections with UNESCO sites through the Biosphere Smart" was shown in his absence. The final presentation (by Arkadiusz Berlicki, S. Kolomanksi and T. Mrozek) discussed the bi-national Izera Dark Sky Park.
NASA Astrophysics Data System (ADS)
Yang, Yi; Moore, Anna M.; Krisciunas, Kevin; Wang, Lifan; Ashley, Michael C. B.; Fu, Jianning; Brown, Peter J.; Cui, Xiangqun; Feng, Long-Long; Gong, Xuefei; Hu, Zhongwen; Lawrence, Jon S.; Luong-Van, Daniel; Riddle, Reed L.; Shang, Zhaohui; Sims, Geoff; Storey, John W. V.; Suntzeff, Nicholas B.; Tothill, Nick; Travouillon, Tony; Yang, Huigen; Yang, Ji; Zhou, Xu; Zhu, Zhenxi
2017-07-01
The summit of the Antarctic plateau, Dome A, is proving to be an excellent site for optical, near-infrared, and terahertz astronomical observations. Gattini is a wide-field camera installed on the PLATO instrument module as part of the Chinese-led traverse to Dome A in 2009 January. We present here the measurements of sky brightness with the Gattini ultra-large field of view (90^\\circ × 90^\\circ ) in the photometric B-, V-, and R-bands; cloud cover statistics measured during the 2009 winter season; and an estimate of the sky transparency. A cumulative probability distribution indicates that the darkest 10% of the nights at Dome A have sky brightness of S B = 22.98, S V = 21.86, and S R = 21.68 mag arcsec-2. These values were obtained during the year 2009 with minimum aurora, and they are comparable to the faintest sky brightness at Maunakea and the best sites of northern Chile. Since every filter includes strong auroral lines that effectively contaminate the sky brightness measurements, for instruments working around the auroral lines, either with custom filters or with high spectral resolution instruments, these values could be easily obtained on a more routine basis. In addition, we present example light curves for bright targets to emphasize the unprecedented observational window function available from this ground-based site. These light curves will be published in a future paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit; Dooraghi, Mike
Development of accurate transposition models to simulate plane-of-array (POA) irradiance from horizontal measurements or simulations is a complex process mainly because of the anisotropic distribution of diffuse solar radiation in the atmosphere. The limited availability of reliable POA measurements at large temporal and spatial scales leads to difficulties in the comprehensive evaluation of transposition models. This paper proposes new algorithms to assess the uncertainty of transposition models using both surface-based observations and modeling tools. We reviewed the analytical derivation of POA irradiance and the approximation of isotropic diffuse radiation that simplifies the computation. Two transposition models are evaluated against themore » computation by the rigorous analytical solution. We proposed a new algorithm to evaluate transposition models using the clear-sky measurements at the National Renewable Energy Laboratory's (NREL's) Solar Radiation Research Laboratory (SRRL) and a radiative transfer model that integrates diffuse radiances of various sky-viewing angles. We found that the radiative transfer model and a transposition model based on empirical regressions are superior to the isotropic models when compared to measurements. We further compared the radiative transfer model to the transposition models under an extensive range of idealized conditions. Our results suggest that the empirical transposition model has slightly higher cloudy-sky POA irradiance than the radiative transfer model, but performs better than the isotropic models under clear-sky conditions. Significantly smaller POA irradiances computed by the transposition models are observed when the photovoltaics (PV) panel deviates from the azimuthal direction of the sun. The new algorithms developed in the current study have opened the door to a more comprehensive evaluation of transposition models for various atmospheric conditions and solar and PV orientations.« less
Xie, Yu; Sengupta, Manajit; Dooraghi, Mike
2018-03-20
Development of accurate transposition models to simulate plane-of-array (POA) irradiance from horizontal measurements or simulations is a complex process mainly because of the anisotropic distribution of diffuse solar radiation in the atmosphere. The limited availability of reliable POA measurements at large temporal and spatial scales leads to difficulties in the comprehensive evaluation of transposition models. This paper proposes new algorithms to assess the uncertainty of transposition models using both surface-based observations and modeling tools. We reviewed the analytical derivation of POA irradiance and the approximation of isotropic diffuse radiation that simplifies the computation. Two transposition models are evaluated against themore » computation by the rigorous analytical solution. We proposed a new algorithm to evaluate transposition models using the clear-sky measurements at the National Renewable Energy Laboratory's (NREL's) Solar Radiation Research Laboratory (SRRL) and a radiative transfer model that integrates diffuse radiances of various sky-viewing angles. We found that the radiative transfer model and a transposition model based on empirical regressions are superior to the isotropic models when compared to measurements. We further compared the radiative transfer model to the transposition models under an extensive range of idealized conditions. Our results suggest that the empirical transposition model has slightly higher cloudy-sky POA irradiance than the radiative transfer model, but performs better than the isotropic models under clear-sky conditions. Significantly smaller POA irradiances computed by the transposition models are observed when the photovoltaics (PV) panel deviates from the azimuthal direction of the sun. The new algorithms developed in the current study have opened the door to a more comprehensive evaluation of transposition models for various atmospheric conditions and solar and PV orientations.« less
NASA Astrophysics Data System (ADS)
Becker, Matthew R.
2013-10-01
I present a new algorithm, Curved-sky grAvitational Lensing for Cosmological Light conE simulatioNS (CALCLENS), for efficiently computing weak gravitational lensing shear signals from large N-body light cone simulations over a curved sky. This new algorithm properly accounts for the sky curvature and boundary conditions, is able to produce redshift-dependent shear signals including corrections to the Born approximation by using multiple-plane ray tracing and properly computes the lensed images of source galaxies in the light cone. The key feature of this algorithm is a new, computationally efficient Poisson solver for the sphere that combines spherical harmonic transform and multigrid methods. As a result, large areas of sky (˜10 000 square degrees) can be ray traced efficiently at high resolution using only a few hundred cores. Using this new algorithm and curved-sky calculations that only use a slower but more accurate spherical harmonic transform Poisson solver, I study the convergence, shear E-mode, shear B-mode and rotation mode power spectra. Employing full-sky E/B-mode decompositions, I confirm that the numerically computed shear B-mode and rotation mode power spectra are equal at high accuracy (≲1 per cent) as expected from perturbation theory up to second order. Coupled with realistic galaxy populations placed in large N-body light cone simulations, this new algorithm is ideally suited for the construction of synthetic weak lensing shear catalogues to be used to test for systematic effects in data analysis procedures for upcoming large-area sky surveys. The implementation presented in this work, written in C and employing widely available software libraries to maintain portability, is publicly available at http://code.google.com/p/calclens.
Enhanced clear sky reflectance near clouds: What can be learned from it about aerosol properties?
NASA Astrophysics Data System (ADS)
Marshak, A.; Varnai, T.; Wen, G.; Chiu, J.
2009-12-01
Studies on aerosol direct and indirect effects require a precise separation of cloud-free and cloudy air. However, separation between cloud-free and cloudy areas from remotely-sensed measurements is ambiguous. The transition zone in the regions around clouds often stretches out tens of km, which are neither precisely clear nor precisely cloudy. We study the transition zone between cloud-free and cloudy air using MODerate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements. Both instruments show enhanced clear-sky reflectance (MODIS) and clear-sky backscatterer (CALIPSO) near clouds. Analyzing a large dataset of MODIS observations, we examine the effect of three-dimensional radiative interactions between clouds and cloud-free areas, also known as a cloud adjacency effect. The cloud adjacency effect is well observed in MODIS clear-sky data in the vicinity of clouds. Comparing with CALIPSO clear-sky backscatterer measurements, we show that this effect may be responsible for a large portion of the enhanced clear-sky reflectance observed by MODIS. Finally, we describe a simple model that estimates the cloud-induced enhanced reflectances of cloud-free areas in the vicinity of clouds. The model assumes that the enhancement is due entirely to Rayleigh scattering and is therefore bigger at shorter wavelengths, thus creating a so-called apparent “bluing” of aerosols in remote sensing retrievals.
Sipocz, Brigitta; Hegedüs, Ramón; Kriska, György; Horváth, Gábor
2008-12-01
Using 180 degrees field-of-view (full-sky) imaging polarimetry, we measured the spatiotemporal change of the polarization of skylight during the total solar eclipse on 29 March 2006 in Turkey. We present our observations here on the temporal variation of the celestial patterns of the degree p and angle alpha of linear polarization of the eclipsed sky measured in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We also report on the temporal and spectral change of the positions of neutral (unpolarized, p = 0) points, and points with local minima or maxima of p of the eclipsed sky. Our results are compared with the observations performed by the same polarimetric technique during the total solar eclipse on 11 August 1999 in Hungary. Practically the same characteristics of celestial polarization were encountered during both eclipses. This shows that the observed polarization phenomena of the eclipsed sky may be general.
Verification of the ISO calibration method for field pyranometers under tropical sky conditions
NASA Astrophysics Data System (ADS)
Janjai, Serm; Tohsing, Korntip; Pattarapanitchai, Somjet; Detkhon, Pasakorn
2017-02-01
Field pyranomters need to be annually calibrated and the International Organization for Standardization (ISO) has defined a standard method (ISO 9847) for calibrating these pyranometers. According to this standard method for outdoor calibration, the field pyranometers have to be compared to a reference pyranometer for the period of 2 to 14 days, depending on sky conditions. In this work, the ISO 9847 standard method was verified under tropical sky conditions. To verify the standard method, calibration of field pyranometers was conducted at a tropical site located in Nakhon Pathom (13.82o N, 100.04o E), Thailand under various sky conditions. The conditions of the sky were monitored by using a sky camera. The calibration results for different time periods used for the calibration under various sky conditions were analyzed. It was found that the calibration periods given by this standard method could be reduced without significant change in the final calibration result. In addition, recommendation and discussion on the use of this standard method in the tropics were also presented.
SETI prototype system for NASA's Sky Survey microwave observing project - A progress report
NASA Technical Reports Server (NTRS)
Klein, M. J.; Gulkis, S.; Wilck, H. C.
1990-01-01
Two complementary search strategies, a Targeted Search and a Sky Survey, are part of NASA's SETI microwave observing project scheduled to begin in October of 1992. The current progress in the development of hardware and software elements of the JPL Sky Survey data processing system are presented. While the Targeted Search stresses sensitivity allowing the detection of either continuous or pulsed signals over the 1-3 GHz frequency range, the Sky Survey gives up sensitivity to survey the 99 percent of the sky that is not covered by the Targeted Search. The Sky Survey spans a larger frequency range from 1-10 GHz. The two searches will deploy special-purpose digital signal processing equipment designed and built to automate the observing and data processing activities. A two-million channel digital wideband spectrum analyzer and a signal processor system will serve as a prototype for the SETI Sky Survey processor. The design will permit future expansion to meet the SETI requirement that the processor concurrently search for left and right circularly polarized signals.
NASA Technical Reports Server (NTRS)
Stanfield, Ryan E.; Dong, Xiquan; Xi, Baike; Del Genio, Anthony D.; Minnis, Patrick; Doelling, David; Loeb, Norman
2014-01-01
In Part I of this study, the NASA GISS Coupled Model Intercomparison Project (CMIP5) and post-CMIP5 (herein called C5 and P5, respectively) simulated cloud properties were assessed utilizing multiple satellite observations, with a particular focus on the southern midlatitudes (SMLs). This study applies the knowledge gained from Part I of this series to evaluate the modeled TOA radiation budgets and cloud radiative effects (CREs) globally using CERES EBAF (CE) satellite observations and the impact of regional cloud properties and water vapor on the TOA radiation budgets. Comparisons revealed that the P5- and C5-simulated global means of clear-sky and all-sky outgoing longwave radiation (OLR) match well with CE observations, while biases are observed regionally. Negative biases are found in both P5- and C5-simulated clear-sky OLR. P5-simulated all-sky albedo slightly increased over the SMLs due to the increase in low-level cloud fraction from the new planetary boundary layer (PBL) scheme. Shortwave, longwave, and net CRE are quantitatively analyzed as well. Regions of strong large-scale atmospheric upwelling/downwelling motion are also defined to compare regional differences across multiple cloud and radiative variables. In general, the P5 and C5 simulations agree with the observations better over the downwelling regime than over the upwelling regime. Comparing the results herein with the cloud property comparisons presented in Part I, the modeled TOA radiation budgets and CREs agree well with the CE observations. These results, combined with results in Part I, have quantitatively estimated how much improvement is found in the P5-simulated cloud and radiative properties, particularly over the SMLs and tropics, due to the implementation of the new PBL and convection schemes.
Receptive fields of locust brain neurons are matched to polarization patterns of the sky.
Bech, Miklós; Homberg, Uwe; Pfeiffer, Keram
2014-09-22
Many animals, including insects, are able to use celestial cues as a reference for spatial orientation and long-distance navigation [1]. In addition to direct sunlight, the chromatic gradient of the sky and its polarization pattern are suited to serve as orientation cues [2-5]. Atmospheric scattering of sunlight causes a regular pattern of E vectors in the sky, which are arranged along concentric circles around the sun [5, 6]. Although certain insects rely predominantly on sky polarization for spatial orientation [7], it has been argued that detection of celestial E vector orientation may not suffice to differentiate between solar and antisolar directions [8, 9]. We show here that polarization-sensitive (POL) neurons in the brain of the desert locust Schistocerca gregaria can overcome this ambiguity. Extracellular recordings from POL units in the central complex and lateral accessory lobes revealed E vector tunings arranged in concentric circles within large receptive fields, matching the sky polarization pattern at certain solar positions. Modeling of neuronal responses under an idealized sky polarization pattern (Rayleigh sky) suggests that these "matched filter" properties allow locusts to unambiguously determine the solar azimuth by relying solely on the sky polarization pattern for compass navigation. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Songhua, Chen; Zhengyao, Gao; Guoju, Hu; Xiande, Chen
1994-12-01
The variation of the Mössbauer parameters of the imitative ancient Ru porcelain skygreen glaze with the firing conditions is studied in detail in the present paper. The Mössbauer spectra show that the sky-green glaze contains three kinds of iron minerals, i.e. the structural iron (Fe2+ and Fe3+); Fe2O3 and Fe3O4. The relative intensity of the paramagnetic peak Fe2+ increases and the magnetic ratio of the magnetic peak decreases with increasing temperature. Based on the variation of the quadrupole splitting ( QS) of the paramagnetic peak Fe2+, the phase transformation characteristics of the sky-green glaze in the firing process is discussed. The coloring mechanism of the sky-green glaze and the variation of its magnetism in the firing process are also investigated in the present paper.
Worldwide multi-model intercomparison of clear-sky solar irradiance predictions
NASA Astrophysics Data System (ADS)
Ruiz-Arias, Jose A.; Gueymard, Christian A.; Cebecauer, Tomas
2017-06-01
Accurate modeling of solar radiation in the absence of clouds is highly important because solar power production peaks during cloud-free situations. The conventional validation approach of clear-sky solar radiation models relies on the comparison between model predictions and ground observations. Therefore, this approach is limited to locations with availability of high-quality ground observations, which are scarce worldwide. As a consequence, many areas of in-terest for, e.g., solar energy development, still remain sub-validated. Here, a worldwide inter-comparison of the global horizontal irradiance (GHI) and direct normal irradiance (DNI) calculated by a number of appropriate clear-sky solar ra-diation models is proposed, without direct intervention of any weather or solar radiation ground-based observations. The model inputs are all gathered from atmospheric reanalyses covering the globe. The model predictions are compared to each other and only their relative disagreements are quantified. The largest differences between model predictions are found over central and northern Africa, the Middle East, and all over Asia. This coincides with areas of high aerosol optical depth and highly varying aerosol distribution size. Overall, the differences in modeled DNI are found about twice larger than for GHI. It is argued that the prevailing weather regimes (most importantly, aerosol conditions) over regions exhibiting substantial divergences are not adequately parameterized by all models. Further validation and scrutiny using conventional methods based on ground observations should be pursued in priority over those specific regions to correctly evaluate the performance of clear-sky models, and select those that can be recommended for solar concentrating applications in particular.
From the Scale Model of the Sky to the Armillary Sphere
ERIC Educational Resources Information Center
Gangui, Alejandro; Casazza, Roberto; Paex, Carlos
2014-01-01
It is customary to employ a semi-spherical scale model to describe the apparent path of the Sun across the sky, whether it be its diurnal motion or its variation throughout the year. A flat surface and three bent semi-rigid wires (representing the three solar arcs during solstices and equinoxes) will do the job. On the other hand, since very early…
Barron J. Orr; Wolfgang Grunberg; Amanda B. Cockerham; Anne Y. Thwaits; Heather S. Severson; Noah M. D. Lerman; Rachel M. Miller; Michael Haseltine; Barbara J. Morehouse; Jonathan T. Overpeck; Stephen R. Yool; Thomas W. Swetnam; Gary L. Christopherson
2005-01-01
The demand for strategic planning tools that account for climate and human influences on wildfire hazard is growing. In response, the University of Arizona, through an EPA STAR Grant has undertaken interdisciplinary research to characterize the human and climate dimensions of wildfire. The resulting Fire-Climate-Society (FCS-1) prototype model developed for Sky Islands...
NASA Astrophysics Data System (ADS)
Calbó, Josep; Long, Charles N.; González, Josep-Abel; Augustine, John; McComiskey, Allison
2017-11-01
Cloud and aerosol are two manifestations of what it is essentially the same physical phenomenon: a suspension of particles in the air. The differences between the two come from the different composition (e.g., much higher amount of condensed water in particles constituting a cloud) and/or particle size, and also from the different number of such particles (10-10,000 particles per cubic centimeter depending on conditions). However, there exist situations in which the distinction is far from obvious, and even when broken or scattered clouds are present in the sky, the borders between cloud/not cloud are not always well defined, a transition area that has been coined as the ;twilight zone;. The current paper presents a discussion on the definition of cloud and aerosol, the need for distinguishing or for considering the continuum between the two, and suggests a quantification of the importance and frequency of such ambiguous situations, founded on several ground-based observing techniques. Specifically, sensitivity analyses are applied on sky camera images and broadband and spectral radiometric measurements taken at Girona (Spain) and Boulder (Co, USA). Results indicate that, at these sites, in more than 5% of the daytime hours the sky may be considered cloudless (but containing aerosols) or cloudy (with some kind of optically thin clouds) depending on the observing system and the thresholds applied. Similarly, at least 10% of the time the extension of scattered or broken clouds into clear areas is problematic to establish, and depends on where the limit is put between cloud and aerosol. These findings are relevant to both technical approaches for cloud screening and sky cover categorization algorithms and radiative transfer studies, given the different effect of clouds and aerosols (and the different treatment in models) on the Earth's radiation balance.
Scalable nuclear density functional theory with Sky3D
NASA Astrophysics Data System (ADS)
Afibuzzaman, Md; Schuetrumpf, Bastian; Aktulga, Hasan Metin
2018-02-01
In nuclear astrophysics, quantum simulations of large inhomogeneous dense systems as they appear in the crusts of neutron stars present big challenges. The number of particles in a simulation with periodic boundary conditions is strongly limited due to the immense computational cost of the quantum methods. In this paper, we describe techniques for an efficient and scalable parallel implementation of Sky3D, a nuclear density functional theory solver that operates on an equidistant grid. Presented techniques allow Sky3D to achieve good scaling and high performance on a large number of cores, as demonstrated through detailed performance analysis on a Cray XC40 supercomputer.
Results from the Ariel-5 all-sky X-ray monitor
NASA Technical Reports Server (NTRS)
Holt, S. S.
1975-01-01
A summary of results obtained from the first year of Ariel-5 all-sky monitor operation is presented. Transient source observations, as well as the results of long term studies of Sco X-1, Cyg X-3, and Cyg X-1 are described. By example, the included results are indicative of the temporal effects to which the all-sky monitor remains sensitive as it begins its second year of observation.
Effect of Sudarshan Kriya (meditation) on gamma, alpha, and theta rhythm during working memory task.
Chandra, Sushil; Sharma, Greeshma; Mittal, Alok Prakash; Jha, Devendra
2016-01-01
The present study focuses on analyzing the effects of Sudarshan Kriya yoga (SKY) on brain signals during a working memory (WM) task. To envision the significant effects of SKY on WM capacity (WMC), we chose a control group for contriving a cogent comparison that could be corroborated using statistical tests. A total of 25 subjects were taken in the study, of which 10 were allotted to a control group and 15 to an experimental group. Electroencephalograph was taken during a WM task, which was an automated operation span test before and after SKY with 90 days intervals. No SKY was given to the control group. t-test and one-way ANOVA were applied. SKY promoted the efficient use of energy and power spectral density (PSD) for different brain rhythms in the desired locations as depicted by the gamma (F8 channel), alpha, and theta 2 (F7 and FC5) bands. It was found that gamma PSD reduced for both phases of memory in the experimental group. Alpha energy increased during the retrieval phase in the experimental group after SKY. Theta 1 rhythm was not affected by SKY, but theta 2 had shown left hemispheric activation. Theta rhythm was associated with memory consolidation. SKY had shown minimized energy losses while performing the task. SKY can improve WMC by changing the brain rhythms such that energy is utilized efficiently in performing the task.
Chandra ACIS-I particle background: an analytical model
NASA Astrophysics Data System (ADS)
Bartalucci, I.; Mazzotta, P.; Bourdin, H.; Vikhlinin, A.
2014-06-01
Aims: Imaging and spectroscopy of X-ray extended sources require a proper characterisation of a spatially unresolved background signal. This background includes sky and instrumental components, each of which are characterised by its proper spatial and spectral behaviour. While the X-ray sky background has been extensively studied in previous work, here we analyse and model the instrumental background of the ACIS-I detector on board the Chandra X-ray observatory in very faint mode. Methods: Caused by interaction of highly energetic particles with the detector, the ACIS-I instrumental background is spectrally characterised by the superimposition of several fluorescence emission lines onto a continuum. To isolate its flux from any sky component, we fitted an analytical model of the continuum to observations performed in very faint mode with the detector in the stowed position shielded from the sky, and gathered over the eight-year period starting in 2001. The remaining emission lines were fitted to blank-sky observations of the same period. We found 11 emission lines. Analysing the spatial variation of the amplitude, energy and width of these lines has further allowed us to infer that three lines of these are presumably due to an energy correction artefact produced in the frame store. Results: We provide an analytical model that predicts the instrumental background with a precision of 2% in the continuum and 5% in the lines. We use this model to measure the flux of the unresolved cosmic X-ray background in the Chandra deep field south. We obtain a flux of 10.2+0.5-0.4 × 10-13 erg cm-2 deg-2 s-1 for the [1-2] keV band and (3.8 ± 0.2) × 10-12 erg cm-2 deg-2 s-1 for the [2-8] keV band.
NASA Astrophysics Data System (ADS)
Stier, P.; Schutgens, N. A. J.; Bellouin, N.; Bian, H.; Boucher, O.; Chin, M.; Ghan, S.; Huneeus, N.; Kinne, S.; Lin, G.; Ma, X.; Myhre, G.; Penner, J. E.; Randles, C. A.; Samset, B.; Schulz, M.; Takemura, T.; Yu, F.; Yu, H.; Zhou, C.
2013-03-01
Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.47 Wm-2 and the inter-model standard deviation is 0.55 Wm-2, corresponding to a relative standard deviation of 12%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04 Wm-2, and the standard deviation increases to 1.01 W-2, corresponding to a significant relative standard deviation of 97%. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption) is low, with absolute (relative) standard deviations of 0.45 Wm-2 (8%) clear-sky and 0.62 Wm-2 (11%) all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11 Wm-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention.
ERIC Educational Resources Information Center
Woody, Howard
1980-01-01
Described is a five-day workshop in the new environmental art form of sky sculpture, which was presented at Wingfield High School in Jackson, Mississippi. Included are daily activities and the design considerations faced by students when planning their balloon creations for flight. (SJL)
Design of a device for sky light polarization measurements.
Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao
2014-08-14
Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky.
Design of a Device for Sky Light Polarization Measurements
Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao
2014-01-01
Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky. PMID:25196003
Simulations of the effect of intensive biomass burning in July 2015 on Arctic radiative budget
NASA Astrophysics Data System (ADS)
Markowicz, K. M.; Lisok, J.; Xian, P.
2017-12-01
The impact of biomass burning (BB) on aerosol optical properties and radiative budget in the polar region following an intense boreal fire event in North America in July 2015 is explored in this paper. Presented data are obtained from the Navy Aerosol Analysis and Prediction System (NAAPS) reanalysis and the Fu-Liou radiative transfer model. NAAPS provides particle concentrations and aerosol optical depth (AOD) at 1° x 1° spatial and 6-hourly temporal resolution, its AOD and vertical profiles were validated with field measurements for this event. Direct aerosol radiative forcings (ARF) at the surface, the top of the atmosphere (TOA) and within the atmosphere are calculated for clear-sky and all-sky conditions, with the surface albedo and cloud properties constrained by satellite retrievals. The mean ARFs at the surface, the TOA, and within the atmosphere averaged for the north pole region (latitudes north of 75.5N) and the study period (July 5-15, 2015) are -13.1 ± 2.7, 0.3 ± 2.1, and 13.4 ± 2.7 W/m2 for clear-sky and -7.3 ± 1.8, 5.0 ± 2.6, and 12.3 ± 1.6 W/m2 for all-sky conditions respectively. Local ARFs can be a several times larger e.g. the clear-sky surface and TOA ARF reach over Alaska -85 and -30 W/m2 and over Svalbard -41 and -20 W/m2 respectively. The ARF is found negative at the surface (almost zero over high albedo region though) with the maximum forcing over the BB source region, and weaker forcing under all-sky conditions compared to the clear-sky conditions. Unlike the ARFs at the surface and within the atmosphere, which have consistent forcing signs all over the polar region, the ARF at the TOA changes signs from negative (cooling) over the source region (Alaska) to positive (heating) over bright surfaces (e.g., Greenland) because of strong surface albedo effect. NAAPS simulations also show that the transported BB particle over the Arctic are in the low-to-middle troposphere and above low-level clouds, resulting in little difference in ARFs at the TOA between clear- and all-sky conditions over the regions with high surface albedo. Over dark surfaces, the negative TOA forcing increases with AOD about 50% slower under all-sky conditions compared to clear-sky case. The boreal BB event resulted in large magnitude of ARFs and the high variabilities of the forcings over the polar region has a significant impact on the polar weather conditions and important implications for the polar climate.
David Coblentz; Kurt H. Riitters
2005-01-01
The relationship between topography and biodiversity is well documented in the Madrean Archipelago. However, despite this recognition, most biogeographical studies concerning the role of topography have relied primarily on a qualitative description of the landscape. Using an algorithm that operates on a high-resolution digital elevation model we present a quantitative...
Blue Sky Below My Feet: Daycamp & After School Programs--9 to 11 Year Olds. Leader's Manual.
ERIC Educational Resources Information Center
California Univ., Berkeley. Cooperative Extension Service.
This manual presents a 10-day lesson plan for day camp and after-school program leaders. The activities and experiments described in the manual focus on nutrition and space exploration. Topics covered by the lesson plan and specific projects include: (1) gravity; (2) food spoilage; (3) model rocket building and launching; (4) the basic food…
A method for selecting M dwarfs with an increased likelihood of unresolved ultracool companionship
NASA Astrophysics Data System (ADS)
Cook, N. J.; Pinfield, D. J.; Marocco, F.; Burningham, B.; Jones, H. R. A.; Frith, J.; Zhong, J.; Luo, A. L.; Qi, Z. X.; Lucas, P. W.; Gromadzki, M.; Day-Jones, A. C.; Kurtev, R. G.; Guo, Y. X.; Wang, Y. F.; Bai, Y.; Yi, Z. P.; Smart, R. L.
2016-04-01
Locating ultracool companions to M dwarfs is important for constraining low-mass formation models, the measurement of substellar dynamical masses and radii, and for testing ultracool evolutionary models. We present an optimized method for identifying M dwarfs which may have unresolved ultracool companions. We construct a catalogue of 440 694 M dwarf candidates, from Wide-Field Infrared Survey Explorer, Two Micron All-Sky Survey and Sloan Digital Sky Survey, based on optical- and near-infrared colours and reduced proper motion. With strict reddening, photometric and quality constraints we isolate a subsample of 36 898 M dwarfs and search for possible mid-infrared M dwarf + ultracool dwarf candidates by comparing M dwarfs which have similar optical/near-infrared colours (chosen for their sensitivity to effective temperature and metallicity). We present 1082 M dwarf + ultracool dwarf candidates for follow-up. Using simulated ultracool dwarf companions to M dwarfs, we estimate that the occurrence of unresolved ultracool companions amongst our M dwarf + ultracool dwarf candidates should be at least four times the average for our full M dwarf catalogue. We discuss possible contamination and bias and predict yields of candidates based on our simulations.
NASA Astrophysics Data System (ADS)
McNeil, B.
2014-12-01
Some of the biggest discoveries and advances in geoscience research have come from purely curiosity-driven, blue-sky research. Marine biologist Osamu Shimomura's discovery of Green-Fluorecent Protein (GFP) in the 1960s during his postdoc is just one example, which came about through his interest and pursuit of how certain jellyfish bioluminescence. His discovery would eventually revolutionise medicine, culminating in a Nobel Prize in Chemistry in 2008. Despite the known importance of "blue-sky" research that doesn't have immediate commercial or social applications, it continues to struggle for funding from both government and industry. Success rates for young scientists also continue to decline within the government competitive granting models due to the importance of track records, yet history tells us that young scientists tend to come up with science's greatest discoveries. The digital age however, gives us a new opportunity to create an alternative and sustainable funding model for young, risky, blue-sky science that tends not to be supported by governments and industry anymore. Here I will discuss how new digital platforms empower researchers and organisations to showcase their research using video, allowing wider community engagment and funding that can be used to directly support young, risky, blue-sky research that is so important to the future of science. I will then talk about recent experience with this model from some ocean researchers who used a new platform called thinkable.org to showcase and raise funding via the public.
Reduced order modelling in searches for continuous gravitational waves - I. Barycentring time delays
NASA Astrophysics Data System (ADS)
Pitkin, M.; Doolan, S.; McMenamin, L.; Wette, K.
2018-06-01
The frequencies and phases of emission from extra-solar sources measured by Earth-bound observers are modulated by the motions of the observer with respect to the source, and through relativistic effects. These modulations depend critically on the source's sky-location. Precise knowledge of the modulations are required to coherently track the source's phase over long observations, for example, in pulsar timing, or searches for continuous gravitational waves. The modulations can be modelled as sky-location and time-dependent time delays that convert arrival times at the observer to the inertial frame of the source, which can often be the Solar system barycentre. We study the use of reduced order modelling for speeding up the calculation of this time delay for any sky-location. We find that the time delay model can be decomposed into just four basis vectors, and with these the delay for any sky-location can be reconstructed to sub-nanosecond accuracy. When compared to standard routines for time delay calculation in gravitational wave searches, using the reduced basis can lead to speed-ups of 30 times. We have also studied components of time delays for sources in binary systems. Assuming eccentricities <0.25, we can reconstruct the delays to within 100 s of nanoseconds, with best case speed-ups of a factor of 10, or factors of two when interpolating the basis for different orbital periods or time stamps. In long-duration phase-coherent searches for sources with sky-position uncertainties, or binary parameter uncertainties, these speed-ups could allow enhancements in their scopes without large additional computational burdens.
Toole, D A; Siegel, D A; Menzies, D W; Neumann, M J; Smith, R C
2000-01-20
Three independent ocean color sampling methodologies are compared to assess the potential impact of instrumental characteristics and environmental variability on shipboard remote-sensing reflectance observations from the Santa Barbara Channel, California. Results indicate that under typical field conditions, simultaneous determinations of incident irradiance can vary by 9-18%, upwelling radiance just above the sea surface by 8-18%, and remote-sensing reflectance by 12-24%. Variations in radiometric determinations can be attributed to a variety of environmental factors such as Sun angle, cloud cover, wind speed, and viewing geometry; however, wind speed is isolated as the major source of uncertainty. The above-water approach to estimating water-leaving radiance and remote-sensing reflectance is highly influenced by environmental factors. A model of the role of wind on the reflected sky radiance measured by an above-water sensor illustrates that, for clear-sky conditions and wind speeds greater than 5 m/s, determinations of water-leaving radiance at 490 nm are undercorrected by as much as 60%. A data merging procedure is presented to provide sky radiance correction parameters for above-water remote-sensing reflectance estimates. The merging results are consistent with statistical and model findings and highlight the importance of multiple field measurements in developing quality coastal oceanographic data sets for satellite ocean color algorithm development and validation.
BlueSky Cloud Framework: An E-Learning Framework Embracing Cloud Computing
NASA Astrophysics Data System (ADS)
Dong, Bo; Zheng, Qinghua; Qiao, Mu; Shu, Jian; Yang, Jie
Currently, E-Learning has grown into a widely accepted way of learning. With the huge growth of users, services, education contents and resources, E-Learning systems are facing challenges of optimizing resource allocations, dealing with dynamic concurrency demands, handling rapid storage growth requirements and cost controlling. In this paper, an E-Learning framework based on cloud computing is presented, namely BlueSky cloud framework. Particularly, the architecture and core components of BlueSky cloud framework are introduced. In BlueSky cloud framework, physical machines are virtualized, and allocated on demand for E-Learning systems. Moreover, BlueSky cloud framework combines with traditional middleware functions (such as load balancing and data caching) to serve for E-Learning systems as a general architecture. It delivers reliable, scalable and cost-efficient services to E-Learning systems, and E-Learning organizations can establish systems through these services in a simple way. BlueSky cloud framework solves the challenges faced by E-Learning, and improves the performance, availability and scalability of E-Learning systems.
Horizon Brightness Revisited: Measurements and a Model of Clear-Sky Radiances
1994-07-20
Clear daytime skies persistently display a subtle local maximum of radiance near the astronomical horizon. Spectroradiometry and digital image analysis confirm this maximum’s reality, and they show that its angular width and elevation vary with solar elevation, azimuth relative to the Sun, and aerosol optical depth. Many existing models of atmospheric scattering do not generate this near-horizon radiance maximum, but a simple second-order scattering model does, and it reproduces many of the maximum’s details.
Characterizing Sky Spectra Using SDSS BOSS Data
NASA Astrophysics Data System (ADS)
Florez, Lina Maria; Strauss, Michael A.
2018-01-01
In the optical/near-infrared spectra gathered by a ground-based telescope observing very faint sources, the strengths of the emission lines due to the Earth’s atmosphere can be many times larger than the fluxes of the sources we are interested in. Thus the limiting factor in faint-object spectroscopy is the degree to which systematics in the sky subtraction can be minimized. Longwards of 6000 Angstroms, the night-sky spectrum is dominated by multiple vibrational/rotational transitions of the OH radical from our upper atmosphere. While the wavelengths of these lines are the same in each sky spectrum, their relative strengths vary considerably as a function of time and position on the sky. The better we can model their strengths, the better we can hope to subtract them off. We expect that the strength of lines from common upper energy levels will be correlated with one another. We used flux-calibrated sky spectra from the Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey (SDSS BOSS) to explore these correlations. Our aim is to use these correlations for creating improved sky subtraction algorithms for the Prime Focus Spectrograph (PFS) on the 8.2-meter Subaru Telescope. When PFS starts gathering data in 2019, it will be the most powerful multi-object spectrograph in the world. Since PFS will be gathering data on sources as faint as 24th magnitude and fainter, it's of upmost importance to be able to accurately measure and subtract sky spectra from the data that we receive.
New probes of Cosmic Microwave Background large-scale anomalies
NASA Astrophysics Data System (ADS)
Aiola, Simone
Fifty years of Cosmic Microwave Background (CMB) data played a crucial role in constraining the parameters of the LambdaCDM model, where Dark Energy, Dark Matter, and Inflation are the three most important pillars not yet understood. Inflation prescribes an isotropic universe on large scales, and it generates spatially-correlated density fluctuations over the whole Hubble volume. CMB temperature fluctuations on scales bigger than a degree in the sky, affected by modes on super-horizon scale at the time of recombination, are a clean snapshot of the universe after inflation. In addition, the accelerated expansion of the universe, driven by Dark Energy, leaves a hardly detectable imprint in the large-scale temperature sky at late times. Such fundamental predictions have been tested with current CMB data and found to be in tension with what we expect from our simple LambdaCDM model. Is this tension just a random fluke or a fundamental issue with the present model? In this thesis, we present a new framework to probe the lack of large-scale correlations in the temperature sky using CMB polarization data. Our analysis shows that if a suppression in the CMB polarization correlations is detected, it will provide compelling evidence for new physics on super-horizon scale. To further analyze the statistical properties of the CMB temperature sky, we constrain the degree of statistical anisotropy of the CMB in the context of the observed large-scale dipole power asymmetry. We find evidence for a scale-dependent dipolar modulation at 2.5sigma. To isolate late-time signals from the primordial ones, we test the anomalously high Integrated Sachs-Wolfe effect signal generated by superstructures in the universe. We find that the detected signal is in tension with the expectations from LambdaCDM at the 2.5sigma level, which is somewhat smaller than what has been previously argued. To conclude, we describe the current status of CMB observations on small scales, highlighting the tensions between Planck, WMAP, and SPT temperature data and how the upcoming data release of the ACTpol experiment will contribute to this matter. We provide a description of the current status of the data-analysis pipeline and discuss its ability to recover large-scale modes.
Somayajula, Srikanth Ayyala; Devred, Emmanuel; Bélanger, Simon; Antoine, David; Vellucci, V; Babin, Marcel
2018-04-20
In this study, we report on the performance of satellite-based photosynthetically available radiation (PAR) algorithms used in published oceanic primary production models. The performance of these algorithms was evaluated using buoy observations under clear and cloudy skies, and for the particular case of low sun angles typically encountered at high latitudes or at moderate latitudes in winter. The PAR models consisted of (i) the standard one from the NASA-Ocean Biology Processing Group (OBPG), (ii) the Gregg and Carder (GC) semi-analytical clear-sky model, and (iii) look-up-tables based on the Santa Barbara DISORT atmospheric radiative transfer (SBDART) model. Various combinations of atmospheric inputs, empirical cloud corrections, and semi-analytical irradiance models yielded a total of 13 (11 + 2 developed in this study) different PAR products, which were compared with in situ measurements collected at high frequency (15 min) at a buoy site in the Mediterranean Sea (the "BOUée pour l'acquiSition d'une Série Optique à Long termE," or, "BOUSSOLE" site). An objective ranking method applied to the algorithm results indicated that seven PAR products out of 13 were well in agreement with the in situ measurements. Specifically, the OBPG method showed the best overall performance with a root mean square difference (RMSD) (bias) of 19.7% (6.6%) and 10% (6.3%) followed by the look-up-table method with a RMSD (bias) of 25.5% (6.8%) and 9.6% (2.6%) at daily and monthly scales, respectively. Among the four methods based on clear-sky PAR empirically corrected for cloud cover, the Dobson and Smith method consistently underestimated daily PAR while the Budyko formulation overestimated daily PAR. Empirically cloud-corrected methods using cloud fraction (CF) performed better under quasi-clear skies (CF<0.3) with an RMSD (bias) of 9.7%-14.8% (3.6%-11.3%) than under partially clear to cloudy skies (0.3
Interpretation of the Cosmo-SkyMed observations of the 2009 Tanaro river flood
NASA Astrophysics Data System (ADS)
Pulvirenti, L.; Pierdicca, N.; Chini, M.; Guerriero, L.
2010-09-01
The potentiality of spaceborne Synthetic Aperture Radar (SAR) for flood mapping was demonstrated by several past investigations. The synoptic view and the capability to operate in almost all-weather conditions and during both day and night are the key features that make the SAR images useful for monitoring inundation events. In addition, their high spatial resolution allows a fairly accurate delineation of the flood extent. The Cosmo-SkyMed (COnstellation of small Satellites for Mediterranean basin Observation) mission offers a unique opportunity to obtain radar images characterized by short revisit time, so that an operational use of Cosmo-SkyMed data in flood management systems can be envisaged. However, the interpretation of SAR images of flooded areas might be complex, because of the dependence of the radar response from flooded pixels on land cover, system parameters and environmental conditions. An example of radar data whose interpretation is not straightforward is represented by the Cosmo-SkyMed observations of the overflowing of the Tanaro river, close to the city of Alessandria (Northern Italy), occurred on April, 27-28 2009. Within the framework of a study, funded by the Italian Space Agency (ASI), aiming at evaluating the usefulness of Earth Observation techniques into operational flood prediction and assessment chains (named OPERA, civil protection from floods), ASI provided a number of Cosmo-SkyMed images of the Tanaro basin. In this study, we use three images that were acquired during three days in succession: from April, 29 to May, 1 2009, as well as other two acquisitions performed two weeks later (May, 16 and May, 17 2009), when the effects of the flood were disappeared. In this work, we firstly extract information on the spatial extension of homogeneous objects present in the scene through a segmentation procedure. In this way we cope with the speckle noise characteristic of SAR images and produce, from the multi-temporal series of five imagery we employ, a map formed by homogeneous regions. Among these regions we single out some areas presenting a fairly complex temporal evolution of the radar return. To correctly explain the multi-temporal radar signature of these segments, we use of a well-established electromagnetic model. Some reference multi-temporal backscattering trends are analyzed with the aid of the theoretical model to associate the segments to the classes of flooded or non-flooded areas. Using these reference trends as a training set, a classification algorithm is also developed to generate a map of the flood evolution. This study aims at demonstrating the importance and the feasibility of a method based on a joint use of a well-established electromagnetic scattering model and an advanced image processing technique to reliably interpreting SAR observations of floods.
Integrating paleoecology and genetics of bird populations in two sky island archipelagos
McCormack, John E; Bowen, Bonnie S; Smith, Thomas B
2008-01-01
Background Genetic tests of paleoecological hypotheses have been rare, partly because recent genetic divergence is difficult to detect and time. According to fossil plant data, continuous woodland in the southwestern USA and northern Mexico became fragmented during the last 10,000 years, as warming caused cool-adapted species to retreat to high elevations. Most genetic studies of resulting 'sky islands' have either failed to detect recent divergence or have found discordant evidence for ancient divergence. We test this paleoecological hypothesis for the region with intraspecific mitochondrial DNA and microsatellite data from sky-island populations of a sedentary bird, the Mexican jay (Aphelocoma ultramarina). We predicted that populations on different sky islands would share common, ancestral alleles that existed during the last glaciation, but that populations on each sky island, owing to their isolation, would contain unique variants of postglacial origin. We also predicted that divergence times estimated from corrected genetic distance and a coalescence model would post-date the last glacial maximum. Results Our results provide multiple independent lines of support for postglacial divergence, with the predicted pattern of shared and unique mitochondrial DNA haplotypes appearing in two independent sky-island archipelagos, and most estimates of divergence time based on corrected genetic distance post-dating the last glacial maximum. Likewise, an isolation model based on multilocus gene coalescence indicated postglacial divergence of five pairs of sky islands. In contrast to their similar recent histories, the two archipelagos had dissimilar historical patterns in that sky islands in Arizona showed evidence for older divergence, suggesting different responses to the last glaciation. Conclusion This study is one of the first to provide explicit support from genetic data for a postglacial divergence scenario predicted by one of the best paleoecological records in the world. Our results demonstrate that sky islands act as generators of genetic diversity at both recent and historical timescales and underscore the importance of thorough sampling and the use of loci with fast mutation rates to studies that test hypotheses concerning recent genetic divergence. PMID:18588695
The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0
NASA Astrophysics Data System (ADS)
Kochanek, C. S.; Shappee, B. J.; Stanek, K. Z.; Holoien, T. W.-S.; Thompson, Todd A.; Prieto, J. L.; Dong, Subo; Shields, J. V.; Will, D.; Britt, C.; Perzanowski, D.; Pojmański, G.
2017-10-01
The All-Sky Automated Survey for Supernovae (ASAS-SN) is working toward imaging the entire visible sky every night to a depth of V˜ 17 mag. The present data covers the sky and spans ˜2-5 years with ˜100-400 epochs of observation. The data should contain some ˜1 million variable sources, and the ultimate goal is to have a database of these observations publicly accessible. We describe here a first step, a simple but unprecedented web interface https://asas-sn.osu.edu/ that provides an up to date aperture photometry light curve for any user-selected sky coordinate. The V band photometry is obtained using a two-pixel (16.″0) radius aperture and is calibrated against the APASS catalog. Because the light curves are produced in real time, this web tool is relatively slow and can only be used for small samples of objects. However, it also imposes no selection bias on the part of the ASAS-SN team, allowing the user to obtain a light curve for any point on the celestial sphere. We present the tool, describe its capabilities, limitations, and known issues, and provide a few illustrative examples.
Spatial Fluctuations in the Diffuse Cosmic X-Ray Background. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Shafer, R. A.
1983-01-01
The bright, essentially isotropic, X-ray sky flux above 2 keV yields information on the universe at large distances. However, a definitive understanding of the origin of the flux is lacking. Some fraction of the total flux is contributed by active galactic nuclei and clusters of galaxies, but less than one percent of the total is contributed by the or approximately 3 keV band resolved sources, which is the band where the sky flux is directly observed. Parametric models of AGN (quasar) luminosity function evolution are examined. Most constraints are by the total sky flux. The acceptability of particular models hinges on assumptions currently not directly testable. The comparison with the Einstein Observatory 1 to keV low flux source counts is hampered by spectral uncertainties. A tentative measurement of a large scale dipole anisotropy is consistent with the velocity and direction derived from the dipole in the microwave background. The impact of the X-ray anisotropy limits for other scales on studies of large-scale structure in the universe is sketched. Models of the origins of the X-ray sky flux are reviewed, and future observational programs outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit; Deline, Chris
This paper briefly reviews the National Renewable Energy Laboratory's recent efforts on developing all-sky solar irradiance models for solar energy applications. The Fast All-sky Radiation Model for Solar applications (FARMS) utilizes the simulation of clear-sky transmittance and reflectance and a parameterization of cloud transmittance and reflectance to rapidly compute broadband irradiances on horizontal surfaces. FARMS delivers accuracy that is comparable to the two-stream approximation, but it is approximately 1,000 times faster. A FARMS-Narrowband Irradiance over Tilted surfaces (FARMS-NIT) has been developed to compute spectral irradiances on photovoltaic (PV) panels in 2002 wavelength bands. Further, FARMS-NIT has been extended for bifacialmore » PV panels.« less
NASA Astrophysics Data System (ADS)
Shalygina, O. S.; Markiewicz, W. J.; Hviid, S. F.
2012-09-01
It is well known that the aerosol play a major role in the energy budget of the Martian atmosphere. The importance of the aerosols for the radiative loading of the atmosphere has hence, direct impact on the Martian present weather and its seasonal cycle as well as consequences for its long term climate. Very accurate models of the sky brightness are required to separate the atmospheric illumination from the spectrum of the Martian surface, and hence to understand the mineralogy of the surface rocks and soil. Such accurate models are only possible if the optical properties of the Martian aerosols are known. In this work we analyze the images of the brightness of the Martian sky at midday acquired from the surface of the Mars during the Mars Pathfinder mission. The Imager for Mars Pathfinder (IMP) obtained data in filters centered at 443.6, 481.0, 670.8, 896.1 and 965.3 nm. Useful data sets were returned on sols 27, 40, 56, 65, 68, 74 and 82. Although the coverage in scattering angles of this sequence is limited to about 100°, having the Sun near zenith minimizes multiple scattering. This property should help in accuracy of constraining the size distribution and material properties. The shape of the particles can be expected to be less well constrained, as scattering events at angles around 150° are only present through multiple scattering. Data from sol 56 (Figure 1) were fitted with multiple scattering radiative transfer calculations to extract the size distribution, optical properties, and shape of the aerosols suspended in the atmosphere [1].
NASA Astrophysics Data System (ADS)
Kocifaj, Miroslav; Petržala, Jaromír
2016-11-01
A zero-order approach to the solving of the radiative transfer equation and a method for obtaining the horizontal diffuse irradiance at night-time are both developed and intended for wide use in numerical predictions of nocturnal ground irradiance in populated territories. Downward diffuse radiative fluxes are computed with a two-stream approximation, and the data products obtained are useful for scientists who require rapid estimations of illumination levels during the night. The rapid technique presented here is especially important when the entire set of calculations is to be repeated for different lighting technologies and/or radiant intensity distributions with the aim of identifying high-level illuminance/irradiance, the spectral composition of scattered light or other optical properties of diffuse light at the ground level. The model allows for the computation of diffuse horizontal irradiance due to light emissions from ground-based sources with arbitrary spectral compositions. The optical response of a night sky is investigated using the ratio of downward to upward irradiance, R⊥, λ(0). We show that R⊥, λ(0) generally peaks at short wavelengths, thus suggesting that, e.g., the blue light of an LED lamp would make the sky even more bluish. However, this effect can be largely suppressed or even removed with the spectral sensitivity function of the average human eye superimposed on to the lamp spectrum. Basically, blue light scattering dominates at short optical distances, while red light is transmitted for longer distances and illuminates distant places. Computations are performed for unshielded as well as fully shielded lights, while the spectral function R⊥, λ(0) is tabulated to make possible the modelling of various artificial lights, including those not presented here.
NASA Astrophysics Data System (ADS)
Sathyanarayana Rao, Mayuri; Subrahmanyan, Ravi; Udaya Shankar, N.; Chluba, Jens
2017-05-01
Cosmic baryon evolution during the Cosmic Dawn and Reionization results in redshifted 21-cm spectral distortions in the cosmic microwave background (CMB). These encode information about the nature and timing of first sources over redshifts 30-6 and appear at meter wavelengths as a tiny CMB distortion along with the Galactic and extragalactic radio sky, which is orders of magnitude brighter. Therefore, detection requires precise methods to model foregrounds. We present a method of foreground fitting using maximally smooth (MS) functions. We demonstrate the usefulness of MS functions over traditionally used polynomials to separate foregrounds from the Epoch of Reionization (EoR) signal. We also examine the level of spectral complexity in plausible foregrounds using GMOSS, a physically motivated model of the radio sky, and find that they are indeed smooth and can be modeled by MS functions to levels sufficient to discern the vanilla model of the EoR signal. We show that MS functions are loss resistant and robustly preserve EoR signal strength and turning points in the residuals. Finally, we demonstrate that in using a well-calibrated spectral radiometer and modeling foregrounds with MS functions, the global EoR signal can be detected with a Bayesian approach with 90% confidence in 10 minutes’ integration.
GASS: the Parkes Galactic all-sky survey. II. Stray-radiation correction and second data release
NASA Astrophysics Data System (ADS)
Kalberla, P. M. W.; McClure-Griffiths, N. M.; Pisano, D. J.; Calabretta, M. R.; Ford, H. Alyson; Lockman, F. J.; Staveley-Smith, L.; Kerp, J.; Winkel, B.; Murphy, T.; Newton-McGee, K.
2010-10-01
Context. The Parkes Galactic all-sky survey (GASS) is a survey of Galactic atomic hydrogen (H i) emission in the southern sky observed with the Parkes 64-m Radio Telescope. The first data release was published by McClure-Griffiths et al. (2009). Aims: We remove instrumental effects that affect the GASS and present the second data release. Methods: We calculate the stray-radiation by convolving the all-sky response of the Parkes antenna with the brightness temperature distribution from the Leiden/Argentine/Bonn (LAB) all sky 21-cm line survey, with major contributions from the 30-m dish of the Instituto Argentino de Radioastronomía (IAR) in the southern sky. Remaining instrumental baselines are corrected using the LAB data for a first guess of emission-free baseline regions. Radio frequency interference is removed by median filtering. Results: After applying these corrections to the GASS we find an excellent agreement with the Leiden/Argentine/Bonn (LAB) survey. The GASS is the highest spatial resolution, most sensitive, and is currently the most accurate H i survey of the Galactic H i emission in the southern sky. We provide a web interface for generation and download of FITS cubes.
The Citizen Sky Planetarium Trailer
NASA Astrophysics Data System (ADS)
Turner, Rebecca; Price, A.; Wyatt, R.
2011-05-01
Citizen Sky is a multi-year, citizen science project focusing on the bright variable star, epsilon Aurigae. We have developed a six-minute video presentation describing eclipsing binary stars, light curves, and the Citizen Sky project. Designed like a short movie trailer, the video can be shown at planetariums before their regular, feature shows or integrated into a longer presentation. The trailer is available in a wide range of formats for viewing on laptops all the way up to state-of-the-art planetariums. The show is narrated by Timothy Ferris and was produced by the Morrison Planetarium and Visualization Studio at the California Academy of Sciences. This project has been made possible by the National Science Foundation.
The Citizen Sky Planetarium Trailer
NASA Astrophysics Data System (ADS)
Turner, R.; Price, A.; Wyatt, R.
2012-06-01
(Abstract only) Citizen Sky is a multi-year, citizen science project focusing on the bright variable star e Aurigae. We have developed a six-minute video presentation describing eclipsing binary stars, light curves, and the Citizen Sky project. Designed like a short movie trailer, the video can be shown at planetariums before their regular, feature shows or integrated into a longer presentation. The trailer is available in a wide range of formats for viewing on laptops all the way up to state-of-the-art planetariums. The show is narrated by Timothy Ferris and was produced by the Morrison Planetarium and Visualization Studio at the California Academy of Sciences. This project has been made possible by the National Science Foundation.
NASA Technical Reports Server (NTRS)
Madura, T. I.; Gull, T. R.; Owocki, S. P.; Groh, J. H.; Okazaki, A. T.; Russell, C. M. P.
2011-01-01
We present a three-dimensional (3-D) dynamical model for the broad [Fe III] emission observed in Eta Carinae using the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS). This model is based on full 3-D Smoothed Particle Hydrodynamics (SPH) simulations of Eta Car's binary colliding winds. Radiative transfer codes are used to generate synthetic spectro-images of [Fe III] emission line structures at various observed orbital phases and STIS slit position angles (PAs). Through a parameter study that varies the orbital inclination i, the PA(theta) that the orbital plane projection of the line-of-sight makes with the apastron side of the semi-major axis, and the PA on the sky of the orbital axis, we are able, for the first time, to tightly constrain the absolute 3-D orientation of the binary orbit. To simultaneously reproduce the blue-shifted emission arcs observed at orbital phase 0.976, STIS slit PA = +38deg, and the temporal variations in emission seen at negative slit PAs, the binary needs to have an i approx. = 130deg to 145deg, Theta approx. = -15deg to +30deg, and an orbital axis projected on the sky at a P A approx. = 302deg to 327deg east of north. This represents a system with an orbital axis that is closely aligned with the inferred polar axis of the Homunculus nebula, in 3-D. The companion star, Eta(sub B), thus orbits clockwise on the sky and is on the observer's side of the system at apastron. This orientation has important implications for theories for the formation of the Homunculus and helps lay the groundwork for orbital modeling to determine the stellar masses.
The spectral amplification effect of clouds to the night sky radiance in Madrid
NASA Astrophysics Data System (ADS)
Aubé, M.; Kocifaj, M.; Zamorano, J.; Solano Lamphar, H. A.; Sanchez de Miguel, A.
2016-09-01
Artificial Light at Night (ALAN) may have various environmental impacts ranging from compromising the visibility of astronomical objects to the perturbation of circadian cycles in animals and humans. In the past much research has been carried out to study the impact of ALAN on the radiance of the night sky during clear sky conditions. This was mainly justified by the need for a better understanding of the behavior of ALAN propagation into the environment in order to protect world-class astronomical facilities. More recently, alongside to the threat to the natural starry sky, many issues have emerged from the biological science community. It has been shown that, nearby or inside cities, the presence of cloud cover generally acts as an amplifier for artificial sky radiance while clouds behave as attenuators for remote observers. In this paper we show the spectral behavior of the zenith sky radiance amplification factor exerted by clouds inside a city. We compare in-situ measurements made with the spectrometer SAND-4 with a numerical model applied to the specific geographical context of the Universidad Complutense de Madrid in Spain.
NASA Technical Reports Server (NTRS)
Wen, Guoyong; Marshak, Alexander; Varnai, Tamas; Levy, Robert
2016-01-01
A transition zone exists between cloudy skies and clear sky; such that, clouds scatter solar radiation into clear-sky regions. From a satellite perspective, it appears that clouds enhance the radiation nearby. We seek a simple method to estimate this enhancement, since it is so computationally expensive to account for all three-dimensional (3-D) scattering processes. In previous studies, we developed a simple two-layer model (2LM) that estimated the radiation scattered via cloud-molecular interactions. Here we have developed a new model to account for cloud-surface interaction (CSI). We test the models by comparing to calculations provided by full 3-D radiative transfer simulations of realistic cloud scenes. For these scenes, the Moderate Resolution Imaging Spectroradiometer (MODIS)-like radiance fields were computed from the Spherical Harmonic Discrete Ordinate Method (SHDOM), based on a large number of cumulus fields simulated by the University of California, Los Angeles (UCLA) large eddy simulation (LES) model. We find that the original 2LM model that estimates cloud-air molecule interactions accounts for 64 of the total reflectance enhancement and the new model (2LM+CSI) that also includes cloud-surface interactions accounts for nearly 80. We discuss the possibility of accounting for cloud-aerosol radiative interactions in 3-D cloud-induced reflectance enhancement, which may explain the remaining 20 of enhancements. Because these are simple models, these corrections can be applied to global satellite observations (e.g., MODIS) and help to reduce biases in aerosol and other clear-sky retrievals.
An All-Sky Portable (ASP) Optical Catalogue
NASA Astrophysics Data System (ADS)
Flesch, Eric Wim
2017-06-01
This optical catalogue combines the all-sky USNO-B1.0/A1.0 and most-sky APM catalogues, plus overlays of SDSS optical data, into a single all-sky map presented in a sparse binary format that is easily downloaded at 9 Gb zipped. Total count is 1 163 237 190 sources and each has J2000 astrometry, red and blue magnitudes with PSFs and variability indicator, and flags for proper motion, epoch, and source survey and catalogue for each of the photometry and astrometry. The catalogue is available on http://quasars.org/asp.html, and additional data for this paper is available at http://dx.doi.org/10.4225/50/5807fbc12595f.
1982-09-15
for use in determining solar irradiance as a function of terrain elevation is also presented. Errors in computed sea level values of sky radiation as a...Renobserved if the Ground Were at Sea Level .. ..................... 365 5. Sky Radiation (W SK).. .. ....... ....... ....... 366 SKYY and Dewpoint SKY...WS -M 00 OiLn 00 00 00 .0 .. q . m1’ C14 IN’ .- *- * .0 *0 *0 0 .0 0 Y -’ CD N inC 0 M W N L- 04c 1- Wq an’ U) 14 N- 00 00 Mcq N N r- (’IC’I) (’ - M -0
NASA Technical Reports Server (NTRS)
Bedinger, J. F.; Constantinides, E.
1976-01-01
The photography from aboard an aircraft of chemical releases is reported. The equipment installation on the aircraft is described, and photographs of the releases are included. An extensive analysis of twilight sky photographs is presented.
Wang, Lunche; Gong, Wei; Lin, Aiwen; Hu, Bo
2014-10-01
Observations of photosynthetically active radiation (PAR) and global solar radiation (G) at Wuhan, Central China during 2005-2012 were first reported to investigate PAR variability at different time scales and its PAR fraction (F(p)) under different sky conditions. Both G irradiances (I(g)) and PAR irradiances (I(p)) showed similar seasonal features that peaked in values at noon during summer and reached their lower values in winter. F(p) reached higher values during either sunrise or sunset; lower values of F p appeared at local noon because of the absorption effects of water vapor and clouds on long-wave radiation. There was an inverse relationship between clearness index (K(t)) and F(p); the maximum I(p) decreased by 22.3 % (39.7 %) when sky conditions changed from overcast to cloudless in summer (winter); solar radiation was more affected by cloudiness than the seasonal variation in cloudy skies when compared with that in clear skies. The maximum daily PAR irradiation (R(p)) was 11.89 MJ m⁻² day⁻¹ with an annual average of 4.85 MJ m⁻² day⁻¹. F p was in the range of 29-61.5 % with annual daily average value being about 42 %. Meanwhile, hourly, daily, and monthly relationships between R p and G irradiation (R g) under different sky conditions were investigated. It was discovered that cloudy skies were the dominated sky condition in this region. Finally, a clear-sky PAR model was developed by analyzing the dependence of PAR irradiances on optical air mass under various sky conditions for the whole study period in Central China, which will lay foundations for ecological process study in the near future.
HiPS - Hierarchical Progressive Survey Version 1.0
NASA Astrophysics Data System (ADS)
Fernique, Pierre; Allen, Mark; Boch, Thomas; Donaldson, Tom; Durand, Daniel; Ebisawa, Ken; Michel, Laurent; Salgado, Jesus; Stoehr, Felix; Fernique, Pierre
2017-05-01
This document presents HiPS, a hierarchical scheme for the description, storage and access of sky survey data. The system is based on hierarchical tiling of sky regions at finer and finer spatial resolution which facilitates a progressive view of a survey, and supports multi-resolution zooming and panning. HiPS uses the HEALPix tessellation of the sky as the basis for the scheme and is implemented as a simple file structure with a direct indexing scheme that leads to practical implementations.
Automated exploitation of sky polarization imagery.
Sadjadi, Firooz A; Chun, Cornell S L
2018-03-10
We propose an automated method for detecting neutral points in the sunlit sky. Until now, detecting these singularities has been done manually. Results are presented that document the application of this method on a limited number of polarimetric images of the sky captured with a camera and rotating polarizer. The results are significant because a method for automatically detecting the neutral points may aid in the determination of the solar position when the sun is obscured and may have applications in meteorology and pollution detection and characterization.
NASA Astrophysics Data System (ADS)
Moreno, H. A.; Ogden, F. L.; Steinke, R. C.; Alvarez, L. V.
2015-12-01
Triangulated Irregular Networks (TINs) are increasingly popular for terrain representation in high performance surface and hydrologic modeling by their skill to capture significant changes in surface forms such as topographical summits, slope breaks, ridges, valley floors, pits and cols. This work presents a methodology for estimating slope, aspect and the components of the incoming solar radiation by using a vectorial approach within a topocentric coordinate system by establishing geometric relations between groups of TIN elements and the sun position. A normal vector to the surface of each TIN element describes slope and aspect while spherical trigonometry allows computing a unit vector defining the position of the sun at each hour and DOY. Thus, a dot product determines the radiation flux at each TIN element. Remote shading is computed by scanning the projection of groups of TIN elements in the direction of the closest perpendicular plane to the sun vector. Sky view fractions are computed by a simplified scanning algorithm in prescribed directions and are useful to determine diffuse radiation. Finally, remote radiation scattering is computed from the sky view factor complementary functions for prescribed albedo values of the surrounding terrain only for significant angles above the horizon. This methodology represents an improvement on the current algorithms to compute terrain and radiation parameters on TINs in an efficient manner. All terrain features (e.g. slope, aspect, sky view factors and remote sheltering) can be pre-computed and stored for easy access for a subsequent ground surface or hydrologic simulation.
Topographic Correction Module at Storm (TC@Storm)
NASA Astrophysics Data System (ADS)
Zaksek, K.; Cotar, K.; Veljanovski, T.; Pehani, P.; Ostir, K.
2015-04-01
Different solar position in combination with terrain slope and aspect result in different illumination of inclined surfaces. Therefore, the retrieved satellite data cannot be accurately transformed to the spectral reflectance, which depends only on the land cover. The topographic correction should remove this effect and enable further automatic processing of higher level products. The topographic correction TC@STORM was developed as a module within the SPACE-SI automatic near-real-time image processing chain STORM. It combines physical approach with the standard Minnaert method. The total irradiance is modelled as a three-component irradiance: direct (dependent on incidence angle, sun zenith angle and slope), diffuse from the sky (dependent mainly on sky-view factor), and diffuse reflected from the terrain (dependent on sky-view factor and albedo). For computation of diffuse irradiation from the sky we assume an anisotropic brightness of the sky. We iteratively estimate a linear combination from 10 different models, to provide the best results. Dependent on the data resolution, we mask shades based on radiometric (image) or geometric properties. The method was tested on RapidEye, Landsat 8, and PROBA-V data. Final results of the correction were evaluated and statistically validated based on various topography settings and land cover classes. Images show great improvements in shaded areas.
NASA Astrophysics Data System (ADS)
Borsdorff, Tobias; aan de Brugh, Joost; Hu, Haili; Nédélec, Philippe; Aben, Ilse; Landgraf, Jochen
2017-05-01
We discuss the retrieval of carbon monoxide (CO) vertical column densities from clear-sky and cloud contaminated 2311-2338 nm reflectance spectra measured by the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) from January 2003 until the end of the mission in April 2012. These data were processed with the Shortwave Infrared CO Retrieval algorithm (SICOR) that we developed for the operational data processing of the Tropospheric Monitoring Instrument (TROPOMI) that will be launched on ESA's Sentinel-5 Precursor (S5P) mission. This study complements previous work that was limited to clear-sky observations over land. Over the oceans, CO is estimated from cloudy-sky measurements only, which is an important addition to the SCIAMACHY clear-sky CO data set as shown by NDACC and TCCON measurements at coastal sites. For Ny-Ålesund, Lauder, Mauna Loa and Reunion, a validation of SCIAMACHY clear-sky retrievals is not meaningful because of the high retrieval noise and the few collocations at these sites. The situation improves significantly when considering cloudy-sky observations, where we find a low mean bias b = ±6. 0 ppb and a strong correlation between the validation and the SCIAMACHY results with a mean Pearson correlation coefficient r = 0. 7. Also for land observations, cloudy-sky CO retrievals present an interesting complement to the clear-sky data set. For example, at the cities Tehran and Beijing the agreement of SCIAMACHY clear-sky CO observations with MOZAIC/IAGOS airborne measurements is poor with a mean bias of b = 171. 2 ppb and 57.9 ppb because of local CO pollution, which cannot be captured by SCIAMACHY. For cloudy-sky retrievals, the validation improves significantly. Here the retrieved column is mainly sensitive to CO above the cloud and so not affected by the strong local surface emissions. Adjusting the MOZAIC/IAGOS measurements to the vertical sensitivity of the retrieval, the mean bias adds up to b = 52. 3 ppb and 5.0 ppb for Tehran and Beijing. At the less urbanised region around the airport Windhoek, local CO pollution is less prominent and so MOZAIC/IAGOS measurements agree well with SCIAMACHY clear-sky retrievals with a mean bias of b = 15. 5 ppb, but can be even further improved for cloudy SCIAMACHY observations with a mean bias of b = 0. 2 ppb. Overall the cloudy-sky CO retrievals from SCIAMACHY short-wave infrared measurements present a major extension of the clear-sky-only data set, which more than triples the amount of data and adds unique observations over the oceans. Moreover, the study represents the first application of the S5P algorithm for operational CO data processing on cloudy observations prior to the launch of the S5P mission.
The new world atlas of artificial night sky brightness
Falchi, Fabio; Cinzano, Pierantonio; Duriscoe, Dan; Kyba, Christopher C. M.; Elvidge, Christopher D.; Baugh, Kimberly; Portnov, Boris A.; Rybnikova, Nataliya A.; Furgoni, Riccardo
2016-01-01
Artificial lights raise night sky luminance, creating the most visible effect of light pollution—artificial skyglow. Despite the increasing interest among scientists in fields such as ecology, astronomy, health care, and land-use planning, light pollution lacks a current quantification of its magnitude on a global scale. To overcome this, we present the world atlas of artificial sky luminance, computed with our light pollution propagation software using new high-resolution satellite data and new precision sky brightness measurements. This atlas shows that more than 80% of the world and more than 99% of the U.S. and European populations live under light-polluted skies. The Milky Way is hidden from more than one-third of humanity, including 60% of Europeans and nearly 80% of North Americans. Moreover, 23% of the world’s land surfaces between 75°N and 60°S, 88% of Europe, and almost half of the United States experience light-polluted nights. PMID:27386582
The new world atlas of artificial night sky brightness.
Falchi, Fabio; Cinzano, Pierantonio; Duriscoe, Dan; Kyba, Christopher C M; Elvidge, Christopher D; Baugh, Kimberly; Portnov, Boris A; Rybnikova, Nataliya A; Furgoni, Riccardo
2016-06-01
Artificial lights raise night sky luminance, creating the most visible effect of light pollution-artificial skyglow. Despite the increasing interest among scientists in fields such as ecology, astronomy, health care, and land-use planning, light pollution lacks a current quantification of its magnitude on a global scale. To overcome this, we present the world atlas of artificial sky luminance, computed with our light pollution propagation software using new high-resolution satellite data and new precision sky brightness measurements. This atlas shows that more than 80% of the world and more than 99% of the U.S. and European populations live under light-polluted skies. The Milky Way is hidden from more than one-third of humanity, including 60% of Europeans and nearly 80% of North Americans. Moreover, 23% of the world's land surfaces between 75°N and 60°S, 88% of Europe, and almost half of the United States experience light-polluted nights.
The use of a laser ceilometer for sky condition determination
NASA Astrophysics Data System (ADS)
Nadolski, Vickie L.; Bradley, James T.
The use of a laser ceilometer for determining sky condition is presented, with emphasis on the operation of the ceilometer, the sky-condition-reporting algorithm, and how the laser ceilometer and the sky-condition algorithm are used to give a report suitable for aircraft operations and meteorological application. The sampling and processing features of the Vaisala ceilometer produced a detailed and accurate cloud base 'signature' by taking 254 measurement samples of the energy scattered back from a single laser pulse as the pulse traveled from the surface to 12,000 ft. The transmit time from the projection of the laser pulse to its backscattering from a cloud element and subsequent return to a collocated receiver is measured and a cloud height element computed. Attention is given to the development of a vertical visibility concept and of a vertical-visibility algorithm, as well as the strengths and limitations of the sky condition report.
A Fast Infrared Radiative Transfer Model for Overlapping Clouds
NASA Technical Reports Server (NTRS)
Niu, Jianguo; Yang, Ping; Huang, Huang-Lung; Davies, James E.; Li, Jun; Baum, Bryan A.; Hu, Yong X.
2006-01-01
A fast infrared radiative transfer model (FIRTM2) appropriate for application to both single-layered and overlapping cloud situations is developed for simulating the outgoing infrared spectral radiance at the top of the atmosphere (TOA). In FIRTM2 a pre-computed library of cloud reflectance and transmittance values is employed to account for one or two cloud layers, whereas the background atmospheric optical thickness due to gaseous absorption can be computed from a clear-sky radiative transfer model. FIRTM2 is applicable to three atmospheric conditions: 1) clear-sky, 2) single-layered ice or water cloud, and 3) two simultaneous cloud layers in a column (e.g., ice cloud overlying water cloud). Moreover, FIRTM2 outputs the derivatives (i.e., Jacobians) of the TOA brightness temperature with respect to cloud optical thickness and effective particle size. Sensitivity analyses have been carried out to assess the performance of FIRTM2 for two spectral regions, namely the longwave (LW) band (587.3 - 1179.5/cm) and the short-to-medium wave (SMW) band (1180.1 - 2228.9/cm). The assessment is carried out in terms of brightness temperature differences (BTD) between FIRTM2 and the well-known discrete ordinates radiative transfer model (DISORT), henceforth referred to as BTD (F-D). The BTD (F-D) values for single-layered clouds are generally less than 0.8 K. For the case of two cloud layers (specifically ice cloud over water cloud), the BTD(F-D) values are also generally less than 0.8 K except for the SMW band for the case of a very high altitude (>15 km) cloud comprised of small ice particles. Note that for clear-sky atmospheres, FIRTM2 reduces to the clear-sky radiative transfer model that is incorporated into FIRTM2, and the errors in this case are essentially those of the clear-sky radiative transfer model.
Automated novelty detection in the WISE survey with one-class support vector machines
NASA Astrophysics Data System (ADS)
Solarz, A.; Bilicki, M.; Gromadzki, M.; Pollo, A.; Durkalec, A.; Wypych, M.
2017-10-01
Wide-angle photometric surveys of previously uncharted sky areas or wavelength regimes will always bring in unexpected sources - novelties or even anomalies - whose existence and properties cannot be easily predicted from earlier observations. Such objects can be efficiently located with novelty detection algorithms. Here we present an application of such a method, called one-class support vector machines (OCSVM), to search for anomalous patterns among sources preselected from the mid-infrared AllWISE catalogue covering the whole sky. To create a model of expected data we train the algorithm on a set of objects with spectroscopic identifications from the SDSS DR13 database, present also in AllWISE. The OCSVM method detects as anomalous those sources whose patterns - WISE photometric measurements in this case - are inconsistent with the model. Among the detected anomalies we find artefacts, such as objects with spurious photometry due to blending, but more importantly also real sources of genuine astrophysical interest. Among the latter, OCSVM has identified a sample of heavily reddened AGN/quasar candidates distributed uniformly over the sky and in a large part absent from other WISE-based AGN catalogues. It also allowed us to find a specific group of sources of mixed types, mostly stars and compact galaxies. By combining the semi-supervised OCSVM algorithm with standard classification methods it will be possible to improve the latter by accounting for sources which are not present in the training sample, but are otherwise well-represented in the target set. Anomaly detection adds flexibility to automated source separation procedures and helps verify the reliability and representativeness of the training samples. It should be thus considered as an essential step in supervised classification schemes to ensure completeness and purity of produced catalogues. The catalogues of outlier data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A39
ERIC Educational Resources Information Center
Judge, April
1997-01-01
Presents picture books, collections of star stories, poetry, magazines, radio programs, biographies, nonfiction, and activities to help young students (preschool-grade 8) understand what celestial objects meant to ancient civilizations and to provide insights into the customs and attitudes of other cultures; alternative literary experiences; and…
The All-Sky Automated Survey for Supernovae
NASA Astrophysics Data System (ADS)
Bersier, D.
2016-12-01
This is an overview of the All-Sky Automated Survey for SuperNovae - ASAS-SN. We briefly present the hardware and capabilities of the survey and describe the most recent science results, in particular tidal disruption events and supernovae, including the brightest SN ever found.
From Wisdom to Innocence: Passing on the Knowledge of the Night Sky
NASA Technical Reports Server (NTRS)
Shope, R.
1996-01-01
Memorable learning can happen when the whole family shares the thrill of discovery together. The fascination of the night sky presents a perfect opportunity for gifted parents and children to experience the tradition of passing on knowledge from generation to generation.
NASA Astrophysics Data System (ADS)
Manning, Jim; Gurton, S.; Hurst, A.
2010-05-01
The Astronomical Society of the Pacific is conducting a NASA-funded professional development program to help increase astronomy education and outreach capacity at national parks, nature centers, and other outdoor and environmental centers--venues that still have a dark night sky as a natural resource and a yen to interpret it for their visitors. Through online workshops and on-site workshops at national parks, the ASP staff, working in conjunction with partners from the National Park Service, National Association for Interpretation, and the Association of Science and Technology Centers, provides materials and training focusing on the sky. Participants become part of ASP's "Astronomy from the Ground Up" informational education community of practice, with ongoing options to hone their new skills. The presenter will report on early progress and lessons learned, as well as future plans, as the ASP and its partners work to help wilderness and nature interpreters put a little more "yee-hah!" in their visitor presentations aimed at the sky.
Astronomy Education Under Dark Skies
NASA Astrophysics Data System (ADS)
Cecylia Molenda-Zakowicz, Joanna
2015-08-01
We have been providing professional support for the high school students and the astronomy teachers since 2007. Our efforts include organizing astronomy events that take from several hours, like, e.g., watching the transit of Venus, to several days, like the workshops organized in the framework of the projects 'School Workshops on Astronomy' (SWA) and 'Wygasz'.The SWA and Wygasz workshops include presentations by experts in astronomy and space science research, presentations prepared by students being supervised by those experts, hands-on interactive experience in the amateur astrophotography, various pencil-and-paper exercises, and other practical activities. We pay particular attention to familiarize the teachers and students with the idea and the necessity of protecting the dark sky. The format of these events allows also for some time for teachers to share ideas and best practices in teaching astronomy.All those activities are organized either in the Izera Dark-Sky Park in Poland or in other carefuly selected locations in which the beauty of the dark night sky can be appreciated.
The Angular Power Spectrum of BATSE 3B Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Tegmark, Max; Hartmann, Dieter H.; Briggs, Michael S.; Meegan, Charles A.
1996-01-01
We compute the angular power spectrum C(sub l) from the BATSE 3B catalog of 1122 gamma-ray bursts and find no evidence for clustering on any scale. These constraints bridge the entire range from small scales (which probe source clustering and burst repetition) to the largest scales (which constrain possible anisotropics from the Galactic halo or from nearby cosmological large-scale structures). We develop an analysis technique that takes the angular position errors into account. For specific clustering or repetition models, strong upper limits can be obtained down to scales l approx. equal to 30, corresponding to a couple of degrees on the sky. The minimum-variance burst weighting that we employ is visualized graphically as an all-sky map in which each burst is smeared out by an amount corresponding to its position uncertainty. We also present separate bandpass-filtered sky maps for the quadrupole term and for the multipole ranges l = 3-10 and l = 11-30, so that the fluctuations on different angular scales can be inspected separately for visual features such as localized 'hot spots' or structures aligned with the Galactic plane. These filtered maps reveal no apparent deviations from isotropy.
NASA Technical Reports Server (NTRS)
Tarter, Jill C.
1993-01-01
The final report for the period 15 Mar. 1986 to 31 Mar. 1993 for the Cooperative Agreement is presented. The purpose of this Cooperative Agreement was to collaborate with NASA civil servant and contractor personnel, and other Institute personnel in a project to use all available cataloged astronomical infrared data to construct a detailed three dimensional model of the infrared sky. Areas of research included: IRAS colors of normal stars and the infrared excesses in Be stars; galactic structure; how to use the observed IRAS source counts as a function of position to deduce the physical structure of the galaxy; IRAS properties of metal-poor stars; IRAS database studies; and solar space exploration including projects such as the Space Station Gas-Grain Simulator and the Mars Rover/Sample Return Mission.
Super-sample covariance approximations and partial sky coverage
NASA Astrophysics Data System (ADS)
Lacasa, Fabien; Lima, Marcos; Aguena, Michel
2018-04-01
Super-sample covariance (SSC) is the dominant source of statistical error on large scale structure (LSS) observables for both current and future galaxy surveys. In this work, we concentrate on the SSC of cluster counts, also known as sample variance, which is particularly useful for the self-calibration of the cluster observable-mass relation; our approach can similarly be applied to other observables, such as galaxy clustering and lensing shear. We first examined the accuracy of two analytical approximations proposed in the literature for the flat sky limit, finding that they are accurate at the 15% and 30-35% level, respectively, for covariances of counts in the same redshift bin. We then developed a harmonic expansion formalism that allows for the prediction of SSC in an arbitrary survey mask geometry, such as large sky areas of current and future surveys. We show analytically and numerically that this formalism recovers the full sky and flat sky limits present in the literature. We then present an efficient numerical implementation of the formalism, which allows fast and easy runs of covariance predictions when the survey mask is modified. We applied our method to a mask that is broadly similar to the Dark Energy Survey footprint, finding a non-negligible negative cross-z covariance, i.e. redshift bins are anti-correlated. We also examined the case of data removal from holes due to, for example bright stars, quality cuts, or systematic removals, and find that this does not have noticeable effects on the structure of the SSC matrix, only rescaling its amplitude by the effective survey area. These advances enable analytical covariances of LSS observables to be computed for current and future galaxy surveys, which cover large areas of the sky where the flat sky approximation fails.
NASA Astrophysics Data System (ADS)
Becker, Matthew Rand
I present a new algorithm, CALCLENS, for efficiently computing weak gravitational lensing shear signals from large N-body light cone simulations over a curved sky. This new algorithm properly accounts for the sky curvature and boundary conditions, is able to produce redshift- dependent shear signals including corrections to the Born approximation by using multiple- plane ray tracing, and properly computes the lensed images of source galaxies in the light cone. The key feature of this algorithm is a new, computationally efficient Poisson solver for the sphere that combines spherical harmonic transform and multigrid methods. As a result, large areas of sky (~10,000 square degrees) can be ray traced efficiently at high-resolution using only a few hundred cores. Using this new algorithm and curved-sky calculations that only use a slower but more accurate spherical harmonic transform Poisson solver, I study the convergence, shear E-mode, shear B-mode and rotation mode power spectra. Employing full-sky E/B-mode decompositions, I confirm that the numerically computed shear B-mode and rotation mode power spectra are equal at high accuracy ( ≲ 1%) as expected from perturbation theory up to second order. Coupled with realistic galaxy populations placed in large N-body light cone simulations, this new algorithm is ideally suited for the construction of synthetic weak lensing shear catalogs to be used to test for systematic effects in data analysis procedures for upcoming large-area sky surveys. The implementation presented in this work, written in C and employing widely available software libraries to maintain portability, is publicly available at http://code.google.com/p/calclens.
NASA Astrophysics Data System (ADS)
Krumpe, Mirko; Miyaji, Takamitsu; Coil, Alison L.; Aceves, Hector
2018-02-01
We present the clustering properties and halo occupation distribution (HOD) modelling of very low redshift, hard X-ray-detected active galactic nuclei (AGN) using cross-correlation function measurements with Two-Micron All Sky Survey galaxies. Spanning a redshift range of 0.007 < z < 0.037, with a median z = 0.024, we present a precise AGN clustering study of the most local AGN in the Universe. The AGN sample is drawn from the SWIFT/BAT 70-month and INTEGRAL/IBIS eight year all-sky X-ray surveys and contains both type I and type II AGN. We find a large-scale bias for the full AGN sample of b=1.04^{+0.10}_{-0.11}, which corresponds to a typical host dark matter halo mass of M_h^typ=12.84^{+0.22}_{-0.30} h^{-1} M_{⊙}. When split into low and high X-ray luminosity and type I and type II AGN subsamples, we detect no statistically significant differences in the large-scale bias parameters. However, there are differences in the small-scale clustering, which are reflected in the full HOD model results. We find that low and high X-ray luminosity AGN, as well as type I and type II AGN, occupy dark matter haloes differently, with 3.4σ and 4.0σ differences in their mean halo masses, respectively, when split by luminosity and type. The latter finding contradicts a simple orientation-based AGN unification model. As a by-product of our cross-correlation approach, we also present the first HOD model of 2MASS galaxies.
Systematic measurements of the night sky brightness at 26 locations in Eastern Austria
NASA Astrophysics Data System (ADS)
Posch, Thomas; Binder, Franz; Puschnig, Johannes
2018-05-01
We present an analysis of the zenithal night sky brightness (henceforth: NSB) measurements at 26 locations in Eastern Austria focussing on the years 2015-2016, both during clear and cloudy to overcast nights. All measurements have been performed with 'Sky Quality Meters' (SQMs). For some of the locations, simultaneous aerosol content measurements are available, such that we were able to find a correlation between light pollution and air pollution at those stations. For all locations, we examined the circalunar periodicity of the NSB, seasonal variations as well as long-term trends in the recorded light pollution. The latter task proved difficult, however, due to varying meteorological conditions, potential detector 'aging' and other effects. For several remote locations, a darkening of the overcast night sky by up to 1 magnitude is recorded - indicating a very low level of light pollution -, while for the majority of the examined locations, a brightening of the night sky by up to a factor of 15 occurs due to clouds. We present suitable ways to plot and analyze huge long-term NSB datasets, such as mean-NSB histograms, circalunar, annual ('hourglass') and cumulative ('jellyfish') plots. We show that five of the examined locations reach sufficiently low levels of light pollution - with NSB values down to 21.8 magSQM/arcsec2 - as to allow the establishment of dark sky reserves, even to the point of reaching the 'gold tier' defined by the International Dark Sky Association. Based on the 'hourglass' plots, we find a strong circalunar periodicity of the NSB in small towns and villages ( < 5.000 inhabitants), with amplitudes of up to 5 magnitudes. Using the 'jellyfish' plots, on the other hand, we demonstrate that the examined city skies brighten by up to 3 magnitudes under cloudy conditions, which strongly dominate in those cumulative data representations. Nocturnal gradients of the NSB of 0.0-0.14 magSQM/arcsec2/h are found. The long-term development of the night sky brightness was evaluated based on the 2012-17 data for one of our sites, possibly indicating a slight ( 2%) decrease of the mean zenithal NSB at the Vienna University Observatory.
NASA Astrophysics Data System (ADS)
Venkatesan, R.; Mathiyarasu, R.; Somayaji, K. M.
Ground level concentration and sky-shine dose due to radioactive emissions from a nuclear power plant at a coastal site have been estimated using the standard Gaussian Plume Model (GPM) and the modified GPM suggested by Misra (Atmospheric Environment 14 (1980) 397), which incorporates fumigation effect under sea breeze condition. The difference in results between these two models is analysed in order to understand their significance and errors that would occur if proper choice were not made. Radioactive sky-shine dose from 41Ar, emitted from a 100 m stack of the nuclear plant is continuously recorded by environmental gamma dose monitors and the data is used to validate the modified GPM. It is observed that the dose values increase by a factor of about 2 times than those of the standard GPM estimates, up to a downwind distance of 6 km during sea breeze hours. In order to examine the dispersion of radioactive effluents in the mesoscale range, a sea breeze model coupled with a particle dispersion model is used. The deposited activity, thyroid dose and sky-shine radioactive dose are simulated for a range of 30 km. In this range, the plume is found to deviate from its straight-line trajectory, as otherwise assumed in GPM. A secondary maximum in the concentration and the sky-shine dose is also observed in the model results. These results are quite significant in realistically estimating the area affected under any unlikely event of an accidental release of radioactivity.
Ultrafast High Accuracy PCRTM_SOLAR Model for Cloudy Atmosphere
NASA Technical Reports Server (NTRS)
Yang, Qiguang; Liu, Xu; Wu, Wan; Yang, Ping; Wang, Chenxi
2015-01-01
An ultrafast high accuracy PCRTM_SOLAR model is developed based on PCA compression and principal component-based radiative transfer model (PCRTM). A fast algorithm for simulation of multi-scattering properties of cloud and/or aerosols is integrated into the fast infrared PCRTM. We completed radiance simulation and training for instruments, such as IASI, AIRS, CrIS, NASTI and SHIS, under diverse conditions. The new model is 5 orders faster than 52-stream DISORT with very high accuracy for cloudy sky radiative transfer simulation. It is suitable for hyperspectral remote data assimilation and cloudy sky retrievals.
Night Sky preservation and restoration in U.S. National Parks
NASA Astrophysics Data System (ADS)
Duriscoe, Dan M.; Ament, Nate
2015-08-01
The U.S. National Park Service (NPS) Night Skies Program contributes to the recognition of certain outstanding NPS lands as dark sky places. A combination of efforts including measuring resource condition, within-park outdoor lighting control, education outreach for visitors, and engagement with surrounding communities helps establish and maintain such places. In certain circumstances, communities and protected areas join forces in a cooperative effort to preserve the natural nocturnal environment of a region. One recent example, the Colorado Plateau Dark Sky Cooperative, is taking lighting, conservation, and educational steps to fulfill the mission of the NPS Call To Action- Starry Starry Night. This voluntary initiative forms America’s first Dark Sky Cooperative, and links communities, tribes, businesses, state/federal agencies, and citizens in a collaborative effort to celebrate the view of the cosmos, minimize the impact of outdoor lighting, and ultimately restore natural darkness to the area. We[AN1] present progress and accomplishments of established dark sky parks and reserves in the western U.S., with particular emphasis on public response to the actions taken and the results achieved.
The Automatic Recognition of the Abnormal Sky-subtraction Spectra Based on Hadoop
NASA Astrophysics Data System (ADS)
An, An; Pan, Jingchang
2017-10-01
The skylines, superimposing on the target spectrum as a main noise, If the spectrum still contains a large number of high strength skylight residuals after sky-subtraction processing, it will not be conducive to the follow-up analysis of the target spectrum. At the same time, the LAMOST can observe a quantity of spectroscopic data in every night. We need an efficient platform to proceed the recognition of the larger numbers of abnormal sky-subtraction spectra quickly. Hadoop, as a distributed parallel data computing platform, can deal with large amounts of data effectively. In this paper, we conduct the continuum normalization firstly and then a simple and effective method will be presented to automatic recognize the abnormal sky-subtraction spectra based on Hadoop platform. Obtain through the experiment, the Hadoop platform can implement the recognition with more speed and efficiency, and the simple method can recognize the abnormal sky-subtraction spectra and find the abnormal skyline positions of different residual strength effectively, can be applied to the automatic detection of abnormal sky-subtraction of large number of spectra.
Network based sky Brightness Monitor
NASA Astrophysics Data System (ADS)
McKenna, Dan; Pulvermacher, R.; Davis, D. R.
2009-01-01
We have developed and are currently testing an autonomous 2 channel photometer designed to measure the night sky brightness in the visual wavelengths over a multi-year campaign. The photometer uses a robust silicon sensor filtered with Hoya CM500 glass. The Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The Sky Brightness monitor consists of two units, the remote photometer and a network interface. Currently these devices use 2.4 Ghz transceivers with a free space range of 100 meters. The remote unit is battery powered with day time recharging using a solar panel. Data received by the network interface transmits data via standard POP Email protocol. A second version is under development for radio sensitive areas using an optical fiber for data transmission. We will present the current comparison with the National Park Service sky monitoring camera. We will also discuss the calibration methods used for standardization and temperature compensation. This system is expected to be deployed in the next year and be operated by the International Dark Sky Association SKYMONITOR project.
"Let There Be Night" Advocates Dark Skies
NASA Astrophysics Data System (ADS)
Bueter, Chuck
2008-05-01
Let There Be Night is an interactive planetarium program that supports a community-wide experiment to quantify local sky glow. In the planetarium, visitors will experience three aspects of light pollution--glare, sky glow, and light trespass--and decide whether and how to confront dark sky issues. Planetarians can select optional recorded stories and lessons to complement live demonstrations or star talks. As a companion experiment, students in grades 3-8 from one school district will then submit their backyard observations of Orion's limiting magnitude to the 2009 Globe at Night star hunt while small student teams concurrently quantify sky glow from each schoolyard with hand-held meters. After mapping their results and having classroom discussions, students will present their findings to the School Board. Material compiled and created for the program will be available for other dark sky advocates at www.LetThereBeNight.com, while large digital files will be distributed on disk through two planetarium associations. A 2008 Toyota TAPESTRY grant has enticed significant professional support, additional funding, and in-kind contributions.
The 1997 Reference of Diffuse Night Sky Brightness
NASA Technical Reports Server (NTRS)
Leinert, C.; Bowyer, S.; Haikala, L. K.; Hanner, M. S.; Hauser, M. G.; Levasseur-Regourd, A. C.; Mann, I.; Mattila, K.; Reach, W. T.; Schlosser, W.;
1997-01-01
In the following we present material in tabular and graphical form, with the aim to allow the non specialist to obtain a realistic estimate of the diffuse night sky brightness over a wide range of wavelengths from the far UV longward of Ly to the far-infrared.
NASA Astrophysics Data System (ADS)
KrzyśCin, Janusz W.
1996-07-01
Monthly means of UV erythemal dose at ground level from the Robertson-Berger (RB) sunburn meter (1976-1992) and the UV-Biometer model 501 MED meter (1993-1994) located at Belsk (21°E, 52°N), Poland, are examined. The monthly means are calculated from all-sky daily means of UV erythemal dose. Ancillary measurements of column ozone (by Dobson spectrophotometer), sunshine duration (by Campbell-Stokes heliograph), and total (sun and sky) radiation (by a pyranometer) are considered to explain variations in the UV data. A multiple regression model is proposed to study trends in the UV data. The model accounts for the UV erythemal dose changes induced by total ozone, sunshine duration (surrogate for cloud cover variations), or total solar radiation (surrogate for combined cloud cover and atmospheric turbidity impact on the UV radiation), trends due to instrument drift, step changes in the data, and serial correlations. A strong relationship between monthly all-sky UV erythemal dose changes and total ozone (and total solar radiation) is found. Calculations show that an erythemal radiative amplification factor (RAF) due to ozone under all skies is close to its clear-sky value (about 1). However, the model gives evidence that the RAF due to ozone is smaller for cloudier (and/or more turbid) atmospheres than long-term reference. Total solar radiation change of 1% is associated with a change of 0.7% in the UV erythemal dose. Modeled trends in the Belsk's UV data, inferred from the model using ozone and total solar radiation as the UV forcing factors, are 2.3% ± 0.4% (1σ) per decade in the period 1976-1994. The large increase in the UV erythemal dose, of the order of 4% per decade due to ozone depletion (-3.2% per decade), is partially compensated by a decreasing tendency (-2.8% per decade) in total solar radiation. The model estimates the trend in the UV data of the order of 0.1% per decade (not statistically significant) due to superposition of the instrument drift and long-term effects related to other UV influencing factors (not parameterized by the model).
Modelling the angular correlation function and its full covariance in photometric galaxy surveys
NASA Astrophysics Data System (ADS)
Crocce, Martín; Cabré, Anna; Gaztañaga, Enrique
2011-06-01
Near-future cosmology will see the advent of wide-area photometric galaxy surveys, such as the Dark Energy Survey (DES), that extend to high redshifts (z˜ 1-2) but give poor radial distance resolution. In such cases splitting the data into redshift bins and using the angular correlation function w(θ), or the Cℓ power spectrum, will become the standard approach to extracting cosmological information or to studying the nature of dark energy through the baryon acoustic oscillations (BAO) probe. In this work we present a detailed model for w(θ) at large scales as a function of redshift and binwidth, including all relevant effects, namely non-linear gravitational clustering, bias, redshift space distortions and photo-z uncertainties. We also present a model for the full covariance matrix, characterizing the angular correlation measurements, that takes into account the same effects as for w(θ) and also the possibility of a shot-noise component and partial sky coverage. Provided with a large-volume N-body simulation from the MICE collaboration, we built several ensembles of mock redshift bins with a sky coverage and depth typical of forthcoming photometric surveys. The model for the angular correlation and the one for the covariance matrix agree remarkably well with the mock measurements in all configurations. The prospects for a full shape analysis of w(θ) at BAO scales in forthcoming photometric surveys such as DES are thus very encouraging.
Simulation of laser beam reflection at the sea surface
NASA Astrophysics Data System (ADS)
Schwenger, Frédéric; Repasi, Endre
2011-05-01
A 3D simulation of the reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation is suitable for both the calculation of images of SWIR (short wave infrared) imaging sensor and for determination of total detected power of reflected laser light for a bistatic configuration of laser source and receiver at different atmospheric conditions. Our computer simulation comprises the 3D simulation of a maritime scene (open sea/clear sky) and the simulation of laser light reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. The propagation model for water waves is applied for sea surface animation. To predict the view of a camera in the spectral band SWIR the sea surface radiance must be calculated. This is done by considering the emitted sea surface radiance and the reflected sky radiance, calculated by MODTRAN. Additionally, the radiances of laser light specularly reflected at the wind-roughened sea surface are modeled in the SWIR band considering an analytical statistical sea surface BRDF (bidirectional reflectance distribution function). This BRDF model considers the statistical slope statistics of waves and accounts for slope-shadowing of waves that especially occurs at flat incident angles of the laser beam and near horizontal detection angles of reflected irradiance at rough seas. Simulation results are presented showing the variation of the detected laser power dependent on the geometric configuration of laser, sensor and wind characteristics.
SKYMONITOR: A Global Network for Sky Brightness Measurements
NASA Astrophysics Data System (ADS)
Davis, Donald R.; Mckenna, D.; Pulvermacher, R.; Everett, M.
2010-01-01
We are implementing a global network to measure sky brightness at dark-sky critical sites with the goal of creating a multi-decade database. The heart of this project is the Night Sky Brightness Monitor (NSBM), an autonomous 2 channel photometer which measures night sky brightness in the visual wavelengths (Mckenna et al, AAS 2009). Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The NSBM consists of two parts, a remote unit and a base station with an internet connection. Currently these devices use 2.4 Ghz transceivers with a range of 100 meters. The remote unit is battery powered with daytime recharging using a solar panel. Data received by the base unit is transmitted via email protocol to IDA offices in Tucson where it will be collected, archived and made available to the user community via a web interface. Two other versions of the NSBM are under development: one for radio sensitive areas using an optical fiber link and the second that reads data directly to a laptop for sites without internet access. NSBM units are currently undergoing field testing at two observatories. With support from the National Science Foundation, we will construct and install a total of 10 units at astronomical observatories. With additional funding, we will locate additional units at other sites such as National Parks, dark-sky preserves and other sites where dark sky preservation is crucial. We will present the current comparison with the National Park Service sky monitoring camera. We anticipate that the SKYMONITOR network will be functioning by the end of 2010.
NASA Astrophysics Data System (ADS)
Petržala, Jaromír
2018-07-01
The knowledge of the emission function of a city is crucial for simulation of sky glow in its vicinity. The indirect methods to achieve this function from radiances measured over a part of the sky have been recently developed. In principle, such methods represent an ill-posed inverse problem. This paper deals with the theoretical feasibility study of various approaches to solving of given inverse problem. Particularly, it means testing of fitness of various stabilizing functionals within the Tikhonov's regularization. Further, the L-curve and generalized cross validation methods were investigated as indicators of an optimal regularization parameter. At first, we created the theoretical model for calculation of a sky spectral radiance in the form of a functional of an emission spectral radiance. Consequently, all the mentioned approaches were examined in numerical experiments with synthetical data generated for the fictitious city and loaded by random errors. The results demonstrate that the second order Tikhonov's regularization method together with regularization parameter choice by the L-curve maximum curvature criterion provide solutions which are in good agreement with the supposed model emission functions.
Impact of Orientation on the Vitamin D Weighted Exposure of a Human in an Urban Environment.
Schrempf, Michael; Thuns, Nadine; Lange, Kezia; Seckmeyer, Gunther
2017-08-16
The vitamin D₃-weighted UV exposure of a human with vertical posture was calculated for urban locations to investigate the impact of orientation and obstructions on the exposure. Human exposure was calculated by using the 3D geometry of a human and integrating the radiance, i.e., the radiant energy from the direct solar beam and the diffuse sky radiation from different incident and azimuth angles. Obstructions of the sky are derived from hemispherical images, which are recorded by a digital camera with a fisheye lens. Due to the low reflectivity of most surfaces in the UV range, the radiance from obstructed sky regions was neglected. For spring equinox (21 March), the exposure of a human model with winter clothing in an environment where obstructions cover 40% of the sky varies by up to 25%, depending on the orientation of the human model to the sun. The calculation of the accumulated vitamin D₃-weighted exposure of a human with winter clothing walking during lunch break shows that human exposure is reduced by the obstruction of buildings and vegetation by 40%.
Radiative sky cooling: fundamental physics, materials, structures, and applications
NASA Astrophysics Data System (ADS)
Sun, Xingshu; Sun, Yubo; Zhou, Zhiguang; Alam, Muhammad Ashraful; Bermel, Peter
2017-07-01
Radiative sky cooling reduces the temperature of a system by promoting heat exchange with the sky; its key advantage is that no input energy is required. We will review the origins of radiative sky cooling from ancient times to the modern day, and illustrate how the fundamental physics of radiative cooling calls for a combination of properties that may not occur in bulk materials. A detailed comparison with recent modeling and experiments on nanophotonic structures will then illustrate the advantages of this recently emerging approach. Potential applications of these radiative cooling materials to a variety of temperature-sensitive optoelectronic devices, such as photovoltaics, thermophotovoltaics, rectennas, and infrared detectors, will then be discussed. This review will conclude by forecasting the prospects for the field as a whole in both terrestrial and space-based systems.
A numerical experiment on light pollution from distant sources
NASA Astrophysics Data System (ADS)
Kocifaj, M.
2011-08-01
To predict the light pollution of the night-time sky realistically over any location or measuring point on the ground presents quite a difficult calculation task. Light pollution of the local atmosphere is caused by stray light, light loss or reflection of artificially illuminated ground objects or surfaces such as streets, advertisement boards or building interiors. Thus it depends on the size, shape, spatial distribution, radiative pattern and spectral characteristics of many neighbouring light sources. The actual state of the atmospheric environment and the orography of the surrounding terrain are also relevant. All of these factors together influence the spectral sky radiance/luminance in a complex manner. Knowledge of the directional behaviour of light pollution is especially important for the correct interpretation of astronomical observations. From a mathematical point of view, the light noise or veil luminance of a specific sky element is given by a superposition of scattered light beams. Theoretical models that simulate light pollution typically take into account all ground-based light sources, thus imposing great requirements on CPU and MEM. As shown in this paper, a contribution of distant sources to the light pollution might be essential under specific conditions of low turbidity and/or Garstang-like radiative patterns. To evaluate the convergence of the theoretical model, numerical experiments are made for different light sources, spectral bands and atmospheric conditions. It is shown that in the worst case the integration limit is approximately 100 km, but it can be significantly shortened for light sources with cosine-like radiative patterns.
NASA Technical Reports Server (NTRS)
Schiller, Stephen; Luvall, Jeffrey C.; Rickman, Doug L.; Arnold, James E. (Technical Monitor)
2000-01-01
Detecting changes in the Earth's environment using satellite images of ocean and land surfaces must take into account atmospheric effects. As a result, major programs are underway to develop algorithms for image retrieval of atmospheric aerosol properties and atmospheric correction. However, because of the temporal and spatial variability of atmospheric transmittance it is very difficult to model atmospheric effects and implement models in an operational mode. For this reason, simultaneous in situ ground measurements of atmospheric optical properties are vital to the development of accurate atmospheric correction techniques. Presented in this paper is a spectroradiometer system that provides an optimized set of surface measurements for the calibration and validation of atmospheric correction algorithms. The Portable Ground-based Atmospheric Monitoring System (PGAMS) obtains a comprehensive series of in situ irradiance, radiance, and reflectance measurements for the calibration of atmospheric correction algorithms applied to multispectral. and hyperspectral images. The observations include: total downwelling irradiance, diffuse sky irradiance, direct solar irradiance, path radiance in the direction of the north celestial pole, path radiance in the direction of the overflying satellite, almucantar scans of path radiance, full sky radiance maps, and surface reflectance. Each of these parameters are recorded over a wavelength range from 350 to 1050 nm in 512 channels. The system is fast, with the potential to acquire the complete set of observations in only 8 to 10 minutes depending on the selected spatial resolution of the sky path radiance measurements
Moore, Wendy; Meyer, Wallace M; Eble, Jeffrey A; Franklin, Kimberly; Wiens, John F; Brusca, Richard C
2013-01-01
The Arizona Sky Island Arthropod Project (ASAP) is a new multi-disciplinary research program at the University of Arizona that combines systematics, biogeography, ecology, and population genetics to study origins and patterns of arthropod diversity along elevation gradients and among mountain ranges in the Madrean Sky Island Region. Arthropods represent taxonomically and ecologically diverse organisms that drive key ecosystem processes in this mountain archipelago. Using data from museum specimens and specimens we obtain during long-term collecting and monitoring programs, ASAP will document arthropod species across Arizona's Sky Islands to address a number of fundamental questions about arthropods of this region. Baseline data will be used to determine climatic boundaries for target species, which will then be integrated with climatological models to predict future changes in arthropod communities and distributions in the wake of rapid climate change. ASAP also makes use of the natural laboratory provided by the Sky Islands to investigate ecological and genetic factors that influence diversification and patterns of community assembly. Here, we introduce the project, outline overarching goals, and describe preliminary data from the first year of sampling ground-dwelling beetles and ants in the Santa Catalina Mountains.
Baas, P; van de Wiel, B J H; van der Linden, S J A; Bosveld, F C
2018-01-01
The performance of an atmospheric single-column model (SCM) is studied systematically for stably-stratified conditions. To this end, 11 years (2005-2015) of daily SCM simulations were compared to observations from the Cabauw observatory, The Netherlands. Each individual clear-sky night was classified in terms of the ambient geostrophic wind speed with a [Formula: see text] bin-width. Nights with overcast conditions were filtered out by selecting only those nights with an average net radiation of less than [Formula: see text]. A similar procedure was applied to the observational dataset. A comparison of observed and modelled ensemble-averaged profiles of wind speed and potential temperature and time series of turbulent fluxes showed that the model represents the dynamics of the nocturnal boundary layer (NBL) at Cabauw very well for a broad range of mechanical forcing conditions. No obvious difference in model performance was found between near-neutral and strongly-stratified conditions. Furthermore, observed NBL regime transitions are represented in a natural way. The reference model version performs much better than a model version that applies excessive vertical mixing as is done in several (global) operational models. Model sensitivity runs showed that for weak-wind conditions the inversion strength depends much more on details of the land-atmosphere coupling than on the turbulent mixing. The presented results indicate that in principle the physical parametrizations of large-scale atmospheric models are sufficiently equipped for modelling stably-stratified conditions for a wide range of forcing conditions.
NASA Astrophysics Data System (ADS)
Baas, P.; van de Wiel, B. J. H.; van der Linden, S. J. A.; Bosveld, F. C.
2018-02-01
The performance of an atmospheric single-column model (SCM) is studied systematically for stably-stratified conditions. To this end, 11 years (2005-2015) of daily SCM simulations were compared to observations from the Cabauw observatory, The Netherlands. Each individual clear-sky night was classified in terms of the ambient geostrophic wind speed with a 1 m s^{-1} bin-width. Nights with overcast conditions were filtered out by selecting only those nights with an average net radiation of less than - 30 W m^{-2}. A similar procedure was applied to the observational dataset. A comparison of observed and modelled ensemble-averaged profiles of wind speed and potential temperature and time series of turbulent fluxes showed that the model represents the dynamics of the nocturnal boundary layer (NBL) at Cabauw very well for a broad range of mechanical forcing conditions. No obvious difference in model performance was found between near-neutral and strongly-stratified conditions. Furthermore, observed NBL regime transitions are represented in a natural way. The reference model version performs much better than a model version that applies excessive vertical mixing as is done in several (global) operational models. Model sensitivity runs showed that for weak-wind conditions the inversion strength depends much more on details of the land-atmosphere coupling than on the turbulent mixing. The presented results indicate that in principle the physical parametrizations of large-scale atmospheric models are sufficiently equipped for modelling stably-stratified conditions for a wide range of forcing conditions.
Model analysis for the MAGIC telescope
NASA Astrophysics Data System (ADS)
Mazin, D.; Bigongiari, C.; Goebel, F.; Moralejo, A.; Wittek, W.
The MAGIC Collaboration operates the 17m imaging Cherenkov telescope on the Canary island La Palma. The main goal of the experiment is an energy threshold below 100 GeV for primary gamma rays. The new analysis technique (model analysis) takes advantage of the high resolution (both in space and time) camera by fitting the averaged expected templates of the shower development to the measured shower images in the camera. This approach allows to recognize and reconstruct images just above the level of the night sky background light fluctuations. Progress and preliminary results of the model analysis technique will be presented.
The Q continuum simulation: Harnessing the power of GPU accelerated supercomputers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heitmann, Katrin; Frontiere, Nicholas; Sewell, Chris
2015-08-01
Modeling large-scale sky survey observations is a key driver for the continuing development of high-resolution, large-volume, cosmological simulations. We report the first results from the "Q Continuum" cosmological N-body simulation run carried out on the GPU-accelerated supercomputer Titan. The simulation encompasses a volume of (1300 Mpc)(3) and evolves more than half a trillion particles, leading to a particle mass resolution of m(p) similar or equal to 1.5 . 10(8) M-circle dot. At thismass resolution, the Q Continuum run is currently the largest cosmology simulation available. It enables the construction of detailed synthetic sky catalogs, encompassing different modeling methodologies, including semi-analyticmore » modeling and sub-halo abundance matching in a large, cosmological volume. Here we describe the simulation and outputs in detail and present first results for a range of cosmological statistics, such as mass power spectra, halo mass functions, and halo mass-concentration relations for different epochs. We also provide details on challenges connected to running a simulation on almost 90% of Titan, one of the fastest supercomputers in the world, including our usage of Titan's GPU accelerators.« less
Generation of high-dynamic range image from digital photo
NASA Astrophysics Data System (ADS)
Wang, Ying; Potemin, Igor S.; Zhdanov, Dmitry D.; Wang, Xu-yang; Cheng, Han
2016-10-01
A number of the modern applications such as medical imaging, remote sensing satellites imaging, virtual prototyping etc use the High Dynamic Range Image (HDRI). Generally to obtain HDRI from ordinary digital image the camera is calibrated. The article proposes the camera calibration method based on the clear sky as the standard light source and takes sky luminance from CIE sky model for the corresponding geographical coordinates and time. The article considers base algorithms for getting real luminance values from ordinary digital image and corresponding programmed implementation of the algorithms. Moreover, examples of HDRI reconstructed from ordinary images illustrate the article.
New gridded database of clear-sky solar radiation derived from ground-based observations over Europe
NASA Astrophysics Data System (ADS)
Bartok, Blanka; Wild, Martin; Sanchez-Lorenzo, Arturo; Hakuba, Maria Z.
2017-04-01
Since aerosols modify the entire energy balance of the climate system through different processes, assessments regarding aerosol multiannual variability are highly required by the climate modelling community. Because of the scarcity of long-term direct aerosol measurements, the retrieval of aerosol data/information from other type of observations or satellite measurements are very relevant. One approach frequently used in the literature is analyze of the clear-sky solar radiation which offer a better overview of changes in aerosol content. In the study first two empirical methods are elaborated in order to separate clear-sky situations from observed values of surface solar radiation available at the World Radiation Data Center (WRDC), St. Petersburg. The daily data has been checked for temporal homogeneity by applying the MASH method (Szentimrey, 2003). In the first approach, clear sky situations are detected based on clearness index, namely the ratio of the surface solar radiation to the extraterrestrial solar irradiation. In the second approach the observed values of surface solar radiation are compared to the climatology of clear-sky surface solar radiation calculated by the MAGIC radiation code (Muller et al. 2009). In both approaches the clear-sky radiation values highly depend on the applied thresholds. In order to eliminate this methodological error a verification of clear-sky detection is envisaged through a comparison with the values obtained by a high time resolution clear-sky detection and interpolation algorithm (Long and Ackermann, 2000) making use of the high quality data from the Baseline Surface Radiation Network (BSRN). As the consequences clear-sky data series are obtained for 118 European meteorological stations. Next a first attempt has been done in order to interpolate the point-wise clear-sky radiation data by applying the MISH (Meteorological Interpolation based on Surface Homogenized Data Basis) method for the spatial interpolation of surface meteorological elements developed at the Hungarian Meteorological Service (Szentimrey 2007). In this way new gridded database of clear-sky solar radiation is created suitable for further investigations regarding the role of aerosols in the energy budget, and also for validations of climate model outputs. References 1. Long CN, Ackerman TP. 2000. Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects, J. Geophys. Res., 105(D12), 15609-15626, doi:10.1029/2000JD900077. 2. Mueller R, Matsoukas C, Gratzki A, Behr H, Hollmann R. 2009. The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance - a LUT based eigenvector hybrid approach, Remote Sensing of Environment, 113 (5), 1012-1024, doi:10.1016/j.rse.2009. 01.012 3. Szentimrey T. 2014. Multiple Analysis of Series for Homogenization (MASHv3.03), Hungarian Meteorological Service, https://www.met.hu/en/omsz/rendezvenyek/homogenization_and_interpolation/software/ 4. Szentimrey T. Bihari Z. 2014: Meteorological Interpolation based on Surface Homogenized Data Basis (MISHv1.03) https://www.met.hu/en/omsz/rendezvenyek/homogenization_and_interpolation/software/
NASA Astrophysics Data System (ADS)
Damadeo, K.; Taylor, J.
2015-12-01
What color is the sky today? The GLOBE Kids - Anita, Simon, and Dennis want to know why the sky isn't always the same shade of blue and sometimes isn't even blue. Through the new Elementary GLOBE Aerosols Storybook and Learning Activities, the GLOBE Kids learn that there's a lot more than air in the atmosphere, which can affect the colors we see in the sky. There are four hands-on activities in this unit: 1) Sky Observers - Students make observations of the sky, record their findings and share their observation reports with their peers. The activity promotes active observation and recording skills to help students observe sky color, and recognize that sky color changes; 2) Why (Not) So Blue? - Students make predictions about how drops of milk will affect color and visibility in cups of water representing the atmosphere to help them understand that aerosols in the atmosphere have an effect on sky conditions, including sky color and visibility. The activity also introduces the classification categories for daytime sky color and visibility; 3) See the Light - Students use prisms and glue sticks to explore the properties of light. The activity demonstrates that white light is made up of seven colors that represent different wavelengths, and illustrates why the sky is blue during the day and red at sunset; 4) Up in the Air - Students work in groups to make an aerosol sampler, a simple adhesive tool that allows students to collect data and estimate the extent of aerosols present at their school, understanding that, in fact, there are particles in the air we breathe. NGSS Alignment includes: Disciplinary Core Ideas- ESS2.D: Weather and Climate, ESS3.C: Human Impacts on Earth Systems, PS4.B: Electromagnetic Radiation, ESS3.A: Natural Resources; Science and Engineering Practices- Asking Questions and Defining Problems, Planning and Carrying Out an Investigation, Analyzing and Interpreting Data, Engaging in Argument from Evidence, Obtaining, Evaluating, and Communicating Information; Crosscutting Concepts- Patterns and Cause and Effect; and Performance Expectations- K-ESS2-1, K-ESS2-2, 4-ESS3-1.
Coupling sky images with radiative transfer models: a new method to estimate cloud optical depth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mejia, Felipe A.; Kurtz, Ben; Murray, Keenan
A method for retrieving cloud optical depth ( τ c) using a UCSD developed ground-based sky imager (USI) is presented. The radiance red–blue ratio (RRBR) method is motivated from the analysis of simulated images of various τ c produced by a radiative transfer model (RTM). From these images the basic parameters affecting the radiance and red–blue ratio (RBR) of a pixel are identified as the solar zenith angle ( θ 0), τ c, solar pixel angle/scattering angle ( θ s), and pixel zenith angle/view angle ( θ z). The effects of these parameters are described and the functions for radiance,more » I λ τ c, θ 0, θ s, θ z , and RBR τ c, θ 0, θ s, θ z are retrieved from the RTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for τ c, where RBR increases with τ c up to about τ c = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured I λ meas θ s, θ z , in addition to RBR meas θ s, θ z , to obtain a unique solution for τ c. The RRBR method is applied to images of liquid water clouds taken by a USI at the Oklahoma Atmospheric Radiation Measurement (ARM) program site over the course of 220 days and compared against measurements from a microwave radiometer (MWR) and output from the Min et al. (2003) method for overcast skies. τ c values ranged from 0 to 80 with values over 80, being capped and registered as 80. A τ c RMSE of 2.5 between the Min et al. (2003) method and the USI are observed. The MWR and USI have an RMSE of 2.2, which is well within the uncertainty of the MWR. In conclusion, the procedure developed here provides a foundation to test and develop other cloud detection algorithms.« less
Coupling sky images with radiative transfer models: a new method to estimate cloud optical depth
Mejia, Felipe A.; Kurtz, Ben; Murray, Keenan; ...
2016-08-30
A method for retrieving cloud optical depth ( τ c) using a UCSD developed ground-based sky imager (USI) is presented. The radiance red–blue ratio (RRBR) method is motivated from the analysis of simulated images of various τ c produced by a radiative transfer model (RTM). From these images the basic parameters affecting the radiance and red–blue ratio (RBR) of a pixel are identified as the solar zenith angle ( θ 0), τ c, solar pixel angle/scattering angle ( θ s), and pixel zenith angle/view angle ( θ z). The effects of these parameters are described and the functions for radiance,more » I λ τ c, θ 0, θ s, θ z , and RBR τ c, θ 0, θ s, θ z are retrieved from the RTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for τ c, where RBR increases with τ c up to about τ c = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured I λ meas θ s, θ z , in addition to RBR meas θ s, θ z , to obtain a unique solution for τ c. The RRBR method is applied to images of liquid water clouds taken by a USI at the Oklahoma Atmospheric Radiation Measurement (ARM) program site over the course of 220 days and compared against measurements from a microwave radiometer (MWR) and output from the Min et al. (2003) method for overcast skies. τ c values ranged from 0 to 80 with values over 80, being capped and registered as 80. A τ c RMSE of 2.5 between the Min et al. (2003) method and the USI are observed. The MWR and USI have an RMSE of 2.2, which is well within the uncertainty of the MWR. In conclusion, the procedure developed here provides a foundation to test and develop other cloud detection algorithms.« less
Improved Estimates of Clear Sky Longwave Flux and Application to the Tropical Greenhouse Effect
NASA Technical Reports Server (NTRS)
Collins, W. D.
1997-01-01
The first objective of this investigation is to eliminate the clear-sky offset introduced by the scene-identification procedures developed for the Earth Radiation Budget Experiment (ERBE). Estimates of this systematic bias range from 10 to as high as 30 W/sq m. The initial version of the ScaRaB data is being processed with the original ERBE algorithm. Since the ERBE procedure for scene identification is based upon zonal flux averages, clear scenes with longwave emission well below the zonal mean value are mistakenly classified as cloudy. The erroneous classification is more frequent in regions with deep convection and enhanced mid- and upper-tropospheric humidity. We will develop scene identification parameters with zonal and/or time dependence to reduce or eliminate the bias in the clear- sky data. The modified scene identification procedure could be used for the ScaRaB-specific version of the Earth-radiation products. The second objective is to investigate changes in the clear-sky Outgoing Longwave Radiation (OLR) associated with decadal variations in the tropical and subtropical climate. There is considerable evidence for a shift in the climate state starting in approximately 1977. The shift is accompanied by higher SSTs in the equatorial Pacific, increased tropical convection, and higher values of atmospheric humidity. Other evidence indicates that the humidity in the tropical troposphere has been steadily increasing over the last 30 years. It is not known whether the atmospheric greenhouse effect has increased during this period in response to these changes in SST and precipitable water. We will investigate the decadal-scale fluctuations in the greenhouse effect using Nimbus-7, ERBE, and ScaRaB measurements spaning 1979 to the present. The data from the different satellites will be intercalibrated by comparison with model calculations based upon ship radiosonde observations. The fluxes calculated from the radiation model will also be used for validation of the ScaRaB fluxes.
Predicting Clear-Sky Reflectance Over Snow/Ice in Polar Regions
NASA Technical Reports Server (NTRS)
Chen, Yan; Sun-Mack, Sunny; Arduini, Robert F.; Hong, Gang; Minnis, Patrick
2015-01-01
Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the nearinfrared (NIR; 1.24, 1.6 or 2.13 micrometers), visible (VIS; 0.63 micrometers) and vegetation (VEG; 0.86 micrometers) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) to help identify clouds and retrieve their properties in both snow-free and snow-covered conditions. Thus, it is critical to have reliable distributions of clear-sky albedo for all of these channels. In CERES Edition 4 (Ed4), the 1.24-micrometer channel is used to retrieve cloud optical depth over snow/ice-covered surfaces. Thus, it is especially critical to accurately predict the 1.24-micrometer clear-sky albedo alpha and reflectance rho for a given location and time. Snow albedo and reflectance patterns are very complex due to surface texture, particle shapes and sizes, melt water, and vegetation protrusions from the snow surface. To minimize those effects, this study focuses on the permanent snow cover of Antarctica where vegetation is absent and melt water is minimal. Clear-sky albedos are determined as a function of solar zenith angle (SZA) from observations over all scenes determined to be cloud-free to produce a normalized directional albedo model (DRM). The DRM is used to develop alpha(SZA=0 degrees) on 10 foot grid for each season. These values provide the basis for predicting r at any location and set of viewing & illumination conditions. This paper examines the accuracy of this approach for two theoretical snow surface reflectance models.
CMSAF products Cloud Fraction Coverage and Cloud Type used for solar global irradiance estimation
NASA Astrophysics Data System (ADS)
Badescu, Viorel; Dumitrescu, Alexandru
2016-08-01
Two products provided by the climate monitoring satellite application facility (CMSAF) are the instantaneous Cloud Fractional Coverage (iCFC) and the instantaneous Cloud Type (iCTY) products. Previous studies based on the iCFC product show that the simple solar radiation models belonging to the cloudiness index class n CFC = 0.1-1.0 have rRMSE values ranging between 68 and 71 %. The products iCFC and iCTY are used here to develop simple models providing hourly estimates for solar global irradiance. Measurements performed at five weather stations of Romania (South-Eastern Europe) are used. Two three-class characterizations of the state-of-the-sky, based on the iCTY product, are defined. In case of the first new sky state classification, which is roughly related with cloud altitude, the solar radiation models proposed here perform worst for the iCTY class 4-15, with rRMSE values ranging between 46 and 57 %. The spreading error of the simple models is lower than that of the MAGIC model for the iCTY classes 1-4 and 15-19, but larger for iCTY classes 4-15. In case of the second new sky state classification, which takes into account in a weighted manner the chance for the sun to be covered by different types of clouds, the solar radiation models proposed here perform worst for the cloudiness index class n CTY = 0.7-0.1, with rRMSE values ranging between 51 and 66 %. Therefore, the two new sky state classifications based on the iCTY product are useful in increasing the accuracy of solar radiation models.
Developing Starlight connections with UNESCO sites through the Biosphere Smart
NASA Astrophysics Data System (ADS)
Marin, Cipriano
2015-08-01
The large number of UNESCO Sites around the world, in outstanding sites ranging from small islands to cities, makes it possible to build and share a comprehensive knowledge base on good practices and policies on the preservation of the night skies consistent with the protection of the associated scientific, natural and cultural values. In this context, the Starlight Initiative and other organizations such as IDA play a catalytic role in an essential international process to promote comprehensive, holistic approaches on dark sky preservation, astronomical observation, environmental protection, responsible lighting, sustainable energy, climate change and global sustainability.Many of these places have the potential to become models of excellence to foster the recovery of the dark skies and its defence against light pollution, included some case studies mentioned in the Portal to the Heritage of Astronomy.Fighting light pollution and recovering starry sky are already elements of a new emerging culture in biosphere reserves and world heritage sites committed to acting on climate change and sustainable development. Over thirty territories, including biosphere reserves and world heritage sites, have been developed successful initiatives to ensure night sky quality and promote sustainable lighting. Clear night skies also provide sustainable income opportunities as tourists and visitors are eagerly looking for sites with impressive night skies.Taking into account the high visibility and the ability of UNESCO sites to replicate network experiences, the Starlight Initiative has launched an action In cooperation with Biosphere Smart, aimed at promoting the Benchmark sites.Biosphere Smart is a global observatory created in partnership with UNESCO MaB Programme to share good practices, and experiences among UNESCO sites. The Benchmark sites window allows access to all the information of the most relevant astronomical heritage sites, dark sky protected areas and other places committed to the preservation of the values associated with the night sky. A new step ahead in our common task of protecting the starry skies at UNESCO sites.
Scale Modelling of Nocturnal Cooling in Urban Parks
NASA Astrophysics Data System (ADS)
Spronken-Smith, R. A.; Oke, T. R.
Scale modelling is used to determine the relative contribution of heat transfer processes to the nocturnal cooling of urban parks and the characteristic temporal and spatial variation of surface temperature. Validation is achieved using a hardware model-to-numerical model-to-field observation chain of comparisons. For the calm case, modelling shows that urban-park differences of sky view factor (s) and thermal admittance () are the relevant properties governing the park cool island (PCI) effect. Reduction in sky view factor by buildings and trees decreases the drain of longwave radiation from the surface to the sky. Thus park areas near the perimeter where there may be a line of buildings or trees, or even sites within a park containing tree clumps or individual trees, generally cool less than open areas. The edge effect applies within distances of about 2.2 to 3.5 times the height of the border obstruction, i.e., to have any part of the park cooling at the maximum rate a square park must be at least twice these dimensions in width. Although the central areas of parks larger than this will experience greater cooling they will accumulate a larger volume of cold air that may make it possible for them to initiate a thermal circulation and extend the influence of the park into the surrounding city. Given real world values of s and it seems likely that radiation and conduction play almost equal roles in nocturnal PCI development. Evaporation is not a significant cooling mechanism in the nocturnal calm case but by day it is probably critical in establishing a PCI by sunset. It is likely that conditions that favour PCI by day (tree shade, soil wetness) retard PCI growth at night. The present work, which only deals with PCI growth, cannot predict which type of park will be coolest at night. Complete specification of nocturnal PCI magnitude requires knowledge of the PCI at sunset, and this depends on daytime energetics.
ERIC Educational Resources Information Center
Stinner, Arthur
2014-01-01
The puzzle as to just why the sky is dark at night, given that there are so many stars, has been around at least since Newton. This article summarizes six cosmological models that have been used to attempt to give an account of this puzzle including the Copernican universe, the Newton-Halley universe, the nineteenth century "one galaxy"…
Air Toxics under the Big Sky: A Real-World Investigation to Engage High School Science Students
ERIC Educational Resources Information Center
Adams, Earle; Smith, Garon; Ward, Tony J.; Vanek, Diana; Marra, Nancy; Jones, David; Henthorn, Melissa; Striebel, Jim
2008-01-01
This paper describes a problem-based chemistry education model in which students perform scientific research on a local environmentally relevant problem. The project is a collaboration among The University of Montana and local high schools centered around Missoula, Montana. "Air Toxics under the Big Sky" involves high school students in collecting…
The Sky as a Topic in Science Education
ERIC Educational Resources Information Center
Galili, Igal; Weizman, Ayelet; Cohen, Ariel
2004-01-01
The concepts of sky and visibility distance, as perceived by different learners, are investigated for the first time as a subject of a science education research. Mental models of students with regard to the subject were elicited. They were interpreted in terms of two-level hierarchy: schemes and facets-of-knowledge (defined in the paper). Our…
None
2018-01-16
The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.
Maoret, Francesco; Beltrami, Giulia; Bertolucci, Cristiano; Foà, Augusto
2014-04-01
The present investigation was aimed at testing whether the lizard sky polarization compass is time compensated. For this purpose, ruin lizards, Podarcis sicula, were both trained and tested for orientation inside a Morris water maze under clear skies with the sun not in view. During training, lizards showed a striking bimodal orientation along the training axis, demonstrating their capability of determining the symmetry plane of the sky polarization pattern and thus the use of polarization information in orientation. After reaching criteria, lizards were kept 7 days in a 6-h fast clock-shift treatment and then released with the sun not in view. Six-hour clock-shifted lizards showed a bimodal distribution of directional choices, which was oriented perpendicularly to the training axis, as it was expected on the basis of the clock-shift. The results show that the only celestial diurnal compass mechanism that does not need a direct vision of the sun disk (i.e., the sky polarization compass) is a time-compensated compass.
Status of the NASA SETI Sky Survey microwave observing project
NASA Technical Reports Server (NTRS)
Klein, M. J.; Gulkis, S.; Wilck, H. C.; Olsen, E. T.; Garyantes, M. F.; Burns, D. J.; Asmar, P. R.; Brady, R. B.; Deich, W. T. S.; Renzetti, N. A.
1992-01-01
The Sky Survey observing program is one of two complementary strategies that NASA plans to use in its microwave Search for Extraterrestrial Intelligence (SETI). The primary objective of the Sky Survey is to search the entire sky over the frequency range 1000-10,000 MHz for evidence of narrow band signals of extraterrestrial, intelligent origin. Spectrum analyzers with upwards of 10 million channels and data rates in excess of 10 gigabits per second are required to complete the survey in less than 7 years. To lay the foundation for the operational SETI Sky Survey, a prototype system has been built to test and refine real time signal detection algorithms, to test scan strategies and observatory control functions, and to test algorithms designed to reject radio frequency interference. This paper presents a high level description of the prototype hardware and reports on the preparations to deploy the system to the 34-m antenna at the research and development station of NASA's Deep Space Communication Complex, Goldstone, California.
Status of the NASA SETI Sky Survey microwave observing project.
Klein, M J; Gulkis, S; Wilck, H C; Olsen, E T; Garyantes, M F; Burns, D J; Asmar, P R; Brady, R B; Deich, W T; Renzetti, N A
1992-01-01
The Sky Survey observing program is one of two complementary strategies that NASA plans to use in its microwave Search for Extraterrestrial Intelligence (SETI). The primary objective of the Sky Survey is to search the entire sky over the frequency range 1000-10,000 MHz for evidence of narrow band signals of extraterrestrial, intelligent origin. Spectrum analyzers with upwards of 10 million channels and data rates in excess of 10 gigabits per second are required to complete the survey in less than 7 years. To lay the foundation for the operational SETI Sky Survey, a prototype system has been built to test and refine real time signal detection algorithms, to test scan strategies and observatory control functions, and to test algorithms designed to reject radio frequency interference. This paper presents a high level description of the prototype hardware and software and reports on the preparations to deploy the system to the 34-m antenna at the research and development station of NASA's Deep Space Communication Complex, Goldstone, California.
How to Model Super-Soft X-ray Sources?
NASA Astrophysics Data System (ADS)
Rauch, Thomas
2012-07-01
During outbursts, the surface temperatures of white dwarfs in cataclysmic variables exceed by far half a million Kelvin. In this phase, they may become the brightest super-soft sources (SSS) in the sky. Time-series of high-resolution, high S/N X-ray spectra taken during rise, maximum, and decline of their X-ray luminosity provide insights into the processes following such outbursts as well as in the surface composition of the white dwarf. Their analysis requires adequate NLTE model atmospheres. The Tuebingen Non-LTE Model-Atmosphere Package (TMAP) is a powerful tool for their calculation. We present the application of TMAP models to SSS spectra and discuss their validity.
Fate of Earth Microbes on Mars: UV Radiation Effects
NASA Technical Reports Server (NTRS)
Cockell, Charles
2000-01-01
A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment. Biological action spectra for DNA inactivation are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Although the present-day martian UV flux is similar to early earth and thus may not be a limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Here calculations for loss of microbial viability on the Pathfinder and Polar lander spacecraft are presented and the effects of martian dust on loss of viability are discussed. Details of the radiative transfer model are presented.
Fate of Earth Microbes on Mars -- UV Radiation Effects
NASA Technical Reports Server (NTRS)
Cockell, Charles
2000-01-01
A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment. Biological action spectra for DNA inactivation are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Although the present-day martian UV flux is similar to early earth and thus may not be a limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Here calculations for loss of microbial viability on the Pathfinder and Polar lander spacecraft are presented and the effects of martian dust on loss of viability are discussed. Details of the radiative transfer model are presented.
Testing New Physics with the Cosmic Microwave Background
NASA Astrophysics Data System (ADS)
Gluscevic, Vera
2013-01-01
In my thesis work, I have developed and applied tests of new fundamental physics that utilize high-precision CMB polarization measurements. I especially focused on a wide class of dark energy models that propose existence of new scalar fields to explain accelerated expansion of the Universe. Such fields naturally exhibit a weak interaction with photons, giving rise to "cosmic birefringence"---a rotation of the polarization plane of light traveling cosmological distances, which alters the statistics of the CMB fluctuations in the sky by inducing a characteristic B-mode polarization. A birefringent rotation of the CMB would be smoking-gun evidence that dark energy is a dynamical component rather than a cosmological constant, while its absence gives clues about the allowed regions of the parameter space for new models. I developed a full-sky formalism to search for cosmic birefringence by cross-correlating CMB temperature and polarization maps, after allowing for the rotation angle to vary across the sky. With my collaborators, I also proposed a cross-correlation of the rotation-angle estimator with the CMB temperature as a novel statistical probe which can boost signal-to-noise in the case of marginal detection and help disentangle the underlying physical models. I then investigated the degeneracy between the rotation signal and the signals from other exotic scenarios that induce a similar B-mode polarization signature, such as chiral primordial gravitational waves, and demonstrated that these effects are completely separable. Finally, I applied this formalism to WMAP-7 data and derived the first CMB constraint on the power spectrum of the birefringent-rotation angle and presented forecasts for future experiments. To demonstrate the value of this analysis method beyond the search for direction-dependent cosmic birefringence, I have also used it to probe patchy screening from the epoch of cosmic reionization with WMAP-7 data.
Search for Gravitational Waves Associated with γ-ray Bursts Detected by the Interplanetary Network
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Augustus, H.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Croce, R. P.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fazi, D.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Ha, J.; Hall, E. D.; Hamilton, W.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Holt, K.; Hopkins, P.; Horrom, T.; Hoske, D.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Ingram, D. R.; Inta, R.; Islas, G.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, S.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, D. Nanda; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lam, P. K.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, P. J.; Leonardi, M.; Leong, J. R.; Leonor, I.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lopez, E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Ma, Y.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N. M.; Mansell, G.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Omar, S.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Recchia, S.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Reula, O.; Rhoades, E.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S. B.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sankar, S.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schilman, M.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tao, J.; Tarabrin, S. P.; Taylor, R.; Tellez, G.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Tshilumba, D.; Tuennermann, H.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wolovick, N.; Worden, J.; Wu, Y.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yoshida, S.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; Aptekar, R. L.; Atteia, J. L.; Cline, T.; Connaughton, V.; Frederiks, D. D.; Golenetskii, S. V.; Hurley, K.; Krimm, H. A.; Marisaldi, M.; Pal'shin, V. D.; Palmer, D.; Svinkin, D. S.; Terada, Y.; von Kienlin, A.; LIGO Scientific Collaboration; Virgo Collaboration; IPN Collaboration
2014-07-01
We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10-2M⊙c2 at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.
NASA Technical Reports Server (NTRS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Blackbum, L.; Camp, J. B.; Gehrels, N.; Graff, P. B.;
2014-01-01
We present the results of a search for gravitational waves associated with 223 gamma ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(exp-2) solar mass c(exp 2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.
Search for gravitational waves associated with γ-ray bursts detected by the interplanetary network.
Aasi, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J S; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Augustus, H; Aulbert, C; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Baune, C; Bavigadda, V; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Biwer, C; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Calderón Bustillo, J; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castaldi, G; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J-P; Countryman, S; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Croce, R P; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Cutler, C; Dahl, K; Dal Canton, T; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; DeBra, D; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Dickson, J; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dolique, V; Dominguez, E; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fazi, D; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J R; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C J; Gushwa, K; Gustafson, E K; Gustafson, R; Ha, J; Hall, E D; Hamilton, W; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Holt, K; Hopkins, P; Horrom, T; Hoske, D; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Huerta, E; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Idrisy, A; Ingram, D R; Inta, R; Islas, G; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N G; Kim, N; Kim, S; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, A; Kumar, D Nanda; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lam, P K; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, J; Lee, P J; Leonardi, M; Leong, J R; Leonor, I; Le Roux, A; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lopez, E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Lundgren, A P; Ma, Y; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N M; Mansell, G; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Mavalvala, N; May, G; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moggi, A; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nielsen, A B; Nissanke, S; Nitz, A H; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Omar, S; Oppermann, P; Oram, R; O'Reilly, B; Ortega, W; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Pele, A; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qin, J; Quetschke, V; Quintero, E; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Recchia, S; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Reula, O; Rhoades, E; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Roddy, S B; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sankar, S; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schilman, M; Schmidt, P; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Staley, A; Stebbins, J; Steinke, M; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tao, J; Tarabrin, S P; Taylor, R; Tellez, G; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Tshilumba, D; Tuennermann, H; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A R; Wade, L; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Wolovick, N; Worden, J; Wu, Y; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yang, H; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J-P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, H; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J; Aptekar, R L; Atteia, J L; Cline, T; Connaughton, V; Frederiks, D D; Golenetskii, S V; Hurley, K; Krimm, H A; Marisaldi, M; Pal'shin, V D; Palmer, D; Svinkin, D S; Terada, Y; von Kienlin, A
2014-07-04
We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(-2)M⊙c(2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathyanarayana Rao, Mayuri; Subrahmanyan, Ravi; Shankar, N Udaya
Cosmic baryon evolution during the Cosmic Dawn and Reionization results in redshifted 21-cm spectral distortions in the cosmic microwave background (CMB). These encode information about the nature and timing of first sources over redshifts 30–6 and appear at meter wavelengths as a tiny CMB distortion along with the Galactic and extragalactic radio sky, which is orders of magnitude brighter. Therefore, detection requires precise methods to model foregrounds. We present a method of foreground fitting using maximally smooth (MS) functions. We demonstrate the usefulness of MS functions over traditionally used polynomials to separate foregrounds from the Epoch of Reionization (EoR) signal.more » We also examine the level of spectral complexity in plausible foregrounds using GMOSS, a physically motivated model of the radio sky, and find that they are indeed smooth and can be modeled by MS functions to levels sufficient to discern the vanilla model of the EoR signal. We show that MS functions are loss resistant and robustly preserve EoR signal strength and turning points in the residuals. Finally, we demonstrate that in using a well-calibrated spectral radiometer and modeling foregrounds with MS functions, the global EoR signal can be detected with a Bayesian approach with 90% confidence in 10 minutes’ integration.« less
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G; Bastieri, D.; Bechtol, K.;
2013-01-01
In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope.For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10 and show that, despite their low latitudes, most of them are likely of extragalactic origin.
Image acquisition in the Pi-of-the-Sky project
NASA Astrophysics Data System (ADS)
Jegier, M.; Nawrocki, K.; Poźniak, K.; Sokołowski, M.
2006-10-01
Modern astronomical image acquisition systems dedicated for sky surveys provide large amount of data in a single measurement session. During one session that lasts a few hours it is possible to get as much as 100 GB of data. This large amount of data needs to be transferred from camera and processed. This paper presents some aspects of image acquisition in a sky survey image acquisition system. It describes a dedicated USB linux driver for the first version of the "Pi of The Sky" CCD camera (later versions have also Ethernet interface) and the test program for the camera together with a driver-wrapper providing core device functionality. Finally, the paper contains description of an algorithm for matching several images based on image features, i.e. star positions and their brightness.
Hypercalibration: A Pan-STARRS1-Based Recalibration of the Sloan Digital Sky Survey Photometry
Finkbeiner, Douglas P.; Schlafly, Edward F.; Schlegel, David J.; ...
2016-05-05
In this paper, we present a recalibration of the Sloan Digital Sky Survey (SDSS) photometry with new flat fields and zero points derived from Pan-STARRS1. Using point-spread function (PSF) photometry of 60 million stars with 16 < r < 20, we derive a model of amplifier gain and flat-field corrections with per-run rms residuals of 3 millimagnitudes (mmag) in griz bands and 15 mmag in u band. The new photometric zero points are adjusted to leave the median in the Galactic north unchanged for compatibility with previous SDSS work. We also identify transient non-photometric periods in SDSS ("contrails") based onmore » photometric deviations co-temporal in SDSS bands. Finally, the recalibrated stellar PSF photometry of SDSS and PS1 has an rms difference of {9, 7, 7, 8} mmag in griz, respectively, when averaged over 15' regions.« less
Planck and the reionization of the universe
NASA Astrophysics Data System (ADS)
Crill, Brendan
2016-03-01
Planck is the third-generation satellite aimed at measuring the cosmic microwave background, a relic of the hot big bang. Planck's temperature and polarization maps of the millimeter-wave sky have constrained parameters of the standard lambda-CDM model of cosmology to incredible precision, and have provided constraints on inflation in the very early universe. Planck's all-sky survey of polarization in seven frequency bands can remove contamination from nearby Galactic emission and constrain the optical depth of the reionized Universe, giving insight into the properties of the earliest star formation. The final 2016 data release from Planck will include a refined optical depth measurement using the full sensitivity of both the High Frequency and Low Frequency instruments. I present the status of the reionization measurement and discuss future prospects for further measurements of the early Universe with the CMB from Planck and future space and suborbital platforms.
Upper Limits on the 21 cm Epoch of Reionization Power Spectrum from One Night with LOFAR
NASA Astrophysics Data System (ADS)
Patil, A. H.; Yatawatta, S.; Koopmans, L. V. E.; de Bruyn, A. G.; Brentjens, M. A.; Zaroubi, S.; Asad, K. M. B.; Hatef, M.; Jelić, V.; Mevius, M.; Offringa, A. R.; Pandey, V. N.; Vedantham, H.; Abdalla, F. B.; Brouw, W. N.; Chapman, E.; Ciardi, B.; Gehlot, B. K.; Ghosh, A.; Harker, G.; Iliev, I. T.; Kakiichi, K.; Majumdar, S.; Mellema, G.; Silva, M. B.; Schaye, J.; Vrbanec, D.; Wijnholds, S. J.
2017-03-01
We present the first limits on the Epoch of Reionization 21 cm H I power spectra, in the redshift range z = 7.9-10.6, using the Low-Frequency Array (LOFAR) High-Band Antenna (HBA). In total, 13.0 hr of data were used from observations centered on the North Celestial Pole. After subtraction of the sky model and the noise bias, we detect a non-zero {{{Δ }}}{{I}}2={(56+/- 13{mK})}2 (1-σ) excess variance and a best 2-σ upper limit of {{{Δ }}}212< {(79.6{mK})}2 at k = 0.053 h cMpc-1 in the range z = 9.6-10.6. The excess variance decreases when optimizing the smoothness of the direction- and frequency-dependent gain calibration, and with increasing the completeness of the sky model. It is likely caused by (I) residual side-lobe noise on calibration baselines, (II) leverage due to nonlinear effects, (III) noise and ionosphere-induced gain errors, or a combination thereof. Further analyses of the excess variance will be discussed in forthcoming publications.
The soft X-ray diffuse background observed with the HEAO 1 low-energy detectors
NASA Technical Reports Server (NTRS)
Garmire, G. P.; Nousek, J. A.; Apparao, K. M. V.; Burrows, D. N.; Fink, R. L.; Kraft, R. P.
1992-01-01
Results of a study of the diffuse soft-X-ray background as observed by the low-energy detectors of the A-2 experiment aboard the HEAO 1 satellite are reported. The observed sky intensities are presented as maps of the diffuse X-ray background sky in several energy bands covering the energy range 0.15-2.8 keV. It is found that the soft X-ray diffuse background (SXDB) between 1.5 and 2.8 keV, assuming a power law form with photon number index 1.4, has a normalization constant of 10.5 +/- 1.0 photons/sq cm s sr keV. Below 1.5 keV the spectrum of the SXDB exceeds the extrapolation of this power law. The low-energy excess for the NEP can be fitted with emission from a two-temperature equilibrium plasma model with the temperatures given by log I1 = 6.16 and log T2 = 6.33. It is found that this model is able to account for the spectrum below 1 keV, but fails to yield the observed Galactic latitude variation.
Absolute parameters of eclipsing binaries in Southern Hemisphere sky - II: QY Tel
NASA Astrophysics Data System (ADS)
Erdem, A.; Sürgit, D.; Engelbrecht, C. A.; van Heerden, H. P.; Manick, R.
2016-11-01
This paper presents the first analysis of spectroscopic and photometric observations of the neglected southern eclipsing binary star, QY Tel. Spectroscopic observations were carried out at the South African Astronomical Observatory in 2013. New radial velocity curves from this study and V light curves from the All Sky Automated Survey were solved simultaneously using modern light and radial velocity curve synthesis methods. The final model describes QY Tel as a detached binary star where both component stars fill at least half of their Roche limiting lobes. The masses and radii were found to be 1.32 (± 0.06) M⊙, 1.74 (± 0.15) R⊙ and 1.44 (± 0.09) M⊙, 2.70 (± 0.16) R⊙ for the primary and secondary components of the system, respectively. The distance to QY Tel was calculated as 365 (± 40) pc, taking into account interstellar extinction. The evolution case of QY Tel is also examined. Both components of the system are evolved main-sequence stars with an age of approximately 3.2 Gy, when compared to Geneva theoretical evolution models.
The Locus of Stars, Galaxies, and QSOs. in SDSS Filters
NASA Astrophysics Data System (ADS)
Newberg, H.; Richards, G.; Lenz, D.; Fan, X.; Richmond, M.; Yanny, B.
1997-12-01
We present a catalog of over 2000 stars, QSOs, and galaxies in five optical passbands (u*, g*, r*, i*, and z*) that will be used by the Sloan Digital Sky Survey. The sources are brighter than 19.5 in r* (which is similar to Gunn r), and were selected from 15 fields covering half a square degree; about half of the objects have a measured u* flux. The statistical error in the photometry is typically a few percent. The systematic error is less than about 10 percent. The data was obtained on the USNO 1-m in Flagstaff, Arizona. The positions of the stars in color space are compared with Kurucz model stars, and show quite good agreement. The stellar locus, as well as the Kurucz model fits, show that the locus is shaped like a ribbon winding through color-color-color space, as discovered by Newberg and Yanny (1997). The catalog will be used to tune selection algorithms that will select spectroscopic targets from the phometric data produced by the Sloan Digital Sky Survey.
The Extreme Ultraviolet Explorer Mission
NASA Technical Reports Server (NTRS)
Bowyer, S.; Malina, R. F.
1991-01-01
The Extreme Ultraviolet Explorer (EUVE) mission, currently scheduled from launch in September 1991, is described. The primary purpose of the mission is to survey the celestial sphere for astronomical sources of extreme ultraviolet (EUV) radiation with the use of three EUV telescope, each sensitive to a different segment of the EUV band. A fourth telescope is planned to perform a high-sensitivity search of a limited sample of the sky in the shortest wavelength bands. The all-sky survey is planned to be carried out in the first six months of the mission in four bands, or colors, 70-180 A, 170-250 A, 400-600 A, and 500-700 A. The second phase of the mission is devoted to spectroscopic observations of EUV sources. A high-efficiency grazing-incidence spectrometer using variable line-space gratings is planned to provide spectral data with about 1-A resolution. An end-to-end model of the mission, from a stellar source to the resulting scientific data, is presented. Hypothetical data from astronomical sources were processed through this model and are shown.
COBE DMR-normalized open inflation cold dark matter cosmogony
NASA Technical Reports Server (NTRS)
Gorski, Krzysztof M.; Ratra, Bharat; Sugiyama, Naoshi; Banday, Anthony J.
1995-01-01
A cut-sky orthogonal mode analysis of the 2 year COBE DMR 53 and 90 GHz sky maps (in Galactic coordinates) is used to determine the normalization of an open inflation model based on the cold dark matter (CDM) scenario. The normalized model is compared to measures of large-scale structure in the universe. Although the DMR data alone does not provide sufficient discriminative power to prefer a particular value of the mass density parameter, the open model appears to be reasonably consistent with observations when Omega(sub 0) is approximately 0.3-0.4 and merits further study.
Effects of surface reflectance on skylight polarization measurements at the Mauna Loa Observatory.
Dahlberg, Andrew R; Pust, Nathan J; Shaw, Joseph A
2011-08-15
An all-sky imaging polarimeter was deployed in summer 2008 to the Mauna Loa Observatory in Hawaii to study clear-sky atmospheric skylight polarization. The imager operates in five wavebands in the visible and near infrared spectrum and has a fisheye lens for all-sky viewing. This paper describes the deployment and presents comparisons of the degree of skylight polarization observed to similar data observed by Coulson with a principal-plane scanning polarimeter in the late 1970s. In general, the results compared favorably to those of Coulson. In addition, we present quantitative results correlating a variation of the maximum degree of polarization over a range of 70-85% to fluctuation in underlying surface reflectance and upwelling radiance data from the GOES satellite. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Slater, Stephanie; Slater, Timothy F.; Baybayan, Kalepa C.
2016-01-01
This paper documents the complete modern Hawaiian navigational full-sky. Over eight years of field notes, observations, and interviews with cultural leaders, historians, and ho`okele wa`a (navigators) were used to construct and validate Kilohoku Ho`okele Wa`a, the Astronomy of the Hawaiian Navigators. In contrast to the various historical sky maps designed by different practitioners and local groups in pre-colonial times, this sky-map depicts the four whole-sky constellations used by present day wayfinders. Designed by a loosely bound group of cultural leaders and navigators as a tool to use in modern non-instrumental navigation, Kilohoku Ho`okele Wa`a is a pragmatic fusion of ancient Hawaiian tradition, traditions of greater Polynesia, and modern-day Indigenous cultural forces. Like a very small number of cultures who use the sky for non-instrumental navigation, the ho`okele wa`a conceive of each season's visible sky as a whole image, using a single constellation that stretches from the northern to the southern horizon as a tool that facilitates direction finding in skies that are often very cloudy, and that chunks the sky into sections that decrease the cognitive load placed on the navigator. Moving through the seasons, beginning in Winter, Na `Ohana Hoku `Eha (The Four Star Families) are Kekaomakali`I (The Bailer), Kaiwikuamo`o (The Backbone), Manaiakalani (The Fishhook), and Kalupekawelo (The Kite). The whole-sky character of each of the four "star families," combines with that star family's mo`olelo (purposeful story) to further facilitate navigation, employing the emotional component of moral and familial associations to enhance memorization and to provide wayfinders with encouragement on their long journeys.
Night-sky brightness monitoring in Hong Kong: a city-wide light pollution assessment.
Pun, Chun Shing Jason; So, Chu Wing
2012-04-01
Results of the first comprehensive light pollution survey in Hong Kong are presented. The night-sky brightness was measured and monitored around the city using a portable light-sensing device called the Sky Quality Meter over a 15-month period beginning in March 2008. A total of 1,957 data sets were taken at 199 distinct locations, including urban and rural sites covering all 18 Administrative Districts of Hong Kong. The survey shows that the environmental light pollution problem in Hong Kong is severe-the urban night skies (sky brightness at 15.0 mag arcsec(- 2)) are on average ~ 100 times brighter than at the darkest rural sites (20.1 mag arcsec(- 2)), indicating that the high lighting densities in the densely populated residential and commercial areas lead to light pollution. In the worst polluted urban location studied, the night-sky at 13.2 mag arcsec(- 2) can be over 500 times brighter than the darkest sites in Hong Kong. The observed night-sky brightness is found to be affected by human factors such as land utilization and population density of the observation sites, together with meteorological and/or environmental factors. Moreover, earlier night skies (at 9:30 p.m. local time) are generally brighter than later time (at 11:30 p.m.), which can be attributed to some public and commercial lightings being turned off later at night. On the other hand, no concrete relationship between the observed sky brightness and air pollutant concentrations could be established with the limited survey sampling. Results from this survey will serve as an important database for the public to assess whether new rules and regulations are necessary to control the use of outdoor lightings in Hong Kong.
Radiative sky cooling: fundamental physics, materials, structures, and applications
Sun, Xingshu; Sun, Yubo; Zhou, Zhiguang; ...
2017-07-29
Radiative sky cooling reduces the temperature of a system by promoting heat exchange with the sky; its key advantage is that no input energy is required. We will review the origins of radiative sky cooling from ancient times to the modern day, and illustrate how the fundamental physics of radiative cooling calls for a combination of properties that may not occur in bulk materials. A detailed comparison with recent modeling and experiments on nanophotonic structures will then illustrate the advantages of this recently emerging approach. Potential applications of these radiative cooling materials to a variety of temperature-sensitive optoelectronic devices, suchmore » as photovoltaics, thermophotovoltaics, rectennas, and infrared detectors, will then be discussed. This review will conclude by forecasting the prospects for the field as a whole in both terrestrial and space-based systems.« less
Radiative sky cooling: fundamental physics, materials, structures, and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xingshu; Sun, Yubo; Zhou, Zhiguang
Radiative sky cooling reduces the temperature of a system by promoting heat exchange with the sky; its key advantage is that no input energy is required. We will review the origins of radiative sky cooling from ancient times to the modern day, and illustrate how the fundamental physics of radiative cooling calls for a combination of properties that may not occur in bulk materials. A detailed comparison with recent modeling and experiments on nanophotonic structures will then illustrate the advantages of this recently emerging approach. Potential applications of these radiative cooling materials to a variety of temperature-sensitive optoelectronic devices, suchmore » as photovoltaics, thermophotovoltaics, rectennas, and infrared detectors, will then be discussed. This review will conclude by forecasting the prospects for the field as a whole in both terrestrial and space-based systems.« less
Leistedt, B.; Peiris, H. V.; Elsner, F.; ...
2016-10-17
Spatially-varying depth and characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, in particular in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. Wemore » illustrate the complementarity of these two approaches by comparing the SV data with the BCC-UFig, a synthetic sky catalogue generated by forward-modelling of the DES SV images. We then analyse the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially-varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and well-captured by the maps of observing conditions. The combined use of the maps, the SV data and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on N(z), the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak lensing analyses. However, they will need to be carefully characterised in upcoming phases of DES in order to avoid biasing the inferred cosmological results. The framework presented is relevant to all multi-epoch surveys, and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope, which will require detailed null-tests and realistic end-to-end image simulations to correctly interpret the deep, high-cadence observations of the sky.« less
Technology for detecting spectral radiance by a snapshot multi-imaging spectroradiometer
NASA Astrophysics Data System (ADS)
Zuber, Ralf; Stührmann, Ansgar; Gugg-Helminger, Anton; Seckmeyer, Gunther
2017-12-01
Technologies to determine spectral sky radiance distributions have evolved in recent years and have enabled new applications in remote sensing, for sky radiance measurements, in biological/diagnostic applications and luminance measurements. Most classical spectral imaging radiance technologies are based on mechanical and/or spectral scans. However, these methods require scanning time in which the spectral radiance distribution might change. To overcome this limitation, different so-called snapshot spectral imaging technologies have been developed that enable spectral and spatial non-scanning measurements. We present a new setup based on a facet mirror that is already used in imaging slicing spectrometers. By duplicating the input image instead of slicing it and using a specially designed entrance slit, we are able to select nearly 200 (14 × 14) channels within the field of view (FOV) for detecting spectral radiance in different directions. In addition, a megapixel image of the FOV is captured by an additional RGB camera. This image can be mapped onto the snapshot spectral image. In this paper, the mechanical setup, technical design considerations and first measurement results of a prototype are presented. For a proof of concept, the device is radiometrically calibrated and a 10 mm × 10 mm test pattern measured within a spectral range of 380 nm-800 nm with an optical bandwidth of 10 nm (full width at half maximum or FWHM). To show its potential in the UV spectral region, zenith sky radiance measurements in the UV of a clear sky were performed. Hence, the prototype was equipped with an entrance optic with a FOV of 0.5° and modified to obtain a radiometrically calibrated spectral range of 280 nm-470 nm with a FWHM of 3 nm. The measurement results have been compared to modeled data processed by UVSPEC, which showed deviations of less than 30%. This is far from being ideal, but an acceptable result with respect to available state-of-the-art intercomparisons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leistedt, B.; Peiris, H. V.; Elsner, F.
Spatially varying depth and the characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, particularly in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES-SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. Wemore » illustrate the complementary nature of these two approaches by comparing the SV data with BCC-UFig, a synthetic sky catalog generated by forward-modeling of the DES-SV images. We analyze the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and are well-captured by the maps of observing conditions. The combined use of the maps, the SV data, and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on N(z), the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak-lensing analyses. However, they will need to be carefully characterized in upcoming phases of DES in order to avoid biasing the inferred cosmological results. The framework presented here is relevant to all multi-epoch surveys and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope, which will require detailed null tests and realistic end-to-end image simulations to correctly interpret the deep, high-cadence observations of the sky« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leistedt, B.; Peiris, H. V.; Elsner, F.
Spatially-varying depth and characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, in particular in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. Wemore » illustrate the complementarity of these two approaches by comparing the SV data with the BCC-UFig, a synthetic sky catalogue generated by forward-modelling of the DES SV images. We then analyse the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially-varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and well-captured by the maps of observing conditions. The combined use of the maps, the SV data and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on N(z), the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak lensing analyses. However, they will need to be carefully characterised in upcoming phases of DES in order to avoid biasing the inferred cosmological results. The framework presented is relevant to all multi-epoch surveys, and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope, which will require detailed null-tests and realistic end-to-end image simulations to correctly interpret the deep, high-cadence observations of the sky.« less
Airborne geophysical surveys conducted in western Nebraska, 2010: contractor reports and data
,
2014-01-01
This report contains three contractor reports and data files for an airborne electromagnetic survey flown from June 28 to July 7, 2010. The first report; “SkyTEM Survey: Nebraska, USA, Data” describes data aquisition and processing from a time-domain electromagnetic and magnetic survey performed by SkyTEM Canada, Inc. (the North American SkyTEM subsidiary), in western Nebraska, USA. Digital data for this report are given in Appendix 1. The airborne geophysical data from the SkyTEM survey subsequently were processed and inverted by Aarhus Geophysics ApS, Aarhus, Denmark, to produce resistivity depth sections along each flight line. The result of that processing is described in two reports presented in Appendix 2, “Processing and inversion of SkyTEM data from USGS Area UTM–13” and “Processing and inversion of SkyTEM data from USGS Area UTM–14.” Funding for these surveys was provided by the North Platte Natural Resources District, the South Platte Natural Resources District, and the Twin Platte Natural Resources District, in Scottsbluff, Sidney, and North Platte, Nebraska, respectively. Any additional information concerning the geophysical data may be obtained from the U.S. Geological Survey Crustal Geophysics and Geochemistry Science Center, Denver Colorado.
NASA Astrophysics Data System (ADS)
Kim, Jin-Young; Yun, Chang-Yeol; Kim, Chang Ki; Kang, Yong-Heack; Kim, Hyun-Goo; Lee, Sang-Nam; Kim, Shin-Young
2017-06-01
The South Korean government has been started monitoring and reassessment for new and renewable resource under greenhouse reduction related with the climate agreement in Paris. This study investigated characteristics of the model-derived direct normal irradiance(DNI) using ten-minute data of the Weather Research and Forecasting(WRF) model with 1 km grid spacing. First, ground horizontal irradiance(GHI) and direct normal irradiance(DNI) from the model was compared with those of ground stations throughout South Korea to evaluate the uncertainty of the GHI-derived DNI. Then solar thermal resource potential was assessed using a DNI map. Uncertainty of irradiances appeared highly dependent on sky conditions. Root mean square errors in DNI(GHI) was 45.39%(18.06%) for all sky with the range of 9.92˜51.93%(14.49˜51.47%) for clear to overcast sky. These indicate DNI is further sensitive to cloud condition in Korea which is around 72% of cloud days during a whole year. Finally DNI maps showed high value over most areas except southeastern areas and Jeju island which is humid regions in South Korea.
Predicting the sky from 30 MHz to 800 GHz: the extended Global Sky Model
NASA Astrophysics Data System (ADS)
Liu, Adrian
We propose to construct the extended Global Sky Model (eGSM), a software package and associated data products that are capable of generating maps of the sky at any frequency within a broad range (30 MHz to 800 GHz). The eGSM is constructed from archival data, and its outputs will include not only "best estimate" sky maps, but also accurate error bars and the ability to generate random realizations of missing modes in the input data. Such views of the sky are crucial in the practice of precision cosmology, where our ability to constrain cosmological parameters and detect new phenomena (such as B-mode signatures from primordial gravitational waves, or spectral distortions of the Cosmic Microwave Background; CMB) rests crucially on our ability to remove systematic foreground contamination. Doing so requires empirical measurements of the foreground sky brightness (such as that arising from Galactic synchrotron radiation, among other sources), which are typically performed only at select narrow wavelength ranges. We aim to transcend traditional wavelength limits by optimally combining existing data to provide a comprehensive view of the foreground sky at any frequency within the broad range of 30 MHz to 800 GHz. Previous efforts to interpolate between multi-frequency maps resulted in the Global Sky Model (GSM) of de Oliveira-Costa et al. (2008), a software package that outputs foreground maps at any frequency of the user's choosing between 10 MHz and 100 GHz. However, the GSM has a number of shortcomings. First and foremost, the GSM does not include the latest archival data from the Planck satellite. Multi-frequency models depend crucially on data from Planck, WMAP, and COBE to provide high-frequency "anchor" maps. Another crucial shortcoming is the lack of error bars in the output maps. Finally, the GSM is only able to predict temperature (i.e., total intensity) maps, and not polarization information. With the recent release of Planck's polarized data products, the time is ripe for the inclusion of polarization and a general update of the GSM. In its first two phases, our proposed eGSM project will incorporate new data and improve analysis methods to eliminate all of the aforementioned flaws. The eGSM will have broad implications for future cosmological probes, including surveys of the highly redshifted 21 cm line (such as the proposed Dark Ages Radio Explorer satellite mission) and CMB experiments (such as the Primordial Inflation Polarization Explorer and the Primordial Inflation Explorer) targeting primordial B-mode polarization or spectral distortions. Forecasting exercises for such future experiments must include polarized foregrounds below current detection limits. The third phase of the eGSM will result in a software package that provides random realizations of dim polarized foregrounds that are below the sensitivities of current instruments. This requires the quantification of non-Gaussian and non-isotropic statistics of existing foreground surveys, adding value to existing archival maps. eGSM data products will be publicly hosted on the Legacy Archive for Microwave Background Data Analysis (LAMBDA) archive, including a publicly released code that enables future foreground surveys (whether ground-based or space-based) to easily incorporate additional data into the existing archive, further refining our model and maximizing the impact of existing archives beyond the lifetime of this proposal.
VizieR Online Data Catalog: The CLASS blazar survey. I. (Marcha+, 2001)
NASA Astrophysics Data System (ADS)
Marcha, M. J.; Caccianiga, A.; Browne, I. W. A.; Jackson, N.
2002-04-01
This paper presents a new complete and well-defined sample of flat-spectrum radio sources (FSRS) selected from the Cosmic Lens All-Sky Survey (CLASS), with the further constraint of a bright (mag<=17.5) optical counterpart. The sample has been designed to produce a large number of low-luminosity blazars in order to test the current unifying models in the low-luminosity regime. In this first paper the new sample is presented and the radio properties of the 325 sources contained therein are discussed. (1 data file).
An analytically based numerical method for computing view factors in real urban environments
NASA Astrophysics Data System (ADS)
Lee, Doo-Il; Woo, Ju-Wan; Lee, Sang-Hyun
2018-01-01
A view factor is an important morphological parameter used in parameterizing in-canyon radiative energy exchange process as well as in characterizing local climate over urban environments. For realistic representation of the in-canyon radiative processes, a complete set of view factors at the horizontal and vertical surfaces of urban facets is required. Various analytical and numerical methods have been suggested to determine the view factors for urban environments, but most of the methods provide only sky-view factor at the ground level of a specific location or assume simplified morphology of complex urban environments. In this study, a numerical method that can determine the sky-view factors ( ψ ga and ψ wa ) and wall-view factors ( ψ gw and ψ ww ) at the horizontal and vertical surfaces is presented for application to real urban morphology, which are derived from an analytical formulation of the view factor between two blackbody surfaces of arbitrary geometry. The established numerical method is validated against the analytical sky-view factor estimation for ideal street canyon geometries, showing a consolidate confidence in accuracy with errors of less than 0.2 %. Using a three-dimensional building database, the numerical method is also demonstrated to be applicable in determining the sky-view factors at the horizontal (roofs and roads) and vertical (walls) surfaces in real urban environments. The results suggest that the analytically based numerical method can be used for the radiative process parameterization of urban numerical models as well as for the characterization of local urban climate.
Dark Sky Protection and Education - Izera Dark Sky Park
NASA Astrophysics Data System (ADS)
Berlicki, Arkadiusz; Kolomanski, Sylwester; Mrozek, Tomasz; Zakowicz, Grzegorz
2015-08-01
Darkness of the night sky is a natural component of our environment and should be protected against negative effects of human activities. The night darkness is necessary for balanced life of plants, animals and people. Unfortunately, development of human civilization and technology has led to the substantial increase of the night-sky brightness and to situation where nights are no more dark in many areas of the World. This phenomenon is called "light pollution" and it can be rank among such problems as chemical pollution of air, water and soil. Besides the environment, the light pollution can also affect e.g. the scientific activities of astronomers - many observatories built in the past began to be located within the glow of city lights making the night observations difficult, or even impossible.In order to protect the natural darkness of nights many so-called "dark sky parks" were established, where the darkness is preserved, similar to typical nature reserves. The role of these parks is not only conservation but also education, supporting to make society aware of how serious the problem of the light pollution is.History of the dark sky areas in Europe began on November 4, 2009 in Jizerka - a small village situated in the Izera Mountains, when Izera Dark Sky Park (IDSP) was established - it was the first transboundary dark sky park in the World. The idea of establishing that dark sky park in the Izera Mountains originated from a need to give to the society in Poland and Czech Republic the knowledge about the light pollution. Izera Dark Sky Park is a part of the astro-tourism project "Astro Izery" that combines tourist attraction of Izera Valley and astronomical education under the wonderful starry Izera sky. Besides the IDSP, the project Astro Izery consists of the set of simple astronomical instruments (gnomon, sundial), natural educational trail "Solar System Model", and astronomical events for the public. In addition, twice a year we organize a 3-4 days "Astronomy Workshop for Schools", where teachers and astronomers from Astronomical Institute (University of Wroclaw) educate the young generations in the field of astronomy and other physical sciences.
Benthic Light Availability Improves Predictions of Riverine Primary Production
NASA Astrophysics Data System (ADS)
Kirk, L.; Cohen, M. J.
2017-12-01
Light is a fundamental control on photosynthesis, and often the only control strongly correlated with gross primary production (GPP) in streams and rivers; yet it has received far less attention than nutrients. Because benthic light is difficult to measure in situ, surrogates such as open sky irradiance are often used. Several studies have now refined methods to quantify canopy and water column attenuation of open sky light in order to estimate the amount of light that actually reaches the benthos. Given the additional effort that measuring benthic light requires, we should ask if benthic light always improves our predictions of GPP compared to just open sky irradiance. We use long-term, high-resolution dissolved oxygen, turbidity, dissolved organic matter (fDOM), and irradiance data from streams and rivers in north-central Florida, US across gradients of size and color to build statistical models of benthic light that predict GPP. Preliminary results on a large, clear river show only modest model improvements over open sky irradiance, even in heavily canopied reaches with pulses of tannic water. However, in another spring-fed river with greater connectivity to adjacent wetlands - and hence larger, more frequent pulses of tannic water - the model improved dramatically with the inclusion of fDOM (model R2 improved from 0.28 to 0.68). River shade modeling efforts also suggest that knowing benthic light will greatly enhance our ability to predict GPP in narrower, forested streams flowing in particular directions. Our objective is to outline conditions where an assessment of benthic light conditions would be necessary for riverine metabolism studies or management strategies.
Guzikowski, Jakub; Czerwińska, Agnieszka E; Krzyścin, Janusz W; Czerwiński, Michał A
2017-08-01
Information regarding the intensity of surface UV radiation, provided for the public, is frequently given in terms of a daily maximum UV Index (UVI), based on a prognostic model. The quality of the UV forecast depends on the accuracy of column amount of ozone and cloudiness prediction. Daily variability of UVI is needed to determine the risk of the UV overexposure during outdoor activities. Various methods of estimating the temporary UVI and the maximum duration of UV exposures (received a dose equal to minimal erythemal dose - MED), at the site of sunbathing, were compared. The UV indices were obtained during a field experiment at the Baltic Sea coast in the period from 13th to 24th July 2015. The following UVI calculation models were considered: UVI measurements by simple hand-held biometers (Silver Crest, Oregon Scientific, or more advanced Solarmeter 6.5), our smartphone models based on cloud cover observations at the site and the cloudless-sky UVI forecast (available for any site for all smartphone users) or measured UVI, and the 24h weather predictions by the ensemble set of 10 models (with various cloud parameterizations). The direct UV measurements, even by a simple biometer, provided useful UVI estimates. The smartphone applications yielded a good agreement with the UV measurements. The weather prediction models for cloudless-sky conditions could provide valuable information if almost cloudless-sky conditions (cloudless-sky or slightly scattered clouds) were observed at the sunbathing site. Copyright © 2017 Elsevier B.V. All rights reserved.
VizieR Online Data Catalog: Northern Sky Variability Survey (Wozniak+, 2004)
NASA Astrophysics Data System (ADS)
Wozniak, P. R.; Vestrand, W. T.; Akerlof, C. W.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Kehoe, R.; Kinemuchi, K.; Lee, B. C.; Marshall, S.; McGowan, K. E.; McKay, T. A.; Rykoff, E. S.; Smith, D. A.; Szymanski, J.; Wren, J.
2004-11-01
The Northern Sky Variability Survey (NSVS) is a temporal record of the sky over the optical magnitude range from 8 to 15.5. It was conducted in the course of the first-generation Robotic Optical Transient Search Experiment (ROTSE-I) using a robotic system of four comounted unfiltered telephoto lenses equipped with CCD cameras. The survey was conducted from Los Alamos, New Mexico, and primarily covers the entire northern sky. Some data in southern fields between declinations 0{deg} and -38{deg} are also available, although with fewer epochs and noticeably lesser quality. The NSVS contains light curves for approximately 14 million objects. With a 1-yr baseline and typically 100-500 measurements per object, the NSVS is the most extensive record of stellar variability across the bright sky available today. In a median field, bright unsaturated stars attain a point-to-point photometric scatter of ~0.02mag and position errors within 2. At Galactic latitudes |b|<20{deg}, the data quality is limited by severe blending due to the ~14" pixel size. We present basic characteristics of the data set and describe data collection, analysis, and distribution. All NSVS photometric measurements are available for on-line public access from the Sky Database for Objects in Time-Domain (SkyDOT) at Los Alamos National Laboratory. Copies of the full survey photometry may also be requested on tape. (7 data files).
New device for monitoring the colors of the night
NASA Astrophysics Data System (ADS)
Spoelstra, Henk
2014-05-01
The introduction of LED lighting in the outdoor environment may increase the amount of blue light in the night sky color spectrum. This can cause more light pollution due to Rayleigh scattering of the shorter wavelengths. Blue light may also have an impact on circadian rhythm of humans due to the suppression of melatonin. At present no long-term data sets of the color spectrum of the night sky are available. In order to facilitate the monitoring of levels and variations in the night sky spectrum, a low cost multi-filter instrument has been developed. Design considerations are described as well as the choice of suitable filters, which are critical - especially in the green wavelength band from 500 to 600 nm. Filters from the optical industry were chosen for this band because available astronomical filters exclude some or all of the low and high-pressure sodium lines from lamps, which are important in light pollution research. Correction factors are calculated to correct for the detector response and filter transmissions. Results at a suburban monitoring station showed that the light levels between 500 and 600 nm are dominant during clear and cloudy skies. The relative contribution of blue light increases with a clear moonless night sky. The change in color spectrum of the night sky under moonlit skies is more complex and is still under study.
Clear-Sky Narrowband Albedo Datasets Derived from Modis Data
NASA Astrophysics Data System (ADS)
Chen, Y.; Minnis, P.; Sun-Mack, S.; Arduini, R. F.; Hong, G.
2013-12-01
Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting the clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the near-infrared (NIR; 1.24, 1.6 or 2.13 μm) and visible (VIS; 0.63 μm) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS) to help identify clouds and retrieve their properties. Generally, clear-sky albedo for a given surface type is determined for conditions when the vegetation is either thriving or dormant and free of snow. The clear-sky albedos are derived using a radiative transfer parameterization of the impact of the atmosphere, including aerosols, on the observed reflectances. This paper presents the method of generating monthly clear-sky overhead albedo maps for both snow-free and snow-covered surfaces of these channels using one year of MODIS (Moderate Resolution Imaging Spectroradiometer) CERES products. Maps of 1.24 and 1.6 μm are being used as the background to help retrieve cloud properties (e.g., effective particle size, optical depth) in CERES cloud retrievals in both snow-free and snow-covered conditions.
The WIRED Survey. 2; Infrared Excesses in the SDSS DR7 White Dwarf Catalog
NASA Technical Reports Server (NTRS)
Debes, John H.; Hoard, D. W.; Wachter, Stefanie; Leisawitz, David T.; Cohen, Martin
2011-01-01
With the launch of the Wide-field Infrar.ed Survey Explorer (WISE), a new era of detecting planetary debris and brown dwarfs (BDs) around white dwarfs (WDs) has begun with the WISE InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED Survey is sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs. In this paper, we present a cross-correlation of the preliminary Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) WD catalog between the WISE, Two-Micron All Sky Survey (2MASS), UKIRT Infrared Deep Sky Survey (UKIDSS), and SDSS DR7 photometric catalogs. From -18,000 input targets, there are WISE detections comprising 344 "naked" WDs (detection of the WD photosphere only), 1020 candidate WD+M dwarf binaries, 42 candidate WD+BD systems, 52 candidate WD+dust disk systems, and 69 targets with indeterminate infrared excess. We classified all of the detected targets through spectral energy distribution model fitting of the merged optical, near-IR, and WISE photometry. Some of these detections could be the result of contaminating sources within the large (approx. 6") WISE point-spread function; we make a preliminary estimate for the rates of contamination for our WD+BD and WD+disk candidates and provide notes for each target of interest. Each candidate presented here should be confirmed with higher angular resolution infrared imaging or infrared spectroscopy. We also present an overview of the observational characteristics of the detected WDs in the WISE photometric bands, including the relative frequencies of candidate WD+M, WD+BD, and WD+disk systems.
Dark Skies are a Universal Resource: Programs Planned for the International Year of Astronomy
NASA Astrophysics Data System (ADS)
Walker, Constance E.; US IYA Dark Skies Working Group
2008-05-01
The dark night sky is a natural resource that is being lost by much of the world's population. This loss is a growing, serious issue that impacts not only astronomical research, but also human health, ecology, safety, economics and energy conservation. One of the themes of the US Node targeted for the International Year of Astronomy (IYA) is "Dark Skies are a Universal Resource". The goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved locally in a variety of dark skies-related events. To reach this goal, activities are being developed that: 1) Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking) 2) Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Teaching Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy Nights) 3) Organize events in the arts (e.g., a photography contest) 4) Involve citizen-scientists in unaided-eye and digital-meter star counting programs (e.g., GLOBE at Night, "How Many Stars?” and the Great World Wide Star Count) and 5) Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security (e.g., The Great Switch Out, Earth Hour, National Dark Skies Week, traveling exhibits and a 6-minute video tutorial on lighting issues). To deliver these programs, strategic networks have been established with the ASP's Night Sky Network's astronomy clubs, Astronomy from the Ground Up's science and nature centers and the Project and Family ASTRO programs, as well as the International Dark-Sky Association, GLOBE and the Astronomical League, among others. The poster presentation will outline the activities being developed, the plans for funding, implementation, marketing and the connections to the global cornerstone IYA project, "Dark Skies Awareness".
Integrating hydrodynamic models and COSMO-SkyMed derived products for flood damage assessment
NASA Astrophysics Data System (ADS)
Giuffra, Flavio; Boni, Giorgio; Pulvirenti, Luca; Pierdicca, Nazzareno; Rudari, Roberto; Fiorini, Mattia
2015-04-01
Floods are the most frequent weather disasters in the world and probably the most costly in terms of social and economic losses. They may have a strong impact on infrastructures and health because the range of possible damages includes casualties, loss of housing and destruction of crops. Presently, the most common approach for remotely sensing floods is the use of synthetic aperture radar (SAR) images. Key features of SAR data for inundation mapping are the synoptic view, the capability to operate even in cloudy conditions and during both day and night time and the sensitivity of the microwave radiation to water. The launch of a new generation of instruments, such as TerraSAR-X and COSMO-SkyMed (CSK) allows producing near real time flood maps having a spatial resolution in the order of 1-5 m. Moreover, the present (CSK) and upcoming (Sentinel-1) constellations permit the acquisition of radar data characterized by a short revisit time (in the order of some hours for CSK), so that the production of frequent inundation maps can be envisaged. Nonetheless, gaps might be present in the SAR-derived flood maps because of the limited area imaged by SAR; moreover, the detection of floodwater may be complicated by the presence of very dense vegetation or urban settlements. Hence the need to complement SAR-derived flood maps with the outputs of physical models. Physical models allow delivering to end users very useful information for a complete flood damage assessment, such as data on water depths and flow directions, which cannot be directly derived from satellite remote sensing images. In addition, the flood extent predictions of hydraulic models can be compared to SAR-derived inundation maps to calibrate the models, or to fill the aforementioned gaps that can be present in the SAR-derived maps. Finally, physical models enable the construction of risk scenarios useful for emergency managers to take their decisions and for programming additional SAR acquisitions in order to observe the temporal evolution of the event (e.g. the water receding). In this paper, the first outcomes of a study aiming at combining COSMO-SkyMed derived flood maps with hydrodynamic models are presented. The study is carried out within the framework of the EO-based CHange detection for Operational Flood Management (ECHO-FM) project, funded by the Italian Space Agency (ASI) as part of the research activities agreed in the cooperation between ASI and the Japan Aerospace Exploration Agency (JAXA). The flood that hit the region of Shkodër, in Albania, on January 2010, is considered as test case. The work focuses on the utility of a dense temporal series of SAR data, such as that available through CSK for this case study, used in combination with a hydrodynamic model to monitor over a long time (in the order of 3 weeks) the natural drainage of the Shkodër floodplain. It is shown that by matching the outputs of the model to SAR observations, the hydrodynamic inconsistencies in CSK estimates can be corrected.
Session 21.1 - Observations, Advances in LED Technology, and Dark Sky Protection
NASA Astrophysics Data System (ADS)
Duriscoe, Dan M.
2016-10-01
The importance of dark sky protection, potential threats to further degradation from LED technology, the announcement of a new world atlas of artificial night sky brightness, and the use of color images from the orbiting International Space Station for monitoring potential sources of light pollution were discussed in the six talks of this session. It was clear from the presentations that the work of professional astronomy depends upon continued restraint in the use of outdoor lighting, especially new LED technology, which relies upon blue-rich sources to support the advantages of high luminous efficacy and resulting energy savings.
Dark Skies Yuma: An NOAO and APS Program on Light Pollution Education
NASA Astrophysics Data System (ADS)
Pompea, Stephen M.; Walker, C. E.; Dugan, C.; Roddy, W. T.; Newhouse, M.
2014-01-01
Fifteen Yuma 6th grade teachers participated in a dark skies preservation and energy conservation professional development and classroom program delivered by NOAO during 2013. Two teacher professional development workshops and a culminating Family Science Night for students to display projects occurred. Between workshops, support was provided through real-time video conferencing using iPads. In the first workshop the teachers were provided foundational, scaffolded activities in accordance with STEM standards, resource materials in kits to facilitate the activities, and firsthand experiences in doing the activities with students. The second workshop focused on dark skies and energy education projects done in March and April. Teachers received training on how to work with classes on outdoor lighting in their communities and distinguish between energy efficient and wasteful outdoor lighting. In May, 2013, student projects were presented to parents and the school community as part of a Family Science Night and served as a form of authentic assessment of the students’ work. Participants will take away from this presentation new techniques for using iPads to sustain a community of educators as well as immersing them (and in turn, their students) in Project Based Learning after a scaffolded sequence of activities on dark skies preservation and energy conservation. View a video of the Family Science Night event at http://www.noao.edu/education/video/Dark-Skies-A-Night-of-Light/.
NASA Astrophysics Data System (ADS)
Einasto, J.
2017-07-01
In the evolution of the cosmic web dark energy plays an important role. To understand the role of dark energy we investigate the evolution of superclusters in four cosmological models: standard model SCDM, conventional model LCDM, open model OCDM, and a hyper-dark-energy model HCDM. Numerical simulations of the evolution are performed in a box of size 1024 Mpc/h. Model superclusters are compared with superclusters found for Sloan Digital Sky Survey (SDSS). Superclusters are searched using density fields. LCDM superclusters have properties, very close to properties of observed SDSS superclusters. Standard model SCDM has about 2 times more superclusters than other models, but SCDM superclusters are smaller and have lower luminosities. Superclusters as principal structural elements of the cosmic web are present at all cosmological epochs.
Estimation of the remote-sensing reflectance from above-surface measurements.
Mobley, C D
1999-12-20
The remote-sensing reflectance R(rs) is not directly measurable, and various methodologies have been employed in its estimation. I review the radiative transfer foundations of several commonly used methods for estimating R(rs), and errors associated with estimating R(rs) by removal of surface-reflected sky radiance are evaluated using the Hydrolight radiative transfer numerical model. The dependence of the sea surface reflectance factor rho, which is not an inherent optical property of the surface, on sky conditions, wind speed, solar zenith angle, and viewing geometry is examined. If rho is not estimated accurately, significant errors can occur in the estimated R(rs) for near-zenith Sun positions and for high wind speeds, both of which can give considerable Sun glitter effects. The numerical simulations suggest that a viewing direction of 40 deg from the nadir and 135 deg from the Sun is a reasonable compromise among conflicting requirements. For this viewing direction, a value of rho approximately 0.028 is acceptable only for wind speeds less than 5 m s(-1). For higher wind speeds, curves are presented for the determination of rho as a function of solar zenith angle and wind speed. If the sky is overcast, a value of rho approximately 0.028 is used at all wind speeds.
NASA Astrophysics Data System (ADS)
Pazmino, John
In previous demonstrations of New York's elimination of luminous graffiti from its skies, I focused attention on large-scale projects in the showcase districts of Manhattan. Although these works earned passionate respect in the dark sky movement, they by the same token were disheartening. New York was in some quarters of the movement regarded more as an unachievable Shangri-La than as a role model to emulate. This presentation focuses on scenes of light abatement efforts in parts of New York which resemble other towns in scale and density. I photographed these scenes along a certain bus route in Brooklyn on my way home from work during October 2001. This route circulates through various "bedroom communities," each similar to a mid-size to large town elsewhere in the United States. The sujbects included individual structures - stores, banks, schools - and streetscapes mimicking downtowns. The latter protrayed a mix of atrocious and excellent lighting practice, being that these streets are in transition by the routine process of replacement and renovation. The fixtures used - box lamps, fluted or Fresnel globes, subdued headsigns, indirect lighting - are casually obtainable by property managers at local outlets for lighting apparatus. They are routinely offered to the property managers by storefront designers, security services, contractors, and the community improvement or betterment councils.
Light pollution: Assessment of sky glow on two dark sky regions of Portugal.
Lima, Raul Cerveira; Pinto da Cunha, José; Peixinho, Nuno
2016-01-01
Artificial light at night (ALAN), producing light pollution (LP), is not a matter restricted to astronomy anymore. Light is part of modern societies and, as a consequence, the natural cycle day-night (bright-dark) has been interrupted in a large segment of the global population. There is increasing evidence that exposure to certain types of light at night and beyond threshold levels may produce hazardous effects to humans and the environment. The concept of "dark skies reserves" is a step forward in order to preserve the night sky and a means of enhancing public awareness of the problem of spread of light pollution worldwide. The aim of this study was to assess the skyglow at two sites in Portugal, the Peneda-Gerês National Park (PNPG) and the region now known as Dark Sky Alqueva Reserve. The latter site was classified as a "Starlight Tourism Destination" by the Starlight Foundation (the first in the world to achieve this classification) following a series of night sky measurements in situ described herein. The measurements at PNPG also contributed to the new set of regulations concerning light pollution at this national park. This study presents the first in situ systematic measurements of night sky brightness, showing that at the two sites the skies are mostly in levels 3 to 4 of the Bortle 9-level scale (with level 1 being the best achievable). The results indicate that the sources of light pollution and skyglow can be attributed predominantly to contamination from nearby urban regions.
Dark Skies Ahead? Activities to Raise Awareness during the International Year of Astronomy
NASA Astrophysics Data System (ADS)
Walker, Constance E.; Isbell, D.; Pompea, S.
2007-12-01
"Dark Skies as a Universal Resource” is one of 7 themes targeted for the International Year of Astronomy in 2009. The theme's goal is to raise public awareness of the impact of artificial lighting on local environments and the ongoing loss of a dark night sky as a natural resource for much of the world's population. To reach this goal, activities are being developed which highlight dark skies preservation issues 1) through new technology (e.g., programs at planetaria, blogging, podcasting); 2) at events such as star parties and observatory open houses; 3) in arts, entertainment and storytelling (e.g., art competitions, documentaries, lectures, native American traditions); 4) through unaided-eye and digital-meter star count programs involving citizen-scientists; and 5) by relating them to public health, economic issues, ecological consequences, energy conservation, safety and security. A centerpiece of the Dark Skies theme is the unaided-eye and digital-meter versions of the GLOBE at Night program. The unaided-eye version directs citizen-scientists on how to observe and record the brightness of the night sky by matching its appearance toward the constellation of Orion with one of 7 stellar maps of different limiting magnitudes. For the "digital” version, low-cost meters are used by citizen-scientists to measure the integrated sky brightness. Data sets and maps of both versions are supplied on-line for further capstone activities. In the presentation, we will outline the activities being developed as well as plans for funding, implementation, marketing and the connections to the global cornerstone IYA project, "Dark Skies Awareness".
Cone of Darkness: Finding Blank-sky Positions for Multi-object Wide-field Observations
NASA Astrophysics Data System (ADS)
Lorente, N. P. F.
2014-05-01
We present the Cone of Darkness, an application to automatically configure blank-sky positions for a series of stacked, wide-field observations, such as those carried out by the SAMI instrument on the Anglo-Australian Telescope (AAT). The Sydney-AAO Multi-object Integral field spectrograph (SAMI) uses a plug-plate to mount its 13×61 core imaging fibre bundles (hexabundles) in the optical plane at the telescope's prime focus. To make the most efficient use of each plug-plate, several observing fields are typically stacked to produce a single plate. When choosing blank-sky positions for the observations it is most effective to select these such that one set of 26 holes gives valid sky positions for all fields on the plate. However, when carried out manually this selection process is tedious and includes a significant risk of error. The Cone of Darkness software aims to provide uniform blank-sky position coverage over the field of observation, within the limits set by the distribution of target positions and the chosen input catalogs. This will then facilitate the production of the best representative median sky spectrum for use in sky subtraction. The application, written in C++, is configurable, making it usable for a range of instruments. Given the plate characteristics and the positions of target holes, the software segments the unallocated space on the plate and determines the position which best fits the uniform distribution requirement. This position is checked, for each field, against the selected catalog using a TAP ADQL search. The process is then repeated until the desired number of sky positions is attained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sick, Jonathan; Courteau, Stéphane; Cuillandre, Jean-Charles
We present wide-field near-infrared J and K{sub s} images of the Andromeda Galaxy (M31) taken with WIRCam at the Canada-France-Hawaii Telescope as part of the Andromeda Optical and Infrared Disk Survey. This data set allows simultaneous observations of resolved stars and near-infrared (NIR) surface brightness across M31's entire bulge and disk (within R = 22 kpc), permitting a direct test of the stellar composition of near-infrared light in a nearby galaxy. Here we develop NIR observation and reduction methods to recover a uniform surface brightness map across the 3° × 1° disk of M31 with 27 WIRCam fields. Two sky-targetmore » nodding strategies are tested, and we find that strictly minimizing sky sampling latency cannot improve background subtraction accuracy to better than 2% of the background level due to spatio-temporal variations in the NIR skyglow. We fully describe our WIRCam reduction pipeline and advocate using flats built from night-sky images over a single night, rather than dome flats that do not capture the WIRCam illumination field. Contamination from scattered light and thermal background in sky flats has a negligible effect on the surface brightness shape compared to the stochastic differences in background shape between sky and galaxy disk fields, which are ∼0.3% of the background level. The most dramatic calibration step is the introduction of scalar sky offsets to each image that optimizes surface brightness continuity. Sky offsets reduce the mean surface brightness difference between observation blocks from 1% to <0.1% of the background level, though the absolute background level remains statistically uncertain to 0.15% of the background level. We present our WIRCam reduction pipeline and performance analysis to give specific recommendations for the improvement of NIR wide-field imaging methods.« less
Simbol-X Background Minimization: Mirror Spacecraft Passive Shielding Trade-off Study
NASA Astrophysics Data System (ADS)
Fioretti, V.; Malaguti, G.; Bulgarelli, A.; Palumbo, G. G. C.; Ferri, A.; Attinà, P.
2009-05-01
The present work shows a quantitative trade-off analysis of the Simbol-X Mirror Spacecraft (MSC) passive shielding, in the phase space of the various parameters: mass budget, dimension, geometry and composition. A simplified physical (and geometrical) model of the sky screen, implemented by means of a GEANT4 simulation, has been developed to perform a performance-driven mass optimization and evaluate the residual background level on Simbol-X focal plane.
Moore, Wendy; Meyer, Wallace M.; Eble, Jeffrey A.; Franklin, Kimberly; Wiens, John F.; Brusca, Richard C.
2014-01-01
The Arizona Sky Island Arthropod Project (ASAP) is a new multi-disciplinary research program at the University of Arizona that combines systematics, biogeography, ecology, and population genetics to study origins and patterns of arthropod diversity along elevation gradients and among mountain ranges in the Madrean Sky Island Region. Arthropods represent taxonomically and ecologically diverse organisms that drive key ecosystem processes in this mountain archipelago. Using data from museum specimens and specimens we obtain during long-term collecting and monitoring programs, ASAP will document arthropod species across Arizona's Sky Islands to address a number of fundamental questions about arthropods of this region. Baseline data will be used to determine climatic boundaries for target species, which will then be integrated with climatological models to predict future changes in arthropod communities and distributions in the wake of rapid climate change. ASAP also makes use of the natural laboratory provided by the Sky Islands to investigate ecological and genetic factors that influence diversification and patterns of community assembly. Here, we introduce the project, outline overarching goals, and describe preliminary data from the first year of sampling ground-dwelling beetles and ants in the Santa Catalina Mountains. PMID:25505938
Shifts in the potential distribution of Sky Island plant communities in response to climate change
John A. Kupfer; Jeff Balmat; Jacqueline L. Smith
2005-01-01
To examine potential responses of sky island ecosystem pattern to projected climate changes, we used topographic and climatic data to develop a predictive model of plant community distribution in Saguaro National Park East, AZ. Increasing temperatures led to an upslope movement of communities and increased the area of desert scrub at the expense of montane conifer...
NASA Technical Reports Server (NTRS)
Quemarais, E.; Lallement, R.; Bertaux, J. L.; Sandel, B. R.
1995-01-01
The all-sky interplanetary Lyman-alpha pattern is sensitive to the latitude distribution of the solar wind because of destruction of neutral H by charge-exchange with solar wind protons. Lyman-alpha intensities recorded by Prognoz 5 and 6 in 1976 in a few parts of the sky were demonstrating a decrease of solar wind mass flux by about 30 % from equator to pole, when assuming a sinusoidal variation of this mass flux (harmonic distribution). A new analysis with a discrete variation with latitude has shown a decrease from 0 to 30 deg and then a plateau of constant mass flux up to the pole. This distribution bears a striking resemblance with Ulysses in-situ measurements, showing a clear similarity at 19 years interval. The Ulysses measurements were then used as a model input to calculate an all-sky Lyman-alpha pattern, either with a discrete model or with a harmonic solar wind variation with the same Ulysses equator-to-pole variation. There are conspicuous differences between the two Lyman-alpha patterns, in particular in the downwind region which are discussed in the context of future all-sky measurements with SWAN experiment on SOHO.
Impact of Orientation on the Vitamin D Weighted Exposure of a Human in an Urban Environment
Schrempf, Michael; Thuns, Nadine; Lange, Kezia
2017-01-01
The vitamin D3-weighted UV exposure of a human with vertical posture was calculated for urban locations to investigate the impact of orientation and obstructions on the exposure. Human exposure was calculated by using the 3D geometry of a human and integrating the radiance, i.e., the radiant energy from the direct solar beam and the diffuse sky radiation from different incident and azimuth angles. Obstructions of the sky are derived from hemispherical images, which are recorded by a digital camera with a fisheye lens. Due to the low reflectivity of most surfaces in the UV range, the radiance from obstructed sky regions was neglected. For spring equinox (21 March), the exposure of a human model with winter clothing in an environment where obstructions cover 40% of the sky varies by up to 25%, depending on the orientation of the human model to the sun. The calculation of the accumulated vitamin D3-weighted exposure of a human with winter clothing walking during lunch break shows that human exposure is reduced by the obstruction of buildings and vegetation by 40%. PMID:28813022
Second ROSAT all-sky survey (2RXS) source catalogue
NASA Astrophysics Data System (ADS)
Boller, Th.; Freyberg, M. J.; Trümper, J.; Haberl, F.; Voges, W.; Nandra, K.
2016-04-01
Aims: We present the second ROSAT all-sky survey source catalogue, hereafter referred to as the 2RXS catalogue. This is the second publicly released ROSAT catalogue of point-like sources obtained from the ROSAT all-sky survey (RASS) observations performed with the position-sensitive proportional counter (PSPC) between June 1990 and August 1991, and is an extended and revised version of the bright and faint source catalogues. Methods: We used the latest version of the RASS processing to produce overlapping X-ray images of 6.4° × 6.4° sky regions. To create a source catalogue, a likelihood-based detection algorithm was applied to these, which accounts for the variable point-spread function (PSF) across the PSPC field of view. Improvements in the background determination compared to 1RXS were also implemented. X-ray control images showing the source and background extraction regions were generated, which were visually inspected. Simulations were performed to assess the spurious source content of the 2RXS catalogue. X-ray spectra and light curves were extracted for the 2RXS sources, with spectral and variability parameters derived from these products. Results: We obtained about 135 000 X-ray detections in the 0.1-2.4 keV energy band down to a likelihood threshold of 6.5, as adopted in the 1RXS faint source catalogue. Our simulations show that the expected spurious content of the catalogue is a strong function of detection likelihood, and the full catalogue is expected to contain about 30% spurious detections. A more conservative likelihood threshold of 9, on the other hand, yields about 71 000 detections with a 5% spurious fraction. We recommend thresholds appropriate to the scientific application. X-ray images and overlaid X-ray contour lines provide an additional user product to evaluate the detections visually, and we performed our own visual inspections to flag uncertain detections. Intra-day variability in the X-ray light curves was quantified based on the normalised excess variance and a maximum amplitude variability analysis. X-ray spectral fits were performed using three basic models, a power law, a thermal plasma emission model, and black-body emission. Thirty-two large extended regions with diffuse emission and embedded point sources were identified and excluded from the present analysis. Conclusions: The 2RXS catalogue provides the deepest and cleanest X-ray all-sky survey catalogue in advance of eROSITA. The catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; Ajello, M.; Albert, A.
2013-07-01
In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10 Degree-Sign andmore » show that, despite their low latitudes, most of them are likely of extragalactic origin.« less
Ackermann, M.; Ajello, M.; Albert, A.; ...
2013-06-17
In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. In addition, for each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. Finally, we proceed to discuss the 27 sources found at Galactic latitudes smaller thanmore » 10° and show that, despite their low latitudes, most of them are likely of extragalactic origin.« less
The "Sky on Earth" Project: A Synergy between Formal and Informal Astronomy Education
ERIC Educational Resources Information Center
Rossi, Sabrina; Giordano, Enrica; Lanciano, Nicoletta
2016-01-01
In this paper we present the "Sky on Earth" project funded in 2008 by the Italian Ministry of Instruction, Research and University, inside its annual public outreach education program. The project's goal was to realise a stable and open-access astronomical garden, where children, teachers and citizens could be engaged in investigations…
The displacement of the sun from the galactic plane using IRAS and faust source counts
NASA Technical Reports Server (NTRS)
Cohen, Martin
1995-01-01
I determine the displacement of the Sun from the Galactic plane by interpreting IRAS point-source counts at 12 and 25 microns in the Galactic polar caps using the latest version of the SKY model for the point-source sky (Cohen 1994). A value of solar zenith = 15.5 +/- 0.7 pc north of the plane provides the best match to the ensemble of useful IRAS data. Shallow K counts in the north Galactic pole are also best fitted by this offset, while limited FAUST far-ultraviolet counts at 1660 A near the same pole favor a value near 14 pc. Combining the many IRAS determinations with the few FAUST values suggests that a value of solar zenith = 15.0 +/- 0.5 pc (internal error only) would satisfy these high-latitude sets of data in both wavelength regimes, within the context of the SKY model.
An Earth longwave radiation climate model
NASA Technical Reports Server (NTRS)
Yang, S. K.
1984-01-01
An Earth outgoing longwave radiation (OLWR) climate model was constructed for radiation budget study. Required information is provided by on empirical 100mb water vapor mixing ratio equation of the mixing ratio interpolation scheme. Cloud top temperature is adjusted so that the calculation would agree with NOAA scanning radiometer measurements. Both clear sky and cloudy sky cases are calculated and discussed for global average, zonal average and world-wide distributed cases. The results agree well with the satellite observations. The clear sky case shows that the OLWR field is highly modulated by water vapor, especially in the tropics. The strongest longitudinal variation occurs in the tropics. This variation can be mostly explained by the strong water vapor gradient. Although in the zonal average case the tropics have a minimum in OLWR, the minimum is essentially contributed by a few very low flux regions, such as the Amazon, Indonesian and the Congo.
Shortwave radiation parameterization scheme for subgrid topography
NASA Astrophysics Data System (ADS)
Helbig, N.; LöWe, H.
2012-02-01
Topography is well known to alter the shortwave radiation balance at the surface. A detailed radiation balance is therefore required in mountainous terrain. In order to maintain the computational performance of large-scale models while at the same time increasing grid resolutions, subgrid parameterizations are gaining more importance. A complete radiation parameterization scheme for subgrid topography accounting for shading, limited sky view, and terrain reflections is presented. Each radiative flux is parameterized individually as a function of sky view factor, slope and sun elevation angle, and albedo. We validated the parameterization with domain-averaged values computed from a distributed radiation model which includes a detailed shortwave radiation balance. Furthermore, we quantify the individual topographic impacts on the shortwave radiation balance. Rather than using a limited set of real topographies we used a large ensemble of simulated topographies with a wide range of typical terrain characteristics to study all topographic influences on the radiation balance. To this end slopes and partial derivatives of seven real topographies from Switzerland and the United States were analyzed and Gaussian statistics were found to best approximate real topographies. Parameterized direct beam radiation presented previously compared well with modeled values over the entire range of slope angles. The approximation of multiple, anisotropic terrain reflections with single, isotropic terrain reflections was confirmed as long as domain-averaged values are considered. The validation of all parameterized radiative fluxes showed that it is indeed not necessary to compute subgrid fluxes in order to account for all topographic influences in large grid sizes.
Providing Diurnal Sky Cover Data at ARM Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klebe, Dimitri I.
2015-03-06
The Solmirus Corporation was awarded two-year funding to perform a comprehensive data analysis of observations made during Solmirus’ 2009 field campaign (conducted from May 21 to July 27, 2009 at the ARM SGP site) using their All Sky Infrared Visible Analyzer (ASIVA) instrument. The objective was to develop a suite of cloud property data products for the ASIVA instrument that could be implemented in real time and tailored for cloud modelers. This final report describes Solmirus’ research and findings enabled by this grant. The primary objective of this award was to develop a diurnal sky cover (SC) data product utilizingmore » the ASIVA’s infrared (IR) radiometrically-calibrated data and is described in detail. Other data products discussed in this report include the sky cover derived from ASIVA’s visible channel and precipitable water vapor, cloud temperature (both brightness and color), and cloud height inferred from ASIVA’s IR channels.« less
Aerosol radiative effects and their trends under clear-sky situations over Europe
NASA Astrophysics Data System (ADS)
Bartok, Blanka
2017-04-01
In the literature great uncertainties ca be found regarding radiative effects of aerosols on the energy budget of the atmosphere (IPCC, 2013). In the study the aerosols radiative effects on clear-sky solar radiation are quantified over Europe using empirical and physical modelling approaches. The values of aerosol radiation effect are determined by the MAGIC radiation code. In the first run clear-sky radiation is calculated integrating KINEE/MPI/Aerocom aerosol climatology and ERA-INTERIM water vapour multiannual monthly means. In the next run the clear-sky radiation are also calculated ignoring aerosol data (adjusted to 0) from the algorithm. Both runs were carried out for each months of the year, taking into account the varying astrological factors. The difference between the aerosol-included and aerosol-free clear-sky radiation is equal to the absolute aerosol radiative effect in W/m2. The annual mean of the surface aerosol radiative effects in clear-sky situations over Europe is -7.1 ± 2.9 W/m2, high values are representing the central part of the continent and the Mediterranean Basin. Furthermore the trends of the aerosol radiative effects are also determined for the period of 2001-2012. First a linear fitting is elaborated between the aerosol optical depth (AOT) built in the MAGIC code and its aerosol radiative effect calculated by the code. Next, based on these linear functions a radiative effect values are assigned to each monthly AOT500 value available from the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra Level-3 experiment. In this way a new dataset of aerosol radiative effect for the period of 2001-2012 has been created. Beside of this approach the changes in aerosol radiative effects are also calculated based on ground-based clear-sky radiation trends. This approach is used as a validation of the method applied in earlier stage, mainly for the linear fitting. The starting point of this approach is to elaborate the trends of clear-sky radiation controlled by the effects of aerosols and water vapour. If we subtract the water vapour effects also calculated by MAGIC radiation code from this trend, the magnitude of the trends in aerosol radiative effects can be estimated. In this case it is assumed that the two effects do not amplify and do not cancel each other, and their arithmetic sum gives the change in clear-sky radiation trend. The two approaches give good fit, based on the direct (modelled) approach the annual trend of the aerosol radiative effects on clear-sky solar surface radiation is -4.41 W/m2 per decade for the period of 2001-2013, while in the case of the indirect approach (based on clear-sky trends) this trend is found to be -4.46 W/m2 per decade.
Photometric Assessment of Night Sky Quality over Chaco Culture National Historical Park
NASA Astrophysics Data System (ADS)
Hung, Li-Wei; Duriscoe, Dan M.; White, Jeremy M.; Meadows, Bob; Anderson, Sharolyn J.
2018-06-01
The US National Park Service (NPS) characterizes night sky conditions over Chaco Culture National Historical Park using measurements in the park and satellite data. The park is located near the geographic center of the San Juan Basin of northwestern New Mexico and the adjacent Four Corners state. In the park, we capture a series of night sky images in V-band using our mobile camera system on nine nights from 2001 to 2016 at four sites. We perform absolute photometric calibration and determine the image placement to obtain multiple 45-million-pixel mosaic images of the entire night sky. We also model the regional night sky conditions in and around the park based on 2016 VIIRS satellite data. The average zenith brightness is 21.5 mag/arcsec2, and the whole sky is only ~16% brighter than the natural conditions. The faintest stars visible to naked eyes have magnitude of approximately 7.0, reaching the sensitivity limit of human eyes. The main impacts to Chaco’s night sky quality are the light domes from Albuquerque, Rio Rancho, Farmington, Bloomfield, Gallup, Santa Fe, Grants, and Crown Point. A few of these light domes exceed the natural brightness of the Milky Way. Additionally, glare sources from oil and gas development sites are visible along the north and east horizons. Overall, the night sky quality at Chaco Culture National Historical Park is very good. The park preserves to a large extent the natural illumination cycles, providing a refuge for crepuscular and nocturnal species. During clear and dark nights, visitors have an opportunity to see the Milky Way from nearly horizon to horizon, complete constellations, and faint astronomical objects and natural sources of light such as the Andromeda Galaxy, zodiacal light, and airglow.
NASA Astrophysics Data System (ADS)
Kocifaj, Miroslav
2018-02-01
The mechanism in which multiple scattering influences the radiance of a night sky has been poorly quantified until recently, or even completely unknown from the theoretical point of view. In this paper, the relative contribution of higher-scattering radiances to the total sky radiance is treated analytically for all orders of scattering, showing that a fast and accurate numerical solution to the problem exists. Unlike a class of ray tracing codes in which CPU requirements increase tremendously with each new scattering mode, the solution developed here requires the same processor time for each scattering mode. This allows for rapid estimation of higher-scattering radiances and residual error that is otherwise unknown if these radiances remain undetermined. Such convergence testing is necessary to guarantee accuracy and the stability of the numerical predictions. The performance of the method developed here is demonstrated in a set of numerical experiments aiming to uncover the relative importance of higher-scattering radiances at different distances from a light source. We have shown, that multiple scattering effects are generally low if distance to the light source is below 30 km. At large distances the multiple scattering can become important at the dark sky elements situated opposite to the light source. However, the brightness at this part of sky is several orders of magnitude smaller than that of a glowing dome of light over a city, so we do not expect that a partial increase or even doubling the radiance of otherwise dark sky elements can noticeably affect astronomical observations or living organisms (including humans). Single scattering is an appropriate approximation to the sky radiance of a night sky in the vast majority of cases.
An all sky map of the CO emission extracted from Planck
NASA Astrophysics Data System (ADS)
Aumont, Jonathan
2012-07-01
The High Frequency Instrument (HFI) on board of the Planck satellite, observing the sky in the 100 to 857 GHz frequency range, is sensitive to the light emitted by the CO molecule through its rotational transition lines. We present here the first all sky map of the CO emission ever compiled, taking advantage of the Planck HFI high sensitivity and sky coverage. The processing of this map is first presented, from calibration of the response of the HFI bolometers to the CO lines, to the component separation method that was applied to separate the CO signal from other Galactic components and from the CMB radiation. After having quantified the characteristics of the map, in terms of noise statistics and level, large scale systematics and zero level assessment, we test its reliability by confronting it with ground measurements of the integrated intensity of the ^{12}CO (J=1-0) line. First, we show a very good agreement to the Dame et al. 2001 data, in and around the bright molecular cloud regions, always within the combined uncertainties in the absolute calibration of ground based data and the varying ^{13}CO/^{12}CO line ratio. We additionally use the Hartmann et al. 1998 and Magnani et al. 2000 measurements, sampling the high Galactic latitudes sky with a grid of more than 15,000 degree-spaced positions, and find compatibility both for where they do measure CO and where they don't. As being an all sky map, it can be used to find CO clouds that were never observed by dedicated ground measurements and we illustrate this ability in the Pegasus region around previous observations by Dame et al. 2001 and Yamamoto et al. 2003.
The global blue-sky albedo change between 2000 - 2015 seen from MODIS
NASA Astrophysics Data System (ADS)
Chrysoulakis, N.; Mitraka, Z.; Gorelick, N.
2016-12-01
The land surface albedo is a critical physical variable, which influences the Earth's climate by affecting the energy budget and distribution in the Earth-atmosphere system. Blue-sky albedo estimates provide a quantitative means for better constraining global and regional scale climate models. The Moderate Resolution Imaging Spectroradiometer (MODIS) albedo product includes parameters for the estimation of both the directional-hemispherical surface reflectance (black-sky albedo) and the bi-hemispherical surface reflectance (white-sky albedo). This dataset was used here for the blue-sky albedo estimation over the globe on an 8-day basis at 0.5 km spatial resolution for the whole time period covered by MODIS acquisitions (i.e. 2000 until today). To estimate the blue-sky albedo, the fraction of the diffused radiation is needed, a function of the Aerosol Optical Thickness (AOT). Required AOT information was acquired from the MODIS AOT product at 1̊ × 1̊ spatial resolution. Since the blue-sky albedo depends on the solar zenith angle (SZA), the 8-day mean blue-sky albedo values were computed as averages of the corresponding values for the representative SZAs covering the 24-hour day. The estimated blue-sky albedo time series was analyzed to capture changes during the 15 period. All computation were performed using the Google Earth Engine (GEE). The GEE provided access to all the MODIS products needed for the analysis without the need of searching or downloading. Moreover, the combination of MODIS products in both temporal and spatial terms was fast and effecting using the GEE API (Application Program Interface). All the products covering the globe and for the time period of 15 years were processed via a single collection. Most importantly, GEE allowed for including the calculation of SZAs covering the 24-hour day which improves the quality of the overall product. The 8-day global products of land surface albedo are available through http://www.rslab.gr/downloads.html
Two-component Thermal Dust Emission Model: Application to the Planck HFI Maps
NASA Astrophysics Data System (ADS)
Meisner, Aaron M.; Finkbeiner, Douglas P.
2014-06-01
We present full-sky, 6.1 arcminute resolution maps of dust optical depth and temperature derived by fitting the Finkbeiner et al. (1999) two-component dust emission model to the Planck HFI and IRAS 100 micron maps. This parametrization of the far infrared thermal dust SED as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody dust emission model. We expect our Planck-based maps of dust temperature and optical depth to form the basis for a next-generation, high-resolution extinction map which will additionally incorporate small-scale detail from WISE imaging.
High Latitude Scintillations during the ICI-4 Rocket Campaign.
NASA Astrophysics Data System (ADS)
Patra, S.; Moen, J.
2015-12-01
We present the first results from the Norwegian ICI-4 sounding rocket campaign in February 2015. The ICI-4 was launched into F-region auroral blobs from the Andøya Space Center. The multi needle langmuir probe (m-NLP) on board the rocket sampled the ionospheric density structures at a sub-meter spatial resolution. A multi-phase screen model has been developed to estimate the scintillations from the density measurements acquired on-board spacecrafts. The phase screen model is validated and the comparison of the estimated values with scintillations measured by ground receivers during the campaign will be presented. A combination of scintillation receivers in Svalbard and surrounding areas as well as all sky imagers at Ny Ålesund, Longyerbyen, and Skibotn are used to improve the performance of the model.
NASA Astrophysics Data System (ADS)
Nhan, Bang; Bradley, Richard F.; Burns, Jack O.
2018-06-01
Detecting the cosmological sky-averaged (global) 21 cm spectrum as a function of observed frequency will provide a powerful tool to study the ionization and thermal history of intergalactic medium (IGM) in the high-redshift Universe (400 million years after the Big Bang). The biggest challenge in conventional ground-based total-power global 21 cm experiments is the removal of the Galactic and extragalactic synchrotron foreground (1E4-1E5 K) to uncover the weak cosmological signal (10-100 mK) due to corruptions on the spectral smoothness of foreground spectrum by instrumental effects. Although an absorption profile has been reported recently at 78 MHz in the sky-averaged spectrum by the Experiment to Detect the Global Epoch of Reionization Signature (EDGES) experiment, it is necessary to confirm that the proposed observation is indeed the global 21 cm signal with an independent approach. In this presentation, we propose a new polarimetry-based observational approach that relies on the dynamic characteristics of the foreground emission at the circumpolar region to track and remove the foreground spectrum di- rectly, without relying on any parametric foreground models as in conventional approaches. Due to asymmetry and the Earth's rotation, the projection of the anisotropic foreground sources onto a wide-view antenna pointing at the North Celestial Pole (NCP) can induce a net polarization which varies with time with a unique twice-diurnal periodicity. Different from the zenith-pointing global 21 cm experiments, by using this twice-diurnal signature, the Cosmic Twilight Polarimeter (CTP) is designed to measure and separate the varying foreground from the isotropic cosmological background simultaneously in the same observation. By combining preliminary results of the proof-of-concept instrument with numerical simulations, we present a detailed evaluation for this technique and its feasibility in conducting an independent global 21 cm measurement in the near future.
NASA Astrophysics Data System (ADS)
Vázquez Ramió, H.; Díaz-Martín, M. C.; Varela, J.; Ederoclite, A.; Maícas, N. Lamadrid, J. L.; Abril, J.; Iglesias-Marzoa, R.; Rodríguez, S.; Tilve, V.; Cenarro, A. J.; Antón Bravo, J. L.; Bello Ferrer, R.; Cristóbal-Hornillos, D.; Guillén Civera, L.; Hernández-Fuertes, J.; Jiménez Mejías, D.; Lasso-Cabrera, N. M.; López Alegre, G.; López Sainz, A.; Luis-Simoes, R. M.; Marín-Franch, A.; Moles, M.; Rueda-Teruel, F.; Rueda-Teruel, S.; Suárez López, O.; Yanes-Díaz, A.
2015-05-01
The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS; see Benítez et al. 2014) and the Javalambre-Photometric Local Universe Survey (J-PLUS) will be conducted at the brand-new Observatorio Astrofísico de Javalambre (OAJ) in Teruel, Spain. J-PLUS is planned to start by the first half of 2015 while J-PAS first light is expected to happen along 2015. Besides the two main telescopes (with 2.5 m and 80 cm apertures), several smaller-sized facilities are present at the OAJ devoted to site characterization and supporting measurements to be used to calibrate the J-PAS and J-PLUS photometry and to feed up the OAJ's Sequencer with the integrated seeing and the sky transparency. These instruments are: i) an extinction monitor, an 11 " telescope estimating the atmospheric extinction to finally obtain the OAJ extinction curve, which is the initial step to J-PAS overall photometric calibration procedure; ii) an 8 " telescope implementing the Differential Image Motion Monitor (DIMM) technique to obtain the integrated seeing; and iii) an All-Sky Transmission MONitor (ASTMON), a roughly all-sky instrument providing the sky transparency as well as sky brightness and the atmospheric extinction too.
NASA Technical Reports Server (NTRS)
Scarino, Benjamin R.; Minnis, Patrick; Chee, Thad; Bedka, Kristopher M.; Yost, Christopher R.; Palikonda, Rabindra
2017-01-01
Surface skin temperature (T(sub s)) is an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared (TIR) method to retrieve T(sub s) over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) and low Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of T(sub s) over the diurnal cycle in non-polar regions, while polar T(sub s) retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR), can complement the GEO measurements. The combined global coverage of remotely sensed T(sub s), along with accompanying cloud and surface radiation parameters, produced in near-realtime and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-realtime hourly T(sub s) observations can be assimilated in high-temporal-resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived T(sub s) data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing and illumination angles. Therefore, T(sub s) validation with established references is essential, as is proper evaluation of T(sub s) sensitivity to atmospheric correction source. This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based T(sub s) product that is derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirically adjusted theoretical model of satellite land surface temperature (LST) angular anisotropy is tested to improve satellite LST retrievals. Application of the anisotropic correction yields reduced mean bias and improved precision of GOES-13 LST relative to independent Moderate-resolution Imaging Spectroradiometer (MYD11_L2) LST and Atmospheric Radiation Measurement Program ground station measurements. It also significantly reduces inter-satellite differences between LSTs retrieved simultaneously from two different imagers. The implementation of these universal corrections into the SatCORPS product can yield significant improvement in near-global-scale, near-realtime, satellite-based LST measurements. The immediate availability and broad coverage of these skin temperature observations should prove valuable to modelers and climate researchers looking for improved forecasts and better understanding of the global climate model.
ULTRAVIOLET EXTINCTION AT HIGH GALACTIC LATITUDES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peek, J. E. G.; Schiminovich, David, E-mail: jegpeek@gmail.com
In order to study the properties and effects of high Galactic latitude dust, we present an analysis of 373,303 galaxies selected from the Galaxy Evolution Explorer All-Sky Survey and Wide-field Infrared Explorer All-Sky Data Release. By examining the variation in aggregate ultraviolet colors and number density of these galaxies, we measure the extinction curve at high latitude. We additionally consider a population of spectroscopically selected galaxies from the Sloan Digital Sky Survey to measure extinction in the optical. We find that dust at high latitude is neither quantitatively nor qualitatively consistent with standard reddening laws. Extinction in the FUV andmore » NUV is {approx}10% and {approx}35% higher than expected, with significant variation across the sky. We find that no single R{sub V} parameter fits both the optical and ultraviolet extinction at high latitude, and that while both show detectable variation across the sky, these variations are not related. We propose that the overall trends we detect likely stem from an increase in very small silicate grains in the interstellar medium.« less
Proof of Concept for a Simple Smartphone Sky Monitor
NASA Astrophysics Data System (ADS)
Kantamneni, Abhilash; Nemiroff, R. J.; Brisbois, C.
2013-01-01
We present a novel approach of obtaining a cloud and bright sky monitor by using a standard smartphone with a downloadable app. The addition of an inexpensive fisheye lens can extend the angular range to the entire sky visible above the device. A preliminary proof of concept image shows an optical limit of about visual magnitude 5 for a 70-second exposure. Support science objectives include cloud monitoring in a manner similar to the more expensive cloud monitors in use at most major astronomical observatories, making expensive observing time at these observatories more efficient. Primary science objectives include bright meteor tracking, bright comet tracking, and monitoring the variability of bright stars. Citizen science objectives include crowd sourcing of many networked sky monitoring smartphones typically in broader support of many of the primary science goals. The deployment of a citizen smartphone array in an active science mode could leverage the sky monitoring data infrastructure to track other non-visual science opportunities, including monitoring the Earth's magnetic field for the effects of solar flares and exhaustive surface coverage for strong seismic events.
NASA Astrophysics Data System (ADS)
Sunyaev, Rashid A.; Khatri, Rishi
2013-03-01
y-type spectral distortions of the cosmic microwave background allow us to detect clusters and groups of galaxies, filaments of hot gas and the non-uniformities in the warm hot intergalactic medium. Several CMB experiments (on small areas of sky) and theoretical groups (for full sky) have recently published y-type distortion maps. We propose to search for two artificial hot spots in such y-type maps resulting from the incomplete subtraction of the effect of the motion induced dipole on the cosmic microwave background sky. This dipole introduces, at second order, additional temperature and y-distortion anisotropy on the sky of amplitude few μK which could potentially be measured by Planck HFI and Pixie experiments and can be used as a source of cross channel calibration by CMB experiments. This y-type distortion is present in every pixel and is not the result of averaging the whole sky. This distortion, calculated exactly from the known linear dipole, can be subtracted from the final y-type maps, if desired.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunyaev, Rashid A.; Khatri, Rishi, E-mail: sunyaev@mpa-garching.mpg.de, E-mail: khatri@mpa-garching.mpg.de
2013-03-01
y-type spectral distortions of the cosmic microwave background allow us to detect clusters and groups of galaxies, filaments of hot gas and the non-uniformities in the warm hot intergalactic medium. Several CMB experiments (on small areas of sky) and theoretical groups (for full sky) have recently published y-type distortion maps. We propose to search for two artificial hot spots in such y-type maps resulting from the incomplete subtraction of the effect of the motion induced dipole on the cosmic microwave background sky. This dipole introduces, at second order, additional temperature and y-distortion anisotropy on the sky of amplitude few μKmore » which could potentially be measured by Planck HFI and Pixie experiments and can be used as a source of cross channel calibration by CMB experiments. This y-type distortion is present in every pixel and is not the result of averaging the whole sky. This distortion, calculated exactly from the known linear dipole, can be subtracted from the final y-type maps, if desired.« less
Estimation of surface temperature variations due to changes in sky and solar flux with elevation.
Hummer-Miller, S.
1981-01-01
Sky and solar radiance are of major importance in determining the ground temperature. Knowledge of their behavior is a fundamental part of surface temperature models. These 2 fluxes vary with elevation and this variation produces temperature changes. Therefore, when using thermal-property differences to discriminate geologic materials, these flux variations with elevation need to be considered. -from Author
Northern Sky Variability Survey: Public Data Release
NASA Astrophysics Data System (ADS)
Woźniak, P. R.; Vestrand, W. T.; Akerlof, C. W.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Kehoe, R.; Kinemuchi, K.; Lee, B. C.; Marshall, S.; McGowan, K. E.; McKay, T. A.; Rykoff, E. S.; Smith, D. A.; Szymanski, J.; Wren, J.
2004-04-01
The Northern Sky Variability Survey (NSVS) is a temporal record of the sky over the optical magnitude range from 8 to 15.5. It was conducted in the course of the first-generation Robotic Optical Transient Search Experiment (ROTSE-I) using a robotic system of four comounted unfiltered telephoto lenses equipped with CCD cameras. The survey was conducted from Los Alamos, New Mexico, and primarily covers the entire northern sky. Some data in southern fields between declinations 0° and -38° are also available, although with fewer epochs and noticeably lesser quality. The NSVS contains light curves for approximately 14 million objects. With a 1 yr baseline and typically 100-500 measurements per object, the NSVS is the most extensive record of stellar variability across the bright sky available today. In a median field, bright unsaturated stars attain a point-to-point photometric scatter of ~0.02 mag and position errors within 2". At Galactic latitudes |b|<20deg, the data quality is limited by severe blending due to the ~14" pixel size. We present basic characteristics of the data set and describe data collection, analysis, and distribution. All NSVS photometric measurements are available for on-line public access from the Sky Database for Objects in Time-Domain (SkyDOT) at Los Alamos National Laboratory. Copies of the full survey photometry may also be requested on tape. Based on observations obtained with the ROTSE-I robotic telescope, which was operated at Los Alamos National Laboratory.
Observation strategies with the Fermi Gamma-ray Space Telescope
NASA Astrophysics Data System (ADS)
McEnery, Julie E.; Fermi mission Teams
2015-01-01
During the first few years of the Fermi mission, the default observation mode has been an all-sky survey, optimized to provide relatively uniform coverage of the entire sky every three hours. Over 95% of the mission has been performed in this observation mode. However, Fermi is capable of flexible survey mode patterns, and inertially pointed observations both of which allow increased coverage of selected parts of the sky. In this presentation, we will describe the types of observations that Fermi can make, the relative advantages and disadvantages of various observations, and provide guidelines to help Fermi users plan and evaluate non-standard observations.
NASA Technical Reports Server (NTRS)
Craine, E. R.
1978-01-01
A description is presented of a photographic survey of the northern sky currently underway at Steward Observatory. The survey is being conducted at a principal bandpass of 8000-9000 A supplemented by a V bandpass. The survey is the first of its type conducted using a small (20-in. aperture) wide-field telescope, a very large-format (146 mm) image intensifier with a red-extended, multialkali photocathode. The output phosphor of the intensifier is photographed with IIaD emulsion on film. One of the goals of the survey is to catalog red stellar objects on the photographs and to examine in detail regions of the sky which are obscured by hydrogen emission on conventional photographs.
Spectral karyotyping reveals a comprehensive karyotype in an adult acute lymphoblastic leukemia
Guo, Bo; Zhu, Hong Li; Li, Su Xia; Lu, Xue Chun; Fan, Hui; Da, Wan Ming
2012-01-01
Cytogenetic abnormalities are frequently detected in patients with acute lymphoblastic leukemia (ALL). Comprehensive karyotype was related to poor prognosis frequently in ALL. We present a comprehensive karyotype in an adult ALL by spectral karyotyping (SKY) and R-banding. SKY not only confirmed the abnormalities previously seen by R-banding but also improved comprehensive karyotype analysis with the following result 47,XY,+9, ins(1;5)(q23;q23q34) t(6;7)(q23;p13). Our report demonstrated that SKY is able to provide more information accurately for prediction of disease prognosis in adult ALL with comprehensive karyotype. PMID:27298606
Near infrared photographic sky survey - A field index
NASA Technical Reports Server (NTRS)
Rossano, G. S.; Craine, E. R.
1980-01-01
The book presents an index of previously cataloged objects located in the fields of the northern sky included in the Steward Observatory Near Infrared Photographic Sky Survey, which was intended to be used for identification purposes in an effort to locate extremely red objects. The objects included in the index were taken from 16 catalogs of bright nebulae, dark nebulae, infrared objects, reflection nebulae, supernova remnants and other objects, and appear with their corresponding field numbers, computed field center coordinates, object name and 1950 epoch equatorial coordinates, as well as supplementary descriptive information as available. An appendix is also provided in which the center coordinates of each field are listed.
NASA Astrophysics Data System (ADS)
Lu, Daren; Huo, Juan; Zhang, W.; Liu, J.
A series of satellite sensors in visible and infrared wavelengths have been successfully operated on board a number of research satellites, e.g. NOAA/AVHRR, the MODIS onboard Terra and Aqua, etc. A number of cloud and aerosol products are produced and released in recent years. However, the validation of the product quality and accuracy are still a challenge to the atmospheric remote sensing community. In this paper, we suggest a ground based validation scheme for satellite-derived cloud and aerosol products by using combined visible and thermal infrared all sky imaging observations as well as surface meteorological observations. In the scheme, a visible digital camera with a fish-eye lens is used to continuously monitor the all sky with the view angle greater than 180 deg. The digital camera system is calibrated for both its geometry and radiance (broad blue, green, and red band) so as to a retrieval method can be used to detect the clear and cloudy sky spatial distribution and their temporal variations. A calibrated scanning thermal infrared thermometer is used to monitor the all sky brightness temperature distribution. An algorithm is developed to detect the clear and cloudy sky as well as cloud base height by using sky brightness distribution and surface temperature and humidity as input. Based on these composite retrieval of clear and cloudy sky distribution, it can be used to validate the satellite retrievals in the sense of real-simultaneous comparison and statistics, respectively. What will be presented in this talk include the results of the field observations and comparisons completed in Beijing (40 deg N, 116.5 deg E) in year 2003 and 2004. This work is supported by NSFC grant No. 4002700, and MOST grant No 2001CCA02200
An Innovative Collaboration on Dark Skies Education
NASA Astrophysics Data System (ADS)
Walker, Constance E.; Mayer, M.; EPO Students, NOAO
2011-01-01
Dark night skies are being lost all over the globe, and hundreds of millions of dollars of energy are being wasted in the process.. Improper lighting is the main cause of light pollution. Light pollution is a concern on many fronts, affecting safety, energy conservation, cost, human health, and wildlife. It also robs us of the beauty of viewing the night sky. In the U.S. alone, over half of the population cannot see the Milky Way from where they live. To help address this, the National Optical Astronomy Observatory Education and Public Outreach (NOAO EPO) staff created two programs: Dark Skies Rangers and GLOBE at Night. Through the two programs, students learn about the importance of dark skies and experience activities that illustrate proper lighting, light pollution's effects on wildlife and how to measure the darkness of their skies. To disseminate the programs locally in an appropriate yet innovative venue, NOAO partnered with the Cooper Center for Environmental Learning in Tucson, Arizona. Operated by the largest school district in Tucson and the University of Arizona College of Education, the Cooper Center educates thousands of students and educators each year about ecology, science, and the beauty and wonders of the Sonoran Desert. During the first academic year (2009-2010), we achieved our goal of reaching nearly 20 teachers in 40 classrooms of 1000 students. We gave two 3-hour teacher-training sessions and provided nineteen 2.5-hour on-site evening sessions on dark skies activities for the students of the teachers trained. One outcome of the program was the contribution of 1000 "GLOBE at Night 2010” night-sky brightness measurements by Tucson students. Training sessions at similar levels are continuing this year. The partnership, planning, lesson learned, and outcomes of NOAO's collaboration with the environmental center will be presented.
Dark Skies are a Universal Resource. So are Quiet Skies!
NASA Astrophysics Data System (ADS)
Maddalena, Ronald J.; Heatherly, S.
2008-05-01
You've just purchased your first telescope. But where to set it up? Certainly not a WalMart parking lot. Too much light pollution! In the same way that man-made light obscures our night sky and blinds ground-based optical telescopes, man-made radio signals blind radio telescopes as well. NRAO developed the Quiet Skies project to increase awareness of radio frequency interference (RFI) and radio astronomy in general by engaging students in local studies of RFI. To do that we created a sensitive detector which measures RFI. We produced 20 of these, and assembled kits containing detectors and supplementary materials for loan to schools. Students conduct experiments to measure the properties of RFI in their area, and input their measurements into a web-based data base. The Quiet Skies project is a perfect complement to the IYA Dark Skies Awareness initiative. We hope to place 500 Quiet Skies detectors into the field through outreach to museums and schools around the world. Should we be successful, we will sustain this global initiative via a continuing loan program. One day we hope to have a publicly generated image of the Earth which shows RFI much as the Earth at Night image illustrates light pollution. The poster will present the components of the project in detail, including our plans for IYA, and various low-cost alternative strategies for introducing RFI and radio astronomy to the public. We will share the results of some of the experiments already being performed by high school students. Development of the Quiet Skies project was funded by a NASA IDEAS grant. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Time-integrated Searches for Point-like Sources of Neutrinos with the 40-string IceCube Detector
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brown, A. M.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lehmann, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Singh, K.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; IceCube Collaboration
2011-05-01
We present the results of time-integrated searches for astrophysical neutrino sources in both the northern and southern skies. Data were collected using the partially completed IceCube detector in the 40-string configuration recorded between 2008 April 5 and 2009 May 20, totaling 375.5 days livetime. An unbinned maximum likelihood ratio method is used to search for astrophysical signals. The data sample contains 36,900 events: 14,121 from the northern sky, mostly muons induced by atmospheric neutrinos, and 22,779 from the southern sky, mostly high-energy atmospheric muons. The analysis includes searches for individual point sources and stacked searches for sources in a common class, sometimes including a spatial extent. While this analysis is sensitive to TeV-PeV energy neutrinos in the northern sky, it is primarily sensitive to neutrinos with energy greater than about 1 PeV in the southern sky. No evidence for a signal is found in any of the searches. Limits are set for neutrino fluxes from astrophysical sources over the entire sky and compared to predictions. The sensitivity is at least a factor of two better than previous searches (depending on declination), with 90% confidence level muon neutrino flux upper limits being between E 2 dΦ/dE ~ 2-200 × 10-12 TeV cm-2 s-1 in the northern sky and between 3-700 × 10-12 TeV cm-2 s-1 in the southern sky. The stacked source searches provide the best limits to specific source classes. The full IceCube detector is expected to improve the sensitivity to dΦ/dEvpropE -2 sources by another factor of two in the first year of operation.
NASA Astrophysics Data System (ADS)
Bani Shahabadi, Maziar; Huang, Yi; Garand, Louis; Heilliette, Sylvain; Yang, Ping
2016-09-01
An established radiative transfer model (RTM) is adapted for simulating all-sky infrared radiance spectra from the Canadian Global Environmental Multiscale (GEM) model in order to validate its forecasts at the radiance level against Atmospheric InfraRed Sounder (AIRS) observations. Synthetic spectra are generated for 2 months from short-term (3-9 h) GEM forecasts. The RTM uses a monthly climatological land surface emissivity/reflectivity atlas. An updated ice particle optical property library was introduced for cloudy radiance calculations. Forward model brightness temperature (BT) biases are assessed to be of the order of ˜1 K for both clear-sky and overcast conditions. To quantify GEM forecast meteorological variables biases, spectral sensitivity kernels are generated and used to attribute radiance biases to surface and atmospheric temperatures, atmospheric humidity, and clouds biases. The kernel method, supplemented with retrieved profiles based on AIRS observations in collocation with a microwave sounder, achieves good closure in explaining clear-sky radiance biases, which are attributed mostly to surface temperature and upper tropospheric water vapor biases. Cloudy-sky radiance biases are dominated by cloud-induced radiance biases. Prominent GEM biases are identified as: (1) too low surface temperature over land, causing about -5 K bias in the atmospheric window region; (2) too high upper tropospheric water vapor, inducing about -3 K bias in the water vapor absorption band; (3) too few high clouds in the convective regions, generating about +10 K bias in window band and about +6 K bias in the water vapor band.
Estimates of radiative flux divergence in the atmosphere from satellite data
NASA Technical Reports Server (NTRS)
Smith, G. L.; Charlock, Thomas P.; Bess, T. D.; Gupta, Shashi; Rutan, David; Rose, Fred G.
1990-01-01
Several options for the inference of the atmospheric radiative flux divergence (ARD) on the basis of satellite data are discussed. Attention is given to the clear-sky case and the cloudy-sky case. LW ARD profiles for different climatological regimes are presented and the effect of cloud base height on LW ARD divergence at various heights is illustrated.
Refugia, biodiversity, and pollination roles of bumble bees in the Madrean Archipelago
Justin O. Schmidt; Robert S. Jacobson
2005-01-01
Eight species of bumble bees (Hymenoptera: Apidae: Bombus) are present within five major Sky Island mountains of southern Arizona. Another four species exist in the nearby large mountainous region stretching from the Arizona White Mountains to Flagstaff. The distribution and number of bumble bee species within the individual Sky Island mountains varies from six in the...
NASA Technical Reports Server (NTRS)
Minnis, P.; Harrison, E. F.
1984-01-01
Cloud cover is one of the most important variables affecting the earth radiation budget (ERB) and, ultimately, the global climate. The present investigation is concerned with several aspects of the effects of extended cloudiness, taking into account hourly visible and infrared data from the Geostationary Operational Environmental Satelite (GOES). A methodology called the hybrid bispectral threshold method is developed to extract regional cloud amounts at three levels in the atmosphere, effective cloud-top temperatures, clear-sky temperature and cloud and clear-sky visible reflectance characteristics from GOES data. The diurnal variations are examined in low, middle, high, and total cloudiness determined with this methodology for November 1978. The bulk, broadband radiative properties of the resultant cloud and clear-sky data are estimated to determine the possible effect of the diurnal variability of regional cloudiness on the interpretation of ERB measurements.
Big Sky and Greenhorn Drill Holes and CheMin X-ray Diffraction
2015-12-17
The graph at right presents information from the NASA Curiosity Mars rover's onboard analysis of rock powder drilled from the "Big Sky" and "Greenhorn" target locations, shown at left. X-ray diffraction analysis of the Greenhorn sample inside the rover's Chemistry and Mineralogy (CheMin) instrument revealed an abundance of silica in the form of noncrystalline opal. The broad hump in the background of the X-ray diffraction pattern for Greenhorn, compared to Big Sky, is diagnostic of opal. The image of Big Sky at upper left was taken by the rover's Mars Hand Lens Imager (MAHLI) camera the day the hole was drilled, Sept. 29, 2015, during the mission's 1,119th Martian day, or sol. The Greenhorn hole was drilled, and the MAHLI image at lower left was taken, on Oct. 18, 2015 (Sol 1137). http://photojournal.jpl.nasa.gov/catalog/PIA20272
The ASAS-SN Catalog of Variable Stars I: The Serendipitous Survey
NASA Astrophysics Data System (ADS)
Jayasinghe, T.; Kochanek, C. S.; Stanek, K. Z.; Shappee, B. J.; Holoien, T. W.-S.; Thompson, Todd A.; Prieto, J. L.; Dong, Subo; Pawlak, M.; Shields, J. V.; Pojmanski, G.; Otero, S.; Britt, C. A.; Will, D.
2018-04-01
The All-Sky Automated Survey for Supernovae (ASAS-SN) is the first optical survey to routinely monitor the whole sky with a cadence of ˜2 - 3 days down to V≲ 17 mag. ASAS-SN has monitored the whole sky since 2014, collecting ˜100 - 500 epochs of observations per field. The V-band light curves for candidate variables identified during the search for supernovae are classified using a random forest classifier and visually verified. We present a catalog of 66,533 bright, new variable stars discovered during our search for supernovae, including 27,753 periodic variables and 38,780 irregular variables. V-band light curves for the ASAS-SN variables are available through the ASAS-SN variable stars database (https://asas-sn.osu.edu/variables). The database will begin to include the light curves of known variable stars in the near future along with the results for a systematic, all-sky variability survey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron M; Roberts, Billy J; Kutchenreiter, Mark C
The National Renewable Energy Laboratory (NREL) and collaborators have created a clear-sky probability analysis to help guide viewers of the August 21, 2017, total solar eclipse, the first continent-spanning eclipse in nearly 100 years in the United States. Using cloud and solar data from NREL's National Solar Radiation Database (NSRDB), the analysis provides cloudless sky probabilities specific to the date and time of the eclipse. Although this paper is not intended to be an eclipse weather forecast, the detailed maps can help guide eclipse enthusiasts to likely optimal viewing locations. Additionally, high-resolution data are presented for the centerline of themore » path of totality, representing the likelihood for cloudless skies and atmospheric clarity. The NSRDB provides industry, academia, and other stakeholders with high-resolution solar irradiance data to support feasibility analyses for photovoltaic and concentrating solar power generation projects.« less
Willingness to Pay for a Clear Night Sky: Use of the Contingent Valuation Method
NASA Astrophysics Data System (ADS)
Simpson, Stephanie; Winebrake, J.; Noel-Storr, J.
2006-12-01
A clear night sky is a public good, and as a public good government intervention to regulate it is feasible and necessary. Light pollution decreases the ability to view the unobstructed night sky, and can have biological, human health, energy related, and scientific consequences. In order for governments to intervene more effectively with light pollution controls (costs), the benefits of light pollution reduction also need to be determined. This project uses the contingent valuation method to place an economic value on one of the benefits of light pollution reduction aesthetics. Using a willingness to pay approach, this study monetizes the value of a clear night sky for students at RIT. Images representing various levels of light pollution were presented to this population as part of a survey. The results of this study may aid local, state, and federal policy makers in making informed decisions regarding light pollution.
Towards a Full-sky, High-resolution Dust Extinction Map with WISE and Planck
NASA Astrophysics Data System (ADS)
Meisner, Aaron M.; Finkbeiner, D. P.
2014-01-01
We have recently completed a custom processing of the entire WISE 12 micron All-sky imaging data set. The result is a full-sky map of diffuse, mid-infrared Galactic dust emission with angular resolution of 15 arcseconds, and with contaminating artifacts such as compact sources removed. At the same time, the 2013 Planck HFI maps represent a complementary data set in the far-infrared, with zero-point relatively immune to zodiacal contamination and angular resolution superior to previous full-sky data sets at similar frequencies. Taken together, these WISE and Planck data products present an opportunity to improve upon the SFD (1998) dust extinction map, by virtue of enhanced angular resolution and potentially better-controlled systematics on large scales. We describe our continuing efforts to construct and test high-resolution dust extinction and temperature maps based on our custom WISE processing and Planck HFI data.
NASA Astrophysics Data System (ADS)
Nunhokee, C. D.; Bernardi, G.; Kohn, S. A.; Aguirre, J. E.; Thyagarajan, N.; Dillon, J. S.; Foster, G.; Grobler, T. L.; Martinot, J. Z. E.; Parsons, A. R.
2017-10-01
A critical challenge in the observation of the redshifted 21 cm line is its separation from bright Galactic and extragalactic foregrounds. In particular, the instrumental leakage of polarized foregrounds, which undergo significant Faraday rotation as they propagate through the interstellar medium, may harmfully contaminate the 21 cm power spectrum. We develop a formalism to describe the leakage due to instrumental widefield effects in visibility-based power spectra measured with redundant arrays, extending the delay-spectrum approach presented in Parsons et al. We construct polarized sky models and propagate them through the instrument model to simulate realistic full-sky observations with the Precision Array to Probe the Epoch of Reionization. We find that the leakage due to a population of polarized point sources is expected to be higher than diffuse Galactic polarization at any k mode for a 30 m reference baseline. For the same reference baseline, a foreground-free window at k > 0.3 h Mpc-1 can be defined in terms of leakage from diffuse Galactic polarization even under the most pessimistic assumptions. If measurements of polarized foreground power spectra or a model of polarized foregrounds are given, our method is able to predict the polarization leakage in actual 21 cm observations, potentially enabling its statistical subtraction from the measured 21 cm power spectrum.
Ferreira, Pedro M.; Gomes, João M.; Martins, Igor A. C.; Ruano, António E.
2012-01-01
Accurate measurements of global solar radiation and atmospheric temperature, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature. PMID:23202230
The Potential of Clear Sky Carbon Dioxide Satellite Retrievals
NASA Astrophysics Data System (ADS)
Nelson, R.; O'Dell, C.
2013-12-01
It has been shown that neglecting scattering and absorption by aerosols and thin clouds can lead to significant errors in retrievals of the column-averaged dry-air mole fraction of carbon dioxide (XCO2) from space-based measurements of near-infrared reflected sunlight. These clear sky retrievals, which assume no aerosol effects, are desirable because of their high computational efficiency relative to common full physics retrievals. Further, clear sky retrievals may be able to make higher quality measurements relative to the full physics approach because they may introduce fewer potential biases under certain circumstances. These biases can appear when we try to retrieve clouds and aerosols in the full physics methods when there are none actually present. Recent work has shown that intelligent pre-screening can remove soundings with large light-path modifications over ocean surfaces. In this work, we test the hypothesis that intelligent pre-screening of soundings may be successfully used over land surfaces as well as oceans, which would allow clear sky retrievals to be applicable over all surfaces. We also test the hypothesis that major light path modification effects associated with aerosols can be identified based on spectral tests at 0.76, 1.6, and 2 microns. This presentation summarizes our study of both simulated data and satellite observations from the GOSAT instrument in order to assess the effectiveness of using a clear sky retrieval algorithm coupled with intelligent pre-screening to accurately measure carbon dioxide from space-borne instruments.
Multipole Vector Anomalies in the First-Year WMAP Data: A Cut-Sky Analysis
NASA Astrophysics Data System (ADS)
Bielewicz, P.; Eriksen, H. K.; Banday, A. J.; Górski, K. M.; Lilje, P. B.
2005-12-01
We apply the recently defined multipole vector framework to the frequency-specific first-year WMAP sky maps, estimating the low-l multipole coefficients from the high-latitude sky by means of a power equalization filter. While most previous analyses of this type have considered only heavily processed (and foreground-contaminated) full-sky maps, the present approach allows for greater control of residual foregrounds and therefore potentially also for cosmologically important conclusions. The low-l spherical harmonic coefficients and corresponding multipole vectors are tabulated for easy reference. Using this formalism, we reassess a set of earlier claims of both cosmological and noncosmological low-l correlations on the basis of multipole vectors. First, we show that the apparent l=3 and 8 correlation claimed by Copi and coworkers is present only in the heavily processed map produced by Tegmark and coworkers and must therefore be considered an artifact of that map. Second, the well-known quadrupole-octopole correlation is confirmed at the 99% significance level and shown to be robust with respect to frequency and sky cut. Previous claims are thus supported by our analysis. Finally, the low-l alignment with respect to the ecliptic claimed by Schwarz and coworkers is nominally confirmed in this analysis, but also shown to be very dependent on severe a posteriori choices. Indeed, we show that given the peculiar quadrupole-octopole arrangement, finding such a strong alignment with the ecliptic is not unusual.
The Flow-field From Galaxy Groups In 2MASS
NASA Astrophysics Data System (ADS)
Crook, Aidan; Huchra, J.; Macri, L.; Masters, K.; Jarrett, T.
2011-01-01
We present the first model of a flow-field in the nearby Universe (cz < 12,000 km/s) constructed from groups of galaxies identified in an all-sky flux-limited survey. The Two Micron All-Sky Redshift Survey (2MRS), upon which the model is based, represents the most complete survey of its class and, with near-IR fluxes, provides the optimal method for tracing baryonic matter in the nearby Universe. Peculiar velocities are reconstructed self-consistently with a density-field based upon groups identified in the 2MRS Ks<11.75 catalog. The model predicts infall toward Virgo, Perseus-Pisces, Hydra-Centaurus, Norma, Coma, Shapley and Hercules, and most notably predicts backside-infall into the Norma Cluster. We discuss the application of the model as a predictor of galaxy distances using only angular position and redshift measurements. By calibrating the model using measured distances to galaxies inside 3000 km/s, we show that, for a randomly-sampled 2MRS galaxy, improvement in the estimated distance over the application of Hubble's law is expected to be 30%, and considerably better in the proximity of clusters. We test the model using distance estimates from the SFI++ sample, and find evidence for improvement over the application of Hubble's law to galaxies inside 4000 km/s, although the performance varies depending on the location of the target. This work has been supported by NSF grant AST 0406906 and the Massachusetts Institute of Technology Bruno Rossi and Whiteman Fellowships.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyory, Zsuzsanna; Bell, Eric F., E-mail: gyory.zsuzsa@googlemail.co, E-mail: ericbell@umich.ed
One of the key predictions of the merger hypothesis for the origin of early-type (elliptical and lenticular) galaxies is that tidally induced asymmetric structure should correlate with signatures of a relatively young stellar population. Such a signature was found by Schweizer and Seitzer at roughly 4{sigma} confidence. In this paper, we revisit this issue with a nearly ten-fold larger sample of 0.01 < z < 0.03 galaxies selected from the Two Micron All-Sky Survey and the Sloan Digital Sky Survey. We parameterize tidal structure using a repeatable algorithmic measure of asymmetry, and correlate this with color offset from the early-typemore » galaxy color-magnitude relation. We recover the color offset-asymmetry correlation; furthermore, we demonstrate observationally for the first time that this effect is driven by a highly significant trend toward younger ages at higher asymmetry values. We present a simple model for the evolution of early-type galaxies through gas-rich major and minor mergers that reproduces their observed buildup from z = 1 to the present day and the distribution of present-day colors and ages. We show using this model that if both stellar populations and asymmetry were ideal 'clocks' measuring the time since last major or minor gas-rich interaction, then we would expect a rather tight correlation between age and asymmetry. We suggest that the source of extra scatter is natural diversity in progenitor star formation history, gas content, and merger mass ratio, but quantitative confirmation of this conjecture will require sophisticated modeling. We conclude that the asymmetry-age correlation is in basic accord with the merger hypothesis, and indicates that an important fraction of the early-type galaxy population is affected by major or minor mergers at cosmologically recent times.« less
How clear-sky polarization varies with wavelength in the visible-NIR
NASA Astrophysics Data System (ADS)
Pust, Nathan J.; Shaw, Joseph A.
2013-10-01
Because of the increasing variety of applications for polarization imaging and sensing, there is a growing need for information about polarization phenomenology in the natural environment, including the spectral distribution of polarization in the atmosphere. A computer model that has been validated in comparisons with measurements from our all-sky polarization imager has been used here to simulate the spectrum of clear-sky polarization at a many locations around the world, with a wide variety of underlying surface-reflectance and aerosol conditions. This study of the skylight polarization spectral variability shows that there is no simple spectrum that can be assumed or predicted without knowledge of the atmospheric aerosol properties and underlying surface reflectance.
Public Engagement with the Lunar and Planetary Institute
NASA Astrophysics Data System (ADS)
Shaner, Andrew; Shupla, Christine; Smith Hackler, Amanda; Buxner, Sanlyn; Wenger, Matthew; Joseph, Emily C. S.
2016-10-01
The Lunar and Planetary Institute's (LPI) public engagement programs target audiences of all ages and backgrounds; in 2016 LPI has expanded its programs to reach wider, more diverse audiences. The status, resources, and findings of these programs, including evaluation results, will be discussed in this poster. LPI's Cosmic Explorations Speaker Series (CESS) is an annual public speaker series to engage the public in space science and exploration. Each thematic series includes four to five presentations held between September and May. Past series' titles have included "Science" on the Silver Screen, The Universe is Out to Get Us and What We Can (or Can't) Do About It, and A User's Guide to the Universe: You Live Here. Here's What You Need to Know. While the presentations are available online after the event, they are now being livestreamed to be accessible to a broader national, and international, audience. Sky Fest events, held four to five times a year, have science content themes and include several activities for children and their parents, night sky viewing through telescopes, and scientist presentations. Themes include both planetary and astronomy topics as well as planetary exploration topics (e.g., celebrating the launch or landing of a spacecraft). Elements of the Sky Fest program are being conducted in public libraries serving audiences underrepresented in STEM near LPI. These programs take place as part of existing hour-long programs in the library. During this hour, young people, typically 6-12 years old, move through three stations where they participate in hands-on activities. Like Sky Fest, these programs are thematic, centered on one over-arching topic such as the Moon or Mars. Beginning in Fall 2016, LPI will present programs at a revitalized park in downtown Houston. Facilities at this park will enable LPI to bring both the Sky Fest and CESS programs into the heart of Houston, which is one of the most diverse cities in the US and the world.
NASA Astrophysics Data System (ADS)
Kim, S.; Kim, H.; Choi, M.; Kim, K.
2016-12-01
Estimating spatiotemporal variation of soil moisture is crucial to hydrological applications such as flood, drought, and near real-time climate forecasting. Recent advances in space-based passive microwave measurements allow the frequent monitoring of the surface soil moisture at a global scale and downscaling approaches have been applied to improve the spatial resolution of passive microwave products available at local scale applications. However, most downscaling methods using optical and thermal dataset, are valid only in cloud-free conditions; thus renewed downscaling method under all sky condition is necessary for the establishment of spatiotemporal continuity of datasets at fine resolution. In present study Support Vector Machine (SVM) technique was utilized to downscale a satellite-based soil moisture retrievals. The 0.1 and 0.25-degree resolution of daily Land Parameter Retrieval Model (LPRM) L3 soil moisture datasets from Advanced Microwave Scanning Radiometer 2 (AMSR2) were disaggregated over Northeast Asia in 2015. Optically derived estimates of surface temperature (LST), normalized difference vegetation index (NDVI), and its cloud products were obtained from MODerate Resolution Imaging Spectroradiometer (MODIS) for the purpose of downscaling soil moisture in finer resolution under all sky condition. Furthermore, a comparison analysis between in situ and downscaled soil moisture products was also conducted for quantitatively assessing its accuracy. Results showed that downscaled soil moisture under all sky condition not only preserves the quality of AMSR2 LPRM soil moisture at 1km resolution, but also attains higher spatial data coverage. From this research we expect that time continuous monitoring of soil moisture at fine scale regardless of weather conditions would be available.
Groetsch, Philipp M M; Gege, Peter; Simis, Stefan G H; Eleveld, Marieke A; Peters, Steef W M
2017-08-07
A three-component reflectance model (3C) is applied to above-water radiometric measurements to derive remote-sensing reflectance Rrs (λ). 3C provides a spectrally resolved offset Δ(λ) to correct for residual sun and sky radiance (Rayleigh- and aerosol-scattered) reflections on the water surface that were not represented by sky radiance measurements. 3C is validated with a data set of matching above- and below-water radiometric measurements collected in the Baltic Sea, and compared against a scalar offset correction Δ. Correction with Δ(λ) instead of Δ consistently reduced the (mean normalized root-mean-square) deviation between Rrs (λ) and reference reflectances to comparable levels for clear (Δ: 14.3 ± 2.5 %, Δ(λ): 8.2 ± 1.7 %), partly clouded (Δ: 15.4 ± 2.1 %, Δ(λ): 6.5 ± 1.4 %), and completely overcast (Δ: 10.8 ± 1.7 %, Δ(λ): 6.3 ± 1.8 %) sky conditions. The improvement was most pronounced under inhomogeneous sky conditions when measurements of sky radiance tend to be less representative of surface-reflected radiance. Accounting for both sun glint and sky reflections also relaxes constraints on measurement geometry, which was demonstrated based on a semi-continuous daytime data set recorded in a eutrophic freshwater lake in the Netherlands. Rrs (λ) that were derived throughout the day varied spectrally by less than 2 % relative standard deviation. Implications on measurement protocols are discussed. An open source software library for processing reflectance measurements was developed and is made publicly available.
NASA Astrophysics Data System (ADS)
Marín, M. J.; Serrano, D.; Utrillas, M. P.; Núñez, M.; Martínez-Lozano, J. A.
2017-10-01
Partly cloudy skies with liquid water clouds have been analysed, founding that it is essential to distinguish data if the Sun is obstructed or not by clouds. Both cases can be separated considering simultaneously the Cloud Modification Factor (CMF) and the clearness index (kt). For partly cloudy skies and the Sun obstructed the effective cloud optical depth (τ) has been obtained by the minimization method for overcast skies. This method was previously developed by the authors but, in this case, taking into account partial cloud cover. This study has been conducted for the years 2011-2015 with the multiple scattering model SBDART and irradiance measurements for the UV Erythemal Radiation (UVER) and the broadband ranges. Afterwards a statistical analysis of τ has shown that the maximum value is much lower than for overcast skies and there is more discrepancy between the two spectral ranges regarding the results for overcast skies. In order to validate these results the effective cloud optical depth has been correlated with several transmission factors, giving similar fit parameters to those obtained for overcast skies except for the clearness index in the UVER range. As our method is not applicable for partly cloudy skies with the visible Sun, the enhancement of radiation caused by clouds when the Sun is visible has been studied. Results show that the average enhancement CMF values are the same for both ranges although enhancement is more frequent for low cloud cover in the UVER and medium-high cloud cover in the broadband range and it does not depend on the solar zenith angle.
Martín-Carrasco, Pablo; Bernabeu-Wittel, José; Dominguez-Cruz, Javier; Zulueta Dorado, Teresa; Conejo-Mir Sanchez, Julian
2017-05-01
Desmoplastic giant congenital melanocytic nevus (DGCN) is an uncommon variant of congenital nevus, presenting as a progressive induration and hypopigmentation of the lesion that occasionally causes hair loss and even total or partial disappearance of the nevus. A 6-month-old girl with a giant congenital melanocytic nevus that involved the entire posterior side of the right thigh was seen in our department. Nine months later, the peripheral area of the nevus presented as a marked induration with hypopigmentation. Dermoscopy demonstrated a reticular pattern exclusively located in the perifollicular areas, with a radial distribution from the follicular ostium that mimicked a "sky full of stars." We report a case of DGCN, including a dermoscopic description of the findings noted in the indurated and hypopigmented areas that appear as a "sky full of stars" image. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Bottom, Michael; Muirhead, Philip S.; Swift, Jonathan J.; Zhao, Ming; Gardner, Paul; Plavchan, Peter P.; Riddle, Reed L.; Herzig, Erich; Johnson, John A.; Wright, Jason T.; McCrady, Nate; Wittenmyer, Robert A.
2014-08-01
We present the science motivation, design, and on-sky test data of a high-throughput fiber coupling unit suitable for automated 1-meter class telescopes. The optical and mechanical design of the fiber coupling is detailed and we describe a flexible controller software designed specifically for this unit. The system performance is characterized with a set of numerical simulations, and we present on-sky results that validate the performance of the controller and the expected throughput of the fiber coupling. This unit was designed specifically for the MINERVA array, a robotic observatory consisting of multiple 0.7 m telescopes linked to a single high-resolution stabilized spectrograph for the purpose of exoplanet discovery using high-cadence radial velocimetry. However, this unit could easily be used for general astronomical purposes requiring fiber coupling or precise guiding.
Local short-term variability in solar irradiance
NASA Astrophysics Data System (ADS)
Lohmann, Gerald M.; Monahan, Adam H.; Heinemann, Detlev
2016-05-01
Characterizing spatiotemporal irradiance variability is important for the successful grid integration of increasing numbers of photovoltaic (PV) power systems. Using 1 Hz data recorded by as many as 99 pyranometers during the HD(CP)2 Observational Prototype Experiment (HOPE), we analyze field variability of clear-sky index k* (i.e., irradiance normalized to clear-sky conditions) and sub-minute k* increments (i.e., changes over specified intervals of time) for distances between tens of meters and about 10 km. By means of a simple classification scheme based on k* statistics, we identify overcast, clear, and mixed sky conditions, and demonstrate that the last of these is the most potentially problematic in terms of short-term PV power fluctuations. Under mixed conditions, the probability of relatively strong k* increments of ±0.5 is approximately twice as high compared to increment statistics computed without conditioning by sky type. Additionally, spatial autocorrelation structures of k* increment fields differ considerably between sky types. While the profiles for overcast and clear skies mostly resemble the predictions of a simple model published by , this is not the case for mixed conditions. As a proxy for the smoothing effects of distributed PV, we finally show that spatial averaging mitigates variability in k* less effectively than variability in k* increments, for a spatial sensor density of 2 km-2.
NASA Astrophysics Data System (ADS)
Kocifaj, M.; Aubé, M.; Kohút, I.
2010-12-01
Nowadays, light pollution is a permanent problem at many observatories around the world. Elimination of excessive lighting during the night is not only about reduction of the total luminous power of ground-based light sources, but also involves experimenting with the spectral features of single lamps. Astronomical photometry is typically made at specific wavelengths, and thus the analysis of the spectral effects of light pollution is highly important. Nevertheless, studies on the spectral behaviour of night light are quite rare. Instead, broad-band or integral quantities (such as sky luminance) are preferentially measured and modelled. The knowledge of night-light spectra is necessary for the proper interpretation of narrow-band photometry data. In this paper, the night-sky radiances in the nominal spectral lines of the B (445 nm) and V (551 nm) filters are determined numerically under clear-sky conditions. Simultaneously, the corresponding sky-luminance patterns are computed and compared against the spectral radiances. It is shown that spectra, patterns and distances of the most important light sources (towns) surrounding an observatory are essential for determining the light pollution levels. In addition, the optical characteristics of the local atmosphere can change the angular behaviour of the sky radiance or luminance. All these effects are evaluated for two Slovakian observatories: Stará Lesná and Vartovka.
Powerful model for the point source sky: Far-ultraviolet and enhanced midinfrared performance
NASA Technical Reports Server (NTRS)
Cohen, Martin
1994-01-01
I report further developments of the Wainscoat et al. (1992) model originally created for the point source infrared sky. The already detailed and realistic representation of the Galaxy (disk, spiral arms and local spur, molecular ring, bulge, spheroid) has been improved, guided by CO surveys of local molecular clouds, and by the inclusion of a component to represent Gould's Belt. The newest version of the model is very well validated by Infrared Astronomy Satellite (IRAS) source counts. A major new aspect is the extension of the same model down to the far ultraviolet. I compare predicted and observed far-utraviolet source counts from the Apollo 16 'S201' experiment (1400 A) and the TD1 satellite (for the 1565 A band).
NASA Astrophysics Data System (ADS)
Babak, Stanislav; Taracchini, Andrea; Buonanno, Alessandra
2017-01-01
In Abbott et al. [Phys. Rev. X 6, 041014 (2016), 10.1103/PhysRevX.6.041014], the properties of the first gravitational wave detected by LIGO, GW150914, were measured by employing an effective-one-body (EOB) model of precessing binary black holes whose underlying dynamics and waveforms were calibrated to numerical-relativity (NR) simulations. Here, we perform the first extensive comparison of such an EOBNR model to 70 precessing NR waveforms that span mass ratios from 1 to 5, dimensionless spin magnitudes up to 0.5, generic spin orientations, and length of about 20 orbits. We work in the observer's inertial frame and include all ℓ=2 modes in the gravitational-wave polarizations. We introduce new prescriptions for the EOB ringdown signal concerning its spectrum and time of onset. For total masses between 10 M⊙ and 200 M⊙ , we find that precessing EOBNR waveforms have unfaithfulness within about 3% to NR waveforms when considering the Advanced-LIGO design noise curve. This result is obtained without recalibration of the inspiral-plunge signal of the underlying nonprecessing EOBNR model. The unfaithfulness is computed with maximization over time and phase of arrival, sky location, and polarization of the EOBNR waveform, and it is averaged over sky location and polarization of the NR signal. We also present comparisons between NR and EOBNR waveforms in a frame that tracks the orbital precession.
NASA Astrophysics Data System (ADS)
Mozdzen, Thomas J.; Bowman, Judd D.; Monsalve, Raul A.; Rogers, Alan E. E.
2018-01-01
The Experiment to Detect the Global Epoch of Reionization (EoR) Signature (EDGES) is an effort to measure the sky-averaged redshifted 21 cm difference temperature, Tb, with a single wide field-of-view well-calibrated antenna placed in Western Australia. Tb is due to interactions of the hyperfine ground state of HI with the CMB and is four to five orders of magnitude dimmer than the foreground synchrotron radiation whose removal requires very low systematic errors in data collection. I analyzed two different antenna designs, a rectangular blade-shaped antenna and a fourpoint-shaped antenna, by comparing and quantifying the impact of the chromatic nature of the antenna beam directivity. Foreground removal of simulated antenna temperatures, formed by convolving a frequency scaled Haslam 408 MHz sky map with each of the antenna’s chromatic beams, resulted in a factor of 10 lower rms error for the blade antenna when using a five term polynomial for the sky foreground. The signal to noise ratio was at a maximum when five terms were used to represent the sky foreground and was superior for the blade antenna by factors between 1.35 and 1.95. These results led to the conversion of all EDGES antenna designs to the blade design. The spectral index, β, of the sky was measured, using 211 nights of data, to be ‑2.60 > β > ‑2.62 in lower LST regions, increasing to ‑2.50 near the Galactic plane. I compared our measurements with spectral index simulations derived from two published sky maps and found good agreement at the transit of the Galactic Center, but at other LST values tended to overpredict by at most by Δβ < 0.05 for one map and by Δβ < 0.12 for the other. The EDGES instrument is shown to be very stable throughout the observations as the data scatter is very low, σβ < 0.003, and the total systematic uncertainty in β is 0.02. The improved systematic error enhances our ability to detect EoR signatures. I present preliminary results that show an EoR model by Kaurov & Gnedin (2016) is inconsistent with measured EDGES data at a significance of 1.9σ.
IAU Resolution 2009 B5 - Commission 50 Draft Action Plan - Presentation and Discussion
NASA Astrophysics Data System (ADS)
Green, R. F.
2015-03-01
IAU Resolution 2009 B5 calls on IAU members to protect the public's right to an unpolluted night sky as well as the astronomical quality of the sky around major research observatories. The multi-pronged approach of Commission 50 includes working with the lighting industry for appropriate products from the solid state revolution, arming astronomers with training and materials for presentation, selective endorsement of key protection issues, cooperation with several other IAU commissions for education and outreach, and provision of clear quantitative priorities for outdoor lighting standards.
The Solar Ultraviolet Environment at the Ocean.
Mobley, Curtis D; Diffey, Brian L
2018-05-01
Atmospheric and oceanic radiative transfer models were used to compute spectral radiances between 285 and 400 nm onto horizontal and vertical plane surfaces over water. The calculations kept track of the contributions by the sun's direct beam, by diffuse-sky radiance, by radiance reflected from the sea surface and by water-leaving radiance. Clear, hazy and cloudy sky conditions were simulated for a range of solar zenith angles, wind speeds and atmospheric ozone concentrations. The radiances were used to estimate erythemal exposures due to the sun and sky, as well as from radiation reflected by the sea surface and backscattered from the water column. Diffuse-sky irradiance is usually greater than direct-sun irradiance at wavelengths below 330 nm, and reflected and water-leaving irradiance accounts for <20% of the UV exposure on a vertical surface. Total exposure depends strongly on solar zenith angle and azimuth angle relative to the sun. Sea surface roughness affects the UV exposures by only a few percent. For very clear waters and the sun high in the sky, the UV index within the water can be >10 at depths down to two meters and >6 down to 5 m. © 2018 The American Society of Photobiology.
The color of the Martian sky and its influence on the illumination of the Martian surface
Thomas, N.; Markiewicz, W.J.; Sablotny, R.M.; Wuttke, M.W.; Keller, H.U.; Johnson, J. R.; Reid, R.J.; Smith, R.H.
1999-01-01
The dust in the atmosphere above the Mars Pathfinder landing site produced a bright, red sky that increases in redness toward the horizon at midday. There is also evidence for an absorption band in the scattered light from the sky at 860 nm. A model of the sky brightness has been developed [Markiewicz et al., this issue] and tested against Imager for Mars Pathfinder (IMP) observations of calibration targets on the lander. The resulting model has been used to quantify the total diffuse flux onto a surface parallel to the local level for several solar elevation angles and optical depths. The model shows that the diffuse illumination in shadowed areas is strongly reddened while areas illuminated directly by the Sun (and the blue forward scattering peak) see a more solar-type spectrum, in agreement with Viking and IMP observations. Quantitative corrections for the reddening in shadowed areas are demonstrated. It is shown quantitatively that the unusual appearance of the rock Yogi (the east face of which appeared relatively blue in images taken during the morning but relatively red during the afternoon) can be explained purely by the changing illumination geometry. We conclude that any spectrophotometric analysis of surfaces on Mars must take into account the diffuse flux. Specifically, the reflectances of surfaces viewed under different illumination geometries cannot be investigated for spectral diversity unless a correction has been applied which removes the influence of the reddened diffuse flux. Copyright 1999 by the American Geophysical Union.
Lesley Fusina; Sharon Zhong; Julide Koracin; Tim Brown; Annie Esperanza; Leland Tarney; Haiganoush Preisler
2007-01-01
The BlueSky Smoke Prediction System developed by the U.S. Department of Agriculture, Forest Service, AirFire Team under the National Fire Plan is a modeling framework that integrates tools, knowledge of fuels, moisture, combustion, emissions, plume dynamics, and weather to produce real-time predictions of the cumulative impacts of smoke from wildfires, prescribed fires...
Quest for safer skies: Modeling golden eagles and wind energy to reduce turbine risk
Todd Katzner; Tricia Miller; Scott Stoleson
2014-01-01
In a patch of sky above Pennsylvania, a golden eagle moves languidly, never flapping but passing quickly as it cruises southward on a cushion of air. It is migrating to its wintering grounds after a season of breeding in Quebec. As part of a team studying eagles on a daily basisa project supported by the U.S. Forest Service (USFS), West Virginia University,...
Least-Squares Self-Calibration of Imaging Array Data
NASA Technical Reports Server (NTRS)
Arendt, R. G.; Moseley, S. H.; Fixsen, D. J.
2004-01-01
When arrays are used to collect multiple appropriately-dithered images of the same region of sky, the resulting data set can be calibrated using a least-squares minimization procedure that determines the optimal fit between the data and a model of that data. The model parameters include the desired sky intensities as well as instrument parameters such as pixel-to-pixel gains and offsets. The least-squares solution simultaneously provides the formal error estimates for the model parameters. With a suitable observing strategy, the need for separate calibration observations is reduced or eliminated. We show examples of this calibration technique applied to HST NICMOS observations of the Hubble Deep Fields and simulated SIRTF IRAC observations.
ROSAT all-sky survey on the Einstein EMSS sample
NASA Technical Reports Server (NTRS)
Maccacaro, Tomasso
1992-01-01
The cosmological evolution and the luminosity function (XLF) of X ray selected Active Galactic Nuclei (AGN's) are discussed. The sample used is extracted from the Einstein Observatory Extended Medium Sensitivity Surveys (EMSS) and consists of more than 420 objects. Preliminary results from the ROSAT All-Sky Survey data confirm the correctness of the optical identification of the EMSS sources, thus giving confidence to the results obtained from the analysis of the AGN's sample. The XLF observed at different redshifts (up to z approx. 2) gives direct evidence of cosmological evolution. Data have been analyzed within the framework of luminosity evolution models and the two most common evolutionary forms, L sub x(Z) = L sub x(0) x e(sup Cr) and L sub x(Z) = L sub x(0) x (1 + z)(exp C), have been considered. Luminosity dependent evolution is required if the evolution function has the exponential form, whereas the simpler pure luminosity evolution model is still acceptable if the evolution function has the power law form. Using the whole sample of objects the number-counts and the de-evolved (z = 0) XLF have been derived. A comparison of the EMSS data with preliminary ROSAT results presented at this meeting indicates an overall agreement.
NASA Technical Reports Server (NTRS)
Blackburn, L.; Briggs, M. S.; Camp, J.; Christensen, N.; Connaughton, V.; Jenke, P.; Remillard, R. A.; Veitch, J.
2015-01-01
We present two different search methods for electromagnetic counterparts to gravitational-wave (GW) events from ground-based detectors using archival NASA high-energy data from the Fermi Gamma-ray Burst Monitor (GBM) and RXTE All-sky Monitor (ASM) instruments. To demonstrate the methods, we use a limited number of representative GW background noise events produced by a search for binary neutron star coalescence over the last two months of the LIGO-Virgo S6/VSR3 joint science run. Time and sky location provided by the GW data trigger a targeted search in the high-energy photon data. We use two custom pipelines: one to search for prompt gamma-ray counterparts in GBM, and the other to search for a variety of X-ray afterglow model signals in ASM. We measure the efficiency of the joint pipelines to weak gamma-ray burst counterparts, and a family of model X-ray afterglows. By requiring a detectable signal in either electromagnetic instrument coincident with a GW event, we are able to reject a large majority of GW candidates. This reduces the signal-to-noise ratio of the loudest surviving GW background event by around 15-20 percent.
Evaluation and optimization of sampling errors for the Monte Carlo Independent Column Approximation
NASA Astrophysics Data System (ADS)
Räisänen, Petri; Barker, W. Howard
2004-07-01
The Monte Carlo Independent Column Approximation (McICA) method for computing domain-average broadband radiative fluxes is unbiased with respect to the full ICA, but its flux estimates contain conditional random noise. McICA's sampling errors are evaluated here using a global climate model (GCM) dataset and a correlated-k distribution (CKD) radiation scheme. Two approaches to reduce McICA's sampling variance are discussed. The first is to simply restrict all of McICA's samples to cloudy regions. This avoids wasting precious few samples on essentially homogeneous clear skies. Clear-sky fluxes need to be computed separately for this approach, but this is usually done in GCMs for diagnostic purposes anyway. Second, accuracy can be improved by repeated sampling, and averaging those CKD terms with large cloud radiative effects. Although this naturally increases computational costs over the standard CKD model, random errors for fluxes and heating rates are reduced by typically 50% to 60%, for the present radiation code, when the total number of samples is increased by 50%. When both variance reduction techniques are applied simultaneously, globally averaged flux and heating rate random errors are reduced by a factor of #3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackburn, L.; Camp, J.; Briggs, M. S.
2015-03-15
We present two different search methods for electromagnetic counterparts to gravitational-wave (GW) events from ground-based detectors using archival NASA high-energy data from the Fermi Gamma-ray Burst Monitor (GBM) and RXTE All-sky Monitor (ASM) instruments. To demonstrate the methods, we use a limited number of representative GW background noise events produced by a search for binary neutron star coalescence over the last two months of the LIGO-Virgo S6/VSR3 joint science run. Time and sky location provided by the GW data trigger a targeted search in the high-energy photon data. We use two custom pipelines: one to search for prompt gamma-ray counterpartsmore » in GBM, and the other to search for a variety of X-ray afterglow model signals in ASM. We measure the efficiency of the joint pipelines to weak gamma-ray burst counterparts, and a family of model X-ray afterglows. By requiring a detectable signal in either electromagnetic instrument coincident with a GW event, we are able to reject a large majority of GW candidates. This reduces the signal-to-noise ratio of the loudest surviving GW background event by around 15–20%.« less
On the limitations of statistical absorption studies with the Sloan Digital Sky Surveys I-III
NASA Astrophysics Data System (ADS)
Lan, Ting-Wen; Ménard, Brice; Baron, Dalya; Johnson, Sean; Poznanski, Dovi; Prochaska, J. Xavier; O'Meara, John M.
2018-04-01
We investigate the limitations of statistical absorption measurements with the SDSS optical spectroscopic surveys. We show that changes in the data reduction strategy throughout different data releases have led to a better accuracy at long wavelengths, in particular for sky line subtraction, but a degradation at short wavelengths with the emergence of systematic spectral features with an amplitude of about one percent. We show that these features originate from inaccuracy in the fitting of modeled F-star spectra used for flux calibration. The best-fit models for those stars are found to systematically over-estimate the strength of metal lines and under-estimate that of Lithium. We also identify the existence of artifacts due to masking and interpolation procedures at the wavelengths of the hydrogen Balmer series leading to the existence of artificial Balmer α absorption in all SDSS optical spectra. All these effects occur in the rest-frame of the standard stars and therefore present Galactic longitude variations due to the rotation of the Galaxy. We demonstrate that the detection of certain weak absorption lines reported in the literature are solely due to calibration effects. Finally, we discuss new strategies to mitigate these issues.
High-Mass X-ray Binaries in hard X- rays
NASA Astrophysics Data System (ADS)
Lutovinov, Alexander
We present a review of the latest results of the all-sky survey, performed with the INTEGRAL observatory. The deep exposure spent by INTEGRAL in the Galactic plane region, as well as for nearby galaxies allowed us to obtain a flux limited sample for High Mass X-ray Binaries in the Local Galactic Group and measure their physical properties, like a luminosity function, spatial density distribution, etc. Particularly, it was determined the most accurate up to date spatial density distribution of HMXBs in the Galaxy and its correlation with the star formation rate distribution. Based on the measured value of the vertical distribution of HMXBs (a scale-height h~85 pc) we also estimated a kinematical age of HMXBs. Properties of the population of HMXBs are explained in the framework of the population synthesis model. Based on this model we argue that a flaring activity of so-called supergiant fast X-ray transients (SFXTs), the recently recognized sub-sample of HMXBs, is likely related with the magnetic arrest of their accretion. The resulted global characteristics of the HMXB population are used for predictions of sources number counts in sky surveys of future X-ray missions.
Bidirectional Reflectance Functions for Application to Earth Radiation Budget Studies
NASA Technical Reports Server (NTRS)
Manalo-Smith, N.; Tiwari, S. N.; Smith, G. L.
1997-01-01
Reflected solar radiative fluxes emerging for the Earth's top of the atmosphere are inferred from satellite broadband radiance measurements by applying bidirectional reflectance functions (BDRFs) to account for the anisotropy of the radiation field. BDRF's are dependent upon the viewing geometry (i.e. solar zenith angle, view zenith angle, and relative azimuth angle), the amount and type of cloud cover, the condition of the intervening atmosphere, and the reflectance characteristics of the underlying surface. A set of operational Earth Radiation Budget Experiment (ERBE) BDRFs is available which was developed from the Nimbus 7 ERB (Earth Radiation Budget) scanner data for a three-angle grid system, An improved set of bidirectional reflectance is required for mission planning and data analysis of future earth radiation budget instruments, such as the Clouds and Earth's Radiant Energy System (CERES), and for the enhancement of existing radiation budget data products. This study presents an analytic expression for BDRFs formulated by applying a fit to the ERBE operational model tabulations. A set of model coefficients applicable to any viewing condition is computed for an overcast and a clear sky scene over four geographical surface types: ocean, land, snow, and desert, and partly cloudy scenes over ocean and land. The models are smooth in terms of the directional angles and adhere to the principle of reciprocity, i.e., they are invariant with respect to the interchange of the incoming and outgoing directional angles. The analytic BDRFs and the radiance standard deviations are compared with the operational ERBE models and validated with ERBE data. The clear ocean model is validated with Dlhopolsky's clear ocean model. Dlhopolsky developed a BDRF of higher angular resolution for clear sky ocean from ERBE radiances. Additionally, the effectiveness of the models accounting for anisotropy for various viewing directions is tested with the ERBE along tract data. An area viewed from nadir and from the side give two different radiance measurements but should yield the same flux when converted by the BDRF. The analytic BDRFs are in very good qualitative agreement with the ERBE models. The overcast scenes exhibit constant retrieved albedo over viewing zenith angles for solar zenith angles less than 60 degrees. The clear ocean model does not produce constant retrieved albedo over viewing zenith angles but gives an improvement over the ERBE operational clear sky ocean BDRF.
NASA Technical Reports Server (NTRS)
Wu, Man Li C.; Schubert, Siegfried; Lin, Ching I.; Stajner, Ivanka; Einaudi, Franco (Technical Monitor)
2000-01-01
A method is developed for validating model-based estimates of atmospheric moisture and ground temperature using satellite data. The approach relates errors in estimates of clear-sky longwave fluxes at the top of the Earth-atmosphere system to errors in geophysical parameters. The fluxes include clear-sky outgoing longwave radiation (CLR) and radiative flux in the window region between 8 and 12 microns (RadWn). The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data, and multiple global four-dimensional data assimilation (4-DDA) products. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic clear-sky longwave fluxes from two different 4-DDA data sets. Simple linear regression is used to relate the clear-sky longwave flux discrepancies to discrepancies in ground temperature ((delta)T(sub g)) and broad-layer integrated atmospheric precipitable water ((delta)pw). The slopes of the regression lines define sensitivity parameters which can be exploited to help interpret mismatches between satellite observations and model-based estimates of clear-sky longwave fluxes. For illustration we analyze the discrepancies in the clear-sky longwave fluxes between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS2) and a recent operational version of the European Centre for Medium-Range Weather Forecasts data assimilation system. The analysis of the synthetic clear-sky flux data shows that simple linear regression employing (delta)T(sub g)) and broad layer (delta)pw provides a good approximation to the full radiative transfer calculations, typically explaining more thin 90% of the 6 hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the geophysical parameters, Uncertainties (normalized by standard deviation) in the monthly mean retrieved parameters range from 7% for (delta)T(sub g) to approx. 20% for the lower tropospheric moisture between 500 hPa and surface. The regression relationships developed from the synthetic flux data, together with CLR and RadWn observed with the Clouds and Earth Radiant Energy System instrument, ire used to assess the quality of the GEOS2 T(sub g) and pw. Results showed that the GEOS2 T(sub g) is too cold over land, and pw in upper layers is too high over the tropical oceans and too low in the lower atmosphere.
Utrillas, María P; Marín, María J; Esteve, Anna R; Estellés, Victor; Tena, Fernando; Cañada, Javier; Martínez-Lozano, José A
2009-01-01
Values of measured and modeled diffuse UV erythemal irradiance (UVER) for all sky conditions are compared on planes inclined at 40 degrees and oriented north, south, east and west. The models used for simulating diffuse UVER are of the geometric-type, mainly the Isotropic, Klucher, Hay, Muneer, Reindl and Schauberger models. To analyze the precision of the models, some statistical estimators were used such as root mean square deviation, mean absolute deviation and mean bias deviation. It was seen that all the analyzed models reproduce adequately the diffuse UVER on the south-facing plane, with greater discrepancies for the other inclined planes. When the models are applied to cloud-free conditions, the errors obtained are higher because the anisotropy of the sky dome acquires more importance and the models do not provide the estimation of diffuse UVER accurately.
Light Pollution Surveys around the Seoul Capital Area: Results from 2009 and 2014
NASA Astrophysics Data System (ADS)
Yu, Jinhee; An, Sung-Ho; Bae, Hyun-Jin; Roh, Eunji; Chiang, Howoo; Kim, Jinhyub; Kim, Seongjoong; Park, Songyoun
2015-08-01
We conducted a series of light pollution surveys in the periods of 2009/2010 and 2014/2015 at ~130 sites within the Seoul Capital Area of South Korea. We quantitatively measured the night sky brightness in the unit of mag/arcsec2 with the ‘SQM (Sky Quality Meter)-L’ by considering the following conditions: 1) fully dark sky after astronomical twilight, 2) good weather with the cloud amount less than 10%, and 3) ensure no contaminations from nearby street lights to the measured value. We find that the night sky is getting darker from the center of Seoul to the outskirts of Gyeonggi-do by a factor of ~40. In both surveys, for example, the brightest site is Namsan Elementary School (Jung-gu, Seoul: 16.3 and 16.5 mag/arcsec2 in 2009/2010 and 2014/2015, respectively), located nearly at the middle of Seoul. Also, the darkest site is Goseong-ri (Gapyeong-gun, Gyeonggi-do: 20.1 and 20.6 mag/arcsec2 in 2009/2010 and 2014/2015, respectively), situated ~50 km northeast of the brightest site. In addition, the night sky brightness in 2014/2015 is on average darker by ~0.4 mag/arcsec2 compared to the brightness in 2009/2010, which indicates the reduced light pollution in the Seoul Capital Area. In this contribution, we will present the maps of the night sky brightness in the capital region of Korea from both surveys, and discuss the possible reasons for the changes in night sky brightness within 5 years.
Ultra-Stable Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (5STAR)
NASA Technical Reports Server (NTRS)
Dunagan, Stephen E.; Johnson, Roy R.; Redemann, Jens; Holben, Brent N.; Schmidt, Beat; Flynn, Connor Joseph; Fahey, Lauren; LeBlanc, Samuel; Liss, Jordan; Kacenelenbogen, Meloe S.;
2017-01-01
The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to airpollution and climate. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituentsand determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution.Hyperspectral cloud-transmitted radiance measurements enable the retrieval of cloud properties from below clouds.These measurements tighten the closure between satellite and ground-based measurements. 4STAR incorporates amodular sun-tracking sky-scanning optical head with optical fiber signal transmission to rack mounted spectrometers,permitting miniaturization of the external optical tracking head, and future detector evolution.4STAR has supported a broad range of flight experiments since it was first flown in 2010. This experience provides thebasis for a series of improvements directed toward reducing measurement uncertainty and calibration complexity, andexpanding future measurement capabilities, to be incorporated into a new 5STAR instrument. A 9-channel photodioderadiometer with AERONET-matched bandpass filters will be incorporated to improve calibration stability. A wide dynamic range tracking camera will provide a high precision solar position tracking signal as well as an image of sky conditions around the solar axis. An ultrasonic window cleaning system design will be tested. A UV spectrometer tailored for formaldehyde and SO2 gas retrievals will be added to the spectrometer enclosure. Finally, expansion capability for a 4 channel polarized radiometer to measure the Stokes polarization vector of sky light will be incorporated. This paper presents initial progress on this next-generation 5STAR instrument.
Validation of Aquarius Measurements Using Radiative Transfer Models at L-Band
NASA Technical Reports Server (NTRS)
Dinnat, E.; LeVine, David M.; Abraham, S.; DeMattheis, P.; Utku, C.
2012-01-01
Aquarius/SAC-D was launched in June 2011 by NASA and CONAE (Argentine space agency). Aquarius includes three L-band (1.4 GHz) radiometers dedicated to measuring sea surface salinity. We report detailed comparisons of Aquarius measurements with radiative transfer model predictions. These comparisons were used as part ofthe initial assessment of Aquarius data. In particular, they were used successfully to estimate the radiometer calibration bias and stability. Further comparisons are being performed to assess the performance of models in the retrieval algorithm for correcting the effect of sources of geophysical "noise" (e.g. the galactic background, atmospheric attenuation and reflected signal from the Sun). Such corrections are critical in bringing the error in retrieved salinity down to the required 0.2 practical salinity unit (psu) on monthly global maps at 150 km by 150 km resolution. The forward models making up the Aquarius simulator have been very useful for preparatory studies in the years leading to Aquarius' launch. The simulator includes various components to compute effects ofthe following processes on the measured signal: 1) emission from Earth surfaces (ocean, land, ice), 2) atmospheric emission and absorption, 3) emission from the Sun, Moon and celestial Sky (directly through the antenna sidelobes or after reflection/scattering at the Earth surface), 4) Faraday rotation, and 5) convolution of the scene by the antenna gain patterns. Since the Aquarius radiometers tum-on in late July 2011, the simulator has been used to perform a first order validation of the data. This included checking the order of magnitude ofthe signal over ocean, land and ice surfaces, checking the relative amplitude of signal at different polarizations, and checking the variation with incidence angle. The comparisons were also used to assess calibration bias and monitor instruments calibration drift. The simulator is also being used in the salinity retrieval. For example, initial assessments of the salinity retrieved from Aquarius data showed degradation in accuracy at locations where glint from the galactic sky background was important. This was traced to an inaccurate correction for the Sky glint. We present comparisons of the simulator prediction to the Aquarius data in order to assess the performances of the models of various physical processes impacting the measurements, such as the effect of sea surface roughness, the impact of the celestial Sky and the Sun emission scattered at the rough ocean surface. We discuss what components of the simulator appear reliable and which ones need improvements. Improved knowledge on the radiative transfer models at L-band will not only lead to better salinity retrieved from Aquarius data, it will also allow be beneficial for SMOS or the upcoming SMAP mission.
Barta, András; Farkas, Alexandra; Száz, Dénes; Egri, Ádám; Barta, Pál; Kovács, József; Csák, Balázs; Jankovics, István; Szabó, Gyula; Horváth, Gábor
2014-08-10
Using full-sky imaging polarimetry, we measured the celestial distribution of polarization during sunset and sunrise at partial (78% and 72%) and full (100%) moon in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We investigated the temporal change of the patterns of degree p and angle α of linear polarization of sunlit and moonlit skies at dusk and dawn. We describe here the position change of the neutral points of sky polarization, and present video clips about the celestial polarization transition at moonlit twilight. We found that at partial moon and at a medium latitude (47° 15.481' N) during this transition there is a relatively short (10-20 min) period when (i) the maximum of p of skylight decreases, and (ii) from the celestial α pattern neither the solar-antisolar nor the lunar-antilunar meridian can be unambiguously determined. These meridians can serve as reference directions of animal orientation and Viking navigation based on sky polarization. The possible influence of these atmospheric optical phenomena during the polarization transition between sunlit and moonlit skies on the orientation of polarization-sensitive crepuscular/nocturnal animals and the hypothesized navigation of sunstone-aided Viking seafarers is discussed.
Validation of Local-Cloud Model Outputs With the GOES Satellite Imagery
NASA Astrophysics Data System (ADS)
Malek, E.
2005-05-01
Clouds (visible aggregations of minute droplets of water or tiny crystals of ice suspended in the air) affect the radiation budget of our planet by reflecting, absorbing and scattering solar radiation, and the re-emission of terrestrial radiation. They affect the weather and climate by positive or negative feedbacks. Many researchers have worked on the parameterization of clouds and their effects on the radiation budget. There is little information about ground-based approaches for continuous evaluation of cloud, such as cloud base height, cloud base temperature, and cloud coverage, at local and regional scales. This present article deals with the development of an algorithm for continuous (day and night) evaluation of cloud base temperature, cloud base height and percent of skies covered by cloud at local scale throughout the year. The Vaisala model CT-12K laser beam ceilometer is used at the Automated Surface Observing Systems (ASOS) to measure the cloud base height and report the sky conditions on an hourly basis or at shorter intervals. This laser ceilometer is a fixed-type whose transmitter and receiver point straight up at the cloud (if any) base. It is unable to measure clouds that are not above the sensor. To report cloudiness at the local scale, many of these type of ceilometers are needed. This is not a perfect method for cloud measurement. A single cloud hanging overhead the sensor will cause overcast readings, whereas, a hole in the clouds could cause a clear reading to be reported. To overcome this problem, we have set up a ventilated radiation station at Logan-Cache airport, Utah, U.S.A., since 1995, which is equipped with one of the above-mentioned ceilometers. This radiation station (composed of pyranometers, pyrgeometers and net radiometer) provides continuous measurements of incoming and outgoing shortwave and longwave radiation and the net radiation throughout the year. We have also measured the surface temperature and pressure, the 2-m air temperature and humidity, precipitation, and the 3-m wind and direction at this station. Having the air temperature, moisture, and the measured cloudless incoming longwave (atmospheric) radiation during 1999 through 2004, based upon the ASOS and the algorithm data, we found the appropriate formula (among four reported approaches) for computation of the cloudless-skies atmospheric emissivity. Considering the additional longwave radiation captured by the facing-up pyrgeometer during the cloudy skies, coming from the cloud in the wave band which the gaseous emission lacks (from 8-13 ìm), we developed an algorithm which provides the continuous 20-min cloud information (cloud base height, cloud base temperature, and percent of skies covered by cloud) over the Cache Valley during day and night throughout the year. The comparisons between the ASOS and the algorithm data during the period of 8-12 June, 2004 are reported in this article. The proposed algorithm is a promising approach for evaluation of the cloud base temperature, cloud base height, and percent of skies covered by cloud at the local scale throughout the year. It also reports the comparison between model outputs and GOES 10 satellite images.
Where Is the Flux Going? The Long-term Photometric Variability of Boyajian’s Star
NASA Astrophysics Data System (ADS)
Simon, Joshua D.; Shappee, Benjamin J.; Pojmański, G.; Montet, Benjamin T.; Kochanek, C. S.; van Saders, Jennifer; Holoien, T. W.-S.; Henden, Arne A.
2018-01-01
We present ∼800 days of photometric monitoring of Boyajian’s Star (KIC 8462852) from the All-Sky Automated Survey for Supernovae (ASAS-SN) and ∼4000 days of monitoring from the All Sky Automated Survey (ASAS). We show that from 2015 to the present the brightness of Boyajian’s Star has steadily decreased at a rate of 6.3 ± 1.4 mmag yr‑1, such that the star is now 1.5% fainter than it was in 2015 February. Moreover, the longer time baseline afforded by ASAS suggests that Boyajian’s Star has also undergone two brightening episodes in the past 11 years, rather than only exhibiting a monotonic decline. We analyze a sample of ∼1000 comparison stars of similar brightness located in the same ASAS-SN field and demonstrate that the recent fading is significant at ≳99.4% confidence. The 2015–2017 dimming rate is consistent with that measured with Kepler data for the time period from 2009 to 2013. This long-term variability is difficult to explain with any of the physical models for the star’s behavior proposed to date.
NASA Technical Reports Server (NTRS)
Racusin, J. L.; Burns, E.; Goldstein, A.; Connaughton, V.; Wilson-Hodge, C. A.; Jenke, P.; Blackburn, L.; Briggs, M. S.; Broida, J.; Camp, J.;
2017-01-01
We present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger event GW151226 and candidate LVT151012. At the time of the LIGO triggers on LVT151012 and GW151226, GBM was observing 68% and 83% of the localization regions, and LAT was observing 47% and 32%, respectively. No candidate electromagnetic counterparts were detected by either the GBM or LAT. We present a detailed analysis of the GBM and LAT data over a range of timescales from seconds to years, using automated pipelines and new techniques for characterizing the flux upper bounds across large areas of the sky. Due to the partial GBM and LAT coverage of the large LIGO localization regions at the trigger times for both events, differences in source distances and masses, as well as the uncertain degree to which emission from these sources could be beamed, these non-detections cannot be used to constrain the variety of theoretical models recently applied to explain the candidate GBM counterpart to GW150914.
Racusin, J. L.; Burns, E.; Goldstein, A.; ...
2017-01-19
Here, we present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger event GW151226 and candidate LVT151012. At the time of the LIGO triggers on LVT151012 and GW151226, GBM was observing 68% and 83% of the localization regions, and LAT was observing 47% and 32%, respectively. No candidate electromagnetic counterparts were detected by either the GBM or LAT. We present a detailed analysis of the GBM and LAT data over a range of timescales from seconds to years, using automated pipelines and new techniques for characterizing the flux upper boundsmore » across large areas of the sky. Finally, due to the partial GBM and LAT coverage of the large LIGO localization regions at the trigger times for both events, differences in source distances and masses, as well as the uncertain degree to which emission from these sources could be beamed, these non-detections cannot be used to constrain the variety of theoretical models recently applied to explain the candidate GBM counterpart to GW150914.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Racusin, J. L.; Camp, J.; Singer, L.
2017-01-20
We present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger event GW151226 and candidate LVT151012. At the time of the LIGO triggers on LVT151012 and GW151226, GBM was observing 68% and 83% of the localization regions, and LAT was observing 47% and 32%, respectively. No candidate electromagnetic counterparts were detected by either the GBM or LAT. We present a detailed analysis of the GBM and LAT data over a range of timescales from seconds to years, using automated pipelines and new techniques for characterizing the flux upper bounds acrossmore » large areas of the sky. Due to the partial GBM and LAT coverage of the large LIGO localization regions at the trigger times for both events, differences in source distances and masses, as well as the uncertain degree to which emission from these sources could be beamed, these non-detections cannot be used to constrain the variety of theoretical models recently applied to explain the candidate GBM counterpart to GW150914.« less
Extreme ultraviolet index due to broken clouds at a midlatitude site, Granada (southeastern Spain)
NASA Astrophysics Data System (ADS)
Antón, M.; Piedehierro, A. A.; Alados-Arboledas, L.; Wolfran, E.; Olmo, F. J.
2012-11-01
Cloud cover usually attenuates the ultraviolet (UV) solar radiation but, under certain sky conditions, the clouds may produce an enhancement effect increasing the UV levels at surface. The main objective of this paper is to analyze an extreme UV enhancement episode recorded on 16 June 2009 at Granada (southeastern Spain). This phenomenon was characterized by a quick and intense increase in surface UV radiation under broken cloud fields (5-7 oktas) in which the Sun was surrounded by cumulus clouds (confirmed with sky images). Thus, the UV index (UVI) showed an enhancement of a factor 4 in the course of only 30 min around midday, varying from 2.6 to 10.4 (higher than the corresponding clear-sky UVI value). Additionally, the UVI presented values higher than 10 (extreme erythemal risk) for about 20 min running, with a maximum value around 11.5. The use of an empirical model and the total ozone column (TOC) derived from the Global Ozone Monitoring Experiment (GOME) for the period 1995-2011 showed that the value of UVI ~ 11.5 is substantially larger than the highest index that could origin the natural TOC variations over Granada. Finally, the UV erythemal dose accumulated during the period of 20 min with the extreme UVI values under broken cloud fields was 350 J/m2 which surpass the energy required to produce sunburn of the most human skin types.
Flame: A Flexible Data Reduction Pipeline for Near-Infrared and Optical Spectroscopy
NASA Astrophysics Data System (ADS)
Belli, Sirio; Contursi, Alessandra; Davies, Richard I.
2018-05-01
We present flame, a pipeline for reducing spectroscopic observations obtained with multi-slit near-infrared and optical instruments. Because of its flexible design, flame can be easily applied to data obtained with a wide variety of spectrographs. The flexibility is due to a modular architecture, which allows changes and customizations to the pipeline, and relegates the instrument-specific parts to a single module. At the core of the data reduction is the transformation from observed pixel coordinates (x, y) to rectified coordinates (λ, γ). This transformation consists in the polynomial functions λ(x, y) and γ(x, y) that are derived from arc or sky emission lines and slit edge tracing, respectively. The use of 2D transformations allows one to wavelength-calibrate and rectify the data using just one interpolation step. Furthermore, the γ(x, y) transformation includes also the spatial misalignment between frames, which can be measured from a reference star observed simultaneously with the science targets. The misalignment can then be fully corrected during the rectification, without having to further resample the data. Sky subtraction can be performed via nodding and/or modeling of the sky spectrum; the combination of the two methods typically yields the best results. We illustrate the pipeline by showing examples of data reduction for a near-infrared instrument (LUCI at the Large Binocular Telescope) and an optical one (LRIS at the Keck telescope).
NASA Astrophysics Data System (ADS)
Dupac, X.; Arviset, C.; Fernandez Barreiro, M.; Lopez-Caniego, M.; Tauber, J.
2015-12-01
The Planck Collaboration has released in 2015 their second major dataset through the Planck Legacy Archive (PLA). It includes cosmological, Extragalactic and Galactic science data in temperature (intensity) and polarization. Full-sky maps are provided with unprecedented angular resolution and sensitivity, together with a large number of ancillary maps, catalogues (generic, SZ clusters and Galactic cold clumps), time-ordered data and other information. The extensive cosmological likelihood package allows cosmologists to fully explore the plausible parameters of the Universe. A new web-based PLA user interface is made public since Dec. 2014, allowing easier and faster access to all Planck data, and replacing the previous Java-based software. Numerous additional improvements to the PLA are also being developed through the so-called PLA Added-Value Interface, making use of an external contract with the Planetek Hellas and Expert Analytics software companies. This will allow users to process time-ordered data into sky maps, separate astrophysical components in existing maps, simulate the microwave and infrared sky through the Planck Sky Model, and use a number of other functionalities.
The Swift Burst and Transient Telescope (BAT)
NASA Technical Reports Server (NTRS)
Mushotzky, Richard
2008-01-01
The Swift Burst and Transient telescope (BAT) has surveyed the entire sky for the last 3.5 years obtaining the first sensitive all sky survey of the 14-195 kev sky. At high galactic latitudes the vast majority of the detected sources are AGN. Since hard x-rays penetrate all but Compton thick obscuring material (Column densities of 1.6324 atms/sq cm) this survey is unbiased with respect to obscuration, host galaxy type, optical , radio or IR properties. We will present results on the broad band x-ray properties, the nature of the host galaxies, the luminosity function and will discuss a few of the optical, IR and x-ray results in detail.
Fermi Gamma-Ray Space Telescope: Highlights of the GeV Sky
NASA Technical Reports Server (NTRS)
Thomspon, D. J.
2011-01-01
Because high-energy gamma rays can be produced by processes that also produce neutrinos. the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of potenl ial targds for neutrino observations. Gamma-ray bursts. active galactic nuclei, and supernova remnants are all sites where hadronic, neutrino-producing interactions are plausible. Pulsars, pulsar wind nebulae, and binary sources are all phenomena that reveal leptonic particle acceleration through their gamma-ray emission. \\Vhile important to gamma-ray astrophysics. such sources are of less interest to neutrino studies. This talk will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.
Adam, R.; Ade, P. A. R.; Aghanim, N.; ...
2016-02-09
The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in themore » Stokes Q and/or U maps. In this paper, we focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 10 20 to 10 22 cm -2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. Finally, we discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.« less
NASA Astrophysics Data System (ADS)
Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wiesemeyer, H.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-02-01
The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in the Stokes Q and/or U maps. We focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 1020 to 1022 cm-2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. We discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, R.; Ade, P. A. R.; Aghanim, N.
The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in themore » Stokes Q and/or U maps. In this paper, we focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 10 20 to 10 22 cm -2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. Finally, we discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.« less
Spectral and diurnal variations in clear sky planetary albedo
NASA Technical Reports Server (NTRS)
Briegleb, B.; Ramanathan, V.
1982-01-01
Spectral and diurnal variations in the clear sky planetary albedo of the earth are calculated using a radiative transfer model to obtain January and July values for a 5 deg x 5 deg global grid. The model employs observed climatological values of temperatures, humidities, snow and sea-ice cover. The diurnal cycle of clear sky albedo is calculated in the following intervals: 0.2-0.5, 0.5-0.7, and 0.7-4 microns. Observed ozone distribution is specified as a function of latitude and season. The 0.2-0.5 micron spectral albedo is 10-20% higher than the total albedo for all latitudes because of Rayleigh scattering; the 0.5-0.7 micron albedo differs from the total albedo by 1-2% for most latitudes, while the 0.7-4 micron albedo is 5-10% lower than the total because of strong atmospheric absorption. Planetary albedo decreases from morning to local noon, with diurnal variations being particularly strong over water.
On-Sky Tests of a High-Power Pulsed Laser for Sodium Laser Guide Star Adaptive Optics
NASA Astrophysics Data System (ADS)
Otarola, Angel; Hickson, Paul; Gagné, Ronald; Bo, Yong; Zuo, Junwei; Xie, Shiyong; Feng, Lu; Rochester, Simon; Budker, Dmitry; Shen, Shixia; Xue, Suijian; Min, Li; Wei, Kai; Boyer, Corinne; Ellerbroek, Brent; Hu, Jingyao; Peng, Qinjun; Xu, Zuyan
2016-03-01
We present results of on-sky tests performed in the summer of 2013 to characterize the performance of a prototype high-power pulsed laser for adaptive optics. The laser operates at a pulse repetition rate (PRR) of 600-800Hz, with a 6% duty cycle. Its coupling efficiency was found to be, in the best test case (using 18W of transmitted power), 231±14 photons s-1 sr-1 atom-1 W-1 m2 when circular polarization was employed and 167±17 photons s-1 sr-1 atom-1 W-1 m2 with linear polarization. No improvement was seen when D2b repumping was used, but this is likely due to the relatively large laser guide star (LGS) diameter, typically 10 arcsec or more, which resulted in low irradiance levels. Strong relaxation oscillations were present in the laser output, which have the effect of reducing the coupling efficiency. To better understand the results, a physical modeling was performed using the measured pulse profiles and parameters specific to these tests. The model results, for a 10 arcsec angular size LGS spot, agree well with the observations. When extrapolating the physical model for a sub-arcsecond angular size LGS (typical of what is needed for a successful astronomical guide star), the model predicts that this laser would have a coupling efficiency of 130 photons s-1 sr-1 atom-1 W-1 m2, using circular polarization and D2b repumping, for a LGS diameter of 0.6 arcsec Full Width at Half Maximum (FWHM), and free of relaxation oscillations in the 589 nm laser light.
NASA Technical Reports Server (NTRS)
Oum, Tae Hoon (Editor); Bowen, Brent D. (Editor)
1998-01-01
This report (Volume 1) is comprised of 5 sessions of the Air Transport Research Group (ATRG) Conference held in Antwerp, Belgium, July 1998. The sessions contain 3-4 papers (presentations) each. The session numbers and their respective headings are: (1) Airline alliances; (2) Airline Competition and Market Structure; (4) Liberalization, Open Skies, and Policy Issues; (5) Yield Management and Other Models; and (11) Air Traffic Control (ATC) and Air Navigational Systems (ANS).
Techniques for Targeted Fermi-GBM Follow-Up of Gravitational-Wave Events
NASA Technical Reports Server (NTRS)
Blackburn, L.; Camp, J.; Briggs, M. S.; Connaughton, V.; Jenke, P.; Christensen, N.; Veitch, J.
2012-01-01
The Advanced LIGO and Advanced Virgo ground-based gravitational-wave (GW) detectors are projected to come online 2015 2016, reaching a final sensitivity sufficient to observe dozens of binary neutron star mergers per year by 2018. We present a fully-automated, targeted search strategy for prompt gamma-ray counterparts in offline Fermi-GBM data. The multi-detector method makes use of a detailed model response of the instrument, and benefits from time and sky location information derived from the gravitational-wave signal.
NASA Astrophysics Data System (ADS)
Ishino, Hirokazu
2016-07-01
We present LiteBIRD, a satellite project dedicated for the detection of the CMB B-mode polarization. The purpose of LiteBIRD is to measure the tensor-to-scalar ratio r with a precision of σr < 0.001 to test large-single-field slow-roll inflation models by scanning all the sky area for three years at the sun-earth L2 with the sensitivity of 3.2μKṡarcmin. We report an overview and the status of the project, including the ongoing detector and systematic studies.
J-Plus: Morphological Classification Of Compact And Extended Sources By Pdf Analysis
NASA Astrophysics Data System (ADS)
López-Sanjuan, C.; Vázquez-Ramió, H.; Varela, J.; Spinoso, D.; Cristóbal-Hornillos, D.; Viironen, K.; Muniesa, D.; J-PLUS Collaboration
2017-10-01
We present a morphological classification of J-PLUS EDR sources into compact (i.e. stars) and extended (i.e. galaxies). Such classification is based on the Bayesian modelling of the concentration distribution, including observational errors and magnitude + sky position priors. We provide the star / galaxy probability of each source computed from the gri images. The comparison with the SDSS number counts support our classification up to r 21. The 31.7 deg² analised comprises 150k stars and 101k galaxies.
A DATA-DRIVEN MODEL FOR SPECTRA: FINDING DOUBLE REDSHIFTS IN THE SLOAN DIGITAL SKY SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsalmantza, P.; Hogg, David W., E-mail: vivitsal@mpia.de
2012-07-10
We present a data-driven method-heteroscedastic matrix factorization, a kind of probabilistic factor analysis-for modeling or performing dimensionality reduction on observed spectra or other high-dimensional data with known but non-uniform observational uncertainties. The method uses an iterative inverse-variance-weighted least-squares minimization procedure to generate a best set of basis functions. The method is similar to principal components analysis (PCA), but with the substantial advantage that it uses measurement uncertainties in a responsible way and accounts naturally for poorly measured and missing data; it models the variance in the noise-deconvolved data space. A regularization can be applied, in the form of a smoothnessmore » prior (inspired by Gaussian processes) or a non-negative constraint, without making the method prohibitively slow. Because the method optimizes a justified scalar (related to the likelihood), the basis provides a better fit to the data in a probabilistic sense than any PCA basis. We test the method on Sloan Digital Sky Survey (SDSS) spectra, concentrating on spectra known to contain two redshift components: these are spectra of gravitational lens candidates and massive black hole binaries. We apply a hypothesis test to compare one-redshift and two-redshift models for these spectra, utilizing the data-driven model trained on a random subset of all SDSS spectra. This test confirms 129 of the 131 lens candidates in our sample and all of the known binary candidates, and turns up very few false positives.« less
NASA Astrophysics Data System (ADS)
Arruda, Daniela C. S.; Sobral, J. H. A.; Abdu, M. A.; Castilho, Vivian M.; Takahashi, H.; Medeiros, A. F.; Buriti, R. A.
2006-01-01
This work presents equatorial ionospheric plasma bubble zonal drift velocity observations and their comparison with model calculations. The bubble zonal velocities were measured using airglow OI630 nm all-sky digital images and the model calculations were performed taking into account flux-tube integrated Pedersen conductivity and conductivity weighted neutral zonal winds. The digital images were obtained from an all-sky imaging system operated over the low-latitude station Cachoeira Paulista (Geogr. 22.5S, 45W, dip angle 31.5S) during the period from October 1998 to August 2000. Out of the 138 nights of imager observation, 29 nights with the presence of plasma bubbles are used in this study. These 29 nights correspond to geomagnetically rather quiet days (∑K P < 24+) and were grouped according to season. During the early night hours, the calculated zonal drift velocities were found to be larger than the experimental values. The best matching between the calculated and observed zonal velocities were seen to be for a few hours around midnight. The model calculation showed two humps around 20 LT and 24 LT that were not present in the data. Average decelerations obtained from linear regression between 20 LT and 24 LT were found to be: (a) Spring 1998, -8.61 ms -1 h -1; (b) Summer 1999, -0.59 ms -1 h -1; (c) Spring 1999, -11.72 ms -1 h -1; and (d) Summer 2000, -8.59 ms -1 h -1. Notice that Summer and Winter here correspond to southern hemisphere Summer and Winter, not northern hemisphere.
Dung beetles use the Milky Way for orientation.
Dacke, Marie; Baird, Emily; Byrne, Marcus; Scholtz, Clarke H; Warrant, Eric J
2013-02-18
When the moon is absent from the night sky, stars remain as celestial visual cues. Nonetheless, only birds, seals, and humans are known to use stars for orientation. African ball-rolling dung beetles exploit the sun, the moon, and the celestial polarization pattern to move along straight paths, away from the intense competition at the dung pile. Even on clear moonless nights, many beetles still manage to orientate along straight paths. This led us to hypothesize that dung beetles exploit the starry sky for orientation, a feat that has, to our knowledge, never been demonstrated in an insect. Here, we show that dung beetles transport their dung balls along straight paths under a starlit sky but lose this ability under overcast conditions. In a planetarium, the beetles orientate equally well when rolling under a full starlit sky as when only the Milky Way is present. The use of this bidirectional celestial cue for orientation has been proposed for vertebrates, spiders, and insects, but never proven. This finding represents the first convincing demonstration for the use of the starry sky for orientation in insects and provides the first documented use of the Milky Way for orientation in the animal kingdom. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ground-based search for the brightest transiting planets with the Multi-site All-Sky CAmeRA: MASCARA
NASA Astrophysics Data System (ADS)
Snellen, Ignas A. G.; Stuik, Remko; Navarro, Ramon; Bettonvil, Felix; Kenworthy, Matthew; de Mooij, Ernst; Otten, Gilles; ter Horst, Rik; le Poole, Rudolf
2012-09-01
The Multi-site All-sky CAmeRA MASCARA is an instrument concept consisting of several stations across the globe, with each station containing a battery of low-cost cameras to monitor the near-entire sky at each location. Once all stations have been installed, MASCARA will be able to provide a nearly 24-hr coverage of the complete dark sky, down to magnitude 8, at sub-minute cadence. Its purpose is to find the brightest transiting exoplanet systems, expected in the V=4-8 magnitude range - currently not probed by space- or ground-based surveys. The bright/nearby transiting planet systems, which MASCARA will discover, will be the key targets for detailed planet atmosphere observations. We present studies on the initial design of a MASCARA station, including the camera housing, domes, and computer equipment, and on the photometric stability of low-cost cameras showing that a precision of 0.3-1% per hour can be readily achieved. We plan to roll out the first MASCARA station before the end of 2013. A 5-station MASCARA can within two years discover up to a dozen of the brightest transiting planet systems in the sky.
Toward Improved Modeling of Spectral Solar Irradiance for Solar Energy Applications: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit
This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to extend the capability of the Fast All-sky Radiation Model for Solar applications (FARMS) by computing spectral solar irradiances over both horizontal and inclined surfaces. A new model is developed by computing the optical thickness of the atmosphere using a spectral irradiance model for clear-sky conditions, SMARTS2. A comprehensive lookup table (LUT) of cloud bidirectional transmittance distribution functions (BTDFs) is precomputed for 2002 wavelength bands using an atmospheric radiative transfer model, libRadtran. The solar radiation transmitted through the atmosphere is given by considering all possible paths of photon transmissionmore » and the relevent scattering and absorption attenuation. Our results indicate that this new model has an accuracy that is similar to that of state-of-the-art radiative transfer models, but it is significantly more efficient.« less
NASA Technical Reports Server (NTRS)
Rossow, W. B.; Stubenrauch, C. J.; Briand, V.; Hansen, James E. (Technical Monitor)
2001-01-01
Since the effect of clouds on the earth's radiation balance is often estimated as the difference of net radiative fluxes at the top of the atmosphere between all situations and monthly averaged clear sky situations of the same regions, a reliable identification of clear sky is important for the study of cloud radiative effects. The Scanner for Radiation Balance (ScaRaB) radiometer on board the Russian Meteor-3/7 satellite provided earth radiation budget observations from March 1994 to February 1995 with two ERBE-Re broad-band longwave and shortwave channels. Two narrow-band channels, in the infrared atmospheric window and in the visible band, have been added to the ScaRaB instrument to improve the cloud scene identification. The International Satellite Cloud Climatology Project (ISCCP) method for cloud detection and determination of cloud and surface properties uses the same narrow-band channels as ScaRaB, but is employed to a collection of measurements at a better spatial resolution of about 5 km. By applying the original ISCCP algorithms to the ScaRaB data, the clear sky frequency is about 5% lower than the one over quasi-simultaneous original ISCCP data, an indication that the ISCCP cloud detection is quite stable. However, one would expect an about 10 to 20% smaller clear sky occurrence over the larger ScaRaB pixels. Adapting the ISCCP algorithms to the reduced spatial resolution of 60 km and to the different time sampling of the ScaRaB data leads therefore to a reduction of a residual cloud contamination. A sensitivity study with time-space collocated ScaRaB and original ISCCP data at a spatial resolution of 1deg longitude x 1deg latitude shows that the effect of clear sky identification method plays a higher role on the clear sky frequency and therefore on the statistics than on the zonal mean values of the clear sky fluxes. Nevertheless, the zonal outgoing longwave fluxes corresponding to ERBE clear sky are in general about 2 to 10 W/sq m higher than those obtained from the ScaRaB adapted ISCCP clear sky identifications. The latter are close to (about 1 W/sq m higher) fluxes corresponding to clear sky regions from original ISCCP data, whereas ScaRaB clear sky LW fluxes obtained with the original ISCCP identification lie about 1 to 2 W/sq m below. Especially in the tropics where water vapor abundance is high, the ERBE clear sky LW fluxes seem to be systematically overestimated by about 4 W/sq m, and SW fluxes are lower by about 5 to 10 W/sq m. However, the uncertainty in the analysis of monthly mean zonal cloud radiative effects is also produced by the low frequency of clear sky occurrence, illustrated when averaging over pixels or even over regions of 4deg longitude x 5deg latitude, corresponding to the spatial resolution of General Circulation Models. The systematic bias in the clear sky fluxes is not reflected in the zonal cloud radiative effects, because the clear sky regions selected by the different algorithms can occur in different geographic regions with different cloud properties.
NASA Astrophysics Data System (ADS)
Teves, Justine; Sola, Eula Fae; Pintor, Ben Hur; Ang, Ma. Rosario Concepcion
2016-10-01
Solar energy is emerging as one of the top options for renewable energy sources in the Philippines, with largescale solar photovoltaic (PV) farms being built all over the country. Solar energy resource in the urban environment has great potential in making a city self-sustaining, but has not been fully explored for the country. In order to represent its potential, reliable resource assessment should be done. This study aims to assess the available solar energy resource in Davao City, a trade and commerce hub in southern Philippines. The functions of GRASS GIS, specifically the r.sun module, in modelling incoming solar radiation is discussed, along with the use of a one-meter LiDAR Digital Surface Model (DSM) and Linke Turbidity coefficients as inputs. The average Julian day of each month was used to compute the Global Horizontal Irradiation (GHI) values under clear-sky or cloudless conditions. To account for the effects of the clouds in the study area, the clear-sky indices (Kc) were computed using data from solar recording stations of the Bureau of Soils and Water Management (BSWM) found within and around the region. These were multiplied to the modelled clear-sky GHI rasters to get the real-sky GHI. The results show that the city's average GHI potential ranges from 2693.79 Wh/m2 and 4453.13 Wh/m2. Average values are particularly higher around the months of March and April, while lower values are seen in the months of November and January. Areas with higher potential are seen in the southern portion of the city, consistent in built-up areas.
Joint analysis of BICEP2/keck array and Planck Data.
Ade, P A R; Aghanim, N; Ahmed, Z; Aikin, R W; Alexander, K D; Arnaud, M; Aumont, J; Baccigalupi, C; Banday, A J; Barkats, D; Barreiro, R B; Bartlett, J G; Bartolo, N; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Benton, S J; Bernard, J-P; Bersanelli, M; Bielewicz, P; Bischoff, C A; Bock, J J; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Brevik, J A; Bucher, M; Buder, I; Bullock, E; Burigana, C; Butler, R C; Buza, V; Calabrese, E; Cardoso, J-F; Catalano, A; Challinor, A; Chary, R-R; Chiang, H C; Christensen, P R; Colombo, L P L; Combet, C; Connors, J; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J-M; Désert, F-X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dowell, C D; Duband, L; Ducout, A; Dunkley, J; Dupac, X; Dvorkin, C; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Falgarone, E; Filippini, J P; Finelli, F; Fliescher, S; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Ghosh, T; Giard, M; Gjerløw, E; Golwala, S R; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Halpern, M; Hansen, F K; Hanson, D; Harrison, D L; Hasselfield, M; Helou, G; Henrot-Versillé, S; Herranz, D; Hildebrandt, S R; Hilton, G C; Hivon, E; Hobson, M; Holmes, W A; Hovest, W; Hristov, V V; Huffenberger, K M; Hui, H; Hurier, G; Irwin, K D; Jaffe, A H; Jaffe, T R; Jewell, J; Jones, W C; Juvela, M; Karakci, A; Karkare, K S; Kaufman, J P; Keating, B G; Kefeli, S; Keihänen, E; Kernasovskiy, S A; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kovac, J M; Krachmalnicoff, N; Kunz, M; Kuo, C L; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J-M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leitch, E M; Leonardi, R; Levrier, F; Lewis, A; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Lueker, M; Macías-Pérez, J F; Maffei, B; Maino, D; Mandolesi, N; Mangilli, A; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Mason, P; Matarrese, S; Megerian, K G; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M-A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nguyen, H T; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; O'Brient, R; Ogburn, R W; Orlando, A; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Pearson, T J; Perdereau, O; Perotto, L; Pettorino, V; Piacentini, F; Piat, M; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Pratt, G W; Prunet, S; Pryke, C; Puget, J-L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Richter, S; Ristorcelli, I; Rocha, G; Rossetti, M; Roudier, G; Rowan-Robinson, M; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Schwarz, R; Scott, D; Seiffert, M D; Sheehy, C D; Spencer, L D; Staniszewski, Z K; Stolyarov, V; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A-S; Sygnet, J-F; Tauber, J A; Teply, G P; Terenzi, L; Thompson, K L; Toffolatti, L; Tolan, J E; Tomasi, M; Tristram, M; Tucci, M; Turner, A D; Valenziano, L; Valiviita, J; Van Tent, B; Vibert, L; Vielva, P; Vieregg, A G; Villa, F; Wade, L A; Wandelt, B D; Watson, R; Weber, A C; Wehus, I K; White, M; White, S D M; Willmert, J; Wong, C L; Yoon, K W; Yvon, D; Zacchei, A; Zonca, A
2015-03-13
We report the results of a joint analysis of data from BICEP2/Keck Array and Planck. BICEP2 and Keck Array have observed the same approximately 400 deg^{2} patch of sky centered on RA 0 h, Dec. -57.5°. The combined maps reach a depth of 57 nK deg in Stokes Q and U in a band centered at 150 GHz. Planck has observed the full sky in polarization at seven frequencies from 30 to 353 GHz, but much less deeply in any given region (1.2 μK deg in Q and U at 143 GHz). We detect 150×353 cross-correlation in B modes at high significance. We fit the single- and cross-frequency power spectra at frequencies ≥150 GHz to a lensed-ΛCDM model that includes dust and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r), using a prior on the frequency spectral behavior of polarized dust emission from previous Planck analysis of other regions of the sky. We find strong evidence for dust and no statistically significant evidence for tensor modes. We probe various model variations and extensions, including adding a synchrotron component in combination with lower frequency data, and find that these make little difference to the r constraint. Finally, we present an alternative analysis which is similar to a map-based cleaning of the dust contribution, and show that this gives similar constraints. The final result is expressed as a likelihood curve for r, and yields an upper limit r_{0.05}<0.12 at 95% confidence. Marginalizing over dust and r, lensing B modes are detected at 7.0σ significance.
Simulation of an oil film at the sea surface and its radiometric properties in the SWIR
NASA Astrophysics Data System (ADS)
Schwenger, Frédéric; Van Eijk, Alexander M. J.
2017-10-01
The knowledge of the optical contrast of an oil layer on the sea under various surface roughness conditions is of great interest for oil slick monitoring techniques. This paper presents a 3D simulation of a dynamic sea surface contaminated by a floating oil film. The simulation considers the damping influence of oil on the ocean waves and its physical properties. It calculates the radiance contrast of the sea surface polluted by the oil film in relation to a clean sea surface for the SWIR spectral band. Our computer simulation combines the 3D simulation of a maritime scene (open clear sea/clear sky) with an oil film at the sea surface. The basic geometry of a clean sea surface is modeled by a composition of smooth wind driven gravity waves. Oil on the sea surface attenuates the capillary and short gravity waves modulating the wave power density spectrum of these waves. The radiance of the maritime scene is calculated in the SWIR spectral band with the emitted sea surface radiance and the specularly reflected sky radiance as components. Wave hiding and shadowing, especially occurring at low viewing angles, are considered. The specular reflection of the sky radiance at the clean sea surface is modeled by an analytical statistical bidirectional reflectance distribution function (BRDF) of the sea surface. For oil at the sea surface, a specific BRDF is used influenced by the reduced surface roughness, i.e., the modulated wave density spectrum. The radiance contrast of an oil film in relation to the clean sea surface is calculated for different viewing angles, wind speeds, and oil types characterized by their specific physical properties.
Martian Dust Aerosol Size and Shape as Constrained by Phoenix Lander Polarimetry
NASA Astrophysics Data System (ADS)
Lemmon, Mark T.; Mason, Emily L.
2014-11-01
Dust aerosol morphology is important to dust transport and the radiative heating of the Martian atmosphere. Previous analyses of Mars dust have shown that spherical particles are a bad analog for the dust, in terms of reproducing the distribution of scattered light. Parameterized scattering, based on laboratory observations of scattering by irregular dust particles, has been used for Viking, Pathfinder and Mars Exploration Rover data [Pollack et al., J. Geophys. Res. 100, 1995; Tomasko et al., J. Geophys. Res. 104, 1999; Lemmon et al., Science 306, 2004]. Analytical calculations have shown that cylinders are a better scattering analog than spheres [Wolff et al., J. Geophys. Res. 114, 2009]. Terrestrial studies have shown that a diverse assortment of triaxial ellipsoids is a good analog for dust aerosol [Bi et al., Applied Optics 48, 2009].The Phoenix Lander operated in the Martian arctic for 5 months of 2008, around the northern summer solstice. During the mission atmospheric optical depth was tracked through direct solar imaging by the Surface Stereo Imager (SSI). For solar longitude (Ls) 78-95 and 140-149, small dust storms dominated the weather. Low-dust conditions (optical depths <0.4) dominated during Ls 95-140, with sporadic ice clouds becoming more common after Ls 108. The SSI also obtained occasional cross-sky photometric data through several filters from 440 to 1000 nm and cross-sky polarimetry at 750 nm wavelength. Radiative transfer models of the sky radiance distribution are consistent with dust aerosols in the same 1.3-1.6 micron range reported for models of observations from previous missions. Cylinders, triaxial ellipsoids, and the parametric model can fit sky radiances; spheres cannot. The observed linear polarization, which reached 4-5% and had a similar angular distribution to Rayleigh polarization, is similar to the triaxial ellipsoid model, but not spheres or cylinders. An extension to the parametric model using 7-10% Rayleigh scattering mixed with unpolarized scattering is also an adequate model.
Atmospheric Visibility Monitoring for planetary optical communications
NASA Technical Reports Server (NTRS)
Cowles, Kelly
1991-01-01
The Atmospheric Visibility Monitoring project endeavors to improve current atmospheric models and generate visibility statistics relevant to prospective earth-satellite optical communications systems. Three autonomous observatories are being used to measure atmospheric conditions on the basis of observed starlight; these data will yield clear-sky and transmission statistics for three sites with high clear-sky probabilities. Ground-based data will be compared with satellite imagery to determine the correlation between satellite data and ground-based observations.
Jose M. Iniguez; Joseph L. Ganey; Peter J. Daughtery; John D. Bailey
2005-01-01
The objective of this study was to develop a rule based cover type classification system for the forest and woodland vegetation in the Sky Islands of southeastern Arizona. In order to develop such a system we qualitatively and quantitatively compared a hierarchical (Wardâs) and a non-hierarchical (k-means) clustering method. Ecologically, unique groups represented by...
Jose M. Iniguez; Joseph L. Ganey; Peter J. Daugherty; John D. Bailey
2005-01-01
The objective of this study was to develop a rule based cover type classification system for the forest and woodland vegetation in the Sky Islands of southeastern Arizona. In order to develop such system we qualitatively and quantitatively compared a hierarchical (Wardâs) and a non-hierarchical (k-means) clustering method. Ecologically, unique groups and plots...
Highway 3D model from image and lidar data
NASA Astrophysics Data System (ADS)
Chen, Jinfeng; Chu, Henry; Sun, Xiaoduan
2014-05-01
We present a new method of highway 3-D model construction developed based on feature extraction in highway images and LIDAR data. We describe the processing road coordinate data that connect the image frames to the coordinates of the elevation data. Image processing methods are used to extract sky, road, and ground regions as well as significant objects (such as signs and building fronts) in the roadside for the 3D model. LIDAR data are interpolated and processed to extract the road lanes as well as other features such as trees, ditches, and elevated objects to form the 3D model. 3D geometry reasoning is used to match the image features to the 3D model. Results from successive frames are integrated to improve the final model.
An explicit canopy BRDF model and inversion. [Bidirectional Reflectance Distribution Function
NASA Technical Reports Server (NTRS)
Liang, Shunlin; Strahler, Alan H.
1992-01-01
Based on a rigorous canopy radiative transfer equation, the multiple scattering radiance is approximated by the asymptotic theory, and the single scattering radiance calculation, which requires an numerical intergration due to considering the hotspot effect, is simplified. A new formulation is presented to obtain more exact angular dependence of the sky radiance distribution. The unscattered solar radiance and single scattering radiance are calculated exactly, and the multiple scattering is approximated by the delta two-stream atmospheric radiative transfer model. The numerical algorithms prove that the parametric canopy model is very accurate, especially when the viewing angles are smaller than 55 deg. The Powell algorithm is used to retrieve biospheric parameters from the ground measured multiangle observations.
Winter sky brightness & cloud cover over Dome A
NASA Astrophysics Data System (ADS)
Yang, Yi; Moore, A. M.; Fu, J.; Ashley, M.; Cui, X.; Feng, L.; Gong, X.; Hu, Z.; Laurence, J.; LuongVan, D.; Riddle, R. L.; Shang, Z.; Sims, G.; Storey, J.; Tothill, N.; Travouillon, T.; Wang, L.; Yang, H.; Yang, J.; Zhou, X.; Zhu, Z.; Burton, M. G.
2014-01-01
At the summit of the Antarctic plateau, Dome A offers an intriguing location for future large scale optical astronomical Observatories. The Gattini DomeA project was created to measure the optical sky brightness and large area cloud cover of the winter-time sky above this high altitude Antarctic site. The wide field camera and multi-filter system was installed on the PLATO instrument module as part of the Chinese-led traverse to Dome A in January 2008. This automated wide field camera consists of an Apogee U4000 interline CCD coupled to a Nikon fish-eye lens enclosed in a heated container with glass window. The system contains a filter mechanism providing a suite of standard astronomical photometric filters (Bessell B, V, R), however, the absence of tracking systems, together with the ultra large field of view 85 degrees) and strong distortion have driven us to seek a unique way to build our data reduction pipeline. We present here the first measurements of sky brightness in the photometric B, V, and R band, cloud cover statistics measured during the 2009 winter season and an estimate of the transparency. In addition, we present example light curves for bright targets to emphasize the unprecedented observational window function available from this ground-based location. A ~0.2 magnitude agreement of our simultaneous test at Palomar Observatory with NSBM(National Sky Brightness Monitor), as well as an 0.04 magnitude photometric accuracy for typical 6th magnitude stars limited by the instrument design, indicating we obtained reasonable results based on our ~7mm effective aperture fish-eye lens.
Robust constraint on cosmic textures from the cosmic microwave background.
Feeney, Stephen M; Johnson, Matthew C; Mortlock, Daniel J; Peiris, Hiranya V
2012-06-15
Fluctuations in the cosmic microwave background (CMB) contain information which has been pivotal in establishing the current cosmological model. These data can also be used to test well-motivated additions to this model, such as cosmic textures. Textures are a type of topological defect that can be produced during a cosmological phase transition in the early Universe, and which leave characteristic hot and cold spots in the CMB. We apply bayesian methods to carry out a rigorous test of the texture hypothesis, using full-sky data from the Wilkinson Microwave Anisotropy Probe. We conclude that current data do not warrant augmenting the standard cosmological model with textures. We rule out at 95% confidence models that predict more than 6 detectable cosmic textures on the full sky.
Deformation of nuclei as a function of angular momentum in the U(6) ⊃ SU(3) model
NASA Astrophysics Data System (ADS)
Partensky, A.; Quesne, C.
1982-08-01
Moshińsky proposed recently a hybrid rotational model resulting from a comparison between the Gneuss and Greiner extension of the Bohr-Mottelson model and the interacting boson model. In this hybrid rotational model, we study the shape of nuclei by calculating the average of the expectation value of the square of the deformation parameter β with respect to the rotational states with the same angular momentum belonging to a given irreducible representation of SU(3). This work generalizes to three dimensions the corresponding analysis carried out in two dimensions by Chacón, Moshińsky, and Vanagas. We use the canonical chain of U(3) to obtain an analytical formula for the quantity studied. The overall stretching effect of the angular momentum on the shape of nuclei is demonstrated.
Aerosol Absorption and Radiative Forcing
NASA Technical Reports Server (NTRS)
Stier, Philip; Seinfeld, J. H.; Kinne, Stefan; Boucher, Olivier
2007-01-01
We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the shortwave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from -0.79 to -0.53 W m(sup -2) (33%) and all-sky from -0.47 to -0.13W m(sup -2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19W m(sup -2) (36%) clear-sky and of 0.12W m(sup -2) (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05W m(sup -2) and a positive TOA forcing perturbation of 0.02W m(sup -2). The long-wave aerosol radiative effects are small for anthropogenic aerosols but become of relevance for the larger natural dust and sea-salt aerosols.
Estimating Longwave Atmospheric Emissivity in the Canadian Rocky Mountains
NASA Astrophysics Data System (ADS)
Ebrahimi, S.; Marshall, S. J.
2014-12-01
Incoming longwave radiation is an important source of energy contributing to snow and glacier melt. However, estimating the incoming longwave radiation from the atmosphere is challenging due to the highly varying conditions of the atmosphere, especially cloudiness. We analyze the performance of some existing models included a physically-based clear-sky model by Brutsaert (1987) and two different empirical models for all-sky conditions (Lhomme and others, 2007; Herrero and Polo, 2012) at Haig Glacier in the Canadian Rocky Mountains. Models are based on relations between readily observed near-surface meteorological data, including temperature, vapor pressure, relative humidity, and estimates of shortwave radiation transmissivity (i.e., clear-sky or cloud-cover indices). This class of models generally requires solar radiation data in order to obtain a proxy for cloud conditions. This is not always available for distributed models of glacier melt, and can have high spatial variations in regions of complex topography, which likely do not reflect the more homogeneous atmospheric longwave emissions. We therefore test longwave radiation parameterizations as a function of near-surface humidity and temperature variables, based on automatic weather station data (half-hourly and mean daily values) from 2004 to 2012. Results from comparative analysis of different incoming longwave radiation parameterizations showed that the locally-calibrated model based on relative humidity and vapour pressure performs better than other published models. Performance is degraded but still better than standard cloud-index based models when we transfer the model to another site, roughly 900 km away, Kwadacha Glacier in the northern Canadian Rockies.
Ten days of astronomy for 50 children
NASA Astrophysics Data System (ADS)
Godier, Stéphanie; Mathias, Katia
2011-06-01
We present a 10 day-long astronomical discovery class for children from 10 up to 12 years old. ``Classical'' workshops dealing with constellations, sky maps, sundiala, rocket construction and launching, Sun and deep sky observations are proposed to children. In addition, we present our own workshops that can be achieved by children as research projects in a scientific, literary or in an artistic way. In this context, the rôle of astronomy is both educational and social for children. Scientific rudiments are passed on from scientific educators to pupils and from pupils to their families. Astronomy is an unifying science for everyone.
NASA Astrophysics Data System (ADS)
Duffek, J.
2008-12-01
for Educational Program IYA Dark Skies Education Session Fall American Geophysical Union San Francisco, December 15-19, 2008 Light Pollution and Wildlife This is a very exciting time to be a part of the mission to keep the nighttime skies natural. The International Year of Astronomy (IYA) 2009 is developing programs for all areas of Dark Skies Awareness. For many years the issue of light pollution focused on the impact to the astronomy industry. While this is an important area, research has shown that light pollution negatively impacts wildlife, their habitat, human health, and is a significant waste of energy. Since the message and impact of the effects of light pollution are much broader now, the message conveyed to the public must also be broader. Education programs directed at youth are a new frontier to reach out to a new audience about the adverse effects of too much artificial light at night. The International Dark-Sky Association (IDA) has developed educational presentations using the National Science Teachers Association Education Standards. These programs focus on youth between the ages of 5 to 17exploring new territory in the education of light pollution. The IDA education programs are broken down into three age groups; ages 5-9, 8-13, 12 and older. The presentations come complete with PowerPoint slides, discussion notes for each slide, and workbooks including age appropriate games to keep young audiences involved. A new presentation reflects the growing area of interest regarding the effects of too much artificial light at night on wildlife. This presentation outlines the known problems for ecosystems caused by artificial light at night. Insects are attracted to artificial lights and may stay near that light all night. This attraction interferes with their ability to migrate, mate, and look for food. Such behavior leads to smaller insect populations. Fewer insects in turn affect birds and bats, because they rely on insects as a food source. The IDA education programs show children how all of these issues are interrelated. Insects are not the only organisms adversely affected by light at night. Reptiles, mammals, birds and amphibians are also negatively impacted. All creatures have a biological clock which determines when they rest, hunt, migrate, and mate. Bright lights create confusion in many species by disrupting this internal biological clock. IDA presents the solutions to these problems as quality outdoor lighting, and the presentations show examples of dark sky friendly lighting. The youth audience is an excellent venue for wildlife education outreach. The IDA youth education programs are completed and ready for use. They can be used by professional teachers, parents, community organizers, or anyone advocating to keep the skies natural. This is a great time to promote the win-win benefits of good nighttime lighting.
NASA Astrophysics Data System (ADS)
Kacenelenbogen, M. S.; Russell, P. B.; Vaughan, M.; Redemann, J.; Shinozuka, Y.; Livingston, J. M.; Zhang, Q.
2014-12-01
According to the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), the model estimates of Radiative Forcing due to aerosol-radiation interactions (RFari) for individual aerosol types are less certain than the total RFari [Boucher et al., 2013]. For example, the RFari specific to Black Carbon (BC) is uncertain due to an underestimation of its mass concentration near source regions [Koch et al., 2009]. Several recent studies have evaluated chemical transport model (CTM) predictions using observations of aerosol optical properties such as Aerosol Optical Depth (AOD) or Single Scattering Albedo (SSA) from satellite or ground-based instruments (e.g., Huneeus et al., [2010]). However, most passive remote sensing instruments fail to provide a comprehensive assessment of the particle type without further analysis and combination of measurements. To improve the predictions of aerosol composition in CTMs, we have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground based passive remote sensing instruments [Russell et al., 2014]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. First, we apply the SCMC method to five years of clear-sky space-borne POLDER observations over Greece. We then use the aerosol extinction and SSA spectra retrieved from a combination of MODIS, OMI and CALIOP clear-sky observations to infer the aerosol type over the globe in 2007. Finally, we will extend the spaceborne aerosol classification from clear-sky to above low opaque water clouds using a combination of CALIOP AOD and backscatter observations and OMI absorption AOD values from near-by clear-sky pixels.
NASA Astrophysics Data System (ADS)
Laher, Russ
2012-08-01
Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It has a graphical user interface (GUI) which allows the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. Mouse-clicking on a source in the displayed image draws a circular or elliptical aperture and sky annulus around the source and computes the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs, including image histogram, and aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has functions for customizing calculations, including outlier rejection, pixel “picking” and “zapping,” and a selection of source and sky models. The radial-profile-interpolation source model, accessed via the radial-profile-plot panel, allows recovery of source intensity from pixels with missing data and can be especially beneficial in crowded fields.
The ASAS-SN catalogue of variable stars I: The Serendipitous Survey
NASA Astrophysics Data System (ADS)
Jayasinghe, T.; Kochanek, C. S.; Stanek, K. Z.; Shappee, B. J.; Holoien, T. W.-S.; Thompson, Toda A.; Prieto, J. L.; Dong, Subo; Pawlak, M.; Shields, J. V.; Pojmanski, G.; Otero, S.; Britt, C. A.; Will, D.
2018-07-01
The All-Sky Automated Survey for Supernovae (ASAS-SN) is the first optical survey to routinely monitor the whole sky with a cadence of ˜2-3 d down to V ≲ 17 mag. ASAS-SN has monitored the whole sky since 2014, collecting ˜100-500 epochs of observations per field. The V-band light curves for candidate variables identified during the search for supernovae are classified using a random forest classifier and visually verified. We present a catalogue of 66 179 bright, new variable stars discovered during our search for supernovae, including 27 479 periodic variables and 38 700 irregular variables. V-band light curves for the ASAS-SN variables are available through the ASAS-SN variable stars data base (https://asas-sn.osu.edu/variables). The data base will begin to include the light curves of known variable stars in the near future along with the results for a systematic, all-sky variability survey.
All-Sky Monitoring of Variable Sources with Fermi GBM
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Finger, Mark; Camero-Arranz, Ascension; Becklen, Elif; Jenke, Peter; Cpe. K/ K/; Steele, Iain; Case, Gary; Cherry, Mike; Rodi, James;
2011-01-01
Using the Gamma ray Burst Monitor (GBM) on Fermi, we monitor the transient hard X-ray/soft gamma ray sky. The twelve GBM NaI detectors span 8 keV to 1 MeV, while the two BGO detectors span 150 keV to 40 MeV. We use the Earth occultation technique to monitor a number of sources, including X-ray binaries, AGN, and solar flaring activity. Our monitoring reveals predictable and unpredictable phenomena such as transient outbursts and state changes. With GBM we also track the pulsed flux and spin frequency of accretion powered pulsars using epoch-folding techniques. Searches for quasi-periodic oscillations and X-ray bursts are also possible with GBM all-sky monitoring. Highlights from the Earth Occultation and Pulsar projects will be presented including our recent surprising discovery of variations in the total flux from the Crab. Inclusion of an all-sky monitor is crucial for a successful future X-ray timing mission.
The ADS All Sky Survey: footprints of astronomy literature, in the sky
NASA Astrophysics Data System (ADS)
Pepe, Alberto; Goodman, A. A.; Muench, A. A.; Seamless Astronomy Group at the CfA
2014-01-01
The ADS All-Sky Survey (ADSASS) aims to transform the NASA Astrophysics Data System (ADS), widely known for its unrivaled value as a literature resource for astronomers, into a data resource. The ADS is not a data repository per se, but it implicitly contains valuable holdings of astronomical data, in the form of images, tables and object references contained within articles. The objective of the ADSASS effort is to extract these data and make them discoverable and available through existing data viewers. In this talk, the ADSASS viewer - http://adsass.org/ - will be presented: a sky heatmap of astronomy articles based on the celestial objects they reference. The ADSASS viewer is as an innovative research and visual search tool for it allows users to explore astronomical literature based on celestial location, rather than keyword string. The ADSASS is a NASA-funded initiative carried out by the Seamless Astronomy Group at the Harvard-Smithsonian Center for Astrophysics.
Design Analysis of Corridors-in-the-Sky
NASA Technical Reports Server (NTRS)
Xue, Min
2008-01-01
Corridors-in-the-sky or tubes is one of new concepts in dynamic airspace configuration. It accommodates high density traffic, which has similar trajectories. Less air traffic controllers workload is expected than classic airspaces, thus, corridors-in-the-sky may increase national airspace capacity and reduce flight delays. To design corridors-in-the-sky, besides identifying their locations, their utilization, altitudes, and impacts on remaining system need to be analyzed. This paper chooses one tube candidate and presents analyses of spatial and temporal utilization of the tube, the impact on the remaining traffic, and the potential benefit caused by off-loading the traffic from underlying sectors. Fundamental issues regarding to the benefits have been also clarified. Methods developed to assist the analysis are described. Analysis results suggest dynamic tubes in terms of varied utilizations during different time periods. And it is found that combined lane options would be a good choice to lower the impact on non-tube users. Finally, it shows significant reduction of peak aircraft count in underlying sectors with only one tube enabled.
Galactic SNR Candidates in the ROSAT All-Sky Survey
NASA Technical Reports Server (NTRS)
Schaudel, Daniel; Becker, Werner; Voges, Wolfgand; Reich, Wolfgang; Weisskopf, Martin; Six, N. Frank (Technical Monitor)
2001-01-01
Identified radio supernova remnants (SNRS) in the Galaxy comprise an incomplete sample of the SNR population due to various selection effects. ROSAT performed the first all-sky survey with an imaging X-ray telescope, and thus provides another window for finding SNRS and compact objects that may reside within them. Performing a search for extended X-ray sources in the ROSAT all-sky survey database about 350 objects were identified as SNR candidates in recent years. Continuing this systematic search, we have reanalyzed the ROSAT all-sky survey (BASS) data of these candidates and correlated the results with radio surveys like NVSS, ATNF, Molonglo, and Effelsberg. A further correlation with SIMBAD and NED were used for subsequent identification purpose. About 50 of the 350 candidates turned out to be likely galaxies or clusters of galaxies. We found 14 RASS sources which are very promising SNR candidates and are currently subject of further follow-up studies. We will provide the details of the identification campaign and present first results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnard, James C.; Flynn, Donna M.
2002-10-08
The ability of the SBDART radiative transfer model to predict clear-sky diffuse and direct normal broadband shortwave irradiances is investigated. Model calculations of these quantities are compared with data from the Atmospheric Radiation Measurement (ARM) program’s Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites. The model tends to consistently underestimate the direct normal irradiances at both sites by about 1%. In regards to clear-sky diffuse irradiance, the model overestimates this quantity at the SGP site in a manner similar to what has been observed in other studies (Halthore and Schwartz, 2000). The difference between the diffuse SBDARTmore » calculations and Halthore and Schwartz’s MODTRAN calculations is very small, thus demonstrating that SBDART performs similarly to MODTRAN. SBDART is then applied to the NSA site, and here it is found that the discrepancy between the model calculations and corrected diffuse measurements (corrected for daytime offsets, Dutton et al., 2001) is 0.4 W/m2 when averaged over the 12 cases considered here. Two cases of diffuse measurements from a shaded “black and white” pyranometer are also compared with the calculations and the discrepancy is again minimal. Thus, it appears as if the “diffuse discrepancy” that exists at the SGP site does not exist at the NSA sites. We cannot yet explain why the model predicts diffuse radiation well at one site but not at the other.« less
NASA Astrophysics Data System (ADS)
Cotte, Michel
2015-08-01
Practical approach of Dark Sky places as possible WH sites leads some of us to underline the exceptional role of high mountain observatories as “Windows to the Universe” for the Human being. Till today, such places keep very important dark sky properties and consequently important astronomical functions.We have to take count that quality of the sky at a given place and dark sky conservation policy is something very important, but not enough by itself to justify inscription on the WH List. It must be related to important cultural or/and natural value. That means presence of significant heritage features in the field of astronomy and science for listing as WH cultural property, or with other natural attributes of exceptional significance to be listed as WH natural property. Case of both natural and cultural WH high value place is also possible as “mixt WH site”.The Dark Sky place must also meet to a sufficient integrity/authenticity degree for the today tangible heritage of astronomy and to a very significant contribution to the international history of science and astronomy as intangible attribute of the place. That point must be demonstrated by a serious comparative analysis with similar places in the world and in the region. In case of serial nomination as examined there, each individual site must contribute significantly to the Outstanding Universal Value of the global series.First, we intend to give a short account of the today trend for a possible serial nomination of the most significant high mountain observatory keeping important heritage of their major periods for the sky observation (Western Europe, Chile, North America, etc.).Second, communication will present a case study with Pic du Midi in French Pyrenees, coming from the early origin of mountain scientific stations and observatories (end of 19th C) in Europe, with a long, continuous and important astronomical and scientific history till today with active programs of sky and atmosphere observations.
The GLOBE at Night Campaign: Promoting Dark Skies Awareness Beyond IYA2009
NASA Astrophysics Data System (ADS)
Walker, Constance E.
2010-01-01
One of the most productive programs in the IYA2009 Dark Skies Awareness Cornerstone Project has been GLOBE at Night. The GLOBE at Night program has endeavored to promote social awareness of the dark sky by getting the general public to measure light pollution and submit results on-line. During IYA2009 alone, over 15,700 measurements from 70 countries were contributed during the 2-week campaign period. That amount is twice the number of measurements on average from previous years. The GLOBE at Night website explains clearly the simple-to-participate-in 5 step program and offers background information and interactive games on key concepts. The program has been expanded to include trainings of the general public, but especially educators in schools, museums and science centers, in unique ways. Education kits for Dark Skies Awareness have been distributed at these training workshops. The kit includes material for a light shielding demonstration, a digital Sky Quality Meter and Dark Skies Ranger Activities. The activities are on how unshielded light wastes energy, how light pollution affects wildlife and how you can participate in a citizen-science star-hunt like GLOBE at Night. In addition, projects are being developed for what to do with the data once it is taken. There were particularly spirited and creative GLOBE at Night campaigns around the world in 2009. One such "poster child” was carried out by 6500 students in northern Indiana. The students produced 3,391 GLOBE at Night measurements. To visualize the magnitudes of dark sky lost to light pollution, these students removed over 12,000 of the 35,000 stacked LEGO blocks that represented an ideal night sky across the school district. The presentation will provide an update with lessons learned, describe how people can become involved and take a look ahead at the program's sustainability. For further information, visit www.globe.gov/globeatnight.
NASA Technical Reports Server (NTRS)
Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.;
2014-01-01
The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions.The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL (Pacific Northwest National Laboratory) with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE (Department of Energy)-sponsored TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013) experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and air-mass characterization studies made possible by the combined 4STAR direct beam and sky radiance observations.
The emission function of ground-based light sources: State of the art and research challenges
NASA Astrophysics Data System (ADS)
Solano Lamphar, Héctor Antonio
2018-05-01
To understand the night sky radiance generated by the light emissions of urbanised areas, different researchers are currently proposing various theoretical approaches. The distribution of the radiant intensity as a function of the zenith angle is one of the most unknown properties on modelling skyglow. This is due to the collective effects of the artificial radiation emitted from the ground-based light sources. The emission function is a key property in characterising the sky brightness under arbitrary conditions, therefore it is required by modellers, environmental engineers, urban planners, light pollution researchers, and experimentalists who study the diffuse light of the night sky. As a matter of course, the emission function considers the public lighting system, which is in fact the main generator of the skyglow. Still, another class of light-emitting devices are gaining importance since their overuse and the urban sprawl of recent years. This paper will address the importance of the emission function in modelling skyglow and the factors involved in its characterization. On this subject, the author's intention is to organise, integrate, and evaluate previously published research in order to state the progress of current research toward clarifying this topic.
Optimizing UV Index determination from broadband irradiances
NASA Astrophysics Data System (ADS)
Tereszchuk, Keith A.; Rochon, Yves J.; McLinden, Chris A.; Vaillancourt, Paul A.
2018-03-01
A study was undertaken to improve upon the prognosticative capability of Environment and Climate Change Canada's (ECCC) UV Index forecast model. An aspect of that work, and the topic of this communication, was to investigate the use of the four UV broadband surface irradiance fields generated by ECCC's Global Environmental Multiscale (GEM) numerical prediction model to determine the UV Index. The basis of the investigation involves the creation of a suite of routines which employ high-spectral-resolution radiative transfer code developed to calculate UV Index fields from GEM forecasts. These routines employ a modified version of the Cloud-J v7.4 radiative transfer model, which integrates GEM output to produce high-spectral-resolution surface irradiance fields. The output generated using the high-resolution radiative transfer code served to verify and calibrate GEM broadband surface irradiances under clear-sky conditions and their use in providing the UV Index. A subsequent comparison of irradiances and UV Index under cloudy conditions was also performed. Linear correlation agreement of surface irradiances from the two models for each of the two higher UV bands covering 310.70-330.0 and 330.03-400.00 nm is typically greater than 95 % for clear-sky conditions with associated root-mean-square relative errors of 6.4 and 4.0 %. However, underestimations of clear-sky GEM irradiances were found on the order of ˜ 30-50 % for the 294.12-310.70 nm band and by a factor of ˜ 30 for the 280.11-294.12 nm band. This underestimation can be significant for UV Index determination but would not impact weather forecasting. Corresponding empirical adjustments were applied to the broadband irradiances now giving a correlation coefficient of unity. From these, a least-squares fitting was derived for the calculation of the UV Index. The resultant differences in UV indices from the high-spectral-resolution irradiances and the resultant GEM broadband irradiances are typically within 0.2-0.3 with a root-mean-square relative error in the scatter of ˜ 6.6 % for clear-sky conditions. Similar results are reproduced under cloudy conditions with light to moderate clouds, with a relative error comparable to the clear-sky counterpart; under strong attenuation due to clouds, a substantial increase in the root-mean-square relative error of up to 35 % is observed due to differing cloud radiative transfer models.
Polarization patterns of the twilight sky
NASA Astrophysics Data System (ADS)
Cronin, Thomas W.; Warrant, Eric J.; Greiner, Birgit
2005-08-01
Although natural light sources produce depolarized light, patterns of partially linearly polarized light appear in the sky due to scattering from air molecules, dust, and aerosols. Many animals, including bees and ants, orient themselves to patterns of polarization that are present in daytime skies, when the intensity is high and skylight polarization is strong and predictable. The halicitid bee Megalopta genalis inhabits rainforests in Central America. Unlike typical bees, it forages before sunrise and after sunset, when light intensities under the forest canopy are very low, and must find its way to food sources and return to its nest in visually challenging circumstances. An important cue for the orientation could be patterns of polarization in the twilight sky. Therefore, we used a calibrated digital camera to image skylight polarization in an overhead patch of sky, 87.6° across, before dawn on Barro Colorado Island in Panama, where the bees are found. We simultaneously measured the spectral properties of polarized light in a cloudless patch of sky 15° across centered on the zenith. We also performed full-sky imaging of polarization before dawn and after dusk on Lizard Island in Australia, another tropical island. During twilight, celestial polarized light occurs in a wide band stretching perpendicular to the location of the hidden sun and reaching typical degrees of polarization near 80% at wavelengths >600 nm. This pattern appears about 45 minutes before local sunrise or disappears 45 minutes after local sunset (about 20 minutes after the onset of astronomical twilight at dawn, or before its end at dusk) and extends with little change through the entire twilight period. Such a strong and reliable orientation cue could be used for flight orientation by any animal with polarization sensitivity that navigates during twilight.
Light Pollution in Ultraviolet and Visible Spectrum: Effect on Different Visual Perceptions
Solano Lamphar, Héctor Antonio; Kocifaj, Miroslav
2013-01-01
In general terms, lighting research has been focused in the development of artificial light with the purpose of saving energy and having more durable lamps. However, the consequences that artificial night lighting could bring to the human being and living organisms have become an important issue recently. Light pollution represents a significant problem to both the environment and human health causing a disruption of biological rhythms related not only to the visible spectrum, but also to other parts of the electromagnetic spectrum. Since the lamps emit across a wide range of the electromagnetic spectrum, all photobiological species may be exposed to another type of light pollution. By comparing five different lamps, the present study attempts to evaluate UV radiative fluxes relative to what humans and two species of insects perceive as sky glow level. We have analyzed three atmospheric situations: clear sky, overcast sky and evolving precipitable water content. One important finding suggests that when a constant illuminance of urban spaces has to be guaranteed the sky glow from the low pressure sodium lamps has the most significant effect to the visual perception of the insects tested. But having the fixed number of luminaires the situation changes and the low pressure sodium lamp would be the best choice for all three species. The sky glow effects can be interpreted correctly only if the lamp types and the required amount of scotopic luxes at the ground are taken into account simultaneously. If these two factors are combined properly, then the ecological consequences of sky glow can be partly reduced. The results of this research may be equally useful for lighting engineers, architects, biologists and researchers who are studying the effects of sky glow on humans and biodiversity. PMID:23441205
A new all-sky map of Galactic high-velocity clouds from the 21-cm HI4PI survey
NASA Astrophysics Data System (ADS)
Westmeier, Tobias
2018-02-01
High-velocity clouds (HVCs) are neutral or ionized gas clouds in the vicinity of the Milky Way that are characterized by high radial velocities inconsistent with participation in the regular rotation of the Galactic disc. Previous attempts to create a homogeneous all-sky H I map of HVCs have been hampered by a combination of poor angular resolution, limited surface brightness sensitivity and suboptimal sampling. Here, a new and improved H I map of Galactic HVCs based on the all-sky HI4PI survey is presented. The new map is fully sampled and provides significantly better angular resolution (16.2 versus 36 arcmin) and column density sensitivity (2.3 versus 3.7 × 1018 cm-2 at the native resolution) than the previously available LAB survey. The new HVC map resolves many of the major HVC complexes in the sky into an intricate network of narrow H I filaments and clumps that were not previously resolved by the LAB survey. The resulting sky coverage fraction of high-velocity H I emission above a column density level of 2 × 1018 cm-2 is approximately 15 per cent, which reduces to about 13 per cent when the Magellanic Clouds and other non-HVC emission are removed. The differential sky coverage fraction as a function of column density obeys a truncated power law with an exponent of -0.93 and a turnover point at about 5 × 1019 cm-2. H I column density and velocity maps of the HVC sky are made publicly available as FITS images for scientific use by the community.