Automatic Rotational Sky Quality Meter (R-SQM) Design and Software for Astronomical Observatories
NASA Astrophysics Data System (ADS)
Dogan, E.; Ozbaldan, E. E.; Shameoni, Niaei M.; Yesilyaprak, C.
2016-12-01
We have presented the new design of Sky Quality Meter (SQM) device that is an automatic rotational model of sky quality meter (R-SQM) carried out by DAG (Eastern Anatolia Observatory) Technical Team. R-SQM is required for determining the long-term changes of sky quality of an astronomical observatory and consists of four SQM devices mounted on a rotating shaft with different angles for scanning all sky. This system is controlled by a Raspberry Pi control card and a step motor with its driver and a special software.
Morning twilight measured at Bandung and Jombang
NASA Astrophysics Data System (ADS)
Arumaningtyas, Eka Puspita; Raharto, Moedji; Herdiwijaya, Dhani
2012-06-01
Twilight divided into three categories namely, astronomical twilight, nautical twilight, and civil twilight. The three types of twilight can occur either in the evening or early morning. According to the U.S. Naval Observatory the three types distinguished by the depression (altitude of the sun below the horizon) for the evening or the morning twilight, -180, -120, and -60. Sky brightness measurements usually intended to determine the quality of the sky at some observation site or to determine the quality of the atmosphere by light pollution. Sky brightness data could be use for practical purposes such as to determine prayer times (Morning Prayer). This study describes the measurement of sky brightness using a light meter Sky Quality Meter. The measurements indicate the presence of different values and patterns in the twilight sky brightness. This variability highly determined by the weather conditions. Sky brightness shows a constant value shortly after the evening astronomical twilight and before morning astronomical twilight. Before the evening astronomical twilight and after morning astronomical twilight sky brightness showing continue changing.
Stability of the nine sky quality meters in the Dutch night sky brightness monitoring network.
den Outer, Peter; Lolkema, Dorien; Haaima, Marty; van der Hoff, Rene; Spoelstra, Henk; Schmidt, Wim
2015-04-22
In the context of monitoring abundance of artificial light at night, the year-to-year stability of Sky Quality Meters (SQMs) is investigated by analysing intercalibrations derived from two measurement campaigns that were held in 2011 and 2012. An intercalibration comprises a light sensitivity factor and an offset for each SQM. The campaigns were concerned with monitoring measurements, each lasting one month. Nine SQMs, together forming the Night Sky Brightness Monitoring network (MHN) in The Netherlands, were involved in both campaigns. The stability of the intercalibration of these instruments leads to a year-to-year uncertainty (standard deviation) of 5% in the measured median luminance occurring at the MHN monitoring locations. For the 10-percentiles and 90-percentiles, we find 8% and 4%, respectively. This means that, for urban and industrial areas, changes in the sky brightness larger than 5% become detectable. Rural and nature areas require an 8%-9% change of the median luminance to be detectable. The light sensitivety agrees within 8% for the whole group of SQMs.
SkySat-1: very high-resolution imagery from a small satellite
NASA Astrophysics Data System (ADS)
Murthy, Kiran; Shearn, Michael; Smiley, Byron D.; Chau, Alexandra H.; Levine, Josh; Robinson, M. Dirk
2014-10-01
This paper presents details of the SkySat-1 mission, which is the first microsatellite-class commercial earth- observation system to generate sub-meter resolution panchromatic imagery, in addition to sub-meter resolution 4-band pan-sharpened imagery. SkySat-1 was built and launched for an order of magnitude lower cost than similarly performing missions. The low-cost design enables the deployment of a large imaging constellation that can provide imagery with both high temporal resolution and high spatial resolution. One key enabler of the SkySat-1 mission was simplifying the spacecraft design and instead relying on ground- based image processing to achieve high-performance at the system level. The imaging instrument consists of a custom-designed high-quality optical telescope and commercially-available high frame rate CMOS image sen- sors. While each individually captured raw image frame shows moderate quality, ground-based image processing algorithms improve the raw data by combining data from multiple frames to boost image signal-to-noise ratio (SNR) and decrease the ground sample distance (GSD) in a process Skybox calls "digital TDI". Careful qual-ity assessment and tuning of the spacecraft, payload, and algorithms was necessary to generate high-quality panchromatic, multispectral, and pan-sharpened imagery. Furthermore, the framing sensor configuration en- abled the first commercial High-Definition full-frame rate panchromatic video to be captured from space, with approximately 1 meter ground sample distance. Details of the SkySat-1 imaging instrument and ground-based image processing system are presented, as well as an overview of the work involved with calibrating and validating the system. Examples of raw and processed imagery are shown, and the raw imagery is compared to pre-launch simulated imagery used to tune the image processing algorithms.
NIXNOX project: Sites in Spain where citizens can enjoy dark starry skies
NASA Astrophysics Data System (ADS)
Zamorano, J.; de Miguel, A. Sánchez; Alfaro, E.; Martínez-Delgado, D.; Ocaña, F.; Castaño, J. Gómez; Nievas, M.
2015-03-01
The NIXNOX project, sponsored by the Spanish Astronomical Society, is a Pro-Am collaboration with the aim of finding sites with dark skies. All sky data of the night sky brightness is being obtained by amateur astronomers with Sky Quality Meter (SQM) photometers. We are not looking for remote locations because the places should be easily accessible by people with children. Our goal is to motivate citizens to observe the night sky. NIXNOX will provide information to answer the question: where can I go to observe the stars with my family?
Sky Quality Meter measurements in a colour-changing world
NASA Astrophysics Data System (ADS)
Sánchez de Miguel, A.; Aubé, M.; Zamorano, J.; Kocifaj, M.; Roby, J.; Tapia, C.
2017-05-01
The Sky Quality Meter (SQM) has become the most common device used to track the evolution of the brightness of the sky from polluted regions to first-class astronomical observatories. A vast database of SQM measurements already exists for many places in the world. Unfortunately, the SQM operates over a wide spectral band and its spectral response interacts with the sky's spectrum in a complex manner. This is why the optical signals are difficult to interpret when the data are recorded in regions with different sources of artificial light. The brightness of the night sky is linked in a complex way to ground-based light emissions, while taking into account atmospheric-induced optical distortion as well as spectral transformation from the underlying ground surfaces. While the spectral modulation of the sky's radiance has been recognized, it still remains poorly characterized and quantified. The impact of the SQM's spectral characteristics on sky-brightness measurements is analysed here for different light sources, including low- and high-pressure sodium lamps, PC-amber and white LEDs, metal halide and mercury lamps. We show that a routine conversion of radiance to magnitude is difficult, or rather impossible, because the average wavelength depends on actual atmospheric and environment conditions, the spectrum of the source and device-specific properties. We correlate SQM readings with both the Johnson astronomical photometry bands and the human system of visual perception, assuming different lighting technologies. These findings have direct implications for the processing of SQM data and for their improvement and/or remediation.
Measuring night sky brightness: methods and challenges
NASA Astrophysics Data System (ADS)
Hänel, Andreas; Posch, Thomas; Ribas, Salvador J.; Aubé, Martin; Duriscoe, Dan; Jechow, Andreas; Kollath, Zoltán; Lolkema, Dorien E.; Moore, Chadwick; Schmidt, Norbert; Spoelstra, Henk; Wuchterl, Günther; Kyba, Christopher C. M.
2018-01-01
Measuring the brightness of the night sky has become an increasingly important topic in recent years, as artificial lights and their scattering by the Earth's atmosphere continue spreading around the globe. Several instruments and techniques have been developed for this task. We give an overview of these, and discuss their strengths and limitations. The different quantities that can and should be derived when measuring the night sky brightness are discussed, as well as the procedures that have been and still need to be defined in this context. We conclude that in many situations, calibrated consumer digital cameras with fisheye lenses provide the best relation between ease-of-use and wealth of obtainable information on the night sky. While they do not obtain full spectral information, they are able to sample the complete sky in a period of minutes, with colour information in three bands. This is important, as given the current global changes in lamp spectra, changes in sky radiance observed only with single band devices may lead to incorrect conclusions regarding long term changes in sky brightness. The acquisition of all-sky information is desirable, as zenith-only information does not provide an adequate characterization of a site. Nevertheless, zenith-only single-band one-channel devices such as the "Sky Quality Meter" continue to be a viable option for long-term studies of night sky brightness and for studies conducted from a moving platform. Accurate interpretation of such data requires some understanding of the colour composition of the sky light. We recommend supplementing long-term time series derived with such devices with periodic all-sky sampling by a calibrated camera system and calibrated luxmeters or luminance meters.
Dark Skies as a Universal Resource: Citizen Scientists Measuring Sky Brightness
NASA Astrophysics Data System (ADS)
Walker, C. E.; Isbell, D.; Pompea, S. M.
2007-12-01
The international star-hunting event known as GLOBE at Night returned March 8-21, 2007 in two flavors: the classic GLOBE at Night activity incorporating unaided-eye observations which debuted last year, and a new effort to obtain precise measurements of urban dark skies using digital sky-brightness meters. Both flavors of the program were designed to aid in heightening the awareness about the impact of artificial lighting on local environments, and the ongoing loss of a dark night sky as a natural resource for much of the world's population. To make possible the digital GLOBE at Night program, NSF funded 135 low-cost, digital sky-quality meter (manufactured by Unihedron). With these, citizen-scientists took direct measurements of the integrated sky brightness across a wide swath of night sky. Along with related materials developed by the National Optical Astronomy Observatory (NOAO), the meters were distributed to citizen-scientists in 21 U.S. states plus Washington DC, and in 5 other countries, including Chile, where NOAO has a major observatory. The citizen- scientists were selected from teachers, their students, astronomers at mountain-top observatories, International Dark-Sky Association members and staff from 19 small science centers. Most sites had a coordinator, who instructed local educators in the proper use of the meters and develop a plan to share them as widely as possible during the 2-week window. The local teams pooled their data for regional analysis and in some cases shared the results with their schools and local policymakers. Building upon the worldwide participation sparked by the first GLOBE at Night campaign in March 2006, the observations this year approached 8500 (from 60 countries), 85% higher than the number from last year. The success of GLOBE at Night 2007 is a major step toward the International Year of Astronomy in 2009, when one goal is to make the digital data collection into a worldwide activity. In this presentation, we will outline the set-up for the digital part of the program, the outcome and the plans for the future. GLOBE at Night has been a collaboration between NOAO, the GLOBE program, the IDA, CADIAS and Windows to the Universe. NOAO is operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement with the National Science Foundation. The digital GLOBE at Night program described was supported by a grant to NOAO by the NSF.
Indoor calibration of Sky Quality Meters: Linearity, spectral responsivity and uncertainty analysis
NASA Astrophysics Data System (ADS)
Pravettoni, M.; Strepparava, D.; Cereghetti, N.; Klett, S.; Andretta, M.; Steiger, M.
2016-09-01
The indoor calibration of brightness sensors requires extremely low values of irradiance in the most accurate and reproducible way. In this work the testing equipment of an ISO 17025 accredited laboratory for electrical testing, qualification and type approval of solar photovoltaic modules was modified in order to test the linearity of the instruments from few mW/cm2 down to fractions of nW/cm2, corresponding to levels of simulated brightness from 6 to 19 mag/arcsec2. Sixteen Sky Quality Meter (SQM) produced by Unihedron, a Canadian manufacturer, were tested, also assessing the impact of the ageing of their protective glasses on the calibration coefficients and the drift of the instruments. The instruments are in operation on measurement points and observatories at different sites and altitudes in Southern Switzerland, within the framework of OASI, the Environmental Observatory of Southern Switzerland. The authors present the results of the calibration campaign: linearity; brightness calibration, with and without protective glasses; transmittance measurement of the glasses; and spectral responsivity of the devices. A detailed uncertainty analysis is also provided, according to the ISO 17025 standard.
Spatial Model of Sky Brightness Magnitude in Langkawi Island, Malaysia
NASA Astrophysics Data System (ADS)
Redzuan Tahar, Mohammad; Kamarudin, Farahana; Umar, Roslan; Khairul Amri Kamarudin, Mohd; Sabri, Nor Hazmin; Ahmad, Karzaman; Rahim, Sobri Abdul; Sharul Aikal Baharim, Mohd
2017-03-01
Sky brightness is an essential topic in the field of astronomy, especially for optical astronomical observations that need very clear and dark sky conditions. This study presents the spatial model of sky brightness magnitude in Langkawi Island, Malaysia. Two types of Sky Quality Meter (SQM) manufactured by Unihedron are used to measure the sky brightness on a moonless night (or when the Moon is below the horizon), when the sky is cloudless and the locations are at least 100 m from the nearest light source. The selected locations are marked by their GPS coordinates. The sky brightness data obtained in this study were interpolated and analyzed using a Geographic Information System (GIS), thus producing a spatial model of sky brightness that clearly shows the dark and bright sky areas in Langkawi Island. Surprisingly, our results show the existence of a few dark sites nearby areas of high human activity. The sky brightness of 21.45 mag arcsec{}-2 in the Johnson-Cousins V-band, as the average of sky brightness equivalent to 2.8 × {10}-4{cd} {{{m}}}-2 over the entire island, is an indication that the island is, overall, still relatively dark. However, the amount of development taking place might reduce the number in the near future as the island is famous as a holiday destination.
Quantifying and Reducing Light Pollution
NASA Astrophysics Data System (ADS)
Gokhale, Vayujeet; Caples, David; Goins, Jordan; Herdman, Ashley; Pankey, Steven; Wren, Emily
2018-06-01
We describe the current level of light pollution in and around Kirksville, Missouri and around Anderson Mesa near Flagstaff, Arizona. We quantify the amount of light that is projected up towards the sky, instead of the ground, using Unihedron sky quality meters installed at various locations. We also present results from DSLR photometry of several standard stars, and compare the photometric quality of the data collected at locations with varying levels of light pollution. Presently, light fixture shields and ‘warm-colored’ lights are being installed on Truman State University’s campus in order to reduce light pollution. We discuss the experimental procedure we use to test the effectiveness of the different light fixtures shields in a controlled setting inside the Del and Norma Robison Planetarium.Apart from negatively affecting the quality of the night sky for astronomers, light pollution adversely affects migratory patterns of some animals and sleep-patterns in humans, increases our carbon footprint, and wastes resources and money. This problem threatens to get particularly acute with the increasing use of outdoor LED lamps. We conclude with a call to action to all professional and amateur astronomers to act against the growing nuisance of light pollution.
Dark Skies Ahead? Activities to Raise Awareness during the International Year of Astronomy
NASA Astrophysics Data System (ADS)
Walker, Constance E.; Isbell, D.; Pompea, S.
2007-12-01
"Dark Skies as a Universal Resource” is one of 7 themes targeted for the International Year of Astronomy in 2009. The theme's goal is to raise public awareness of the impact of artificial lighting on local environments and the ongoing loss of a dark night sky as a natural resource for much of the world's population. To reach this goal, activities are being developed which highlight dark skies preservation issues 1) through new technology (e.g., programs at planetaria, blogging, podcasting); 2) at events such as star parties and observatory open houses; 3) in arts, entertainment and storytelling (e.g., art competitions, documentaries, lectures, native American traditions); 4) through unaided-eye and digital-meter star count programs involving citizen-scientists; and 5) by relating them to public health, economic issues, ecological consequences, energy conservation, safety and security. A centerpiece of the Dark Skies theme is the unaided-eye and digital-meter versions of the GLOBE at Night program. The unaided-eye version directs citizen-scientists on how to observe and record the brightness of the night sky by matching its appearance toward the constellation of Orion with one of 7 stellar maps of different limiting magnitudes. For the "digital” version, low-cost meters are used by citizen-scientists to measure the integrated sky brightness. Data sets and maps of both versions are supplied on-line for further capstone activities. In the presentation, we will outline the activities being developed as well as plans for funding, implementation, marketing and the connections to the global cornerstone IYA project, "Dark Skies Awareness".
NASA Technical Reports Server (NTRS)
Richards, Paul L.
1991-01-01
An all-sky survey at submillimeter waves is examined. Far-infrared all-sky surveys were performed using high-thoroughput bolometric detectors from a one-meter balloon telescope. Based on the large-bodied experience obtained with the original all-sky survey telescope, a number of radically different approaches were implemented. Continued balloon measurements of the spectrum of the cosmic microwave background were performed.
Characterization of Light at Night Data from Select SkyGlowNet Nodes
NASA Astrophysics Data System (ADS)
Flurchick, K. M.; Deal, S.; Foster, C.
2013-05-01
Internet-enabled sky brightness meters (iSBMs) that continuously record and log sky brightness at the zenith have been installed at the prototype nodes of a network called SkyGlowNet. Also logged are time and weather information. These data are polled at a user-defined frequency, typically about every 45 seconds. Although the SkyGlowNetdata are used for various professional scientific studies, they are also useful for independent student research projects. In this case, the data are uploaded to the SkyGlowNetwebsite, initially to a proprietary area where the data for each institution are embargoed for one or two semesters as students conduct research projects with their data. When released from embargo, the data are moved to another area where they can be accessed by all SkyGlowNet participants. In this paper, we describe a student project in which the data collected at two SkyGlowNet sites are characterized. The data streams are parsed into homogenous segments and statistical tools are employed to describe variations observed in the data values. We demonstrate how to differentiate between natural phenomena and the effects of artificial lighting on the brightness of the night sky. In our poster we show how these effects compare between sites as separate as Arizona and North Carolina. We also have experimented with the development of statistical metrics that are used to help categorize sky brightness on select nights, and can nearly automatically provide a characterization of the quality of the night sky for astronomical purposes.
The Sky This Week, 2016 January 27 - February 2 - Naval Oceanography
Oceanography Ice You are here: Home ⺠USNO ⺠News, Tours & Events ⺠Sky This Week ⺠The Sky This Sky This Week The Sky This Week, 2016 January 27 - February 2 Info The Sky This Week, 2016 January 27 - February 2 Lest we forget. NOFS_Winter_2016_01small.jpg Dome of the Kaj Strand 1.55-meter (61-inch
Daytime Water Detection Based on Sky Reflections
NASA Technical Reports Server (NTRS)
Rankin, Arturo; Matthies, Larry; Bellutta, Paolo
2011-01-01
A water body s surface can be modeled as a horizontal mirror. Water detection based on sky reflections and color variation are complementary. A reflection coefficient model suggests sky reflections dominate the color of water at ranges > 12 meters. Water detection based on sky reflections: (1) geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground (2) predicts if the ground pixel is water based on color similarity and local terrain features. Water detection has been integrated on XUVs.
Spectral and Polarimetric Imagery Collection Experiment
2011-12-01
meter Visibility Smoke, fog, haze Pyranometer Sun and sky radiation Pryheliometer Solar radiation direction Required tracking mount Distrometer(s... Pyranometers measure total sun and sky radiation. If the direction of the solar radiation is an important factor, then use of a normal incidence
Night-sky brightness monitoring in Hong Kong: a city-wide light pollution assessment.
Pun, Chun Shing Jason; So, Chu Wing
2012-04-01
Results of the first comprehensive light pollution survey in Hong Kong are presented. The night-sky brightness was measured and monitored around the city using a portable light-sensing device called the Sky Quality Meter over a 15-month period beginning in March 2008. A total of 1,957 data sets were taken at 199 distinct locations, including urban and rural sites covering all 18 Administrative Districts of Hong Kong. The survey shows that the environmental light pollution problem in Hong Kong is severe-the urban night skies (sky brightness at 15.0 mag arcsec(- 2)) are on average ~ 100 times brighter than at the darkest rural sites (20.1 mag arcsec(- 2)), indicating that the high lighting densities in the densely populated residential and commercial areas lead to light pollution. In the worst polluted urban location studied, the night-sky at 13.2 mag arcsec(- 2) can be over 500 times brighter than the darkest sites in Hong Kong. The observed night-sky brightness is found to be affected by human factors such as land utilization and population density of the observation sites, together with meteorological and/or environmental factors. Moreover, earlier night skies (at 9:30 p.m. local time) are generally brighter than later time (at 11:30 p.m.), which can be attributed to some public and commercial lightings being turned off later at night. On the other hand, no concrete relationship between the observed sky brightness and air pollutant concentrations could be established with the limited survey sampling. Results from this survey will serve as an important database for the public to assess whether new rules and regulations are necessary to control the use of outdoor lightings in Hong Kong.
The BlueSky Smoke Modeling Framework: Recent Developments
NASA Astrophysics Data System (ADS)
Sullivan, D. C.; Larkin, N.; Raffuse, S. M.; Strand, T.; ONeill, S. M.; Leung, F. T.; Qu, J. J.; Hao, X.
2012-12-01
BlueSky systems—a set of decision support tools including SmartFire and the BlueSky Framework—aid public policy decision makers and scientific researchers in evaluating the air quality impacts of fires. Smoke and fire managers use BlueSky systems in decisions about prescribed burns and wildland firefighting. Air quality agencies use BlueSky systems to support decisions related to air quality regulations. We will discuss a range of recent improvements to the BlueSky systems, as well as examples of applications and future plans. BlueSky systems have the flexibility to accept basic fire information from virtually any source and can reconcile multiple information sources so that duplication of fire records is eliminated. BlueSky systems currently apply information from (1) the National Oceanic and Atmospheric Administration's (NOAA) Hazard Mapping System (HMS), which represents remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR), and Geostationary Operational Environmental Satellites (GOES); (2) the Monitoring Trends in Burn Severity (MTBS) interagency project, which derives fire perimeters from Landsat 30-meter burn scars; (3) the Geospatial Multi-Agency Coordination Group (GeoMAC), which produces helicopter-flown burn perimeters; and (4) ground-based fire reports, such as the ICS-209 reports managed by the National Wildfire Coordinating Group. Efforts are currently underway to streamline the use of additional ground-based systems, such as states' prescribed burn databases. BlueSky systems were recently modified to address known uncertainties in smoke modeling associated with (1) estimates of biomass consumption derived from sparse fuel moisture data, and (2) models of plume injection heights. Additional sources of remotely sensed data are being applied to address these issues as follows: - The National Aeronautics and Space Administration's (NASA) Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis Real-Time (TMPA-RT) data set is being used to improve dead fuel moisture estimates. - EastFire live fuel moisture estimates, which are derived from NASA's MODIS direct broadcast, are being used to improve live fuel moisture estimates. - NASA's Multi-angle Imaging Spectroradiometer (MISR) stereo heights are being used to improve estimates of plume injection heights. Further, the Fire Location and Modeling of Burning Emissions (FLAMBÉ) model was incorporated into the BlueSky Framework as an alternative means of calculating fire emissions. FLAMBÉ directly estimates emissions on the basis of fire detections and radiance measures from NASA's MODIS and NOAA's GOES satellites. (The authors gratefully acknowledge NASA's Applied Sciences Program [Grant Nos. NN506AB52A and NNX09AV76G)], the USDA Forest Service, and the Joint Fire Science Program for their support.)
Spectral and Polarimetric Imagery Collection Experiment
2011-12-01
Also melted snow liquid rate Optical rain gauge Rain rate Possibly snow rate Visibility meter Visibility Smoke, fog, haze Pyranometer Sun and sky...performance of the IR imagery due to thermal effect or possible inversion layer effects. Pyranometers measure total sun and sky radiation. If the direction
Light Pollution Surveys around the Seoul Capital Area: Results from 2009 and 2014
NASA Astrophysics Data System (ADS)
Yu, Jinhee; An, Sung-Ho; Bae, Hyun-Jin; Roh, Eunji; Chiang, Howoo; Kim, Jinhyub; Kim, Seongjoong; Park, Songyoun
2015-08-01
We conducted a series of light pollution surveys in the periods of 2009/2010 and 2014/2015 at ~130 sites within the Seoul Capital Area of South Korea. We quantitatively measured the night sky brightness in the unit of mag/arcsec2 with the ‘SQM (Sky Quality Meter)-L’ by considering the following conditions: 1) fully dark sky after astronomical twilight, 2) good weather with the cloud amount less than 10%, and 3) ensure no contaminations from nearby street lights to the measured value. We find that the night sky is getting darker from the center of Seoul to the outskirts of Gyeonggi-do by a factor of ~40. In both surveys, for example, the brightest site is Namsan Elementary School (Jung-gu, Seoul: 16.3 and 16.5 mag/arcsec2 in 2009/2010 and 2014/2015, respectively), located nearly at the middle of Seoul. Also, the darkest site is Goseong-ri (Gapyeong-gun, Gyeonggi-do: 20.1 and 20.6 mag/arcsec2 in 2009/2010 and 2014/2015, respectively), situated ~50 km northeast of the brightest site. In addition, the night sky brightness in 2014/2015 is on average darker by ~0.4 mag/arcsec2 compared to the brightness in 2009/2010, which indicates the reduced light pollution in the Seoul Capital Area. In this contribution, we will present the maps of the night sky brightness in the capital region of Korea from both surveys, and discuss the possible reasons for the changes in night sky brightness within 5 years.
Light pollution: measuring and modelling skyglow. An application in two Portuguese reserves
NASA Astrophysics Data System (ADS)
Lima, Raul Cerveira Pinto Sousa
Outdoors human-made lighting at night causes sky glow, one of the effects of light pollution. Sky glow is rising with the growth of world population. Urban inhabitants are increasingly deprived from a starry sky. However, since light propagates to regions far from where it is produced, light pollution spreads to places where few or none artificial light at night existed, disturbing the quality of the night sky. In this work we assess for the first time the sky brightness of two regions in Portugal, the Peneda-Geres National Park, and the recently created Starlight Reserve Dark Sky® Alqueva. We used a portable unit, a Unihedron Sky Quality Meter-L (SQM-L), to measure the luminance of the night sky. We also tested the SQM-L in a laboratory to a more thorough analysis of the device, and to check the effect of polarization on the unit, suggested by our observations and other users. Our results suggest that the SQM-L is not affected by any measurable effect of polarization, but some guidelines to use the SQM-L in the field are provided based on our work. The data from the field measurement was used to compare to one light pollution propagation model (Kocifaj, 2007), using VIIRS DNB satellite upwards radiance as input to the model. The results obtained from the model are favourably compared to the field measurements. We proceeded to a set of tests with the model to find the best fit. Our best results were achieved by analysing the data by night rather than the global set of data. Our first results were used to apply to the classification of the region of Alqueva to a Starlight Tourism Destination. That classification was attained during the course of this work (December 2011). A guideline on the Peneda-Geres National Park was also implemented after our first results were provided. We believe we have achieved a set of results in a set of parallel issues all related to light pollution that we hope may contribute to the current knowledge on this area of research.
Sky coverage modeling for the whole sky for laser guide star multiconjugate adaptive optics.
Wang, Lianqi; Andersen, David; Ellerbroek, Brent
2012-06-01
The scientific productivity of laser guide star adaptive optics systems strongly depends on the sky coverage, which describes the probability of finding natural guide stars for the tip/tilt wavefront sensor(s) to achieve a certain performance. Knowledge of the sky coverage is also important for astronomers planning their observations. In this paper, we present an efficient method to compute the sky coverage for the laser guide star multiconjugate adaptive optics system, the Narrow Field Infrared Adaptive Optics System (NFIRAOS), being designed for the Thirty Meter Telescope project. We show that NFIRAOS can achieve more than 70% sky coverage over most of the accessible sky with the requirement of 191 nm total rms wavefront.
Intercomparisons of nine sky brightness detectors.
den Outer, Peter; Lolkema, Dorien; Haaima, Marty; van der Hoff, Rene; Spoelstra, Henk; Schmidt, Wim
2011-01-01
Nine Sky Quality Meters (SQMs) have been intercompared during a night time measurement campaign held in the Netherlands in April 2011. Since then the nine SQMs have been distributed across The Netherlands and form the Dutch network for monitoring night sky brightness. The goal of the intercomparison was to infer mutual calibration factors and obtain insight into the variability of the SQMs under different meteorological situations. An ensemble average is built from the individual measurements and used as a reference to infer the mutual calibration factors. Data required additional synchronization prior to the calibration determination, because the effect of moving clouds combined with small misalignments emerges as time jitter in the measurements. Initial scatter of the individual instruments lies between ±14%. Individual night time sums range from -16% to +20%. Intercalibration reduces this to 0.5%, and -7% to +9%, respectively. During the campaign the smallest luminance measured was 0.657 ± 0.003 mcd/m(2) on 12 April, and the largest value was 5.94 ± 0.03 mcd/m(2) on 2 April. During both occurrences interfering circumstances like snow cover or moonlight were absent.
Characterizing and Quantifying Time Dependent Night Sky Brightness In and Around Tucson, Arizona
NASA Astrophysics Data System (ADS)
Nydegger, Rachel
2014-01-01
As part of a Research Experience for Undergraduates (REU) program with the National Optical Astronomy Observatory (NOAO), I (with mentor Dr. Constance Walker of NOAO) characterized light pollution in and near Tucson, Arizona using eight Sky Quality Meters (SQMs). In order to analyze the data in a consistent way for comparison, we created a standard procedure for reduction and analysis using python and MATLAB. The series of python scripts remove faulty data and examine specifically anthropogenic light pollution by excluding contributions made by the sun, moon, and the Milky Way. We then use MATLAB codes to illustrate how the light pollution changes in relation to time, distance from the city, and airglow. Data are then analyzed by a recently developed sky brightness model created by Dan Duriscoe of the National Park Service. To quantify the measurements taken by SQMs, we tested the wavelength sensitivity of the devices used for the data collection. The findings from the laboratory testing have prompted innovations for the SQMs as well as given a sense of how data gathered by these devices should be treated.
NASA Astrophysics Data System (ADS)
Bottom, Michael; Muirhead, Philip S.; Swift, Jonathan J.; Zhao, Ming; Gardner, Paul; Plavchan, Peter P.; Riddle, Reed L.; Herzig, Erich; Johnson, John A.; Wright, Jason T.; McCrady, Nate; Wittenmyer, Robert A.
2014-08-01
We present the science motivation, design, and on-sky test data of a high-throughput fiber coupling unit suitable for automated 1-meter class telescopes. The optical and mechanical design of the fiber coupling is detailed and we describe a flexible controller software designed specifically for this unit. The system performance is characterized with a set of numerical simulations, and we present on-sky results that validate the performance of the controller and the expected throughput of the fiber coupling. This unit was designed specifically for the MINERVA array, a robotic observatory consisting of multiple 0.7 m telescopes linked to a single high-resolution stabilized spectrograph for the purpose of exoplanet discovery using high-cadence radial velocimetry. However, this unit could easily be used for general astronomical purposes requiring fiber coupling or precise guiding.
NASA Astrophysics Data System (ADS)
Walker, C. E.; Jensen, L.; Pompea, S. M.
2012-12-01
Research interns are using 6 Sky Quality Meters (SQM) around Tucson and 4 more on nearby observatory mountaintops to measure the night sky brightness and characterize its behavior over the entire night over the summer and during the academic school year. The "SQM" devices are inexpensive, yet reliable, computer-free devices, automatically log data, and have housing to protect them from weather. The students download the data onto a computer every few weeks. Two devices are at a central location on the roof of the National Optical Astronomy Observatory (NOAO) and the others are 9 miles N, E, S and W. Four more devices are on observatory mountaintops, namely Mount Lemmon, Mount Hopkins and 2 on Kitt Peak. For the pair of devices at NOAO and on Kitt Peak, one is in the housing unit and the other is exposed to the night sky to track the lossiness of the glass in the housing unit. The SQM is next to the sophisticated and more expensive "Night Sky Brightness Monitor" (NSBM) on Mount Lemmon, Mount Hopkins and, in the future, Kitt Peak. The student interns compare the SQM to the NSBM data on the mountaintops, weather data (temperature and humidity), internal temperature of the SQM, the all-sky camera that is up on Kitt Peak and the SQM results from Tucson. Weather stations already exist very close to all of the locations (usually within a mile or a few feet). We discuss the students' analysis of the data and conclusions as well as the challenges and successes of the program and its plans for expansion.
NASA Astrophysics Data System (ADS)
Bensel, Holly; Dorrell, Genna; Feng, James; Hicks, Sean; Mars Liu, Jason; Liu, Steven; Moczygemba, Mitchell; Sheng, Jason; Sternenburg, Leah; Than, Emi; Timmons, Emry; Wen, Jerry; Yaeger, Bella; You, Ruiyang
2016-01-01
The Rogue Valley in Southwest Oregon was known for its beautiful dark skies, but due to population growth the dark skies are vanishing. A light pollution chart using Defense Meteorological Satellite Program (DMSP) data was published in 2006, but did not show the spatial variation in detail. In the spring of 2014, the 9th grade physics students, astronomy students, and members of the Astronomy Club from St. Mary's School conducted the first detailed night sky survey. The purpose of the survey is to create a baseline of the variations in light pollution in the Rogue Valley.The project continued into 2015, incorporating suggestions made at the 2014 AAS Conference to improve the study by including more light meter data and community outreach. Students used light meters, Loss of the Night app, and the Dark Sky meter app. Students researched light pollution and its effects on the environment, measured night sky brightness in the Rogue Valley, and completed a light audit in an area of their choice. They created a presentation for a final physics grade. The basis for this project, along with procedures can be found on the GaN, Globe at Night, (www.globeatnight.org) website. The light audit and research portion were developed from the Dark Sky Rangers section of the website (www.globeatnight.org/dsr/).The 2014 survey and public outreach increased awareness of light pollution in the Rogue Valley and around the state of Oregon. Examples include a local senior project to change lighting at a baseball stadium and a 4-H club in Northeast Oregon starting a GaN survey in their area. GaN shows growth in the amount of data collected in Oregon from 8 data points in 2006 to 193 in 2014. The Rogue Valley magnitude data from the spring of 2015 indicates a drop from an average magnitude of 4 to an average magnitude of 2. This is due to hazy skies from smoke drifting into the valley from a Siberian wildfire. Data collection during the summer and fall was hampered due to smoke from local wildfires.
Effects Of Light Pollution On The Movements Of Leptonycteris Curasoae Yerbabuenae In The Tucson Area
NASA Astrophysics Data System (ADS)
Barringer, Daniel; Walker, C.
2011-01-01
We used data from the GLOBE at Night project and telemetry tracking data of lesser long-nosed bats obtained by the Arizona Game and Fish Department to study the effects of light pollution on the flight paths of the bats between their day roosts and night foraging areas around the city of Tucson, AZ. With the visual limiting magnitude data from GLOBE at Night, we ran a compositional analysis with respect to the bats’ flight paths to determine whether the bats were selecting for or against flight through regions of particular night sky brightness levels. We found that the bats selected for the regions in which the limiting sky magnitudes fell between the ranges of 2.8-3.0 to 3.6-3.8 and 4.4-4.6 to 5.0-5.2, suggesting that the lesser long-nosed bat can tolerate a fair degree of urbanization. We also compared this result to contour maps created with digital Sky Quality Meter data. In this presentation, we present the results from our compositional analysis with respect to the habits of the lesser long-nosed bat. For more information, please visit www.globeatnight.org.
The GLOBE at Night Campaign: Promoting Dark Skies Awareness Beyond IYA2009
NASA Astrophysics Data System (ADS)
Walker, Constance E.
2010-01-01
One of the most productive programs in the IYA2009 Dark Skies Awareness Cornerstone Project has been GLOBE at Night. The GLOBE at Night program has endeavored to promote social awareness of the dark sky by getting the general public to measure light pollution and submit results on-line. During IYA2009 alone, over 15,700 measurements from 70 countries were contributed during the 2-week campaign period. That amount is twice the number of measurements on average from previous years. The GLOBE at Night website explains clearly the simple-to-participate-in 5 step program and offers background information and interactive games on key concepts. The program has been expanded to include trainings of the general public, but especially educators in schools, museums and science centers, in unique ways. Education kits for Dark Skies Awareness have been distributed at these training workshops. The kit includes material for a light shielding demonstration, a digital Sky Quality Meter and Dark Skies Ranger Activities. The activities are on how unshielded light wastes energy, how light pollution affects wildlife and how you can participate in a citizen-science star-hunt like GLOBE at Night. In addition, projects are being developed for what to do with the data once it is taken. There were particularly spirited and creative GLOBE at Night campaigns around the world in 2009. One such "poster child” was carried out by 6500 students in northern Indiana. The students produced 3,391 GLOBE at Night measurements. To visualize the magnitudes of dark sky lost to light pollution, these students removed over 12,000 of the 35,000 stacked LEGO blocks that represented an ideal night sky across the school district. The presentation will provide an update with lessons learned, describe how people can become involved and take a look ahead at the program's sustainability. For further information, visit www.globe.gov/globeatnight.
Systematic measurements of the night sky brightness at 26 locations in Eastern Austria
NASA Astrophysics Data System (ADS)
Posch, Thomas; Binder, Franz; Puschnig, Johannes
2018-05-01
We present an analysis of the zenithal night sky brightness (henceforth: NSB) measurements at 26 locations in Eastern Austria focussing on the years 2015-2016, both during clear and cloudy to overcast nights. All measurements have been performed with 'Sky Quality Meters' (SQMs). For some of the locations, simultaneous aerosol content measurements are available, such that we were able to find a correlation between light pollution and air pollution at those stations. For all locations, we examined the circalunar periodicity of the NSB, seasonal variations as well as long-term trends in the recorded light pollution. The latter task proved difficult, however, due to varying meteorological conditions, potential detector 'aging' and other effects. For several remote locations, a darkening of the overcast night sky by up to 1 magnitude is recorded - indicating a very low level of light pollution -, while for the majority of the examined locations, a brightening of the night sky by up to a factor of 15 occurs due to clouds. We present suitable ways to plot and analyze huge long-term NSB datasets, such as mean-NSB histograms, circalunar, annual ('hourglass') and cumulative ('jellyfish') plots. We show that five of the examined locations reach sufficiently low levels of light pollution - with NSB values down to 21.8 magSQM/arcsec2 - as to allow the establishment of dark sky reserves, even to the point of reaching the 'gold tier' defined by the International Dark Sky Association. Based on the 'hourglass' plots, we find a strong circalunar periodicity of the NSB in small towns and villages ( < 5.000 inhabitants), with amplitudes of up to 5 magnitudes. Using the 'jellyfish' plots, on the other hand, we demonstrate that the examined city skies brighten by up to 3 magnitudes under cloudy conditions, which strongly dominate in those cumulative data representations. Nocturnal gradients of the NSB of 0.0-0.14 magSQM/arcsec2/h are found. The long-term development of the night sky brightness was evaluated based on the 2012-17 data for one of our sites, possibly indicating a slight ( 2%) decrease of the mean zenithal NSB at the Vienna University Observatory.
Fireball Streaking over Russia
2013-02-16
This photograph of the meteor streaking through the sky above Chelyabinsk, Russia, on Feb. 15, 2013, was taken by a local, M. Ahmetvaleev. The small asteroid was about 56 to 66 feet 17 to 20 meters wide.
NASA Astrophysics Data System (ADS)
Puji Asmoro, Cahyo; Wijaya, Agus Fany Chandra; Dwi Ardi, Nanang; Abdurrohman, Arman; Aria Utama, Judhistira; Sutiadi, Asep; Hikmat; Ramlan Ramalis, Taufik; Suyardi, Bintang
2016-11-01
The Assembled Solar Eclipse Package (ASEP) is not only an integrated apparatus constructed to obtain imaging data during solar eclipse, but also it involved sky brightness and live streaming requirement. Main four parts of ASEP are composed by two imaging data recorders, one high definition video streaming camera, and a sky quality meter instrument (SQM) linked by a personal computer and motorized mounting. The parts are common instruments which are used for education or personal use. The first part is used to capture corona and prominence image during totality. For the second part, video is powerful data in order to educate public through web streaming lively. The last part, SQM is used to confirm our imaging data during obscuration. The perfect prominence picture was obtained by one of the data capture using William-Optics F=388mm with Nikon DSLR D3100. In addition, the diamond ring and corona were recorded by the second imaging tool using Sky Watcher F=910mm with Canon DSLR 60D. The third instrument is the Sony HXR MC5 streaming set to be able to broadcast to public domain area via official website. From the SQM, the value of the darkness during totality is quiet similar as a dawn condition. Finally, ASEP was entirely successful and be able to fulfil our competency as educational researcher in university.
The Dynamic Radio Sky: Future Directions at cm/m-Wavelengths
NASA Astrophysics Data System (ADS)
Bower, Geoffrey C.; Cordes, J.; Croft, S.; Lazio, J.; Lorimer, D.; McLaughlin, M.
2009-01-01
The time domain of the radio wavelength sky has been only sparsely explored. Nevertheless, recent discoveries from limited surveys and serendipitous discoveries indicate that there is much to be found on timescales from nanoseconds to years and at wavelengths from meters to millimeters. These observations have revealed unexpected phenonmena such as rotating radio transients and coherent pulses from brown dwarfs. Additionally, archival studies have revealed an unknown class of radio transients without radio, optical, or high-energy hosts. The current generation of new meter- and centimeter-wave radio telescopes such as the MWA, LWA, PAPER, and ATA will exploit wide fields of view and flexible digital signal processing to systematically explore radio transient parameter space, as well as lay the scientific and technical foundation for the SKA. Known unknowns that will be the target of future transient surveys include orphan gamma-ray burst afterglows, radio supernovae, tidally-disrupted stars, flare stars, and magnetars.
Proto-Typing Research Aimed for Secondary School Students and Teachers
NASA Astrophysics Data System (ADS)
Walker, C. E.; Fersch, A.; Barringer, D.; Pompea, S. M.
2011-12-01
In workshops on GLOBE at Night, teacher professional development has begun on using night sky brightness data and bat telemetry data to do scientific research in the classroom. The study looks at the effects of light pollution on the flight paths of threatened and endangered (T&E) bats between their day roosts and night foraging areas. A jump-start in getting secondary school students involved was the BioBlitz event in Tucson, Arizona in October 2011. During the 24-hour event, night Sky Quality Meter (SQM) data was taken across the Saguaro National Park West, through Tucson and across the Saguaro National Park East. The program had its beginning with a pair of Research Experiences for Undergraduates (REU) students and their advisor. Through the collaboration of the National Science Foundation's REU program, the National Optical Astronomy Observatory's GLOBE at Night program and the U.S. Arizona Game and Fish Department (AzGFD), two REU students along with their advisor used data from the GLOBE at Night project and telemetry tracking data of lesser long-nosed bats to study the effects of light pollution on the flight paths of the bats between their day roosts and night foraging areas around the city of Tucson, AZ. During the summer of 2010, the first REU student used the visual limiting magnitude data from GLOBE at Night and, with the assistance of the AzGFD, ran compositional analyses with respect to the bats' flight paths to determine whether the bats were selecting for or against flight through regions of particular night sky brightness levels. The bats selected for the regions in which the limiting sky magnitudes fell between the ranges of 2.8-3.0 to 3.6-3.8 and 4.4-4.6 to 5.0-5.2, suggesting that the lesser long-nosed bat can tolerate a fair degree of urbanization. Three areas of systematic uncertainty were identified of which 2 could be addressed the following summer. Due to a relatively large uncertainty in each individually measured visual limiting magnitude, Sky Quality Meter (SQM) measurements were subsequently used as a more objective source of data. In addition, the area over which the data was taken was expanded to redress spurious edge effects in making contour maps. During the summer of 2011, the second REU student took more SQM data and, with the SQM database from GLOBE at Night and the assistance of the AzGFD, performed a logistic regression analysis with respect to the bats' flight paths to determine whether the bats preferred or avoided flight through regions of particular night sky brightness levels. During the presentation, we will provide more on the analysis and conclusions of the research, as well as the extension of the program to secondary students and teachers. Should the conclusion be that the bats are preferentially staying in darker areas, a next step for students and teachers would include helping to maintain a dark corridor where the T&E lesser long nosed bats travel between roosts and foraging areas. Should this prototype project succeed, it will be used as a template for other REU and secondary school research projects on endangered animals across the U.S. affected by light pollution. Teacher professional development will play a big role in the program's future success.
Network based sky Brightness Monitor
NASA Astrophysics Data System (ADS)
McKenna, Dan; Pulvermacher, R.; Davis, D. R.
2009-01-01
We have developed and are currently testing an autonomous 2 channel photometer designed to measure the night sky brightness in the visual wavelengths over a multi-year campaign. The photometer uses a robust silicon sensor filtered with Hoya CM500 glass. The Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The Sky Brightness monitor consists of two units, the remote photometer and a network interface. Currently these devices use 2.4 Ghz transceivers with a free space range of 100 meters. The remote unit is battery powered with day time recharging using a solar panel. Data received by the network interface transmits data via standard POP Email protocol. A second version is under development for radio sensitive areas using an optical fiber for data transmission. We will present the current comparison with the National Park Service sky monitoring camera. We will also discuss the calibration methods used for standardization and temperature compensation. This system is expected to be deployed in the next year and be operated by the International Dark Sky Association SKYMONITOR project.
"Let There Be Night" Advocates Dark Skies
NASA Astrophysics Data System (ADS)
Bueter, Chuck
2008-05-01
Let There Be Night is an interactive planetarium program that supports a community-wide experiment to quantify local sky glow. In the planetarium, visitors will experience three aspects of light pollution--glare, sky glow, and light trespass--and decide whether and how to confront dark sky issues. Planetarians can select optional recorded stories and lessons to complement live demonstrations or star talks. As a companion experiment, students in grades 3-8 from one school district will then submit their backyard observations of Orion's limiting magnitude to the 2009 Globe at Night star hunt while small student teams concurrently quantify sky glow from each schoolyard with hand-held meters. After mapping their results and having classroom discussions, students will present their findings to the School Board. Material compiled and created for the program will be available for other dark sky advocates at www.LetThereBeNight.com, while large digital files will be distributed on disk through two planetarium associations. A 2008 Toyota TAPESTRY grant has enticed significant professional support, additional funding, and in-kind contributions.
Astronomy Meets the Environmental Sciences: Using GLOBE at Night Data
NASA Astrophysics Data System (ADS)
Barringer, D.; Walker, C. E.; Pompea, S. M.; Sparks, R. T.
2011-09-01
The GLOBE at Night database now contains over 52,000 observations from the five annual two-week campaigns. It can be used as a resource to explore various issues related to light pollution and our environment. Students can compare data over time to look for changes and trends. For example, they can compare the data to population density or with nighttime photography and spectroscopy of lights. The data can be used in a lighting survey, to search for dark sky oases or to monitor ordinance compliance. Students can study effects of light pollution on animals, plants, human health, safety, security, energy consumption, and cost. As an example, we used data from the GLOBE at Night project and telemetry tracking data of lesser long-nosed bats obtained by the Arizona Game and Fish Department to study the effects of light pollution on the flight paths of the bats between their day roosts and night foraging areas around the city of Tucson, AZ. With the visual limiting magnitude data from GLOBE at Night, we ran a compositional analysis with respect to the bats' flight paths to determine whether the bats were selecting for or against flight through regions of particular night sky brightness levels. We found that the bats selected for the regions in which the limiting sky magnitudes fell between the ranges of 2.8-3.0 to 3.6-3.8 and 4.4-4.6 to 5.0-5.2, suggesting that the lesser long-nosed bat can tolerate a fair degree of urbanization. We also compared this result to contour maps created with digital Sky Quality Meter (http://www.unihedron.com) data.
Infrared site testing of Mt. Lemmon and Catalina Observatory
NASA Technical Reports Server (NTRS)
Kuiper, G. P.
1973-01-01
The operation and problems involved with two sky noise meters installed in the Catalina Mountains near Tucson, Arizona are discussed. The instruments were installed at two different locations on Mt. Lemon. It was found that when photometric conditions prevailed, a positive correlation existed between the outputs of the two instruments. In particular, the strongdiurnal effect, in which the sky noise increases abruptly at sunrise and falls markedly after sunset, was reproduced by both instruments. Discrepancies in data recorded by the two instruments are analyzed and possible causes for the discrepancies are proposed.
Observation of GEO Satellite Above Thailand’s Sky
NASA Astrophysics Data System (ADS)
Kasonsuwan, K.; Wannawichian, S.; Kirdkao, T.
2017-09-01
The direct observations of Geostationary Orbit (GEO) satellites above Thailand’s sky by 0.7-meters telescope were proceeded at Inthanon Mt., Chiang Mai, Thailand. The observation took place at night with Sidereal Stare Mode (SSM). With this observing mode, the moving object will appear as a streak. The star identification for image calibration is based on (1) a star catalogue, (2) the streak detection of the satellite using the software and (3) the extraction of the celestial coordinate of the satellite as a predicted position. Finally, the orbital elements for GEO satellites were calculated.
Communicating awareness of light pollution with the schools in Nepal
NASA Astrophysics Data System (ADS)
Acharya, Jayanta
2015-08-01
Nepal is also highly polluted by the lights and other dusts partials, but lacks the formal education of light pollutions and effect of light for astronomy observations. When we get Sky Quality Meter (SQM) last year (2014) we have installed it in Kathmandu.This paper will highlight about installation SQM in Nepal, measurement of brightness of the night sky in magnitudes per square arc second. Research work of light pollution of Kathmandu will be more in focus. Highlight of the Astronomy programs by different Schools in Nepal along with the background of coverage of Astronomy education in the syllables of different education level. The various procedure , technique and idea used in providing the space education through different activities and program to school studentsThe paper will also deal with the Importance of light and use of artificial light. Beside it will also highlight the possibility of development of various observatories in Nepal because of its tremendous topography increasing the Astro tourism in Nepal.Hence the paper would focus on the light pollution of the city like Kathmandu and light system in Nepal and Astronomy education to its implementation along with its outreach to Nepalese society.
Characterizing Sky Spectra Using SDSS BOSS Data
NASA Astrophysics Data System (ADS)
Florez, Lina Maria; Strauss, Michael A.
2018-01-01
In the optical/near-infrared spectra gathered by a ground-based telescope observing very faint sources, the strengths of the emission lines due to the Earth’s atmosphere can be many times larger than the fluxes of the sources we are interested in. Thus the limiting factor in faint-object spectroscopy is the degree to which systematics in the sky subtraction can be minimized. Longwards of 6000 Angstroms, the night-sky spectrum is dominated by multiple vibrational/rotational transitions of the OH radical from our upper atmosphere. While the wavelengths of these lines are the same in each sky spectrum, their relative strengths vary considerably as a function of time and position on the sky. The better we can model their strengths, the better we can hope to subtract them off. We expect that the strength of lines from common upper energy levels will be correlated with one another. We used flux-calibrated sky spectra from the Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey (SDSS BOSS) to explore these correlations. Our aim is to use these correlations for creating improved sky subtraction algorithms for the Prime Focus Spectrograph (PFS) on the 8.2-meter Subaru Telescope. When PFS starts gathering data in 2019, it will be the most powerful multi-object spectrograph in the world. Since PFS will be gathering data on sources as faint as 24th magnitude and fainter, it's of upmost importance to be able to accurately measure and subtract sky spectra from the data that we receive.
ATLAS: Finding the Nearest Asteroids
NASA Astrophysics Data System (ADS)
Heinze, Aren; Tonry, John L.; Denneau, Larry; Stalder, Brian
2017-10-01
The Asteroid Terrestrial-impact Last Alert System (ATLAS) became fully operational in June 2017. Our two robotic, 0.5 meter telescopes survey the whole accessible sky every two nights from the Hawaiian mountains of Haleakala and Mauna Loa. With sensitivity to magnitude 19.5 over a field of 30 square degrees, we discover several bright near-Earth objects every month - particularly fast moving asteroids, which can slip by other surveys that scan the sky more slowly. Several important developments in 2017 have enhanced our sensitivity to small, nearby asteroids and potential impactors. We report on these developments - including optical adjustments, automated screening of detections, closer temporal spacing of images, and tolerance for large deviations from Great Circle motion on the sky - and we describe their effect in terms of measuring and discovering real objects.
Our Light or Starlight? Citizen Science, Public Involvement and You
NASA Astrophysics Data System (ADS)
Walker, Constance E.
2010-10-01
With half of the world's population now living in cities, many urban dwellers have never experienced the wonderment of pristinely dark skies and maybe never will. Light pollution is obscuring people's long-standing natural heritage to view stars. The GLOBE at Night program (www.globeatnight.org) is an international citizen-science campaign to raise public awareness of the impact of light pollution by encouraging everyone everywhere to measure local levels of night sky brightness and contribute observations online to a world map. In the last 5 years, GLOBE at Night has been the most productive public light pollution monitoring campaign, collecting over 52,000 observations in a two-week period annually. This year, during the moonless two weeks in March, the campaign set a record high of over 17,800 measurements from people in 86 countries. Foundational resources are available to facilitate the public's participation in promoting dark skies awareness. The GLOBE at Night website explains clearly the simple-to-participate-in 5 step program and offers background information and interactive games on key concepts. The program has been expanded to include trainings of the general public, but especially educators in schools, museums and science centers, in unique ways. Education kits for dark skies awareness have been distributed at the training workshops. The kit includes material for a light shielding demonstration, a digital Sky Quality Meter and ``Dark Skies Rangers'' activities. The activities are on how unshielded light wastes energy, how light pollution affects wildlife and how you can participate in a citizen-science star-hunt like GLOBE at Night. In addition, projects are being developed for what to do with the data once it is taken. The GLOBE at Night data from different years can be compared to look for trends over time or with population density maps. The data can also be used to search for dark sky oases or to monitor lighting ordinance compliance. Most recently the data has been compared with telemetry of the Lesser Long-Nose Bat near Tucson, Arizona to examine whether or not the bats are preferentially staying in darker areas. The presentation will highlight the education and outreach value of the program's resources and outcomes in communicating awareness with the public and attracting young people to study science.
GLOBE at Night: Raising Public Awareness and Involvement through Citizen Science
NASA Astrophysics Data System (ADS)
Walker, C. E.; Pompea, S. M.; Sparks, R. T.
2010-12-01
With half of the world’s population now living in cities, many urban dwellers have never experienced the wonderment of pristinely dark skies and maybe never will. Light pollution is obscuring people’s long-standing natural heritage to view stars. The GLOBE at Night program (www.globeatnight.org) is an international citizen-science campaign to raise public awareness of the impact of light pollution by encouraging everyone everywhere to measure local levels of night sky brightness and contribute observations online to a world map. In the last 5 years, GLOBE at Night has been the most productive public light pollution monitoring campaign, collecting over 52,000 observations in a two-week period annually. This year, during the moonless two weeks in March, the campaign set a record high of over 17,800 measurements from people in 86 countries. Foundational resources are available to facilitate the public’s participation in promoting dark skies awareness. The GLOBE at Night website explains clearly the simple-to-participate-in 5 step program and offers background information and interactive games on key concepts. The program has been expanded to include trainings of the general public, but especially educators in schools, museums and science centers, in unique ways. Education kits for dark skies awareness have been distributed at the training workshops. The kit includes material for a light shielding demonstration, a digital Sky Quality Meter and “Dark Skies Rangers” activities. The activities are on how unshielded light wastes energy, how light pollution affects wildlife and how you can participate in a citizen-science star-hunt like GLOBE at Night. In addition, projects are being developed for what to do with the data once it is taken. The GLOBE at Night data from different years can be compared to look for trends over time or with population density maps. The data can also be used to search for dark sky oases or to monitor lighting ordinance compliance. Most recently the data has been compared with telemetry of the Lesser Long-Nose Bat near Tucson, Arizona to examine whether or not the bats are preferentially staying in darker areas. The presentation will highlight the education and outreach value of the program’s resources and outcomes in communicating awareness with the public and attracting young people to study science.
A simplified model of all-sky artificial sky glow derived from VIIRS Day/Night band data
NASA Astrophysics Data System (ADS)
Duriscoe, Dan M.; Anderson, Sharolyn J.; Luginbuhl, Christian B.; Baugh, Kimberly E.
2018-07-01
We present a simplified method using geographic analysis tools to predict the average artificial luminance over the hemisphere of the night sky, expressed as a ratio to the natural condition. The VIIRS Day/Night Band upward radiance data from the Suomi NPP orbiting satellite was used for input to the model. The method is based upon a relation between sky glow brightness and the distance from the observer to the source of upward radiance. This relationship was developed using a Garstang radiative transfer model with Day/Night Band data as input, then refined and calibrated with ground-based all-sky V-band photometric data taken under cloudless and low atmospheric aerosol conditions. An excellent correlation was found between observed sky quality and the predicted values from the remotely sensed data. Thematic maps of large regions of the earth showing predicted artificial V-band sky brightness may be quickly generated with modest computing resources. We have found a fast and accurate method based on previous work to model all-sky quality. We provide limitations to this method. The proposed model meets requirements needed by decision makers and land managers of an easy to interpret and understand metric of sky quality.
NASA Astrophysics Data System (ADS)
Jenkins, Jeffery C.; Fairman, Terry M.
1987-06-01
The A/F32T-9 Large Turbofan Engine, Enclosed Noise Suppressor System (T-9 NSS) at Sky Harbor International Airport, Phoenix, Arizona was surveyed to determine noise levels at 100 meters. With an F101 engine operating at afterburner power the highest measured Overall Sound Level, A-Weighted (OASLA) was 88.7 dB(A). The measured OASLA values exceeded the 77 dB(A) criterion at all but five of the twenty-four sampling positions.
NASA Astrophysics Data System (ADS)
Basden, A. G.; Bardou, L.; Bonaccini Calia, D.; Buey, T.; Centrone, M.; Chemla, F.; Gach, J. L.; Gendron, E.; Gratadour, D.; Guidolin, I.; Jenkins, D. R.; Marchetti, E.; Morris, T. J.; Myers, R. M.; Osborn, J.; Reeves, A. P.; Reyes, M.; Rousset, G.; Lombardi, G.; Townson, M. J.; Vidal, F.
2017-04-01
The performance of adaptive optics systems is partially dependent on the algorithms used within the real-time control system to compute wavefront slope measurements. We demonstrate the use of a matched filter algorithm for the processing of elongated laser guide star (LGS) Shack-Hartmann images, using the CANARY adaptive optics instrument on the 4.2 m William Herschel Telescope and the European Southern Observatory Wendelstein LGS Unit placed 40 m away. This algorithm has been selected for use with the forthcoming Thirty Meter Telescope, but until now had not been demonstrated on-sky. From the results of a first observing run, we show that the use of matched filtering improves our adaptive optics system performance, with increases in on-sky H-band Strehl measured up to about a factor of 1.1 with respect to a conventional centre of gravity approach. We describe the algorithm used, and the methods that we implemented to enable on-sky demonstration.
A Regional, Multi-Stakeholder Collaboration for Dark-Sky Protection in Flagstaff, Arizona
NASA Astrophysics Data System (ADS)
Hall, Jeffrey C.
2018-01-01
Flagstaff, Arizona is home to almost $200M in astronomical assets, including Lowell Observatory's 4.3-meter Discovery Channel Telescope and the Navy Precision Optical Interferometer, a partnership of Lowell, the U. S. Naval Observatory, and the Naval Research Laboratory. The City of Flagstaff and surrounding Coconino County have comprehensive and effective dark-sky ordinances, but continued regional growth has the potential to degrade the area's dark skies to a level at which observatory missions could be compromised. As a result, a wide array of stakeholders (the observatories, the City, the County, local dark-sky advocates, the business and tourism communities, the national parks and monuments, the Navajo Nation, the U. S. Navy, and others) have engaged in three complementary efforts to ensure that Flagstaff and Coconino County protect the area's dark skies while meeting the needs of the various communities and providing for continued growth and development. In this poster, I will present the status of Flagstaff's conversion to LED outdoor lighting, the Mission Compatibility Study carried out by the Navy to evaluate the dark-sky effects of buildout in Flagstaff, and the Joint Land Use Study (JLUS) presently underway among all the aforementioned stakeholders. Taken in sum, the efforts represent a comprehensive and constructive approach to dark-sky preservation region-wide, and they show what can be achieved when a culture of dark-sky protection is present and deliberate efforts are undertaken to maintain it for decades to come.
SkyGlowNet as a Vehicle for STEM Education
NASA Astrophysics Data System (ADS)
Flurchick, K. M.; Craine, E. R.; Culver, R. B.; Deal, S.; Foster, C.
2013-06-01
SkyGlowNet is an emerging network of internet-enabled sky brightness meters (iSBM) that continuously record and log sky brightness at the zenith of each network node site. Also logged are time and weather information. These data are polled at a user-defined frequency, typically about every 45 seconds. The data are uploaded to the SkyGlowNet website, initially to a proprietary area where the data for each institution are embargoed for one or two semesters as students conduct research projects with their data. When released from embargo, the data are moved to another area where they can be accessed by all SkyGlowNet participants. Some of the data are periodically released to a public area on the website. In this presentation we describe the data formats and provide examples of both data content and the structure of the website. Early data from two nodes in the SkyGlowNet have been characterized, both quantitatively and qualitatively, by undergraduate students at NCAT. A summary of their work is presented here. These analyses are of utility in helping those new to looking at these data to understand how to interpret them. In particular, we demonstrate differences between effects on light at night and sky brightness due to astronomical cycles, atmospheric phenomena, and artificial lighting. Quantitative characterization of the data includes statistical analyses of parsed segments of the temporal data stream. An attempt is made to relate statistical metrics to specific types of phenomena.
COSMO-SkyMed Spotlight interometry over rural areas: the Slumgullion landslide in Colorado, USA
Milillo, Pietro; Fielding, Eric J.; Schulz, William H.; Delbridge, Brent; Burgmann, Roland
2014-01-01
In the last 7 years, spaceborne synthetic aperture radar (SAR) data with resolution of better than a meter acquired by satellites in spotlight mode offered an unprecedented improvement in SAR interferometry (InSAR). Most attention has been focused on monitoring urban areas and man-made infrastructure exploiting geometric accuracy, stability, and phase fidelity of the spotlight mode. In this paper, we explore the potential application of the COSMO-SkyMed® Spotlight mode to rural areas where decorrelation is substantial and rapidly increases with time. We focus on the rapid repeat times of as short as one day possible with the COSMO-SkyMed® constellation. We further present a qualitative analysis of spotlight interferometry over the Slumgullion landslide in southwest Colorado, which moves at rates of more than 1 cm/day.
SKYMONITOR: A Global Network for Sky Brightness Measurements
NASA Astrophysics Data System (ADS)
Davis, Donald R.; Mckenna, D.; Pulvermacher, R.; Everett, M.
2010-01-01
We are implementing a global network to measure sky brightness at dark-sky critical sites with the goal of creating a multi-decade database. The heart of this project is the Night Sky Brightness Monitor (NSBM), an autonomous 2 channel photometer which measures night sky brightness in the visual wavelengths (Mckenna et al, AAS 2009). Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The NSBM consists of two parts, a remote unit and a base station with an internet connection. Currently these devices use 2.4 Ghz transceivers with a range of 100 meters. The remote unit is battery powered with daytime recharging using a solar panel. Data received by the base unit is transmitted via email protocol to IDA offices in Tucson where it will be collected, archived and made available to the user community via a web interface. Two other versions of the NSBM are under development: one for radio sensitive areas using an optical fiber link and the second that reads data directly to a laptop for sites without internet access. NSBM units are currently undergoing field testing at two observatories. With support from the National Science Foundation, we will construct and install a total of 10 units at astronomical observatories. With additional funding, we will locate additional units at other sites such as National Parks, dark-sky preserves and other sites where dark sky preservation is crucial. We will present the current comparison with the National Park Service sky monitoring camera. We anticipate that the SKYMONITOR network will be functioning by the end of 2010.
Dark Skies are a Universal Resource: IYA Programs on Dark Skies Awareness
NASA Astrophysics Data System (ADS)
Walker, Constance E.; Bueter, C.; Pompea, S. M.; Berglund, K.; Mann, T.; Gay, P.; Crelin, B.; Collins, D.; Sparks, R.
2008-05-01
The loss of a dark night sky as a natural resource is a growing concern. It impacts not only astronomical research, but also health, ecology, safety, economics and energy conservation. Because of its relevance, "Dark Skies” is a theme of the US Node for the International Year of Astronomy (IYA). Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved in a variety of dark skies-related programs. To reach this goal, the ASP session will immerse participants in hands-on, minds-on activities, events and resources on dark skies awareness. These include a planetarium show on DVD, podcasting, social networking, a digital photography contest, The Great Switch Out, Earth Hour, National Dark Skies Week, a traveling exhibit, a 6-minute video tutorial, Dark Skies Teaching Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy Nights, and unaided-eye and digital-meter star counting programs like GLOBE at Night. The ASP "Dark Skies” session is offered to provide IYA dark skies-related programs to a variety of attendees. Participants include professional or amateur astronomers, education and public outreach professionals, science center/museum/planetarium staff and educators who want to lead activities involving dark skies awareness in conjunction with IYA. During the session, each participant will be given a package of educational materials on the various dark skies programs. We will provide the "know-how” and the means for session attendees to become community leaders in promoting these dark skies programs as public events at their home institutions during IYA. Participants will be able to jump-start their education programs through the use of well-developed instructional materials and kits sent later if they commit to leading IYA dark skies activities. For more information about the IYA Dark Skies theme, visit http://astronomy2009.us/darkskies/.
The Solar Ultraviolet Environment at the Ocean.
Mobley, Curtis D; Diffey, Brian L
2018-05-01
Atmospheric and oceanic radiative transfer models were used to compute spectral radiances between 285 and 400 nm onto horizontal and vertical plane surfaces over water. The calculations kept track of the contributions by the sun's direct beam, by diffuse-sky radiance, by radiance reflected from the sea surface and by water-leaving radiance. Clear, hazy and cloudy sky conditions were simulated for a range of solar zenith angles, wind speeds and atmospheric ozone concentrations. The radiances were used to estimate erythemal exposures due to the sun and sky, as well as from radiation reflected by the sea surface and backscattered from the water column. Diffuse-sky irradiance is usually greater than direct-sun irradiance at wavelengths below 330 nm, and reflected and water-leaving irradiance accounts for <20% of the UV exposure on a vertical surface. Total exposure depends strongly on solar zenith angle and azimuth angle relative to the sun. Sea surface roughness affects the UV exposures by only a few percent. For very clear waters and the sun high in the sky, the UV index within the water can be >10 at depths down to two meters and >6 down to 5 m. © 2018 The American Society of Photobiology.
Clear-Sky Surface Solar Radiation During South China Sea Monsoon Experiment
NASA Technical Reports Server (NTRS)
Lin, Po-Hsiung; Chou, Ming-Dah; Ji, Qiang; Tsay, Si-Chee; Einaudi, Franco (Technical Monitor)
2000-01-01
Downward solar fluxes measured at Dungsha coral island (20 deg. 42 min. N, 116 deg. 43 min. E) during the South China Sea Monsoon Experiment (May-June 1998) have been calibrated and compared with radiative transfer calculations for three clear-sky days. Model calculations use water vapor and temperature profiles from radiosound measurements and the aerosol optical thickness derived from sunphotometric radiance measurements at the surface. Results show that the difference between observed and model-calculated downward fluxes is less than 3% of the daily mean. Averaged over the three clear days, the difference reduces to 1%. The downward surface solar flux averaged over the three days is 314 W per square meters from observations and 317 W per square meters from model calculations, This result is consistent with a previous study using TOGA CAORE measurements, which found good agreements between observations and model calculations. This study provides an extra piece of useful information on the modeling of radiative transfer, which fills in the puzzle of the absorption of solar radiation in the atmosphere.
NASA Astrophysics Data System (ADS)
Che, Xiao; Sturmann, Laszlo; Monnier, John D.; ten Brummelaar, Theo A.; Sturmann, Judit; Ridgway, Stephen T.; Ireland, Michael J.; Turner, Nils H.; McAlister, Harold A.
2014-07-01
The CHARA array is an optical interferometer with six 1-meter diameter telescopes, providing baselines from 33 to 331 meters. With sub-milliarcsecond angular resolution, its versatile visible and near infrared combiners offer a unique angle of studying nearby stellar systems by spatially resolving their detailed structures. To improve the sensitivity and scientific throughput, the CHARA array was funded by NSF-ATI in 2011 to install adaptive optics (AO) systems on all six telescopes. The initial grant covers Phase I of the AO systems, which includes on-telescope Wavefront Sensors (WFS) and non-common-path (NCP) error correction. Meanwhile we are seeking funding for Phase II which will add large Deformable Mirrors on telescopes to close the full AO loop. The corrections of NCP error and static aberrations in the optical system beyond the WFS are described in the second paper of this series. This paper describes the design of the common-path optical system and the on-telescope WFS, and shows the on-sky commissioning results.
NASA Astrophysics Data System (ADS)
Ma, Shu-Guo; Esamdin, Ali; Ma, Lu; Niu, Hu-Biao; Fu, Jian-Ning; Zhang, Yu; Liu, Jin-Zhong; Yang, Tao-Zhi; Song, Fang-Fang; Pu, Guang-Xin
2018-04-01
Following the LAMOST Spectroscopic Survey and the Xuyi's Photometric Survey of the Galactic Anti-center, we plan to carry out a time-domain survey of the Galactic Anti-center (TDS-GAC) to study variable stars by using the Nanshan 1-meter telescope. Before the beginning of TDS-GAC, a precursive sky survey (PSS) has been executed. The goal of the PSS is to optimize the observation strategy of TDS-GAC and to detect some strong transient events, as well as to find some short time-scale variable stars of different types. By observing a discontinuous sky area of 15.03 deg2 with the standard Johnson-Cousin-Bessel V filter, 48 variable stars are found and the time series are analyzed. Based on the behaviors of the light curves, 28 eclipsing binary stars, 10 RR Lyraes, 3 periodic pulsating variables of other types have been classified. The rest 7 variables stay unclassified with deficient data. In addition, the observation strategy of TD-GAC is described, and the pipeline of data reduction is tested.
Dark Skies Awareness Programs for the U.S. International Year of Astronomy
NASA Astrophysics Data System (ADS)
Walker, Constance E.; U. S. IYA Dark Skies Working Group
2009-01-01
The loss of a dark night sky as a natural resource is a growing concern. It impacts not only astronomical research, but also our ecology, health, safety, economics and energy conservation. For this reason, "Dark Skies are a Universal Resource” is one of seven primary themes of the U.S. International Year of Astronomy program in 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved in a variety of dark skies-related programs. To reach this goal, activities have been developed that: 1) Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking, Second Life) 2) Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Discovery Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy Nights) 3) Organize an event in the arts (e.g., a photography contest) 4) Involve citizen-scientists in unaided-eye and digital-meter star counting programs, as well as RFI monitoring (e.g., GLOBE at Night and Quiet Skies) and 5) Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security (e.g., the Dark Skies Toolkit, Good Neighbor Lighting, Earth Hour, National Dark Skies Week, traveling exhibits and a 6-minute video tutorial). To deliver these programs, strategic networks have been established with astronomy clubs (ASP's Night Sky Network's astronomy clubs and the Astronomical League), science and nature centers (Astronomy from the Ground Up and the Association of Science and Technology), educational programs (Project ASTRO and GLOBE) and the International Dark-sky Association. The poster will describe the "know-how” and the means for people to become community advocates in promoting Dark Skies programs as public events at their home institutions. For more information, visit http://astronomy2009.us/darkskies/.
Local short-term variability in solar irradiance
NASA Astrophysics Data System (ADS)
Lohmann, Gerald M.; Monahan, Adam H.; Heinemann, Detlev
2016-05-01
Characterizing spatiotemporal irradiance variability is important for the successful grid integration of increasing numbers of photovoltaic (PV) power systems. Using 1 Hz data recorded by as many as 99 pyranometers during the HD(CP)2 Observational Prototype Experiment (HOPE), we analyze field variability of clear-sky index k* (i.e., irradiance normalized to clear-sky conditions) and sub-minute k* increments (i.e., changes over specified intervals of time) for distances between tens of meters and about 10 km. By means of a simple classification scheme based on k* statistics, we identify overcast, clear, and mixed sky conditions, and demonstrate that the last of these is the most potentially problematic in terms of short-term PV power fluctuations. Under mixed conditions, the probability of relatively strong k* increments of ±0.5 is approximately twice as high compared to increment statistics computed without conditioning by sky type. Additionally, spatial autocorrelation structures of k* increment fields differ considerably between sky types. While the profiles for overcast and clear skies mostly resemble the predictions of a simple model published by , this is not the case for mixed conditions. As a proxy for the smoothing effects of distributed PV, we finally show that spatial averaging mitigates variability in k* less effectively than variability in k* increments, for a spatial sensor density of 2 km-2.
Daytime Water Detection Based on Sky Reflections
NASA Technical Reports Server (NTRS)
Rankin, Arturo L.; Matthies, Larry H.; Bellutta, Paolo
2011-01-01
Robust water detection is a critical perception requirement for unmanned ground vehicle (UGV) autonomous navigation. This is particularly true in wide-open areas where water can collect in naturally occurring terrain depressions during periods of heavy precipitation and form large water bodies. One of the properties of water useful for detecting it is that its surface acts as a horizontal mirror at large incidence angles. Water bodies can be indirectly detected by detecting reflections of the sky below the horizon in color imagery. The Jet Propulsion Laboratory (JPL) has implemented a water detector based on sky reflections that geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground and predicts if the ground pixel is water based on color similarity and local terrain features. This software detects water bodies in wide-open areas on cross-country terrain at mid- to far-range using imagery acquired from a forward-looking stereo pair of color cameras mounted on a terrestrial UGV. In three test sequences approaching a pond under a clear, overcast, and cloudy sky, the true positive detection rate was 100% when the UGV was beyond 7 meters of the water's leading edge and the largest false positive detection rate was 0.58%. The sky reflection based water detector has been integrated on an experimental unmanned vehicle and field tested at Ft. Indiantown Gap, PA, USA.
NASA Astrophysics Data System (ADS)
KrzyśCin, Janusz W.
1996-07-01
Monthly means of UV erythemal dose at ground level from the Robertson-Berger (RB) sunburn meter (1976-1992) and the UV-Biometer model 501 MED meter (1993-1994) located at Belsk (21°E, 52°N), Poland, are examined. The monthly means are calculated from all-sky daily means of UV erythemal dose. Ancillary measurements of column ozone (by Dobson spectrophotometer), sunshine duration (by Campbell-Stokes heliograph), and total (sun and sky) radiation (by a pyranometer) are considered to explain variations in the UV data. A multiple regression model is proposed to study trends in the UV data. The model accounts for the UV erythemal dose changes induced by total ozone, sunshine duration (surrogate for cloud cover variations), or total solar radiation (surrogate for combined cloud cover and atmospheric turbidity impact on the UV radiation), trends due to instrument drift, step changes in the data, and serial correlations. A strong relationship between monthly all-sky UV erythemal dose changes and total ozone (and total solar radiation) is found. Calculations show that an erythemal radiative amplification factor (RAF) due to ozone under all skies is close to its clear-sky value (about 1). However, the model gives evidence that the RAF due to ozone is smaller for cloudier (and/or more turbid) atmospheres than long-term reference. Total solar radiation change of 1% is associated with a change of 0.7% in the UV erythemal dose. Modeled trends in the Belsk's UV data, inferred from the model using ozone and total solar radiation as the UV forcing factors, are 2.3% ± 0.4% (1σ) per decade in the period 1976-1994. The large increase in the UV erythemal dose, of the order of 4% per decade due to ozone depletion (-3.2% per decade), is partially compensated by a decreasing tendency (-2.8% per decade) in total solar radiation. The model estimates the trend in the UV data of the order of 0.1% per decade (not statistically significant) due to superposition of the instrument drift and long-term effects related to other UV influencing factors (not parameterized by the model).
Dark Skies are a Universal Resource: Programs Planned for the International Year of Astronomy
NASA Astrophysics Data System (ADS)
Walker, Constance E.; US IYA Dark Skies Working Group
2008-05-01
The dark night sky is a natural resource that is being lost by much of the world's population. This loss is a growing, serious issue that impacts not only astronomical research, but also human health, ecology, safety, economics and energy conservation. One of the themes of the US Node targeted for the International Year of Astronomy (IYA) is "Dark Skies are a Universal Resource". The goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved locally in a variety of dark skies-related events. To reach this goal, activities are being developed that: 1) Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking) 2) Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Teaching Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy Nights) 3) Organize events in the arts (e.g., a photography contest) 4) Involve citizen-scientists in unaided-eye and digital-meter star counting programs (e.g., GLOBE at Night, "How Many Stars?” and the Great World Wide Star Count) and 5) Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security (e.g., The Great Switch Out, Earth Hour, National Dark Skies Week, traveling exhibits and a 6-minute video tutorial on lighting issues). To deliver these programs, strategic networks have been established with the ASP's Night Sky Network's astronomy clubs, Astronomy from the Ground Up's science and nature centers and the Project and Family ASTRO programs, as well as the International Dark-Sky Association, GLOBE and the Astronomical League, among others. The poster presentation will outline the activities being developed, the plans for funding, implementation, marketing and the connections to the global cornerstone IYA project, "Dark Skies Awareness".
More Observations in Schools for Promoting Astronomy and Sky Protection
NASA Astrophysics Data System (ADS)
Ros, Rosa M.
2015-03-01
In astronomy it is important to promote observation and the quality of the sky is essential for a good observation impact. It is important that children have a nice memory of their observations in a non-polluted sky. Using students as agents of change it is possible to promote good practice for sky protection in society.
Small asteroids temporarily captured in the Earth-Moon system
NASA Astrophysics Data System (ADS)
Jedicke, Robert; Bolin, Bryce; Bottke, William F.; Chyba, Monique; Fedorets, Grigori; Granvik, Mikael; Patterson, Geoff
2016-01-01
We present an update on our work on understanding the population of natural objects that are temporarily captured in the Earth-Moon system like the 2-3 meter diameter, 2006 RH120, that was discovered by the Catalina Sky Survey. We use the term `minimoon' to refer to objects that are gravitationally bound to the Earth-Moon system, make at least one revolution around the barycenter in a co-rotating frame relative to the Earth-Sun axis, and are within 3 Earth Hill-sphere radii. There are one or two 1 to 2 meter diameter minimoons in the steady state population at any time, and about a dozen larger than 50 cm diameter. `Drifters' are also bound to the Earth-Moon system but make less than one revolution about the barycenter. The combined population of minimoons and drifters provide a new opportunity for scientific exploration of small asteroids and testing concepts for in-situ resource utilization. These objects provide interesting challenges for rendezvous missions because of their limited lifetime and complicated trajectories. Furthermore, they are difficult to detect because they are small, available for a limited time period, and move quickly across the sky.
Small asteroids temporarily captured in the Earth-Moon system
NASA Astrophysics Data System (ADS)
Jedicke, Robert; Bolin, Bryce; Bottke, William F.; Chyba, Monique; Fedorets, Grigori; Granvik, Mikael; Patterson, Geoff
2015-08-01
We will present an update on our work on understanding the population of natural objects that are temporarily captured in the Earth-Moon system, such as the 2-3 meter diameter 2006 RH120 that was discovered by the Catalina Sky Survey. We use the term 'minimoon' to refer to objects that are gravitationally bound to the Earth-Moon system, make at least one revolution around the barycenter in a co-rotating frame relative to the Earth-Sun axis, and are within 3 Earth Hill-sphere radii. There are one or two 1 to 2 meter diameter minimoons in the steady state population at any time, and about a dozen larger than 50 cm diameter. `Drifters' are also bound to the Earth-Moon system but make less than one revolution about the barycenter. The combined population of minimoons and drifters provide a new opportunity for scientific exploration of small asteroids and testing concepts for in-situ resource utilization. These objects provide interesting challenges for rendezvous missions because of their limited lifetime and complicated trajectories. Furthermore, they are difficult to detect because they are small, available for a limited time period, and move quickly across the sky.
Evaluation of the ride quality of a light twin engine airplane using a ride quality meter
NASA Technical Reports Server (NTRS)
Stewart, Eric C.
1989-01-01
A ride quality meter was used to establish the baseline ride quality of a light twin-engine airplane planned for use as a test bed for an experimental gust alleviation system. The ride quality meter provides estimates of passenger ride discomfort as a function of cabin noise and vibration (acceleration) in five axes (yaw axis omitted). According to the ride quality meter, in smooth air the cabin noise was the dominant source of passenger discomfort, but the total discomfort was approximately the same as that for the smooth-air condition. The researcher's subjective opinion, however, is that the total ride discomfort was much worse in the moderate turbulence than it was in the smooth air. The discrepancy is explained by the lack of measurement of the low-frequency accelerations by the ride quality meter.
Dark Skies Preservation through Responsible Lighting: the IYL2015 Quality Lighting Kit
NASA Astrophysics Data System (ADS)
Walker, Constance E.
2015-01-01
Poor quality lighting not only impedes astronomy research, but creates safety issues, affects human circadian sensitivities, disrupts ecosystems, and wastes more than a few billion dollars/year of energy in the USA alone. The United Nations-sanctioned the International Year of Light in 2015 (IYL2015) is providing an opportunity to increase public awareness of dark skies preservation, quality lighting and energy conservation. The Education and Public Outreach (EPO) group at the National Optical Astronomy Observatory (NOAO) has received a small grant through the International Astronomical Union (IAU) to produce official 'Quality Lighting Teaching Kits' for the IYL2015 cornerstone theme, 'Cosmic Light'. These kits will emphasize the use of proper optical design in achieving quality lighting that promotes both energy efficiency and energy conservation of an endangered natural resource, our dark skies. The concepts and practice of 'quality lighting' will be explored through demonstrations, hands-on/minds-on activities, formative assessment probes, and engineering design projects that explore basic principles of optics and the physics of light. The impact of the kits will be amplified by providing professional development using tutorial videos created at NOAO and conducting question and answer sessions via Google+ Hangouts for the outreach volunteers. The quality lighting education program will leverage NOAO EPO's work in the last ten years on lighting and optics education (e.g., the IAU 'Dark Skies Africa', APS 'Dark Skies Yuma' and 'Hands-On Optics' programs). NOAO's partners are CIE (International Commission on Illumination), IDA (International Dark-Sky Association) and SPIE (International Society for Optics and Photonics), as well as the IAU Office of Astronomy for Development, Galileo Teacher Training Program, Universe Awareness, and Global Hands-on Universe. Their networks will disseminate the program and kits to formal and informal audiences worldwide. The impact sought is a change in knowledge, attitude, and behavior in each community by learning how to light responsibly, improving the quality of life in 'illuminating' ways.
Results from the LCOGT Near-Earth Object Follow-up Network
NASA Astrophysics Data System (ADS)
Greenstreet, Sarah; Lister, Tim; Gomez, Edward; Christensen, Eric; Larson, Steve
2015-11-01
Las Cumbres Observatory Global Telescope Network (LCOGT) has deployed a homogeneous telescope network of nine 1-meter and two 2-meter telescopes to five locations in the northern and southern hemispheres, with plans to extend to twelve 1-meter telescopes at 6 locations. The versitility and design of this network allows for rapid response to target of opportunity events as well as the long-term monitoring of slowly changing astronomical phenomena. The network's global coverage and the apertures of telescopes available make LCOGT ideal for follow-up and characterization of Solar System objects (e.g. asteroids, Kuiper Belt Objects, comets, Near-Earth Objects (NEOs)) and ultimately for the discovery of new objects.LCOGT has completed the first phase of the deployment with the installation and commissioning of the nine 1-meter telescopes at McDonald Observatory (Texas), Cerro Tololo (Chile), SAAO (South Africa) and Siding Spring Observatory (Australia). This is complimented by the two 2-meter telescopes at Haleakala (Hawaii) and Siding Spring Observatory. The telescope network has been fully operational since May 2014, and observations are being executed remotely and robotically. Future expansion to sites in the Canary Islands and Tibet are planned for 2016.The LCOGT near-Earth object group is using the network to confirm newly detected NEO candidates produced by the major sky surveys such as Catalina Sky Survey (CSS), PanSTARRS (PS1) and NEOWISE, with several hundred targets being followed per year. Follow-up astrometry and photometry of radar-targeted objects and those on the Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) or Asteroid Retrieval Mission (ARM) lists are improving orbits, producing light curves and rotation periods, and better characterizing these NEOs. Recent results include the first period determinations for several of the Goldstone-targeted NEOs. In addition, we are in the process of building a NEO portal that will allow professionals, amateurs, and Citizen Scientists to plan, schedule, and analyze NEO imaging and spectroscopy observations and data using the LCOGT Network and to act as a coordination hub for the NEO follow-up efforts.
NASA Astrophysics Data System (ADS)
Walker, C. E.; Pompea, S. M.
2011-12-01
The emphasis in the international citizen-science, star-hunting campaign, GLOBE at Night, is in bringing awareness to the public on issues of light pollution. Light pollution threatens not only observatory sites and our "right to starlight", but can affect energy consumption, wildlife and health. GLOBE at Night has successfully reached a few 100,000 citizen-scientists. What has contributed to its success? Foundational resources are available to facilitate the public's participation in promoting dark skies awareness. The GLOBE at Night website explains clearly the simple-to-participate-in 5 step program and offers background information and interactive games on key concepts. To promote the campaign via popular social media, GLOBE at Night created Facebook and Twitter pages. The program has been expanded to include trainings of the general public, but especially educators in schools, museums and science centers, in unique ways. Education kits for dark skies awareness have been distributed at the training workshops. The kit includes material for a light shielding demonstration, a digital Sky Quality Meter and "Dark Skies Rangers" activities. The activities are on how unshielded light wastes energy, how light pollution affects wildlife and how one can participate in a citizen-science star-hunt like GLOBE at Night. To increase participation in the 2011 campaign, children and adults submitted their sky brightness measurements in real time with smart phones or tablets using the web application at www.globeatnight.org/webapp/. With smart phones and tablets, the location, date and time register automatically. For those without smart mobile devices, user-friendly tools on the GLOBE at Night report page were reconfigured to determine latitude and longitude more easily and accurately. As a proto-type for taking multiple measurements, people in Tucson found it easy to adopt a street and take measurements every mile for the length of the street. The grid of measurements canvassed the town, allowing for comparisons of light levels over time (hours, days, years) or searching for dark sky oases or light polluted areas. The increase to 2 campaigns in 2011 re-enforces these studies. The intent is to offer the program year-round for seasonal studies. The data can also be used to compare with datasets on wildlife, health, and energy consumption. Recently, NOAO and the Arizona Game and Fish Department have started a project with GLOBE at Night data and bat telemetry to examine a dark skies corridor in Tucson where the endangered bats fly. In addition, a 2nd new Web application (www.globeatnight.org/mapapp/) allows for mapping GLOBE at Night data points within a specified distance around a city or an area of choice. The resulting maps are bookmarkable and shareable. The presentation will highlight the education and outreach value of the program's resources and outcomes, lessons learned, successes and pitfalls in communicating awareness with the public and attracting young people to study science.
All Sky Cloud Coverage Monitoring for SONG-China Project
NASA Astrophysics Data System (ADS)
Tian, J. F.; Deng, L. C.; Yan, Z. Z.; Wang, K.; Wu, Y.
2016-05-01
In order to monitor the cloud distributions at Qinghai station, a site selected for SONG (Stellar Observations Network Group)-China node, the design of the proto-type of all sky camera (ASC) applied in Xinglong station is adopted. Both hardware and software improvements have been made in order to be more precise and deliver quantitative measurements. The ARM (Advanced Reduced Instruction Set Computer Machine) MCU (Microcontroller Unit) instead of PC is used to control the upgraded version of ASC. A much higher reliability has been realized in the current scheme. Independent of the positions of the Sun and Moon, the weather conditions are constantly changing, therefore it is difficult to get proper exposure parameters using only the temporal information of the major light sources. A realistic exposure parameters for the ASC can actually be defined using a real-time sky brightness monitor that is also installed at the same site. The night sky brightness value is a very sensitive function of the cloud coverage, and can be accurately measured by the sky quality monitor. We study the correlation between the exposure parameter and night sky brightness value, and give the mathematical relation. The images of the all sky camera are inserted into database directly. All sky quality images are archived in FITS format which can be used for further analysis.
The LCOGT near-Earth-object follow-up network
NASA Astrophysics Data System (ADS)
Lister, T.
2014-07-01
Las Cumbres Observatory Global Telescope (LCOGT) network is a planned homogeneous network that will eventually consist of over 35 telescopes at 6 locations in the northern and southern hemispheres [1]. This network is versatile and designed to respond rapidly to target of opportunity events and also to do long term monitoring of slowly changing astronomical phenomena. The global coverage of the network and the apertures of telescope available make the LCOGT network ideal for follow-up and characterization of a wide range of solar-system objects (e.g. asteroids, Kuiper-belt objects, comets) and in particular near-Earth objects (NEOs). There are 3 classes to the telescope resources: 2-meter aperture, 1-meter aperture and 0.4-meter aperture. We have been operating our two 2-meter telescopes since 2005 and began a specific program of NEO follow-up for the Pan-STARRS survey in October 2010. The combination of all-sky access, large aperture, rapid response, robotic operation and good site conditions allows us to provide time-critical follow-up astrometry and photometry on newly discovered objects and faint objects as they recede from the Earth, allowing the orbital arc to be extended and preventing loss of objects. These telescope resources have greatly increased as LCOGT has completed the first phase of the deployment, designated as ''Version 1.0'', with the installation, commissioning and ongoing operation of nine 1-meter telescopes. These are distributed among four sites with one 1-meter at McDonald Observatory (Texas), three telescopes at Cerro Tololo (Chile), three telescopes at SAAO (South Africa) and the final two telescope at Siding Spring Observatory (Australia). In addition to the 1-meter network, the scheduling and control system for the two 2-meter telescopes have been upgraded and unified with that of the 1-meter network to provide a coherent robotic telescopic network. The telescope network is now operating and observations are being executed remotely and robotically. I am using the LCOGT network to confirm newly detected NEO candidates produced by the major sky surveys such as Catalina Sky Survey (CSS) and Pan-STARRS (PS1) with additional targets coming from the NEOWISE satellite and the Palomar Transient Factory (PTF). Robotic observations of NEOs and other solar-system objects have been routinely carried out for several years on the 2-m and 1-m telescopes, with over 20,000 positional and magnitude measurements reported to the Minor Planet Center (MPC) in the last two years. We have developed software to automatically fetch candidates from Pan-STARRS and the MPC Confirmation Page, compute orbits and ephemerides, plan and schedule observations on the telescopes and retrieve the processed data [2]. The program is being expanded which will allow us to greatly increase the amount of survey discoveries that are followed-up, obtain accurate astrometry and provide important characterization data in the form of colors, lightcurves, rotation rates and spectra for NEOs. An increasing amount of time is being spent to obtain follow-up astrometry and photometry for radar-targeted objects in order to improve the orbits and determine the rotation periods. Priority for follow-up is now given to the fainter and most southern targets on the Confirmation Page, objects that are scheduled for Goldstone/Arecibo radar targeting and those objects which could become potential mission destinations for spacecraft. This will be extended to obtain more light curves of other NEOs which could be Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) or Asteroid Retrieval Mission (ARM) targets. With the increase in time available from the LCOGT 1-meter network and commissioning of low-resolution spectrographs on the 2-meter telescopes for moving objects, this will produce a large advance in capabilities for NEO follow-up and characterization. This will produce an unprecedented network for NEO follow-up, particularly in the Southern Hemisphere where there is currently a shortage of suitable facilities. We will continue to develop our software to take advantage of the increased resources and capabilities of the LCOGT Network.
Photometric Assessment of Night Sky Quality over Chaco Culture National Historical Park
NASA Astrophysics Data System (ADS)
Hung, Li-Wei; Duriscoe, Dan M.; White, Jeremy M.; Meadows, Bob; Anderson, Sharolyn J.
2018-06-01
The US National Park Service (NPS) characterizes night sky conditions over Chaco Culture National Historical Park using measurements in the park and satellite data. The park is located near the geographic center of the San Juan Basin of northwestern New Mexico and the adjacent Four Corners state. In the park, we capture a series of night sky images in V-band using our mobile camera system on nine nights from 2001 to 2016 at four sites. We perform absolute photometric calibration and determine the image placement to obtain multiple 45-million-pixel mosaic images of the entire night sky. We also model the regional night sky conditions in and around the park based on 2016 VIIRS satellite data. The average zenith brightness is 21.5 mag/arcsec2, and the whole sky is only ~16% brighter than the natural conditions. The faintest stars visible to naked eyes have magnitude of approximately 7.0, reaching the sensitivity limit of human eyes. The main impacts to Chaco’s night sky quality are the light domes from Albuquerque, Rio Rancho, Farmington, Bloomfield, Gallup, Santa Fe, Grants, and Crown Point. A few of these light domes exceed the natural brightness of the Milky Way. Additionally, glare sources from oil and gas development sites are visible along the north and east horizons. Overall, the night sky quality at Chaco Culture National Historical Park is very good. The park preserves to a large extent the natural illumination cycles, providing a refuge for crepuscular and nocturnal species. During clear and dark nights, visitors have an opportunity to see the Milky Way from nearly horizon to horizon, complete constellations, and faint astronomical objects and natural sources of light such as the Andromeda Galaxy, zodiacal light, and airglow.
Water Detection Based on Color Variation
NASA Technical Reports Server (NTRS)
Rankin, Arturo L.
2012-01-01
This software has been designed to detect water bodies that are out in the open on cross-country terrain at close range (out to 30 meters), using imagery acquired from a stereo pair of color cameras mounted on a terrestrial, unmanned ground vehicle (UGV). This detector exploits the fact that the color variation across water bodies is generally larger and more uniform than that of other naturally occurring types of terrain, such as soil and vegetation. Non-traversable water bodies, such as large puddles, ponds, and lakes, are detected based on color variation, image intensity variance, image intensity gradient, size, and shape. At ranges beyond 20 meters, water bodies out in the open can be indirectly detected by detecting reflections of the sky below the horizon in color imagery. But at closer range, the color coming out of a water body dominates sky reflections, and the water cue from sky reflections is of marginal use. Since there may be times during UGV autonomous navigation when a water body does not come into a perception system s field of view until it is at close range, the ability to detect water bodies at close range is critical. Factors that influence the perceived color of a water body at close range are the amount and type of sediment in the water, the water s depth, and the angle of incidence to the water body. Developing a single model of the mixture ratio of light reflected off the water surface (to the camera) to light coming out of the water body (to the camera) for all water bodies would be fairly difficult. Instead, this software detects close water bodies based on local terrain features and the natural, uniform change in color that occurs across the surface from the leading edge to the trailing edge.
Inexpensive Meter for Total Solar Radiation
NASA Technical Reports Server (NTRS)
Laue, E. G.
1987-01-01
Pyranometer containing solar cells measures combined intensity of direct light from Sun and diffuse light from sky. Instrument includes polyethylene dome that diffuses entering light so output of light detectors does not vary significantly with changing angle of Sun during day. Not to be calibrated for response of each detector to Sun angle, and sensor outputs not corrected separately before summed and integrated. Aids in deciding on proper time to harvest crops.
Cloud effects on middle ultraviolet global radiation
NASA Technical Reports Server (NTRS)
Borkowski, J.; Chai, A.-T.; Mo, T.; Green, A. E. O.
1977-01-01
An Eppley radiometer and a Robertson-Berger sunburn meter are employed along with an all-sky camera setup to study cloud effects on middle ultraviolet global radiation at the ground level. Semiempirical equations to allow for cloud effects presented in previous work are compared with the experimental data. The study suggests a means of defining eigenvectors of cloud patterns and correlating them with the radiation at the ground level.
Advances in a study of sky quality for astronomical observations in Colombia
NASA Astrophysics Data System (ADS)
González-Díaz, D.; Pinzón, G.
2015-10-01
The aim of this study is to determine the sky quality in Colombia for astronomical observations in the optic. About 10,000 images in infrared (6.7 mu m and 10.7 mu m) were analyzed from the GOES meteorological satellites in three night times taken during a period of five years (2008 to 2014). A novel methodology was followed to determine how clear or covered was the sky in a given image. Meteorological data also were used from the weather stations network of the national meteorological institute, IDEAM. A correlation between threshold temperature and altitude was found for a historical data series of about 30 years. The results of the average percentage of nights with clear skies per year or clear sky fraction (CSF) were validated with the reports on the number of hours of astronomical observation from the logbooks of Llano del Hato Observatory in Merida-Venezuela, obtaining a cumulative percentage difference during the five years less than 10%. Annual cloud covering was computed over the whole country and it was classified the nights as clear or usable based on the definition of a quality factor.
Wetherbee, Gregory A.; Latysh, Natalie E.; Lehmann, Christopher M.B.; Rhodes, Mark F.
2011-01-01
Selected aspects of National Atmospheric Deposition Program / National Trends Network (NADP/NTN) protocols are evaluated in four studies. Meteorological conditions have minor impacts on the error in NADP/NTN sampling. Efficiency of frozen precipitation sample collection is lower than for liquid precipitation samples. Variability of NTN measurements is higher for relatively low-intensity deposition of frozen precipitation than for higher-intensity deposition of liquid precipitation. Urbanization of the landscape surrounding NADP/NTN sites is not affecting trends in wet-deposition chemistry data to a measureable degree. Five NADP siting criteria intended to preserve wet-deposition sample integrity have varying degrees of effectiveness. NADP siting criteria for objects within the 90 degrees cones and trees within the 120 degrees cones projected from the collector bucket to sky are important for protecting sample integrity. Tall vegetation, fences, and other objects located within 5 meters of the collectors are related to the frequency of visible sample contamination, indicating the importance of these factors in NADP siting criteria.
A Satellite Survey of Cloud Cover and Water Vapor in the Southwestern USA and Northern Mexico
NASA Astrophysics Data System (ADS)
Carrasco, E.; Avila, R.; Erasmus, A.; Djorgovski, S. G.; Walker, A. R.; Blum, R.
2017-03-01
Cloud cover and water vapor conditions in the southwestern USA and northern Mexico were surveyed as a preparatory work for the Thirty Meter Telescope (TMT) in situ site testing program. Although the telescope site is already selected, the TMT site testing team decided to make public these results for its usefulness for the community. Using 58 months of meteorological satellite observations between 1993 July and 1999 September, different atmospheric parameters were quantified from data of the 10.7 μm and of 6.7 μm windows. In particular, cloud cover and water vapor conditions were identified in preferred areas. As a result of the aerial analysis, 15 sites of existing and potential telescope were selected, compared, and ranked in terms of their observing quality. The clearest sites are located along the spine of the Baja peninsula and into southern California on mountain peaks above the temperature inversion layer. A steep gradient of cloudiness was observed along the coast where coastal cloud and fog are trapped below the inversion layer. Moving from west to east over the continent, a significant increase in cloudiness was observed. The analysis shows that San Pedro Mártir, San Gorgonio Mountain and San Jacinto Peak have the largest fraction of clear sky conditions (˜74%). The site with the optimal combination of clear skies and low precipitable water vapor is Boundary Peak, Nevada. An approach based in satellite data provided a reliable method for sites comparison.
NASA Astrophysics Data System (ADS)
Kielkopf, John F.; Hart, R.; Carter, B.; Collins, K. A.; Brown, C.; Hay, J.; Hons, A.; Marsden, S.
2014-01-01
The University of Southern Queensland's Mt. Kent Observatory in Queensland, Australia, and the University of Louisville's Moore Observatory in Kentucky, USA, are collaborating in the development of live remote observing for research, student training, and education. With a focus on flexible operation assisted by semi-autonomous controllers, rather than completely robotic data acquisition, the partnership provides interactive hands-on experience to students at all levels, optimized performance based on real-time observations, and flexible scheduling for transient events and targets of opportunity. Two sites on opposites sides of the globe cover the entire sky, and for equatorial regions allow nearly continuous coverage. The facilites include 0.5-m corrected Dall-Kirkham (CDK) telescopes at both sites, a 0.6 m Ritchie-Chretien telescope at Moore, and a new Nasmyth design 0.7-meter CDK at Mt. Kent instrumented for milli-magnitude precision photometry and wide field imaging, with spectrographs under development. We will describe the operational and data acquisition software, recent research results, and how remote access is being made available to students and observers.
The Quality Lighting Teaching Kit: Educating the Public about the Dark Side of IYL2015
NASA Astrophysics Data System (ADS)
Walker, Constance Elaine; Pompea, Stephen M.; Levy, Rebecca
2015-08-01
The UN-sanctioned International Year of Light in 2015 (IYL2015) is providing an opportunity to increase public awareness of dark skies preservation, quality lighting and energy conservation. The Education and Public Outreach (EPO) group at the U.S. National Optical Astronomy Observatory (NOAO) has received a grant through the IAU to produce official “Quality Lighting Teaching Kits” for the IYL2015 cornerstone theme, “Cosmic Light”. These kits will emphasize the use of proper optical design in achieving quality lighting that promotes both energy efficiency and energy conservation of an endangered natural resource: our dark skies. Poor quality lighting not only impedes astronomy research, but creates safety issues, affects human circadian sensitivities, disrupts ecosystems, and wastes billions of dollars/year in energy consumption and carbon emissions.The concepts and practices of “quality lighting” will be explored through problem-based learning (e.g., engineering design), hands-on/minds-on activities, demonstrations, and formative and summative assessment probes. The impact of the kits will be amplified by providing professional development using tutorial videos created at NOAO and conducting question and answer sessions via Google+ Hangouts for program participants. The Quality Lighting Teaching Kit will leverage ten years of work by NOAO’s EPO team in developing programs on lighting and optics education (e.g., the NSF-funded “Hands on Optics”, IAU “Dark Skies Africa” and Arizona Public Service Foundation’s “Dark Skies Yuma” programs).NOAO’s partners are the International Society for Optics and Photonics (SPIE), International Commission on Illumination (CIE), International Dark-Sky Association (IDA), and IAU Office of Astronomy for Development, with sponsorship from the IAU and The Optical Society (OSA). Along with astronomy education centers (NUCLIO and Universe Awareness), the networks will disseminate kits to formal and informal audiences worldwide. The impact sought is a change in knowledge, attitude, and behavior in each community by learning how to light responsibly, improving the quality of life in “illuminating” ways.
Globe at Night: From IYA2009 to the International Year of Light 2015 and Beyond
NASA Astrophysics Data System (ADS)
Walker, Constance Elaine; Pompea, Stephen M.; Sparks, Robert T.
2015-08-01
Citizen-science is a rewardingly inclusive way to bring awareness to the public on important issues like the disappearing starry night sky, its cause and solutions. Citizen-science can also provide meaningful, hands-on “science process” experiences for students. One program that does both is Globe at Night (www.globeatnight.org), an international campaign to raise public awareness of the impact of light pollution by having people measure night-sky brightness and submit observations via a “web app” on any smart device or computer. Additionally, 2 native mobile apps - Loss of the Night for iPhone & Android, and Dark Sky Meter for iPhone - support Globe at Night.Since 2006, more than 125,000 vetted measurements from 115 countries have been reported. For 2015 the campaign is offered as a 10-day observation window each month when the Moon is not up. To facilitate Globe at Night as an international project, the web app and other materials are in many languages. (See www.globeatnight.org/downloads.)Students and the general public can use the data to monitor levels of light pollution around the world, as well as understand light pollution’s effects on energy consumption, plants, wildlife, human health and our ability to enjoy a starry night sky. Projects have compared Globe at Night data with ground-truthing using meters for energy audits as well as with data on birds and bats, population density, satellite data and trends over time. Globe at Night tackles grand challenges and everyday problems. It provides resources for formal and informal educators to engage learners of all ages. It has 9 years of experience in best practices for data management, design, collection, visualization, interpretation, etc. It has externally evaluated its program, workshops, lesson plans and accompanying kit to explore reasons for participation, skills developed, impact of experiences and perceived outcomes. Three recent papers (Birriel et al. 2014; Kyba et al. 2013; 2015) verify the database’s validity for use in scientific research.Globe at Night played a central role in IYA2009 and is now a citizen science campaign for the International Year of Light 2015
DESCQA: Synthetic Sky Catalog Validation Framework
NASA Astrophysics Data System (ADS)
Mao, Yao-Yuan; Uram, Thomas D.; Zhou, Rongpu; Kovacs, Eve; Ricker, Paul M.; Kalmbach, J. Bryce; Padilla, Nelson; Lanusse, François; Zu, Ying; Tenneti, Ananth; Vikraman, Vinu; DeRose, Joseph
2018-04-01
The DESCQA framework provides rigorous validation protocols for assessing the quality of high-quality simulated sky catalogs in a straightforward and comprehensive way. DESCQA enables the inspection, validation, and comparison of an inhomogeneous set of synthetic catalogs via the provision of a common interface within an automated framework. An interactive web interface is also available at portal.nersc.gov/project/lsst/descqa.
BlueSky Cloud - rapid infrastructure capacity using Amazon's Cloud for wildfire emergency response
NASA Astrophysics Data System (ADS)
Haderman, M.; Larkin, N. K.; Beach, M.; Cavallaro, A. M.; Stilley, J. C.; DeWinter, J. L.; Craig, K. J.; Raffuse, S. M.
2013-12-01
During peak fire season in the United States, many large wildfires often burn simultaneously across the country. Smoke from these fires can produce air quality emergencies. It is vital that incident commanders, air quality agencies, and public health officials have smoke impact information at their fingertips for evaluating where fires and smoke are and where the smoke will go next. To address the need for this kind of information, the U.S. Forest Service AirFire Team created the BlueSky Framework, a modeling system that predicts concentrations of particle pollution from wildfires. During emergency response, decision makers use BlueSky predictions to make public outreach and evacuation decisions. The models used in BlueSky predictions are computationally intensive, and the peak fire season requires significantly more computer resources than off-peak times. Purchasing enough hardware to run the number of BlueSky Framework runs that are needed during fire season is expensive and leaves idle servers running the majority of the year. The AirFire Team and STI developed BlueSky Cloud to take advantage of Amazon's virtual servers hosted in the cloud. With BlueSky Cloud, as demand increases and decreases, servers can be easily spun up and spun down at a minimal cost. Moving standard BlueSky Framework runs into the Amazon Cloud made it possible for the AirFire Team to rapidly increase the number of BlueSky Framework instances that could be run simultaneously without the costs associated with purchasing and managing servers. In this presentation, we provide an overview of the features of BlueSky Cloud, describe how the system uses Amazon Cloud, and discuss the costs and benefits of moving from privately hosted servers to a cloud-based infrastructure.
NASA Astrophysics Data System (ADS)
Fersch, Alisa; Walker, C.
2012-01-01
Light pollution is a well-known problem for astronomers. It is also gaining attention as an ecological issue. The federally endangered Lesser Long-Nosed Bat (Leptonycteris cursoae) resides for part of the year near Tucson, Arizona. It is possible that this species tends to avoid light. Excess artificial light would therefore interfere with the bats’ flight patterns and foraging habits. In order to test this hypothesis, we quantified night sky brightness with data from the citizen-science campaign GLOBE at Night. Using direct measurements taken with a Sky Quality Meter (SQM), we created a contour map of the artificial night sky brightness around Tucson. When this map is compared to the approximate flight paths of the lesser long-nosed bat, we can see that the bats do appear to be avoiding the brightest area of Tucson. We also used logistic regression to analyze what combination of ecological variables (ecoregion, vegetation cover, landform and light) best describes the observed spatial distribution of lesser long-nosed bats. Of the models that were tested, light alone was not a good predictor of the bat presence or absence. However, light in addition to vegetation and ecoregion was the best model. This information can be useful for making decisions about lighting codes in areas of the city that the bats tend to traverse. The contour map of light pollution in Tucson will be useful for both future astronomy and ecology studies and can also be used for public outreach about light pollution. Fersch was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program and the Department of Defense ASSURE program through Scientific Program Order No. 13 (AST-0754223) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.
Sky Survey Detected This Small Asteroid
2017-06-30
This frame from a sequence of four images taken during one night of observation by NASA's Catalina Sky Survey near Tucson, Arizona, shows the speck of light that moves relative to the background stars is a small asteroid that was, at the time, about as far away as the moon. This asteroid, named 2014 AA, was the second one ever detected on course to impact Earth. It was estimated to be about 6 to 10 feet (2 to 3 meters) in diameter, and it harmlessly hit Earth's atmosphere over the Atlantic Ocean about 20 hours after its discovery in these images. The images were taken Jan. 1, 2014. They provide an example of how asteroids are typically discovered by detection of their motion relative to background stars. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21712
NAGAMINE, Kanetada
2016-01-01
Cosmic-ray muons (CRM) arriving from the sky on the surface of the earth are now known to be used as radiography purposes to explore the inner-structure of large-scale objects and landforms, ranging in thickness from meter to kilometers scale, such as volcanic mountains, blast furnaces, nuclear reactors etc. At the same time, by using muons produced by compact accelerators (CAM), advanced radiography can be realized for objects with a thickness in the sub-millimeter to meter range, with additional exploration capability such as element identification and bio-chemical analysis. In the present report, principles, methods and specific research examples of CRM transmission radiography are summarized after which, principles, methods and perspective views of the future CAM radiography are described. PMID:27725469
Nagamine, Kanetada
2016-01-01
Cosmic-ray muons (CRM) arriving from the sky on the surface of the earth are now known to be used as radiography purposes to explore the inner-structure of large-scale objects and landforms, ranging in thickness from meter to kilometers scale, such as volcanic mountains, blast furnaces, nuclear reactors etc. At the same time, by using muons produced by compact accelerators (CAM), advanced radiography can be realized for objects with a thickness in the sub-millimeter to meter range, with additional exploration capability such as element identification and bio-chemical analysis. In the present report, principles, methods and specific research examples of CRM transmission radiography are summarized after which, principles, methods and perspective views of the future CAM radiography are described.
Co-Phasing the Large Binocular Telescope:. [Status and Performance of LBTI-PHASECam
NASA Technical Reports Server (NTRS)
Defrere, D.; Hinz, P.; Downey, E.; Ashby, D.; Bailey, V.; Brusa, G.; Christou, J.; Danchi, W. C.; Grenz, P.; Hill, J. M.;
2014-01-01
The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast, and high-resolution infrared imaging (1.5-13 micrometer). PHASECam is LBTI's near-infrared camera used to measure tip-tilt and phase variations between the two AO-corrected apertures and provide high-angular resolution observations. We report on the status of the system and describe its on-sky performance measured during the first semester of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope and the light-gathering power of single 11.8-meter mirror, the co-phased LBT can be considered to be a forerunner of the next-generation extremely large telescopes (ELT).
NASA Astrophysics Data System (ADS)
Walker, Constance E.
2009-05-01
The arc of the Milky Way seen from a truly dark location is part of our planet's natural heritage. More than one fifth of the world population, two thirds of the United States population and one half of the European Union population have already lost naked eye visibility of the Milky Way. This loss, caused by light pollution, is a serious and growing issue that impacts astronomical research, the economy, ecology, energy conservation, human health, public safety and our shared ability to see the night sky. For this reason, "Dark Skies” is a cornerstone project of the International Year of Astronomy. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs that: 1. Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking on Facebook and MySpace, a Second Life presence) 2. Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Discovery Sites, Nights in the (National) Parks, Sidewalk Astronomy) 3. Organize events in the arts (e.g., a photography contest) 4. Involve citizen-scientists in naked-eye and digital-meter star hunting programs (e.g., GLOBE at Night, "How Many Stars?", the Great World Wide Star Count and the radio frequency interference equivalent: "Quiet Skies") and 5. Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy (e.g., The Starlight Initiative, World Night in Defense of Starlight, International Dark Sky Week, International Dark-Sky Communities, Earth Hour, The Great Switch Out, a traveling exhibit, downloadable posters and brochures). The presentation will provide an update, describe how people can become involved and take a look ahead at the program's sustainability. For more information, visit www.darkskiesawareness.org.
Dark Skies Awareness Programs for the International Year of Astronomy
NASA Astrophysics Data System (ADS)
Walker, Constance E.; US IYA Dark Skies Working Group
2009-05-01
The arc of the Milky Way seen from a truly dark location is part of our planet's cultural and natural heritage. More than 1/5 of the world population, 2/3 of the United States population and 1/2 of the European Union population have already lost naked-eye visibility of the Milky Way. This loss, caused by light pollution, is a serious and growing issue that impacts astronomical research, the economy, ecology, energy conservation, human health, public safety and our shared ability to see the night sky. For this reason, "Dark Skies” is a cornerstone project of the International Year of Astronomy. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs that: 1) Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking on Facebook and MySpace, a Second Life presence) 2) Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Discovery Sites, Nights in the (National) Parks, Sidewalk Astronomy) 3) Organize events in the arts (e.g., a photography contest) 4) Involve citizen-scientists in naked-eye and digital-meter star hunting programs (e.g., GLOBE at Night, "How Many Stars?", the Great World Wide Star Count and the radio frequency interference equivalent: "Quiet Skies") and 5) Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy (e.g., The Starlight Initiative, World Night in Defense of Starlight, International Dark Sky Week, International Dark-Sky Communities, Earth Hour, The Great Switch Out, a traveling exhibit, downloadable posters and brochures). The poster will provide an update, describe how people can continue to participate, and take a look ahead at the program's sustainability. For more information, visit www.darkskiesawareness.org.
Can You See the Stars? Citizen-Science Programs to Measure Night Sky Brightness
NASA Astrophysics Data System (ADS)
Walker, Constance E.
2009-05-01
For the IYA2009 Dark Skies Awareness Cornerstone Project, partners in dark-sky, astronomy and environmental education are promoting three citizen-scientist programs that measure light pollution at local levels worldwide. These programs take the form of "star hunts", providing people with fun and direct ways to acquire heightened awareness about light pollution through first-hand observations of the night sky. Together the programs are spanning the entire IYA, namely: GLOBE at Night in March, Great World Wide Star Count in October, and How Many Stars during the rest of the year. Citizen-scientists - students, educators, amateur astronomers and the general public - measure the darkness of their local skies and contribute observations online to a world map. Anyone anywhere anytime can look within particular constellations for the faintest stars and match them to one of seven star maps. For more precise measurements, digital sky-brightness meters can be used. Measurements, along with the measurement location, time, and date, are submitted online, and within a few days to weeks a world map showing results is available. These measurements can be compared with data from previous years, as well as with satellite data, population densities, and electrical power-usage maps. Measurements are available online via Google Earth or other tools and as downloadable datasets. Data from multiple locations in one city or region are especially interesting, and can be used as the basis of a class project or science fair experiment, or even to inform the development of public policy. In the last few years these programs successfully conducted campaigns in which more than 35,000 observations were submitted from over 100 countries. The presentation will provide an update, describe how people can become involved and take a look ahead at the program's sustainability. For further information about these and other Dark Skies Awareness programs, please visit www.darkskiesawareness.org.
A Comprehensive Approach to Dark Skies Research and Education at NOAO
NASA Astrophysics Data System (ADS)
Walker, Constance E.; Pompea, S. M.; Sparks, R. T.
2013-01-01
NOAO and its Education and Public Outreach group play an important role locally, nationally, and internationally in raising dark skies awareness. For the past 3 years NOAO has co-hosted the international “Earth and Sky” photo contest. In 2012 there were over 600 entries contributed within 3 weeks. NOAO also created a series of audio podcasts based on serial-type skits featuring a caped dark-skies hero who typically “saves the night” by mitigating upward directed lights with shields, thereby saving sea turtles, minimizing health effects, conserving energy, or keeping the public safe. To help understand the effects of light pollution, a citizen-science campaign called GLOBE at Night was started seven years ago. The worldwide campaign involves the public in recording night sky brightness data by matching the view of a constellation like Orion with maps of progressively fainter stars. Every year, NOAO adds more opportunities for participation: more campaigns during the year, Web applications for smart phones, objective measurements with sky brightness meters, and a GLOBE at Night Facebook page. Campaigns will run roughly the first 10 days of January through May in 2013. The EPO group created “Dark Skies Rangers”, a suite of well-tested and evaluated hands-on, minds-on activities that have children building star-brightness “readers,” creating glow-in-the-dark tracings to visualize constellations, and role-playing confused sea turtles. They also created a model city with shielded lights to stop upward light, examine different kinds of bulbs for energy efficiency, and perform an outdoor lighting audit of their school or neighborhood to determine ways to save energy. In the REU program at NOAO North, the undergraduate students have been doing research over the last 3 summers on effect of light pollution on endangered bats and characterizing the behavior of sky brightness over time across Tucson and on nearby astronomical mountaintops. For more information, come to our talk.
The Citizen-Scientist as Data Collector: GLOBE at Night, Part 2
NASA Astrophysics Data System (ADS)
Walker, C. E.; Pompea, S. M.; Ward, D.; Henderson, S.; Meymaris, K.; Gallagher, S.; Salisbury, D.
2006-12-01
An innovative program to realize light pollution education on two continents via Internet 2-based videoconferencing was begun 4 years ago by the National Optical Astronomy Observatory. Bilingual science teachers and their students in Arizona and Chile recorded the brightness of the night sky by matching its appearance toward the constellation Orion with one of 6 stellar maps of limiting magnitude. Students from both hemispheres would report their findings via videoconferences. In the last year the program has evolved in collaboration with UCAR and other partners into an international, user-friendly, web-based science event open to anyone in the world, known as GLOBE at Night. GLOBE at Night uses the same design to observe and record the visible stars toward Orion, as a means of measuring light pollution in a given location. The inaugural event occurred over 11 nights last March, when 18,000 citizen- scientists made over 4,500 observations from 96 countries. Analysis of the GLOBE at Night data set found that the brighter skies corresponded to areas with higher population density, and that most observations were taken in a location with some light pollution. The data also tended to confirm that satellite data is reliable in assessing light pollution. This session will describe our program to incorporate more technology into the GLOBE at Night program. Citizen-scientists will use sky quality meters (visible light photometers), calibrated digital photography, and GPS as a means to measure and map more accurately the brightness of the sky at selected urban and rural sites. This extension of the program is designed to aid further in teaching about the impact of artificial lighting on local environments and the ongoing loss of a dark night sky as a natural resource. We will also describe how detailed maps of selected urban areas can be used to assess lighting design, safety considerations and energy usage. Given the widespread interest in the inaugural GLOBE at Night event, the GLOBE at Night team is eager to offer it again from March 8-21, 2007. For more information, see www.globe.gov/GaN or contact globeatnight@globe.gov or outreach@noao.edu. GLOBE at Night is a collaboration between The GLOBE Program, the National Optical Astronomy Observatory (NOAO), Centro de Apoyo a la Didactica de la Astronomia (CADIAS), Windows to the Universe, and Environmental Systems Research Institute, Inc. (ESRI). NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.
VizieR Online Data Catalog: Northern Sky Variability Survey (Wozniak+, 2004)
NASA Astrophysics Data System (ADS)
Wozniak, P. R.; Vestrand, W. T.; Akerlof, C. W.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Kehoe, R.; Kinemuchi, K.; Lee, B. C.; Marshall, S.; McGowan, K. E.; McKay, T. A.; Rykoff, E. S.; Smith, D. A.; Szymanski, J.; Wren, J.
2004-11-01
The Northern Sky Variability Survey (NSVS) is a temporal record of the sky over the optical magnitude range from 8 to 15.5. It was conducted in the course of the first-generation Robotic Optical Transient Search Experiment (ROTSE-I) using a robotic system of four comounted unfiltered telephoto lenses equipped with CCD cameras. The survey was conducted from Los Alamos, New Mexico, and primarily covers the entire northern sky. Some data in southern fields between declinations 0{deg} and -38{deg} are also available, although with fewer epochs and noticeably lesser quality. The NSVS contains light curves for approximately 14 million objects. With a 1-yr baseline and typically 100-500 measurements per object, the NSVS is the most extensive record of stellar variability across the bright sky available today. In a median field, bright unsaturated stars attain a point-to-point photometric scatter of ~0.02mag and position errors within 2. At Galactic latitudes |b|<20{deg}, the data quality is limited by severe blending due to the ~14" pixel size. We present basic characteristics of the data set and describe data collection, analysis, and distribution. All NSVS photometric measurements are available for on-line public access from the Sky Database for Objects in Time-Domain (SkyDOT) at Los Alamos National Laboratory. Copies of the full survey photometry may also be requested on tape. (7 data files).
SPECS: The Kilometer-baseline Far-IR Interferometer in NASA’s Space Science Roadmap
2004-01-01
planetary debris disks – are detectable with cryogenically cooled telescopes having total light collecting areas in the tens of square meters. If this...of the Hubble Space Telescope. At such resolution galaxies at high redshift, protostars, and nascent planetary systems will be resolved, and...protogalaxies, the nearest star forming regions, and all but a small handful of debris disks subtend sub- arcsecond angles in the sky. To build a single
2008-09-01
heading north from the southern end point, and then returning south from the northern end point. 2) A metallic pin-flag is placed over the midpoint...test involves traverses across a known point located away from buried UXO or other metallic debris. A 5-meter- length of line is walked in eight...ferrous and nonferrous anomalies. Due to limitations of the magnetometer, the nonferrous items cannot be detected. Therefore, the ROC curves
Water Detection Based on Sky Reflections
NASA Technical Reports Server (NTRS)
Rankin, Arturo L.; Matthies, Larry H.
2010-01-01
This software has been designed to detect water bodies that are out in the open on cross-country terrain at mid- to far-range (approximately 20 100 meters), using imagery acquired from a stereo pair of color cameras mounted on a terrestrial, unmanned ground vehicle (UGV). Non-traversable water bodies, such as large puddles, ponds, and lakes, are indirectly detected by detecting reflections of the sky below the horizon in color imagery. The appearance of water bodies in color imagery largely depends on the ratio of light reflected off the water surface to the light coming out of the water body. When a water body is far away, the angle of incidence is large, and the light reflected off the water surface dominates. We have exploited this behavior to detect water bodies out in the open at mid- to far-range. When a water body is detected at far range, a UGV s path planner can begin to look for alternate routes to the goal position sooner, rather than later. As a result, detecting water hazards at far range generally reduces the time required to reach a goal position during autonomous navigation. This software implements a new water detector based on sky reflections that geometrically locates the exact pixel in the sky that is reflecting on a candidate water pixel on the ground, and predicts if the ground pixel is water based on color similarity and local terrain features
Evaluation of the night sky quality at El Leoncito and LEO++ in Argentina
NASA Astrophysics Data System (ADS)
Aubé, Martin; García, Beatriz; Fortin, Nicolas; Turcotte, Sara; Mancilla, Alexis; Maya, Javier
2015-08-01
Light pollution is a growing concern at many levels, but especially for the astronomical community. Artificial lighting veil celestial objects and disturbs the measurement of night time atmospheric phenomena. This is what motivates our sky brightness measurement experiment in Argentina. Our goal was to determine the quality of two Argentinian observation sites: LEO++ and El Leoncito. Both sites were candidates to host the Cherenkov Telescope Array (CTA). This project consists of an arrangement of many telescopes that can measure high-energy gamma ray emissions via their Cherenkov radiation produced when entering the earth's atmosphere. Even if the two argentinian sites has been excluded from the final CTA site competition, they are still of great interest for other astronomical projects. Especially the El Leoncito site which already hots the CASLEO astronomical complex. In this presentation, we describe the measurement methods used to determine the sky quality. We compared our results with different renowned astronomical sites (Kitt Peak, Arizona, USA, and Mont-Mégantic, Canada). Amongst our results, we found that LEO++ is a high quality site, however there are a lot of aerosols that can interfere with the measurements. El Leoncito shows very low sky brightness levels, which are optimal for low light level detection.
NASA SETI microwave observing project: Sky Survey element
NASA Technical Reports Server (NTRS)
Klein, M. J.
1991-01-01
The SETI Sky Survey Observing Program is one of two complimentary strategies that NASA plans to use in its microwave Search for Extraterrestrial Intelligence (SETI). The primary objective of the sky survey is to search the entire sky over the frequency range of 1.0 to 10.0 GHz for evidence of narrow band signals of extraterrestrial intelligent origin. Frequency resolutions of 30 Hz or narrower will be used across the entire band. Spectrum analyzers with upwards of ten million channels are required to keep the survey time approximately 6 years. Data rates in excess of 10 megabits per second will be generated in the data taking process. Sophisticated data processing techniques will be required to determine the ever changing receiver baselines, and to detect and archive potential SETI signals. Existing radio telescopes, including several of NASA's Deep Space Network (DSN) 34 meter antennas located at Goldstone, CA and Tidbinbilla, Australia will be used for the observations. The JPL has the primary responsibility to develop and carry out the sky survey. In order to lay the foundation for the full scale SETI Sky Survey, a prototype system is being developed at the JPL. The system will be installed at the new 34-m high efficiency antenna at the Deep Space Station (DSS) 13 research and development station, Goldstone, CA, where it will be used to initiate the observational phase of the NASA SETI Sky Survey. It is anticipated that the early observations will be useful to test signal detection algorithms, scan strategies, and radio frequency interference rejection schemes. The SETI specific elements of the prototype system are: (1) the Wide Band Spectrum Analyzer (WBSA); a 2-million channel fast Fourier transformation (FFT) spectrum analyzer which covers an instantaneous bandpass of 40 MHz; (2) the signal detection processor; and (3) the SETI Sky Survey Manager, a network-based C-language environment that provides observatory control, performs data acquisition and analysis algorithms. A high level description of the prototype hardware and software systems will be given and the current status of the system development will be reported.
Quantification of Plume-Soil Interaction and Excavation Due to the Sky Crane Descent Stage
NASA Technical Reports Server (NTRS)
Vizcaino, Jeffrey; Mehta, Manish
2015-01-01
The quantification of the particulate erosion that occurs as a result of a rocket exhaust plume impinging on soil during extraterrestrial landings is critical for future robotic and human lander mission design. The aerodynamic environment that results from the reflected plumes results in dust lifting, site alteration and saltation, all of which create a potentially erosive and contaminant heavy environment for the lander vehicle and any surrounding structures. The Mars Science Lab (MSL), weighing nearly one metric ton, required higher levels of thrust from its retro propulsive systems and an entirely new descent system to minimize these effects. In this work we seek to quantify plume soil interaction and its resultant soil erosion caused by the MSL's Sky Crane descent stage engines by performing three dimensional digital terrain and elevation mapping of the Curiosity rover's landing site. Analysis of plume soil interaction altitude and time was performed by detailed examination of the Mars Descent Imager (MARDI) still frames and reconstructed inertial measurement unit (IMU) sensor data. Results show initial plume soil interaction from the Sky Crane's eight engines began at ground elevations greater than 60 meters and more than 25 seconds before the rovers' touchdown event. During this time, viscous shear erosion (VSE) was dominant typically resulting in dusting of the surface with flow propagating nearly parallel to the surface. As the vehicle descended and decreased to four powered engines plume-plume and plume soil interaction increased the overall erosion rate at the surface. Visibility was greatly reduced at a height of roughly 20 meters above the surface and fell to zero ground visibility shortly after. The deployment phase of the Sky Crane descent stage hovering at nearly six meters above the surface showed the greatest amount of erosion with several large particles of soil being kicked up, recirculated, and impacting the bottom of the rover chassis. Image data obtained from MSL's navigation camera (NAVCAM) pairs on Sols 002, 003, and 016 were used to virtually recreate local surface topography and features around the rover by means of stereoscopic depth mapping. Images taken simultaneously by the left and right navigation cameras located on the rover's mast assembly spaced 42 centimeters were used to generate a three dimensional depth map from flat, two dimensional images of the same feature at slightly different angles. Image calibration with physical hardware on the rover and known terrain features were used to provide scaling information that accurately sizes features and regions of interest within the images. Digital terrain mapping analysis performed in this work describe the crater geometry (shape, radius, and depth), eroded volume, volumetric erosion rate, and estimated mass erosion rate of the Hepburn, Sleepy Dragon, Burnside, and Goulburn craters. Crater depths ranged from five to ten centimeters deep influencing an area as wide as two meters in some cases. The craters formed were highly asymmetrical and generally oblong primarily due to the underlying bedrock formations underneath the surface. Comparison with ground tests performed at the NASA AMES Planetary Aeolian Laboratory (PAL) by Mehta showed good agreement with volumetric erosion rates and crater sizes of large particle soil simulants, providing validation to Earth based ground tests of Martian regolith.
All-Sky Census of Variable Stars from the ATLAS Survey
NASA Astrophysics Data System (ADS)
Heinze, Aren Nathaniel; Tonry, John; Denneau, Larry; Stalder, Brian
2018-01-01
The Asteroid Terrestrial-Impact Last Alert Survey uses two custom-built 0.5 meter telescopes to scan the whole accessible sky down to magnitude 19.5 every two nights, with a cadence optimized to detect small asteroids on their 'final plunge' toward impact with Earth. This cadence is also well suited to the detection of variable stars with a huge range of periods and properties, while ATLAS' use of two filters provides additional scientific depth. From the first two years of ATLAS data we have constructed a catalog of several hundred thousand variable objects with periods from one hour to hundreds of days. These include RR Lyrae stars, Cepheids, eclipsing binaries, spotted stars, ellipsoidal variables, Miras; and other objects both regular and irregular. We describe the construction of this catalog, including our multi-step confirmation process for genuine variables; some big-picture scientific conclusions; and prospects for more detailed results.
NASA Astrophysics Data System (ADS)
Viotti, Roberto F.; La Padula, Cesare D.; Vignato, Agostino; Lemaitre, Gerard R.; Montiel, Pierre; Dohlen, Kjetil
2002-12-01
A concept based on a two-mirror, three-reflection telescope has been investigated. Its anastigmatism and flat fielded properties, the compactness and optical performances over 2-2.5 arc deg field of view, make this optical system of high interest for the development of much larger telescopes than with Schmidt designs. The 2MTRT concept is a potential candidate for sky surveys with 2-3 meter class telescopes and particularily well adapted for UV space surveys. Preliminary developments have been carried out with the construction of a 30-cm prototype on Amoretti's design, providing encouraging results. At present, a 45-cm 2MTRT prototype has been realized for ground based sky survey of NEOs, based on active optics (MINITRUST), in order to overcome the difficulty of obtaining three aspherical surfaces. The primary and tertiary lie on the same double vase substrate, and have a rest profile. The hyperbolization is carried out in situ by air depressure. The secondary, in a tulip form substrate, has been hyperbolized by elastic relaxation. The project is planned for operation in 2003.
Kinematics of the Diffuse Ionized Gas Disk of Andromeda
NASA Astrophysics Data System (ADS)
Thelen, Alexander; Howley, K.; Guhathakurta, P.; Dorman, C.; SPLASH Collaboration
2012-01-01
This research focuses on the flattened rotating diffuse ionized gas (DIG) disk of the Andromeda Galaxy (M31). For this we use spectra from 25 multislit masks obtained by the SPLASH collaboration using the DEIMOS spectrograph on the Keck-II 10-meter telescope. Each mask contains 200 slits covering the region around M32 (S of the center of M31), the major axis of M31, and the SE minor axis. DIG emission was serendipitously detected in the background sky of these slits. By creating a normalized "sky spectrum” to remove various other sources of emission (such as night sky lines) in the background of these slits, we have examined the rotation of the DIG disk using individual line-of-sight velocity measurements of Hα, [NII] and [SII] emission. his emission is probably the result of newly formed stars ionizing the gas in the disk. The measured IG rotation will be compared to the rotation of M31's stellar disk and HI gas disk, as well as models of an infinitely thin rotating disk, to better understand the relationship between the components of the galactic disk and its differential rotation. We wish to acknowledge the NSF for funding on this project.
2015-07-02
This new composite image of stellar cluster NGC 1333 combines X-rays from NASA's Chandra X-ray Observatory (pink); infrared data from NASA's Spitzer Space Telescope (red); and optical data from the Digitized Sky Survey and the National Optical Astronomical Observatories' Mayall 4-meter telescope on Kitt Peak near Tucson, Arizona. The Chandra data reveal 95 young stars glowing in X-ray light, 41 of which had not been seen previously using Spitzer because they lacked infrared emission from a surrounding disk. http://photojournal.jpl.nasa.gov/catalog/PIA19347
An overview of LIGO and Virgo -- status and plans
NASA Astrophysics Data System (ADS)
Miller, John
2014-06-01
Interferometric gravitational-wave detectors, the most sensitive position meters ever operated, aim to detect the motion of massive bodies throughout the universe by pushing precision measurement to the standard quantum limit and beyond. A global network of these detectors is currently under construction, promising unprecedented sensitivity and the ability to determine the sky position of any detected signals. I will describe the current status and expected performance of this network with a focus on limiting noise sources and the techniques currently being developed to combat them.
bHROS: A New High-Resolution Spectrograph Available on Gemini South
NASA Astrophysics Data System (ADS)
Margheim, S. J.; Gemini bHROS Team
2005-12-01
The Gemini bench-mounted High-Resolution Spectrograph (bHROS) is available for science programs beginning in 2006A. bHROS is the highest resolution (R=150,000) optical echelle spectrograph optimized for use on an 8-meter telescope. bHROS is fiber-fed via GMOS-S from the Gemini South focal plane and is available in both a dual-fiber Object/Sky mode and a single (larger) Object-only mode. Instrument characteristics and sample data taken during commissioning will be presented.
Northern Sky Variability Survey: Public Data Release
NASA Astrophysics Data System (ADS)
Woźniak, P. R.; Vestrand, W. T.; Akerlof, C. W.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Kehoe, R.; Kinemuchi, K.; Lee, B. C.; Marshall, S.; McGowan, K. E.; McKay, T. A.; Rykoff, E. S.; Smith, D. A.; Szymanski, J.; Wren, J.
2004-04-01
The Northern Sky Variability Survey (NSVS) is a temporal record of the sky over the optical magnitude range from 8 to 15.5. It was conducted in the course of the first-generation Robotic Optical Transient Search Experiment (ROTSE-I) using a robotic system of four comounted unfiltered telephoto lenses equipped with CCD cameras. The survey was conducted from Los Alamos, New Mexico, and primarily covers the entire northern sky. Some data in southern fields between declinations 0° and -38° are also available, although with fewer epochs and noticeably lesser quality. The NSVS contains light curves for approximately 14 million objects. With a 1 yr baseline and typically 100-500 measurements per object, the NSVS is the most extensive record of stellar variability across the bright sky available today. In a median field, bright unsaturated stars attain a point-to-point photometric scatter of ~0.02 mag and position errors within 2". At Galactic latitudes |b|<20deg, the data quality is limited by severe blending due to the ~14" pixel size. We present basic characteristics of the data set and describe data collection, analysis, and distribution. All NSVS photometric measurements are available for on-line public access from the Sky Database for Objects in Time-Domain (SkyDOT) at Los Alamos National Laboratory. Copies of the full survey photometry may also be requested on tape. Based on observations obtained with the ROTSE-I robotic telescope, which was operated at Los Alamos National Laboratory.
Wunderle, Kevin A; Rakowski, Joseph T; Dong, Frank F
2016-05-08
The first goal of this study was to investigate the accuracy of the displayed reference plane air kerma (Ka,r) or air kerma-area product (Pk,a) over a broad spectrum of X-ray beam qualities on clinically used interventional fluoroscopes incorporating air kerma-area product meters (KAP meters) to measure X-ray output. The second goal was to investigate the accuracy of a correction coefficient (CC) determined at a single beam quality and applied to the measured Ka,r over a broad spectrum of beam qualities. Eleven state-of-the-art interventional fluoroscopes were evaluated, consisting of eight Siemens Artis zee and Artis Q systems and three Philips Allura FD systems. A separate calibrated 60 cc ionization chamber (external chamber) was used to determine the accuracy of the KAP meter over a broad range of clinically used beam qualities. For typical adult beam qualities, applying a single CC deter-mined at 100 kVp with copper (Cu) in the beam resulted in a deviation of < 5% due to beam quality variation. This result indicates that applying a CC determined using The American Association of Physicists in Medicine Task Group 190 protocol or a similar protocol provides very good accuracy as compared to the allowed ± 35% deviation of the KAP meter in this limited beam quality range. For interventional fluoroscopes dedicated to or routinely used to perform pediatric interventions, using a CC established with a low kVp (~ 55-60 kVp) and large amount of Cu filtration (~ 0.6-0.9 mm) may result in greater accuracy as compared to using the 100 kVp values. KAP meter responses indicate that fluoroscope vendors are likely normalizing or otherwise influencing the KAP meter output data. Although this may provide improved accuracy in some instances, there is the potential for large discrete errors to occur, and these errors may be difficult to identify.
Reconstruction of Sky Illumination Domes from Ground-Based Panoramas
NASA Astrophysics Data System (ADS)
Coubard, F.; Lelégard, L.; Brédif, M.; Paparoditis, N.; Briottet, X.
2012-07-01
The knowledge of the sky illumination is important for radiometric corrections and for computer graphics applications such as relighting or augmented reality. We propose an approach to compute environment maps, representing the sky radiance, from a set of ground-based images acquired by a panoramic acquisition system, for instance a mobile-mapping system. These images can be affected by important radiometric artifacts, such as bloom or overexposure. A Perez radiance model is estimated with the blue sky pixels of the images, and used to compute additive corrections in order to reduce these radiometric artifacts. The sky pixels are then aggregated in an environment map, which still suffers from discontinuities on stitching edges. The influence of the quality of estimated sky radiance on the simulated light signal is measured quantitatively on a simple synthetic urban scene; in our case, the maximal error for the total sensor radiance is about 10%.
First Light from the 4.3-meter Discovery Channel Telescope At Lowell Observatory
NASA Astrophysics Data System (ADS)
Hall, Jeffrey C.; Levine, S.
2013-01-01
Seven years after groundbreaking on July 12, 2005, the 4.3-meter Discovery Channel Telescope (DCT) is now complete and into commissioning. We obtained first light images in mid 2012 with a 4K x 4K CCD and have recently obtained our first images with the DCT's main camera, the 6K x 6K Large Monolithic Imager (LMI, see adjacent poster by Massey). We held a celebratory gala on July 21, 2012, in Flagstaff. The DCT's delivered image quality is regularly subarcsecond with near-uniform image quality across the FOV from zenith to >2 airmasses, although we have not fully commissioned the active optics system. We attribute this to the outstanding quality of the mirror figures, performed by the University of Arizona's College of Optical Sciences (for M1) and L3 Brashear (for M2). The instrument cube at the RC focus can accommodate four instruments plus the LMI. Designed and built at Lowell Observatory, the cube also contains the DCT's autoguider and wavefront sensor. First light instruments include the 4000 DeVeny spectrograph (the former KPNO White Spectrograph), a low-resolution, high-throughput IR spectrograph, and a higher-resolution IR spectrograph/imager being built by Goddard Space Flight Center in collaboration with the University of Maryland. We are seeking funding for long-slit and fiber-fed echelle spectrographs for higher resolution optical spectroscopy. The DCT can also be configured to host Nasmyth and prime focus instruments. Discovery Communications and its founder John Hendricks contributed $16M to the $53M cost of the telescope, in return for naming rights and first rights to public, educational use of images in their programming. Analysis of data and publication by astronomers in professional journals follows the same procedure as for any other major telescope facility. Discovery's first DCT feature, "Scanning the Skies," aired on September 9, 2012. Future outreach plans include initiating webcasts to classrooms via the Discovery Education networks, reaching 30-40M schoolchildren across the USA. The DCT partner consortium includes Boston University (in perpetuity), the University of Maryland, and the University of Toledo, all of whom have ongoing, long term access to the facility.
Development of an ultra-portable ride quality meter.
DOT National Transportation Integrated Search
2012-12-01
FRAs Office of Research and Development has funded the development of an ultra-portable ride quality meter (UPRQM) under the Small Business and Innovative Research (SBIR) program. Track inspectors can use the UPRQM to locate segments of track that...
[The backgroud sky subtraction around [OIII] line in LAMOST QSO spectra].
Shi, Zhi-Xin; Comte, Georges; Luo, A-Li; Tu, Liang-Ping; Zhao, Yong-Heng; Wu, Fu-Chao
2014-11-01
At present, most sky-subtraction methods focus on the full spectrum, not the particular location, especially for the backgroud sky around [OIII] line which is very important to low redshift quasars. A new method to precisely subtract sky lines in local region is proposed in the present paper, which sloves the problem that the width of Hβ-[OIII] line is effected by the backgroud sky subtraction. The exprimental results show that, for different redshift quasars, the spectral quality has been significantly improved using our method relative to the original batch program by LAMOST. It provides a complementary solution for the small part of LAMOST spectra which are not well handled by LAMOST 2D pipeline. Meanwhile, This method has been used in searching for candidates of double-peaked Active Galactic Nuclei.
Progreso en la puesta en marcha del espectrógrafo BHROS
NASA Astrophysics Data System (ADS)
Díaz, R.; Levato, H.; Casagrande, A.; Piroddi, D.; Yornet, G.; Eikenberry, S.; Gonzalez, F.; Townsend, A.; Godoy, J.; Marun, A.; Gunella, F.; D'Ambra, A.; Warner, C.; Bosch, G.; Donoso, V.; Grosso, M.; Seifer, E.
2017-10-01
We report the advance on the re-assembly and commissioning of the BHROS spectrograph, its associated instrument laboratory and the planned system of telescopes. This is the largest astronomical spectrograph ever assembled in Argentina and the laboratory is also being used for other instrumentation needs of ICATE. We have installed a half meter telescope in order to test the spectrograph with on-sky sources, and we plan to install a network of telescopes feeding it via a multiple optical fiber system. In these first tests we have obtained spectra of the Sun (R100000) and Jupiter and Achernar (R40000). In 2017-2018 we plan to install and test a network of five small telescopes feeding the spectrograph with the collecting area equivalent to that of a one meter telescope, with a cost 10-25 times less in acquisition, transport, installation and operation respect to a conventional monolithic telescope.
Optical image and laser slope meter intercomparisons of high-frequency waves
NASA Technical Reports Server (NTRS)
Lubard, S. C.; Krimmel, J. E.; Thebaud, L. R.; Evans, D. D.; Shemdin, O. H.
1980-01-01
Spectral analyses of optical images of the ocean surface, obtained by a digital video system, are presented and compared with wave data measured simultaneously by the JPL Waverider-mounted laser slope meter. The image analyses, which incorporate several new ideas, provide two-dimensional wave number spectra of slope, covering wavelengths from 10 cm to 10 m. These slope spectra are converted to wave height spectra by a new technique which includes the effects of sky radiance gradients. Space-time spectra are also presented for waves whose frequencies are less than 2 Hz. The JPL slope frequency spectra are compared with image wave number spectra which have been converted to frequency spectra by use of the gravity wave dispersion relation. Results of comparisons between the frequency spectra obtained from the two different measurements show reasonable agreement for frequencies less than 3 Hz.
Evaluation of Skybox Video and Still Image products
NASA Astrophysics Data System (ADS)
d'Angelo, P.; Kuschk, G.; Reinartz, P.
2014-11-01
The SkySat-1 satellite lauched by Skybox Imaging on November 21 in 2013 opens a new chapter in civilian earth observation as it is the first civilian satellite to image a target in high definition panchromatic video for up to 90 seconds. The small satellite with a mass of 100 kg carries a telescope with 3 frame sensors. Two products are available: Panchromatic video with a resolution of around 1 meter and a frame size of 2560 × 1080 pixels at 30 frames per second. Additionally, the satellite can collect still imagery with a swath of 8 km in the panchromatic band, and multispectral images with 4 bands. Using super-resolution techniques, sub-meter accuracy is reached for the still imagery. The paper provides an overview of the satellite design and imaging products. The still imagery product consists of 3 stripes of frame images with a footprint of approximately 2.6 × 1.1 km. Using bundle block adjustment, the frames are registered, and their accuracy is evaluated. Image quality of the panchromatic, multispectral and pansharpened products are evaluated. The video product used in this evaluation consists of a 60 second gazing acquisition of Las Vegas. A DSM is generated by dense stereo matching. Multiple techniques such as pairwise matching or multi image matching are used and compared. As no ground truth height reference model is availble to the authors, comparisons on flat surface and compare differently matched DSMs are performed. Additionally, visual inspection of DSM and DSM profiles show a detailed reconstruction of small features and large skyscrapers.
Recent Local and State Action in Arizona to Maintain Sky Quality
NASA Astrophysics Data System (ADS)
Hall, Jeffrey C.; Shankland, P. D.; Green, R. F.; Jannuzi, B.
2014-01-01
The large number of observatories in Arizona has led to the development of a number of lighting control ordinances around the state, some quite strict. Several factors are now contributing to an increased need for active effort at the local, County, and State levels in maintaining the quality of these codes; these factors include an expansion of competing interests in the state, the increasing use of LED lighting, and the potential for major new investments through projects such as the Cherenkov Telescope Array (CTA) and enhancements to the Navy Precision Optical Interferometer. I will review recent strategies Arizona's observatories have used to effect maintenance of ordinances and preserve sky quality; cases include (1) a statewide effort in 2012 to curb a proliferation of electronic billboards and (2) engagement of a broad group of local, County, and State officials, as well as individuals from the private sector, in support of projects like CTA, including awareness of and support for dark-sky preservation.
The Era After the ELT: Optical Interferometry With Kilometer Baselines
NASA Astrophysics Data System (ADS)
Bakker, Eric J.
2007-12-01
The 8-meter class telescopes seen first light in 1993-1998 (Keck, 1993, VLT 1998). The ELT will see first light in the 2013-2018 time frame. The follow-up of the ELT will see first light around 2023. That is 15 years from today. The sequence from 8-meter to 30 meter telescopes (started as a goal of 100m), will suggest a follow-up telescope with an aperture of 300 meter as initial goal. Cleary a 300 meter or more ambitiously a 1000-meter telescope can no longer be structural one piece that has to point to any point on the sky and track the objects. The more likely scenario is to follow the process applied in radio astronomy and move from single telescopes to interferometers. Optical interferometry is maturing very quickly with the de-commissioning of experimental instruments (COAST, GT2I, IOTA, and probably PTI and ISI in the near future) and the use of precision mechanics and automation. The remaining interferometers are grouped in three categories: large telescopes (VLTI and KECK-I), mid-size interferometers (MROI) and small interferometers (CHARA and NPOI). The Magdalena Ridge Observatory Interferometer (MROI) is scheduled for first light/fringe in 2009 and will provide unique observing capabilities to astronomers with limiting magnitudes in the same range as those currently achieved by Keck-I and VLTI. The Magdalena Ridge Observatory Interferometer (near Socorro, NM) invites interested engineers, scientists, and astronomers to participate in the construction and science program of MRO at all levels. Ranging from visitors instruments, support of large procurements in return for access, to individual contributions related to the science program, shared risk observations, etc. For more information, contact the Project Manager at the Magdalena Ridge Observatory Interferometer.
Pfützner, Andreas
2013-01-01
The article by Brzag and coauthors in this issue of Journal of Diabetes Science and Technology reports a competitive accuracy performance study for a branded meter in comparison with six low-cost meters currently available in the United States. It highlights several important topics: (1) the need for more stringent post-marketing requirements for blood glucose meters after launch and (2) low-cost meters use older technologies and their manufacturers do not usually seriously invest in new technology or constant quality assurance efforts. This may explain the study results, which show superior performance of the branded meter. Finally, the article pinpoints to the "quality versus price" dilemma faced by the prescribing physician and their patients in daily routine, which may be additionally aggravated by budget constraints and prescription rules in reimbursed markets. © 2013 Diabetes Technology Society.
Flying Drosophila orient to sky polarization.
Weir, Peter T; Dickinson, Michael H
2012-01-10
Insects maintain a constant bearing across a wide range of spatial scales. Monarch butterflies and locusts traverse continents [1, 2], and foraging bees and ants travel hundreds of meters to return to their nests [1, 3, 4], whereas many other insects fly straight for only a few centimeters before changing direction. Despite this variation in spatial scale, the brain region thought to underlie long-distance navigation is remarkably conserved [5, 6], suggesting that the use of a celestial compass is a general and perhaps ancient capability of insects. Laboratory studies of Drosophila have identified a local search mode in which short, straight segments are interspersed with rapid turns [7, 8]. However, this flight mode is inconsistent with measured gene flow between geographically separated populations [9-11], and individual Drosophila can travel 10 km across desert terrain in a single night [9, 12, 13]-a feat that would be impossible without prolonged periods of straight flight. To directly examine orientation behavior under outdoor conditions, we built a portable flight arena in which a fly viewed the natural sky through a liquid crystal device that could experimentally rotate the polarization angle. Our findings indicate that Drosophila actively orient using the sky's natural polarization pattern. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cosmic Cinematography With the LSSTO
NASA Astrophysics Data System (ADS)
Liu, C. T.; Borne, K.; Stubbs, C.; Tyson, J. A.; LSSTO Collaboration
2001-12-01
The Large-Area Synoptic Survey Telescope Observatory (LSSTO; http://lssto.org) will be an 8.4-meter, 7 square-degree field telescope and camera, and will represent an increase in astronomical survey power more than 20-fold over any observatory now operating or under construction. Each night, LSSTO will image over 1400 square degrees of sky, to a depth of at least 24th magnitude, and make the data publicly available the next day. A co-added deep color image of 14,000 square degrees of the sky to 27th magnitude will also be available. The LSSTO database will be on spinning disks at various sites around the world. At 0.2 arcseconds per pixel, these data will represent unprecedented deep sky images which will follow celestial changes in time. We show some of the plans to broaden the scope of the LSSTO project to include small colleges, amateur astronomers, K-12 and general public astronomy consumers. These include [1] High definition video walls with data feeds of 1000 GB/sec; [2] 3-D virtual reality displays using both personal computers and massive projection systems such as the Hayden Planetarium Digital Dome; and [3] interactive data analysis and viewing in the time dimension, producing a true ``movie of the cosmos."
Wide Field Radio Transient Surveys
NASA Astrophysics Data System (ADS)
Bower, Geoffrey
2011-04-01
The time domain of the radio wavelength sky has been only sparsely explored. Nevertheless, serendipitous discovery and results from limited surveys indicate that there is much to be found on timescales from nanoseconds to years and at wavelengths from meters to millimeters. These observations have revealed unexpected phenomena such as rotating radio transients and coherent pulses from brown dwarfs. Additionally, archival studies have revealed an unknown class of radio transients without radio, optical, or high-energy hosts. The new generation of centimeter-wave radio telescopes such as the Allen Telescope Array (ATA) will exploit wide fields of view and flexible digital signal processing to systematically explore radio transient parameter space, as well as lay the scientific and technical foundation for the Square Kilometer Array. Known unknowns that will be the target of future transient surveys include orphan gamma-ray burst afterglows, radio supernovae, tidally-disrupted stars, flare stars, and magnetars. While probing the variable sky, these surveys will also provide unprecedented information on the static radio sky. I will present results from three large ATA surveys (the Fly's Eye survey, the ATA Twenty CM Survey (ATATS), and the Pi GHz Survey (PiGSS)) and several small ATA transient searches. Finally, I will discuss the landscape and opportunities for future instruments at centimeter wavelengths.
Standardized UXO Technology Demonstration Site Moguls Scoring Record Number 912 (Sky Research, Inc.)
2008-09-01
south from the northern end point. 8 2) A metallic pin-flag is placed over the midpoint. 3) The operator logs data along the same path...buried UXO or other metallic debris. A 5-meter-length of line is walked in eight cardinal directions (N-S, S-N, E-W, W-E, SE-NW, NW-SE, SW-NE, NE-SW...points have been rounded to protect the ground truth. The overall ground truth is composed of ferrous and nonferrous anomalies. Due to limitations
Standardized UXO Technology Demonstration Site Moguls Scoring No. 903 (Sky Research, Inc.)
2008-08-01
endpoint, and then returning south from the northern endpoint. 8 2) A metallic pin-flag is placed over the midpoint. 3) The operator logs data...point located away from buried UXO or other metallic debris. A 5-meter-length of line is walked in eight cardinal directions (N-S, S-N, E-W, W-E, SE-NW...systems or handheld detectors . The challenges include a gravel road, wet areas and trees. The vegetation height varies from 15 to 25 cm. Moguls A 1.30
NASA Technical Reports Server (NTRS)
Gillett, Frederick; Houck, James; Bally, John; Becklin, Eric; Brown, Robert Hamilton; Draine, Bruce; Frogel, Jay; Gatley, Ian; Gehrz, Robert; Hildebrand, Roger
1991-01-01
The decade of 1990's presents an opportunity to address fundamental astrophysical issues through observations at IR wavelengths made possible by technological and scientific advances during the last decade. The major elements of recommended program are: the Space Infrared Telescope Facility (SIRTF), the Stratospheric Observatory For Infrared Astronomy (SOFIA) and the IR Optimized 8-m Telescope (IRO), a detector and instrumentation program, the SubMilliMeter Mission (SMMM), the 2 Microns All Sky Survey (2MASS), a sound infrastructure, and technology development programs. Also presented are: perspective, science opportunities, technical overview, project recommendations, future directions, and infrastructure.
Dark Sky Collaborators: Arizona (AZ) Observatories, Communities, and Businesses
NASA Astrophysics Data System (ADS)
Del Castillo, Elizabeth Alvarez; Corbally, Christopher; Falco, Emilio E.; Green, Richard F.; Hall, Jeffrey C.; Williams, G. Grant
2015-03-01
With outdoor lighting ordinances in Arizona first in place around observatories in 1958 and 1972, then throughout the state since 1986, Arizonans have extensive experience working with communities and businesses to preserve our dark skies. Though communities are committed to the astronomy sector in our state, astronomers must collaborate with other stakeholders to implement solutions. Ongoing education and public outreach is necessary to enable ordinance updates as technology changes. Despite significant population increases, sky brightness measurements over the last 20 years show that ordinance updates are worth our efforts as we seek to maintain high quality skies around our observatories. Collaborations are being forged and actions taken to promote astronomy for the longer term in Arizona.
Evolution of the Air Toxics under the Big Sky Program
ERIC Educational Resources Information Center
Marra, Nancy; Vanek, Diana; Hester, Carolyn; Holian, Andrij; Ward, Tony; Adams, Earle; Knuth, Randy
2011-01-01
As a yearlong exploration of air quality and its relation to respiratory health, the "Air Toxics Under the Big Sky" program offers opportunities for students to learn and apply science process skills through self-designed inquiry-based research projects conducted within their communities. The program follows a systematic scope and sequence…
Solar Resource Assessment with Sky Imagery and a Virtual Testbed for Sky Imager Solar Forecasting
NASA Astrophysics Data System (ADS)
Kurtz, Benjamin Bernard
In recent years, ground-based sky imagers have emerged as a promising tool for forecasting solar energy on short time scales (0 to 30 minutes ahead). Following the development of sky imager hardware and algorithms at UC San Diego, we present three new or improved algorithms for sky imager forecasting and forecast evaluation. First, we present an algorithm for measuring irradiance with a sky imager. Sky imager forecasts are often used in conjunction with other instruments for measuring irradiance, so this has the potential to decrease instrumentation costs and logistical complexity. In particular, the forecast algorithm itself often relies on knowledge of the current irradiance which can now be provided directly from the sky images. Irradiance measurements are accurate to within about 10%. Second, we demonstrate a virtual sky imager testbed that can be used for validating and enhancing the forecast algorithm. The testbed uses high-quality (but slow) simulations to produce virtual clouds and sky images. Because virtual cloud locations are known, much more advanced validation procedures are possible with the virtual testbed than with measured data. In this way, we are able to determine that camera geometry and non-uniform evolution of the cloud field are the two largest sources of forecast error. Finally, with the assistance of the virtual sky imager testbed, we develop improvements to the cloud advection model used for forecasting. The new advection schemes are 10-20% better at short time horizons.
NASA Astrophysics Data System (ADS)
Brousseau, Denis; Thibault, Simon; Lavigne, Jean-François; Véran, Jean-Pierre
2016-07-01
With the upcoming construction of ELTs, several existing technologies are being pushed beyond their performance limit and it became essential to develop and evaluate alternatives. We present a specifically designed focal plane box which will allow to evaluate, directly on-sky, the performance of a number of next generation adaptive optics related technologies The system will able us to compare the performance of several new wavefront sensors in contrast to a Shack-Hartman wavefront sensor. The system has been designed for the "Observatoire du Mont Mégantic" (OMM) which hosts a telescope having a 1.6-meter diameter primary. The OMM telescope, located halfway between Montreal and Quebec City, is known to be an excellent location to develop and test precursor instruments which can then be upscaled to larger telescopes (ex. SPIOMM which led to SITELLE at the CFHT). We present the results of the first run made at the telescope and also identify problems that were encountered. We also propose a series of modifications to the system that will help to solve these issues.
NASA Technical Reports Server (NTRS)
Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Russell, P. B.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.;
2014-01-01
The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions.The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL (Pacific Northwest National Laboratory) with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. The 4STAR instrument operated successfully in the SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE (Department of Energy)-sponsored TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013) experiment aboard the DoE G-1 aircraft. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In this presentation, we provide an overview of the new 4STAR capabilities, with an emphasis on 26 high-quality sky radiance measurements carried out by 4STAR in SEAC4RS. We compare collocated 4STAR and AERONET sky radiances, as well as their retrievals of aerosol microphysical properties for a subset of the available case studies. We summarize the particle property and air-mass characterization studies made possible by the combined 4STAR direct beam and sky radiance observations.
NASA Astrophysics Data System (ADS)
Lederer, S. M.; Hickson, P.; Cowardin, H. M.; Buckalew, B.; Frith, J.; Alliss, R.
In June 2015, the construction of the Meter Class Autonomous Telescope was completed and MCAT saw the light of the stars for the first time. In 2017, MCAT was newly dedicated as the Eugene Stansbery-MCAT telescope by NASA’s Orbital Debris Program Office (ODPO), in honour of his inspiration and dedication to this newest optical member of the NASA ODPO. Since that time, MCAT has viewed the skies with one engineering camera and two scientific cameras, and the ODPO optical team has begun the process of vetting the entire system. The full system vetting includes verification and validation of: (1) the hardware comprising the system (e.g. the telescopes and its instruments, the dome, weather systems, all-sky camera, FLIR cloud infrared camera, etc.), (2) the custom-written Observatory Control System (OCS) master software designed to autonomously control this complex system of instruments, each with its own control software, and (3) the custom written Orbital Debris Processing software for post-processing the data. ES-MCAT is now capable of autonomous observing to include Geosyncronous survey, TLE (Two-line element) tracking of individual catalogued debris at all orbital regimes (Low-Earth Orbit all the way to Geosynchronous (GEO) orbit), tracking at specified non-sidereal rates, as well as sidereal rates for proper calibration with standard stars. Ultimately, the data will be used for validation of NASA’s Orbital Debris Engineering Model, ORDEM, which aids in engineering designs of spacecraft that require knowledge of the orbital debris environment and long-term risks for collisions with Resident Space Objects (RSOs).
Deploying the NASA Meter Class Autonomous Telescope (MCAT) on Ascension Island
NASA Technical Reports Server (NTRS)
Lederer, S. M.; Pace, L.; Hickson, P.; Cowardin, H. M.; Frith, J.; Buckalew, B.; Glesne, T.; Maeda, R.; Douglas, D.; Nishimoto, D.
2015-01-01
NASA has successfully constructed the 1.3m Meter Class Autonomous Telescope (MCAT) facility on Ascension Island in the South Atlantic Ocean. MCAT is an optical telescope designed specifically to collect ground-based data for the statistical characterization of orbital debris ranging from Low Earth Orbit (LEO) through Middle Earth Orbits (MEO) and beyond to Geo Transfer and Geosynchronous Orbits (GTO/GEO). The location of Ascension Island has two distinct advantages. First, the near-equatorial location fills a significant longitudinal gap in the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) network of telescopes, and second, it allows access to objects in Low Inclination Low-Earth Orbits (LILO). The MCAT facility will be controlled by a sophisticated software suite that operates the dome and telescope, assesses sky and weather conditions, conducts all necessary calibrations, defines an observing strategy (as dictated by weather, sky conditions and the observing plan for the night), and carries out the observations. It then reduces the collected data via four primary observing modes ranging from tracking previously cataloged objects to conducting general surveys for detecting uncorrelated debris. Nightly observing plans, as well as the resulting text file of reduced data, will be transferred to and from Ascension, respectively, via a satellite connection. Post-processing occurs at NASA Johnson Space Center. Construction began in September, 2014 with dome and telescope installation occurring in April through early June, 2015. First light was achieved in June, 2015. Acceptance testing, full commissioning, and calibration of this soon-to-be fully autonomous system commenced in summer 2015. The initial characterization of the system from these tests is presented herein.
Deploying the NASA Meter Class Autonomous Telescope (MCAT) on Ascension Island
NASA Astrophysics Data System (ADS)
Lederer, S.; Pace, L. F.; Hickson, P.; Glesne, T.; Cowardin, H. M.; Frith, J. M.; Buckalew, B.; Maeda, R.; Douglas, D.; Nishimoto, D.
NASA has successfully constructed the 1.3m Meter Class Autonomous Telescope (MCAT) facility on Ascension Island in the South Atlantic Ocean. MCAT is an optical telescope designed specifically to collect ground-based data for the statistical characterization of orbital debris ranging from Low Earth Orbit (LEO) through Middle Earth Orbits (MEO) and beyond to Geo Transfer and Geosynchronous Orbits (GTO/GEO). The location of Ascension Island has two distinct advantages. First, the near-equatorial location fills a significant longitudinal gap in the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) network of telescopes, and second, it allows access to objects in Low Inclination Low-Earth Orbits (LILO). The MCAT facility will be controlled by a sophisticated software suite that operates the dome and telescope, assesses sky and weather conditions, conducts all necessary calibrations, defines an observing strategy (as dictated by weather, sky conditions, and the observing plan for the night), and carries out the observations. It then reduces the collected data via four primary observing modes ranging from tracking previously cataloged objects to conducting general surveys for detecting uncorrelated debris. Nightly observing plans, as well as the resulting text file of reduced data, will be transferred to and from Ascension, respectively, via a satellite connection. Post-processing occurs at NASA Johnson Space Center. Construction began in September, 2014 with dome and telescope installation occurring in April through early June, 2015. First light was achieved in June, 2015. Acceptance testing, full commissioning, and calibration of this soon-to-be fully autonomous system commenced in summer 2015. The initial characterization of the system from these tests is presented herein.
NASA Technical Reports Server (NTRS)
Lederer, S. M.; Hickson, P.; Cowardin, H. M.; Buckalew, B.; Frith, J.; Alliss, R.
2017-01-01
In June 2015, the construction of the Meter Class Autonomous Telescope was completed and MCAT saw the light of the stars for the first time. In 2017, MCAT was newly dedicated as the Eugene Stansbery-MCAT telescope by NASA's Orbital Debris Program Office (ODPO), in honor of his inspiration and dedication to this newest optical member of the NASA ODPO. Since that time, MCAT has viewed the skies with one engineering camera and two scientific cameras, and the ODPO optical team has begun the process of vetting the entire system. The full system vetting includes verification and validation of: (1) the hardware comprising the system (e.g. the telescopes and its instruments, the dome, weather systems, all-sky camera, FLIR cloud infrared camera, etc.), (2) the custom-written Observatory Control System (OCS) master software designed to autonomously control this complex system of instruments, each with its own control software, and (3) the custom written Orbital Debris Processing software for post-processing the data. ES-MCAT is now capable of autonomous observing to include Geosynchronous survey, TLE (Two-line element) tracking of individual catalogued debris at all orbital regimes (Low-Earth Orbit all the way to Geosynchronous (GEO) orbit), tracking at specified non-sidereal rates, as well as sidereal rates for proper calibration with standard stars. Ultimately, the data will be used for validation of NASA's Orbital Debris Engineering Model, ORDEM, which aids in engineering designs of spacecraft that require knowledge of the orbital debris environment and long-term risks for collisions with Resident Space Objects (RSOs).
NASA Astrophysics Data System (ADS)
Currier, W. R.; Giulia, M.; Pflug, J. M.; Jonas, T.; Jessica, L.
2017-12-01
Snow depth within a typical hydrologic model grid cell (150 m or 1 km) can vary from 0.5 meters to 6 meters, or more. This variability is driven by the meteorological conditions throughout the winter as well as the forest architecture. To better understand this variability, we used airborne LiDAR from Olympic National Park, WA, Yosemite National Park, CA, Jemez Caldera, NM, and Niwot Ridge, CO to determine unique spatial patterns of snow depth in forested regions. Specifically, we compared snow depth distributions along north facing forest edges and south facing forest edges to those in the open or directly under the canopy. When categorizing the north facing and south facing edges based on distance from the canopy, distances relative to tree height, and distances relative to the fraction of the sky that is visible (sky view factor) we found unique snow depth patterns for each of these regions. In all regions besides Olympic National Park, WA, north facing edges contained more snow than open areas, forested areas, or along the south facing edges. These snow distributions were relatively consistent regardless of the metric used to define the forest edge and the size of the domain (150 m through 1 km). The absence of the forest edge effect in Olympic National Park was attributed to the meteorological data and climate conditions, which showed significantly less incoming shortwave radiation and more incoming longwave radiation. Furthermore, this study evaluated the effect that wind speed and direction have on the spatial distribution of snow depth.
Polarized point sources in the LOFAR Two-meter Sky Survey: A preliminary catalog
NASA Astrophysics Data System (ADS)
Van Eck, C. L.; Haverkorn, M.; Alves, M. I. R.; Beck, R.; Best, P.; Carretti, E.; Chyży, K. T.; Farnes, J. S.; Ferrière, K.; Hardcastle, M. J.; Heald, G.; Horellou, C.; Iacobelli, M.; Jelić, V.; Mulcahy, D. D.; O'Sullivan, S. P.; Polderman, I. M.; Reich, W.; Riseley, C. J.; Röttgering, H.; Schnitzeler, D. H. F. M.; Shimwell, T. W.; Vacca, V.; Vink, J.; White, G. J.
2018-06-01
The polarization properties of radio sources at very low frequencies (<200 MHz) have not been widely measured, but the new generation of low-frequency radio telescopes, including the Low Frequency Array (LOFAR: a Square Kilometre Array Low pathfinder), now gives us the opportunity to investigate these properties. In this paper, we report on the preliminary development of a data reduction pipeline to carry out polarization processing and Faraday tomography for data from the LOFAR Two-meter Sky Survey (LOTSS) and present the results of this pipeline from the LOTSS preliminary data release region (10h45m-15h30m right ascension, 45°-57° declination, 570 square degrees). We have produced a catalog of 92 polarized radio sources at 150 MHz at 4.'3 resolution and 1 mJy rms sensitivity, which is the largest catalog of polarized sources at such low frequencies. We estimate a lower limit to the polarized source surface density at 150 MHz, with our resolution and sensitivity, of 1 source per 6.2 square degrees. We find that our Faraday depth measurements are in agreement with previous measurements and have significantly smaller errors. Most of our sources show significant depolarization compared to 1.4 GHz, but there is a small population of sources with low depolarization indicating that their polarized emission is highly localized in Faraday depth. We predict that an extension of this work to the full LOTSS data would detect at least 3400 polarized sources using the same methods, and probably considerably more with improved data processing.
Goals and strategies in the global control design of the OAJ Robotic Observatory
NASA Astrophysics Data System (ADS)
Yanes-Díaz, A.; Rueda-Teruel, S.; Antón, J. L.; Rueda-Teruel, F.; Moles, M.; Cenarro, A. J.; Marín-Franch, A.; Ederoclite, A.; Gruel, N.; Varela, J.; Cristóbal-Hornillos, D.; Chueca, S.; Díaz-Martín, M. C.; Guillén, L.; Luis-Simoes, R.; Maícas, N.; Lamadrid, J. L.; López-Sainz, A.; Hernández-Fuertes, J.; Valdivielso, L.; Mendes de Oliveira, C.; Penteado, P.; Schoenell, W.; Kanaan, A.
2012-09-01
There are many ways to solve the challenging problem of making a high performance robotic observatory from scratch. The Observatorio Astrofísico de Javalambre (OAJ) is a new astronomical facility located in the Sierra de Javalambre (Teruel, Spain) whose primary role will be to conduct all-sky astronomical surveys. The OAJ control system has been designed from a global point of view including astronomical subsystems as well as infrastructures and other facilities. Three main factors have been considered in the design of a global control system for the robotic OAJ: quality, reliability and efficiency. We propose CIA (Control Integrated Architecture) design and OEE (Overall Equipment Effectiveness) as a key performance indicator in order to improve operation processes, minimizing resources and obtaining high cost reduction whilst maintaining quality requirements. The OAJ subsystems considered for the control integrated architecture are the following: two wide-field telescopes and their instrumentation, active optics subsystems, facilities for sky quality monitoring (seeing, extinction, sky background, sky brightness, cloud distribution, meteorological station), domes and several infrastructure facilities such as water supply, glycol water, water treatment plant, air conditioning, compressed air, LN2 plant, illumination, surveillance, access control, fire suppression, electrical generators, electrical distribution, electrical consumption, communication network, Uninterruptible Power Supply and two main control rooms, one at the OAJ and the other remotely located in Teruel, 40km from the observatory, connected through a microwave radio-link. This paper presents the OAJ strategy in control design to achieve maximum quality efficiency for the observatory processes and operations, giving practical examples of our approach.
The Impact of Assimilation of GPM Clear Sky Radiance on HWRF Hurricane Track and Intensity Forecasts
NASA Astrophysics Data System (ADS)
Yu, C. L.; Pu, Z.
2016-12-01
The impact of GPM microwave imager (GMI) clear sky radiances on hurricane forecasting is examined by ingesting GMI level 1C recalibrated brightness temperature into the NCEP Gridpoint Statistical Interpolation (GSI)- based ensemble-variational hybrid data assimilation system for the operational Hurricane Weather Research and Forecast (HWRF) system. The GMI clear sky radiances are compared with the Community Radiative Transfer Model (CRTM) simulated radiances to closely study the quality of the radiance observations. The quality check result indicates the presence of bias in various channels. A static bias correction scheme, in which the appropriate bias correction coefficients for GMI data is evaluated by applying regression method on a sufficiently large sample of data representative to the observational bias in the regions of concern, is used to correct the observational bias in GMI clear sky radiances. Forecast results with and without assimilation of GMI radiance are compared using hurricane cases from recent hurricane seasons (e.g., Hurricane Joaquin in 2015). Diagnoses of data assimilation results show that the bias correction coefficients obtained from the regression method can correct the inherent biases in GMI radiance data, significantly reducing observational residuals. The removal of biases also allows more data to pass GSI quality control and hence to be assimilated into the model. Forecast results for hurricane Joaquin demonstrates that the quality of analysis from the data assimilation is sensitive to the bias correction, with positive impacts on the hurricane track forecast when systematic biases are removed from the radiance data. Details will be presented at the symposium.
Diagnostic equipment outside the laboratory.
Burrin, J M; Fyffe, J A
1988-01-01
A questionnaire was circulated to clinical biochemistry laboratories in the North West Thames region of the United Kingdom requesting information on extralaboratory equipment. Data on the types and numbers of instruments in use, their relationship with the laboratory, and quality assurance procedures were obtained. Laboratories were prepared to maintain equipment over which they had no responsibility for purchase, training of users, or use. The quality assurance of these instruments gave even greater cause for concern. Although internal quality control procedures were performed on many of the instruments, laboratories were involved in only a minority of these procedures. Quality control procedures and training of users were undertaken on site in less than 50% of blood gas analysers and bilirubin meters and in less than 25% of glucose meters. External quality assessment procedures were non-existent for all of the instruments in use with the exception of glucose stick meters in two laboratories. PMID:3192750
Globe At Night: A Dark-skies Awareness Campaign During The International Year Of Astronomy
NASA Astrophysics Data System (ADS)
Walker, Constance E.; Isbell, D.; Pompea, S. M.; Smith, D. A.; Baker, T.
2009-01-01
GLOBE at Night is an international citizen-science event encouraging everyone, scientists, non-scientists, students and the general public, to measure local levels of light pollution and contribute the observations online to a world map. This program is a centerpiece of the Dark Skies Awareness Global Cornerstone Project for the International Year of Astronomy (IYA) as well as the US IYA "Dark Skies are a Universal Resource” theme for 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved. Utilizing the international networks of its hosts, the GLOBE program at the National Optical Astronomy Observatory, the University Corporation for Atmospheric Research and the Environmental Systems Research Institute, along with the Astronomical Society of the Pacific, the Association of Science and Technology Centers, the Astronomical League and the International Dark-Sky Association, GLOBE at Night is able to engage people from around the world. Data collection and online reporting is simple and user-friendly. During a 13-day campaign in each spring, citizen-scientists take data on light pollution levels by comparing observations with stellar maps of limiting magnitudes toward the constellation, Orion. For more precise measurements, citizen-scientists use digital sky brightness meters. During the campaign period over the last 3 years, 20,000 measurements from 100 countries have been logged. The collected data is available online in a variety of formats and for comparison with data from previous years, Earth at Night satellite data and population density data. We will discuss how students and scientists worldwide can explore and analyze these results. We will provide the "know-how” and the means for session participants to become community advocates for GLOBE at Night in their hometowns. We will also discuss lessons learned, best practices and campaign plans during IYA (March 16-28, 2009). For more information, visit http://www.globe.gov/GaN/.
New Variable Stars in the Field of 66 Oph on Digitized Moscow Plates
NASA Astrophysics Data System (ADS)
Samus, N. N.; Antipin, S. V.; Kolesnikova, D. M.; Sat, L. A.; Sokolovsky, K. V.
2010-12-01
Regular photographic observations at the Moscow Observatory began in 1895. The archive of direct and spectroscopic sky photographs kept at the Sternberg Astronomical Institute (SAI) currently contains more than 60000 photographs. The most important part of the Moscow plate stacks are about 22500 direct sky photographs acquired in 1948&-1996 with a 40-cm astrograph, at different sites in Crimea and near Moscow (currently in Nauchny, Crimea). The size of its plates is 30 x 30 cm, corresponding to a 10° x 10° sky field. The limiting magnitude is 17.5m for good-quality plates.
ERIC Educational Resources Information Center
Ward, Tony J.; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij
2016-01-01
"Air Toxics Under the Big Sky" is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. This research explored: (1)…
BOREAS TF-8 NSA-OJP and SSA-OBS Ceilometer Data
NASA Technical Reports Server (NTRS)
Moore, Kathleen E.; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor); Fitzjarrald, David R.
2000-01-01
The BOREAS TF-8 team used ceilometers to collect data on the fraction of the sky covered with clouds and the cloud height. Included with these data is the surface-based lifting condensation level, derived from temperature and humidity values acquired at the flux tower at the NSA-OJP site. Ceilo-meter data were collected at the NSA-OJP site in 1994 and at the NSA-OJP and SSA-OBS sites in 1996. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884).
Unusual Light in Dark Space Revealed by Los Alamos, NASA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smidt, Joseph
By looking at the dark spaces between visible galaxies and stars the NASA/JPL CIBER sounding rocket experiment has produced data that could redefine what constitutes a galaxy. CIBER, the Cosmic Infrared Background Experiment, is designed to understand the physics going on between visible stars and galaxies. The relatively small, sub-orbital rocket unloads a camera that snaps pictures of the night sky in near-infrared wavelengths, between 1.2 and 1.6 millionth of a meter. Scientists take the data and remove all the known visible stars and galaxies and quantify what is left.
Unusual Light in Dark Space Revealed by Los Alamos, NASA
Smidt, Joseph
2018-01-16
By looking at the dark spaces between visible galaxies and stars the NASA/JPL CIBER sounding rocket experiment has produced data that could redefine what constitutes a galaxy. CIBER, the Cosmic Infrared Background Experiment, is designed to understand the physics going on between visible stars and galaxies. The relatively small, sub-orbital rocket unloads a camera that snaps pictures of the night sky in near-infrared wavelengths, between 1.2 and 1.6 millionth of a meter. Scientists take the data and remove all the known visible stars and galaxies and quantify what is left.
NASA Astrophysics Data System (ADS)
Bilguun, Amarsaikhan; Nakaso, Tetsushi; Harigai, Toru; Suda, Yoshiyuki; Takikawa, Hirofumi; Tanoue, Hideto
2016-02-01
In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. In this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilguun, Amarsaikhan, E-mail: bilguun@pes.ee.tut.ac.jp; Nakaso, Tetsushi; Harigai, Toru
In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. Inmore » this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD.« less
Educational Opportunities for the 2014 Opposition of Mars
NASA Astrophysics Data System (ADS)
Albin, Edward F.
2013-10-01
Mars reaches opposition and is well placed for public viewing on April 8, 2014 at 20:57 UT. The opposition timeline and educational opportunities are considered, with emphasis on programs presented at the Fernbank Science Center in Atlanta, Georgia. Educational programs include a planetarium presentation, observations of Mars through telescopes, and activities associated with the ongoing Curiosity Rover (MSL) / anticipated Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft. When at opposition in 2014, Mars will have an apparent diameter of 15.1 arcseconds and will be visible in the evening sky for a little over a year until it is lost in the glare of the Sun in late April 2015. At closest approach, the planet will be a bit more than 57 million miles (92 million kilometers) from the Earth. Mars is especially well placed in the evening sky for viewing between the months of March and May of 2014. During this period, the planet can be found in retrograde motion within the constellation pattern of Virgo. Fernbank Science Center will offer public viewing of Mars through the observatory’s 36-inch (0.9 meter) reflecting telescope on Thursday and Friday evenings. The observatory is open immediately after the evening planetarium program. We anticipate showing a fulldome planetarium presentation about Mars entitled, "Mars Quest," which includes a live update about the Red Planet and how to find it among the stars in the current evening sky.
Calibration Test of an Interplanetary Scintillation Array in Mexico
NASA Astrophysics Data System (ADS)
Carrillo, A.; Gonzalez-Esparza, A.; Andrade, E.; Ananthakrishnan, S.; Praveen-Kumar, A.; Balasubramanian, V.
We report the calibration test of a radiotelecope to carry out interplanetary scintillation (IPS) observations in Mexico. This will be a dedicate (24 hrs) radio array for IPS observations of nearly 1000 well know radio sources in the sky to perform solar wind studies. The IPS array is located in the state of Michoacan at 350 km north-west from Mexico City, (19'48 degrees north and 101'41 degrees west, 2000 meters above the sea level). The radiotelescope operates in 140 MHz with a bandwith of 1.5 MHz. The antenna is a planar array with 64 X 64 full wavelength dipoles along 64 east-west rows of open wire transmission lines, occupying 10,000 square meters (70 x 140 m). We report the final testings of the antenna array, the matrix Butler and receivers. This work is a collaboration between the Universidad Nacional Autonoma de Mexico (UNAM) and the National Centre for Radio Astrophysics (NCRA), India. We expect to initiate the firs IPS observations by the end of this year.
NASA Astrophysics Data System (ADS)
Tang, Fanjie; Ma, Shuqing; Yang, Ling; Du, Chuanyao; Tang, Yingjie
2016-10-01
According to Koschmieder's law, a mathematical model of contrast between a single black object and the sky background is established. Based on this principle, we built a black target visiometer system using a photograph of a black object taken with an industrial camera, that has a relatively simple structure and automated operation. In this study, three commercial visibility instruments-a forward scatter meter (CJB-3A) and two atmospheric transmission meters (LT31, VM100)-were compared to the black target visiometer system. Our results show that, within visibility ranges of up to 10 km, 1) all of the instruments agree well at low visibility and agree poorly at a visibility exceeding 5 km; 2) the forward scattering instrument has high bias at low visibility because particle absorption is not included; and 3) the best agreement with the black target method was obtained with the simple transmissometer rather than the forward scatter instrument or the hybrid transmissometer for a visibility range of up to 10 km.
The LCOGT NEO Follow-up Network
NASA Astrophysics Data System (ADS)
Lister, Tim; Gomez, Edward; Greenstreet, Sarah
2015-08-01
Las Cumbres Observatory Global Telescope Network (LCOGT) has deployed a homogeneous telescope network of nine 1-meter telescopes to four locations in the northern and southern hemispheres, with a planned network of twelve 1-meter telescopes at 6 locations. This network is very versatile and is designed to respond rapidly to target of opportunity events and also to perform long term monitoring of slowly changing astronomical phenomena. The global coverage of the network and the apertures of telescope available make LCOGT ideal for follow-up and characterization of Solar System objects (e.g. asteroids, Kuiper Belt Objects, comets, Near-Earth Objects (NEOs)) and ultimately for the discovery of new objects.LCOGT has completed the first phase of the deployment with the installation and commissioning of the nine 1-meter telescopes at McDonald Observatory (Texas), Cerro Tololo (Chile), SAAO (South Africa) and Siding Spring Observatory (Australia). The telescope network has been fully operational since 2014 May, and observations are being executed remotely and robotically. Future expansion to sites in the Canary Islands and Tibet is planned for 2016.I am using the LCOGT network to confirm newly detected NEO candidates produced by the major sky surveys such as Catalina Sky Survey (CSS) and PanSTARRS (PS1) and several hundred targets are now being followed-up per year. An increasing amount of time is being spent to obtain follow-up astrometry and photometry for radar-targeted objects and those on the Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) or Asteroid Retrieval Mission (ARM) lists in order to improve the orbits, determine the light curves and rotation periods and improve the characterization. This will be extended to obtain more light curves of other NEOs which could be targets. Recent results have included the first period determinations for several of the Goldstone-targeted NEOs. We are in the process of building a NEO Portal which will allow professionals, amateurs and Citizen Scientists to plan, schedule and analyze NEO imaging and spectroscopy observations and data using the LCOGT Network and to act as a co-ordination hub for the NEO follow-up efforts.
NASA Astrophysics Data System (ADS)
Teves, Justine; Sola, Eula Fae; Pintor, Ben Hur; Ang, Ma. Rosario Concepcion
2016-10-01
Solar energy is emerging as one of the top options for renewable energy sources in the Philippines, with largescale solar photovoltaic (PV) farms being built all over the country. Solar energy resource in the urban environment has great potential in making a city self-sustaining, but has not been fully explored for the country. In order to represent its potential, reliable resource assessment should be done. This study aims to assess the available solar energy resource in Davao City, a trade and commerce hub in southern Philippines. The functions of GRASS GIS, specifically the r.sun module, in modelling incoming solar radiation is discussed, along with the use of a one-meter LiDAR Digital Surface Model (DSM) and Linke Turbidity coefficients as inputs. The average Julian day of each month was used to compute the Global Horizontal Irradiation (GHI) values under clear-sky or cloudless conditions. To account for the effects of the clouds in the study area, the clear-sky indices (Kc) were computed using data from solar recording stations of the Bureau of Soils and Water Management (BSWM) found within and around the region. These were multiplied to the modelled clear-sky GHI rasters to get the real-sky GHI. The results show that the city's average GHI potential ranges from 2693.79 Wh/m2 and 4453.13 Wh/m2. Average values are particularly higher around the months of March and April, while lower values are seen in the months of November and January. Areas with higher potential are seen in the southern portion of the city, consistent in built-up areas.
NASA Astrophysics Data System (ADS)
Walker, C. E.; Pompea, S. M.
2008-12-01
GLOBE at Night is an international citizen-science event encouraging everyone, students, the general public, scientists and non-scientists, to measure local levels of light pollution and contribute observations online to a world map. This program is part of the Dark Skies Awareness Global Cornerstone Project for the International Year of Astronomy (IYA) in 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved. Utilizing the international networks of its hosts, the GLOBE program at UCAR and the National Optical Astronomy Observatory, as well as Astronomical Society of the Pacific, the Association of Science and Technology Centers, the Astronomical League and the International Dark-Sky Association, GLOBE at Night is able to engage people from around the world. Data collection and online reporting is simple and user-friendly. During a 13-day campaign in February or March, citizen-scientists take data on light pollution levels by comparing observations with stellar maps of limiting magnitudes toward the constellation, Orion. For more precise measurements, citizen-scientists use digital sky brightness meters. During the campaign period over the last 3 years, 20,000 measurements from 100 countries have been logged. The collected data is available online in a variety of formats and for comparison with data from previous years, Earth at Night satellite data and population density data. We will discuss how students and scientists worldwide can explore and analyze these results. We will provide the "know-how" and the means for session participants to become community advocates for GLOBE at Night in their hometowns. We will also discuss lessons learned, best practices and campaign plans during IYA (March 16-28, 2009). For more information, visit http://www.globe.gov/GaN/.
NASA Technical Reports Server (NTRS)
Robinson, John E.
2014-01-01
The Federal Aviation Administration's Next Generation Air Transportation System will combine advanced air traffic management technologies, performance-based procedures, and state-of-the-art avionics to maintain efficient operations throughout the entire arrival phase of flight. Flight deck Interval Management (FIM) operations are expected to use sophisticated airborne spacing capabilities to meet precise in-trail spacing from top-of-descent to touchdown. Recent human-in-the-loop simulations by the National Aeronautics and Space Administration have found that selection of the assigned spacing goal using the runway schedule can lead to premature interruptions of the FIM operation during periods of high traffic demand. This study compares three methods for calculating the assigned spacing goal for a FIM operation that is also subject to time-based metering constraints. The particular paradigms investigated include: one based upon the desired runway spacing interval, one based upon the desired meter fix spacing interval, and a composite method that combines both intervals. These three paradigms are evaluated for the primary arrival procedures to Phoenix Sky Harbor International Airport using the entire set of Rapid Update Cycle wind forecasts from 2011. For typical meter fix and runway spacing intervals, the runway- and meter fix-based paradigms exhibit moderate FIM interruption rates due to their inability to consider multiple metering constraints. The addition of larger separation buffers decreases the FIM interruption rate but also significantly reduces the achievable runway throughput. The composite paradigm causes no FIM interruptions, and maintains higher runway throughput more often than the other paradigms. A key implication of the results with respect to time-based metering is that FIM operations using a single assigned spacing goal will not allow reduction of the arrival schedule's excess spacing buffer. Alternative solutions for conducting the FIM operation in a manner more compatible with the arrival schedule are discussed in detail.
Comparison of 5 reflectance meters for capillary blood glucose determination.
Kolopp, M; Louis, J; Pointel, J P; Kohler, F; Drouin, P; Debry, G
1983-03-01
Manufacturing quality, accuracy and users opinion (i.e. medical and nurses staff and patients) were compared among five Destrostix reading reflectance-meters for home-blood-glucose-monitoring. Two machines (dextrometer and glucometer) equipped with microprocessors, integrated circuits and good quality wiring are best made. Reflectance-meter capillary blood glucose measurements were found to be accurate enough for home-blood-glucose-monitoring, compared to a reference method. However, two machines from the same brand were different in blood glucose accuracy. Glucocheck had poorest results. Users prefer small sized, battery powered machines. Glucometer appears to be best suited to home-blood-glucose-monitoring.
Qu, Yufu; Zou, Zhaofan
2017-10-16
Photographic images taken in foggy or hazy weather (hazy images) exhibit poor visibility and detail because of scattering and attenuation of light caused by suspended particles, and therefore, image dehazing has attracted considerable research attention. The current polarization-based dehazing algorithms strongly rely on the presence of a "sky area", and thus, the selection of model parameters is susceptible to external interference of high-brightness objects and strong light sources. In addition, the noise of the restored image is large. In order to solve these problems, we propose a polarization-based dehazing algorithm that does not rely on the sky area ("non-sky"). First, a linear polarizer is used to collect three polarized images. The maximum- and minimum-intensity images are then obtained by calculation, assuming the polarization of light emanating from objects is negligible in most scenarios involving non-specular objects. Subsequently, the polarization difference of the two images is used to determine a sky area and calculate the infinite atmospheric light value. Next, using the global features of the image, and based on the assumption that the airlight and object radiance are irrelevant, the degree of polarization of the airlight (DPA) is calculated by solving for the optimal solution of the correlation coefficient equation between airlight and object radiance; the optimal solution is obtained by setting the right-hand side of the equation to zero. Then, the hazy image is subjected to dehazing. Subsequently, a filtering denoising algorithm, which combines the polarization difference information and block-matching and 3D (BM3D) filtering, is designed to filter the image smoothly. Our experimental results show that the proposed polarization-based dehazing algorithm does not depend on whether the image includes a sky area and does not require complex models. Moreover, the dehazing image except specular object scenarios is superior to those obtained by Tarel, Fattal, Ren, and Berman based on the criteria of no-reference quality assessment (NRQA), blind/referenceless image spatial quality evaluator (BRISQUE), blind anistropic quality index (AQI), and e.
From SPOT 5 to Pleiades HR: evolution of the instrumental specifications
NASA Astrophysics Data System (ADS)
Rosak, A.; Latry, C.; Pascal, V.; Laubier, D.
2017-11-01
Image quality specifications should aimed to fulfil high resolution mission requirements of remote sensing satellites with a minimum cost. The most important trade-off to be taken into account is between Modulation Transfer Function, radiometric noise and sampling scheme. This compromise is the main driver during design optimisation and requirement definition in order to achieve good performances and to minimise the mission cost. For the SPOT 5 satellite, a new compromise had been chosen. The supermode principle of imagery (sampling at 2.5 meter with a pixel size of 5 meter) imp roves the resolution by a factor of four compared with the SPOT 4 satellite (10 meter resolution). This paper presents the image quality specifications of the HRG-SPOT 5 instrument. We introduce all the efforts made on the instrument to achieve good image quality and low radiometric noise, then we compare the results with the SPOT 4 instrument's performances to highlight the improvements achieved. Then, the in-orbit performance will be described. Finally, we will present the new goals of image quality specifications for the new Pleiades-HR satellite for earth observation (0.7 meter resolution) and the instrument concept.
New low noise CCD cameras for Pi-of-the-Sky project
NASA Astrophysics Data System (ADS)
Kasprowicz, G.; Czyrkowski, H.; Dabrowski, R.; Dominik, W.; Mankiewicz, L.; Pozniak, K.; Romaniuk, R.; Sitek, P.; Sokolowski, M.; Sulej, R.; Uzycki, J.; Wrochna, G.
2006-10-01
Modern research trends require observation of fainter and fainter astronomical objects on large areas of the sky. This implies usage of systems with high temporal and optical resolution with computer based data acquisition and processing. Therefore Charge Coupled Devices (CCD) became so popular. They offer quick picture conversion with much better quality than film based technologies. This work is theoretical and practical study of the CCD based picture acquisition system. The system was optimized for "Pi of The Sky" project. But it can be adapted to another professional astronomical researches. The work includes issue of picture conversion, signal acquisition, data transfer and mechanical construction of the device.
System modeling of the Thirty Meter Telescope alignment and phasing system
NASA Astrophysics Data System (ADS)
Dekens, Frank G.; Seo, Byoung-Joon; Troy, Mitchell
2014-08-01
We have developed a system model using the System Modeling Language (SysML) for the Alignment and Phasing System (APS) on the Thirty Meter Telescope (TMT). APS is a Shack-Hartmann wave-front sensor that will be used to measure the alignment and phasing of the primary mirror segments, and the alignment of the secondary and tertiary mirrors. The APS system model contains the ow-down of the Level 1 TMT requirements to APS (Level 2) requirements, and from there to the APS sub-systems (Level 3) requirements. The model also contains the operating modes and scenarios for various activities, such as maintenance alignment, post-segment exchange alignment, and calibration activities. The requirements ow-down is captured in SysML requirements diagrams, and we describe the process of maintaining the DOORS database as the single-source-of-truth for requirements, while using the SysML model to capture the logic and notes associated with the ow-down. We also use the system model to capture any needed communications from APS to other TMT systems, and between the APS sub-systems. The operations are modeled using SysML activity diagrams, and will be used to specify the APS interface documents. The modeling tool can simulate the top level activities to produce sequence diagrams, which contain all the communications between the system and subsystem needed for that activity. By adding time estimates for the lowest level APS activities, a robust estimate for the total time on-sky that APS requires to align and phase the telescope can be obtained. This estimate will be used to verify that the time APS requires on-sky meets the Level 1 TMT requirements.
NASA Astrophysics Data System (ADS)
Arumaningtyas, E. P.; Raharto, M.
2010-12-01
In this paper we present the prediction of the first lunar crescent visibility using contrast based on Schaefer's model and best time proposed by [12] for the beginning of Ramadhan and Syawal 1431 H at observing place in Bosscha Observatory, [E 107° 36.96', S 6° 49.55', with elevation of 1310 meters above sea level]. The geocentric altitude of the Moon at the sunset time on August 10 is 1° 58.98' and illuminated fraction of crescent (FI) = 0.20%. On August 11, 2010 the altitude of the Moon at the sunset time is 15° 42.71' and FI = 2.57%. The calculated contrast on August 10, 2010 is less than zero. It means that the brightness of the moon is smaller than brightness of the sky. Based on the contrast value, it is impossible to observe the lunar crescent by the naked eye at that time, even equipped by special design telescope for the crescent observation at Bosscha Observatory. Sultan [11] proposed a predicted model it is still possible to observe the very young lunar crescent even under circumstance before the time of sunset, if the contrast of sky is perfect. On August 11, 2010 contrast has its maximum at 50 minutes after sunset. The result of observation of the lunar crescent at Bosscha Observatory, the crescent could be seen before sunset at 17.15 local time (UT+7 hours) using special design telescope with additional nose of 1 meter length [6]. The model used here is tend to predict the brightness for naked eye observation, which less contrast compare to observation with the well design telescope.
NASA Astrophysics Data System (ADS)
Dekany, R.; Roberts, J.; Burruss, R.; Truong, T.; Palmer, D., Guiwits, S., Hale, D., Angione, J., Baranec, C., Croner, E., Davis, J. T. C., Zolkower, J., Henning, J., McKenna, D., Bouchez, A. H.
2011-09-01
PALM-3000, the second-generation facility adaptive optics system for the 5-meter telescope at Palomar Observatory, successfully obtained first high-order correction on sky on UT June 21, 2011. Within PALM-3000, low-order wavefront correction is applied with a Xinetics, Inc. 349 (241 active) actuator deformable mirror reused from the 1999 PALAO system. High-order correction is applied with a new Xinetics, Inc. 4,356 (3,388 active) actuator deformable mirror based upon a 6 x 6 array of 11 x 11 actuator Photonex modules. The system also uses a new CCD50-based Shack-Hartmann wavefront sensor camera and a novel real-time computer based upon a bank of commercial GPU's. Currently, the first of four planned wavefront sensor pupil sampling modes (N = 64 subapertures per pupil) has been tested, emphasizing early high-contrast exoplanet science with the PHARO coronagraphic imager and P1640 coronagraphic integral field spectrograph. We report on AO correction performance to date and our experience with the unique 66 x 66 actuator Xinetics, Inc. DM, as well as describe the PALM-3000 commissioning program and future plans.
KAPAO-Alpha: An On-The-Sky Testbed for Adaptive Optics on Small Aperture Telescopes
NASA Astrophysics Data System (ADS)
Morrison, Will; Choi, P. I.; Severson, S. A.; Spjut, E.; Contreras, D. S.; Gilbreth, B. N.; McGonigle, L. P.; Rudy, A. R.; Xue, A.; Baranec, C.; Riddle, R.
2012-05-01
We present initial in-lab and on-sky results of a natural guide star adaptive optics instrument, KAPAO-Alpha, being deployed on Pomona College’s 1-meter telescope at Table Mountain Observatory. The instrument is an engineering prototype designed to help us identify and solve design and integration issues before building KAPAO, a low-cost, dual-band, natural guide star AO system currently in active development and scheduled for first light in 2013. The Alpha system operates at visible wavelengths, employs Shack-Hartmann wavefront sensing, and is assembled entirely from commercially available components that include: off-the-shelf optics, a 140-actuator BMC deformable mirror, a high speed SciMeasure Lil’ Joe camera, and an EMCCD for science image acquisition. Wavefront reconstruction operating at 1-kHz speeds is handled with a consumer-grade computer running custom software adopted from the Robo-AO project. The assembly and integration of the Alpha instrument has been undertaken as a Pomona College undergraduate thesis. As part of the larger KAPAO project, it is supported by the National Science Foundation under Grant No. 0960343.
A Wide-field Camera and Fully Remote Operations at the Wyoming Infrared Observatory
NASA Astrophysics Data System (ADS)
Findlay, Joseph R.; Kobulnicky, Henry A.; Weger, James S.; Bucher, Gerald A.; Perry, Marvin C.; Myers, Adam D.; Pierce, Michael J.; Vogel, Conrad
2016-11-01
Upgrades at the 2.3 meter Wyoming Infrared Observatory telescope have provided the capability for fully remote operations by a single operator from the University of Wyoming campus. A line-of-sight 300 Megabit s-1 11 GHz radio link provides high-speed internet for data transfer and remote operations that include several realtime video feeds. Uninterruptable power is ensured by a 10 kVA battery supply for critical systems and a 55 kW autostart diesel generator capable of running the entire observatory for up to a week. The construction of a new four-element prime-focus corrector with fused-silica elements allows imaging over a 40‧ field of view with a new 40962 UV-sensitive prime-focus camera and filter wheel. A new telescope control system facilitates the remote operations model and provides 20″ rms pointing over the usable sky. Taken together, these improvements pave the way for a new generation of sky surveys supporting space-based missions and flexible-cadence observations advancing emerging astrophysical priorities such as planet detection, quasar variability, and long-term time-domain campaigns.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
... satisfactory quality] to the City for the purchase of ORION [supreg] Water Meter Monitor with Leak Detection... Leak Detection Indicator in-home water meter monitors manufactured in Malaysia by Escatech, Inc., under... conservation through the early detection and remediation of leaks. The City has used residential water meters...
IRAS sky survey atlas: Explanatory supplement
NASA Technical Reports Server (NTRS)
Wheelock, S. L.; Gautier, T. N.; Chillemi, J.; Kester, D.; Mccallon, H.; Oken, C.; White, J.; Gregorich, D.; Boulanger, F.; Good, J.
1994-01-01
This Explanatory Supplement accompanies the IRAS Sky Survey Atlas (ISSA) and the ISSA Reject Set. The first ISSA release in 1991 covers completely the high ecliptic latitude sky, absolute value of beta is greater than 50 deg, with some coverage down to the absolute value of beta approx. equal to 40 deg. The second ISSA release in 1992 covers ecliptic latitudes of 50 deg greater than the absolute value of beta greater than 20 deg, with some coverage down to the absolute value of beta approx. equal to 13 deg. The remaining fields covering latitudes within 20 deg of the ecliptic plane are of reduced quality compared to the rest of the ISSA fields and therefore are released as a separate IPAC product, the ISSA Reject Set. The reduced quality is due to contamination by zodiacal emission residuals. Special care should be taken when using the ISSA Reject images. In addition to information on the ISSA images, some information is provided in this Explanatory Supplement on the IRAS Zodiacal History File (ZOHF), Version 3.0, which was described in the December 1988 release memo. The data described in this Supplement are available at the National Space Science Data Center (NSSDC) at the Goddard Space Flight Center. The interested reader is referred to the NSSDC for access to the IRAS Sky Survey Atlas (ISSA).
Kenneth J. Grayson; Robert F. Wittwer; Michael G. Shelton
2002-01-01
Cone characteristics and seed quality for 16 released (stand density 14 square meters per hectare) and 16 unreleased (stand density 28 square meters per hectare) shortleaf pine (Pinus echinata Mill.) trees were described by d.b.h. class (28, 33, 38, 43 centimeters) and crown position (upper south, upper north, lower south, and lower north). The 38-...
Heinemann, Lutz
2010-11-01
A good understanding of the relevance of interfering factors having an impact on blood glucose (BG) measurement is needed to obtain the required quality. This depends on the application in which meters designed for self-monitoring of BG (SMBG) are used. By means of a literature search all publications (from January 1, 1980 to August 10, 2009) were identified that report about the influence of potentially interfering substances/factors on the measurement quality of BG meters. Certain substances (e.g., maltose) can have a profound and misleading impact on the BG measurement result when the enzymatic reaction embedded on the given test strips cross-reacts. Also, a number of other drugs (e.g., acetaminophen) and factors (like temperature and altitude) affect the reliability of BG measurement massively. However, the susceptibility of the BG meter (depending on the enzyme technology of the test strips) differs significantly. In daily practice the factors that have a relevant impact on the reliability of BG measurements with modern BG meters are rarely met. Clearly this also depends on the intended use (SMBG in patient hands vs. point-of-care testing in hospitals). To avoid misleading measurement results requires adequate training of all people involved.
NASA Technical Reports Server (NTRS)
Walthall, Harry G.; Reay, William G.
1993-01-01
Instrument measures seepage of groundwater into inland or coastal body of water. Positioned at depth as great as 40 meters, and measures flow at low rate and low pressure differential. Auxiliary pressure meter provides data for correlation of flow of groundwater with tides and sea states. Seepage meter operates independently for several weeks. Its sampling rate adjusted to suit hydrologic conditions; to measure more frequently when conditions changing rapidly. Used in water-quality management and for biological and geological research. Potential industrial uses include measurement of seepage of caustic and corrosive liquids.
NASA Astrophysics Data System (ADS)
Levine, Stephen; Hall, J. C.
2012-01-01
Lowell Observatory's 4.3-meter Discovery Channel Telescope is in the process of being commissioned now. The telescope is located 40 miles southeast of Flagstaff,AZ at an elevation of 7,800 feet. On sky testing of the major subsystems began in early fall 2011, with commissioning work leading up to first light in late spring of 2012. We present a review of the design specifications of the telescope and its major subsystems. This is followed by a discussion of the commissioning time-line, and current status and performance of the telescope, and optics (including the active optics support system for the primary mirror).
GNOSIS: a novel near-infrared OH suppression unit at the AAT
NASA Astrophysics Data System (ADS)
Trinh, C. Q.; Ellis, S. C.; Lawrence, J. S.; Horton, A. J.; Bland-Hawthorn, J.; Leon-Saval, S. G.; Bryant, J.; Case, S.; Colless, M.; Couch, W.; Freeman, K.; Gers, L.; Glazebrook, K.; Haynes, R.; Lee, S.; Löhmannsröben, H.-G.; Miziarski, S.; O'Byrne, J.; Rambold, W.; Roth, M. M.; Schmidt, B.; Shortridge, K.; Smedley, S.; Tinney, C. G.; Xavier, P.; Zheng, J.
2012-09-01
GNOSIS has provided the first on-telescope demonstration of a concept to utilize complex aperioidc fiber Bragg gratings to suppress the 103 brightest atmospheric hydroxyl emission doublets between 1.47-1.7 μm. The unit is designed to be used at the 3.9-meter Anglo-Australian Telescope (AAT) feeding the IRIS2 spectrograph. Unlike previous atmospheric suppression techniques GNOSIS suppresses the lines before dispersion. We present the results of laboratory and on-sky tests from instrument commissioning. These tests reveal excellent suppression performance by the gratings and high inter-notch throughput, which combine to produce high fidelity OH-free spectra.
Advanced X-Ray Timing Array Mission: Conceptual Spacecraft Design Study
NASA Technical Reports Server (NTRS)
Hopkins, R. C.; Johnson, L.; Thomas, H. D.; Wilson-Hodge, C. A.; Baysinger, M.; Maples, C. D.; Fabisinski, L.L.; Hornsby, L.; Thompson, K. S.; Miernik, J. H.
2011-01-01
The Advanced X-Ray Timing Array (AXTAR) is a mission concept for submillisecond timing of bright galactic x-ray sources. The two science instruments are the Large Area Timing Array (LATA) (a collimated instrument with 2-50-keV coverage and over 3 square meters of effective area) and a Sky Monitor (SM), which acts as a trigger for pointed observations of x-ray transients. The spacecraft conceptual design team developed two spacecraft concepts that will enable the AXTAR mission: A minimal configuration to be launched on a Taurus II and a larger configuration to be launched on a Falcon 9 or similar vehicle.
NASA Astrophysics Data System (ADS)
Hayes, Brian
1994-12-01
Gleaning further clues to the structure of the universe will require larger data samples. To that end, a major new survey of the skies called the Sloan Digital Star Survey (SDSS), is in preparation. It will catalog some 50 million galaxies and about 70 million stars. A new 2.5 meter telescope to be erected at Apache Point Observatory in New Mexico will be dedicated to the survey. The telescope is not the key innovation that will make the survey possible. The crucial factor is the technology for digitally recording large numbers of images and spectra and for automating the analysis, recognition, and classification of those images and spectra. The methods to be used are discussed.
The First Pan-Starrs Medium Deep Field Variable Star Catalog
NASA Astrophysics Data System (ADS)
Flewelling, Heather
2013-01-01
We present the first Pan-Starrs 1 Medium Deep Field Variable Star Catalog (PS1-MDF-VSC). The Pan-Starrs 1 (PS1) telescope is a 1.8 meter survey telescope with a 1.4 Gigapixel camera, and is located in Haleakala, Hawaii. The Medium Deep survey, which consists of 10 fields located uniformly across the sky, totalling 70 square degrees, is observed each night, in 2-3 filters per field, with 8 exposures per filter. We have located and classified several hundred periodic variable stars within the Medium Deep fields, and we present the first catalog listing the properties of these variable stars.
NASA Technical Reports Server (NTRS)
Johnson, F. S.; Mo, T.; Green, A. E. S.
1976-01-01
Tabulated values are presented for ultraviolet radiation at the earth's surface as a function of wavelength, latitude, and season, for clear sky and seasonally and latitudinally averaged ozone amounts. These tabulations can be combined with any biological sensitivity function in order to obtain the seasonal and latitudinal variation of the corresponding effective doses. The integrated dosages, based on the erythemal sensitivity curve and on the Robertson-Berger sunburn-meter sensitivity curve, have also been calculated, and these are found to vary with latitude and season in very nearly the same way as 307 and 314 nm radiation, respectively.
Capillary glucose meter accuracy and sources of error in the ambulatory setting.
Lunt, Helen; Florkowski, Christopher; Bignall, Michael; Budgen, Christopher
2010-03-05
Hand-held glucose meters are used throughout the health system by both patients with diabetes and also by health care practitioners. Glucose meter technology is constantly evolving. The current generation of meters and strips are quick to use and require a very small volume of blood. This review aims to describe meters currently available in New Zealand, for use in the ambulatory setting. It also aims to discuss the limits of meter performance and provide technical information that is relevant to the clinician, using locally available data. Commoner causes and consequences of end-user (patient and health professional) error are illustrated using clinical case examples. No meter offers definite advantages over other meters in all clinical situations, rather meters should be chosen because they fit the needs of individual patients and because the provider is able to offer appropriate educational and quality assurance backup to the meter user. A broad understanding of the advantages and disadvantages of the subsidised meter systems available in New Zealand will help the health practitioner decide when it is in the best interests of their patients to change or update meter technology.
NASA Astrophysics Data System (ADS)
Pipkin, Ashley; Duriscoe, Dan M.; Lughinbuhl, Christian
2017-01-01
Artificial light at night, when observed at some distance from a city, results in a dome of sky glow, brightest at the horizon. The spectral power distribution of electric light utilized will determine its color of the light dome and the amount of light will determine its brightness. Recent outdoor lighting technologies have included blue-rich light emitting diode (LED) sources that may increase the relative amount of blue to green light in sky glow compared to typical high pressure sodium (HPS) sources with warmer spectra. Measuring and monitoring this effect is important to the preservation of night sky visual quality as seen from undeveloped areas outside the city, such as parks or other protected areas, since the dark-adapted human eye is more sensitive to blue and green. We present a method using a wide field CCD camera which images the entire sky in both Johnson V and B photometric bands. Standard stars within the images are used for calibration. The resulting all-sky brightness maps, and a derived B-V color index map, provide a means to assess and track the impact of specific outdoor lighting practices. We also present example data from several cities, including Las Vegas, Nevada, Flagstaff, Arizona, and Cheyenne, Wyoming.
NASA Technical Reports Server (NTRS)
Leatherwood, J. D.; Dempsey, T. K.; Clevenson, S. A.; Stephens, D. G. (Inventor)
1983-01-01
A ride quality meter is disclosed that automatically transforms vibration and noise measurements into a single number index of passenger discomfort. The noise measurements are converted into a noise discomfort value. The vibrations are converted into single axis discomfort values which are then converted into a combined axis discomfort value. The combined axis discomfort value is corrected for time duration and then summed with the noise discomfort value to obtain a total discomfort value.
NASA Astrophysics Data System (ADS)
Nott, Julian
This paper will describe practical work flying prototype balloons in the "The Titan Sky Simulator TM " in conditions approximating those found in Titan's atmosphere. Saturn's moon, Titan, is attracting intense scientific interest. This has led to wide interest in exploring it with Aerobots, balloons or airships. Their function would be similar to the Rovers exploring Mars, but instead of moving laboriously across the rough terrain on wheels, they would float freely from location to location. To design any balloon or airship it is essential to know the temperature of the lifting gas as this influences the volume of the gas, which in turn influences the lift. To determine this temperature it is necessary to know how heat is transferred between the craft and its surroundings. Heat transfer for existing balloons is well understood. However, Titan conditions are utterly different from those in which balloons have ever been flown, so heat transfer rates cannot currently be calculated. In particular, thermal radiation accounts for most heat transfer for existing balloons but over Titan heat transfer will be dominated by convection. To be able to make these fundamental calculations, it is necessary to get fundamental experimental data. This is being obtained by flying balloons in a Simulator filled with nitrogen gas at very low temperature, about 95° K / minus 180° C, typical of Titan's temperatures. Because the gas in the Simulator is so cold, operating at atmospheric pressure the density is close to that of Titan's atmosphere. "The Titan Sky Simulator TM " has an open interior approximately 4.5 meter tall and 2.5 meters square. It has already been operated at 95° K/-180° C. By the time of the Conference it is fully expected to have data to present from actual balloons flying at this temperature. Perhaps the most important purpose of this testing is to validate numerical [computational fluid dynamics] models being developed by Tim Colonius of Caltech. These numerical models will be very valuable: once validated, a wide range of Titan aerobot designs can be analyzed rapidly. It is currently expected that Montgolfiere balloons ["hot air balloons"] will prove most suitable for Titan. However, the fundamental data obtained will be equally valuable for designing of any type of Titan Aerobot. This work is supported by the NASA Jet Propulsion Laboratory with Jeffrey Hall as program manager.
Cosmic Light: Educating the Public about the Dark Side of IYL
NASA Astrophysics Data System (ADS)
Walker, Constance Elaine; Green, Richard F.
2015-08-01
A role of IAU Commission 50 (C50) on Protection of Existing and Potential Observatory Sites is to provide an interface to key international activities with potential impact on sites, as well as outdoor lighting design practices and public perception. The current prominent example is IAU’s interface to the International Year of Light (IYL), for which C50 proposed and initiated an IYL Working Group (WG) called Cosmic Light with strong overlap with its own Steering Committee, which was then formally established as an Executive Committee WG. The WG became the point of contact for the IYL organizers from the physics/photonics community, and solicited and selected proposals for IAU seed money for programs of international scope. The funded proposals were all de facto continuations of efforts initiated for the IYA. They include the Galileoscope; the “Light Beyond the Bulb” exhibit of images built on the heritage of “From the Earth to the Universe” and a group of “Dark Sky Awareness” educational materials, including a sky measuring app for iPhones, newly-designed Quality Lighting Teaching Kits, a powerful set of “DarkSky EDU” materials, and a Globe at Night program tuned to the IYL. A major criterion was sustainability - that the project would continue beyond the IYL itself, and have ongoing impact for astronomy and dark skies education and outreach.The WG also encouraged and endorsed strong national and regional outreach efforts and participated in the planning for the opening ceremonies and highly visible global activities such as Einstein’s birthday celebration (using hashtag #31415), Super Pi Day (14 March), International Night of Sky Glow Observations (14 March & 12 September), Earth Hour (28 March), International Dark-Sky Week (13-18 April), the Earth and Sky Photo Contest (due 22 April), Global Open Lab Days (9-25 May), the Eratosthenes Project 2015 (measurements 21 June & 21 September), 100 Hours of Light (25-28 September), the international Einstein centenary day for General Relativity and gravitation (25 November) and an XPhoton Challenge on quality lighting and dark skies preservation. Updates, future plans and a guide on participation will be given during the presentation. More information is at http://www.iau.org/iyl/.
NASA/MSFC ground-based Doppler lidar nocturnal boundary layer experiment (Noblex)
NASA Technical Reports Server (NTRS)
Emmitt, G. D.
1984-01-01
During the summer of 1982, NASA/MSFC's ground-based CO2 Doppler Lidar Velocimeter (DLV) was deployed at the Denver Stapleton Airport as part of NASA's participation in the JAWS (Joint Airport Weather Studies) program. Configured to measure the radial wind component within a 10 km radius, the conically scanning lidar was used to examine the evolution of a nocturnal boundary layer under the conditions of cloud free skies and rolling terrain. A valley drainage flow was detected and a two dimension flow visualization constructed. The depth of the gravity current was -700 meters while the depth of the creek valley was -150 meters. This deep drainage flow was detectable for distances of 30 to 40 km from the exit region of the valley. Although the sample period (2000 to 2300 CST) was short and only one nocturnal boundary layer case examined, the usefulness of the DLV was demonstrated as well as the care that must be exercised in interpreting lidar data taken in a stable boundary layer in the vicinity of subtle terrain features.
NOAO's next-generation optical spectrograph
NASA Astrophysics Data System (ADS)
Barden, Samuel C.; Harmer, Charles F.; Blakley, Rick D.; Parks, Rachel J.
2000-08-01
The National Optical Astronomy Observatory is developing a new, wide-field, imaging spectrograph for use on its existing 4-meter telescopes. This Next Generation Optical Spectrograph (NGOS) will utilize volume-phase holographic grating technology and will have a mosaiced detector array to image the spectra over a field of view that will be something like 10.5 by 42 arc-minutes on the sky. The overall efficiency of the spectrograph should be quite high allowing it to outperform the current RC spectrograph by factors of 10 to 20 and the Hydra multi-fiber instrument by a facto of fiber to ten per object. The operational range of the instrument will allow observations within the optical and near-IR regions. Spectral resolutions will go from R equals 1000 to at least R equals 5000 with 1.4 arc-second slits. The large size of this instrument, with a beam diameter of 200 mm and an overall length of nearly 3 meters, presents a significant challenge in mounting it at the Cassegrain location of the telescope. Design trades and options that allow it to fit are discussed.
Water use data to enhance scientific and policy insight
NASA Astrophysics Data System (ADS)
Konar, M.
2017-12-01
We live in an era of big data. However, water use data remains sparse. There is an urgent need to enhance both the quality and resolution of water data. Metered water use information - as opposed to estimated water use, typically based on climate - would enhance the quality of existing water databases. Metered water use data would enable the research community to evaluate the "who, where, and when" of water use. Importantly, this information would enable the scientific community to better understand decision making related to water use (i.e. the "why"), providing the insight necessary to guide policies that promote water conservation. Metered water use data is needed at a sufficient resolution (i.e. spatial, temporal, and water user) to fully resolve how water is used throughout the economy and society. Improving the quality and resolution of water use data will enable scientific understanding that can inform policy.
NASA Technical Reports Server (NTRS)
He, Hao; Loughner, Christopher P.; Stehr, Jeffrey W.; Arkinson, Heather L.; Brent, Lacey C.; Follette-Cook, Melanie B.; Tzortziou, Maria A.; Pickering, Kenneth E.; Thompson, Anne M.; Martins, Douglas K.;
2013-01-01
During a classic heat wave with record high temperatures and poor air quality from July 18 to 23, 2011, an elevated reservoir of air pollutants was observed over and downwind of Baltimore, MD, with relatively clean conditions near the surface. Aircraft and ozonesonde measurements detected approximately 120 parts per billion by volume ozone at 800 meters altitude, but approximately 80 parts per billion by volume ozone near the surface. High concentrations of other pollutants were also observed around the ozone peak: approximately 300 parts per billion by volume CO at 1200 meters, approximately 2 parts per billion by volume NO2 at 800 meters, approximately 5 parts per billion by volume SO2 at 600 meters, and strong aerosol optical scattering (2 x 10 (sup 4) per meter) at 600 meters. These results suggest that the elevated reservoir is a mixture of automobile exhaust (high concentrations of O3, CO, and NO2) and power plant emissions (high SO2 and aerosols). Back trajectory calculations show a local stagnation event before the formation of this elevated reservoir. Forward trajectories suggest an influence on downwind air quality, supported by surface ozone observations on the next day over the downwind PA, NJ and NY area. Meteorological observations from aircraft and ozonesondes show a dramatic veering of wind direction from south to north within the lowest 5000 meters, implying that the development of the elevated reservoir was caused in part by the Chesapeake Bay breeze. Based on in situ observations, Community Air Quality Multi-scale Model (CMAQ) forecast simulations with 12 kilometers resolution overestimated surface ozone concentrations and failed to predict this elevated reservoir; however, CMAQ research simulations with 4 kilometers and 1.33 kilometers resolution more successfully reproduced this event. These results show that high resolution is essential for resolving coastal effects and predicting air quality for cities near major bodies of water such as Baltimore on the Chesapeake Bay and downwind areas in the Northeast.
LSST active optics system software architecture
NASA Astrophysics Data System (ADS)
Thomas, Sandrine J.; Chandrasekharan, Srinivasan; Lotz, Paul; Xin, Bo; Claver, Charles; Angeli, George; Sebag, Jacques; Dubois-Felsmann, Gregory P.
2016-08-01
The Large Synoptic Survey Telescope (LSST) is an 8-meter class wide-field telescope now under construction on Cerro Pachon, near La Serena, Chile. This ground-based telescope is designed to conduct a decade-long time domain survey of the optical sky. In order to achieve the LSST scientific goals, the telescope requires delivering seeing limited image quality over the 3.5 degree field-of-view. Like many telescopes, LSST will use an Active Optics System (AOS) to correct in near real-time the system aberrations primarily introduced by gravity and temperature gradients. The LSST AOS uses a combination of 4 curvature wavefront sensors (CWS) located on the outside of the LSST field-of-view. The information coming from the 4 CWS is combined to calculate the appropriate corrections to be sent to the 3 different mirrors composing LSST. The AOS software incorporates a wavefront sensor estimation pipeline (WEP) and an active optics control system (AOCS). The WEP estimates the wavefront residual error from the CWS images. The AOCS determines the correction to be sent to the different degrees of freedom every 30 seconds. In this paper, we describe the design and implementation of the AOS. More particularly, we will focus on the software architecture as well as the AOS interactions with the various subsystems within LSST.
Developing Starlight connections with UNESCO sites through the Biosphere Smart
NASA Astrophysics Data System (ADS)
Marin, Cipriano
2015-08-01
The large number of UNESCO Sites around the world, in outstanding sites ranging from small islands to cities, makes it possible to build and share a comprehensive knowledge base on good practices and policies on the preservation of the night skies consistent with the protection of the associated scientific, natural and cultural values. In this context, the Starlight Initiative and other organizations such as IDA play a catalytic role in an essential international process to promote comprehensive, holistic approaches on dark sky preservation, astronomical observation, environmental protection, responsible lighting, sustainable energy, climate change and global sustainability.Many of these places have the potential to become models of excellence to foster the recovery of the dark skies and its defence against light pollution, included some case studies mentioned in the Portal to the Heritage of Astronomy.Fighting light pollution and recovering starry sky are already elements of a new emerging culture in biosphere reserves and world heritage sites committed to acting on climate change and sustainable development. Over thirty territories, including biosphere reserves and world heritage sites, have been developed successful initiatives to ensure night sky quality and promote sustainable lighting. Clear night skies also provide sustainable income opportunities as tourists and visitors are eagerly looking for sites with impressive night skies.Taking into account the high visibility and the ability of UNESCO sites to replicate network experiences, the Starlight Initiative has launched an action In cooperation with Biosphere Smart, aimed at promoting the Benchmark sites.Biosphere Smart is a global observatory created in partnership with UNESCO MaB Programme to share good practices, and experiences among UNESCO sites. The Benchmark sites window allows access to all the information of the most relevant astronomical heritage sites, dark sky protected areas and other places committed to the preservation of the values associated with the night sky. A new step ahead in our common task of protecting the starry skies at UNESCO sites.
The on-site quality-assurance system for Hyper Suprime-Cam: OSQAH
NASA Astrophysics Data System (ADS)
Furusawa, Hisanori; Koike, Michitaro; Takata, Tadafumi; Okura, Yuki; Miyatake, Hironao; Lupton, Robert H.; Bickerton, Steven; Price, Paul A.; Bosch, James; Yasuda, Naoki; Mineo, Sogo; Yamada, Yoshihiko; Miyazaki, Satoshi; Nakata, Fumiaki; Koshida, Shintaro; Komiyama, Yutaka; Utsumi, Yousuke; Kawanomoto, Satoshi; Jeschke, Eric; Noumaru, Junichi; Schubert, Kiaina; Iwata, Ikuru; Finet, Francois; Fujiyoshi, Takuya; Tajitsu, Akito; Terai, Tsuyoshi; Lee, Chien-Hsiu
2018-01-01
We have developed an automated quick data analysis system for data quality assurance (QA) for Hyper Suprime-Cam (HSC). The system was commissioned in 2012-2014, and has been offered for general observations, including the HSC Subaru Strategic Program, since 2014 March. The system provides observers with data quality information, such as seeing, sky background level, and sky transparency, based on quick analysis as data are acquired. Quick-look images and validation of image focus are also provided through an interactive web application. The system is responsible for the automatic extraction of QA information from acquired raw data into a database, to assist with observation planning, assess progress of all observing programs, and monitor long-term efficiency variations of the instrument and telescope. Enhancements of the system are being planned to facilitate final data analysis, to improve the HSC archive, and to provide legacy products for astronomical communities.
NASA Technical Reports Server (NTRS)
Warren, Wayne H., Jr.
2001-01-01
An updated and improved NASA spacecraft attitude determination catalog, now called SKY2000, Version 3, has been prepared and quality assured. The highest priority goals were to replace the astrometric (positions and motions) and photometric (brightnesses and colors) data with the most recent and accurate data available. Quality assurance has been performed in a fairly straightforward manner, i.e., without extensive data checking and analysis, and many errors and Inconsistencies were corrected. Additional work should eventually be done on the variability and multiple-star data In the catalog, while certain other data can be significantly Improved. The current version of the catalog can be found at the GSFC Flight Dynamics website: http://cheli.gsfc.nasa.gov/dist/attitude/skymap.html. Supporting information and reference materials (published papers, format and data descriptions, etc.) can also be found at the website.
Taylor, R. Lynn
1995-01-01
Depths and velocities, measured at sample points after benthic macroinvertebrate sampling, ranged from 0.03 to 0.30 meter and from 0.06 to 1.2 meters per second, respectively. Measurable stream discharge ranged from 0.01 to 0.27 cubic meter per second. During two of the sampling periods, no flow was at site 1.
Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain
NASA Astrophysics Data System (ADS)
Helbig, N.; Löwe, H.; Mayer, B.; Lehning, M.
2010-09-01
A model that computes the surface radiation balance for all sky conditions in complex terrain is presented. The spatial distribution of direct and diffuse sky radiation is determined from observations of incident global radiation, air temperature, and relative humidity at a single measurement location. Incident radiation under cloudless sky is spatially derived from a parameterization of the atmospheric transmittance. Direct and diffuse sky radiation for all sky conditions are obtained by decomposing the measured global radiation value. Spatial incident radiation values under all atmospheric conditions are computed by adjusting the spatial radiation values obtained from the parametric model with the radiation components obtained from the decomposition model at the measurement site. Topographic influences such as shading are accounted for. The radiosity approach is used to compute anisotropic terrain reflected radiation. Validations of the shortwave radiation balance model are presented in detail for a day with cloudless sky. For a day with overcast sky a first validation is presented. Validation of a section of the horizon line as well as of individual radiation components is performed with high-quality measurements. A new measurement setup was designed to determine terrain reflected radiation. There is good agreement between the measurements and the modeled terrain reflected radiation values as well as with incident radiation values. A comparison of the model with a fully three-dimensional radiative transfer Monte Carlo model is presented. That validation reveals a good agreement between modeled radiation values.
NASA Astrophysics Data System (ADS)
Meredith, Kate K.; Masters, Karen; Raddick, Jordan; Lundgren, Britt
2015-08-01
The Sloan Digital Sky Survey (SDSS) web interface “SkyServer” has long included online educational materials designed to help students and the public discover the fundamentals of modern astronomy using real observations from the SDSS database. The newly launched SDSS Voyages website updates and expands these activities to reflect new data from subsequent generations of the survey, advances in web technology, and evolving practices in science education. Voyages provides access to quality astronomy, astrophysics, and engineering materials to educators seeking an inquiry approach to fundamental concepts. During this session we will provide an overview of the design and development of Skyserver Voyages and discuss ways to apply this resource at K-12 and university levels.
'Lyell' Panorama inside Victoria Crater
NASA Technical Reports Server (NTRS)
2008-01-01
During four months prior to the fourth anniversary of its landing on Mars, NASA's Mars Exploration Rover Opportunity examined rocks inside an alcove called 'Duck Bay' in the western portion of Victoria Crater. The main body of the crater appears in the upper right of this stereo panorama, with the far side of the crater lying about 800 meters (half a mile) away. Bracketing that part of the view are two promontories on the crater's rim at either side of Duck Bay. They are 'Cape Verde,' about 6 meters (20 feet) tall, on the left, and 'Cabo Frio,' about 15 meters (50 feet) tall, on the right. The rest of the image, other than sky and portions of the rover, is ground within Duck Bay. Opportunity's targets of study during the last quarter of 2007 were rock layers within a band exposed around the interior of the crater, about 6 meters (20 feet) from the rim. Bright rocks within the band are visible in the foreground of the panorama. The rover science team assigned informal names to three subdivisions of the band: 'Steno,' 'Smith,' and 'Lyell.' This view combines many images taken by Opportunity's panoramic camera (Pancam) from the 1,332nd through 1,379th Martian days, or sols, of the mission (Oct. 23 to Dec. 11, 2007). Images taken through Pancam filters centered on wavelengths of 753 nanometers, 535 nanometers and 432 nanometers were mixed to produce an approximately true-color panorama. Some visible patterns in dark and light tones are the result of combining frames that were affected by dust on the front sapphire window of the rover's camera. Opportunity landed on Jan. 25, 2004, Universal Time, (Jan. 24, Pacific Time) inside a much smaller crater about 6 kilometers (4 miles) north of Victoria Crater, to begin a surface mission designed to last 3 months and drive about 600 meters (0.4 mile).'Lyell' Panorama inside Victoria Crater (Stereo)
NASA Technical Reports Server (NTRS)
2008-01-01
During four months prior to the fourth anniversary of its landing on Mars, NASA's Mars Exploration Rover Opportunity examined rocks inside an alcove called 'Duck Bay' in the western portion of Victoria Crater. The main body of the crater appears in the upper right of this stereo panorama, with the far side of the crater lying about 800 meters (half a mile) away. Bracketing that part of the view are two promontories on the crater's rim at either side of Duck Bay. They are 'Cape Verde,' about 6 meters (20 feet) tall, on the left, and 'Cabo Frio,' about 15 meters (50 feet) tall, on the right. The rest of the image, other than sky and portions of the rover, is ground within Duck Bay. Opportunity's targets of study during the last quarter of 2007 were rock layers within a band exposed around the interior of the crater, about 6 meters (20 feet) from the rim. Bright rocks within the band are visible in the foreground of the panorama. The rover science team assigned informal names to three subdivisions of the band: 'Steno,' 'Smith,' and 'Lyell.' This view incorporates many images taken by Opportunity's panoramic camera (Pancam) from the 1,332nd through 1,379th Martian days, or sols, of the mission (Oct. 23 to Dec. 11, 2007). It combines a stereo pair so that it appears three-dimensional when seen through blue-red glasses. Some visible patterns in dark and light tones are the result of combining frames that were affected by dust on the front sapphire window of the rover's camera. Opportunity landed on Jan. 25, 2004, Universal Time, (Jan. 24, Pacific Time) inside a much smaller crater about 6 kilometers (4 miles) north of Victoria Crater, to begin a surface mission designed to last 3 months and drive about 600 meters (0.4 mile).Development and application of a microarray meter tool to optimize microarray experiments
Rouse, Richard JD; Field, Katrine; Lapira, Jennifer; Lee, Allen; Wick, Ivan; Eckhardt, Colleen; Bhasker, C Ramana; Soverchia, Laura; Hardiman, Gary
2008-01-01
Background Successful microarray experimentation requires a complex interplay between the slide chemistry, the printing pins, the nucleic acid probes and targets, and the hybridization milieu. Optimization of these parameters and a careful evaluation of emerging slide chemistries are a prerequisite to any large scale array fabrication effort. We have developed a 'microarray meter' tool which assesses the inherent variations associated with microarray measurement prior to embarking on large scale projects. Findings The microarray meter consists of nucleic acid targets (reference and dynamic range control) and probe components. Different plate designs containing identical probe material were formulated to accommodate different robotic and pin designs. We examined the variability in probe quality and quantity (as judged by the amount of DNA printed and remaining post-hybridization) using three robots equipped with capillary printing pins. Discussion The generation of microarray data with minimal variation requires consistent quality control of the (DNA microarray) manufacturing and experimental processes. Spot reproducibility is a measure primarily of the variations associated with printing. The microarray meter assesses array quality by measuring the DNA content for every feature. It provides a post-hybridization analysis of array quality by scoring probe performance using three metrics, a) a measure of variability in the signal intensities, b) a measure of the signal dynamic range and c) a measure of variability of the spot morphologies. PMID:18710498
Evaluation of a new portable glucose meter designed for the use in cats.
Zini, E; Moretti, S; Tschuor, F; Reusch, C E
2009-09-01
Portable blood glucose meters (PBGMs) are useful in the management of diabetes mellitus in cats. In the present study we compared the performance of two PBGMs: the AlphaTRAK (Abbott Animal Health, Maidenhead, England) specifically developed for dogs and cats, and the Ascensia ELITE (Bayer HealthCare, Zurich, Switzerland) developed for humans. Quality parameters, including precision and accuracy, were better for the AlphaTRAK meter compared to Ascensia ELITE. While the AlphaTRAK meter results did not differ from the reference method, results from the Ascensia ELITE were significantly (P<0.001) lower. The superior performance of the AlphaTRAK meter supports its use to monitor blood glucose levels in cats.
A New Method to Cross Calibrate and Validate TOMS, SBUV/2, and SCIAMACHY Measurements
NASA Technical Reports Server (NTRS)
Ahmad, Ziauddin; Hilsenrath, Ernest; Einaudi, Franco (Technical Monitor)
2001-01-01
A unique method to validate back scattered ultraviolet (buv) type satellite data that complements the measurements from existing ground networks is proposed. The method involves comparing the zenith sky radiance measurements from the ground to the nadir radiance measurements taken from space. Since the measurements are compared directly, the proposed method is superior to any other method that involves comparing derived products (for example, ozone), because comparison of derived products involve inversion algorithms which are susceptible to several type of errors. Forward radiative transfer (RT) calculations show that for an aerosol free atmosphere, the ground-based zenith sky radiance measurement and the satellite nadir radiance measurements can be predicted with an accuracy of better than 1 percent. The RT computations also show that for certain values of the solar zenith angles, the radiance comparisons could be better than half a percent. This accuracy is practically independent of ozone amount and aerosols in the atmosphere. Experiences with the Shuttle Solar Backscatter Ultraviolet (SSBUV) program show that the accuracy of the ground-based zenith sky radiance measuring instrument can be maintained at a level of a few tenth of a percent. This implies that the zenith sky radiance measurements can be used to validate Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet (SBUV/2), and The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) radiance data. Also, this method will help improve the long term precision of the measurements for better trend detection and the accuracy of other BUV products such as tropospheric ozone and aerosols. Finally, in the long term, this method is a good candidate to inter-calibrate and validate long term observations of upcoming operational instruments such as Global Ozone Monitoring Experiment (GOME-2), Ozone Mapping Instrument (OMI), Ozone Dynamics Ultraviolet Spectrometer (ODUS), and Ozone Mapping and Profiler Suite (OMPS).
ViLLaGEs: opto-mechanical design of an on-sky visible-light MEMS-based AO system
NASA Astrophysics Data System (ADS)
Grigsby, Bryant; Lockwood, Chris; Baumann, Brian; Gavel, Don; Johnson, Jess; Ammons, S. Mark; Dillon, Daren; Morzinski, Katie; Reinig, Marc; Palmer, Dave; Severson, Scott; Gates, Elinor
2008-07-01
Visible Light Laser Guidestar Experiments (ViLLaGEs) is a new Micro-Electro Mechanical Systems (MEMS) based visible-wavelength adaptive optics (AO) testbed on the Nickel 1-meter telescope at Lick Observatory. Closed loop Natural Guide Star (NGS) experiments were successfully carried out during engineering during the fall of 2007. This is a major evolutionary step, signaling the movement of AO technologies into visible light with a MEMS mirror. With on-sky Strehls in I-band of greater than 20% during second light tests, the science possibilities have become evident. Described here is the advanced engineering used in the design and construction of the ViLLaGEs system, comparing it to the LickAO infrared system, and a discussion of Nickel dome infrastructural improvements necessary for this system. A significant portion of the engineering discussion revolves around the sizable effort that went towards eliminating flexure. Then, we detail upgrades to ViLLaGEs to make it a facility class instrument. These upgrades will focus on Nyquist sampling the diffraction limited point spread function during open loop operations, motorization and automation for technician level alignments, adding dithering capabilities and changes for near infrared science.
Optical Design and Sensitivity of the Probe of Inflation and Cosmic Origins
NASA Astrophysics Data System (ADS)
Young, Karl S.; Hanany, Shaul; Wen, Qi
2018-01-01
The Probe of Inflation and Cosmic Origins (PICO) is a NASA probe-class mission concept being studied in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. PICO will detect, or place new limits on, the energy scale of inflation and the physics of quantum gravity, determine the effective number of neutrino species and constrain the sum of neutrino masses, measure the optical depth to reionization to the cosmic variance limit, and shed new light on the role of magnetic fields in galactic evolution and star formation by making polarimetric maps of the full mm-wave sky with sensitivity 70 times higher than the Planck space mission. The maps made by PICO will provide a catalog of thousands of new proto clusters and infrared galaxies as well as tens of thousands of galaxy clusters which will further constrain cosmological parameters.PICO will have a 1.4 meter aperture telescope with 21 bands from 20 to 800 Ghz. We show the current PICO optics and discuss trade-offs between types of optical systems, limits imposed by scan strategies, and maximizing the number of detectors on sky. We present the instrument’s focal plane and the expected mission sensitivity.
The Pan-STARRS 1 Medium Deep Field Variable Star Catalog
NASA Astrophysics Data System (ADS)
Flewelling, Heather
2015-01-01
We present the first Pan-STARRS 1 Medium Deep Field Variable Star Catalog (PS1-MDF-VSC). The Pan-STARRS 1 (PS1) telescope is a 1.8 meter survey telescope with a 1.4 Gigapixel camera, located in Haleakala, Hawaii. The Medium Deep survey, which consists of 10 fields located uniformly across the sky, totalling 70 square degrees, is observed each night, in 2-3 filters per field, with 8 exposures per filter, resulting in 3000-4000 data points per star over a time span of 3.5 years. To find the variables, we select the stars with > 200 detections, between 16th and 21st magnitude. There are approximately 500k stars that fit this criteria, they then go through a lomb-scargle fitting routine to determine periodicity. After a periodicity cut, the ~400 candidates are classified by eye into different types of variable stars. We have identified several hundred variable stars, with periods ranging between a few minutes to a few days, and about half are not previously identified in the literature. We compare our results to the stripe 82 variable catalog, which overlaps part of the sky with the PS1 catalog.
The Pan-STARRS 1 Medium Deep Field Variable Star Catalog
NASA Astrophysics Data System (ADS)
Flewelling, Heather
2015-08-01
We present the first Pan-STARRS 1 Medium Deep Field Variable Star Catalog (PS1-MDF-VSC). The Pan-STARRS 1 (PS1) telescope is a 1.8 meter survey telescope with a 1.4 Gigapixel camera, located in Haleakala, Hawaii. The Medium Deep survey, which consists of 10 fields located uniformly across the sky, totalling 70 square degrees, is observed each night, in 2-3 filters per field, with 8 exposures per filter, resulting in 3000-4000 data points per star over a time span of 3.5 years. To find the variables, we select the stars with > 200 detections, between 16th and 21st magnitude. There are approximately 500k stars that fit this criteria, they then go through a lomb-scargle fitting routine to determine periodicity. After a periodicity cut, the ~400 candidates are classified by eye into different types of variable stars. We have identified several hundred variable stars, with periods ranging between a few minutes to a few days, and about half are not previously identified in the literature. We compare our results to the stripe 82 variable catalog, which overlaps part of the sky with the PS1 catalog.
NASA Astrophysics Data System (ADS)
Lu, Daren; Huo, Juan; Zhang, W.; Liu, J.
A series of satellite sensors in visible and infrared wavelengths have been successfully operated on board a number of research satellites, e.g. NOAA/AVHRR, the MODIS onboard Terra and Aqua, etc. A number of cloud and aerosol products are produced and released in recent years. However, the validation of the product quality and accuracy are still a challenge to the atmospheric remote sensing community. In this paper, we suggest a ground based validation scheme for satellite-derived cloud and aerosol products by using combined visible and thermal infrared all sky imaging observations as well as surface meteorological observations. In the scheme, a visible digital camera with a fish-eye lens is used to continuously monitor the all sky with the view angle greater than 180 deg. The digital camera system is calibrated for both its geometry and radiance (broad blue, green, and red band) so as to a retrieval method can be used to detect the clear and cloudy sky spatial distribution and their temporal variations. A calibrated scanning thermal infrared thermometer is used to monitor the all sky brightness temperature distribution. An algorithm is developed to detect the clear and cloudy sky as well as cloud base height by using sky brightness distribution and surface temperature and humidity as input. Based on these composite retrieval of clear and cloudy sky distribution, it can be used to validate the satellite retrievals in the sense of real-simultaneous comparison and statistics, respectively. What will be presented in this talk include the results of the field observations and comparisons completed in Beijing (40 deg N, 116.5 deg E) in year 2003 and 2004. This work is supported by NSFC grant No. 4002700, and MOST grant No 2001CCA02200
The Lunar Transit Telescope (LTT) - An early lunar-based science and engineering mission
NASA Technical Reports Server (NTRS)
Mcgraw, John T.
1992-01-01
The Sentinel, the soft-landed lunar telescope of the LTT project, is described. The Sentinel is a two-meter telescope with virtually no moving parts which accomplishes an imaging survey of the sky over almost five octaves of the electromagnetic spectrum from the ultraviolet into the infrared, with an angular resolution better than 0.1 arsec/pixel. The Sentinel will incorporate innovative techniques of interest for future lunar-based telescopes and will return significant engineering data which can be incorporated into future lunar missions. The discussion covers thermal mapping of the Sentinel, measurement of the cosmic ray flux, lunar dust, micrometeoroid flux, the lunar atmosphere, and lunar regolith stability and seismic activity.
NASA Astrophysics Data System (ADS)
Larson, Stephen
2007-05-01
The state and discovery rate of current NEO surveys reflects incremental improvements in a number of areas, such as detector size and sensitivity, computing capacity and availability of larger apertures. The result has been an increased discovery rate even with the expected reduction of objects left to discover. There are currently about 10 telescopes ranging in size from 0.5 - 1.5-meters carrying out full or part-time, regular surveying in both hemispheres. The sky is covered between 1-2 times per lunation to V~19, with a band near the ecliptic to V~20.5. We review the current survey programs and their contribution towards the Spaceguard goal of discovering at least 90% of the NEOs larger than 1 km.
Gijzen, Karlijn; Moolenaar, David L J; Weusten, Jos J A M; Pluim, Hendrik J; Demir, Ayse Y
2012-11-01
Implementation of tight glycemic control (TGC) and avoidance of hypoglycemia in intensive care unit (ICU) patients require frequent analysis of blood glucose. This can be achieved by accurate point-of-care (POC) hospital-use glucose meters. In this study one home-use and four different hospital-use POC glucose meters were evaluated in critically ill ICU patients. All patients (n = 80) requiring TGC were included in this study. For each patient three to six glucose measurements (n = 390) were performed. Blood glucose was determined by four hospital-use POC glucose meters, Roche Accu-Check Inform II System, HemoCue Glu201DM, Nova StatStrip, Abbott Precision Xceed Pro, and one home-use POC glucose meter, Menarini GlucoCard Memory PC. The criteria described in ISO 15197, Dutch TNO quality guideline and in NACB/ADA-2011 were applied in the comparisons. According to the ISO 15197, the percentages of the measured values that fulfilled the criterion were 99.5% by Roche, 95.1% by HemoCue, 91.0% by Nova, 96.6% by Abbott, and 63.3% by Menarini. According to the TNO quality guideline these percentages were 96.1% , 91.0% , 81.8% , 94.2% , and 47.7% , respectively. Application of the NACB/ADA guideline resulted in percentages of 95.6%, 89.2%, 77.9%, 93.4%, and 45.4%, respectively. When ISO 15197 was applied, Roche, HemoCue and Abbott fulfilled the criterion in this patient population, whereas Nova and Menarini did not. However, when TNO quality guideline and NACB/ADA 2011 guideline were applied only Roche fulfilled the criteria.
Sánchez-Margalet, Víctor; Rodriguez-Oliva, Manuel; Sánchez-Pozo, Cristina; Fernández-Gallardo, María Francisca; Goberna, Raimundo
2005-01-01
Portable meters for blood glucose concentrations are used at the patients bedside, as well as by patients for self-monitoring of blood glucose. Even though most devices have important technological advances that decrease operator error, the analytical goals proposed for the performance of glucose meters have been recently changed by the American Diabetes Association (ADA) to reach <5% analytical error and <7.9% total error. We studied 80 meters throughout the Virgen Macarena Hospital and we found most devices with performance error higher than 10%. The aim of the present study was to establish a new system to control portable glucose meters together with an educational program for nurses in a 1200-bed University Hospital to achieve recommended analytical goals, so that we could improve the quality of diabetes care. We used portable glucose meters connected on-line to the laboratory after an educational program for nurses with responsibilities in point-of-care testing. We evaluated the system by assessing total error of the glucometers using high- and low-level glucose control solutions. In a period of 6 months, we collected data from 5642 control samples obtained by 14 devices (Precision PCx) directly from the control program (QC manager). The average total error for the low-level glucose control (2.77 mmol/l) was 6.3% (range 5.5-7.6%), and even lower for the high-level glucose control (16.66 mmol/l), at 4.8% (range 4.1-6.5%). In conclusion, the performance of glucose meters used in our University Hospital with more than 1000 beds not only improved after the intervention, but the meters achieved the analytical goals of the suggested ADA/National Academy of Clinical Biochemistry criteria for total error (<7.9% in the range 2.77-16.66 mmol/l glucose) and optimal total error for high glucose concentrations of <5%, which will improve the quality of care of our patients.
RECENT DEVELOPMENTS IN HYDROLOGIC INSTRUMENTATION.
Latkovich, Vito J.
1985-01-01
The availability of space-age materials and implementation of state-of-the-art electronics is making possible the recent developments of hydrologic instrumentation. Material developments include: Synthetic-fiber sounding and tag lines; fiberglass wading rod; polymer (plastic) sheaves, pulleys and sampler components; and polymer (plastic) bucket wheels for current meters. These materials are very cost effective and efficient. Electromechanical and electronic developments and applications include: adaptable data acquisition system; downhole sampler for hazardous substances; current-meter digitizer; hydraulic power/drive system for discharge measurements and water-quality sampling; non-contact water-level sensors; minimum data recorder; acoustic velocity meters, and automated current meter discharge-measurement system.
ISS images for Observatory protection
NASA Astrophysics Data System (ADS)
Sánchez de Miguel, Alejandro; Zamorano, Jaime
2015-08-01
Light pollution is the main factor of degradation of the astronomical quality of the sky along the history. Astronomical observatories have been monitoring how the brightness of the sky varies using photometric measures of the night sky brightness mainly at zenith. Since the sky brightness depends in other factors such as sky glow, aerosols, solar activity and the presence of celestial objects, the continuous increase of light pollution in these enclaves is difficult to trace except when it is too late.Using models of light dispersion on the atmosphere one can determine which light pollution sources are increasing the sky brightness at the observatories. The input satellite data has been provided by DMSP/OLS and SNPP/VIIRS. Unfortunately their panchromatic bands (color blinded) are not useful to detect in which extension the increase is due to the dramatic change produced by the irruption of LED technology in outdoor lighting. The only instrument in the space that is able to distinguish between the various lighting technologies are the DSLR cameras used by the astronauts onboard the ISS.Current status for some astronomical observatories that have been imaged from the ISS is presented. We are planning to send an official request to NASA with a plan to get images for the most important astronomical observatories. We ask support for this proposal by the astronomical community and especially by the US-based researchers.
NASA Technical Reports Server (NTRS)
Colwell, R. N. (Principal Investigator)
1984-01-01
The geometric quality of TM film and digital products is evaluated by making selective photomeasurements and by measuring the coordinates of known features on both the TM products and map products. These paired observations are related using a standard linear least squares regression approach. Using regression equations and coefficients developed from 225 (TM film product) and 20 (TM digital product) control points, map coordinates of test points are predicted. The residual error vectors and analysis of variance (ANOVA) were performed on the east and north residual using nine image segments (blocks) as treatments. Based on the root mean square error of the 223 (TM film product) and 22 (TM digital product) test points, users of TM data expect the planimetric accuracy of mapped points to be within 91 meters and within 117 meters for the film products, and to be within 12 meters and within 14 meters for the digital products.
NASA Astrophysics Data System (ADS)
Werthimer, Dan; Anderson, David; Bowyer, Stuart; Cobb, Jeff; Demorest, Paul
2002-01-01
We summarize results from two radio and two optical SETI programs based at the University of California, Berkeley. We discuss the most promising candidate signals from these searches and present plans for future SETI searches, including SERENDIP V and SETI@home II. The ongoing SERENDIP sky survey searches for radio signals at the 300 meter Arecibo Observatory. SERENDIP IV uses a 168 million channel spectrum analyser and a dedicated receiver to take data 24 hours a day, year round. The sky survey covers a 100 MHz band centered at the 21 cm line (1420 MHz) and declinations from -2 to +38 degrees. SETI@home uses desktop computers of 3.5 million volunteers to analyse 50 Terabytes of data taken at Arecibo. The SETI@home sky survey is 10 times more sensitive and searches a much wider variety of signal types than SERRENDIP IV but covers only a 2.5 MHz band. SETI@home is the planet's largest supercomputer, averaging 25 Tflops. SETI@home participants have contributed over a million years of computing time so far. The SEVENDIP optical pulse search looks for nS time scale pulses at optical wavelengths. It utilizes an automated 30 inch telescope, three ultra fast photo multiplier tubes and a coincidence detector. The target list includes F,G,K and M stars, globular cluster and galaxies. The SPOCK optical SETI program searches for narrow band continuous signals using spectra taken by Marcy and his colleagues in their planet search at Keck observatory.
DESCQA: An Automated Validation Framework for Synthetic Sky Catalogs
NASA Astrophysics Data System (ADS)
Mao, Yao-Yuan; Kovacs, Eve; Heitmann, Katrin; Uram, Thomas D.; Benson, Andrew J.; Campbell, Duncan; Cora, Sofía A.; DeRose, Joseph; Di Matteo, Tiziana; Habib, Salman; Hearin, Andrew P.; Bryce Kalmbach, J.; Krughoff, K. Simon; Lanusse, François; Lukić, Zarija; Mandelbaum, Rachel; Newman, Jeffrey A.; Padilla, Nelson; Paillas, Enrique; Pope, Adrian; Ricker, Paul M.; Ruiz, Andrés N.; Tenneti, Ananth; Vega-Martínez, Cristian A.; Wechsler, Risa H.; Zhou, Rongpu; Zu, Ying; The LSST Dark Energy Science Collaboration
2018-02-01
The use of high-quality simulated sky catalogs is essential for the success of cosmological surveys. The catalogs have diverse applications, such as investigating signatures of fundamental physics in cosmological observables, understanding the effect of systematic uncertainties on measured signals and testing mitigation strategies for reducing these uncertainties, aiding analysis pipeline development and testing, and survey strategy optimization. The list of applications is growing with improvements in the quality of the catalogs and the details that they can provide. Given the importance of simulated catalogs, it is critical to provide rigorous validation protocols that enable both catalog providers and users to assess the quality of the catalogs in a straightforward and comprehensive way. For this purpose, we have developed the DESCQA framework for the Large Synoptic Survey Telescope Dark Energy Science Collaboration as well as for the broader community. The goal of DESCQA is to enable the inspection, validation, and comparison of an inhomogeneous set of synthetic catalogs via the provision of a common interface within an automated framework. In this paper, we present the design concept and first implementation of DESCQA. In order to establish and demonstrate its full functionality we use a set of interim catalogs and validation tests. We highlight several important aspects, both technical and scientific, that require thoughtful consideration when designing a validation framework, including validation metrics and how these metrics impose requirements on the synthetic sky catalogs.
The global blue-sky albedo change between 2000 - 2015 seen from MODIS
NASA Astrophysics Data System (ADS)
Chrysoulakis, N.; Mitraka, Z.; Gorelick, N.
2016-12-01
The land surface albedo is a critical physical variable, which influences the Earth's climate by affecting the energy budget and distribution in the Earth-atmosphere system. Blue-sky albedo estimates provide a quantitative means for better constraining global and regional scale climate models. The Moderate Resolution Imaging Spectroradiometer (MODIS) albedo product includes parameters for the estimation of both the directional-hemispherical surface reflectance (black-sky albedo) and the bi-hemispherical surface reflectance (white-sky albedo). This dataset was used here for the blue-sky albedo estimation over the globe on an 8-day basis at 0.5 km spatial resolution for the whole time period covered by MODIS acquisitions (i.e. 2000 until today). To estimate the blue-sky albedo, the fraction of the diffused radiation is needed, a function of the Aerosol Optical Thickness (AOT). Required AOT information was acquired from the MODIS AOT product at 1̊ × 1̊ spatial resolution. Since the blue-sky albedo depends on the solar zenith angle (SZA), the 8-day mean blue-sky albedo values were computed as averages of the corresponding values for the representative SZAs covering the 24-hour day. The estimated blue-sky albedo time series was analyzed to capture changes during the 15 period. All computation were performed using the Google Earth Engine (GEE). The GEE provided access to all the MODIS products needed for the analysis without the need of searching or downloading. Moreover, the combination of MODIS products in both temporal and spatial terms was fast and effecting using the GEE API (Application Program Interface). All the products covering the globe and for the time period of 15 years were processed via a single collection. Most importantly, GEE allowed for including the calculation of SZAs covering the 24-hour day which improves the quality of the overall product. The 8-day global products of land surface albedo are available through http://www.rslab.gr/downloads.html
NASA Astrophysics Data System (ADS)
Nelson, J.; Ruzek, M.
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a unique airborne observatory designed to operate in the lower stratosphere to altitudes as high as 45,000 feet and above 99.8 percent of Earths obscuring atmospheric water vapor. SOFIA's capabilities enable science and observations that will complement and extend past, present and future infrared (IR) telescopes in wavelength range, angular and spectral resolution, and observing flexibility. The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is nearing readiness for for open door flights and demonstration of early science results. Flying in the stratosphere, SOFIA allows observations throughout the infrared and submillimeter region. The SOFIA instrument complement includes broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at high resolution. First science flights will begin in early 2010. A great strength of SOFIA is the enormous breadth of its capabilities and the flexibility with which those capabilities can be modified and improved to take advantage of advances in infrared technology. This paper and presentation will highlight the following points: A 2.5-meter effective-diameter optical-quality telescope for diffraction-limited imaging beyond 25 micrometers, giving the sharpest view of the sky provided by any current or developmental IR telescope operating in the 30-60 micrometers region; Wavelength coverage from 0.3 micrometers to 1.6 mm and high resolution spectroscopy (R to 105) at wavelengths between 5 and 150 micrometers; An 8 arcmin FOV allowing use of very large detector arrays; Ready observer access to science instruments which can be serviced in flight and changed between flights; A low-risk ability to incorporate new science-enabling instrument technologies and to create a whole "new" observatory several times during the lifetime of the facility; Opportunity for continuous training of instrumentalists to develop and test the next generation of instrumentation for both suborbital and space applications; Mobility, which allows access to the entire sky and a vastly increased number of stellar occultation events; Unique opportunities for educators and journalists to participate first-hand in exciting astronomical observations. The mid- and far-IR wavelength regions are key to studying the dusty universe. SOFIA science emphasizes four major themes: Star and planet formation; the interstellar medium of the Milky Way; Galaxies and the galactic center; and Planetary science. These capabilities will enable a wide range of science investigations over SOFIA's 20-year operational lifetime. This paper will address SOFIA's nine first-light science instruments, capabilities, and development.
The w-effect in interferometric imaging: from a fast sparse measurement operator to superresolution
NASA Astrophysics Data System (ADS)
Dabbech, A.; Wolz, L.; Pratley, L.; McEwen, J. D.; Wiaux, Y.
2017-11-01
Modern radio telescopes, such as the Square Kilometre Array, will probe the radio sky over large fields of view, which results in large w-modulations of the sky image. This effect complicates the relationship between the measured visibilities and the image under scrutiny. In algorithmic terms, it gives rise to massive memory and computational time requirements. Yet, it can be a blessing in terms of reconstruction quality of the sky image. In recent years, several works have shown that large w-modulations promote the spread spectrum effect. Within the compressive sensing framework, this effect increases the incoherence between the sensing basis and the sparsity basis of the signal to be recovered, leading to better estimation of the sky image. In this article, we revisit the w-projection approach using convex optimization in realistic settings, where the measurement operator couples the w-terms in Fourier and the de-gridding kernels. We provide sparse, thus fast, models of the Fourier part of the measurement operator through adaptive sparsification procedures. Consequently, memory requirements and computational cost are significantly alleviated at the expense of introducing errors on the radio interferometric data model. We present a first investigation of the impact of the sparse variants of the measurement operator on the image reconstruction quality. We finally analyse the interesting superresolution potential associated with the spread spectrum effect of the w-modulation, and showcase it through simulations. Our c++ code is available online on GitHub.
CONCAM's Fuzzy-Logic All-Sky Star Recognition Algorithm
NASA Astrophysics Data System (ADS)
Shamir, L.; Nemiroff, R. J.
2004-05-01
One of the purposes of the global Night Sky Live (NSL) network of fisheye CONtinuous CAMeras (CONCAMs) is to monitor and archive the entire bright night sky, track stellar variability, and search for transients. The high quality of raw CONCAM data allows automation of stellar object recognition, although distortions of the fisheye lens and frequent slight shifts in CONCAM orientations can make even this seemingly simple task formidable. To meet this challenge, a fuzzy logic based algorithm has been developed that transforms (x,y) image coordinates in the CCD frame into fuzzy right ascension and declination coordinates for use in matching with star catalogs. Using a training set of reference stars, the algorithm statically builds the fuzzy logic model. At runtime, the algorithm searches for peaks, and then applies the fuzzy logic model to perform the coordinate transformation before choosing the optimal star catalog match. The present fuzzy-logic algorithm works much better than our first generation, straightforward coordinate transformation formula. Following this essential step, algorithms dealing with the higher level data products can then provide a stream of photometry for a few hundred stellar objects visible in the night sky. Accurate photometry further enables the computation of all-sky maps of skyglow and opacity, as well as a search for uncataloged transients. All information is stored in XML-like tagged ASCII files that are instantly copied to the public domain and available at http://NightSkyLive.net. Currently, the NSL software detects stars and creates all-sky image files from eight different locations around the globe every 3 minutes and 56 seconds.
Improving the accuracy of electronic moisture meters for runner-type peanuts
USDA-ARS?s Scientific Manuscript database
Runner-type peanut kernel moisture content (MC) is measured periodically during curing and post harvest processing with electronic moisture meters for marketing and quality control. MC is predicted for 250 g samples of kernels with a mathematical function from measurements of various physical prope...
The brazilian indigenous planetary-observatory
NASA Astrophysics Data System (ADS)
Afonso, G. B.
2003-08-01
We have performed observations of the sky alongside with the Indians of all Brazilian regions that made it possible localize many indigenous constellations. Some of these constellations are the same as the other South American Indians and Australian aborigines constellations. The scientific community does not have much of this information, which may be lost in one or two generations. In this work, we present a planetary-observatory that we have made in the Park of Science Newton Freire-Maia of Paraná State, in order to popularize the astronomical knowledge of the Brazilian Indians. The planetary consists, essentially, of a sphere of six meters in diameter and a projection cylinder of indigenous constellations. In this planetary we can identify a lot of constellations that we have gotten from the Brazilian Indians; for instance, the four seasonal constellations: the Tapir (spring), the Old Man (summer), the Deer (autumn) and the Rhea (winter). A two-meter height wooden staff that is posted vertically on the horizontal ground similar to a Gnomon and stones aligned with the cardinal points and the soltices directions constitutes the observatory. A stone circle of ten meters in diameter surrounds the staff and the aligned stones. During the day we observe the Sun apparent motions and at night the indigenous constellations. Due to the great community interest in our work, we are designing an itinerant indigenous planetary-observatory to be used in other cities mainly by indigenous and primary schools teachers.
Recording Students to Bring Poetry Alive
ERIC Educational Resources Information Center
Thibeault, Matthew D.
2011-01-01
Poems are filled with musicality. Poetry and music are often described using similar terms: meter, cadence, phrase, form, and more. Poetry also has physical qualities recognized ever since the Greeks classified poetic meter in feet. In this article, the author presents a project that works well across the age spectrum: recording expressive poetry…
Stars For Citizens With Urban Star Parks and Lighting Specialists
NASA Astrophysics Data System (ADS)
Grigore, Valentin
2015-08-01
General contextOne hundred years ago, almost nobody imagine a life without stars every night even in the urban areas. Now, to see a starry sky is a special event for urban citizens.It is possible to see the stars even inside cities? Yes, but for that we need star parks and lighting specialists as partners.Educational aspectThe citizens must be able to identify the planets, constellations and other celestial objects in their urban residence. This is part of a basic education. The number of the people living in the urban area who never see the main constellations or important stars increase every year. We must do something for our urban community.What is an urban star park?An urban public park where we can see the main constellations can be considered an urban star park. There can be organized a lot of activities as practical lessons of astronomy, star parties, etc.Classification of the urban star parksA proposal for classification of the urban star parks taking in consideration the quality of the sky and the number of the city inhabitants:Two categories:- city star parks for cities with < 100.000 inhabitants- metropolis star parks for cities with > 100.000 inhabitantsFive levels of quality:- 1* level = can see stars of at least 1 magnitude with the naked eyes- 2* level = at least 2 mag- 3* level = at least 3 mag- 4* level= at least 4 mag- 5* level = at least 5 magThe urban star urban park structure and lighting systemA possible structure of a urban star park and sky-friend lighting including non-electric illumination are descripted.The International Commission on IlluminationA description of this structure which has as members national commissions from all over the world.Dark-sky activists - lighting specialistsNational Commissions on Illumination organize courses of lighting specialist. Dark-sky activists can become lighting specialists. The author shows his experience in this aspect as a recent lighting specialist and his cooperation with the Romanian National Commission on Illumination working for a law of illumination in Romania and to implement the sky protection elements into the lighting specialist accreditation.
Ground-water quality near a sewage-sludge recycling site and a landfill near Denver, Colorado
Robson, Stanley G.
1977-01-01
The Metropolitan Denver Sewage Disposal District and the City and County of Denver operate a sewage-sludge recycling site and a landfill in an area about 15 miles (24 kilometers) east of Denver. The assessment of the effects of these facilities on the ground-water system included determining the direction of ground-water movement in the area, evaluating the impact of the wastedisposal activities on the chemical quality of local ground water, and evaluating the need for continued water-quality monitoring.Surficial geology of the area consists of two principal units: (1) Alluvium with a maximum thickness of about 25 feet (7.6 meters) deposited along stream channels, and (2) bedrock consisting of undifferentiated Denver and Dawson Formations. Ground water in formations less than 350 feet (110 meters) deep moves to the north, as does surface flow, while ground water in formations between 570 and 1,500 feet (170 and 460 meters) deep moves to the west. Estimates of ground-water velocity were made using assumed values for hydraulic conductivity and porosity, and the observed hydraulic gradient from the study area. Lateral velocities are estimated to be 380 feet (120 meters) per year in alluvium and 27 feet (8.2 meters) per year in the upper part of the bedrock formations. Vertical velocity is estimated to be 0.58 foot (0.18 meter) per year in the upper part of the bedrock formations.Potentiometric head decreases with depth in the bedrock formations indicating a potential for downward movement of ground water. However, waterquality analysis and the rate and direction of ground-water movement suggest that ground-water movement in the area is primarily in the lateral rather than the vertical direction. Five wells perforated in alluvium were found to have markedly degraded water quality. One well was located in the landfill and water that was analyzed was obtained from near the base of the buried refuse, two others were located downgradient and near sewage-sludge burial areas, and the remaining two are located near stagnant surface ponds. Concentrations of nitrate in wells downgradient from fields where sludge is plowed into the soil were higher than background concentrations due to the effects of the sludge disposal. No evidence of water-quality degradation was detected in deeper wells perforated in the bedrock formations. Continued water-quality monitoring is needed because of the continuing disposal of wastes. A suggested monitoring program would consist of monitoring wells near the landfill twice a year and monitoring wells near the sludge-disposal areas on an annual basis.
IAU Resolution 2009 B5 - Commission 50 Draft Action Plan - Presentation and Discussion
NASA Astrophysics Data System (ADS)
Green, R. F.
2015-03-01
IAU Resolution 2009 B5 calls on IAU members to protect the public's right to an unpolluted night sky as well as the astronomical quality of the sky around major research observatories. The multi-pronged approach of Commission 50 includes working with the lighting industry for appropriate products from the solid state revolution, arming astronomers with training and materials for presentation, selective endorsement of key protection issues, cooperation with several other IAU commissions for education and outreach, and provision of clear quantitative priorities for outdoor lighting standards.
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Schultz, John R.; Clarke, Mark S.
2007-01-01
Phase separation is one of the most significant obstacles encountered during the development of analytical methods for water quality monitoring in spacecraft environments. Removing air bubbles from water samples prior to analysis is a routine task on earth; however, in the absence of gravity, this routine task becomes extremely difficult. This paper details the development and initial ground testing of liquid metering centrifuge sticks (LMCS), devices designed to collect and meter a known volume of bubble-free water in microgravity. The LMCS uses centrifugal force to eliminate entrapped air and reproducibly meter liquid sample volumes for analysis with Colorimetric Solid Phase Extraction (C-SPE). C-SPE is a sorption-spectrophotometric platform that is being developed as a potential spacecraft water quality monitoring system. C-SPE utilizes solid phase extraction membranes impregnated with analyte-specific colorimetric reagents to concentrate and complex target analytes in spacecraft water samples. The mass of analyte extracted from the water sample is determined using diffuse reflectance (DR) data collected from the membrane surface and an analyte-specific calibration curve. The analyte concentration can then be calculated from the mass of extracted analyte and the volume of the sample analyzed. Previous flight experiments conducted in microgravity conditions aboard the NASA KC-135 aircraft demonstrated that the inability to collect and meter a known volume of water using a syringe was a limiting factor in the accuracy of C-SPE measurements. Herein, results obtained from ground based C-SPE experiments using ionic silver as a test analyte and either the LMCS or syringes for sample metering are compared to evaluate the performance of the LMCS. These results indicate very good agreement between the two sample metering methods and clearly illustrate the potential of utilizing centrifugal forces to achieve phase separation and metering of water samples in microgravity.
The impact of European measures to reduce air pollutants on air quality, human health and climate
NASA Astrophysics Data System (ADS)
Turnock, S.; Butt, E. W.; Richardson, T.; Mann, G.; Forster, P.; Haywood, J. M.; Crippa, M.; Janssens-Maenhout, G. G. A.; Johnson, C.; Bellouin, N.; Spracklen, D. V.; Carslaw, K. S.; Reddington, C.
2015-12-01
European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, resulting in improved air quality and benefits to human health but also an unintended impact on regional climate. Here we used a coupled chemistry-climate model and a new policy relevant emission scenario to determine the impact of air pollutant emission reductions over Europe. The emission scenario shows that a combination of technological improvements and end-of-pipe abatement measures in the energy, industrial and road transport sectors reduced European emissions of sulphur dioxide, black carbon and organic carbon by 53%, 59% and 32% respectively. We estimate that these emission reductions decreased European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, black carbon (BC) by 56% and particulate organic matter (POM) by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 107,000 (40,000-172,000, 5-95% confidence intervals) premature deaths annually from cardiopulmonary disease and lung cancer across the EU member states. The decrease in aerosol concentrations caused a positive all-sky aerosol radiative forcing at the top of atmosphere over Europe of 2.3±0.06 W m-2 and a positive clear-sky forcing of 1.7±0.05 W m-2. Additionally, the amount of solar radiation incident at the surface over Europe increased by 3.3±0.07 W m-2 under all-sky and by 2.7±0.05 W m-2 under clear-sky conditions. Reductions in BC concentrations caused a 1 Wm-2 reduction in atmospheric absorption. We use an energy budget approximation to show that the aerosol induced radiative changes caused both temperature and precipitation to increase globally and over Europe. Our results show that the implementation of European legislation to reduce the emission of air pollutants has improved air quality and human health over Europe, as well as altered the regional radiative balance and climate.
Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies
NASA Technical Reports Server (NTRS)
2010-01-01
The United States spends approximately four million dollars each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.
NASA Astrophysics Data System (ADS)
Gilles, Luc; Wang, Lianqi; Ellerbroek, Brent
2008-07-01
This paper describes the modeling effort undertaken to derive the wavefront error (WFE) budget for the Narrow Field Infrared Adaptive Optics System (NFIRAOS), which is the facility, laser guide star (LGS), dual-conjugate adaptive optics (AO) system for the Thirty Meter Telescope (TMT). The budget describes the expected performance of NFIRAOS at zenith, and has been decomposed into (i) first-order turbulence compensation terms (120 nm on-axis), (ii) opto-mechanical implementation errors (84 nm), (iii) AO component errors and higher-order effects (74 nm) and (iv) tip/tilt (TT) wavefront errors at 50% sky coverage at the galactic pole (61 nm) with natural guide star (NGS) tip/tilt/focus/astigmatism (TTFA) sensing in J band. A contingency of about 66 nm now exists to meet the observatory requirement document (ORD) total on-axis wavefront error of 187 nm, mainly on account of reduced TT errors due to updated windshake modeling and a low read-noise NGS wavefront sensor (WFS) detector. A detailed breakdown of each of these top-level terms is presented, together with a discussion on its evaluation using a mix of high-order zonal and low-order modal Monte Carlo simulations.
Design principles and field performance of a solar spectral irradiance meter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatsiankou, V.; Hinzer, K.; Haysom, J.
2016-08-01
A solar spectral irradiance meter (SSIM), designed for measuring the direct normal irradiance (DNI) in six wavelength bands, has been combined with models to determine key atmospheric transmittances and the resulting spectral irradiance distribution of DNI under all sky conditions. The design principles of the SSIM, implementation of a parameterized transmittance model, and field performance comparisons of modeled solar spectra with reference radiometer measurements are presented. Two SSIMs were tested and calibrated at the National Renewable Energy Laboratory (NREL) against four spectroradiometers and an absolute cavity radiometer. The SSIMs' DNI was on average within 1% of the DNI values reportedmore » by one of NREL's primary absolute cavity radiometers. An additional SSIM was installed at the SUNLAB Outdoor Test Facility in September 2014, with ongoing collection of environmental and spectral data. The SSIM's performance in Ottawa was compared against a commercial pyrheliometer and a spectroradiometer over an eight month study. The difference in integrated daily spectral irradiance between the SSIM and the ASD spectroradiometer was found to be less than 1%. The cumulative energy density collected by the SSIM over this duration agreed with that measured by an Eppley model NIP pyrheliometer to within 0.5%. No degradation was observed.« less
Far Sidelobe Effects from Panel Gaps of the Atacama Cosmology Telescope
NASA Technical Reports Server (NTRS)
Fluxa, Pedro R.; Duenner, Rolando; Maurin, Loiec; Choi, Steve K.; Devlin, Mark J.; Gallardo, Patricio A.; Shuay-Pwu, P. Ho; Koopman, Brian J.; Louis, Thibaut; Wollack, Edward J.
2016-01-01
The Atacama Cosmology Telescope is a 6 meter diameter CMB telescope located at 5200 meters in the Chilean desert. ACT has made arc-minute scale maps of the sky at 90 and 150 GHz which have led to precise measurements of the fine angular power spectrum of the CMB fluctuations in temperature and polarization. One of the goals of ACT is to search for the B-mode polarization signal from primordial gravity waves, and thus extending ACT's data analysis to larger angular scales. This goal introduces new challenges in the control of systematic effects, including better understanding of far sidelobe effects that might enter the power spectrum at degree angular scales. Here we study the effects of the gaps between panels of the ACT primary and secondary reflectors in the worst case scenario in which the gaps remain open. We produced numerical simulations of the optics using GRASP up to 8 degrees away from the main beam and simulated timestreams for observations with this beam using real pointing information from ACT data. Maps from these simulated timestreams showed leakage from the sidelobes, indicating that this effect must be taken into consideration at large angular scales.
Intellectual Production Supervision Perform based on RFID Smart Electricity Meter
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-03-01
This topic develops the RFID intelligent electricity meter production supervision project management system. The system is designed for energy meter production supervision in the management of the project schedule, quality and cost information management requirements in RFID intelligent power, and provide quantitative information more comprehensive, timely and accurate for supervision engineer and project manager management decisions, and to provide technical information for the product manufacturing stage file. From the angle of scheme analysis, design, implementation and test, the system development of production supervision project management system for RFID smart meter project is discussed. Focus on the development of the system, combined with the main business application and management mode at this stage, focuses on the energy meter to monitor progress information, quality information and cost based information on RFID intelligent power management function. The paper introduces the design scheme of the system, the overall client / server architecture, client oriented graphical user interface universal, complete the supervision of project management and interactive transaction information display, the server system of realizing the main program. The system is programmed with C# language and.NET operating environment, and the client and server platforms use Windows operating system, and the database server software uses Oracle. The overall platform supports mainstream information and standards and has good scalability.
LED Street Lighting Solutions: Flagstaff, Arizona as a Case Study
NASA Astrophysics Data System (ADS)
Hall, Jeffrey C.
2018-01-01
Dark-sky protection in Flagstaff, Arizona extends back to 1958, with the first ordinance in the City banning advertising floodlights. The current ordinance, adopted in 1989, is comprehensive and has played a critical role in maintaining the quality of the night sky for astronomy, tourism, public enjoyment, and other purposes. Flagstaff, like many communities around the world, is now working on a transition from legacy bulb-based technology to LED for its outdoor lighting. The City, Lowell Observatory, the U. S. Naval Observatory, and the Flagstaff Dark Skies Coalition have been working intensively for two years to identify an LED-based street lighting solution that will preserve the City's dark skies while meeting municipal needs. We will soon be installing test fixtures for an innovative solution incorporating narrow-band amber LED and modest amounts of low-CCT white LED. In this talk, I will review the types of LEDs available for outdoor lighting and discuss the plans for Flagstaff's street lighting in the LED era, which we hope will be a model for communities worldwide.
The SuperCOSMOS all-sky galaxy catalogue
NASA Astrophysics Data System (ADS)
Peacock, J. A.; Hambly, N. C.; Bilicki, M.; MacGillivray, H. T.; Miller, L.; Read, M. A.; Tritton, S. B.
2016-10-01
We describe the construction of an all-sky galaxy catalogue, using SuperCOSMOS scans of Schmidt photographic plates from the UK Schmidt Telescope and Second Palomar Observatory Sky Survey. The photographic photometry is calibrated using Sloan Digital Sky Survey data, with results that are linear to 2 per cent or better. All-sky photometric uniformity is achieved by matching plate overlaps and also by requiring homogeneity in optical-to-2MASS colours, yielding zero-points that are uniform to 0.03 mag or better. The typical AB depths achieved are BJ < 21, RF < 19.5 and IN < 18.5, with little difference between hemispheres. In practice, the IN plates are shallower than the BJ and RF plates, so for most purposes we advocate the use of a catalogue selected in these two latter bands. At high Galactic latitudes, this catalogue is approximately 90 per cent complete with 5 per cent stellar contamination; we quantify how the quality degrades towards the Galactic plane. At low latitudes, there are many spurious galaxy candidates resulting from stellar blends: these approximately match the surface density of true galaxies at |b| = 30°. Above this latitude, the catalogue limited in BJ and RF contains in total about 20 million galaxy candidates, of which 75 per cent are real. This contamination can be removed, and the sky coverage extended, by matching with additional data sets. This SuperCOSMOS catalogue has been matched with 2MASS and with WISE, yielding quasi-all-sky samples of respectively 1.5 million and 18.5 million galaxies, to median redshifts of 0.08 and 0.20. This legacy data set thus continues to offer a valuable resource for large-angle cosmological investigations.
Super-sample covariance approximations and partial sky coverage
NASA Astrophysics Data System (ADS)
Lacasa, Fabien; Lima, Marcos; Aguena, Michel
2018-04-01
Super-sample covariance (SSC) is the dominant source of statistical error on large scale structure (LSS) observables for both current and future galaxy surveys. In this work, we concentrate on the SSC of cluster counts, also known as sample variance, which is particularly useful for the self-calibration of the cluster observable-mass relation; our approach can similarly be applied to other observables, such as galaxy clustering and lensing shear. We first examined the accuracy of two analytical approximations proposed in the literature for the flat sky limit, finding that they are accurate at the 15% and 30-35% level, respectively, for covariances of counts in the same redshift bin. We then developed a harmonic expansion formalism that allows for the prediction of SSC in an arbitrary survey mask geometry, such as large sky areas of current and future surveys. We show analytically and numerically that this formalism recovers the full sky and flat sky limits present in the literature. We then present an efficient numerical implementation of the formalism, which allows fast and easy runs of covariance predictions when the survey mask is modified. We applied our method to a mask that is broadly similar to the Dark Energy Survey footprint, finding a non-negligible negative cross-z covariance, i.e. redshift bins are anti-correlated. We also examined the case of data removal from holes due to, for example bright stars, quality cuts, or systematic removals, and find that this does not have noticeable effects on the structure of the SSC matrix, only rescaling its amplitude by the effective survey area. These advances enable analytical covariances of LSS observables to be computed for current and future galaxy surveys, which cover large areas of the sky where the flat sky approximation fails.
VizieR Online Data Catalog: The Gemini Observation Log (CADC, 2001-)
NASA Astrophysics Data System (ADS)
Association of Universities For Research in Astronomy
2018-01-01
This database contains a log of the Gemini Telescope observations since 2001, managed by the Canadian Astronomical Data Center (CADC). The data are regularly updated (see the date of the last version at the end of this file). The Gemini Observatory consists of twin 8.1-meter diameter optical/infrared telescopes located on two of the best observing sites on the planet. From their locations on mountains in Hawai'i and Chile, Gemini Observatory's telescopes can collectively access the entire sky. Gemini is operated by a partnership of five countries including the United States, Canada, Brazil, Argentina and Chile. Any astronomer in these countries can apply for time on Gemini, which is allocated in proportion to each partner's financial stake. (1 data file).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-09
... single meter reading platform and in-home monitoring devices. Residential water meters have been supplied... Central Iowa Water Association AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: EPA... reasonably available quantities and of a satisfactory quality] to the Central Iowa Water Association (CIWA...
DESCQA: An Automated Validation Framework for Synthetic Sky Catalogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Yao-Yuan; Kovacs, Eve; Heitmann, Katrin
The use of high-quality simulated sky catalogs is essential for the success of cosmological surveys. The catalogs have diverse applications, such as investigating signatures of fundamental physics in cosmological observables, understanding the effect of systematic uncertainties on measured signals and testing mitigation strategies for reducing these uncertainties, aiding analysis pipeline development and testing, and survey strategy optimization. The list of applications is growing with improvements in the quality of the catalogs and the details that they can provide. Given the importance of simulated catalogs, it is critical to provide rigorous validation protocols that enable both catalog providers and users tomore » assess the quality of the catalogs in a straightforward and comprehensive way. For this purpose, we have developed the DESCQA framework for the Large Synoptic Survey Telescope Dark Energy Science Collaboration as well as for the broader community. The goal of DESCQA is to enable the inspection, validation, and comparison of an inhomogeneous set of synthetic catalogs via the provision of a common interface within an automated framework. Here in this paper, we present the design concept and first implementation of DESCQA. In order to establish and demonstrate its full functionality we use a set of interim catalogs and validation tests. We highlight several important aspects, both technical and scientific, that require thoughtful consideration when designing a validation framework, including validation metrics and how these metrics impose requirements on the synthetic sky catalogs.« less
DESCQA: An Automated Validation Framework for Synthetic Sky Catalogs
Mao, Yao-Yuan; Kovacs, Eve; Heitmann, Katrin; ...
2018-02-08
The use of high-quality simulated sky catalogs is essential for the success of cosmological surveys. The catalogs have diverse applications, such as investigating signatures of fundamental physics in cosmological observables, understanding the effect of systematic uncertainties on measured signals and testing mitigation strategies for reducing these uncertainties, aiding analysis pipeline development and testing, and survey strategy optimization. The list of applications is growing with improvements in the quality of the catalogs and the details that they can provide. Given the importance of simulated catalogs, it is critical to provide rigorous validation protocols that enable both catalog providers and users tomore » assess the quality of the catalogs in a straightforward and comprehensive way. For this purpose, we have developed the DESCQA framework for the Large Synoptic Survey Telescope Dark Energy Science Collaboration as well as for the broader community. The goal of DESCQA is to enable the inspection, validation, and comparison of an inhomogeneous set of synthetic catalogs via the provision of a common interface within an automated framework. Here in this paper, we present the design concept and first implementation of DESCQA. In order to establish and demonstrate its full functionality we use a set of interim catalogs and validation tests. We highlight several important aspects, both technical and scientific, that require thoughtful consideration when designing a validation framework, including validation metrics and how these metrics impose requirements on the synthetic sky catalogs.« less
NASA Astrophysics Data System (ADS)
Hütsi, Gert; Gilfanov, Marat; Kolodzig, Alexander; Sunyaev, Rashid
2014-12-01
We investigate the potential of large X-ray-selected AGN samples for detecting baryonic acoustic oscillations (BAO). Though AGN selection in X-ray band is very clean and efficient, it does not provide redshift information, and thus needs to be complemented with an optical follow-up. The main focus of this study is (i) to find the requirements needed for the quality of the optical follow-up and (ii) to formulate the optimal strategy of the X-ray survey, in order to detect the BAO. We demonstrate that redshift accuracy of σ0 = 10-2 at z = 1 and the catastrophic failure rate of ffail ≲ 30% are sufficient for a reliable detection of BAO in future X-ray surveys. Spectroscopic quality redshifts (σ0 = 10-3 and ffail ~ 0) will boost the confidence level of the BAO detection by a factor of ~2. For meaningful detection of BAO, X-ray surveys of moderate depth of Flim ~ few 10-15 erg s-1/cm2 covering sky area from a few hundred to ~ten thousand square degrees are required. The optimal strategy for the BAO detection does not necessarily require full sky coverage. For example, in a 1000 day-long survey by an eROSITA type telescope, an optimal strategy would be to survey a sky area of ~9000 deg2, yielding a ~16σ BAO detection. A similar detection will be achieved by ATHENA+ or WFXT class telescopes in a survey with a duration of 100 days, covering a similar sky area. XMM-Newton can achieve a marginal BAO detection in a 100-day survey covering ~400 deg2. These surveys would demand a moderate-to-high cost in terms the optical follow-ups, requiring determination of redshifts of ~105 (XMM-Newton) to ~3 × 106 objects (eROSITA, ATHENA+, and WFXT) in these sky areas.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-13
... Ozone National Ambient Air Quality Standard (NAAQS) and the 1997 and 2006 fine particulate matter (PM 2... particle precursors react in the atmosphere to form fine particulate matter, which impairs visibility by... distance, in kilometers or miles, at which a dark object can be viewed against the sky. B. Background...
NASA Astrophysics Data System (ADS)
Cotte, Michel
2015-08-01
Practical approach of Dark Sky places as possible WH sites leads some of us to underline the exceptional role of high mountain observatories as “Windows to the Universe” for the Human being. Till today, such places keep very important dark sky properties and consequently important astronomical functions.We have to take count that quality of the sky at a given place and dark sky conservation policy is something very important, but not enough by itself to justify inscription on the WH List. It must be related to important cultural or/and natural value. That means presence of significant heritage features in the field of astronomy and science for listing as WH cultural property, or with other natural attributes of exceptional significance to be listed as WH natural property. Case of both natural and cultural WH high value place is also possible as “mixt WH site”.The Dark Sky place must also meet to a sufficient integrity/authenticity degree for the today tangible heritage of astronomy and to a very significant contribution to the international history of science and astronomy as intangible attribute of the place. That point must be demonstrated by a serious comparative analysis with similar places in the world and in the region. In case of serial nomination as examined there, each individual site must contribute significantly to the Outstanding Universal Value of the global series.First, we intend to give a short account of the today trend for a possible serial nomination of the most significant high mountain observatory keeping important heritage of their major periods for the sky observation (Western Europe, Chile, North America, etc.).Second, communication will present a case study with Pic du Midi in French Pyrenees, coming from the early origin of mountain scientific stations and observatories (end of 19th C) in Europe, with a long, continuous and important astronomical and scientific history till today with active programs of sky and atmosphere observations.
Wild Fire Emissions for the NOAA Operational HYSPLIT Smoke Model
NASA Astrophysics Data System (ADS)
Huang, H. C.; ONeill, S. M.; Ruminski, M.; Shafran, P.; McQueen, J.; DiMego, G.; Kondragunta, S.; Gorline, J.; Huang, J. P.; Stunder, B.; Stein, A. F.; Stajner, I.; Upadhayay, S.; Larkin, N. K.
2015-12-01
Particulate Matter (PM) generated from forest fires often lead to degraded visibility and unhealthy air quality in nearby and downstream areas. To provide near-real time PM information to the state and local agencies, the NOAA/National Weather Service (NWS) operational HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) smoke modeling system (NWS/HYSPLIT smoke) provides the forecast of smoke concentration resulting from fire emissions driven by the NWS North American Model 12 km weather predictions. The NWS/HYSPLIT smoke incorporates the U.S. Forest Service BlueSky Smoke Modeling Framework (BlueSky) to provide smoke fire emissions along with the input fire locations from the NOAA National Environmental Satellite, Data, and Information Service (NESDIS)'s Hazard Mapping System fire and smoke detection system. Experienced analysts inspect satellite imagery from multiple sensors onboard geostationary and orbital satellites to identify the location, size and duration of smoke emissions for the model. NWS/HYSPLIT smoke is being updated to use a newer version of USFS BlueSky. The updated BlueSky incorporates the Fuel Characteristic Classification System version 2 (FCCS2) over the continental U.S. and Alaska. FCCS2 includes a more detailed description of fuel loadings with additional plant type categories. The updated BlueSky also utilizes an improved fuel consumption model and fire emission production system. For the period of August 2014 and June 2015, NWS/HYSPLIT smoke simulations show that fire smoke emissions with updated BlueSky are stronger than the current operational BlueSky in the Northwest U.S. For the same comparisons, weaker fire smoke emissions from the updated BlueSky were observed over the middle and eastern part of the U.S. A statistical evaluation of NWS/HYSPLIT smoke predicted total column concentration compared to NOAA NESDIS GOES EAST Aerosol Smoke Product retrievals is underway. Preliminary results show that using the newer version of BlueSky leads to improved performance of NWS/HYSPLIT-smoke for June 2015. These results are partially due to the default fuel loading selected for Canadian fires that lead to stronger fire emissions there. The use of more realistic Canadian fuel loading may improve NWS/HYSPLIT smoke forecast.
NASA Astrophysics Data System (ADS)
Qaid, Adeb; Lamit, Hasanuddin Bin; Ossen, Dilshan Remaz; Rasidi, Mohd Hisyam
2018-02-01
Poor daytime and night-time micrometeorological conditions are issues that influence the quality of environmental conditions and can undermine a comfortable human lifestyle. The sky view factor (SVF) is one of the essential physical parameters used to assess the micrometeorological conditions and thermal comfort levels within city streets. The position of the visible sky relative to the path of the sun, in the cardinal and ordinal directions, has not been widely discerned as a parameter that could have an impact on the micrometeorological conditions of urban streets. To investigate this parameter, different urban streets that have a similar SVF value but diverse positions of visible sky were proposed in different street directions intersecting with the path of the sun, namely N-S, NE-SW and NW-SE. The effects of daytime and night-time micrometeorological variables and human thermal comfort variables on the street were investigated by applying ENVI-met V3.1 Beta software. The results show that the position of the visible sky has a greater influence on the street's meteorological and human thermal comfort conditions than the SVF value. It has the ability to maximise or minimise the mean radiation temperature (Tmrt, °C) and the physiological equivalent temperature (PET, °C) at street level. However, the visible sky positioned to the zenith in a NE-SW or N-S street direction and to the SW of a NW-SE street direction achieves the best daytime micrometeorological and thermal comfort conditions. Alternatively, the visible sky positioned to the NE for a NW-SE street direction, to the NW and the zenith for a NE-SW street direction and to the zenith for a N-S street direction reduces the night-time air temperature (Ta, °C). Therefore, SVF and the position of the visible sky relative to the sun's trajectory, in the cardinal and ordinal directions, must be considered during urban street planning to better understand the resultant micrometeorological and human thermal comfort conditions.
NASA Technical Reports Server (NTRS)
Ray, Paul S.; Chakrabarty, Deepto; Wilson-Hodge, Colleen A.; Philips, Bernard F.; Remillard, Ronald A.; Levine, Alan M.; Wood, Kent S.; Wolff, Michael T.; Gwon, Chul S.; Strohmayer, Tod E.;
2010-01-01
The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing of compact objects that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity. It is optimized for sub-millisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultra-dense matter, strongly curved spacetimes, and intense magnetic fields. AXTAR s main instrument, the Large Area Timing Array (LATA) is a collimated instrument with 2 50 keV coverage and over 3 square meters effective area. The LATA is made up of an array of super-modules that house 2-mm thick silicon pixel detectors. AXTAR will provide a significant improvement in effective area (a factor of 7 at 4 keV and a factor of 36 at 30 keV) over the RXTE PCA. AXTAR will also carry a sensitive Sky Monitor (SM) that acts as a trigger for pointed observations of X-ray transients in addition to providing high duty cycle monitoring of the X-ray sky. We review the science goals and technical concept for AXTAR and present results from a preliminary mission design study
NASA Astrophysics Data System (ADS)
O'Keeffe, Brendon Andrew; Johnson, Michael
2017-01-01
Light pollution plays an ever increasing role in the operations of observatories across the world. This is especially true in urban environments like Columbus, GA, where Columbus State University’s WestRock Observatory is located. Light pollution’s effects on an observatory include high background levels, which results in a lower signal to noise ratio. Overall, this will limit what the telescope can detect, and therefore limit the capabilities of the observatory as a whole.Light pollution has been mapped in Columbus before using VIIRS DNB composites. However, this approach did not provide the detailed resolution required to narrow down the problem areas around the vicinity of the observatory. The purpose of this study is to assess the current state of light pollution surrounding the WestRock observatory by measuring and mapping the brightness of the sky due to light pollution using light meters and geographic information system (GIS) software.Compared to VIIRS data this study allows for an improved spatial resolution and a direct measurement of the sky background. This assessment will enable future studies to compare their results to the baseline established here, ensuring that any changes to the way the outdoors are illuminated and their effects can be accurately measured, and counterbalanced.
NASA Astrophysics Data System (ADS)
Sathyanarayana Rao, Mayuri; Subrahmanyan, Ravi; Udaya Shankar, N.; Chluba, Jens
2017-05-01
Cosmic baryon evolution during the Cosmic Dawn and Reionization results in redshifted 21-cm spectral distortions in the cosmic microwave background (CMB). These encode information about the nature and timing of first sources over redshifts 30-6 and appear at meter wavelengths as a tiny CMB distortion along with the Galactic and extragalactic radio sky, which is orders of magnitude brighter. Therefore, detection requires precise methods to model foregrounds. We present a method of foreground fitting using maximally smooth (MS) functions. We demonstrate the usefulness of MS functions over traditionally used polynomials to separate foregrounds from the Epoch of Reionization (EoR) signal. We also examine the level of spectral complexity in plausible foregrounds using GMOSS, a physically motivated model of the radio sky, and find that they are indeed smooth and can be modeled by MS functions to levels sufficient to discern the vanilla model of the EoR signal. We show that MS functions are loss resistant and robustly preserve EoR signal strength and turning points in the residuals. Finally, we demonstrate that in using a well-calibrated spectral radiometer and modeling foregrounds with MS functions, the global EoR signal can be detected with a Bayesian approach with 90% confidence in 10 minutes’ integration.
Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, Connor J.
The Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) measures the absolute infrared (IR) spectral radiance (watts per square meter per steradian per wavenumber) of the sky directly above the instrument. More information about the instrument can be found through the manufacturer’s website. The spectral measurement range of the instrument is 3300 to 520 wavenumbers (cm -1) or 3-19.2 microns for the normal-range instruments and 3300 to 400 cm -1 or 3-25 microns, for the extended-range polar instruments. Spectral resolution is 1.0 cm -1. Instrument field-of-view is 1.3 degrees. Calibrated sky radiance spectra are produced on cycle of about 141more » seconds with a group of 6 radiance spectra zenith having dwell times of about 14 seconds each interspersed with 55 seconds of calibration and mirror motion. The ASSIST data is comparable to the Atmospheric Emitted Radiance Interferometer (AERI) data and can be used for 1) evaluating line-by-line radiative transport codes, 2) detecting/quantifying cloud effects on ground-based measurements of infrared spectral radiance (and hence is valuable for cloud property retrievals), and 3) calculating vertical atmospheric profiles of temperature and water vapor and the detection of trace gases.« less
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-03-01
In this paper, the semi-active RFID watt-hour meter is applied to automatic test lines and intelligent warehouse management, from the transmission system, test system and auxiliary system, monitoring system, realize the scheduling of watt-hour meter, binding, control and data exchange, and other functions, make its more accurate positioning, high efficiency of management, update the data quickly, all the information at a glance. Effectively improve the quality, efficiency and automation of verification, and realize more efficient data management and warehouse management.
NASA Technical Reports Server (NTRS)
Wu, Man Li C.; Schubert, Siegfried; Lin, Ching I.; Stajner, Ivanka; Einaudi, Franco (Technical Monitor)
2000-01-01
A method is developed for validating model-based estimates of atmospheric moisture and ground temperature using satellite data. The approach relates errors in estimates of clear-sky longwave fluxes at the top of the Earth-atmosphere system to errors in geophysical parameters. The fluxes include clear-sky outgoing longwave radiation (CLR) and radiative flux in the window region between 8 and 12 microns (RadWn). The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data, and multiple global four-dimensional data assimilation (4-DDA) products. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic clear-sky longwave fluxes from two different 4-DDA data sets. Simple linear regression is used to relate the clear-sky longwave flux discrepancies to discrepancies in ground temperature ((delta)T(sub g)) and broad-layer integrated atmospheric precipitable water ((delta)pw). The slopes of the regression lines define sensitivity parameters which can be exploited to help interpret mismatches between satellite observations and model-based estimates of clear-sky longwave fluxes. For illustration we analyze the discrepancies in the clear-sky longwave fluxes between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS2) and a recent operational version of the European Centre for Medium-Range Weather Forecasts data assimilation system. The analysis of the synthetic clear-sky flux data shows that simple linear regression employing (delta)T(sub g)) and broad layer (delta)pw provides a good approximation to the full radiative transfer calculations, typically explaining more thin 90% of the 6 hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the geophysical parameters, Uncertainties (normalized by standard deviation) in the monthly mean retrieved parameters range from 7% for (delta)T(sub g) to approx. 20% for the lower tropospheric moisture between 500 hPa and surface. The regression relationships developed from the synthetic flux data, together with CLR and RadWn observed with the Clouds and Earth Radiant Energy System instrument, ire used to assess the quality of the GEOS2 T(sub g) and pw. Results showed that the GEOS2 T(sub g) is too cold over land, and pw in upper layers is too high over the tropical oceans and too low in the lower atmosphere.
VizieR Online Data Catalog: MWSC IV. 63 new open clusters (Scholz+, 2015)
NASA Astrophysics Data System (ADS)
Scholz, R.-D.; Kharchenko, N. V.; Piskunov, A. E.; Roeser, S.; Schilbach, E.
2015-08-01
We first selected high-quality samples from the 2MAst and UCAC4 catalogues for comparison and verification of the proper motions. For 441 circular proper motion bins (radius 15mas/yr) within+/-50mas/yr, the sky outside a thin Galactic plane zone (|b|<5°) was binned in small areas ('sky pixels') of 0.25x0.25°2, Sky pixels with enhanced numbers of stars with a certain common proper motion in both catalogues were considered as cluster candidates. In total we discovered 692 density enhancements (regarded as cluster candidates). These candidates were cross-identified with known objects. Unidentified objects were passed through the standard MWSC pipeline (described in Kharchenko et al., 2012, Cat. J/A+A/543/A156) for verification, cluster membership construction and structure, kinematic and astrophysical parameter determination. The basic stellar data were taken from the all-sky catalogue 2MAst (2MASS with Astrometry), that was extracted from the all-sky catalogues PPMXL (Roeser et al. 2010, Cat.) and 2MASS (Cutri et al. 2003, Cat.
Meter Designs Reduce Operation Costs for Industry
NASA Technical Reports Server (NTRS)
2013-01-01
Marshall Space Flight Center collaborated with Quality Monitoring and Control (QMC) of Humble, Texas, through a Space Act Agreement to design a balanced flow meter for the Space Shuttle Program. QMC founded APlus-QMC LLC to commercialize the technology, which has contributed to 100 new jobs, approximately $250,000 in yearly sales, and saved customers an estimated $10 million.
Implementation of IAU Resolution 2009 B5, "in Defence of the night sky and the right to starlight"
NASA Astrophysics Data System (ADS)
Green, Richard F.; Walker, Constance Elaine
2015-08-01
IAU Resolution 2009 B5 calls on IAU members to protect the public`s right to an unpolluted night sky as well as the astronomical quality of the sky around major research observatories. The approach of Commission 50 - astronomical site protection - includes working with the lighting industry for appropriate products from rapidly evolving solid state technology, arming astronomers with training and materials for presentation, selective endorsement of key protection issues, cooperation with other IAU commissions for education and outreach with particular current attention to the International Year of Light, and provision of clear quantitative priorities for outdoor lighting standards. In 2012, these priorities were defined as full cut-off shielding, spectral management to minimize output shortward of 500 nm, and zone- and time-appropriate lighting levels. Revisiting the specifics of these priorities will be a topic for current discussion.
The GMRT 150 MHz all-sky radio survey. First alternative data release TGSS ADR1
NASA Astrophysics Data System (ADS)
Intema, H. T.; Jagannathan, P.; Mooley, K. P.; Frail, D. A.
2017-02-01
We present the first full release of a survey of the 150 MHz radio sky, observed with the Giant Metrewave Radio Telescope (GMRT) between April 2010 and March 2012 as part of the TIFR GMRT Sky Survey (TGSS) project. Aimed at producing a reliable compact source survey, our automated data reduction pipeline efficiently processed more than 2000 h of observations with minimal human interaction. Through application of innovative techniques such as image-based flagging, direction-dependent calibration of ionospheric phase errors, correcting for systematic offsets in antenna pointing, and improving the primary beam model, we created good quality images for over 95 percent of the 5336 pointings. Our data release covers 36 900 deg2 (or 3.6 π steradians) of the sky between -53° and +90° declination (Dec), which is 90 percent of the total sky. The majority of pointing images have a noise level below 5 mJy beam-1 with an approximate resolution of 25''×25'' (or 25''×25''/ cos(Dec-19°) for pointings south of 19° declination). We have produced a catalog of 0.62 Million radio sources derived from an initial, high reliability source extraction at the seven sigma level. For the bulk of the survey, the measured overall astrometric accuracy is better than two arcseconds in right ascension and declination, while the flux density accuracy is estimated at approximately ten percent. Within the scope of the TGSS alternative data release (TGSS ADR) project, the source catalog, as well as 5336 mosaic images (5°×5°) and an image cutout service, are made publicly available at the CDS as a service to the astronomical community. Next to enabling a wide range of different scientific investigations, we anticipate that these survey products will provide a solid reference for various new low-frequency radio aperture array telescopes (LOFAR, LWA, MWA, SKA-low), and can play an important role in characterizing the epoch-of-reionisation (EoR) foreground. The TGSS ADR project aims at continuously improving the quality of the survey data products. Near-future improvements include replacement of bright source snapshot images with archival targeted observations, using new observations to fill the holes in sky coverage and replace very poor quality observational data, and an improved flux calibration strategy for less severely affected observational data. Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A78
Gaia, an all-sky survey for standard photometry
NASA Astrophysics Data System (ADS)
Carrasco, J. M.; Weiler, M.; Jordi, C.; Fabricius, C.
2017-03-01
Gaia ESA's space mission (launched in 2013) includes two low resolution spectroscopic instruments (one in the blue, BP, and another in the red, RP, wavelength domains) to classify and derive the astrophysical parameters of the observed sources. As it is well known, Gaia is a full-sky unbiased survey down to about 20th magnitude. The scanning law yields a rather uniform coverage of the sky over the full extent (a minimum of 5 years) of the mission. Gaia data reduction is a global one over the full mission. Both sky coverage and data reduction strategy ensure an unprecedented all-sky homogeneous spectrophotometric survey. Certainly, that survey is of interest for current and future on-ground and space projects, like LSST, PLATO, EUCLID and J-PAS/J-PLUS among others. These projects will benefit from the large amount (more than one billion) and wide variety of objects observed by Gaia with good quality spectrophotometry. Synthetic photometry derived from Gaia spectrophotometry for any passband can be used to expand the set of standard sources for these new instruments to come. In the current Gaia data release scenario, BP/RP spectrophotometric data will be available in the third release (in 2018, TBC). Current preliminary results allow us to estimate the precision of synthetic photometry derived from the Gaia data. This already allows the preparation of the on-going and future surveys and space missions. We discuss here the exploitation of the Gaia spectrophotometry as standard reference due to its full-sky coverage and its expected photometric uncertainties derived from the low resolution Gaia spectra.
2010-09-01
cubic meter(s) mi mile(s) mi2 square mile(s) mm millimeter(s) m micrometer(s) yd3 cubic yard(s) ENVIRONMENTAL ASSESSMENT FOR...km2 (3,530 mi2 ) area that includes the NBAFS, less than two tornadoes occur per year. The localized area effected by a tornado averages only 0.29...km2 (0.11 mi2 ; Ramsdell and Andrews 1986) (ANL 2000). 3.2.2 Air Quality The State of New Hampshire Ambient Air Quality Standards (SAAQS) are
The influence of canopy, sky condition, and solar angle on light quality in a longleaf pine woodland
Stephen D. Pecot; Stephen B. Horsley; Michael A. Battaglia; Robert J. Mitchell
2005-01-01
Light transmittance estimates under open, heterogeneous woodland canopies such as those of longleaf pine (Pinus palustris Mill.) forests report high spatial and temporal variation in the quantity of the light environment. In addition, light quality, that is, the ratio of red to far-red light (R:FR), regulates important aspects of plant...
40 CFR 50.16 - National primary and secondary ambient air quality standards for lead.
Code of Federal Regulations, 2011 CFR
2011-07-01
... air quality standards for lead. 50.16 Section 50.16 Protection of Environment ENVIRONMENTAL PROTECTION... National primary and secondary ambient air quality standards for lead. (a) The national primary and secondary ambient air quality standards for lead (Pb) and its compounds are 0.15 micrograms per cubic meter...
Recognition of Terrestrial Impact Craters with COSMO-SkyMed
NASA Astrophysics Data System (ADS)
Virelli, M.; Staffieri, S.; Battagliere, M. L.; Komatsu, G.; Di Martino, M.; Flamini, E.; Coletta, A.
2016-08-01
All bodies having a solid surface, without distinction, show, with greater or lesser evidence, the marks left by the geological processes they undergone during their evolution. There is a geomorphological feature that is evident in all the images obtained by the probes sent to explore our planetary system: impact craters.Craters formed by the impact of small cosmic bodies have dimensions ranging from some meters to hundreds of kilometers. However, for example on the Lunar regolith particles, have been observed also sub- millimeter craters caused by dust impacts. The kinetic energy of the impactor, which velocity is in general of the order of tens km/s, is released in fractions of a second, generally in a explosive way, generating complex phenomena that transform not only the morphology of the surface involved by the impact, but also the mineralogy and crystallography of the impacted material. Even our planet is not immune to these impacts. At present, more than 180 geological structures recognized as of impact origin are known on Earth.In this article, we aim to show how these impact structures on Earth's surface are observed from space. To do this, we used the images obtained by the COSMO-SkyMed satellite constellation.Starting from 2013, ASI proposed, in collaboration with the Astrophysical Observatory of Turin and University D'Annunzio of Chieti, the realization of an Encyclopedic Atlas of Terrestrial Impact Craters using COSMO-SkyMed data that will become the first atlas of all recognized terrestrial impact craters based on images acquired by a X band radar. To observe these impact craters all radar sensor modes have been used, according to the size of the analyzed crater.The project includes research of any new features that could be classified as impact craters and, for the sites whereby it is considered necessary, the implementation of a geological survey on site to validate the observations.In this paper an overview of the Atlas of Terrestrial Impact Craters using COSMO-SkyMed data, currently under review for publication, is provided.
Rodrigues-Filho, J L; Degani, R M; Soares, F S; Periotto, N A; Blanco, F P; Abe, D S; Matsumura-Tundisi, T; Tundisi, J E; Tundisi, J G
2015-01-01
The amendments to the Forest Law proposed by the Brazilian government that allow partial substitution of forested areas by agricultural activities raised deep concern about the integrity of aquatic ecosystems. To assess the impacts of this alteration in land uses on the watershed, diffuse loads of total nitrogen (Nt) and total phosphorus (Pt) were estimated in Lobo Stream watershed, southeastern Brazil, based on export coefficients of the Model of Correlation between Land Use and Water Quality (MQUAL). Three scenarios were generated: scenario 1 (present scenario), with 30-meter-wide permanent preservation areas along the shore of water bodies and 50-meter-radius in springs; scenario 2, conservative, with 100-meter-wide permanent preservation areas along water bodies; and scenario 3, with the substitution of 20% of natural forest by agricultural activities. Results indicate that a suppression of 20% of forest cover would cause an increase in nutrient loads as well as in the trophic state of aquatic ecosystems of the watershed. This could result in losses of ecosystem services and compromise the quality of water and its supply for the basin. This study underlines the importance of forest cover for the maintenance of water quality in Lobo Stream watershed.
Sullivan, Annett B.; Rounds, Stewart A.
2006-01-01
To meet water quality targets and the municipal and industrial water needs of a growing population in the Tualatin River Basin in northwestern Oregon, an expansion of Henry Hagg Lake is under consideration. Hagg Lake is the basin's primary storage reservoir and provides water during western Oregon's typically dry summers. Potential modifications include raising the dam height by 6.1 meters (20 feet), 7.6 meters (25 feet), or 12.2 meters (40 feet); installing additional outlets (possibly including a selective withdrawal tower); and adding additional inflows to provide greater reliability of filling the enlarged reservoir. One method of providing additional inflows is to route water from the upper Tualatin River through a tunnel and into Sain Creek, a tributary to the lake. Another option is to pump water from the Tualatin River (downstream of the lake) uphill and into the reservoir during the winter--the 'pump-back' option. A calibrated CE-QUAL-W2 model of Henry Hagg Lake's hydrodynamics, temperature, and water quality was used to examine the effect of these proposed changes on water quality in the lake and downstream. Most model scenarios were run with the calibrated model for 2002, a typical water year; a few scenarios were run for 2001, a drought year. More...
[Evaluation of Optium Xceed (Abbott) and One Touch Ultra (Lifescan) glucose meters].
Coyne, S; Lacour, B; Hennequin-Le Meur, C
2008-01-01
In order to build a continuous quality improvement approach for control of glucose meters in clinical divisions at Necker-Enfants Malades hospital, the analytical performances (precision and accuracy) of 2 glucose meters have been evaluated in our laboratory according to SFBC recommendations. Fifty-six heparinized whole blood specimens from patients and thirty-nine from healthy volunteers were analyzed on each of the two meters and compared to plasma glucose measurement on the Roche Hitachi 917 system. The correlation coefficient was 0.938 for Optium Xceed and 0.911 for One Touch Ultra. However, 14.7% and 18.9% of the results (n = 95) for respectively Optium Xceed and One Touch Ultra were discordant, i.e. higher than a 20% difference compared to reference blood glucose concentrations. Inaccuracy was more important for low glucose concentrations (< 5 mmol/L; 12/14 discrepant samples for Optium Xceed and 16/19 for One Touch Ultra). This data suggests a lack of accuracy, particularly for low glucose concentrations. Capillary blood glucose concentrations must therefore be interpreted with caution concerning the diagnosis of hypoglycemia and treatment of unstable patients. Moreover, quality control of glucose meters (blood glucose determinations concurrently at bedside and in the laboratory) is difficult to perform. It also raises questions about the responsibility of "point-of-care testing", an area still subject to discussion.
Toward Large-Area Sub-Arcsecond X-Ray Telescopes
NASA Technical Reports Server (NTRS)
ODell, Stephen L.; Aldcroft, Thomas L.; Allured, Ryan; Atkins, Carolyn; Burrows, David N.; Cao, Jian; Chalifoux, Brandon D.; Chan, Kai-Wing; Cotroneo, Vincenzo; Elsner, Ronald F.;
2014-01-01
The future of x-ray astronomy depends upon development of x-ray telescopes with larger aperture areas (approx. = 3 square meters) and fine angular resolution (approx. = 1 inch). Combined with the special requirements of nested grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically and programmatically challenging. Achieving this goal will require precision fabrication, alignment, mounting, and assembly of large areas (approx. = 600 square meters) of lightweight (approx. = 1 kilogram/square meter areal density) high-quality mirrors at an acceptable cost (approx. = 1 million dollars/square meter of mirror surface area). This paper reviews relevant technological and programmatic issues, as well as possible approaches for addressing these issues-including active (in-space adjustable) alignment and figure correction.
Detention basin alternative outlet design study.
DOT National Transportation Integrated Search
2016-10-01
This study examines the outlets structures CDOT has historically employed to drain water quality treatment detention basins and flood control basins, presents two new methods of metering the water quality capture volume (WQCV), namely 1) the Elliptic...
NASA Technical Reports Server (NTRS)
Ialongo, Iolanda; Herman, Jay; Krotkov, Nick; Lamsal, Lok; Boersma, Folkert; Hovila, Jari; Tamminen, Johanna
2016-01-01
We present the comparison of satellite-based OMI (Ozone Monitoring Instrument) NO2 products with ground-based observations in Helsinki. OMI NO2 total columns, available from standard product (SP) and DOMINO algorithm, are compared with the measurements performed by the Pandora spectrometer in Helsinki in 2012. The relative difference between Pandora 21 and OMI SP retrievals is 4 and 6 for clear sky and all sky conditions, respectively. DOMINO NO2 retrievals showed slightly lower total columns with median differences about 5 and 14 for clear sky and all sky conditions, respectively. Large differences often correspond to cloudy autumn-winter days with solar zenith angles above 65. Nevertheless, the differences remain within the retrieval uncertainties. Furthermore, the weekly and seasonal cycles from OMI, Pandora and NO2 surface concentrations are compared. Both satellite- and ground-based data show a similar weekly cycle, with lower NO2 levels during the weekend compared to the weekdays as result of reduced emissions from traffic and industrial activities. Also the seasonal cycle shows a similar behavior, even though the results are affected by the fact that most of the data are available during spring-summer because of cloud cover in other seasons. This is one of few works in which OMI NO2 retrievals are evaluated in an urban site at high latitudes (60N). Despite the city of Helsinki having relatively small pollution sources, OMI retrievals have proved to be able to describe air quality features and variability similar to surface observations. This adds confidence in using satellite observations for air quality monitoring also at high latitudes.
NASA Technical Reports Server (NTRS)
Colwell, R. N. (Principal Investigator)
1984-01-01
The spatial, geometric, and radiometric qualities of LANDSAT 4 thematic mapper (TM) and multispectral scanner (MSS) data were evaluated by interpreting, through visual and computer means, film and digital products for selected agricultural and forest cover types in California. Multispectral analyses employing Bayesian maximum likelihood, discrete relaxation, and unsupervised clustering algorithms were used to compare the usefulness of TM and MSS data for discriminating individual cover types. Some of the significant results are as follows: (1) for maximizing the interpretability of agricultural and forest resources, TM color composites should contain spectral bands in the visible, near-reflectance infrared, and middle-reflectance infrared regions, namely TM 4 and TM % and must contain TM 4 in all cases even at the expense of excluding TM 5; (2) using enlarged TM film products, planimetric accuracy of mapped poins was within 91 meters (RMSE east) and 117 meters (RMSE north); (3) using TM digital products, planimetric accuracy of mapped points was within 12.0 meters (RMSE east) and 13.7 meters (RMSE north); and (4) applying a contextual classification algorithm to TM data provided classification accuracies competitive with Bayesian maximum likelihood.
Adding a solar-radiance function to the Hošek-Wilkie skylight model.
Hošek, Lukáš; Wilkie, Alexander
2013-01-01
One prerequisite for realistic renderings of outdoor scenes is the proper capturing of the sky's appearance. Currently, an explicit simulation of light scattering in the atmosphere isn't computationally feasible, and won't be in the foreseeable future. Captured luminance patterns have proven their usefulness in practice but can't meet all user needs. To fill this capability gap, computer graphics technology has employed analytical models of sky-dome luminance patterns for more than two decades. For technical reasons, such models deal with only the sky dome's appearance, though, and exclude the solar disc. The widely used model proposed by Arcot Preetham and colleagues employed a separately derived analytical formula for adding a solar emitter of suitable radiant intensity. Although this yields reasonable results, the formula is derived in a manner that doesn't exactly match the conditions in their sky-dome model. But the more sophisticated a skylight model is and the more subtly it can represent different conditions, the more the solar radiance should exactly match the skylight's conditions. Toward that end, researchers propose a solar-radiance function that exactly matches a recently published high-quality analytical skylight model.
Peas in a Pod: Environment and Ionization in Green Pea Galaxies
NASA Astrophysics Data System (ADS)
Kurtz, Heather; Jaskot, Anne; Drew, Patrick; Pare, Dylan; Griffin, Jon; Petersen, Michael
2016-01-01
The Green Peas are extreme, highly ionized, starburst galaxies with strong [OIII] 5007 emission. Using the Sloan Digital Sky Survey, we present statistics on the environment of Green Peas and investigate its effects on their ionized gas properties. Although most dwarf starburst galaxies are in low-density environments, we identify a sample of Green Peas in dense environments. Emission line observations with the WIYN 0.9-meter telescope at Kitt Peak reveal that one cluster Green Pea is more highly ionized in the direction of the cluster center. Ram pressure stripping likely generates this ionization gradient. We explore the role of the environment in enhancing star formation rates and ionization, and we compare the nebular properties of Green Peas in high-density environments to those in low-density environments.
After Opportunity's First Drive in Six Weeks
NASA Technical Reports Server (NTRS)
2007-01-01
NASA's Mars Exploration Rover Opportunity used its front hazard-identification camera to obtain this image at the end of a drive on the rover's 1,271st sol, or Martian day (Aug. 21, 2007). Due to sun-obscuring dust storms limiting the rover's supply of solar energy, Opportunity had not driven since sol 1,232 (July 12, 2007). On sol 1,271, after the sky above Opportunity had been gradually clearing for more than two weeks, the rover rolled 13.38 meters (44 feet). Wheel tracks are visible in front of the rover because the drive ended with a short test of driving backwards. Opportunity's turret of four tools at the end of the robotic arm fills the center of the image. Victoria Crater, site of the rover's next science targets, lies ahead.Antenna-coupled transition-edge hot-electron microbolometers
NASA Astrophysics Data System (ADS)
Ali, Shafinaz; Timbie, Peter T.; Malu, Siddharth; McCammon, Dan; Nelms, Kari L.; Pathak, Rashmi; van der Weide, Daniel W.; Allen, Christine A.; Abrahams, J.; Chervenak, James A.; Hsieh, Wen-Ting; Miller, Timothy M.; Moseley, S. H., Jr.; Stevenson, Thomas R.; Wollack, Edward J.
2004-10-01
We are developing a new type of detector for observational cosmology and astrophysical research. Incoming radiation from the sky is coupled to a superconducting microstrip transmission line that terminates in a thin film absorber. At sub-Kelvin temperature, the thermal isolation between the electrons and the lattice makes it possible for the electrons in the small absorber (100's of cubic micro-meter) and superconducting bilayer (Transition Edge Sensor) to heat up by the radiation absorbed by the electrons of the normal absorbing layer. We call this detector a Transition-edge Hot-electron Micro-bolometer (THM). THMs can be fabricated by photo lithography, so it is relatively easy to make matched detectors for a large focal plane array telescope. We report on the thermal properties of Mo/Au THMs with Bi/Au absorbers.
EXPRES: a next generation RV spectrograph in the search for earth-like worlds
NASA Astrophysics Data System (ADS)
Jurgenson, C.; Fischer, D.; McCracken, T.; Sawyer, D.; Szymkowiak, A.; Davis, A.; Muller, G.; Santoro, F.
2016-08-01
The EXtreme PREcision Spectrograph (EXPRES) is an optical fiber fed echelle instrument being designed and built at the Yale Exoplanet Laboratory to be installed on the 4.3-meter Discovery Channel Telescope operated by Lowell Observatory. The primary science driver for EXPRES is to detect Earth-like worlds around Sun-like stars. With this in mind, we are designing the spectrograph to have an instrumental precision of 15 cm/s so that the on-sky measurement precision (that includes modeling for RV noise from the star) can reach to better than 30 cm/s. This goal places challenging requirements on every aspect of the instrument development, including optomechanical design, environmental control, image stabilization, wavelength calibration, and data analysis. In this paper we describe our error budget, and instrument optomechanical design.
The NIKA2 Large Field-of-View Millimeter Continuum Camera for the 30-M IRAM Telescope
NASA Astrophysics Data System (ADS)
Monfardini, Alessandro
2018-01-01
We have constructed and deployed a multi-thousands pixels dual-band (150 and 260 GHz, respectively 2mm and 1.15mm wavelengths) camera to image an instantaneous field-of-view of 6.5arc-min and configurable to map the linear polarization at 260GHz. We are providing a detailed description of this instrument, named NIKA2 (New IRAM KID Arrays 2), in particular focusing on the cryogenics, the optics, the focal plane arrays based on Kinetic Inductance Detectors (KID) and the readout electronics. We are presenting the performance measured on the sky during the commissioning runs that took place between October 2015 and April 2017 at the 30-meter IRAM (Institute of Millimetric Radio Astronomy) telescope at Pico Veleta, and preliminary science-grade results.
High Latitude Scintillations during the ICI-4 Rocket Campaign.
NASA Astrophysics Data System (ADS)
Patra, S.; Moen, J.
2015-12-01
We present the first results from the Norwegian ICI-4 sounding rocket campaign in February 2015. The ICI-4 was launched into F-region auroral blobs from the Andøya Space Center. The multi needle langmuir probe (m-NLP) on board the rocket sampled the ionospheric density structures at a sub-meter spatial resolution. A multi-phase screen model has been developed to estimate the scintillations from the density measurements acquired on-board spacecrafts. The phase screen model is validated and the comparison of the estimated values with scintillations measured by ground receivers during the campaign will be presented. A combination of scintillation receivers in Svalbard and surrounding areas as well as all sky imagers at Ny Ålesund, Longyerbyen, and Skibotn are used to improve the performance of the model.
The South Pole Telescope: Unraveling the Mystery of Dark Energy
NASA Astrophysics Data System (ADS)
Reichardt, Christian L.; de Haan, Tijmen; Bleem, Lindsey E.
2016-07-01
The South Pole Telescope (SPT) is a 10-meter telescope designed to survey the millimeter-wave sky, taking advantage of the exceptional observing conditions at the Amundsen-Scott South Pole Station. The telescope and its ground-breaking 960-element bolometric camera finished surveying 2500 square degrees at 95. 150, and 220 GHz in November 2011. We have discovered hundreds of galaxy clusters in the SPT-SZ survey through the Sunyaev-Zel’dovich (SZ) effect. The formation of galaxy clusters the largest bound objects in the universe is highly sensitive to dark energy and the history of structure formation. I will discuss the cosmological constraints from the SPT-SZ galaxy cluster sample as well as future prospects with the soon to-be-installed SPT-3G camera.
NASA Astrophysics Data System (ADS)
Clifford, Eoghan; Mulligan, Sean; Comer, Joanne; Hannon, Louise
2018-01-01
Real-time monitoring of water consumption activities can be an effective mechanism to achieve efficient water network management. This approach, largely enabled by the advent of smart metering technologies, is gradually being practiced in domestic and industrial contexts. In particular, identifying water consumption habits from flow-signatures, i.e., the specific end-usage patterns, is being investigated as a means for conservation in both the residential and nonresidential context. However, the quality of meter data is bivariate (dependent on number of meters and data temporal resolution) and as a result, planning a smart metering scheme is relatively difficult with no generic design approach available. In this study, a comprehensive medium-resolution to high-resolution smart metering program was implemented at two nonresidential trial sites to evaluate the effect of spatial and temporal data aggregation. It was found that medium-resolution water meter data were capable of exposing regular, continuous, peak use, and diurnal patterns which reflect group wide end-usage characteristics. The high-resolution meter data permitted flow-signature at a personal end-use level. Through this unique opportunity to observe water usage characteristics via flow-signature patterns, newly defined hydraulic-based design coefficients determined from Poisson rectangular pulse were developed to intuitively aid in the process of pattern discovery with implications for automated activity recognition applications. A smart meter classification and siting index was introduced which categorizes meter resolution in terms of their suitable application.
Evaluation of a wildfire smoke forecasting system as a tool for public health protection.
Yao, Jiayun; Brauer, Michael; Henderson, Sarah B
2013-10-01
Exposure to wildfire smoke has been associated with cardiopulmonary health impacts. Climate change will increase the severity and frequency of smoke events, suggesting a need for enhanced public health protection. Forecasts of smoke exposure can facilitate public health responses. We evaluated the utility of a wildfire smoke forecasting system (BlueSky) for public health protection by comparing its forecasts with observations and assessing their associations with population-level indicators of respiratory health in British Columbia, Canada. We compared BlueSky PM2.5 forecasts with PM2.5 measurements from air quality monitors, and BlueSky smoke plume forecasts with plume tracings from National Oceanic and Atmospheric Administration Hazard Mapping System remote sensing data. Daily counts of the asthma drug salbutamol sulfate dispensations and asthma-related physician visits were aggregated for each geographic local health area (LHA). Daily continuous measures of PM2.5 and binary measures of smoke plume presence, either forecasted or observed, were assigned to each LHA. Poisson regression was used to estimate the association between exposure measures and health indicators. We found modest agreement between forecasts and observations, which was improved during intense fire periods. A 30-μg/m3 increase in BlueSky PM2.5 was associated with an 8% increase in salbutamol dispensations and a 5% increase in asthma-related physician visits. BlueSky plume coverage was associated with 5% and 6% increases in the two health indicators, respectively. The effects were similar for observed smoke, and generally stronger in very smoky areas. BlueSky forecasts showed modest agreement with retrospective measures of smoke and were predictive of respiratory health indicators, suggesting they can provide useful information for public health protection.
Applying machine learning classification techniques to automate sky object cataloguing
NASA Astrophysics Data System (ADS)
Fayyad, Usama M.; Doyle, Richard J.; Weir, W. Nick; Djorgovski, Stanislav
1993-08-01
We describe the application of an Artificial Intelligence machine learning techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Mt. Palomar Northern Sky Survey is nearly completed. This survey provides comprehensive coverage of the northern celestial hemisphere in the form of photographic plates. The plates are being transformed into digitized images whose quality will probably not be surpassed in the next ten to twenty years. The images are expected to contain on the order of 107 galaxies and 108 stars. Astronomers wish to determine which of these sky objects belong to various classes of galaxies and stars. Unfortunately, the size of this data set precludes analysis in an exclusively manual fashion. Our approach is to develop a software system which integrates the functions of independently developed techniques for image processing and data classification. Digitized sky images are passed through image processing routines to identify sky objects and to extract a set of features for each object. These routines are used to help select a useful set of attributes for classifying sky objects. Then GID3 (Generalized ID3) and O-B Tree, two inductive learning techniques, learns classification decision trees from examples. These classifiers will then be applied to new data. These developmnent process is highly interactive, with astronomer input playing a vital role. Astronomers refine the feature set used to construct sky object descriptions, and evaluate the performance of the automated classification technique on new data. This paper gives an overview of the machine learning techniques with an emphasis on their general applicability, describes the details of our specific application, and reports the initial encouraging results. The results indicate that our machine learning approach is well-suited to the problem. The primary benefit of the approach is increased data reduction throughput. Another benefit is consistency of classification. The classification rules which are the product of the inductive learning techniques will form an objective, examinable basis for classifying sky objects. A final, not to be underestimated benefit is that astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems based on automatically catalogued data.
Night Sky Weather Monitoring System Using Fish-Eye CCD
NASA Astrophysics Data System (ADS)
Tomida, Takayuki; Saito, Yasunori; Nakamura, Ryo; Yamazaki, Katsuya
Telescope Array (TA) is international joint experiment observing ultra-high energy cosmic rays. TA employs fluorescence detection technique to observe cosmic rays. In this technique, tho existence of cloud significantly affects quality of data. Therefore, cloud monitoring provides important information. We are developing two new methods for evaluating night sky weather with pictures taken by charge-coupled device (CCD) camera. One is evaluating the amount of cloud with pixels brightness. The other is counting the number of stars with contour detection technique. The results of these methods show clear correlation, and we concluded both the analyses are reasonable methods for weather monitoring. We discuss reliability of the star counting method.
'Gibson' Panorama by Spirit at 'Home Plate' (False Color)
NASA Technical Reports Server (NTRS)
2006-01-01
NASA's Mars Exploration Rover Spirit acquired this high-resolution view of intricately layered exposures of rock while parked on the northwest edge of the bright, semi-circular feature known as 'Home Plate.' The rover was perched at a 27-degree upward tilt while creating the panorama, resulting in the 'U' shape of the mosaic. In reality, the features along the 1-meter to 2-meter (1-foot to 6.5-foot) vertical exposure of the rim of Home Plate in this vicinity are relatively level. Rocks near the rover in this view, known as the 'Gibson' panorama, include 'Barnhill,' 'Rogan,' and 'Mackey.' Spirit acquired 246 separate images of this scene using 6 different filters on the panoramic camera (Pancam) during the rover's Martian days, or sols, 748 through 751 (Feb. 9 through Feb. 12, 2006). The field of view covers 160 degrees of terrain around the rover. This image is a false-color rendering using using Pancam's 753-nanometer, 535-namometer, and 432-nanometer filters, presented to enhance many subtle color differences between rocks and soils in the scene. Image-to-image seams have been eliminated from the sky portion of the mosaic to better simulate the vista a person standing on Mars would see.'Gibson' Panorama by Spirit at 'Home Plate'
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Click on the image for 'Gibson' Panorama by Spirit at 'Home Plate' (QTVR) NASA's Mars Exploration Rover Spirit acquired this high-resolution view of intricately layered exposures of rock while parked on the northwest edge of the bright, semi-circular feature known as 'Home Plate.' The rover was perched at a 27-degree upward tilt while creating the panorama, resulting in the 'U' shape of the mosaic. In reality, the features along the 1-meter to 2-meter (1-foot to 6.5-foot) vertical exposure of the rim of Home Plate in this vicinity are relatively level. Rocks near the rover in this view, known as the 'Gibson' panorama, include 'Barnhill,' 'Rogan,' and 'Mackey.' Spirit acquired 246 separate images of this scene using 6 different filters on the panoramic camera (Pancam) during the rover's Martian days, or sols, 748 through 751 (Feb. 9 through Feb. 12, 2006). The field of view covers 160 degrees of terrain around the rover. This image is an approximately true-color rendering using Pancam's 753-nanometer, 535-namometer, and 432-nanometer filters. Image-to-image seams have been eliminated from the sky portion of the mosaic to better simulate the vista a person standing on Mars would see.Translations on Environmental Quality, Number 128
1977-01-17
filters. The mechanical filter has a 5 cubic meter filtering material operational volume and is charged with activized BAU charcoal . The cationite...cubic meter activized BAU charcoal . The cationite and anionite filters are charged with strong acid cationite and strong alkali anionite in their N and...Extensive Reprocessing of Slags. In ferrous metallurgy , pig and steel pro- duction is inescapably connected with the production of large amounts of
Determining Light Pollution of the Global Sky: GLOBE at Night
NASA Astrophysics Data System (ADS)
Henderson, S.; Meymaris, K.; Ward, D.; Walker, C.; Russell, R.; Pompea, S.; Salisbury, D.
2006-05-01
GLOBE at Night is an international science event designed to observe and record the visible stars as a means of measuring light pollution in a given location. Increased and robust understanding of our environment requires learning opportunities that take place outside of the conventional K-12 classroom and beyond the confines of the school day. This hands-on learning activity extended the traditional classroom and school day last March with a week of nighttime sky observations involving teachers, students and their families. The quality of the night sky for stellar observations is impacted by several factors including human activities. By observing cloud cover and locating specific constellations in the sky, students from around the world learned how the lights in their community contribute to light pollution, exploring the relationship between science, technology and their society. Students learned that light pollution impacts more than just the visibility of stars at night. Lights at night impact both the biology and ecology of many species in our environment. Students were able to participate in this global scientific campaign by submitting their observations through an online database, allowing for authentic worldwide research and analysis by participating scientists. Students and their families learned how latitude and longitude coordinates provide a location system to map and analyze the observation data submitted from around the globe. The collected data is available online for use by students, teachers and scientists worldwide to assess how the quality of the night sky varies around the world. This session will share how students and scientists across the globe can explore and analyze the results of this exciting campaign. GLOBE at Night is a collaborative effort sponsored by The GLOBE Program, the National Optical Astronomy Observatory (NOAO), Centro de Apoyo a la Didactica de la Astronomia (CADIAS), Windows to the Universe, and ESRI. The GLOBE Program is an international inquiry-based program designed to engage teachers with their students in partnership with research scientists to better understand the environment at local, regional, and global scales. The GLOBE Program is managed by the University Corporation for Atmospheric Research and Colorado State University with funding from NASA, NSF, and the U.S. Department of State.
First Science Verification of the VLA Sky Survey Pilot
NASA Astrophysics Data System (ADS)
Cavanaugh, Amy
2017-01-01
My research involved analyzing test images by Steve Myers for the upcoming VLA Sky Survey. This survey will cover the entire sky visible from the VLA site in S band (2-4 GHz). The VLA will be in B configuration for the survey, as it was when the test images were produced, meaning a resolution of approximately 2.5 arcseconds. Conducted using On-the-Fly mode, the survey will have a speed of approximately 20 deg2 hr-1 (including overhead). New Python imaging scripts are being developed and improved to process the VLASS images. My research consisted of comparing a continuum test image over S band (from the new imaging scripts) to two previous images of the same region of the sky (from the CNSS and FIRST surveys), as well as comparing the continuum image to single spectral windows (from the new imaging scripts and of the same sky region). By comparing our continuum test image to images from CNSS and FIRST, we tested on-the-Fly mode and the imaging script used to produce our images. Another goal was to test whether individual spectral windows could be used in combination to calculate spectral indices close to those produced over S band (based only on our continuum image). Our continuum image contained 64 sources as opposed to the 99 sources found in the CNSS image. The CNSS image also had lower noise level (0.095 mJy/beam compared to 0.119 mJy/beam). Additionally, when our continuum image was compared to the CNSS image, separation showed no dependence on total flux density (in our continuum image). At lower flux densities, sources in our image were brighter than the same ones in the CNSS image. When our continuum image was compared to the FIRST catalog, the spectral index difference showed no dependence on total flux (in our continuum image). In conclusion, the quality of our images did not completely match the quality of the CNSS and FIRST images. More work is needed in developing the new imaging scripts.
The Potential of Clear Sky Carbon Dioxide Satellite Retrievals
NASA Astrophysics Data System (ADS)
Nelson, R.; O'Dell, C.
2013-12-01
It has been shown that neglecting scattering and absorption by aerosols and thin clouds can lead to significant errors in retrievals of the column-averaged dry-air mole fraction of carbon dioxide (XCO2) from space-based measurements of near-infrared reflected sunlight. These clear sky retrievals, which assume no aerosol effects, are desirable because of their high computational efficiency relative to common full physics retrievals. Further, clear sky retrievals may be able to make higher quality measurements relative to the full physics approach because they may introduce fewer potential biases under certain circumstances. These biases can appear when we try to retrieve clouds and aerosols in the full physics methods when there are none actually present. Recent work has shown that intelligent pre-screening can remove soundings with large light-path modifications over ocean surfaces. In this work, we test the hypothesis that intelligent pre-screening of soundings may be successfully used over land surfaces as well as oceans, which would allow clear sky retrievals to be applicable over all surfaces. We also test the hypothesis that major light path modification effects associated with aerosols can be identified based on spectral tests at 0.76, 1.6, and 2 microns. This presentation summarizes our study of both simulated data and satellite observations from the GOSAT instrument in order to assess the effectiveness of using a clear sky retrieval algorithm coupled with intelligent pre-screening to accurately measure carbon dioxide from space-borne instruments.
NASA Astrophysics Data System (ADS)
De Marchi, Guido; ESASky Team
2018-06-01
ESASky is a discovery portal giving to all astronomers, professional and amateur alike, an easy way to access high-quality scientific data from their computer, tablet, or mobile device. It includes over half a million images, 300,000 spectra, and more than a billion catalogue sources. From gamma rays to radio wavelengths, it allows users to explore the cosmos with data from a dozen space missions from the astronomical archives of ESA, NASA, and JAXA and does not require prior knowledge of any particular mission. ESASky features an all-sky exploration interface, letting users easily zoom in for stars as single targets or as part of a whole galaxy, visualise them and retrieve the relevant data taken in an area of the sky with just a few clicks. Users can easily compare observations of the same source obtained by different space missions at different times and wavelengths. They can also use ESASky to plan future observations with the James Webb Space Telescope, comparing the relevant portion of the sky as observed by Hubble and other missions. We will illustrate the many options to visualise and access astronomical data: interactive footprints for each instrument, tree-maps, filters, and solar-system object trajectories can all be combined and displayed. The most recent version of ESASky, released in February, also includes access to scientific publications, allowing users to visualise on the sky all astronomical objects with associated scientific publications and to link directly back to the papers in the NASA Astrophysics Data System.
LOAD-ENHANCED MOVEMENT QUALITY SCREENING AND TACTICAL ATHLETICISM: AN EXTENSION OF EVIDENCE
Schmitz, Randy J.; Rhea, Christopher K.; Ross, Scott E.
2017-01-01
Background Military organizations use movement quality screening for prediction of injury risk and performance potential. Currently, evidence of an association between movement quality and performance is limited. Recent work has demonstrated that external loading strengthens the relationship between movement screens and performance outcomes. Such loading may therefore steer us toward robust implementations of movement quality screens while maintaining their appeal as cost effective, field-expedient tools. Purpose The purpose of the current study was to quantify the effect of external load-bearing on the relationship between clinically rated movement quality and tactical performance outcomes while addressing the noted limitations. Study Design Crossover Trial. Methods Fifty young adults (25 male, 25 female, 22.98 ± 3.09 years, 171.95 ± 11.46 cm, 71.77 ± 14.03 kg) completed the Functional Movement Screen™ with (FMS™W) and without (FMS™C) a weight vest in randomized order. Following FMS™ testing, criterion measures of tactical performance were administered, including agility T-Tests, sprints, a 400-meter run, the Mobility for Battle (MOB) course, and a simulated casualty rescue. For each performance outcome, regression models were selected via group lasso with smoothed FMS™ item scores as candidate predictor variables. Results For all outcomes, proportion of variance accounted for was greater in FMS™W (R2 = ;0.22 [T-Test], 0.29 [Sprint], 0.17 [400 meter], 0.29 [MOB], and 0.11 [casualty rescue]) than in FMS™C (R2 = ;0.00 [T-Test], 0.11 [Sprint], 0.00 [400 meter], 0.19 [MOB], and 0.00 [casualty rescue]). From the FMS™W condition, beneficial performance effects (p<0.05) were observed for Deep Squat (sprint, casualty rescue), Hurdle Step (T-Agility, 400 meter run), Inline Lunge (sprint, MOB), and Trunk Stability Push Up (all models). Similar effects for FMS™C item scores were limited to Trunk Stability Push Up (p<0.05, all models). Conclusions The present study extends evidence supporting the validity of load-enhanced movement quality screening as a predictor of tactical performance ability. Future designs should seek to identify mechanisms explaining this effect. Level of Evidence 3 PMID:28593095
LOAD-ENHANCED MOVEMENT QUALITY SCREENING AND TACTICAL ATHLETICISM: AN EXTENSION OF EVIDENCE.
Glass, Stephen M; Schmitz, Randy J; Rhea, Christopher K; Ross, Scott E
2017-06-01
Military organizations use movement quality screening for prediction of injury risk and performance potential. Currently, evidence of an association between movement quality and performance is limited. Recent work has demonstrated that external loading strengthens the relationship between movement screens and performance outcomes. Such loading may therefore steer us toward robust implementations of movement quality screens while maintaining their appeal as cost effective, field-expedient tools. The purpose of the current study was to quantify the effect of external load-bearing on the relationship between clinically rated movement quality and tactical performance outcomes while addressing the noted limitations. Crossover Trial. Fifty young adults (25 male, 25 female, 22.98 ± 3.09 years, 171.95 ± 11.46 cm, 71.77 ± 14.03 kg) completed the Functional Movement Screen™ with (FMS™W) and without (FMS™C) a weight vest in randomized order. Following FMS™ testing, criterion measures of tactical performance were administered, including agility T-Tests, sprints, a 400-meter run, the Mobility for Battle (MOB) course, and a simulated casualty rescue. For each performance outcome, regression models were selected via group lasso with smoothed FMS™ item scores as candidate predictor variables. For all outcomes, proportion of variance accounted for was greater in FMS™W (R 2 = ;0.22 [T-Test], 0.29 [Sprint], 0.17 [400 meter], 0.29 [MOB], and 0.11 [casualty rescue]) than in FMS™C (R 2 = ;0.00 [T-Test], 0.11 [Sprint], 0.00 [400 meter], 0.19 [MOB], and 0.00 [casualty rescue]). From the FMS™W condition, beneficial performance effects (p<0.05) were observed for Deep Squat (sprint, casualty rescue), Hurdle Step (T-Agility, 400 meter run), Inline Lunge (sprint, MOB), and Trunk Stability Push Up (all models). Similar effects for FMS™C item scores were limited to Trunk Stability Push Up (p<0.05, all models). The present study extends evidence supporting the validity of load-enhanced movement quality screening as a predictor of tactical performance ability. Future designs should seek to identify mechanisms explaining this effect. 3.
Fifty-four Years of Adventures in Infrared Astronomy
NASA Astrophysics Data System (ADS)
Becklin, Eric Eric
2018-01-01
My adventures in infrared astronomy started when I was a grad student in 1965 with the discovery of an infrared-bright object (now known as the Becklin-Neugebauer Object) in the Orion Nebula. In 1966, I made the first measurements of the infrared radiation from the center of the Milky Way Galaxy. I was fortunate enough to be able to take advantage of the 2.2 micron sky survey carried out by Neugebauer and Leighton (1969), which produced many remarkable discoveries, the most spectacular being the heavily dust-embedded carbon star IRC+10216, thebrightest object in the sky at 5 microns outside the solar system. In the 1970’s there was a growth in Infrared astronomy with the availability of many new facilities such as the Kuiper Airborne Observatory, (KAO) which I used extensively with Mike Werner and Ian Gatley for many unique observations. In 1977, I moved to Hawaii to work on the NASA IRTF 3- meter telescope. Many discoveries were made, including the first direct measurements of the rings of Jupiter at 2.2 microns (with Gareth Wynn-Williams) and the discovery of the first L dwarf star around a white dwarf (with Ben Zuckerman). In the 1980’s the introduction of large format arrays changed the way we did infrared astronomy. With Ian McLean, I moved to UCLA in 1990 to start the IR lab and get involved in Keck development and science. In 1995, Andrea, Ghez, Mark Morris and I started looking for evidence of a possible massive Black Hole in the Galactic Center. Spectacular observations using the Keck10 meter telescopes with large format near-infrared arrays and adaptive optics led to the confirmation of the presence of such a black hole and an estimate of its mass (4xE6 M (Sun)). In 1996, I began working on the Stratospheric Observatory For Infrared Astronomy (SOFIA) and I will finish my talk by discussing SOFIA observations of the ring of dust and gas orbiting the massive black hole in the center
Earth's Minimoons: Opportunities for Science and Technology.
NASA Astrophysics Data System (ADS)
Jedicke, Robert; Bolin, Bryce T.; Bottke, William F.; Chyba, Monique; Fedorets, Grigori; Granvik, Mikael; Jones, Lynne; Urrutxua, Hodei
2018-05-01
Twelve years ago the Catalina Sky Survey discovered Earth's first known natural geocentric object other than the Moon, a few-meter diameter asteroid designated \\RH. Despite significant improvements in ground-based asteroid surveying technology in the past decade they have not discovered another temporarily-captured orbiter (TCO; colloquially known as minimoons) but the all-sky fireball system operated in the Czech Republic as part of the European Fireball Network detected a bright natural meteor that was almost certainly in a geocentric orbit before it struck Earth's atmosphere. Within a few years the Large Synoptic Survey Telescope (LSST) will either begin to regularly detect TCOs or force a re-analysis of the creation and dynamical evolution of small asteroids in the inner solar system. The first studies of the provenance, properties, and dynamics of Earth's minimoons suggested that there should be a steady state population with about one 1- to 2-meter diameter captured objects at any time, with the number of captured meteoroids increasing exponentially for smaller sizes. That model was then improved and extended to include the population of temporarily-captured flybys (TCFs), objects that fail to make an entire revolution around Earth while energetically bound to the Earth-Moon system. Several different techniques for discovering TCOs have been considered but their small diameters, proximity, and rapid motion make them challenging targets for existing ground-based optical, meteor, and radar surveys. However, the LSST's tremendous light gathering power and short exposure times could allow it to detect and discover many minimoons. We expect that if the TCO population is confirmed, and new objects are frequently discovered, they can provide new opportunities for 1) studying the dynamics of the Earth-Moon system, 2) testing models of the production and dynamical evolution of small asteroids from the asteroid belt, 3) rapid and frequent low delta-v missions to multiple minimoons, and 4) evaluating in-situ resource utilization techniques on asteroidal material. Here we review the past decade of minimoon studies in preparation for capitalizing on the scientific and commercial opportunities of TCOs in the first decade of LSST operations.
ANALYSIS OF AIR QUALITY DATA NEAR ROADWAYS USING A DISPERSION MODEL
A dispersion model was used to analyze measurements made during a field study conducted by the U.S. EPA in July and August 2006, to estimate the impact of highway emissions on air quality at distances of tens of meters from an eight-lane highway. The air quality measurements con...
CLEAR SKIES INITIATIVE: RGM DRY DEPOSITION RESEARCH
Excessive levels of mercury in the nations waters are the most widespread cause of water quality impairment in the US. Atmospheric emissions and deposition processes drive mercury accumulation in soils and sediments, and are now recognized as the major route of mercury contamina...
Swift/BAT Calibration and Spectral Response
NASA Technical Reports Server (NTRS)
Parsons, A.
2004-01-01
The Burst Alert Telescope (BAT) aboard NASA#s Swift Gamma-Ray Burst Explorer is a large coded aperture gamma-ray telescope consisting of a 2.4 m (8#) x 1.2 m (4#) coded aperture mask supported 1 meter above a 5200 square cm area detector plane containing 32,768 individual 4 mm x 4 mm x 2 mm CZT detectors. The BAT is now completely assembled and integrated with the Swift spacecraft in anticipation of an October 2004 launch. Extensive ground calibration measurements using a variety of radioactive sources have resulted in a moderately high fidelity model for the BAT spectral and photometric response. This paper describes these ground calibration measurements as well as related computer simulations used to study the efficiency and individual detector properties of the BAT detector array. The creation of a single spectral response model representative of the fully integrated BAT posed an interesting challenge and is at the heart of the public analysis tool #batdrmgen# which computes a response matrix for any given sky position within the BAT FOV. This paper will describe the batdrmgen response generator tool and conclude with a description of the on-orbit calibration plans as well as plans for the future improvements needed to produce the more detailed spectral response model that is required for the construction of an all-sky hard x-ray survey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathyanarayana Rao, Mayuri; Subrahmanyan, Ravi; Shankar, N Udaya
Cosmic baryon evolution during the Cosmic Dawn and Reionization results in redshifted 21-cm spectral distortions in the cosmic microwave background (CMB). These encode information about the nature and timing of first sources over redshifts 30–6 and appear at meter wavelengths as a tiny CMB distortion along with the Galactic and extragalactic radio sky, which is orders of magnitude brighter. Therefore, detection requires precise methods to model foregrounds. We present a method of foreground fitting using maximally smooth (MS) functions. We demonstrate the usefulness of MS functions over traditionally used polynomials to separate foregrounds from the Epoch of Reionization (EoR) signal.more » We also examine the level of spectral complexity in plausible foregrounds using GMOSS, a physically motivated model of the radio sky, and find that they are indeed smooth and can be modeled by MS functions to levels sufficient to discern the vanilla model of the EoR signal. We show that MS functions are loss resistant and robustly preserve EoR signal strength and turning points in the residuals. Finally, we demonstrate that in using a well-calibrated spectral radiometer and modeling foregrounds with MS functions, the global EoR signal can be detected with a Bayesian approach with 90% confidence in 10 minutes’ integration.« less
Localizing New Pulsars with Intensity Mapping
NASA Astrophysics Data System (ADS)
Swiggum, Joe; Gentile, Peter
2018-01-01
Although low-frequency, single dish pulsar surveys provide an efficient means of searching large regions of sky quickly, the localization of new discoveries is poor. For example, discoveries from 350 MHz surveys using the Green Bank Telescope (GBT) have position uncertainties up to the FWHM of the telescope's "beam" on the sky, over half a degree! Before finding a coherent timing solution (requires 8-12 months of dedicated timing observations) a "gridding" method is usually employed to improve localization of new pulsars, whereby a grid of higher frequency beam positions is used to tile the initial error region. This method often requires over an hour of observing time to achieve arcminute-precision localization (provided the pulsar is detectable at higher frequencies).Here, we describe another method that uses the same observing frequency as the discovery observation and scans over Right Ascension and Declination directions around the nominal position. A Gaussian beam model is fit to folded pulse profile intensities as a function of time/position to provide improved localization. Using five test cases, we show that intensity mapping localization at 350 MHz with the GBT yields pulsar positions to 1 arcminute precision, facilitating high-frequency follow-up and higher significance detections for future pulsar timing. This method is also well suited to be directly implemented in future low-frequency drift scan pulsar surveys (e.g. with the Five hundred meter Aperture Spherical Telescope; FAST).
Mapping lightning in the sky with a mini array
NASA Astrophysics Data System (ADS)
Füllekrug, Martin; Liu, Zhongjian; Koh, Kuang; Mezentsev, Andrew; Pedeboy, Stéphane; Soula, Serge; Enno, Sven-Erik; Sugier, Jacqueline; Rycroft, Michael J.
2016-10-01
Mini arrays are commonly used for infrasonic and seismic studies. Here we report for the first time the detection and mapping of distant lightning discharges in the sky with a mini array. The array has a baseline to wavelength ratio ˜4.2·10-2 to record very low frequency electromagnetic waves from 2 to 18 kHz. It is found that the mini array detects ˜69 lightning pulses per second from cloud-to-ground and in-cloud discharges, even though the parent thunderstorms are ˜900-1100 km away and a rigorous selection criterion based on the quality of the wavefront across the array is used. In particular, lightning pulses that exhibit a clockwise phase progression are found at larger elevation angles in the sky as the result of a birefringent subionospheric wave propagation attributed to ordinary and extraordinary waves. These results imply that long range lightning detection networks might benefit from an exploration of the wave propagation conditions with mini arrays.
New gridded database of clear-sky solar radiation derived from ground-based observations over Europe
NASA Astrophysics Data System (ADS)
Bartok, Blanka; Wild, Martin; Sanchez-Lorenzo, Arturo; Hakuba, Maria Z.
2017-04-01
Since aerosols modify the entire energy balance of the climate system through different processes, assessments regarding aerosol multiannual variability are highly required by the climate modelling community. Because of the scarcity of long-term direct aerosol measurements, the retrieval of aerosol data/information from other type of observations or satellite measurements are very relevant. One approach frequently used in the literature is analyze of the clear-sky solar radiation which offer a better overview of changes in aerosol content. In the study first two empirical methods are elaborated in order to separate clear-sky situations from observed values of surface solar radiation available at the World Radiation Data Center (WRDC), St. Petersburg. The daily data has been checked for temporal homogeneity by applying the MASH method (Szentimrey, 2003). In the first approach, clear sky situations are detected based on clearness index, namely the ratio of the surface solar radiation to the extraterrestrial solar irradiation. In the second approach the observed values of surface solar radiation are compared to the climatology of clear-sky surface solar radiation calculated by the MAGIC radiation code (Muller et al. 2009). In both approaches the clear-sky radiation values highly depend on the applied thresholds. In order to eliminate this methodological error a verification of clear-sky detection is envisaged through a comparison with the values obtained by a high time resolution clear-sky detection and interpolation algorithm (Long and Ackermann, 2000) making use of the high quality data from the Baseline Surface Radiation Network (BSRN). As the consequences clear-sky data series are obtained for 118 European meteorological stations. Next a first attempt has been done in order to interpolate the point-wise clear-sky radiation data by applying the MISH (Meteorological Interpolation based on Surface Homogenized Data Basis) method for the spatial interpolation of surface meteorological elements developed at the Hungarian Meteorological Service (Szentimrey 2007). In this way new gridded database of clear-sky solar radiation is created suitable for further investigations regarding the role of aerosols in the energy budget, and also for validations of climate model outputs. References 1. Long CN, Ackerman TP. 2000. Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects, J. Geophys. Res., 105(D12), 15609-15626, doi:10.1029/2000JD900077. 2. Mueller R, Matsoukas C, Gratzki A, Behr H, Hollmann R. 2009. The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance - a LUT based eigenvector hybrid approach, Remote Sensing of Environment, 113 (5), 1012-1024, doi:10.1016/j.rse.2009. 01.012 3. Szentimrey T. 2014. Multiple Analysis of Series for Homogenization (MASHv3.03), Hungarian Meteorological Service, https://www.met.hu/en/omsz/rendezvenyek/homogenization_and_interpolation/software/ 4. Szentimrey T. Bihari Z. 2014: Meteorological Interpolation based on Surface Homogenized Data Basis (MISHv1.03) https://www.met.hu/en/omsz/rendezvenyek/homogenization_and_interpolation/software/
Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.
NASA Astrophysics Data System (ADS)
Gubler, S.; Gruber, S.; Purves, R. S.
2012-06-01
As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR) and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR). In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB) stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM) in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night. We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD) and the relative root mean squared deviance (RMSD) of the clear-sky global SDR scatter between between -2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations to local conditions reduces MBD and RMSD strongly compared to using the published values of the parameters, resulting in relative MBD and RMSD of less than 5% respectively 10% for the best parameterizations. The best results to estimate cloud transmissivity during nighttime were obtained by linearly interpolating the average of the cloud transmissivity of the four hours of the preceeding afternoon and the following morning. Model uncertainty can be caused by different errors such as code implementation, errors in input data and in estimated parameters, etc. The influence of the latter (errors in input data and model parameter uncertainty) on model outputs is determined using Monte Carlo. Model uncertainty is provided as the relative standard deviation σrel of the simulated frequency distributions of the model outputs. An optimistic estimate of the relative uncertainty σrel resulted in 10% for the clear-sky direct, 30% for diffuse, 3% for global SDR, and 3% for the fitted all-sky LDR.
Evaluation of a metering, mixing, and dispensing system for mixing polysulfide adhesive
NASA Technical Reports Server (NTRS)
Evans, Kurt B.
1989-01-01
Tests were performed to evaluate whether a metered mixing system can mix PR-1221 polysulfide adhesive as well as or better than batch-mixed adhesive; also, to evaluate the quality of meter-mixed PR-1860 and PS-875 polysulfide adhesives. These adhesives are candidate replacements for PR-1221 which will not be manufactured in the future. The following material properties were evaluated: peel strength, specific gravity and adhesive components of mixed adhesives, Shore A hardness, tensile adhesion strength, and flow rate. Finally, a visual test called the butterfly test was performed to observe for bubbles and unmixed adhesive. The results of these tests are reported and discussed.
NASA Astrophysics Data System (ADS)
Walker, Constance E.; M, Pompea, Stephen
2018-01-01
Poor quality lighting impedes astronomy research and our right to see a starry night sky. It creates safety issues, affects human circadian sensitivities, disrupts ecosystems, and wastes billions of dollars/year in energy consumption. It also leads to excess carbon emissions. How do you change the mindset of society that is used to turning night into day? You educate the next generation on quality lighting.As an outcome of the International Year of Light 2015, the National Optical Astronomy Observatory’s Education and Public Outreach group has produced a Quality Lighting Teaching (QLT) Kit. The kits are designed around problem-based learning scenarios. The kit’s six activities allow students to address real lighting problems that relate to wildlife, sky glow, aging eyes, energy consumption, safety, and light trespass. The activities are optimized for 11-14 year olds but can be expanded to younger and older. All materials are in both English and Spanish. Most of the activities can be done within in a few minutes during class or afterschool and as stations or as stand-alones. Everything you need for the six activities is included in the kit. Tutorial videos on how to do the activities can be found at www.noao.edu/education/qltkit.php. Ninety-two out of one hundred kits have been distributed in thirty-two countries through SPIE (the International Society for Optical Engineering), CIE (the International Commission on Illuminations), OSA (the Optical Society), IDA (the International Dark Sky Association), and the IAU OAD–Office of Astronomy Development. Successful feedback is promoting a choice between commercializing the kit or gaining further grants to build more kits. A plan is being considered to distribute kits to observatories around the world, hence helping to reduce the effects of one of the three threats to observational astronomy through awareness and action.
NASA Astrophysics Data System (ADS)
Shectman, Stephen A.; Johns, Matthew
2003-02-01
Commissioning of the two 6.5-meter Magellan telescopes is nearing completion at the Las Campanas Observatory in Chile. The Magellan 1 primary mirror was successfully aluminized at Las Campanas in August 2000. Science operations at Magellan 1 began in February 2001. The second Nasmyth focus on Magellan 1 went into operation in September 2001. Science operations on Magellan 2 are scheduled to begin shortly. The ability to deliver high-quality images is maintained at all times by the simultaneous operation of the primary mirror support system, the primary mirror thermal control system, and a real-time active optics system, based on a Shack-Hartmann image analyzer. Residual aberrations in the delivered image (including focus) are typically 0.10-0.15" fwhm, and real images as good as 0.25" fwhm have been obtained at optical wavelengths. The mount points reliably to 2" rms over the entire sky, using a pointing model which is stable from year to year. The tracking error under typical wind conditions is better than 0.03" rms, although some degradation is observed under high wind conditions when the dome is pointed in an unfavorable direction. Instruments used at Magellan 1 during the first year of operation include two spectrographs previously used at other telescopes (B&C, LDSS-2), a mid-infrared imager (MIRAC) and an optical imager (MAGIC, the first Magellan-specific facility instrument). Two facility spectrographs are scheduled to be installed shortly: IMACS, a wide-field spectrograph, and MIKE, a double echelle spectrograph.
NASA Astrophysics Data System (ADS)
Ishitsuka, J. K.; Ishitsuka, M.; Inoue, M.; Kaifu, N.; Miyama, S.; Tsuboi, M.; Ohishi, M.; Fujisawa, K.; Kasuga, T.; Kondo, T.; Horiuchi, S.; Umemoto, T.; Miyoshi, M.; Miyazawa, K.; Bushimata, T.; Vidal, E. D.
2006-08-01
In 1984 Nippon Electric Company constructed an INTELSAT antenna at 3,370 meters above the sea level on the Peruvian Andes. Entel Peru, the Peruvian telecommunications company, managed the antenna station until 1993. This year the government transferred the station to a private telecommunications company, Telefónica del Peru. Since the satellite communications were rapidly replaced by transoceanic fiber optics, the beautiful 32 meters parabolic antenna has been unused since 2002.. In cooperation with the National Astronomical Observatory of Japan we began to convert the antenna into a radio telescope. Because researches on interstellar medium around Young Stellar Objects (YSO) will be able to observe the methanol masers that emit at 6.7 GHz, initially we will monitor the 6.7 GHz methanol masers and survey the southern sky. An ambient temperature receiver with Trx= 60 K was developed at Nobeyama Radio Observatory and is ready to be installed. The antenna control system is the Field System FS9 software installed in a Linux PC. An interface between the antenna and the PC was developed at Kashima Space Research Center in Japan. In the near future we plan to install the 2 GHz, 8 GHz, 12 GHz and 22 GHz receivers. The unique location and altitude of the Peruvian Radio Observatory will be useful for VLBI observations in collaboration with global arrays such as the VLBA array for astronomical observation and geodetic measurements. For Peru where few or almost no astronomical observational instruments are available for research, the implementation of the first radio observatory is a big and challenging step, and foster sciences at graduate and postgraduate levels of universities. Worldwide telecommunications antennas possibly are unused and with relative few investment could be transformed into a useful observational instrument.
Remote Sensing of Cloud, Aerosol, and Water Vapor Properties from MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Menzel, W. Paul; Kaufman, Yoram J.; Ackerman, Steven A.; Tanre, Didier; Gao, Bo-Cai
2001-01-01
MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar orbiting, sun-synchronous, platform at an altitude of 705 kilometers, and provides images in 36 spectral bands between 0.415 and 14.235 micrometers with spatial resolutions of 250 meters (2 bands), 500 meters (5 bands) and 1000 meters (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this presentation we review the comprehensive set of remote sensing algorithms that have been developed for the remote sensing of atmospheric properties using MODIS data, placing primary emphasis on the principal atmospheric applications of (i) developing a cloud mask for distinguishing clear sky from clouds, (ii) retrieving global cloud radiative and microphysical properties, including cloud top pressure and temperature, effective emissivity, cloud optical thickness, thermodynamic phase, and effective radius, (iii) monitoring tropospheric aerosol optical thickness over the land and ocean and aerosol size distribution over the ocean, (iv) determining atmospheric profiles of moisture and temperature, and (v) estimating column water amount. The physical principles behind the determination of each of these atmospheric products will be described, together with an example of their application using MODIS observations. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 degree (Level-3 products). An overview of the MODIS atmosphere algorithms and products, status, validation activities, and early level-2 and -3 results will be presented.
NASA Astrophysics Data System (ADS)
Khandelwal, A.; Karpatne, A.; Kumar, V.
2017-12-01
In this paper, we present novel methods for producing surface water maps at 30 meter spatial resolution at a daily temporal resolution. These new methods will make use of the MODIS spectral data from Terra (available daily since 2000) to produce daily maps at 250 meter and 500 meter resolution, and then refine them using the relative elevation ordering of pixels at 30 meter resolution. The key component of these methods is the use of elevation structure (relative elevation ordering) of a water body. Elevation structure is not explicitly available at desired resolution for most water bodies in the world and hence it will be estimated using our previous work that uses the history of imperfect labels. In this paper, we will present a new technique that uses elevation structure (unlike existing pixel based methods) to enforce temporal consistency in surface water extents (lake area on nearby dates is likely to be very similar). This will greatly improve the quality of the MODIS scale land/water labels since daily MODIS data can have a large amount of missing (or poor quality) data due to clouds and other factors. The quality of these maps will be further improved using elevation based resolution refinement approach that will make use of elevation structure estimated at Landsat scale. With the assumption that elevation structure does not change over time, it provides a very effective way to transfer information between datasets even when they are not observed concurrently. In this work, we will derive elevation structure at Landsat scale from monthly water extent maps spanning 1984-2015, publicly available through a joint effort of Google Earth Engine and the European Commission's Joint Research Centre (JRC). This elevation structure will then be used to refine spatial resolution of Modis scale maps from 2000 onwards. We will present the analysis of these methods on a large and diverse set of water bodies across the world.
Bernhard Schmidt and the Schmidt Telescope for Mapping the Sky
NASA Astrophysics Data System (ADS)
Wolfschmidt, G.
Bernhard Voldemar Schmidt (1879--1935) was born in Estonia. He ran an optical workshop in Mittweida, Saxonia, between 1901 and 1927. Astronomers appreciated the quality of his telescopes. Starting in 1925, working freelance in Hamburg Observatory, he developed a short focal length optical system with a large field of view. He succeeded in inventing the ``Schmidt Telescope'' in 1930, which allows the imaging a large field of the sky without any distortions. Shortly after Schmidt's death, the director of the observatory published details on the invention and production of the Schmidt Telescope. After World War II, Schmidt telescopes have been widely used. The first large Schmidt telescope was built in 1948, the ``Big Schmidt'' (126 cm), Mount Palomar, USA. Schmidt telescopes are also important tools for cosmology. The result of the Palomar Observatory Sky Surveys (1949--1958, 1985--1999) is a data base of about 20 million galaxies and over 100 million stars, supplemented in 1971 by the ESO Schmidt for the southern sky. Also high resolution spectrometers can be fitted to the Schmidt telescope. The 80 cm Schmidt telescope of Hamburg Observatory, planned since 1936, finished 1955, is on Calar Alto, Spain, since 1975. Combined with two objective prisms, it was used for a Quasar survey project.
NASA Astrophysics Data System (ADS)
Howard, Ward S.; Law, Nicholas M.; Ziegler, Carl A.; Baranec, Christoph; Riddle, Reed
2018-02-01
Adaptive optics laser guide-star systems perform atmospheric correction of stellar wavefronts in two parts: stellar tip-tilt and high-spatial-order laser correction. The requirement of a sufficiently bright guide star in the field-of-view to correct tip-tilt limits sky coverage. In this paper, we show an improvement to effective seeing without the need for nearby bright stars, enabling full sky coverage by performing only laser-assisted wavefront correction. We used Robo-AO, the first robotic AO system, to comprehensively demonstrate this laser-only correction. We analyze observations from four years of efficient robotic operation covering 15000 targets and 42000 observations, each realizing different seeing conditions. Using an autoguider (or a post-processing software equivalent) and the laser to improve effective seeing independent of the brightness of a target, Robo-AO observations show a 39% ± 19% improvement to effective FWHM, without any tip-tilt correction. We also demonstrate that 50% encircled energy performance without tip-tilt correction remains comparable to diffraction-limited, standard Robo-AO performance. Faint-target science programs primarily limited by 50% encircled energy (e.g., those employing integral field spectrographs placed behind the AO system) may see significant benefits to sky coverage from employing laser-only AO.
Soler-López, Luis R.; Santos, Carlos R.
2010-01-01
Laguna Grande is a 50-hectare lagoon in the municipio of Fajardo, located in the northeasternmost part of Puerto Rico. Hydrologic, water-quality, and biological data were collected in the lagoon between March 2007 and February 2009 to establish baseline conditions and determine the health of Laguna Grande on the basis of preestablished standards. In addition, a core of bottom material was obtained at one site within the lagoon to establish sediment depositional rates. Water-quality properties measured onsite (temperature, pH, dissolved oxygen, specific conductance, and water transparency) varied temporally rather than areally. All physical properties were in compliance with current regulatory standards established for Puerto Rico. Nutrient concentrations were very low and in compliance with current regulatory standards (less than 5.0 and 1.0 milligrams per liter for total nitrogen and total phosphorus, respectively). The average total nitrogen concentration was 0.28 milligram per liter, and the average total phosphorus concentration was 0.02 milligram per liter. Chlorophyll a was the predominant form of photosynthetic pigment in the water. The average chlorophyll-a concentration was 6.2 micrograms per liter. Bottom sediment accumulation rates were determined in sediment cores by modeling the downcore activities of lead-210 and cesium-137. Results indicated a sediment depositional rate of about 0.44 centimeter per year. At this rate of sediment accretion, the lagoon may become a marshland in about 700 to 900 years. About 86 percent of the community primary productivity in Laguna Grande was generated by periphyton, primarily algal mats and seagrasses, and the remaining 14 percent was generated by phytoplankton in the water column. Based on the diel studies the total average net community productivity equaled 5.7 grams of oxygen per cubic meter per day (2.1 grams of carbon per cubic meter per day). Most of this productivity was ascribed to periphyton and macrophytes, which produced 4.9 grams of oxygen per cubic meter per day (1.8 grams of carbon per cubic meter per day). Phytoplankton, the plant and algal component of plankton, produced about 0.8 gram of oxygen per cubic meter per day (0.3 gram of carbon per cubic meter per day). The total diel community respiration rate was 23.4 grams of oxygen per cubic meter per day. The respiration rate ascribed to plankton, which consists of all free floating and swimming organisms in the water column, composed 10 percent of this rate (2.9 grams of oxygen per cubic meter per day); respiration by all other organisms composed the remaining 90 percent (20.5 grams of oxygen per cubic meter per day). Plankton gross productivity was 3.7 grams of oxygen per cubic meter per day, equivalent to about 13 percent of the average gross productivity for the entire community (29.1 grams of oxygen per cubic meter per day). The average phytoplankton biomass values in Laguna Grande ranged from 6.0 to 13.6 milligrams per liter. During the study, Laguna Grande contained a phytoplankton standing crop of approximately 5.8 metric tons. Phytoplankton community had a turnover (renewal) rate of about 153 times per year, or roughly about once every 2.5 days. Fecal indicator bacteria concentrations ranged from 160 to 60,000 colonies per 100 milliliters. Concentrations generally were greatest in areas near residential and commercial establishments, and frequently exceeded current regulatory standards established for Puerto Rico.
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Stoll, Jeremy D.; Cook, William B.; Ondrusek, Michael; Stengel, Eric; Brunt, Kelly
2016-01-01
The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532-nanometer laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in ice caps, sea ice, and vegetation, the polar-orbiting satellite will observe global surface water during its designed three-year life span, including inland waterbodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype, the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high-altitude aircraft experiments over a range of inland and near-shore targets. The purpose was to test the ATLAS concept and to provide a database for developing an algorithm that detects along track surface water height and light penetration under a range of atmospheric and water conditions. The current analysis examines the data sets of three MABEL transects observed from 20 kilometers above ground of coastal and inland waters conducted in 2012 and 2013. Transects ranged from about 2 to 12 kilometers in length and included the middle Chesapeake Bay, the near-shore Atlantic coast at Virginia Beach, and Lake Mead. Results indicate MABEL's high capability for retrieving surface water height statistics with a mean height precision ofapproximately 5-7 centimeters per 100-meter segment length. Profiles of attenuated subsurface backscatter, characterized using a Signal to Background Ratio written in Log10 base, or LSBR (sub 0), were observed over a range of 1.3 to 9.3 meters, depending on water clarity and atmospheric background. Results indicate that observable penetration depth, although primarily dependent on water properties, was greatest when the solar background rate was low. Near-shore bottom reflectance was detected only at the Lake Mead site down to a maximum of 10 meters under a clear night sky and low turbidity of approximately 1.6 Nephelometric Turbidity Units (NTU). The overall results suggest that the feasibility of retrieving operational surface water height statistics from space-based photon counting systems such as ATLAS is very high for resolutions down to about 100 meters, even in partly cloudy conditions. The capability to observe subsurface backscatterprofiles is achievable but requires much longer transects of several hundreds of meters.
'Lyell' Panorama inside Victoria Crater (False Color)
NASA Technical Reports Server (NTRS)
2008-01-01
During four months prior to the fourth anniversary of its landing on Mars, NASA's Mars Exploration Rover Opportunity examined rocks inside an alcove called 'Duck Bay' in the western portion of Victoria Crater. The main body of the crater appears in the upper right of this stereo panorama, with the far side of the crater lying about 800 meters (half a mile) away. Bracketing that part of the view are two promontories on the crater's rim at either side of Duck Bay. They are 'Cape Verde,' about 6 meters (20 feet) tall, on the left, and 'Cabo Frio,' about 15 meters (50 feet) tall, on the right. The rest of the image, other than sky and portions of the rover, is ground within Duck Bay. Opportunity's targets of study during the last quarter of 2007 were rock layers within a band exposed around the interior of the crater, about 6 meters (20 feet) from the rim. Bright rocks within the band are visible in the foreground of the panorama. The rover science team assigned informal names to three subdivisions of the band: 'Steno,' 'Smith,' and 'Lyell.' This view combines many images taken by Opportunity's panoramic camera (Pancam) from the 1,332nd through 1,379th Martian days, or sols, of the mission (Oct. 23 to Dec. 11, 2007). Images taken through Pancam filters centered on wavelengths of 753 nanometers, 535 nanometers and 432 nanometers were mixed to produce this view, which is presented in a false-color stretch to bring out subtle color differences in the scene. Some visible patterns in dark and light tones are the result of combining frames that were affected by dust on the front sapphire window of the rover's camera. Opportunity landed on Jan. 25, 2004, Universal Time, (Jan. 24, Pacific Time) inside a much smaller crater about 6 kilometers (4 miles) north of Victoria Crater, to begin a surface mission designed to last 3 months and drive about 600 meters (0.4 mile).The focal plane adaptive optics test box of the Observatoire du Mont-Mégantic
NASA Astrophysics Data System (ADS)
Deschênes, William; Brousseau, Denis; Lavigne, Jean-Francois; Thibault, Simon; Véran, Jean-Pierre
2014-08-01
With the upcoming construction of Extremely Large Telescopes, several existing technologies are being pushed beyond their performance limit and it becomes essential to develop and evaluate new alternatives. The "Observatoire du Mont Mégantic" (OMM) hosts a telescope having a 1.6-meter diameter primary. The OMM telescope is known to be an excellent location to develop and test precursor instruments which are then upscaled to larger telescopes (ex. SPIOMM which led to SITELLE at the CFHT). We present a specifically designed focal plane box for the OMM which will allow to evaluate, directly on-sky, the performance of a number of next generation adaptive optics related technologies The system will able us to compare the performance of several new wavefront sensors in contrast with the current standard, the Shack-Hartman wavefront sensor.
2000-11-30
Back dropped by a cloudless blue sky, Space Shuttle Endeavor stands ready for launch after the rollback of the Rotating Service Structure, at left. The orbiter launched that night carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electric system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.
False-color images from observations by the Supernova Cosmology Project of one of the two most dista
NASA Technical Reports Server (NTRS)
2002-01-01
TFalse-color images from observations by the Supernova Cosmology Project of one of the two most distant spectroscopically confirmed supernova. From the left: the first two images, from the Cerro Tololo Interamerican Observatory 4-meter telescope, show a small region of sky just before and just after the the appearance of a type-Ia supernova that exploded when the universe was about half its present age. The third image shows the same supernova as observed with the Hubble Space Telescope. This much sharper picture allows a much better measurement of the apparent brightness and hence the distance of this supernova. Because their intrinsic brightness is predictable, such supernovae help to determine the deceleration, and so the eventual fate, of the universe. Credit: Perlmutter et al., The Supernova Cosmology Project
Keck adaptive optics: control subsystem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brase, J.M.; An, J.; Avicola, K.
1996-03-08
Adaptive optics on the Keck 10 meter telescope will provide an unprecedented level of capability in high resolution ground based astronomical imaging. The system is designed to provide near diffraction limited imaging performance with Strehl {gt} 0.3 n median Keck seeing of r0 = 25 cm, T =10 msec at 500 nm wavelength. The system will be equipped with a 20 watt sodium laser guide star to provide nearly full sky coverage. The wavefront control subsystem is responsible for wavefront sensing and the control of the tip-tilt and deformable mirrors which actively correct atmospheric turbulence. The spatial sampling interval formore » the wavefront sensor and deformable mirror is de=0.56 m which gives us 349 actuators and 244 subapertures. This paper summarizes the wavefront control system and discusses particular issues in designing a wavefront controller for the Keck telescope.« less
Finding the First Cosmic Explosions: Hypernovae and Pair-Instability Supernovae
NASA Astrophysics Data System (ADS)
Wiggins, Brandon; Whalen, D. J.; Migenes, V.; Astrophysics Research Group at Los Alamos National Laboratory
2014-01-01
The cosmic Dark Ages ended with the formation of the first stars at z ~ 20, or ~ 200 Myr after the Big Bang. Because they literally lie at the edge of the observable universe Pop III stars will be beyond the reach of even next generation observatories like JWST and the Thirty-Meter Telescope. But primordial supernovae could soon directly probe the properties of the first stars because they can be observed at high redshifts and their masses can be inferred from their light curves. I will present numerical simulations of Pop III hypernovae and pair-instability supernovae and their light curves done with the Los Alamos RAGE and SPECTRUM codes. We find that these two types of explosions will be visible at z ~ 10 - 15, revealing the positions of ancient dim galaxies on the sky and tracing their star formation rates.
Diurnal Differences in OLR Climatologies and Anomaly Time Series
NASA Technical Reports Server (NTRS)
Susskind, Joel; Lee, Jae N.; Iredell, Lena; Loeb, Norm
2015-01-01
AIRS (Atmospheric Infrared Sounder) Version-6 OLR (Outgoing Long-Wave Radiation) matches CERES (Clouds and the Earth's Radiant Energy System) Edition-2.8 OLR very closely on a 1x1 latitude x longitude scale, both with regard to absolute values, and also with regard to anomalies of OLR. There is a bias of 3.5 watts per meter squared, which is nearly constant both in time and space. Contiguous areas contain large positive or negative OLR difference between AIRS and CERES are where the day-night difference of OLR is large. For AIRS, the larger the diurnal cycle, the more likely that sampling twice a day is inadequate. Lower values of OLRclr (Clear Sky OLR) and LWCRF (Longwave Cloud Radiative Forcing) in AIRS compared to CERES is at least in part a result of AIRS sampling over cold and cloudy cases.
Shortwave surface radiation network for observing small-scale cloud inhomogeneity fields
NASA Astrophysics Data System (ADS)
Lakshmi Madhavan, Bomidi; Kalisch, John; Macke, Andreas
2016-03-01
As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high-density network of 99 silicon photodiode pyranometers was set up around Jülich (10 km × 12 km area) from April to July 2013 to capture the small-scale variability of cloud-induced radiation fields at the surface. In this paper, we provide the details of this unique setup of the pyranometer network, data processing, quality control, and uncertainty assessment under variable conditions. Some exemplary days with clear, broken cloudy, and overcast skies were explored to assess the spatiotemporal observations from the network along with other collocated radiation and sky imager measurements available during the HOPE period.
Bailey, Norman G.; Grow, John A.
1980-01-01
During late October 1977, water discharge from Minidoka Dam into the Milner reach of the Snake River was less than 22 cubic meters per second, compared to normal flows for that time of year of about 42 cubic meters per second or more. To determine if impaired water-quality conditions existed, samples were collected at several sites above and below major point-source waste discharges near Burley, Idaho. Data collected for this study indicate some water-quality impairment within the study reach. At site 15 near Milner Dam, dissolved oxygen was below the 90 percent saturation standard prescribed by the Idaho water-quality standards. The total coliform and fecal coliform standards were exceeded at about one-third of the sites sampled on the main stem of the Snake River. Un-ionized ammonia concentration exceeded U.S. Environmental Protection Agency water-quality criteria at one site near Burley. Concentrations of trace metals, insecticides, and herbicides were all low; none exceeded existing criteria. (USGS)
Methods for assessing forward and backward light scatter in patients with cataract.
Crnej, Alja; Hirnschall, Nino; Petsoglou, Con; Findl, Oliver
2017-08-01
To compare objective methods for assessing backward and forward light scatter and psychophysical tests in patients with cataracts. Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom. Prospective case series. This study included patients scheduled for cataract surgery. Lens opacities were grouped into predominantly nuclear sclerotic, cortical, posterior subcapsular, and mixed cataracts. Backward light scatter was assessed using a rotating Scheimpflug imaging technique (Pentacam HR), forward light scatter using a straylight meter (C-Quant), and straylight using the double-pass method (Optical Quality Analysis System, point-spread function [PSF] meter). The results were correlated with visual acuity under photopic conditions as well as photopic and mesopic contrast sensitivity. The study comprised 56 eyes of 56 patients. The mean age of the 23 men and 33 women was 71 years (range 48 to 84 years). Two patients were excluded. Of the remaining, 15 patients had predominantly nuclear sclerotic cataracts, 13 had cortical cataracts, 11 had posterior subcapsular cataracts, and 15 had mixed cataracts. Correlations between devices were low. The highest correlation was between PSF meter measurements and Scheimpflug measurements (r = 0.32). The best correlation between corrected distance visual acuity was with the PSF meter (r = 0.45). Forward and backward light-scatter measurements cannot be used interchangeably. Scatter as an aspect of quality of vision was independent of acuity. Measuring forward light scatter with the straylight meter can be a useful additional tool in preoperative decision-making. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
The Large Synoptic Survey Telescope
NASA Astrophysics Data System (ADS)
Axelrod, T. S.
2006-07-01
The Large Synoptic Survey Telescope (LSST) is an 8.4 meter telescope with a 10 square degree field degree field and a 3 Gigapixel imager, planned to be on-sky in 2012. It is a dedicated all-sky survey instrument, with several complementary science missions. These include understanding dark energy through weak lensing and supernovae; exploring transients and variable objects; creating and maintaining a solar system map, with particular emphasis on potentially hazardous objects; and increasing the precision with which we understand the structure of the Milky Way. The instrument operates continuously at a rapid cadence, repetitively scanning the visible sky every few nights. The data flow rates from LSST are larger than those from current surveys by roughly a factor of 1000: A few GB/night are typical today. LSST will deliver a few TB/night. From a computing hardware perspective, this factor of 1000 can be dealt with easily in 2012. The major issues in designing the LSST data management system arise from the fact that the number of people available to critically examine the data will not grow from current levels. This has a number of implications. For example, every large imaging survey today is resigned to the fact that their image reduction pipelines fail at some significant rate. Many of these failures are dealt with by rerunning the reduction pipeline under human supervision, with carefully ``tweaked'' parameters to deal with the original problem. For LSST, this will no longer be feasible. The problem is compounded by the fact that the processing must of necessity occur on clusters with large numbers of CPU's and disk drives, and with some components connected by long-haul networks. This inevitably results in a significant rate of hardware component failures, which can easily lead to further software failures. Both hardware and software failures must be seen as a routine fact of life rather than rare exceptions to normality.
Cloud characterization and clear-sky correction from Landsat-7
Cahalan, Robert F.; Oreopoulos, L.; Wen, G.; Marshak, S.; Tsay, S. -C.; DeFelice, Tom
2001-01-01
Landsat, with its wide swath and high resolution, fills an important mesoscale gap between atmospheric variations seen on a few kilometer scale by local surface instrumentation and the global view of coarser resolution satellites such as MODIS. In this important scale range, Landsat reveals radiative effects on the few hundred-meter scale of common photon mean-free-paths, typical of scattering in clouds at conservative (visible) wavelengths, and even shorter mean-free-paths of absorptive (near-infrared) wavelengths. Landsat also reveals shadowing effects caused by both cloud and vegetation that impact both cloudy and clear-sky radiances. As a result, Landsat has been useful in development of new cloud retrieval methods and new aerosol and surface retrievals that account for photon diffusion and shadowing effects. This paper discusses two new cloud retrieval methods: the nonlocal independent pixel approximation (NIPA) and the normalized difference nadir radiance method (NDNR). We illustrate the improvements in cloud property retrieval enabled by the new low gain settings of Landsat-7 and difficulties found at high gains. Then, we review the recently developed “path radiance” method of aerosol retrieval and clear-sky correction using data from the Department of Energy Atmospheric Radiation Measurement (ARM) site in Oklahoma. Nearby clouds change the solar radiation incident on the surface and atmosphere due to indirect illumination from cloud sides. As a result, if clouds are nearby, this extra side-illumination causes clear pixels to appear brighter, which can be mistaken for extra aerosol or higher surface albedo. Thus, cloud properties must be known in order to derive accurate aerosol and surface properties. A three-dimensional (3D) Monte Carlo (MC) radiative transfer simulation illustrates this point and suggests a method to subtract the cloud effect from aerosol and surface retrievals. The main conclusion is that cloud, aerosol, and surface retrievals are linked and must be treated as a combined system. Landsat provides the range of scales necessary to observe the 3D cloud radiative effects that influence joint surface-atmospheric retrievals.
Impact of coastal fog on the energy and water balance of a California agricultural system
NASA Astrophysics Data System (ADS)
Baguskas, S. A.; Oliphant, A. J.; Loik, M. E.
2016-12-01
In coastal California, the growing season of economically important crops overlaps with the occurrence of coastal fog, which buffers the summer dry season through shading effects and direct water inputs. The objective of our study was to develop relationships between coastal fog and the water and energy budgets of croplands in order to improve estimates of crop-scale evapotranspiration (ET) rates, which has potential to reduce groundwater use based on local cloud meteorology. Our study site was a coastal strawberry farm located in fog-belt of the Salinas Valley, California. We installed an eddy covariance tower to quantify surface energy budgets and actual ET at the field scale from July-September 2016. We also measured leaf and canopy-scale strawberry physiology on foggy and clear-sky days. Flow meters and soil moisture probes were installed in drip lines to quantify irrigation amount, timing, and soil wetting depth. We found that downward longwave radiation was higher on foggy compared to clear-sky days, indicating that emission of longwave radiation from the surface was absorbed by water droplets and vapor in the fog. Midday latent heat flux decreased by 125 W m-2 from a clear to foggy day, suggesting that water loss from the surface to the atmosphere decreases substantially during fog events. Likewise, we found a decrease in leaf and canopy-level transpiration on foggy compared to clear-sky days. While drawdown of CO2 at the field-scale decreased from -1.2 to -0.6 gC m-2 s-1 during fog events, canopy-level carbon and water vapor flux measurements show that water use efficiency (carbon gain per water loss) increased significantly on foggy days. Our results show that strawberry crops do not demand as much water during fog events, yet still maintain relatively high levels of carbon uptake. Therefore, the amount of irrigation could potentially be reduced during foggy periods without sacrificing yield.
The Large Synoptic Survey Telescope Science Requirements
NASA Astrophysics Data System (ADS)
Tyson, J. A.; LSST Collaboration
2004-12-01
The Large Synoptic Survey Telescope (LSST) is a wide-field telescope facility that will add a qualitatively new capability in astronomy and will address some of the most pressing open questions in astronomy and fundamental physics. The 8.4-meter telescope and 3 billion pixel camera covering ten square degrees will reach sky in less than 10 seconds in each of 5-6 optical bands. This is enabled by advances in microelectronics, software, and large optics fabrication. The unprecedented optical throughput drives LSST's ability to go faint-wide-fast. The LSST will produce time-lapse digital imaging of faint astronomical objects across the entire visible sky with good resolution. For example, the LSST will provide unprecedented 3-dimensional maps of the mass distribution in the Universe, in addition to the traditional images of luminous stars and galaxies. These weak lensing data can be used to better understand the nature of Dark Energy. The LSST will also provide a comprehensive census of our solar system. By surveying deeply the entire accessible sky every few nights, the LSST will provide large samples of events which we now only rarely observe, and will create substantial potential for new discoveries. The LSST will produce the largest non-proprietary data set in the world. Several key science drivers are representative of the LSST system capabilities: Precision Characterization of Dark Energy, Solar System Map, Optical Transients, and a map of our Galaxy and its environs. In addition to enabling all four of these major scientific initiatives, LSST will make it possible to pursue many other research programs. The community has suggested a number of exciting programs using these data, and the long-lived data archives of the LSST will have the astrometric and photometric precision needed to support entirely new research directions which will inevitably develop during the next several decades.
Near-road air quality is an issue of emerging concern, with field studies consistently showing elevated air pollutant concentrations adjacent to major roads, usually decreasing to background levels within several hundred meters. Roadside barriers, both vegetative and structural, ...
Modification and testing of an engine and fuel control system for a hydrogen fuelled gas turbine
NASA Astrophysics Data System (ADS)
Funke, H. H.-W.; Börner, S.; Hendrick, P.; Recker, E.
2011-10-01
The control of pollutant emissions has become more and more important by the development of new gas turbines. The use of hydrogen produced by renewable energy sources could be an alternative. Besides the reduction of NOx emissions emerged during the combustion process, another major question is how a hydrogen fuelled gas turbine including the metering unit can be controlled and operated. This paper presents a first insight in modifications on an Auxiliary Power Unit (APU) GTCP 36300 for using gaseous hydrogen as a gas turbine fuel. For safe operation with hydrogen, the metering of hydrogen has to be fast, precise, and secure. So, the quality of the metering unit's control loop has an important influence on this topic. The paper documents the empiric determination of the proportional integral derivative (PID) control parameters for the metering unit.
NASA Astrophysics Data System (ADS)
Bianchi, Luciana; Conti, A.; Shiao, B.; Keller, G. R.; Thilker, D. A.
2014-01-01
The legacy of the Galaxy Evolution Explorer (GALEX), which imaged the sky at Ultraviolet (UV) wavelengths for about 9 years, is its unprecedented database with more than 200 million source measurements in far-UV (FUV) and near-UV (NUV), as well as wide-field imaging of extended objects. GALEX's data, the first substantial sky surveys at UV wavelengths, offer an unprecedented view of the sky and a unique opportunity for an unbiased characterization of several classes of astrophysical objects, such as hot stars, QSOs at red-shift about 1, UV-peculiar QSOs, star-forming galaxies, among others. Bianchi et al. (2013, J. Adv. Space Res. (2013), DOI: http://dx.doi.org/10.1016/j.asr.2013.07.045) have constructed final catalogs of UV sources, with homogeneous quality, eliminating duplicate measurements of the same source ('unique' source catalogs), and excluding rim artifacts and bad photometry. The catalogs are constructed improving on the recipe of Bianchi et al. 2011 (MNRAS, 411, 2770, which presented the earlier version of these catalogs) and include all data for the major surveys, AIS and MIS. Considering the fields where both FUV and NUV detectors were exposed, the catalogs contain about 71 and 16.6 million unique sources respectively. We show several maps illustrating the content of UV sources across the sky, globally, and separately for bright/faint, hot, stellar/extragalactic objects. We matched the UV-source catalogs with optical-IR data from the SDSS, GSC2, 2MASS surveys. We are also in the process of matching the catalogs with preliminary PanSTARRS1 (PS1) 3pi survey photometry which already provides twice the sky coverage of SDSS, at slightly fainter magnitude limits. The sources' SED from FUV to optical wavelengths enables classification, derivation of the object physical parameters, and ultimately also a map of the Milky Way extinction. The catalogs will be available on MAST, Vizier (where the previous version already is), and in reduced form (for agile downloading), with related tools, from the author web site " http://dolomiti.pha.jhu.edu/uvsky "
ERIC Educational Resources Information Center
Jung, Hun Bok; Zamora, Felix; Duzgoren-Aydin, Nurdan S.
2017-01-01
Water quality is an important interdisciplinary environmental topic for project-based learning. An undergraduate summer research internship program at a public minority serving institution engaged environmental science majors in community-based research experiences. The research focused on the field monitoring of water quality for surface water…
Large scale Wyoming transportation data: a resource planning tool
O'Donnell, Michael S.; Fancher, Tammy S.; Freeman, Aaron T.; Ziegler, Abra E.; Bowen, Zachary H.; Aldridge, Cameron L.
2014-01-01
The U.S. Geological Survey Fort Collins Science Center created statewide roads data for the Bureau of Land Management Wyoming State Office using 2009 aerial photography from the National Agriculture Imagery Program. The updated roads data resolves known concerns of omission, commission, and inconsistent representation of map scale, attribution, and ground reference dates which were present in the original source data. To ensure a systematic and repeatable approach of capturing roads on the landscape using on-screen digitizing from true color National Agriculture Imagery Program imagery, we developed a photogrammetry key and quality assurance/quality control protocols. Therefore, the updated statewide roads data will support the Bureau of Land Management’s resource management requirements with a standardized map product representing 2009 ground conditions. The updated Geographic Information System roads data set product, represented at 1:4,000 and +/- 10 meters spatial accuracy, contains 425,275 kilometers within eight attribute classes. The quality control of these products indicated a 97.7 percent accuracy of aspatial information and 98.0 percent accuracy of spatial locations. Approximately 48 percent of the updated roads data was corrected for spatial errors of greater than 1 meter relative to the pre-existing road data. Twenty-six percent of the updated roads involved correcting spatial errors of greater than 5 meters and 17 percent of the updated roads involved correcting spatial errors of greater than 9 meters. The Bureau of Land Management, other land managers, and researchers can use these new statewide roads data set products to support important studies and management decisions regarding land use changes, transportation and planning needs, transportation safety, wildlife applications, and other studies.
Evaluation of a Wildfire Smoke Forecasting System as a Tool for Public Health Protection
Brauer, Michael; Henderson, Sarah B.
2013-01-01
Background: Exposure to wildfire smoke has been associated with cardiopulmonary health impacts. Climate change will increase the severity and frequency of smoke events, suggesting a need for enhanced public health protection. Forecasts of smoke exposure can facilitate public health responses. Objectives: We evaluated the utility of a wildfire smoke forecasting system (BlueSky) for public health protection by comparing its forecasts with observations and assessing their associations with population-level indicators of respiratory health in British Columbia, Canada. Methods: We compared BlueSky PM2.5 forecasts with PM2.5 measurements from air quality monitors, and BlueSky smoke plume forecasts with plume tracings from National Oceanic and Atmospheric Administration Hazard Mapping System remote sensing data. Daily counts of the asthma drug salbutamol sulfate dispensations and asthma-related physician visits were aggregated for each geographic local health area (LHA). Daily continuous measures of PM2.5 and binary measures of smoke plume presence, either forecasted or observed, were assigned to each LHA. Poisson regression was used to estimate the association between exposure measures and health indicators. Results: We found modest agreement between forecasts and observations, which was improved during intense fire periods. A 30-μg/m3 increase in BlueSky PM2.5 was associated with an 8% increase in salbutamol dispensations and a 5% increase in asthma-related physician visits. BlueSky plume coverage was associated with 5% and 6% increases in the two health indicators, respectively. The effects were similar for observed smoke, and generally stronger in very smoky areas. Conclusions: BlueSky forecasts showed modest agreement with retrospective measures of smoke and were predictive of respiratory health indicators, suggesting they can provide useful information for public health protection. Citation: Yao J, Brauer M, Henderson SB. 2013. Evaluation of a wildfire smoke forecasting system as a tool for public health protection. Environ Health Perspect 121:1142–1147; http://dx.doi.org/10.1289/ehp.1306768 PMID:23906969
Clarks Hill Lake Water Quality Study.
1982-06-01
multipurpose project designed to reduce flooding on the Savannah River, generate electric power and increase the depth of the Savannah River for... power plant at the dam has seven generators, each with a capacity of 40,000 kilowatts. The average annual energy output of Clarks Hill Power Plant is 700...feet) from the top of power pool elevation of 100.6 meters (330 feet msl) to a minimum pool elevation of 95.1 meters (312 feet msl). Because of below
Novel In-Space Manufacturing Concepts for the Development of Large Space Telescopes
NASA Technical Reports Server (NTRS)
Mooney, James T.; Reardon, Patrick; Gregory Don; Manning, Andrew; Blackmon, Jim; Howsman, Tom; Williams, Philip; Brantley, Whitt; Rakoczy, John; Herren, Kenneth
2006-01-01
There is a continuous demand for larger, lighter, and higher quality telescopes. Over the past several decades, we have seen the evolution from launchable 2 meter-class telescopes (such as Hubble), to today s demand for deployable 6 meter-class telescopes (such as JWST), to tomorrow s need for up to 150 meter-class telescopes. As the apertures continue to grow, it will become much more difficult and expensive to launch assembled telescope structures. To address this issue, we are seeing the emergence of new novel structural concepts, such as inflatable structures and membrane optics. While these structural concepts do show promise, it is very difficult to achieve and maintain high surface figure quality. Another potential solution to develop large space telescopes is to move the fabrication facility into space and launch the raw materials. In this paper we present initial in-space manufacturing concepts to enable the development of large telescopes. This includes novel approaches for the fabrication of both the optical elements and the telescope support structure. We will also discuss potential optical designs for large space telescopes and describe their relation to the fabrication methods. These concepts are being developed to meet the demanding requirements of DARPA s LASSO (Large Aperture Space Surveillance Optic) program which currently requires a 150 meter optical aperture with a 17 degree field of view.
NASA Technical Reports Server (NTRS)
Yarger, H. L. (Principal Investigator); Mccauley, J. R.
1974-01-01
The author has identified the following significant results. Processing and analysis of CCT's for numerous ground truth supported passes over Kansas reservoirs has demonstrated that sun angle and atmospheric conditions are strong influences on water reflectance levels as detected by ERTS-1 and can suppress the contributions of true water quality factors. Band ratios, on the other hand, exhibit very little dependence on sun angle and sky conditions and thus are more directly related to water quality. Band ratio levels can be used to reliably determine suspended load. Other water quality indicators appear to have little or no affect on reflectance levels.
Johnson, Michaela R.; Clark, Jimmy M.; Dickinson, Ross G.; Sanocki, Chris A.; Tranmer, Andrew W.
2009-01-01
This data set was developed as part of the National Water-Quality Assessment (NAWQA) Program, Nutrient Enrichment Effects Topical (NEET) study. This report is concerned with three of the eight NEET study units distributed across the United States: Ozark Plateaus, Upper Mississippi River Basin, and Upper Snake River Basin, collectively known as Group II of the NEET study. Ninety stream reaches were investigated during 2006-08 in these three study units. Stream segments, with lengths equal to the base-10 logarithm of the basin area, were delineated upstream from the stream reaches through the use of digital orthophoto quarter-quadrangle (DOQQ) imagery. The analysis area for each stream segment was defined by a streamside buffer extending laterally to 250 meters from the stream segment. Delineation of landuse and land-cover (LULC) map units within stream-segment buffers was completed using on-screen digitizing of riparian LULC classes interpreted from the DOQQ. LULC units were classified using a strategy consisting of nine classes. National Wetlands Inventory (NWI) data were used to aid in wetland classification. Longitudinal riparian transects (lines offset from the stream segments) were generated digitally, used to sample the LULC maps, and partitioned in accord with the intersected LULC map-unit types. These longitudinal samples yielded the relative linear extent and sequence of each LULC type within the riparian zone at the segment scale. The resulting areal and linear estimates of LULC extent filled in the spatial-scale gap between the 30-meter resolution of the 1990s National Land Cover Dataset and the reach-level habitat assessment data collected onsite routinely for NAWQA ecological sampling. The resulting data consisted of 12 geospatial data sets: LULC within 25 meters of the stream reach (polygon); LULC within 50 meters of the stream reach (polygon); LULC within 50 meters of the stream segment (polygon); LULC within 100 meters of the stream segment (polygon); LULC within 150 meters of the stream segment (polygon); LULC within 250 meters of the stream segment (polygon); frequency of gaps in woody vegetation at the reach scale (arc); stream reaches (arc); longitudinal LULC transect sample at the reach scale (arc); frequency of gaps in woody vegetation at the segment scale (arc); stream segments (arc); and longitudinal LULC transect sample at the segment scale (arc).
APOGEE fiber development and FRD testing
NASA Astrophysics Data System (ADS)
Brunner, Sophia; Burton, Adam; Crane, Jeff; Zhao, Bo; Hearty, Fred R.; Wilson, John C.; Carey, Larry; Leger, French; Skrutskie, Mike; Schiavon, Ricardo; Majewski, Steven R.
2010-07-01
Development of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) near-infrared spectrograph has motivated thorough investigation into the properties and performance of optical fibers. The fiber selected for APOGEE is a step index, multi-mode fiber, developed by PolyMicro, with a 120μm low OH, fused silica core, 25μm cladding, and 10μm buffer. The instrument design includes a 40 meter fiber run, connecting the spectrograph to the 2.5m Sloan Digital Sky Survey (SDSS) telescope, and an additional 2.5 meter fiber segment located within the instrument dewar, a vacuum-sealed, cryogenic environment. This light path is convoluted and includes many transitions and connections where the beam is susceptible irrevocable loss. To optimize the spectrograph performance it is necessary to minimize the losses incurred in the fiber system, especially those resulting in focal ratio degradation (FRD). The focus of this research has been to identify potential sources of loss and where applicable, select material components to minimize this effect. There is little previous documented work concerning the performance of optical fibers within this wavelength band (1.5-1.7μm). Consequently, the following includes comprehensive explanations of the APOGEE fiber system components, our experimental design and optical test bed set-up, beam alignment procedures, fiber terminating and polishing techniques, and results from our examination of FRD as correlated with source wavelength, fiber length and termination, and environmental conditions.
A new calculation of LAMOST optical vignetting
NASA Astrophysics Data System (ADS)
Li, Shuang; Luo, Ali; Chen, Jianjun; Liu, Genrong; Comte, Georges
2012-09-01
A new method to calculate the optical vignetting of LAMOST (Large Sky Area Muti-Object Fiber Spectroscopic Telescope) is presented. With the pilot survey of LAMOST, it is necessary to have thorough and quantitative estimation and analysis on the observing efficiency which is affected by various factors: the optical system of the telescope and the spectrograph that is vignetting, the focal instrument, and the site condition. The wide field and large pupil of LAMOST fed by a Schmidt reflecting mirror, with a fixed optical axis coinciding with the local polar axis, lead to significant telescope vignetting, caused by the effective light-collecting area of the corrector, the light obstruction of the focal-plate, and the size of the primary mirror. A calculation of the vignetting has been presented by Xue et al. (2007), which considered 4 meter circle limitation and based on ray-tracking. In fact, there is no effect of the 4 meter circle limitation, so that we compute the vignetting again by means of obtaining the ratio of effective projected area of the corrector. All the results are derived by AUTOCAD. Moreover, the vignetting functions and vignetting variations with declination at which the telescope is pointed and the position considered in the focal surface are presented and analysed. Finally, compared with the ray-tracing method to obtain the vignetting before, the validity and availability of the proposed method are illustrated.
Genotoxic action of sunlight upon Bacillus subtilis spores: monitoring studies at Tokyo, Japan.
Munakata, N
1989-12-01
Samples of Bacillus subtilis spores dried on membrane filter were exposed to natural sunlight from solar-noon time at Tokyo. The survival and mutation induction of wild-type (UVR) and repair-deficient (UVS) spores were determined on 66 occasions since 1979. Two of the values were considered to be useful in monitoring solar UV intensity; the inverse of the time (in minutes) of exposure to kill 63% of the UVS spores ("sporocidal index") and the induced mutation frequency at 60 minutes of exposure of the UVR spores ("mutagenic index"). Both values were varied greatly due to time of a year, weather and other conditions. Estimates of year-round changes under clear skies were obtained by connecting the maximum values attained in these years. In these curves, there are more than 7-fold differences in the genotoxicity between winter and summer months, with major increases observed in early spring and decreases through autumn. Using a series of UV cut-off filters, the wavelengths most effective for the sporocidal actions were estimated to be in the range of 308-325 nm, shorter wavelengths being effective when the genotoxicity was higher. Sunburn meter of Robertson-Berger type seems to respond to slightly longer wavelength components of the solar spectrum. However, a reasonable correlation was obtained between the reading of the meter and the sporocidal index.
Ronaldson, Sarah J; Dyson, Lisa; Clark, Laura; Hewitt, Catherine E; Torgerson, David J; Cooper, Brendan G; Kearney, Matt; Laughey, William; Raghunath, Raghu; Steele, Lisa; Rhodes, Rebecca; Adamson, Joy
2018-06-01
Early identification of chronic obstructive pulmonary disease (COPD) results in patients receiving appropriate management for their condition at an earlier stage in their disease. The determining the optimal approach to identifying individuals with chronic obstructive pulmonary disease (DOC) study was a case-finding study to enhance early identification of COPD in primary care, which evaluated the diagnostic accuracy of a series of simple lung function tests and symptom-based case-finding questionnaires. Current smokers aged 35 or more were invited to undertake a series of case-finding tools, which comprised lung function tests (specifically, spirometry, microspirometry, peak flow meter, and WheezoMeter) and several case-finding questionnaires. The effectiveness of these tests, individually or in combination, to identify small airways obstruction was evaluated against the gold standard of spirometry, with the quality of spirometry tests assessed by independent overreaders. The study was conducted with general practices in the Yorkshire and Humberside area, in the UK. Six hundred eighty-one individuals met the inclusion criteria, with 444 participants completing their study appointments. A total of 216 (49%) with good-quality spirometry readings were included in the analysis. The most effective case-finding tools were found to be the peak flow meter alone, the peak flow meter plus WheezoMeter, and microspirometry alone. In addition to the main analysis, where the severity of airflow obstruction was based on fixed ratios and percent of predicted values, sensitivity analyses were conducted by using lower limit of normal values. This research informs the choice of test for COPD identification; case-finding by use of the peak flow meter or microspirometer could be used routinely in primary care for suspected COPD patients. Only those testing positive to these tests would move on to full spirometry, thereby reducing unnecessary spirometric testing. © 2018 John Wiley & Sons, Ltd.
The Competitive Position of Hub Airports in the Transatlantic Market
NASA Technical Reports Server (NTRS)
Burghouwt, Guillaume; Veldhuis, Jan
2006-01-01
This article puts forward the argument that the measurement of connectivity in hub-and-spoke networks has to take into account the quality and quantity of both direct and indirect connections. The NETSCAN model, which has been applied in this study, quantifies indirect connectivity and scales it into a theoretical direct connection. NETSCAN allows researchers, airports, airlines, alliances and airport regions to analyse their competitive position in an integrated way. Using NETSCAN, the authors analysed the developments on the market between northwest Europe and the United States (US) between May 2003 and May 2005. One of the most striking developments has certainly been the impact of the Air France-KLM merger and the effects of the integration of KLM and Northwest into the SkyTeam alliance on the connectivity of Amsterdam Schiphol. Direct as well as indirect connectivity (via European and North American hubs) from Amsterdam to the US increased substantially. The main reason for this increase is the integration of the former Wings and SkyTeam networks via the respective hub airports. Moreover, the extended SkyTeam alliance raised frequencies between Amsterdam and the SkyTeam hubs (Atlanta, Houston, for example), opened new routes (Cincinnati) and boosted the network between Amsterdam and France. As a result of the new routes and frequencies, Amsterdam took over Heathrow s position as the third best-connected northwest European airport to the US.
Rasmussen, A; Frimodt-Møller, N; Espersen, F; Roed, M; Frimodt-Møller, C
1996-08-01
To compare three different urine metering systems for their ability to prevent retrograde contamination in an in vitro model of a closed urinary drainage system and for qualities important to their practical handling in a clinical setting. Using three urine-meters (the Braun Ureofix 511, the Kendall Curity 4000 and the Unoplast Unometer 500) the in vitro model was constantly flushed with a solution of Mueller-Hinton broth diluted with saline. On the first day, the urine collecting bag was inoculated with 10(8) cells of Pseudomonas aeruginosa. The system was operated for 12 days with daily sampling of the model bladder to detect any contamination. After 12 days the experiment was stopped and sampling performed at various locations, including the urine-meter and the tubing. Nine of each type of urine-meter were tested, i.e. three in three different experiments. In the clinical study, 45 patients were randomized to each of the three urine-meters and the nurses attending them were asked to complete a questionnaire on the practical handling of the urine-meters. When the urine-meters was omitted from the model system, the 'bladder' became contaminated with the test bacteria within 3 days. None of the nine Unometer 500 systems became contaminated, compared with four of each of the other two systems (P < 0.05). In clinical use, the Unometer 500 and Ureofix 511 were easier to suspend and empty than was the Curity 4000. The Unometer 500 was significantly easier to handle when the collecting bag was emptied. Urine-meters can prevent retrograde contamination in a closed bladder-drainage model, but the degree of prevention depends upon the type of urine-meter. In daily practice, there were differences in the ease of suspension of the systems and in the emptying of the urine-meter and collecting bag.
NASA Astrophysics Data System (ADS)
Finch, Charlie T.; Zacharias, Norbert; Jao, Wei-Chun
2018-04-01
We present 916 trigonometric parallaxes and proper motions of newly discovered nearby stars from the United States Naval Observatory Robotic Astrometric Telescope (URAT). Observations were taken at the Cerro Tololo Interamerican Observatory over a 2-year period from 2015 to 2017 October covering the entire sky south of about +25° decl. SPM4 and UCAC4 early epoch catalog data were added to extend the temporal coverage for the parallax and proper motion fit up to 48 years. Using these new URAT parallaxes, optical and near-IR photometry from the AAVSO Photometric All-Sky Survey and Two Micron All-Sky Survey catalogs, we identify possible new nearby dwarfs, young stars, low-metallicity subdwarfs and white dwarfs. Comparison to known trigonometric parallaxes shows a high quality of the URAT-based results confirming the error in parallax of the URAT south parallaxes reported here to be between 2 and 13 mas. We also include additional 729 trigonometric parallaxes from the URAT north 25 pc sample published in Finch & Zacharias here after applying the same criterion as for the southern sample to have a complete URAT 25 pc sample presented in this paper.
NASA Astrophysics Data System (ADS)
Turon, Catherine; Arenou, Frederic
2016-11-01
On 14 September 2016, the first data release of the ESA's Gaia mission has been published. Based on raw data collected between 25 July 2014 and 16 Septembre 2015, i.e. only over the first 14 months of mission, this first "Gaia sky" includes the accurate positions and Gaia magnitudes of more than a billion objects: it is already the largest all-sky survey to date even though the incomplete scanning of some areas of the sky is reflected by some artefacts that will gradually fade out as more data are collected. In addition, for a subset of two million stars in common between Gaia and the Hipparcos and Tycho-2 catalogues, positions, parallaxes and proper motions have been obtained with an accuracy 3 times better than those of Hipparcos and for 20 times more stars. Finally, light curves of about 3200 RR Lyrae and Cepheid variable stars have been obtained from the repeated observations of the Ecliptic Poles made during the first month of Gaia operations. A first glance at the quality of the data is presented here, as well as some remarks about the use of this very preliminary Gaia catalogue.
The Observatorio Astronómico Nacional - Tonantzintla: Site Evaluation
NASA Astrophysics Data System (ADS)
Hernández-Toledo, H. M.; Martínez-Vázquez, L. A.; Pani-Cielo, A.
2011-06-01
The objective of this contribution is to present some results of an evaluation on the local conditions at the site that were considered in order to propose that the Observatorio Astronómico Nacional, Tonantzintla, (OAN-Tonantzintla) become a National Facility for Astronomy Education. The evaluation included a quantitative diagnostic (CCD photometry) on the quality of the local sky. The attributes of the 1-m telescope, the current instrumentation and a well planned upgrading that includes new instrumentation is considered at the basis for a successful transition maintaining the attractiveness of the site for astronomy education. A 3-year upgrading program actually in progress at UNAM is providing funding for that purpose. Physics and astronomy programs at college and graduated levels at UNAM will benefit from this, yielding clear connections among astronomy researchers and educators and students at various levels. Although the OAN-Tonantzintla faces the danger of deteriorating its sky conditions, we are maintaining awareness of the night sky characteristics in long-term monitoring campaigns and encouraging the local authorities to find alternative solutions to this problem.
2MASS Photometry of the Hot DA White Dwarf Stars in the Palomar Green Survey
NASA Astrophysics Data System (ADS)
Holberg, J. B.; Magargal, K.
2003-12-01
The Palomar Green (PG) Survey is a complete, magnitude limited survey of UV excess objects that continues to provide well-defined sample populations for many types of objects, in particular hot white dwarf stars. The 2MASS All-Sky Survey limiting JHK magnitudes are reasonably well matched to the B magnitude limits of the PG survey. The 2MASS survey, therefore, constitutes an excellent source of uniform, high-quality of photometry, that can be used in conjunction with the PG Survey. The 2MASS Point Source Catalog in the All-Sky Data Release was searched for over 340 hot DA white dwarfs in the PG sample. The resulting JHK colors and apparent magnitudes are used to determine photometric distances for these stars and to place limits on the existence of possible cool binary companions. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.
NASA Astrophysics Data System (ADS)
Marin, Cipriano
2011-06-01
The Starlight Initiative brings a new view of the night sky and of its value enhancement, claiming the access to starlight as a scientific, environmental, and cultural right of humankind. Night sky quality has been seriously damaged in the last years because of light and atmospheric pollution, and an international action in favour of intelligent outdoor lighting is urgently needed. After the promulgation of the Starlight Declaration, we are jointly working with UNESCO, the World Heritage Centre, the MaB Programme, and other international institutions in the development of Starlight Reserves as exemplary areas that would act as models for the recovery of the heritage associated to star observation. The possibility arises to design and launch new tourist products and destinations based on astronomy and starry sceneries.
Calibration methodology application of kerma area product meters in situ: Preliminary results
NASA Astrophysics Data System (ADS)
Costa, N. A.; Potiens, M. P. A.
2014-11-01
The kerma-area product (KAP) is a useful quantity to establish the reference levels of conventional X-ray examinations. It can be obtained by measurements carried out with a KAP meter on a plane parallel transmission ionization chamber mounted on the X-ray system. A KAP meter can be calibrated in laboratory or in situ, where it is used. It is important to use one reference KAP meter in order to obtain reliable quantity of doses on the patient. The Patient Dose Calibrator (PDC) is a new equipment from Radcal that measures KAP. It was manufactured following the IEC 60580 recommendations, an international standard for KAP meters. This study had the aim to calibrate KAP meters using the PDC in situ. Previous studies and the quality control program of the PDC have shown that it has good function in characterization tests of dosimeters with ionization chamber and it also has low energy dependence. Three types of KAP meters were calibrated in four different diagnostic X-ray equipments. The voltages used in the two first calibrations were 50 kV, 70 kV, 100 kV and 120 kV. The other two used 50 kV, 70 kV and 90 kV. This was related to the equipments limitations. The field sizes used for the calibration were 10 cm, 20 cm and 30 cm. The calibrations were done in three different cities with the purpose to analyze the reproducibility of the PDC. The results gave the calibration coefficient for each KAP meter and showed that the PDC can be used as a reference instrument to calibrate clinical KAP meters.
Soler-López, Luis R.; Gómez-Gómez, Fernando; Rodríguez-Martínez, Jesús
2005-01-01
The Laguna de Las Salinas is a shallow, 35-hectare, hypersaline lagoon (depth less than 1 meter) in the municipio of Ponce, located on the southern coastal plain of Puerto Rico. Hydrologic, water-quality, and biological data in the lagoon were collected between January 2003 and September 2004 to establish baseline conditions. During the study period, rainfall was about 1,130 millimeters, with much of the rain recorded during three distinct intense events. The lagoon is connected to the sea by a shallow, narrow channel. Subtle tidal changes, combined with low rainfall and high evaporation rates, kept the lagoon at salinities above that of the sea throughout most of the study. Water-quality properties measured on-site (temperature, pH, dissolved oxygen, specific conductance, and Secchi disk transparency) exhibited temporal rather than spatial variations and distribution. Although all physical parameters were in compliance with current regulatory standards for Puerto Rico, hyperthermic and hypoxic conditions were recorded during isolated occasions. Nutrient concentrations were relatively low and in compliance with current regulatory standards (less than 5.0 and 1.0 milligrams per liter for total nitrogen and total phosphorus, respectively). The average total nitrogen concentration was 1.9 milligrams per liter and the average total phosphorus concentration was 0.4 milligram per liter. Total organic carbon concentrations ranged from 12.0 to 19.0 milligrams per liter. Chlorophyll a was the predominant form of photosynthetic pigment in the water. The average chlorophyll a concentration was 13.4 micrograms per liter. Chlorophyll b was detected (detection limits 0.10 microgram per liter) only twice during the study. About 90 percent of the primary productivity in the Laguna de Las Salinas was generated by periphyton such as algal mats and macrophytes such as seagrasses. Of the average net productivity of 13.6 grams of oxygen per cubic meter per day derived from the diel study, the periphyton and macrophyes produced 12.3 grams per cubic meter per day; about 1.3 grams (about 10 percent) were produced by the phytoplankton (plant and algae component of plankton). The total respiration rate was 59.2 grams of oxygen per cubic meter per day. The respiration rate ascribed to the plankton (all organisms floating through the water column) averaged about 6.2 grams of oxygen per cubic meter per day (about 10 percent), whereas the respiration rate by all other organisms averaged 53.0 grams of oxygen per cubic meter per day (about 90 percent). Plankton gross productivity was 7.5 grams per cubic meter per day; the gross productivity of the entire community averaged 72.8 grams per cubic meter per day. Fecal coliform bacteria counts were generally less than 200 colonies per 100 milliliters; the highest concentration was 600 colonies per 100 milliliters.
The Tianlai 21cm intensity mapping experiment
NASA Astrophysics Data System (ADS)
Chen, Xuelei
2015-08-01
The Tianlai 21cm intensity mapping experiment is aimed at surveying the northern sky 21cm intensity at mid-redshifts, thus map out the neutral hydrogen distribution. The experiment is named "Tianlai" which means "heavenly sound" in classic Chinese, because its ultimate goal is to use the baryon acoustic oscillation (BAO) feature in the correlation function or power spectrum of large scale structure to constrain the cosmic expansion rate, and determine the nature of dark energy.The pathfinder experiment consists three cylinder reflectors of 15m wide x 40m long, and 16 dishes of 6 meter aperture, for testing the basic principle and key technologies. A radio-quiet site in Hongliuxia, Xinjiang of north-west China is selected, currently the facilities are under construction, and the prototype is expected to start commissioning later this year. The experiment is run by NAOC, with members from France, USA and Canada.
Large Antenna Multifrequency Microwave Radiometer (LAMMR) system design
NASA Technical Reports Server (NTRS)
King, J. L.
1980-01-01
The large Antenna Multifrequency Microwave Radiometer (LAMMR) is a high resolution 4 meter aperture scanning radiometer system designed to determine sea surface temperature and wind speed, atmospheric water vapor and liquid water, precipitation, and various sea ice parameters by interpreting brightness temperature images from low Earth orbiting satellites. The LAMMR with dual linear horizontal and vertical polarization radiometer channels from 1.4 to 91 GHZ can provide multidiscipline data with resolutions from 105 to 7 km. The LAMMR baseline radiometer system uses total power radiometers to achieve delta T's in the 0.5 to 1.7 K range and system calibration accuracies in the 1 to 2 deg range. A cold sky horn/ambient load two point calibration technique is used in this baseline concept and the second detector output uses an integrated and dump circuit to sample the scanning cross-tract resolution cells.
A new neolithic circular enclosure in Central Germany
NASA Astrophysics Data System (ADS)
Kretzer, Olaf
2015-08-01
Today we know about 130 neolithic enclosures in Central Europe. About 20 of them are located in Germany. In the last years, there was a great discussion about the function of the openings: Are the openings aligned with points of the solstices? Or are the openings aligned with points of rising stars?Four years ago, a new neolithic circular enclosure was found in the northern part of Thuringia. With a diameter of about 50 meters it was not so large but it was the first evidence of a neolithic culture in Thuringia: the central part of Germany!7000 years ago, people with unknown identity built up three rings with three or four openings.With the help of various measurements we were able to determine in which directions the openings were aligned. We found a link between these directions and very interesting landmarks - an amazing connection between sky and landscape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iyengar, Anagha; Beach, Matthew; Newby, Robert J.
Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee. The 0.5 m 2 system consisting of 8 EJ-301 liquid scintillation detectors was used to collect neutron background measurements in order to better understand the systematic background variations that depend solely on the street-level measurement position in a local, downtown area. Data was collected along 5 different streets in the downtown Knoxville area, and the measurements were found to be repeatable. Using 10-min measurements, fractional uncertainty in each measured data point was <2%. Compared with fast neutron background count rates measured away from downtown Knoxville, a reductionmore » in background count rates ranging from 10-50% was observed in the downtown area, sometimes varying substantially over distances of tens of meters. These reductions are attributed to the shielding of adjacent buildings, quantified in part here by the metric angle-of-open-sky. The adjacent buildings may serve to shield cosmic ray neutron flux.« less
NASA Astrophysics Data System (ADS)
2008-05-01
WE RECOMMEND Why the Sky is Blue This book gives an excellent answer to the age-old question Science Magic Book of experiments finds the fun in physics Function Generator Kit Build your own simple wave generator Dent pullers Instead of using them to pull out dents, get your pupils to pull them apart Rocket Tracker Launch and track rockets with this kit Stephen Hawking, A biograpy This book looks at both the science and the personal life of the famous physicist WORTH A LOOK The Universe and the Atom All-encompassing but uninspiring physics book Sizzling Magnets Another cheap toy proves its usefulness in the physics lab Efergy Energy-saving meter is easy to use but may not save you energy Experiments and Demonstrations in Physics This book is full of interesting experiments but skewed to a particular hardware system WEB WATCH Gary Williams recounts the valuable lessons he learned at the Software 4 Skint Schools workshop
The Renovation and Future Capabilities of the Thacher Observatory
NASA Astrophysics Data System (ADS)
O'Neill, Katie; Osuna, Natalie; Edwards, Nick; Klink, Douglas; Swift, Jonathan; Vyhnal, Chris; Meyer, Kurt
2016-01-01
The Thacher School is in the process of renovating the campus observatory with a new meter class telescope and full automation capabilities for the purpose of scientific research and education. New equipment on site has provided a preliminary site characterization including seeing and V-band sky brightness measurements. These data, along with commissioning data from the MINERVA project (which uses comparable hardware) are used to estimate the capabilities of the observatory once renovation is complete. Our V-band limiting magnitude is expected to be better than 21.3 for a one minute integration time, and we estimate that milli-magnitude precision photometry will be possible for a V=14.5 point source over approximately 5 min timescales. The quick response, autonomous operation, and multi-band photometric capabilities of the renovated observatory will make it a powerful follow-up science facility for exoplanets, eclipsing binaries, near-Earth objects, stellar variability, and supernovae.
Propagation effects on radio range and noise in earth-space telecommunications
NASA Technical Reports Server (NTRS)
Flock, W. L.; Slobin, S. D.; Smith, E. K.
1982-01-01
Attention is given to the propagation effects on radio range and noise in earth-space telecommunications. The use of higher frequencies minimizes ionospheric effects on propagation, but tropospheric effects often increase or dominate. For paths of geostationary satellites, and beyond, the excess range delay caused by the ionosphere and plasmasphere is proportional to the total electron content along the path and inversely proportional to frequency squared. The delay due to dry air is usually of the order of a few meters while the delay due to water vapor (a few tens of centimeters) is responsible for most of the temporal variation in the range delay for clean air. For systems such as that of the Voyager spacecraft, and for attenuation values up to about 10 dB, increased sky noise degrades the received signal-to-noise ratio more than does the reduction in signal level due to attenuation.
NASA Astrophysics Data System (ADS)
Tuthill, Peter
2016-08-01
Finding and maintaining an accurate cophasing solution for the large primary mirrors which comprise the coming generation of Extremely Large Telescopes has required a significant technological development effort that is still ongoing. Mirrors based on an assembly of a few large segments, such as the Giant Magellan Telescope (GMT - under construction) and the Large Binocular Telescope (LBT - operational) face a particular challenge: elements must be cophased across a gaps ranging from tens of centimeters to meters. Although it is widely believed that laser guide stars are not useful for this specific application, this paper advances a new concept that challenges this orthodoxy. By projecting a Fizeau interference pattern into the sky, and analyzing the form of the backscattered image, it is shown that at least in principle it is possible to cophase across arbitrary gaps.
The MAVEN Solar Wind Electron Analyzer
NASA Astrophysics Data System (ADS)
Mitchell, D. L.; Mazelle, C.; Sauvaud, J.-A.; Thocaven, J.-J.; Rouzaud, J.; Fedorov, A.; Rouger, P.; Toublanc, D.; Taylor, E.; Gordon, D.; Robinson, M.; Heavner, S.; Turin, P.; Diaz-Aguado, M.; Curtis, D. W.; Lin, R. P.; Jakosky, B. M.
2016-04-01
The MAVEN Solar Wind Electron Analyzer (SWEA) is a symmetric hemispheric electrostatic analyzer with deflectors that is designed to measure the energy and angular distributions of 3-4600-eV electrons in the Mars environment. This energy range is important for impact ionization of planetary atmospheric species, and encompasses the solar wind core and halo populations, shock-energized electrons, auroral electrons, and ionospheric primary photoelectrons. The instrument is mounted at the end of a 1.5-meter boom to provide a clear field of view that spans nearly 80 % of the sky with ˜20° resolution. With an energy resolution of 17 % (Δ E/E), SWEA readily distinguishes electrons of solar wind and ionospheric origin. Combined with a 2-second measurement cadence and on-board real-time pitch angle mapping, SWEA determines magnetic topology with high (˜8-km) spatial resolution, so that local measurements of the plasma and magnetic field can be placed into global context.
The effect of cloud screening on MAX-DOAS aerosol retrievals.
NASA Astrophysics Data System (ADS)
Gielen, Clio; Van Roozendael, Michel; Hendrik, Francois; Fayt, Caroline; Hermans, Christian; Pinardi, Gaia; De Backer, Hugo; De Bock, Veerle; Laffineur, Quentin; Vlemmix, Tim
2014-05-01
In recent years, ground-based multi-axis differential absorption spectroscopy (MAX-DOAS) has shown to be ideally suited for the retrieval of tropospheric trace gases and deriving information on the aerosol properties. These measurements are invaluable to our understanding of the physics and chemistry of the atmospheric system, and the impact on the Earth's climate. Unfortunately, MAX-DOAS measurements are often performed under strong non-clear-sky conditions, causing strong data quality degradation and uncertainties on the retrievals. Here we present the result of our cloud-screening method, using the colour index (CI), on aerosol retrievals from MAX-DOAS measurements (AOD and vertical profiles). We focus on two large data sets, from the Brussels and Beijing area. Using the CI we define 3 different sky conditions: bad (=full thick cloud cover/extreme aerosols), mediocre (=thin clouds/aerosols) and good (=clear sky). We also flag the presence of broken/scattered clouds. We further compare our cloud-screening method with results from cloud-cover fractions derived from thermic infrared measurements. In general, our method shows good results to qualify the sky and cloud conditions of MAX-DOAS measurements, without the need for other external cloud-detection systems. Removing data under bad-sky and broken-cloud conditions results in a strongly improved agreement, in both correlation and slope, between the MAX-DOAS aerosol retrievals and data from other instruments (e.g. AERONET, Brewer). With the improved AOD retrievals, the seasonal and diurnal variations of the aerosol content and vertical distribution at both sites can be investigated in further detail. By combining with additional information derived by other instruments (Brewer, lidar, ...) operated at the stations, we will further study the observed aerosol characteristics, and their influence on and by meteorological conditions such as clouds and/or the boundary layer height.
NASA Astrophysics Data System (ADS)
Laher, Russ
2012-08-01
Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It has a graphical user interface (GUI) which allows the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. Mouse-clicking on a source in the displayed image draws a circular or elliptical aperture and sky annulus around the source and computes the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs, including image histogram, and aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has functions for customizing calculations, including outlier rejection, pixel “picking” and “zapping,” and a selection of source and sky models. The radial-profile-interpolation source model, accessed via the radial-profile-plot panel, allows recovery of source intensity from pixels with missing data and can be especially beneficial in crowded fields.
An Automatic Cloud Mask Algorithm Based on Time Series of MODIS Measurements
NASA Technical Reports Server (NTRS)
Lyapustin, Alexei; Wang, Yujie; Frey, R.
2008-01-01
Quality of aerosol retrievals and atmospheric correction depends strongly on accuracy of the cloud mask (CM) algorithm. The heritage CM algorithms developed for AVHRR and MODIS use the latest sensor measurements of spectral reflectance and brightness temperature and perform processing at the pixel level. The algorithms are threshold-based and empirically tuned. They don't explicitly address the classical problem of cloud search, wherein the baseline clear-skies scene is defined for comparison. Here, we report on a new CM algorithm which explicitly builds and maintains a reference clear-skies image of the surface (refcm) using a time series of MODIS measurements. The new algorithm, developed as part of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm for MODIS, relies on fact that clear-skies images of the same surface area have a common textural pattern, defined by the surface topography, boundaries of rivers and lakes, distribution of soils and vegetation etc. This pattern changes slowly given the daily rate of global Earth observations, whereas clouds introduce high-frequency random disturbances. Under clear skies, consecutive gridded images of the same surface area have a high covariance, whereas in presence of clouds covariance is usually low. This idea is central to initialization of refcm which is used to derive cloud mask in combination with spectral and brightness temperature tests. The refcm is continuously updated with the latest clear-skies MODIS measurements, thus adapting to seasonal and rapid surface changes. The algorithm is enhanced by an internal dynamic land-water-snow classification coupled with a surface change mask. An initial comparison shows that the new algorithm offers the potential to perform better than the MODIS MOD35 cloud mask in situations where the land surface is changing rapidly, and over Earth regions covered by snow and ice.
NASA Astrophysics Data System (ADS)
Samson, P. J.
2010-12-01
The public is painfully aware when the sky turns murky and air quality advisories are posted. They are often less aware if or how these events are associated with particular weather and airflow conditions. In order to give citizens the power to explore their air quality a web site, SharedAir, has been created that lists concentrations of pollutants at various measurement sites around the world and displays the trajectories associated with each day. This site is a first step in raising public literacy on how atmospheric transport affects air quality degradation. SharedAir representation of sulfate concentrations measured in Sacramento, CA on December 6, 2006.
Bian, Qi; Bo, Yong; Zuo, Junwei; Li, Min; Dong, Ruoxi; Deng, Keran; Zhang, Dingwen; He, Liping; Zong, Qingshuang; Cui, Dafu; Peng, Qinjun; Chen, Hongbin; Xu, Zuyan
2018-06-15
The brightness of the artificial beacon is one critical performance parameter for adaptive optics. Here, a 40-watt level narrow-linewidth microsecond pulsed yellow laser is produced at 589 nm with a high repetition frequency of 600 Hz and a pulse duration of 120 μs. An experiment to project the pulse beam up to the sky and measure the fluorescence photon returns of the Na atoms has been held on the 1.8-meter telescope in Lijiang observatory. During the sky test, a laser guide star (LGS) spot is firstly observed with Rayleigh scattering elimination by means of a gateable pulse format. And, the central wavelength of the laser could be accurately locked to be 589.1584 nm with a linewidth of ~0.34 GHz to match that of sodium-D 2a line. Optical pumping with circularly polarized light has also been used to increase the brightness of sodium LGS. In order to maximize the return flux, sodium D 2b repumping option is done by an electro-optic modulator with the optimum D 2a -D 2b frequency offset. As a result, a bright sodium LGS with the return flux of 1610 photons/cm 2 /s is achieved, corresponding to ~47 photons/cm 2 /s/W of emitted laser power, which represents a significant improvement in terms of brightness reported ever.
Public Release of Pan-STARRS Data
NASA Astrophysics Data System (ADS)
Flewelling, Heather; Consortium, panstarrs
2015-08-01
Pan-STARRS 1 is a 1.8 meter survey telescope, located on Haleakala, Hawaii, with a 1.4 Gigapixel camera, a 7 square degree field of view, and 5 filters (g,r,i,z,y). The public release of data, which is available to everyone, consists of 4 years of data taken between May 2010 and April 2014. Two of the surveys available in the public release are the 3pi survey and the Medium Deep (MD) survey. The 3pi survey has roughly 60 epochs (12 per filter) covering 3/4 of the sky and everything north of -30 degrees declination. The MD survey consists of 10 fields, observed in a couple of filters each night, usually 8 exposures per filter per field, for about 4000 epochs per MD field. The available data product are accessed through the “Postage Stamp Server” and through the Published Science Products Subsystem (PSPS), both of these are available through the Pan-STARRS Science Interface (PSI). The Postage Stamp Server provides images and catalogs for different stages of processing on single exposures, stack images, difference images, and forced photometry. The PSPS is a SQLServer database that can be queried via script or web interface, with a database for each MD field and a large database for the 3pi survey. This database has relative photometry and astrometry and object associations, making it easy to do searches across the entire sky as well as tools to generate lightcurves of individual objects as a function of time.
New Research by CCD Scanning for Comets and Asteroids
NASA Technical Reports Server (NTRS)
Gehrels, Tom; McMillan, Robert S.
1997-01-01
The purpose of Spacewatch is to explore the various populations of small objects within the solar system. Spacewatch provides data for studies of comets and asteroids, finds potential targets for space missions, and provides information on the environmental problem of possible impacts. Moving objects are discovered by scanning the sky with charge-coupled devices (CCDs) on the 0.9-meter Spacewatch Telescope of the University of Arizona on Kitt Peak. Each Spacewatch scan consists of three drift scan passes over an area of sky using a CCD filtered to a bandpass of 0.5-1.0 microns (approximately V+R+I with peak sensitivity at 0.7 micron). The effective exposure time for each pass is 143 seconds multiplied by the secant of the declination. We have been finding some 30,000 new asteroids per year and applying their statistics to the study of the collisional history of the solar system. As of the end of the observing run of Nov. 1997, Spacewatch had found a total of 153 Near-Earth Asteroids (NEAs) and 8 new comets since the project began in the 1980s, and had recovered one lost comet. The total number of NEAs found by Spacewatch big enough to be hazardous if they were to impact the Earth is 36. Spacewatch is also efficient in recovery of known comets and has detected and reported positions for more than 137,000 asteroids, mostly new ones in the main belt, including more than 16,000 asteroids designated by the Minor Planet Center (MPC).
NASA Technical Reports Server (NTRS)
Zhang, Yuanchong; Rossow, William B.; Stackhouse, Paul W., Jr.
2007-01-01
Direct estimates of surface radiative fluxes that resolve regional and weather-scale variabilty over the whole globe with reasonable accuracy have only become possible with the advent of extensive global, mostly satellite, datasets within the past couple of decades. The accuracy of these fluxes, estimated to be about 10-15 W per square meter is largely limited by the accuracy of the input datasets. The leading uncertainties in the surface fluxes are no longer predominantly induced by clouds but are now as much associated with uncertainties in the surface and near-surface atmospheric properties. This study presents a fuller, more quantitative evaluation of the uncertainties for the surface albedo and emissivity and surface skin temperatures by comparing the main available global datasets from the Moderate-Resolution Imaging Spectroradiometer product, the NASA Global Energy and Water Cycle Experiment Surface Radiation Budget project, the European Centre for Medium-Range Weather Forecasts, the National Aeronautics and Space Administration, the National Centers for Environmental Prediction, the International Satellite Cloud Climatology Project (ISCCP), the Laboratoire de Meteorologie Dynamique, NOAA/NASA Pathfinder Advanced Very High Resolution Radiometer project, NOAA Optimum Interpolation Sea Surface Temperature Analysis and the Tropical Rainfall Measuring Mission (TRMM) Microwave Image project. The datasets are, in practice, treated as an ensemble of realizations of the actual climate such that their differences represent an estimate of the uncertainty in their measurements because we do not possess global truth datasets for these quantities. The results are globally representative and may be taken as a generalization of our previous ISCCP-based uncertainty estimates for the input datasets. Surface properties have the primary role in determining the surface upward shortwave (SW) and longwave (LW) flux. From this study, the following conclusions are obtained. Although land surface albedos in the near near-infrared remain poorly constrained (highly uncertain), they do not cause too much error in total surface SW fluxes; the more subtle regional and seasonal variations associated with vegetation and snow are still on doubt. The uncertainty of the broadband black-sky SW albedo for land surface from this study is about 7%, which can easily induce 5-10 W per square meter uncertainty in (upwelling) surface SW flux estimates. Even though available surface (broadband) LW emissivity datasets differ significantly (3%-5% uncertainty), this disagreement is confined to wavelengths greater than 20 micrometers so that there is little practical effect (1-3 W per square meters) on the surface upwelling LW fluxes. The surface skin temperature is one of two leading factors that cause problems with surface LW fluxes. Even though the differences among the various datasets are generally only 2-4 K, this can easily cause 10-15 W per square meter uncertainty in calculated surface (upwelling) LW fluxes. Significant improvements could be obtained for surface LW flux calculations by improving the retrievals of (in order of decreasing importance): (1) surface skin temperature, (2) surface air and near-surface-layer temperature, (3) column precipitable water amount and (4) broadband emissivity. And for surface SW fluxes, improvements could be obtained (excluding improved cloud treatment) by improving the retrievals of (1) aerosols (from our sensitivity studies but not discussed in this work), and (2) surface (black-sky) albedo, of which, NIR part of the spectrum has much larger uncertainty.
2017-12-08
The skies over northern China were shrouded with a thick haze in late December, 2013. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite captured this true-color image on December 23. The dense, gray haze obscures almost all the land and much of the coastal waters from view south and east of the Taihang Mountains. Clearer air covers the region north of the mountains, although fingers of haze roll through most river valleys. The cities of Beijing and Hebei, both west of the Bohai Sea are complete enshrouded. By December 24 the smog levels in some area exceeded World Health Organization-recommended levels by 30 times, according to Bloomberg News. The concentration of PM2.5, which are fine air particulates, were reported at 421 micrograms per cubic meter at 2 p.m. near Tiananmen Square in Beijing, while levels were 795 in Xi’an and 740 in Zhengzhou. The World Health Organization (WHO) recommends 24-hour exposure to PM2.5 concentrations no higher than 25 micrograms per cubic meter. While not the sole cause of haze and pollution, the use of coal as a very cheap energy source adds to the problem, particularly north of the Huai River. Prior to 1980, the government policy provided free coal for fuel boilers for all people living north of the Huai River. The widespread use of coal allows people in the north to stay warm in winter, but they have paid a price in air quality. According to Michael Greenstone, a Professor of Environmental Economics at Massachusetts Institute of Technology (MIT), whose research team published a paper on sustained exposure to air pollution on life expectancy in the region, air pollution, as measured by total suspended particulates, was about 55% higher north of the Huai River than south of it, for a difference of around 184 micrograms of particulate matter per cubic meter. The research, published in Proceedings of the National Academy of Sciences in July, 2013, also noted life expectancies were about 5.5 years lower in the north, owing to an increased incidence of cardiorespiratory mortality. Air pollution is an on-going issue for the government of China, and Beijing’s Five-Year Clean Air Action Plan aims to reduce overall particle density by over 25 percent on the PM2.5 scale by 2017, and also takes aim at shutting down all coal-burning plants. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
1980-10-01
infra- red (IR) fiber waveguides for use in sensor and communication systems and for applications requiring power delivery, such as in CO2 laser...shown in Figure 11, is conventional except for the addition of a ZnSe beam splitter used to monitor the incident power , I . The beam splitter is essential...higher-quality fiber than KRS-5 from BDH. In fact, we found that not only was the initial 28 / 9508-8 POWER METER 10 POWER METER fl 2.5 cm ZnSe LENS
NASA Astrophysics Data System (ADS)
Virolainen, Yana A.; Timofeyev, Yury M.; Kostsov, Vladimir S.; Ionov, Dmitry V.; Kalinnikov, Vladislav V.; Makarova, Maria V.; Poberovsky, Anatoly V.; Zaitsev, Nikita A.; Imhasin, Hamud H.; Polyakov, Alexander V.; Schneider, Matthias; Hase, Frank; Barthlott, Sabine; Blumenstock, Thomas
2017-11-01
The cross-comparison of different techniques for atmospheric integrated water vapour (IWV) measurements is the essential part of their quality assessment protocol. We inter-compare the synchronised data sets of IWV values measured by the Bruker 125 HR Fourier-transform infrared spectrometer (FTIR), RPG-HATPRO microwave radiometer (MW), and Novatel ProPak-V3 global navigation satellite system receiver (GPS) at the St. Petersburg site between August 2014 and October 2016. As the result of accurate spatial and temporal matching of different IWV measurements, all three techniques agree well with each other except for small IWV values. We show that GPS and MW data quality depends on the atmospheric conditions; in dry atmosphere (IWV smaller than 6 mm), these techniques are less reliable at the St. Petersburg site than the FTIR method. We evaluate the upper bound of statistical measurement errors for clear-sky conditions as 0.29 ± 0.02 mm (1.6 ± 0.3 %), 0.55 ± 0.02 mm (4.7 ± 0.4 %), and 0.76 ± 0.04 mm (6.3 ± 0.8 %) for FTIR, GPS, and MW methods, respectively. We propose the use of FTIR as a reference method under clear-sky conditions since it is reliable on all scales of IWV variability.
Perspective with Landsat Overlay, Mount Kilimanjaro, Tanzania
NASA Technical Reports Server (NTRS)
2002-01-01
Mount Kilimanjaro (Kilima Njaro or 'shining mountain' in Swahili), the highest point in Africa, reaches 5,895 meters (19,340 feet) above sea level, tall enough to maintain a permanent snow cap despite being just 330 kilometers (210 miles) south of the equator. It is the tallest free-standing mountain on the Earth's land surface world, rising about 4,600 meters (15,000 feet) above the surrounding plain. Kilimanjaro is a triple volcano (has three peaks) that last erupted perhaps more than 100,000 years ago but still exudes volcanic gases. It is accompanied by about 20 other nearby volcanoes, some of which are seen to the west (left) in this view, prominently including Mount Meru, which last erupted only about a century ago. The volcanic mountain slopes are commonly fertile and support thick forests, while the much drier grasslands of the plains are home to elephants, lions, and other savanna wildlife.
This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM), a Landsat 7 satellite image, and a false sky. Topographic expression is vertically exaggerated two times.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.Size: View width 124 kilometers (77 miles), View distance 166 kilometers (103 miles) Location: 3 degrees South latitude, 37 degrees East longitude Orientation: View North, 2 degrees below horizontal, 2 times vertical exaggeration Image Data: Landsat Bands 3, 2+4, 1 as red, green, blue, respectively. Original Data Resolution: SRTM 1 arc-second (30 meters or 98 feet), Thematic Mapper 30 meters (98 feet) Date Acquired: February 2000 (SRTM), A February 21, 2000 (Landsat 7)Perspective View with Landsat Overlay, Metro Los Angeles, Calif.: Malibu to Mount Baldy
NASA Technical Reports Server (NTRS)
2002-01-01
Mount San Antonio (more commonly known as Mount Baldy) crowns the San Gabriel Mountains northeast of Los Angeles in this computer-generated east-northeast perspective viewed from above the Malibu coastline. On the right, the Pacific Ocean and Santa Monica are in the foreground. Further away are downtown Los Angeles (appearing grey) and then the San Gabriel Valley, which lies adjacent to the mountain front. The San Fernando Valley appears in the left foreground, separated from the ocean by the Santa Monica Mountains. At 3,068 meters (10,064 feet) Mount Baldy rises above the tree line, exposing bright white rocks that are not snow capped in this early autumn scene.
This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM), an enhanced color Landsat 7 satellite image, and a false sky. Topographic expression is exaggerated one and one-half times.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center, Sioux Falls, S.D.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.Size: View width 26 kilometers (16 miles), View distance 85 kilometers (53 miles) Location: 34.2 deg. North lat., 118.2 deg. West lon. Orientation: View east-northeast, 3 degrees below horizontal Image Data: Landsat Bands 3, 2+4, 1 as red, green, blue, respectively, sharpened with Band 8 panchromatic detail Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 30 meters color plus 15 meters sharpening (98 and 49 feet, respectively) Date Acquired: February 2000 (SRTM) 20 September 1999 (Landsat)Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-18
... Promulgation of Air Quality Implementation Plans; Virginia; Adoption of the Revised Lead Standards and Related... SIP revisions add the primary and secondary lead standards of 0.15 micrograms per cubic meter ([mu]g... CFR Part 52 Environmental protection, Air pollution control, Incorporation by reference, Ozone...
(AMD) ANALYSIS OF AIR QUALITY DATA NEAR ROADWAYS USING A DISPERSION MODEL
We used a dispersion model to analyze measurements made during a field study conducted by the U.S. EPA in July-August 2006, to estimate the impact of traffic emissions on air quality at distances of tens of meters from an 8 lane highway located in Raleigh, North Carolina. The air...
Aquatic assessment of the Ely Copper Mine Superfund site, Vershire, Vermont
Seal, Robert R.; Kiah, Richard G.; Piatak, Nadine M.; Besser, John M.; Coles, James F.; Hammarstrom, Jane M.; Argue, Denise M.; Levitan, Denise M.; Deacon, Jeffrey R.; Ingersoll, Christopher G.
2010-01-01
The information was used to develop an overall assessment of the impact on the aquatic system that appears to be a result of the acid rock drainage at the Ely Mine. More than 700 meters of Ely Brook, including two of the six ponds, were found to be severely impacted, on the basis of water-quality data and biological assessments. The reference location was of good quality based on the water quality and biological assessment. More than 3,125 meters of Schoolhouse Brook are also severely impacted, on the basis of water-quality data and biological assessments. The biological community begins to recover near the confluence with the Ompompanoosuc River. The evidence is less conclusive regarding the Ompompanoosuc River. The sediment data suggest that the sediments could be a source of toxicity in Ely Brook and Schoolhouse Brook. The surface-water assessment is consistent with the outcome of a surface-water toxicity testing program performed by the U.S. Environmental Protection Agency for Ely Brook and Schoolhouse Brook and a surface-water toxicity testing program and in situ amphibian testing program for the ponds.
Mobile Learning on the Basis of the Cloud Services
ERIC Educational Resources Information Center
Makarchuk, Tatyana
2017-01-01
Spreading of interactive applications for mobile devices became one of the trends of IT development in 2015-2017. In higher education mobile applications are being used to advance the productivity of professors and students, which raises the overall quality of education. In the article SkyDrive, GoogleDisk mobile applications' features for group…
The ability of a coupled meteorology–chemistry model, i.e., Weather Research and Forecast and Community Multiscale Air Quality (WRF-CMAQ), to reproduce the historical trend in aerosol optical depth (AOD) and clear-sky shortwave radiation (SWR) over the Northern Hemisphere h...
SDSS-IV eBOSS emission-line galaxy pilot survey
Comparat, J.; Delubac, T.; Jouvel, S.; ...
2016-08-09
The Sloan Digital Sky Survey IV extended Baryonic Oscillation Spectroscopic Survey (SDSS-IV/eBOSS) will observe 195,000 emission-line galaxies (ELGs) to measure the Baryonic Acoustic Oscillation standard ruler (BAO) at redshift 0.9. To test different ELG selection algorithms, 9,000 spectra were observed with the SDSS spectrograph as a pilot survey based on data from several imaging surveys. First, using visual inspection and redshift quality flags, we show that the automated spectroscopic redshifts assigned by the pipeline meet the quality requirements for a reliable BAO measurement. We also show the correlations between sky emission, signal-to-noise ratio in the emission lines, and redshift error.more » Then we provide a detailed description of each target selection algorithm we tested and compare them with the requirements of the eBOSS experiment. As a result, we provide reliable redshift distributions for the different target selection schemes we tested. Lastly, we determine an target selection algorithms that is best suited to be applied on DECam photometry because they fulfill the eBOSS survey efficiency requirements.« less
Calculating Proper Motions in the WFCAM Science Archive for the UKIRT Infrared Deep Sky Surveys
NASA Astrophysics Data System (ADS)
Collins, R.; Hambly, N.
2012-09-01
The ninth data release from the UKIRT Infrared Deep Sky Surveys (hereafter UKIDSS DR9), represents five years worth of observations by its wide-field camera (WFCAM) and will be the first to include proper motion values in its source catalogues for the shallow, wide-area surveys; the Large Area Survey (LAS), Galactic Clusters Survey (GCS) and (ultimately) Galactic Plane Survey (GPS). We, the Wide Field Astronomy Unit (WFAU) at the University of Edinburgh who prepare these regular data releases in the WFCAM Science Archive (WSA), describe in this paper how we make optimal use of the individual detection catalogues from each observation to derive high-quality astrometric fits for the positions of each detection enabling us to calculate a proper motion solution across multiple epochs and passbands when constructing a merged source catalogue. We also describe how the proper motion solutions affect the calculation of the various attributes provided in the database source catalogue tables, what measures of data quality we provide and a demonstration of the results for observations of the Pleiades cluster.
Latest developments on the loop control system of AdOpt@TNG
NASA Astrophysics Data System (ADS)
Ghedina, Adriano; Gaessler, Wolfgang; Cecconi, Massimo; Ragazzoni, Roberto; Puglisi, Alfio T.; De Bonis, Fulvio
2004-10-01
The Adaptive Optics System of the Galileo Telescope (AdOpt@TNG) is the only adaptive optics system mounted on a telescope which uses a pyramid wavefront snesor and it has already shown on sky its potentiality. Recently AdOpt@TNG has undergone deep changes at the level of its higher orders control system. The CCD and the Real Time Computer (RTC) have been substituted as a whole. Instead of the VME based RTC, due to its frequent breakdowns, a dual pentium processor PC with Real-Time-Linux has been chosen. The WFS CCD, that feeds the images to the RTC, was changed to an off-the-shelf camera system from SciMeasure with an EEV39 80x80 pixels as detector. While the APD based Tip/Tilt loop has shown the quality on the sky at the TNG site and the ability of TNG to take advantage of this quality, up to the diffraction limit, the High-Order system has been fully re-developed and the performance of the closed loop is under evaluation to offer the system with the best performance to the astronomical community.
ASERA: A spectrum eye recognition assistant for quasar spectra
NASA Astrophysics Data System (ADS)
Yuan, Hailong; Zhang, Haotong; Zhang, Yanxia; Lei, Yajuan; Dong, Yiqiao; Zhao, Yongheng
2013-11-01
Spectral type recognition is an important and fundamental step of large sky survey projects in the data reduction for further scientific research, like parameter measurement and statistic work. It tends out to be a huge job to manually inspect the low quality spectra produced from the massive spectroscopic survey, where the automatic pipeline may not provide confident type classification results. In order to improve the efficiency and effectiveness of spectral classification, we develop a semi-automated toolkit named ASERA, ASpectrum Eye Recognition Assistant. The main purpose of ASERA is to help the user in quasar spectral recognition and redshift measurement. Furthermore it can also be used to recognize various types of spectra of stars, galaxies and AGNs (Active Galactic Nucleus). It is an interactive software allowing the user to visualize observed spectra, superimpose template spectra from the Sloan Digital Sky Survey (SDSS), and interactively access related spectral line information. It is an efficient and user-friendly toolkit for the accurate classification of spectra observed by LAMOST (the Large Sky Area Multi-object Fiber Spectroscopic Telescope). The toolkit is available in two modes: a Java standalone application and a Java applet. ASERA has a few functions, such as wavelength and flux scale setting, zoom in and out, redshift estimation, spectral line identification, which helps user to improve the spectral classification accuracy especially for low quality spectra and reduce the labor of eyeball check. The function and performance of this tool is displayed through the recognition of several quasar spectra and a late type stellar spectrum from the LAMOST Pilot survey. Its future expansion capabilities are discussed.
Application of acoustic doppler velocimeters for streamflow measurements
Rehmel, M.
2007-01-01
The U.S. Geological Survey (USGS) principally has used Price AA and Price pygmy mechanical current meters for measurement of discharge. New technologies have resulted in the introduction of alternatives to the Price meters. One alternative, the FlowTracker acoustic Doppler velocimeter, was designed by SonTek/YSI to make streamflow measurements in wadeable conditions. The device measures a point velocity and can be used with standard midsection method algorithms to compute streamflow. The USGS collected 55 quality-assurance measurements with the FlowTracker at 43 different USGS streamflow-gaging stations across the United States, with mean depths from 0.05to0.67m, mean velocities from 13 to 60 cm/s, and discharges from 0.02 to 12.4m3/s. These measurements were compared with Price mechanical current meter measurements. Analysis of the comparisons shows that the FlowTracker discharges were not statistically different from the Price meter discharges at a 95% confidence level. ?? 2007 ASCE.
Lightweight Liquid Helium Dewar for High-Altitude Balloon Payloads
NASA Technical Reports Server (NTRS)
Kogut, Alan; James, Bryan; Fixsen, Dale
2013-01-01
Astrophysical observations at millimeter wavelengths require large (2-to-5- meter diameter) telescopes carried to altitudes above 35 km by scientific research balloons. The scientific performance is greatly enhanced if the telescope is cooled to temperatures below 10 K with no emissive windows between the telescope and the sky. Standard liquid helium bucket dewars can contain a suitable telescope for telescope diameter less than two meters. However, the mass of a dewar large enough to hold a 3-to-5-meter diameter telescope would exceed the balloon lift capacity. The solution is to separate the functions of cryogen storage and in-flight thermal isolation, utilizing the unique physical conditions at balloon altitudes. Conventional dewars are launched cold: the vacuum walls necessary for thermal isolation must also withstand the pressure gradient at sea level and are correspondingly thick and heavy. The pressure at 40 km is less than 0.3% of sea level: a dewar designed for use only at 40 km can use ultra thin walls to achieve significant reductions in mass. This innovation concerns new construction and operational techniques to produce a lightweight liquid helium bucket dewar. The dewar is intended for use on high-altitude balloon payloads. The mass is low enough to allow a large (3-to-5-meter) diameter dewar to fly at altitudes above 35 km on conventional scientific research balloons without exceeding the lift capability of the balloon. The lightweight dewar has thin (250- micron) stainless steel walls. The walls are too thin to support the pressure gradient at sea level: the dewar launches warm with the vacuum space vented continuously during ascent to eliminate any pressure gradient across the walls. A commercial 500-liter storage dewar maintains a reservoir of liquid helium within a minimal (hence low mass) volume. Once a 40-km altitude is reached, the valve venting the vacuum space of the bucket dewar is closed to seal the vacuum space. A vacuum pump then evacuates the dewar vacuum space to provide the necessary thermal isolation. Liquid helium may then be transferred from the storage dewar into the bucket dewar to cool the telescope inside the bucket dewar. By splitting the functions of helium storage and in-flight thermal isolation, the parasitic mass associated with the dewar pressure vessel is eliminated to achieve factor-of-five or better reduction in mass. The lower mass allows flight on conventional scientific research balloons, even for telescopes 3 to 5 meters in diameter.
VizieR Online Data Catalog: NORAS II. I. First results (Bohringer+, 2017)
NASA Astrophysics Data System (ADS)
Bohringer, H.; Chon, G.; Retzlaff, J.; Trumper, J.; Meisenheimer, K.; Schartel, N.
2017-08-01
The NOrthern ROSAT All-Sky (NORAS) galaxy cluster survey project is based on the ROSAT All-Sky Survey (RASS; Trumper 1993Sci...260.1769T), which is the only full-sky survey conducted with an imaging X-ray telescope. We have already used RASS for the construction of the cluster catalogs of the NORAS I project. While NORAS I was as a first step focused on the identification of galaxy clusters among the RASS X-ray sources showing a significant extent, the complementary REFLEX I sample in the southern sky was strictly constructed as a flux-limited cluster sample. A major extension of the REFLEX I sample, which roughly doubles the number of clusters, REFLEX II (Bohringer et al. 2013, Cat. J/A+A/555/A30), was recently completed. It is by far the largest high-quality sample of X-ray-selected galaxy clusters. The NORAS II survey now reaches a flux limit of 1.8*10-12erg/s/cm2 in the 0.1-2.4keV band. Redshifts have been obtained for all of the 860 clusters in the NORAS II catalog, except for 25 clusters for which observing campaigns are scheduled. Thus with 3% missing redshifts we can already obtain a very good view of the properties of the NORAS II cluster sample and obtain some first results. The NORAS II survey covers the sky region north of the equator outside the band of the Milky Way (|bII|>=20°). We also excise a region around the nearby Virgo cluster of galaxies that extends over several degrees on the sky, where the detection of background clusters is hampered by bright X-ray emission. This region is bounded in right ascension by R.A.=185°-191.25° and in declination by decl.=6°-15° (an area of ~53deg2). With this excision, the survey area covers 4.18 steradian (13519deg2, a fraction of 32.7% of the sky). NORAS II is based on the RASS product RASS III (Voges et al. 1999, Cat. IX/10), which was also used for REFLEX II. The NORAS II survey was constructed in a way identical to REFLEX II with a nominal flux limit of 1.8*10-12erg/s/cm2. (3 data files).
76 FR 42161 - Notice of Final Federal Agency Actions on Proposed Highway in California
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-18
... Gilman Drive; installation of new ramp meters; and, construction of a bicycle path along I-5. The project... at http://www.dot.ca.gov/dist11/envir.htm . Pending Federal actions include: 1. Section 401 Water Quality Certification from the San Diego Regional Water Quality Control Board (RWQCB), under Section 401...
Sun and Sky Radiance Measurements and Data Analysis Protocols. Chapter 5
NASA Technical Reports Server (NTRS)
Frouin, Robert; Holben, Brent; Miller, Mark; Pietras, Christophe; Porter, John; Voss, Ken
2001-01-01
This chapter is concerned with two types of radiometric measurements essential to verify atmospheric correction algorithms and to calibrate vicariously satellite ocean color sensors. The first type is a photometric measurement of the direct solar beam to determine the optical thickness of the atmosphere. The intensity of the solar beam can be measured directly, or obtained indirectly from measurements of diffuse global upper hemispheric irradiance. The second type is a measurement of the solar aureole and sky radiance distribution using a CCD camera, or a scanning radiometer viewing in and perpendicular to the solar principal plane. From the two types of measurements, the optical properties of aerosols, highly variable in space and time, can be derived. Because of the high variability, the aerosol properties should be known at the time of satellite overpass. Atmospheric optics measurements, however, are not easy to perform at sea, from a ship or any platform. This complicates the measurement protocols and data analysis. Some instrumentation cannot be deployed at sea, and is limited to island and coastal sites. In the following, measurement protocols are described for radiometers commonly used to measure direct atmospheric transmittance and sky radiance, namely standard sun photometers, fast-rotating shadow-band radiometers, automated sky scanning systems, and CCD cameras. Methods and procedures to analyze and quality control the data are discussed, as well as proper measurement strategies for evaluation of atmospheric correction algorithms and satellite-derived ocean color.
Pan-STARRS1: Status, Science, and Public Data Release
NASA Astrophysics Data System (ADS)
Chambers, Kenneth C.
2013-01-01
PS1, the Pan-STARRS1 Telescope is entering its third year of operations. Operations of the PS1 System include the Observatory, Telescope, 1.4 Gigapixel Camera, Image Processing Pipeline , PSPS relational database and reduced science product software servers. The PS1 Surveys include: (1) A 3pi Steradian Survey, (2) A Medium Deep survey of 10 PS1 footprints spaced around the sky; (3) A solar system survey optimized for Near Earth Objects, (4) a Stellar Transit Survey; and (5) a Deep Survey of M31. The PS1 3pi Survey has now covered most of the sky north of dec=-30 with 8 to 10 visits in five bands: g,r,i,z and y or over ~45 epochs per point on sky. The performance of the PS1 system, sky coverage, cadence, and data quality of the surveys will be presented as well as progress in reprocessing of the data taken to date and plans for serving the data to the public. A summary of science highlights will be included. The PS1 Science Consortium consists of The Institute for Astronomy at the University of Hawai'i in Manoa, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, the University of Durham, the University of Edinburgh, the Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Los Cumbres Observatory Global Telescope Network Incorporated, and the National Central University of Taiwan, NASA, and NSF.
The PS1 Science Mission - Status and Results
NASA Astrophysics Data System (ADS)
Chambers, Kenneth C.
2013-06-01
PS1, the Pan-STARRS1 Telescope is in its last year of the PS1 Science Mission. Operations of the PS1 System include the Observatory, Telescope, 1.4 Gigapixel Camera, Image Processing Pipeline , PSPS relational database and reduced science product software servers. The PS1 Surveys include: (1) A 3pi Steradian Survey, (2) A Medium Deep survey of 10 PS1 footprints spaced around the sky; (3) A solar system survey optimized for Near Earth Objects, (4) a Stellar Transit Survey; and (5) a Deep Survey of M31. The PS1 3pi Survey has now covered the sky north of dec=-30 with 8 to 12 visits in five bands: g,r,i,z and y or over ~45 epochs per point on sky. The performance of the PS1 system, sky coverage, cadence, and data quality of the surveys will be presented as well as progress in reprocessing of the data taken to date and plans for serving the data to the public. A summary of science highlights will be included. The PS1 Science Consortium consists of The Institute for Astronomy at the University of Hawai'i in Manoa, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, the University of Durham, the University of Edinburgh, the Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Los Cumbres Observatory Global Telescope Network Incorporated, and the National Central University of Taiwan, NASA, and NSF.
Measured daylighting potential of a static optical louver system under real sun and sky conditions
Konis, Kyle; Lee, Eleanor S.
2015-05-04
Side-by-side comparisons were made over solstice-to-solstice changes in sun and sky conditions between an optical louver system (OLS) and a conventional Venetian blind set at a horizontal slat angle and located inboard of a south-facing, small-area, clerestory window in a full-scale office testbed. Daylight autonomy (DA), window luminance, and ceiling luminance uniformity were used to assess performance. The performance of both systems was found to have significant seasonal variation, where performance under clear sky conditions improved as maximum solar altitude angles transitioned from solstice to equinox. Although the OLS produced fewer hours per day of DA on average than themore » Venetian blind, the OLS never exceeded the designated 2000 cd/m2 threshold for window glare. In contrast, the Venetian blind was found to exceed the visual discomfort threshold over a large fraction of the day during equinox conditions. Notably, these peak periods of visual discomfort occurred during the best periods of daylighting performance. Luminance uniformity was analyzed using calibrated high dynamic range luminance images. Under clear sky conditions, the OLS was found to increase the luminance of the ceiling as well as produce a more uniform distribution. Furthermore, compared to conventional venetian blinds, the static optical sunlight redirecting system studied has the potential to significantly reduce the annual electrical lighting energy demand of a daylit space and improve the quality from the perspective of building occupants by consistently transmitting useful daylight while eliminating window glare.« less
Johnson, Michaela R.; Buell, Gary R.; Kim, Moon H.; Nardi, Mark R.
2007-01-01
This dataset was developed as part of the National Water-Quality Assessment (NAWQA) Program, Nutrient Enrichment Effects Topical (NEET) study for five study units distributed across the United States: Apalachicola-Chattahoochee-Flint River Basin, Central Columbia Plateau-Yakima River Basin, Central Nebraska Basins, Potomac River Basin and Delmarva Peninsula, and White, Great and Little Miami River Basins. One hundred forty-three stream reaches were examined as part of the NEET study conducted 2003-04. Stream segments, with lengths equal to the logarithm of the basin area, were delineated upstream from the downstream ends of the stream reaches with the use of digital orthophoto quarter quadrangles (DOQQ) or selected from the high-resolution National Hydrography Dataset (NHD). Use of the NHD was necessary when the stream was not distinguishable in the DOQQ because of dense tree canopy. The analysis area for each stream segment was defined by a buffer beginning at the segment extending to 250 meters lateral to the stream segment. Delineation of land use/land cover (LULC) map units within stream segment buffers was conducted using on-screen digitizing of riparian LULC classes interpreted from the DOQQ. LULC units were mapped using a classification strategy consisting of nine classes. National Wetlands Inventory (NWI) data were used to aid in wetland classification. Longitudinal transect sampling lines offset from the stream segments were generated and partitioned into the underlying LULC types. These longitudinal samples yielded the relative linear extent and sequence of each LULC type within the riparian zone at the segment scale. The resulting areal and linear LULC data filled in the spatial-scale gap between the 30-meter resolution of the National Land Cover Dataset and the reach-level habitat assessment data collected onsite routinely for NAWQA ecological sampling. The final data consisted of 12 geospatial datasets: LULC within 25 meters of the stream reach (polygon); LULC within 50 meters of the stream reach (polygon); LULC within 50 meters of the stream segment (polygon); LULC within 100 meters of the stream segment (polygon); LULC within 150 meters of the stream segment (polygon); LULC within 250 meters of the stream segment (polygon); frequency of gaps in woody vegetation LULC at the reach scale (arc); stream reaches (arc); longitudinal LULC at the reach scale (arc); frequency of gaps in woody vegetation LULC at the segment scale (arc); stream segments (arc); and longitudinal LULC at the segment scale (arc).
Sheets, R.A.; Dumouchelle, D.H.
2009-01-01
Three geophysical profiling methods were tested to help characterize subsurface materials at selected transects along the Great Miami River, in southwestern Ohio. The profiling methods used were continuous seismic profiling (CSP), continuous resistivity profiling (CRP), and continuous electromagnetic profiling (CEP). Data were collected with global positioning systems to spatially locate the data along the river. The depth and flow conditions of the Great Miami River limited the amount and quality of data that could be collected with the CSP and CRP methods. Data from the CSP were generally poor because shallow reflections (less than 5 meters) were mostly obscured by strong multiple reflections and deep reflections (greater than 5 meters) were sparse. However, modeling of CRP data indicated broad changes in subbottom geology, primarily below about 3 to 5 meters. Details for shallow electrical conductivity (resistivity) (less than 3 meters) were limited because of the 5-meter electrode spacing used for the surveys. For future studies of this type, a cable with 3-meter electrode spacing (or perhaps even 1-meter spacing) might best be used in similar environments to determine shallow electrical properties of the stream-bottom materials. CEP data were collected along the entire reach of the Great Miami River. The CRP and CEP data did not correlate well, but the CRP electrode spacing probably limited the correlation. Middle-frequency (3,510 hertz) and high-frequency (15,030 hertz) CEP data were correlated to water depth. Low-frequency (750 hertz) CEP data indicate shallow (less than 5-meter) changes in electrical conductivity. Given the variability in depth and flow conditions on a river such as the Great Miami, the CEP method worked better than either the CSP or CRP methods.
Two specific fires from 2011 are tracked for local to regional scale contribution to ozone (O3) and fine particulate matter (PM2.5) using a freely available regulatory modeling system that includes the BlueSky wildland fire emissions tool, Spare Matrix Operator Kernel Emissions (...
The Power of the Symposium: Impacts from Students' Perspectives
ERIC Educational Resources Information Center
Vanek, Diana; Marra, Nancy; Hester, Carolyn; Ware, Desirae; Holian, Andrij; Ward, Tony; Knuth, Randy; Adams, Earle
2011-01-01
The Air Toxics under the Big Sky program developed at the University of Montana is a regional outreach and education initiative that offers a yearlong exploration of air quality and its relation to respiratory health. The program was designed to connect university staff and resources with rural schools enabling students to learn and apply science…
Spirit Captures Two Dust Devils On the Move
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Figure 1 Annotated At the Gusev site recently, skies have been very dusty, and on its 421st sol (March 10, 2005) NASA's Mars Exploration Rover Spirit spied two dust devils in action. This is an image from the rover's navigation camera. Views of the Gusev landing region from orbit show many dark streaks across the landscape -- tracks where dust devils have removed surface dust to show relatively darker soil below -- but this is the first time Spirit has photographed an active dust devil. Scientists are considering several causes of these small phenomena. Dust devils often occur when the Sun heats the surface of Mars. Warmed soil and rocks heat the layer of atmosphere closest to the surface, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado. Another possibility is that a flow structure might develop over craters as wind speeds increase. As winds pick up, turbulence eddies and rotating columns of air form. As these columns grow in diameter they become taller and gain rotational speed. Eventually they become self-sustaining and the wind blows them down range. One sol before this image was taken, power output from Spirit's solar panels went up by about 50 percent when the amount of dust on the panels decreased. Was this a coincidence, or did a helpful dust devil pass over Spirit and lift off some of the dust? By comparing the separate images from the rover's different cameras, team members estimate that the dust devils moved about 500 meters (1,640 feet) in the 155 seconds between the navigation camera and hazard-avoidance camera frames; that equates to about 3 meters per second (7 miles per hour). The dust devils appear to be about 1,100 meters (almost three-quarters of a mile) from the rover.NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Figure 1 Annotated At the Gusev site recently, skies have been very dusty, and on its 421st sol (March 10, 2005) NASA's Mars Exploration Rover Spirit spied two dust devils in action. This pair of images is from the rover's rear hazard-avoidance camera. Views of the Gusev landing region from orbit show many dark streaks across the landscape -- tracks where dust devils have removed surface dust to show relatively darker soil below -- but this is the first time Spirit has photographed an active dust devil. Scientists are considering several causes of these small phenomena. Dust devils often occur when the Sun heats the surface of Mars. Warmed soil and rocks heat the layer of atmosphere closest to the surface, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado. Another possibility is that a flow structure might develop over craters as wind speeds increase. As winds pick up, turbulence eddies and rotating columns of air form. As these columns grow in diameter they become taller and gain rotational speed. Eventually they become self-sustaining and the wind blows them down range. One sol before this image was taken, power output from Spirit's solar panels went up by about 50 percent when the amount of dust on the panels decreased. Was this a coincidence, or did a helpful dust devil pass over Spirit and lift off some of the dust? By comparing the separate images from the rover's different cameras, team members estimate that the dust devils moved about 500 meters (1,640 feet) in the 155 seconds between the navigation camera and hazard-avoidance camera frames; that equates to about 3 meters per second (7 miles per hour). The dust devils appear to be about 1,100 meters (almost three-quarters of a mile) from the rover.Astronomy Camp = IYA x 22: 22 Years of International Astronomy Education
NASA Astrophysics Data System (ADS)
Hooper, Eric Jon; McCarthy, D. W.; Camp Staff, Astronomy
2010-01-01
Do you remember childhood dreams of being an astronomer, or the ravenous desire for ever larger glass and better equipment as an amateur astronomer? What if your child or the person down the street could live that dream for a weekend or a week? The University of Arizona Astronomy Camp continues to substantiate those dreams after more than two decades in existence. Astronomy Camp is an immersion hands-on field experience in astronomy, ranging from two to eight nights, occurring a few times per year. Participants span an age range from elementary students to octogenarians. The three basic offerings include adult camps, a beginning Camp for teenagers, and an advanced teen Camp. Several variants of the basic Camp model have evolved, including an ongoing decade long series of specialized Camps for Girl Scout leaders from across the country, funded by the NIRCam instrument development program for the James Webb Space Telescope. The advanced teen Camp is a microcosm of the entire research arc: the participants propose projects, spend the week collecting and analyzing data using research grade CCDs, infrared arrays, and radio/sub-millimeter telescopes, and finish with a presentation of the results. This past summer the Camps moved to Kitt Peak National Observatory for the first time, providing access to a vast and diverse collection of research instruments, including the 0.9-meter WIYN and 2.3-meter Bok telescopes, the McMath-Pierce Solar Telescope, and the 12-meter ARO radio telescope. Education research into the Camp's impact indicates that reasons for its appeal to youth include a learner-centered and personal approach with a fun attitude toward learning, authentic scientific inquiry led by mentors who are real scientists, a peer group with common interests in science and engineering, and the emotional appeal of spending time on a dark "sky island" devoted to the exploration of nature.
Machine-learning identification of galaxies in the WISE × SuperCOSMOS all-sky catalogue
NASA Astrophysics Data System (ADS)
Krakowski, T.; Małek, K.; Bilicki, M.; Pollo, A.; Kurcz, A.; Krupa, M.
2016-11-01
Context. The two currently largest all-sky photometric datasets, WISE and SuperCOSMOS, have been recently cross-matched to construct a novel photometric redshift catalogue on 70% of the sky. Galaxies were separated from stars and quasars through colour cuts, which may leave imperfections because different source types may overlap in colour space. Aims: The aim of the present work is to identify galaxies in the WISE × SuperCOSMOS catalogue through an alternative approach of machine learning. This allows us to define more complex separations in the multi-colour space than is possible with simple colour cuts, and should provide a more reliable source classification. Methods: For the automatised classification we used the support vector machines (SVM) learning algorithm and employed SDSS spectroscopic sources that we cross-matched with WISE × SuperCOSMOS to construct the training and verification set. We performed a number of tests to examine the behaviour of the classifier (completeness, purity, and accuracy) as a function of source apparent magnitude and Galactic latitude. We then applied the classifier to the full-sky data and analysed the resulting catalogue of candidate galaxies. We also compared the resulting dataset with the one obtained through colour cuts. Results: The tests indicate very high accuracy, completeness, and purity (>95%) of the classifier at the bright end; this deteriorates for the faintest sources, but still retains acceptable levels of 85%. No significant variation in the classification quality with Galactic latitude is observed. When we applied the classifier to all-sky WISE × SuperCOSMOS data, we found 15 million galaxies after masking problematic areas. The resulting sample is purer than the one produced by applying colour cuts, at the price of a lower completeness across the sky. Conclusions: The automatic classification is a successful alternative approach to colour cuts for defining a reliable galaxy sample. The identifications we obtained are included in the public release of the WISE × SuperCOSMOS galaxy catalogue. The public release of the WISE × SuperCOSMOS galaxy catalogue is available from http://ssa.roe.ac.uk/WISExSCOS
The interactive sky: a browsable allsky image
NASA Astrophysics Data System (ADS)
Tancredi, Gonzalo; Da Rosa, Fernando; Roland, Santiago; Almenares, Luciano; Gomez, Fernando
2015-08-01
We are conducting a project to make available panoramas of the night sky of the southern hemisphere, based on a mosaic of hundred of photographs. Each allsky panorama is a giant image composed by hundreds of high-resolution photos taken in the course of one night. The panoramas are accessible with a web-browser and the public is able to zoom on them and to see the sky with better quality than the naked eye. We are preparing 4 sets of panoramas corresponding to the four seasons.The individual images are taken with a 16 Mpixels DLSR camera with a 50 mm lens mounted on a Gigapan EPIC robotic camera mounts. These devices and a autoguiding telescope are mounted in a equatorial telescope mount, which allows us to have exposure of several tens seconds. The images are then processed and stitched to create the gigantic panorama, with typical weight of several GBytes.The limiting magnitude is V~8. The panoramas include more than 50 times more stars those detected with the naked eye.In addition to the allsky panoramas, we embedded higher resolution images of specific regions of interest such as: emission nebulae and dark, open and globular clusters and galaxies; which can be zoomed.The photographs have been acquiring since December 2014 in a dark place with low light pollution in the countryside of Uruguay; which allows us to achieve deep sky objects.These panoramas will be available on a website and can be accessed with any browser.This tool will be available for teaching purposes, astronomy popularization or introductory research. Teacher guides will be developed for educational activities at different educational levels.While there are similar projects like Google Sky, the methodology used to generate the giant panoramas allows a much more realistic view, with a background of continuous sky without sharp edges. Furthermore, while the planetarium software is based on drawings of the stars, our panoramas are based on real images.This is the first project with these characteristics; we hope it will become a reference for browsable allsky images with many web visitors.The project is supported by a grant from the Agencia Nacional de Investigación e Innovación ANII (Uruguay).
NASA Technical Reports Server (NTRS)
Baxter, W. J., Jr.; Frant, M. S.; West, S. J.
1978-01-01
Solid-state sensing unit developed for use with NASA's Water-Quality Monitoring System can detect small velocity changes in slow moving fluid. Nonprotruding sensor is applicable to numerous other uses requiring sensitive measurement of slow flows.
Snyder, Alexander G.; Lacy, Jessica R.; Stevens, Andrew W.; Carlson, Emily M.
2016-06-10
The U.S. Geological Survey conducted a bathymetric survey in Little Holland Tract, a flooded agricultural tract, in the northern Sacramento-San Joaquin Delta (the “Delta”) during the summer of 2015. The new bathymetric data were combined with existing data to generate a digital elevation model (DEM) at 1-meter resolution. Little Holland Tract (LHT) was historically diked off for agricultural uses and has been tidally inundated since an accidental levee breach in 1983. Shallow tidal regions such as LHT have the potential to improve habitat quality in the Delta. The DEM of LHT was developed to support ongoing studies of habitat quality in the area and to provide a baseline for evaluating future geomorphic change. The new data comprise 138,407 linear meters of real-time-kinematic (RTK) Global Positioning System (GPS) elevation data, including both bathymetric data collected from personal watercraft and topographic elevations collected on foot at low tide. A benchmark (LHT15_b1) was established for geodetic control of the survey. Data quality was evaluated both by comparing results among surveying platforms, which showed systematic offsets of 1.6 centimeters (cm) or less, and by error propagation, which yielded a mean vertical uncertainty of 6.7 cm. Based on the DEM and time-series measurements of water depth, the mean tidal prism of LHT was determined to be 2,826,000 cubic meters. The bathymetric data and DEM are available at http://dx.doi.org/10.5066/F7RX9954.
Reconstruction of source location in a network of gravitational wave interferometric detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavalier, Fabien; Barsuglia, Matteo; Bizouard, Marie-Anne
2006-10-15
This paper deals with the reconstruction of the direction of a gravitational wave source using the detection made by a network of interferometric detectors, mainly the LIGO and Virgo detectors. We suppose that an event has been seen in coincidence using a filter applied on the three detector data streams. Using the arrival time (and its associated error) of the gravitational signal in each detector, the direction of the source in the sky is computed using a {chi}{sup 2} minimization technique. For reasonably large signals (SNR>4.5 in all detectors), the mean angular error between the real location and the reconstructedmore » one is about 1 deg. . We also investigate the effect of the network geometry assuming the same angular response for all interferometric detectors. It appears that the reconstruction quality is not uniform over the sky and is degraded when the source approaches the plane defined by the three detectors. Adding at least one other detector to the LIGO-Virgo network reduces the blind regions and in the case of 6 detectors, a precision less than 1 deg. on the source direction can be reached for 99% of the sky.« less
SPACE: the SPectroscopic, All-Sky Cosmic Explorer
NASA Technical Reports Server (NTRS)
Cimatti, A.; Robberto, M.; Baugh, C.; Beckwith, S. W. V.; Content, R.; Daddi, E.; deLucia, G.; Garilli, B.; Guzzo, L.; Kauffmann, G.;
2007-01-01
We describe the scientific motivations, the mission concept and the instrumentation of SPACE, a class-M mission proposed for concept study at the first call of the ESA Cosmic-Vision 2015-2025 planning cycle. SPACE aims at producing the largest three-dimensional evolutionary map of the Universe over the past 10 billion years by taking near-IR spectra and measuring redshifts of more than half a billion galaxies at 0 < z < 2 down to AB approximately 23 over 37r sr of the sky. In addition, SPACE will also target a smaller sky field, performing a deep spectroscopic survey of millions of galaxies to AB approximately 26 and at 2 < z < l0+. Owing to the depth, redshift range, volume coverage and quality of its spectra, SPACE will reveal with unique sensitivity most of the fundamental cosmological signatures, including the power spectrum of density fluctuations and its turnover, the baryonic acoustic oscillations imprinted when matter and radiation decoupled, the distance-luminosity relation of cosmological supernovae, the evolution of the cosmic expansion rate, the growth rate of cosmic large-scale structure, the large scale distribution of galaxies. The datasets from the SPACE mission will represent a long lasting legacy that will be data mined for many years to come.
NASA Astrophysics Data System (ADS)
Bai, Jianhui; Wang, Gengchen
2003-09-01
On the basis of analyzing observational data on solar radiation, meteorological parameters, and total ozone amount for the period of January 1990 to December 1991 in the Beijing area, an empirical calculation method for ultraviolet radiation (UV) in clear sky is obtained. The results show that the calculated values agree well with the observed, with maximum relative bias of 6.2% and mean relative bias for 24 months of 1.9%. Good results are also obtained when this method is applied in Guangzhou and Mohe districts. The long-term variation of UV radiation in clear sky over the Beijing area from 1979 to 1998 is calculated, and the UV variation trends and causes are discussed: direct and indirect UV energy absorption by increasing pollutants in the troposphere may have caused the UV decrease in clear sky in the last 20 years. With the enhancement of people’s quality of life and awareness of health, it will be valuable and practical to provid UV forecasts for typical cities and rural areas. So, we should develop and enhance UV study in systematic monitoring, forecasting, and developing a good and feasible method for UV radiation reporting in China, especially for big cities.
The NASA Meter Class Autonomous Telescope: Ascension Island
NASA Technical Reports Server (NTRS)
Lederer, S. M.; Stansbery, E. G.; Cowardin, H. M.; Hickson, P.; Pace, L. F.; Abercromby, K. J.; Kervin, P. W.
2013-01-01
The Meter Class Autonomous Telescope (MCAT) is the newest optical sensor dedicated to NASA's mission to characterize the space debris environment. It is the successor to a series of optical telescopes developed and operated by the JSC Orbital Debris Program Office (ODPO) to monitor and assess the debris environment in (1) Low Earth Orbit (LEO), (2) Medium Earth Orbit (MEO), and (3) Geosynchronous Orbit (GEO), with emphasis on LEO and GEO altitudes. A joint NASA - Air Force Research Labs project, MCAT is a 1.3m optical telescope dedicated to debris research. Its optical path and sensor yield a large survey fence at the cutting edge of current detector performance. It has four primary operational observing modes, two of which were not computationally feasible a decade ago. Operations are supported by a sophisticated software suite that monitors clouds and weather conditions, and controls everything from data collection to dome rotation to processing tens of gigabytes of image data nightly. With fainter detection limits, precision detection, acquisition and tracking of targets, multi-color photometry, precision astrometry, automated re-acquisition capability, and the ability to process all data at the acquisition rate, MCAT is capable of producing and processing a volume and quality of data far in excess of any current (or prior) ODPO operations. This means higher fidelity population inputs and eliminating the multi-year backlog from acquisition-to-product typical of optical campaigns. All of this is possible given a suitable observing location. Ascension Island offers numerous advantages. As a British overseas territory with a US Air Force base presence, the necessary infrastructure and support already exists. It is located mid-way between Brazil and Africa at 7.93S latitude and 14.37 W longitude. With the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) asset in Moron, Spain shutting down, this presents access to the sky from a unique latitude/longitude for an optical telescope. Constant trade winds from the SSE, originating from Africa, give promise to a steady laminar airflow over an island, a trait sought after to create stable atmospheric and good astronomical 'seeing' conditions with very low annual rainfall values. This combination of attributes created the necessary compelling argument to redirect MCAT to its final destination: Ascension Island.
A dynamic water-quality modeling framework for the Neuse River estuary, North Carolina
Bales, Jerad D.; Robbins, Jeanne C.
1999-01-01
As a result of fish kills in the Neuse River estuary in 1995, nutrient reduction strategies were developed for point and nonpoint sources in the basin. However, because of the interannual variability in the natural system and the resulting complex hydrologic-nutrient inter- actions, it is difficult to detect through a short-term observational program the effects of management activities on Neuse River estuary water quality and aquatic health. A properly constructed water-quality model can be used to evaluate some of the potential effects of manage- ment actions on estuarine water quality. Such a model can be used to predict estuarine response to present and proposed nutrient strategies under the same set of meteorological and hydrologic conditions, thus removing the vagaries of weather and streamflow from the analysis. A two-dimensional, laterally averaged hydrodynamic and water-quality modeling framework was developed for the Neuse River estuary by using previously collected data. Development of the modeling framework consisted of (1) computational grid development, (2) assembly of data for model boundary conditions and model testing, (3) selection of initial values of model parameters, and (4) limited model testing. The model domain extends from Streets Ferry to Oriental, N.C., includes seven lateral embayments that have continual exchange with the main- stem of the estuary, three point-source discharges, and three tributary streams. Thirty-five computational segments represent the mainstem of the estuary, and the entire framework contains a total of 60 computa- tional segments. Each computational cell is 0.5 meter thick; segment lengths range from 500 meters to 7,125 meters. Data that were used to develop the modeling framework were collected during March through October 1991 and represent the most comprehensive data set available prior to 1997. Most of the data were collected by the North Carolina Division of Water Quality, the University of North Carolina Institute of Marine Sciences, and the U.S. Geological Survey. Limitations in the modeling framework were clearly identified. These limitations formed the basis for a set of suggestions to refine the Neuse River estuary water-quality model.
Rapid algorithm prototyping and implementation for power quality measurement
NASA Astrophysics Data System (ADS)
Kołek, Krzysztof; Piątek, Krzysztof
2015-12-01
This article presents a Model-Based Design (MBD) approach to rapidly implement power quality (PQ) metering algorithms. Power supply quality is a very important aspect of modern power systems and will become even more important in future smart grids. In this case, maintaining the PQ parameters at the desired level will require efficient implementation methods of the metering algorithms. Currently, the development of new, advanced PQ metering algorithms requires new hardware with adequate computational capability and time intensive, cost-ineffective manual implementations. An alternative, considered here, is an MBD approach. The MBD approach focuses on the modelling and validation of the model by simulation, which is well-supported by a Computer-Aided Engineering (CAE) packages. This paper presents two algorithms utilized in modern PQ meters: a phase-locked loop based on an Enhanced Phase Locked Loop (EPLL), and the flicker measurement according to the IEC 61000-4-15 standard. The algorithms were chosen because of their complexity and non-trivial development. They were first modelled in the MATLAB/Simulink package, then tested and validated in a simulation environment. The models, in the form of Simulink diagrams, were next used to automatically generate C code. The code was compiled and executed in real-time on the Zynq Xilinx platform that combines a reconfigurable Field Programmable Gate Array (FPGA) with a dual-core processor. The MBD development of PQ algorithms, automatic code generation, and compilation form a rapid algorithm prototyping and implementation path for PQ measurements. The main advantage of this approach is the ability to focus on the design, validation, and testing stages while skipping over implementation issues. The code generation process renders production-ready code that can be easily used on the target hardware. This is especially important when standards for PQ measurement are in constant development, and the PQ issues in emerging smart grids will require tools for rapid development and implementation of such algorithms.
Gan, C.-M.; Pleim, J.; Mathur, R.; ...
2015-11-03
Long-term simulations with the coupled WRF–CMAQ (Weather Research and Forecasting–Community Multi-scale Air Quality) model have been conducted to systematically investigate the changes in anthropogenic emissions of SO 2 and NO x over the past 16 years (1995–2010) across the United States (US), their impacts on anthropogenic aerosol loading over North America, and subsequent impacts on regional radiation budgets. In particular, this study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO 2 and NO x associated with control measures under the Clean Air Act (CAA) especially on trends inmore » solar radiation. Extensive analyses conducted by Gan et al. (2014a) utilizing observations (e.g., SURFRAD, CASTNET, IMPROVE, and ARM) over the past 16 years (1995–2010) indicate a shortwave (SW) radiation (both all-sky and clear-sky) "brightening" in the US. The relationship of the radiation brightening trend with decreases in the aerosol burden is less apparent in the western US. One of the main reasons for this is that the emission controls under the CAA were aimed primarily at reducing pollutants in areas violating national air quality standards, most of which were located in the eastern US, while the relatively less populated areas in the western US were less polluted at the beginning of this study period. Comparisons of model results with observations of aerosol optical depth (AOD), aerosol concentration, and radiation demonstrate that the coupled WRF–CMAQ model is capable of replicating the trends well even though it tends to underestimate the AOD. In particular, the sulfate concentration predictions were well matched with the observations. The discrepancies found in the clear-sky diffuse SW radiation are likely due to several factors such as the potential increase of ice particles associated with increasing air traffic, the definition of "clear-sky" in the radiation retrieval methodology, and aerosol semi-direct and/or indirect effects which cannot be readily isolated from the observed data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gan, C.-M.; Pleim, J.; Mathur, R.
Long-term simulations with the coupled WRF–CMAQ (Weather Research and Forecasting–Community Multi-scale Air Quality) model have been conducted to systematically investigate the changes in anthropogenic emissions of SO 2 and NO x over the past 16 years (1995–2010) across the United States (US), their impacts on anthropogenic aerosol loading over North America, and subsequent impacts on regional radiation budgets. In particular, this study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO 2 and NO x associated with control measures under the Clean Air Act (CAA) especially on trends inmore » solar radiation. Extensive analyses conducted by Gan et al. (2014a) utilizing observations (e.g., SURFRAD, CASTNET, IMPROVE, and ARM) over the past 16 years (1995–2010) indicate a shortwave (SW) radiation (both all-sky and clear-sky) "brightening" in the US. The relationship of the radiation brightening trend with decreases in the aerosol burden is less apparent in the western US. One of the main reasons for this is that the emission controls under the CAA were aimed primarily at reducing pollutants in areas violating national air quality standards, most of which were located in the eastern US, while the relatively less populated areas in the western US were less polluted at the beginning of this study period. Comparisons of model results with observations of aerosol optical depth (AOD), aerosol concentration, and radiation demonstrate that the coupled WRF–CMAQ model is capable of replicating the trends well even though it tends to underestimate the AOD. In particular, the sulfate concentration predictions were well matched with the observations. The discrepancies found in the clear-sky diffuse SW radiation are likely due to several factors such as the potential increase of ice particles associated with increasing air traffic, the definition of "clear-sky" in the radiation retrieval methodology, and aerosol semi-direct and/or indirect effects which cannot be readily isolated from the observed data.« less
A Full View of Pluto Stunning Crescent
2015-10-29
In September, NASA's New Horizons team released a stunning but incomplete image of Pluto's crescent. Thanks to new processing work by the science team, New Horizons is releasing the entire, breathtaking image of Pluto. This image was made just 15 minutes after New Horizons' closest approach to Pluto on July 14, 2015, as the spacecraft looked back at Pluto toward the sun. The wide-angle perspective of this view shows the deep haze layers of Pluto's atmosphere extending all the way around Pluto, revealing the silhouetted profiles of rugged plateaus on the night (left) side. The shadow of Pluto cast on its atmospheric hazes can also be seen at the uppermost part of the disk. On the sunlit side of Pluto (right), the smooth expanse of the informally named icy plain Sputnik Planum is flanked to the west (above, in this orientation) by rugged mountains up to 11,000 feet (3,500 meters) high, including the informally named Norgay Montes in the foreground and Hillary Montes on the skyline. Below (east) of Sputnik, rougher terrain is cut by apparent glaciers. The backlighting highlights more than a dozen high-altitude layers of haze in Pluto's tenuous atmosphere. The horizontal streaks in the sky beyond Pluto are stars, smeared out by the motion of the camera as it tracked Pluto. The image was taken with New Horizons' Multi-spectral Visible Imaging Camera (MVIC) from a distance of 11,000 miles (18,000 kilometers) to Pluto. The resolution is 700 meters (0.4 miles).
Highest-resolution Europa Image & Mosaic from Galileo
2017-02-08
This mosaic of images includes the most detailed view of the surface of Jupiter's moon Europa obtained by NASA's Galileo mission. The topmost footprint is the highest resolution image taken by Galileo at Europa. It was obtained at an original image scale of 19 feet (6 meters) per pixel. The other seven images in this observation were obtained at a resolution of 38 feet (12 meters) per pixel, thus the mosaic, including the top image, has been projected at the higher image scale. The top image is also provided at its original resolution, as a separate image file. It includes a vertical black line that resulted from missing data that was not transmitted by Galileo. This is the highest resolution view of Europa available until a future mission visits the icy moon. The right side of the image was previously published as PIA01180. Although this data has been publicly available in NASA's Planetary Data System archive for many years, NASA scientists have not previously combined these images into a mosaic for public release. This observation was taken with the sun relatively high in the sky, so most of the brightness variations visible here are due to color differences in the surface material rather than shadows. Bright ridge tops are paired with darker valleys, perhaps due to a process in which small temperature variations allow bright frost to accumulate in slightly colder, higher-elevation locations. http://photojournal.jpl.nasa.gov/catalog/PIA21431
4MOST optical system: presentation and design details
NASA Astrophysics Data System (ADS)
Azaïs, Nicolas; Frey, Steffen; Bellido, Olga; Winkler, Roland
2017-09-01
The 4-meter Multi-Object Spectroscopic Telescope (4MOST) is a wide-field, high-multiplex spectroscopic survey facility under development for the Visible and Infrared Survey Telescope for Astronomy (VISTA) 4 meter telescope of the European Southern Observatory (ESO) at Cerro Paranal. The objective of 4MOST is to enable the simultaneous spectroscopy of a significant number of targets within a 2.5° diameter field of view, to allow high-efficiency all-sky spectroscopic surveys. A wide field corrector (WFC) is needed to couple targets across the 2.5° field diameter with the exit pupil concentric with the spherical focal surface where 2400 fibres are configured by a fibre positioner (AESOP). For optimal fibre optic coupling and active optics wavefront sensing the WFC will correct optical aberrations of the primary (M1) and secondary (M2) VISTA optics across the full field of view and provide a well-defined and stable focal surface to which the acquisition/guiding sensors, wavefront sensors, and fibre positioner are interfaced. It will also compensate for the effects of atmospheric dispersion, allowing good chromatic coupling of stellar images with the fibre apertures over a wide range of telescope zenith angles (ZD). The fibres feed three spectrographs; two thirds of the fibres will feed two low resolution spectrographs and the remaining 812 fibres will feed a high-resolution spectrograph. The three spectrographs are fixed-configuration with three channels each. We present the 4MOST optical system together with optical simulation of subsystems.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-28
... meter ([micro]g/m\\3\\) with no more than one expected exceedance per year. The annual primary PM-10... contains three consecutive years of complete, quality-assured and certified PM-10 data for the 1999-2001... consecutive years of complete, quality-assured and certified PM-10 data for the 2007-2009 period, the most...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-14
... quality modeling) to result in an ambient pollutant increase of at least 1 microgram per meter cubed ([mu... 40 CFR 51.166(m) and 40 CFR 52.21(m). In accordance with EPA's Guideline for Air Quality Modeling (40... background concentrations in modeling conducted to demonstrate that the proposed source or modification will...
Cowger, Jennifer A; Naka, Yoshifumi; Aaronson, Keith D; Horstmanshof, Douglas; Gulati, Sanjeev; Rinde-Hoffman, Debbie; Pinney, Sean; Adatya, Sirtaz; Farrar, David J; Jorde, Ulrich P
2018-01-01
The Multicenter Study of MAGLEV Technology in Patients Undergoing Mechanical Circulatory Support Therapy with HeartMate 3 (MOMENTUM 3) clinical trial demonstrated improved 6-month event-free survival, but a detailed analysis of health-related quality of life (HR-QOL) and functional capacity (FC) was not presented. Further, the effect of early serious adverse events (SAEs) on these metrics and on the general ability to live well while supported with a left ventricular assist system (LVAS) warrants evaluation. FC (New York Heart Association [NYHA] and 6-minute walk test [6MWT]) and HR-QOL (European Quality of Life [EQ-5D-5L] and the Kansas City Cardiomyopathy [KCCQ]) assessments were obtained at baseline and 6 months after HeartMate 3 (HM3, n = 151; Abbott, Abbott Park, IL) or HeartMate II (HMII, n = 138; Abbott) implant as part of the MOMENTUM 3 clinical trial. Metrics were compared between devices and in those with and without events. The proportion of patients "living well on an LVAS" at 6 months, defined as alive with satisfactory FC (NYHA I/II or 6MWT > 300 meters) and HR-QOL (overall KCCQ > 50), was evaluated. Although the median (25th-75th percentile) patient KCCQ (change for HM3: +28 [10-46]; HMII: +29 [9-48]) and EQ-5D-5L (change for HM3: -1 [-5 to 0]; HMII: -2 [-6 to 0]) scores improved from baseline to 6 months (p < 0.05), there were no differences between devices (p > 0.05). Likewise, there was an equivalent improvement in 6MWT distance at 6 months in HM3 (+94 [1-274] meters] and HMII (+188[43-340 meters]) from baseline. In patients with SAEs (n = 188), 6MWTs increased from baseline (p < 0.001), but gains for both devices were less than those without SAE (HM3: +74 [-9 to 183] meters with SAE vs +140 [35-329] meters without SAE; HMII: +177 [47-356] meters with SAE vs +192 [23-337] meters without SAE, both p < 0.003). SAEs did not affect the 6-month HR-QOL scores. The "living well" end point was achieved in 145 HM3 (63%) and 120 HMII (68%) patients (p = 0.44). Gains in HR-QOL and FC were similar early after HM3 and HMII implant. 6MWT improvements were attenuated in patients experiencing SAEs, but HR-QOL metrics did not change. The development of left ventricular assist device-specific HR-QOL tools is needed to better characterize the effect of SAEs on a patient's well-being. MOMENTUM 3 clinical trial #NCT02224755. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Evaluation of resistivity meters for concrete quality assurance : [research summary].
DOT National Transportation Integrated Search
2015-07-01
This research evaluated a series of MoDOT : concrete mixtures to verify existing : relationships between surface resistivity (SR), : rapid chloride permeability (RCP), chloride ion : diffusion, and the AASHTO penetrability : classes. The research als...
Evaluation of resistivity meters for concrete quality assurance.
DOT National Transportation Integrated Search
2015-06-01
This research evaluated a series of MoDOT concrete mixtures to verify existing relationships between surface resistivity (SR), rapid : chloride permeability (RCP), chloride ion diffusion, and the AASHTO penetrability classes. The research also perfor...
The search for Near Earth Objects - why dark skies are critically important
NASA Astrophysics Data System (ADS)
Wainscoat, Richard
2015-08-01
Impact of Earth by asteroids is perhaps the only natural disaster that can be prevented. If an asteroid that will impact Earth can be identified sufficiently early, it is possible to modify its orbit to eliminate the impact. As a consequence, a major effort is presently underway to identify Near Earth Objects (NEOs) that may present a threat to Earth. The impact of a 20-meter diameter object near Chelyabinsk, Russia, provided a spectacular reminder of the threat that these objects present. Although no deaths were caused, injuries and a large amount of property damage were caused.The search for NEOs is mostly funded by NASA. The principal search telescopes are the Pan-STARRS telescopes, located on Haleakala, Maui, Hawaii, and the Catalina Sky Survey, located near Tucson, Arizona. Both of these locations are seriously threatened by light pollution. A new survey, ATLAS, will commence shortly, with one telescope located on Haleakala, Maui, and the other telescope located on Mauna Loa, Hawaii (which is less threatened).Artificial light (i.e., light pollution) at these observing sites raises the sky background, and makes faint objects harder or impossible to see.Searches for Near Earth Objects typically use very broad passbands in order to obtain the maximum amount of light. These passbands typically stretch from 400 to 820 nm. As such, they are very vulnerable to the changes in lighting that are occurring across the globe, with widespread introduction of blue-rich white lighting. It is critically important in all of these locations to limit the amount of blue light that is so readily scattered by the atmosphere.A network of followup telescopes, spread across the planet, play a crucial role in the discovery of NEOs. After a new NEO is identified by the survey telescopes such as Pan-STARRS and Catalina, additional observations must be secured to establish its orbit, and in order to determine whether it poses a threat to Earth. The majority of these followup telescopes are at locations that are impacted by light pollution, and this seriously impacts their ability to secure additional observations.
Nocturnal cooling in a very shallow cold air pool
NASA Astrophysics Data System (ADS)
Rakovec, Jože; Skok, Gregor; Žabkar, Rahela; Žagar, Nedjeljka
2015-04-01
Cold air pools (CAPs) may develop during nights in very shallow depressions. The depth of the stagnant air within a CAP influences the process of the cooling of nocturnal air and the resulting minimum temperature. A seven-month long field experiment was performed during winter 2013/2014 in an orchard near Kr\\vsko, Slovenia, located inside a very shallow basin only a few meters deep and approximately 500 m wide. Two locations at different elevations inside the basin were selected for measurement. The results showed that the nights (in terms of cooling) can be classified into three main categories; nights with overcast skies and weak cooling, windy nights with clear sky and strong cooling but with no difference in temperatures between locations inside the basin, and calm nights with even stronger cooling and significant temperature differences between locations inside the basin. On calm nights with clear skies, the difference at two measuring sites inside the basin can be up to 5 °C but the presence of even weak winds can cause sufficient turbulent mixing to negate any difference in temperature. To better understand the cooling process on calm, clear nights, we developed a simple 1-D thermodynamic conceptual model focusing on a very shallow CAP. The model has 5-layers (including two air layers representing air inside the CAP), and an analytical solution was obtained for the equilibrium temperatures. Sensitivity analysis of the model was performed. As expected, a larger soil heat conductivity or higher temperature in the ground increases the morning minimum temperatures. An increase in temperature of the atmosphere also increases the simulated minimum temperatures, while the temperature difference between the higher and lower locations remains almost the same. An increase in atmosphere humidity also increases the modelled equilibrium temperatures, while an increase of the humidity of the air inside the CAP results in lower equilibrium temperatures. The humidity of the air within the CAP and that of the free atmosphere strongly influence the differences in equilibrium temperatures at higher and lower locations. The more humid the air, the stronger the cooling at the lower location compared to the higher location.
The Atacama Cosmology Telescope: Development and preliminary results of point source observations
NASA Astrophysics Data System (ADS)
Fisher, Ryan P.
2009-06-01
The Atacama Cosmology Telescope (ACT) is a six meter diameter telescope designed to measure the millimeter sky with arcminute angular resolution. The instrument is currently conducting its third season of observations from Cerro Toco in the Chilean Andes. The primary science goal of the experiment is to expand our understanding of cosmology by mapping the temperature fluctuations of the Cosmic Microwave Background (CMB) at angular scales corresponding to multipoles up to [cursive l] ~ 10000. The primary receiver for current ACT observations is the Millimeter Bolometer Array Camera (MBAC). The instrument is specially designed to observe simultaneously at 148 GHz, 218 GHz and 277 GHz. To accomplish this, the camera has three separate detector arrays, each containing approximately 1000 detectors. After discussing the ACT experiment in detail, a discussion of the development and testing of the cold readout electronics for the MBAC is presented. Currently, the ACT collaboration is in the process of generating maps of the microwave sky using our first and second season observations. The analysis used to generate these maps requires careful data calibration to produce maps of the arcminute scale CMB temperature fluctuations. Tests and applications of several elements of the ACT calibrations are presented in the context of the second season observations. Scientific exploration has already begun on preliminary maps made using these calibrations. The final portion of this thesis is dedicated to discussing the point sources observed by the ACT. A discussion of the techniques used for point source detection and photometry is followed by a presentation of our current measurements of point source spectral indices.
Multiple FoV MCAO on its way to the sky
NASA Astrophysics Data System (ADS)
Bergomi, Maria; Viotto, Valentina; Farinato, Jacopo; Marafatto, Luca; Radakrishnan, Kalyan; Ragazzoni, Roberto; Dima, Marco; Magrin, Demetrio; Arcidiacono, Carmelo; Diolaiti, Emiliano; Foppiani, Italo; Lombini, Matteo; Schreiber, Laura; Bertram, Thomas; Bizenberger, Peter; Conrad, Al; Herbst, Tom; Kittmann, Frank; Kopon, Derek; Meschke, Daniel; Zhang, Xianyu
2013-12-01
LINC-NIRVANA, an infrared camera working in a Fizeau interferometric layout, takes advantage of the Layer Oriented MCAO MFoV technique to correct a 2 arcmin FoV using only Natural Guide Stars (NGSs), exploiting the central 10 arcsec with a resolving power of a 23 meter telescope. For each arm of the LBT telescope 2 WaveFront Sensors (WFSs) optically conjugated, respectively at ground and high (7 km) layers, are used to search for NGSs. To avoid unnecessary waste of photons the two sensors look at different FoVs. The ground-layer one, essentially limited by practical conditions, searches for up to 12 NGSs in an annular 2-6 arcmin FoV, while the high-layer one, limited by the pupils superposition, looks for up to 8 NGSs in the central 2 arcmin FoV. The concept has left paper's realm to become glass and metal a few years ago. With the completion of the 2 high-layer WFSs by INAF-Bologna and, recently with the successful tests performed on the first ground-layer WFSs by INAF-Padova, further followed by the GWS Pathfinder experiment to test the ground layer correction at LBT, in collaboration with MPIA-Heidelberg, the concept is finally getting closer to its on-sky commissioning, foreseen in the next very few years. In this paper the basic concepts of MFoV MCAO will be revised, the current status of the system described and the near future toward final completion of the instrument depicted. Moreover a possible path for this concept toward an ELT will be traced.
Environmental cues to UV radiation and personal sun protection in outdoor winter recreation.
Andersen, Peter A; Buller, David B; Walkosz, Barbara J; Scott, Michael D; Maloy, Julie A; Cutter, Gary R; Dignan, Mark D
2010-11-01
To predict the prevalence of UV radiation (hereinafter, UV) at North American ski resorts using temporal, seasonal, altitudinal, and meteorological factors and associate UV with a set of adult sun protection behaviors. Ultraviolet radiation observations and cross-sectional survey of adults on sun protection were collected. Data were collected at 32 high-altitude ski areas located in western North America from 2001 through 2003. The sample consisted of 3937 adult skiers or snowboarders. Measurements of direct, reflected, and diffuse UV were performed at 487 measurement points using handheld meters and combined with self-reported and observed sun protection assessed for adults interviewed on chairlifts. The strongest predictors of UV were temporal proximity to noon, deviation from winter solstice, and clear skies. By contrast, altitude and latitude had more modest associations with UV and temperature had a small positive relationship with UV. Guest sun safety was inconsistently associated with UV: UV was positively related to adults wearing more sunscreen, reapplying it after 2 hours, and wearing protective eyewear, but fewer adults exhibited many of the other sun protection behaviors, such as wearing hats and protective clothing or using lip balm, on days when UV was elevated. Guests took more sun safety precautions on clear-sky days but took steps to maintain body warmth on inclement days. In future sun safety promotions, adults should be encouraged to wear sunscreen on cloudy days because UV is still high and conditions can change rapidly. They need reminders to rely more on season and time of day when judging UV and the need for sun safety.
Application of CCD drift-scan photoelectric technique on monitoring GEO satellites
NASA Astrophysics Data System (ADS)
Yu, Yong; Zhao, Xiao-Fen; Luo, Hao; Mao, Yin-Dun; Tang, Zheng-Hong
2018-05-01
Geosynchronous Earth Orbit (GEO) satellites are widely used because of their unique characteristics of high-orbit and remaining permanently in the same area of the sky. Precise monitoring of GEO satellites can provide a key reference for the judgment of satellite operation status, the capture and identification of targets, and the analysis of collision warning. The observation using ground-based optical telescopes plays an important role in the field of monitoring GEO targets. Different from distant celestial bodies, there is a relative movement between the GEO target and the background reference stars, which makes the conventional observation method limited for long focal length telescopes. CCD drift-scan photoelectric technique is applied on monitoring GEO targets. In the case of parking the telescope, the good round images of the background reference stars and the GEO target at the same sky region can be obtained through the alternating observation of CCD drift-scan mode and CCD stare mode, so as to improve the precision of celestial positioning for the GEO target. Observation experiments of GEO targets were carried out with 1.56-meter telescope of Shanghai Astronomical Observatory. The results show that the application of CCD drift-scan photoelectric technique makes the precision of observing the GEO target reach the level of 0.2″, which gives full play to the advantage of the long focal length of the telescope. The effect of orbit improvement based on multi-pass of observations is obvious and the prediction precision of extrapolating to 72-h is in the order of several arc seconds in azimuth and elevation.
Leidinger, F; Jörgens, V; Chantelau, E; Berchtold, P; Berger, M
1980-07-26
Home blood glucose monitoring by diabetic patients has recently been advocated as an effective means to improve metabolic control. The Glucocheck apparatus, a pocket-size battery-driven reflectance-meter (in Germany commercially available under the name Glucose-meter), has been evaluated for accuracy and practicability. In 450 blood glucose measurements, the variance between the values obtained using the Glucocheck apparatus and routine clinical laboratory procedures was +/- 11.7%. Especially in the low range of blood glucose concentrations, the Glucocheck method was very reliable. The quantitative precision of the Glucocheck method depends, however, quite considerably on the ability of the patient to use the apparatus correctly. In order to profit from Glucocheck in clinical practice, particular efforts to educate the patients in its use are necessary.
Fluid Flow Technology that Measures Up
NASA Technical Reports Server (NTRS)
2004-01-01
From 1994 to 1996, NASA s Marshall Space Flight Center conducted a Center Director's Discretionary Fund research effort to apply artificial intelligence technologies to the health management of plant equipment and space propulsion systems. Through this effort, NASA established a business relationship with Quality Monitoring and Control (QMC), of Kingwood, Texas, to provide hardware modeling and artificial intelligence tools. Very detailed and accurate Space Shuttle Main Engine (SSME) analysis and algorithms were jointly created, which identified several missing, critical instrumentation needs for adequately evaluating the engine health status. One of the missing instruments was a liquid oxygen (LOX) flow measurement. This instrument was missing since the original SSME included a LOX turbine flow meter that failed during a ground test, resulting in considerable damage for NASA. New balanced flow meter technology addresses this need with robust, safe, and accurate flow metering hardware.
Water turbidity optical meter using optical fiber array for topographical distribution analysis
NASA Astrophysics Data System (ADS)
Mutter, Kussay Nugamesh; Mat Jafri, Mohd Zubir; Yeoh, Stephenie
2017-06-01
This work is presenting an analysis study for using optical fiber array as turbidity meter and topographical distribution. Although many studies have been figure out of utilizing optical fibers as sensors for turbidity measurements, still the topographical map of suspended particles in water as rare as expected among all of works in literatures in this scope. The effect of suspended particles are highly affect the water quality which varies according to the source of these particles. A two dimensional array of optical fibers in a 1 litter rectangular plastic container with 2 cm cladding off sensing portion prepared to point out 632.8 nm laser power at each fiber location at the container center. The overall output map of the optical power were found in an inhomogeneous distribution such that the top to down layers of a present water sample show different magnitudes. Each sample prepared by mixing a distilled water with large grains sand, small grains sand, glucose and salt. All with different amount of concentration which measured by refractometer and turbidity meter. The measurements were done in different times i.e. from 10 min to 60 min. This is to let the heavy particles to move down and accumulate at the bottom of the container. The results were as expected which had a gradually topographical map from low power at top layers into high power at bottom layers. There are many applications can be implemented of this study such as transport vehicles fuel meter, to measure the purity of tanks, and monitoring the fluids quality in pipes.
Color-magnitude Diagrams for the Stellar Open Cluster M 67 in theVilnius Photometric System
NASA Astrophysics Data System (ADS)
Boyle, Richard P.; Janusz, Robert
2015-01-01
Stellar photometry in the Vilnius Photometric System requires one percent quality for deriving luminosity class and spectral type subclass. We use such existing photometry of the open cluster M 67 to calibrate new CCD observations at the Vatican Advanced Technology Telescope (VATT) for correcting the flat-fielding zero-point and deriving the color-transformation in this intermediate-band, seven filter system (Boyle et al., BAAS 37 #4, 2005).Recently we have developed a "tie-in" observational practice to apply the zero-point and color transformation of the M 67 observations to neighboring starfields of interest that have no existing photometry. Sky transparency must remain constant to better than one percent during a round of short exposures in a filter between the field having calibrated photometry and the new field having no photometry as if the new field was exposed simultaneously with the master field.Proof of success for this "tie-in" method is shown with the master field being M 67 and the "tie-in" field being the nearby extended "corona" area. The distinctive color-magnitude diagrams of the old open clusterM 67 reveal the sensitivity to having constant sky transparency during the round of short exposures on M 67 and its extended area. For the extended area has the same form in its color-magnitude diagram as M 67. So variation in sky transparency shows displacement on the color-magnitude diagrams at the one percent quality.We will attempt new analysis concerning evolution of this very old open cluster (2.56 Gyr, WEBDA, http://www.univie.ac.at/webda/) and the surrounding "coronal" extent with reference to previous work by Chupina and Vereshchagin (Astron. Astrophys, 334, 552, 1998).
Ward, Tony J.; Vanek, Diana; Marra, Nancy; Holian, Andrij; Adams, Earle; Jones, David; Knuth, Randy
2010-01-01
The case for inquiry-based, hands-on, meaningful science education continues to gain credence as an effective and appropriate pedagogical approach (Karukstis 2005; NSF 2000). An innovative community-based framework for science learning, hereinafter referred to as the Big Sky Model, successfully addresses these educational aims, guiding high school and tribal college students from rural areas of Montana and Idaho in their understanding of chemical, physical, and environmental health concepts. Students participate in classroom lessons and continue with systematic inquiry through actual field research to investigate a pressing, real-world issue: understanding the complex links between poor air quality and respiratory health outcomes. This article provides background information, outlines the procedure for implementing the model, and discusses its effectiveness as demonstrated through various evaluation tools. PMID:20428505
NASA Astrophysics Data System (ADS)
Showstack, Randy
2010-10-01
A new smartphone application takes advantage of various technological capabilities and sensors to help users monitor air quality. Tapping into smartphone cameras, Global Positioning System (GPS) sensors, compasses, and accelerometers, computer scientists with the University of Southern California's (USC) Viterbi School of Engineering have developed a new application, provisionally entitled “Visibility.” Currently available for the Android telephone operating system, the application is available for free download at http://robotics.usc.edu/˜mobilesensing/Projects/AirVisibilityMonitoring. An iPhone application may be introduced soon. Smartphone users can take a picture of the sky and then compare it with models of sky luminance to estimate visibility. While conventional air pollution monitors are costly and thinly deployed in some areas, the smartphone application potentially could help fill in some blanks in existing air pollution maps, according to USC computer science professor Gaurav Sukhatme.
NASA Astrophysics Data System (ADS)
Malphrus, B. K.; Combs, M. S.; Kruth, J.
2001-12-01
Herein we report astronomical observations made with the NASA Advanced Data Acquisition System (ADAS). The NASA ADAS antenna, located at NASA Goddard Spaceflight Center's Wallops Flight Facility, Virginia, is an 18-meter X-band antenna system that has been primarily used for satellite tracking and served as the telecommunication station for the NASA IUE satellite until ca. 1997. A joint NASA-Morehead State University (MSU)-Kentucky NSF EPSCoR venture has been initiated to upgrade and relocate the antenna system to MSU's Astrophysics Laboratory where it will provide a research instrument and active laboratory for undergraduate students as well as be engaged in satellite tracking missions. As part of the relocation efforts, many systems will be upgraded including replacement of a hydrostatic azimuth bearing with a high-precision electromechanical bearing, a new servo system, and Ku-capable reflector surface. It is widely believed that there are still contributions that small aperture centimeter-wave instruments can make utilizing three primary observing strategies: 1.) longitudinal studies of RF variations in cosmic phenomena, 2.) surveys of large areas of sky, and 3.) fast reactions to transient phenomena. MSU faculty and staff along with NASA engineers re-outfitted the ADAS system with RF systems and upgraded servo controllers during the spring and summer of 2001. Empirical measurements of primary system performance characteristics were made including G/T (at S- and L bands), noise figures, pointing and tracking accuracies, and drive speeds and accelerations. Baseline astronomical observations were made with the MSU L-band receiver using a 6 MHz bandwidth centered at 1420 MHz (21-cm) and observing over a range of frequencies (up to 2.5 MHz, tunable over the 6 MHz window) with a 2048-channel back-end spectrometer, providing up to 1 KHz frequency resolution. Baseline observations of radio sources herein reported include Cygnus A, 3C 157, 3C 48 and the Andromeda Galaxy. After its transition to Morehead State University (which is expected to be completed in 2004), the 18-meter will be available for use by students and faculty from all U.S. institutions for astronomical observations. Transitioning of the 18-meter antenna is made possible by NASA, and the Kentucky NSF EPSCoR program and by grants from the U.S. Small Business Administration.
NASA Astrophysics Data System (ADS)
Jedicke, R.; Bolin, B.; Chyba, M.; Fedorets, G.; Granvik, M.; Patterson, G.; Vaubaillon, J.
2014-07-01
We will present an overview of our recent work on understanding the population of natural objects that are temporarily captured in the Earth-Moon system. We use the term 'minimoon' to refer to objects that i) have negative total energy (kinetic+potential) relative to the Earth-Moon barycenter that ii) make at least one full revolution around the barycenter in a co-rotating frame relative to the Earth-Sun axis iii) while they are within 3 Earth Hill-sphere radii. There has been one confirmed minimoon, the 2-3 meter diameter object designated 2006 RH_{120} that was discovered by the Catalina Sky Survey [1]. That object's size, capture duration, geocentric trajectory, and pre-and post-capture heliocentric orbits are in perfect agreement with the minimoon model proposed by Granvik et al. (2012) [2]. We expect that there are one or two 1 to 2 meter diameter minimoons in the steady state population at any time and about a dozen larger than 50 cm diameter. Minimoons have an average lifetime of about 9 months. 'Drifters' are like minimoons except that they do not fulfill the requirement of making at least one revolution in the Earth-Moon system. The population of drifters is about 10× the minimoon population so that the largest drifter in the steady state is about 5-10 meters in diameter and there are perhaps ten of about 1 meter diameter at any time. The combined population of minimoons and drifters, henceforth 'cis-lunar objects' (CLO), provide a formerly unrecognized opportunity for scientific exploration and testing concepts for in-situ resource utilization [3]. They could provide large samples of main-belt asteroids that are unaffected by passage through Earth's atmosphere or weathering on the ground, with the added convenience of already being gravitationally bound in the Earth-Moon system. The CLOs provide interesting challenges for rendezvous missions because of their limited lifetime and non-elliptical trajectories while they are bound objects [4]. The problem is that detecting the CLOs is difficult -- they are small, captured for only limited time periods, and their apparent rates of motion are more like artificial satellites than the more distant NEOs [5]. New technology may enable the detection of a small number of CLOs from the ground in the next few years [5,6] but the only way to discover a reliable stream of these interesting objects is from a space-based platform.
NASA Astrophysics Data System (ADS)
Gumley, L.; Parker, D.; Flynn, B.; Holz, R.; Marais, W.
2011-12-01
SatCam is an application for iOS devices that allows users to collect observations of local cloud and surface conditions in coordination with an overpass of the Terra, Aqua, or NPP satellites. SatCam allows users to acquire images of sky conditions and ground conditions at their location anywhere in the world using the built-in iPhone or iPod Touch camera at the same time that the satellite is passing overhead and viewing their location. Immediately after the sky and ground observations are acquired, the application asks the user to rate the level of cloudiness in the sky (Completely Clear, Mostly Clear, Partly Cloudy, Overcast). For the ground observation, the user selects their assessment of the surface conditions (Urban, Green Vegetation, Brown Vegetation, Desert, Snow, Water). The sky condition and surface condition selections are stored along with the date, time, and geographic location for the images, and the images are uploaded to a central server. When the MODIS (Terra and Aqua) or VIIRS (NPP) imagery acquired over the user location becomes available, a MODIS or VIIRS true color image centered at the user's location is delivered back to the SatCam application on the user's iOS device. SSEC also proposes to develop a community driven SatCam website where users can share their observations and assessments of satellite cloud products in a collaborative environment. SSEC is developing a server side data analysis system to ingest the SatCam user observations, apply quality control, analyze the sky images for cloud cover, and collocate the observations with MODIS and VIIRS satellite products (e.g., cloud mask). For each observation that is collocated with a satellite observation, the server will determine whether the user scored a "hit", meaning their sky observation and sky assessment matched the automated cloud mask obtained from the satellite observation. The hit rate will be an objective assessment of the accuracy of the user's sky observations. Users with high hit rates will be identified automatically and their observations will be used globally to evaluate the performance of the MODIS cloud mask algorithm for Terra and Aqua and the VIIRS cloud mask algorithm for NPP. The user's assessment of the ground conditions will also be used to evaluate the cloud mask accuracy in selecting the correct surface type at the user's location, which is an important element in the decision path used internally by the cloud mask algorithm. This presentation will describe the SatCam application, how it is used, and show examples of SatCam observations.
Field calibration of orifice meters for natural gas flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ting, V.C.; Shen, J.J.S.
1989-03-01
This paper presents the orifice calibration results for nominal 15.24, 10.16, and 5.08-cm (6,4,2-in.) orifice meters conducted at the Chevron's Sand Hills natural gas flow measurement facility in Crane, Texas. Over 200 test runs were collected in a field environment to study the accuracy of the orifice meters. Data were obtained at beta ratios ranging from 0.12 to 0.74 at the nominal conditions of 4576 kPa and 27{sup 0}C (650 psig and 80{sup 0}F) with a 0.57 specific gravity processed, pipeline quality natural gas. A bank of critical flow nozzles was used as the flow rate proving device to calibratemore » the orifice meters. Orifice discharge coefficients were computed with ANSI/API 2530-1985 (AGA3) and ISO 5167/ASME MFC-3M-1984 equations for every set of data points. With the orifice bore Reynolds numbers ranging from 1 to 9 million, the Sand Hills calibration data bridge the gap between the Ohio State water data at low Reynolds numbers and Chevron's high Reynolds number test data taken at a large test facility in Venice, Louisiana. The test results also successfully demonstrate that orifice meters can be accurately proved with critical flow nozzles under realistic field conditions.« less
â¹âº You are here CTIO Home » About » News » Record-Breaking Image Quality with DECam Post date : 3 years 3 months ago Lunar Eclipse with the Tololo All-Sky CAmera (TASCA) Post date: 3 years 4 months ago DECam's nearby discoveries Post date: 3 years 4 months ago Smashing Results about our Nearby
Integration of Advanced Statistical Analysis Tools and Geophysical Modeling
2012-08-01
Carin Duke University Douglas Oldenburg University of British Columbia Stephen Billings Leonard Pasion Laurens Beran Sky Research...data processing for UXO discrimination is the time (or frequency) dependent dipole model (Bell and Barrow (2001), Pasion and Oldenburg (2001), Zhang...described by a bimodal distribution (i.e. two Gaussians, see Pasion (2007)). Data features are nonetheless useful when data quality is not sufficient
A clear picture of smoke: Bluesky smoke forecasting.
Valerie Rapp
2006-01-01
Over the last several decades, the overall air quality goal in the United States has been to protect public health and clear skies by reducing emissions. At the same time, however, the risk of catastrophic fire has been rising in forests around the country as overly dense trees and understory brush crowd the stands. Prescribed fireâplanned, controlled burning within...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-14
... other states' measures to protect visibility for the 1997 8-hour ozone and 1997 particulate matter (PM 2... precursors react in the atmosphere to form fine particulate matter that impairs visibility by scattering and... greatest distance, in kilometers or miles, at which a dark object can be viewed against the sky. B. The CAA...
Electrical Resistivity Technique for Groundwater Exploration in Quaternary Deposit
NASA Astrophysics Data System (ADS)
Aziman, M.; Hazreek, Z. A. M.; Azhar, A. T. S.; Fahmy, K. A.; Faizal, T. B. M.; Sabariah, M.; Ambak, K.; Ismail, M. A. M.
2018-04-01
The water security for University Tun Hussein Onn (UTHM) campus was initiated to find alternative sources of water supply. This research began with finding the soil profiles using the geophysical electrical resistivity method across UTHM campus. The resistivity results were calibrated with previous borehole data as well as via groundwater drilling. The drilling work was discovered the groundwater aquifer characterized by the fractured fresh igneous rock at a depth between 43 meter and 55 meter. Further drilling was continued until 100 meter in depth. However, due to not encounter a new rock fractured zone causes the groundwater quantity did not improve even was drilled up to 100 meter depth. In the perspective of water resources, it showed a good potential for water resources for local usages at 104 m3 per day. In addition, the groundwater quality showed the water treatment was required to fulfil the criterion of the national drinking water standards. This study concluded that the first layer of fractured bedrock at UTHM was able to produce significant amounts of groundwater for local consumption usage.
NASA Astrophysics Data System (ADS)
Kim, M. J.; Jin, J.; McCarty, W.; Todling, R.; Holdaway, D. R.; Gelaro, R.
2014-12-01
The NASA Global Modeling and Assimilation Office (GMAO) works to maximize the impact of satellite observations in the analysis and prediction of climate and weather through integrated Earth system modeling and data assimilation. To achieve this goal, the GMAO undertakes model and assimilation development, generates products to support NASA instrument teams and the NASA Earth science program. Currently Atmospheric Data Assimilation System (ADAS) in the Goddard Earth Observing System Model, Version 5(GEOS-5) system combines millions of observations and short-term forecasts to determine the best estimate, or analysis, of the instantaneous atmospheric state. However, ADAS has been geared towards utilization of observations in clear sky conditions and the majority of satellite channel data affected by clouds are discarded. Microwave imager data from satellites can be a significant source of information for clouds and precipitation but the data are presently underutilized, as only surface rain rates from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) are assimilated with small weight assigned in the analysis process. As clouds and precipitation often occur in regions with high forecast sensitivity, improvements in the temperature, moisture, wind and cloud analysis of these regions are likely to contribute to significant gains in numerical weather prediction accuracy. This presentation is intended to give an overview of GMAO's recent progress in assimilating the all-sky GPM Microwave Imager (GMI) radiance data in GEOS-5 system. This includes development of various new components to assimilate cloud and precipitation affected data in addition to data in clear sky condition. New observation operators, quality controls, moisture control variables, observation and background error models, and a methodology to incorporate the linearlized moisture physics in the assimilation system are described. In addition preliminary results showing impacts of assimilating all-sky GMI data on GEOS-5 forecasts are discussed.
Bacterial Community Analysis of Drinking Water Biofilms in Southern Sweden
Lührig, Katharina; Canbäck, Björn; Paul, Catherine J.; Johansson, Tomas; Persson, Kenneth M.; Rådström, Peter
2015-01-01
Next-generation sequencing of the V1–V2 and V3 variable regions of the 16S rRNA gene generated a total of 674,116 reads that described six distinct bacterial biofilm communities from both water meters and pipes. A high degree of reproducibility was demonstrated for the experimental and analytical work-flow by analyzing the communities present in parallel water meters, the rare occurrence of biological replicates within a working drinking water distribution system. The communities observed in water meters from households that did not complain about their drinking water were defined by sequences representing Proteobacteria (82–87%), with 22–40% of all sequences being classified as Sphingomonadaceae. However, a water meter biofilm community from a household with consumer reports of red water and flowing water containing elevated levels of iron and manganese had fewer sequences representing Proteobacteria (44%); only 0.6% of all sequences were classified as Sphingomonadaceae; and, in contrast to the other water meter communities, markedly more sequences represented Nitrospira and Pedomicrobium. The biofilm communities in pipes were distinct from those in water meters, and contained sequences that were identified as Mycobacterium, Nocardia, Desulfovibrio, and Sulfuricurvum. The approach employed in the present study resolved the bacterial diversity present in these biofilm communities as well as the differences that occurred in biofilms within a single distribution system, and suggests that next-generation sequencing of 16S rRNA amplicons can show changes in bacterial biofilm communities associated with different water qualities. PMID:25739379
Bacterial community analysis of drinking water biofilms in southern Sweden.
Lührig, Katharina; Canbäck, Björn; Paul, Catherine J; Johansson, Tomas; Persson, Kenneth M; Rådström, Peter
2015-01-01
Next-generation sequencing of the V1-V2 and V3 variable regions of the 16S rRNA gene generated a total of 674,116 reads that described six distinct bacterial biofilm communities from both water meters and pipes. A high degree of reproducibility was demonstrated for the experimental and analytical work-flow by analyzing the communities present in parallel water meters, the rare occurrence of biological replicates within a working drinking water distribution system. The communities observed in water meters from households that did not complain about their drinking water were defined by sequences representing Proteobacteria (82-87%), with 22-40% of all sequences being classified as Sphingomonadaceae. However, a water meter biofilm community from a household with consumer reports of red water and flowing water containing elevated levels of iron and manganese had fewer sequences representing Proteobacteria (44%); only 0.6% of all sequences were classified as Sphingomonadaceae; and, in contrast to the other water meter communities, markedly more sequences represented Nitrospira and Pedomicrobium. The biofilm communities in pipes were distinct from those in water meters, and contained sequences that were identified as Mycobacterium, Nocardia, Desulfovibrio, and Sulfuricurvum. The approach employed in the present study resolved the bacterial diversity present in these biofilm communities as well as the differences that occurred in biofilms within a single distribution system, and suggests that next-generation sequencing of 16S rRNA amplicons can show changes in bacterial biofilm communities associated with different water qualities.
Petkewich, Matthew D.; Parkhurst, David L.; Conlon, Kevin J.; Campbell, Bruce G.; Mirecki, June E.
2004-01-01
The hydrologic and geochemical effects of aquifer storage recovery were evaluated to determine the potential for supplying the city of Charleston, South Carolina, with large quantities of potable water during emergencies, such as earthquakes, hurricanes, or hard freezes. An aquifer storage recovery system, including a production well and three observation wells, was installed at a site located on the Charleston peninsula. The focus of this study was the 23.2-meter thick Tertiary-age carbonate and sand aquifer of the Santee Limestone and the Black Mingo Group, the northernmost equivalent of the Floridan aquifer system. Four cycles of injection, storage, and recovery were conducted between October 1999 and February 2002. Each cycle consisted of injecting between 6.90 and 7.19 million liters of water for storage periods of 1, 3, or 6 months. The volume of recovered water that did not exceed the U.S. Environmental Protection Agency secondary standard for chloride (250 milligrams per liter) varied from 1.48 to 2.46 million liters, which is equivalent to 21 and 34 percent of the total volume injected for the individual tests. Aquifer storage recovery testing occurred within two productive zones of the brackish Santee Limestone/Black Mingo aquifer. The individual productive zones were determined to be approximately 2 to 4 meters thick, based on borehole geophysical logs, electromagnetic flow-meter testing, and specific-conductance profiles collected within the observation wells. A transmissivity and storage coefficient of 37 meters squared per day and 3 x 10-5, respectively, were determined for the Santee Limestone/Black Mingo aquifer. Water-quality and sediment samples collected during this investigation documented baseline aquifer and injected water quality, aquifer matrix composition, and changes in injected/aquifer water quality during injection, storage, and recovery. A total of 193 water-quality samples were collected and analyzed for physical properties, major and minor ions, and nutrients. The aquifer and treated surface water were sodiumchloride and calcium/sodium-bicarbonate water types, respectively. Forty-five samples were collected and analyzed for total trihalomethane. Total trihalomethane data collected during aquifer storage recovery cycle 4 indicated that this constituent would not restrict the use of recovered water for drinking-water purposes. Analysis of six sediment samples collected from a cored well located near the aquifer storage recovery site showed that quartz and calcite were the dominant minerals in the Santee Limestone/Black Mingo aquifer. Estimated cation exchange capacity ranged from 12 to 36 milliequivalents per 100 grams in the lower section of the aquifer. A reactive transport model was developed that included two 2-meter thick layers to describe each of the production zones. The four layers composing the production zones were assigned porosities ranging from 0.1 to 0.3 and hydraulic conductivities ranging from 1 to 8.4 meters per day. Specific storage of the aquifer and confining units was estimated to be 1.5 x 10-5 meter-1. Longitudinal dispersivity of all layers was specified to be 0.5 meter. Leakage through the confining unit was estimated to be minimal and, therefore, not used in the reactive transport modeling. Inverse geochemical modeling indicates that mixing, cation exchange, and calcite dissolution are the dominant reactions that occur during aquifer storage recovery testing in the Santee Limestone/Black Mingo aquifer. Potable water injected into the Santee Limestone/Black Mingo aquifer evolved chemically by mixing with brackish background water and reaction with calcite and cation exchangers in the sediment. Reactive-transport model simulations indicated that the calcite and exchange reactions could be treated as equilibrium processes. Simulations with the calibrated reactive transport model indicated that approximately one-fourth of the total volume of water injected into
Google Sky: A Digital View of the Night Sky
NASA Astrophysics Data System (ADS)
Connolly, A. Scranton, R.; Ornduff, T.
2008-11-01
From its inception Astronomy has been a visual science, from careful observations of the sky using the naked eye, to the use of telescopes and photographs to map the distribution of stars and galaxies, to the current era of digital cameras that can image the sky over many decades of the electromagnetic spectrum. Sky in Google Earth (http://earth.google.com) and Google Sky (http://www.google.com/sky) continue this tradition, providing an intuitive visual interface to some of the largest astronomical imaging surveys of the sky. Streaming multi-color imagery, catalogs, time domain data, as well as annotating interesting astronomical sources and events with placemarks, podcasts and videos, Sky provides a panchromatic view of the universe accessible to anyone with a computer. Beyond a simple exploration of the sky Google Sky enables users to create and share content with others around the world. With an open interface available on Linux, Mac OS X and Windows, and translations of the content into over 20 different languages we present Sky as the embodiment of a virtual telescope for discovery and sharing the excitement of astronomy and science as a whole.
Recent Advances and Achievements at The Catalina Sky Survey
NASA Astrophysics Data System (ADS)
Leonard, Gregory J.; Christensen, Eric J.; Fuls, Carson; Gibbs, Alex; Grauer, Al; Johnson, Jess A.; Kowalski, Richard; Larson, Stephen M.; Matheny, Rose; Seaman, Rob; Shelly, Frank
2017-10-01
The Catalina Sky Survey (CSS) is a NASA-funded project fully dedicated to discover and track near-Earth objects (NEOs). Since its founding nearly 20 years ago CSS remains at the forefront of NEO surveys, and recent improvements in both instrumentation and software have increased both survey productivity and data quality. In 2016 new large-format (10K x 10K) cameras were installed on both CSS survey telescopes, the 1.5-m reflector and the 0.7-m Schmidt, increasing the field of view, and hence nightly sky coverage by 4x and 2.4x respectively. The new cameras, coupled with improvements in the reduction and detection pipelines, and revised sky-coverage strategies have yielded a dramatic upward trend of NEO discovery rates. CSS has also developed a custom adaptive queue manager for scheduling NEO follow-up astrometry using a remotely operated and recently renovated 1-m Cassegrain reflector telescope, improvements that have increased the production of follow-up astrometry for newly discovered NEOs and arc extensions for previously discovered objects by CSS and other surveys. Additionally, reprocessing of archival CSS data (which includes some 46 million individual astrometric measurements) through the new reduction and detection pipeline will allow for improved orbit determinations and increased arc extensions for hundreds of thousands of asteroids. Reprocessed data will soon feed into a new public archive of CSS images and catalog data products made available through NASA’s Planetary Data System (PDS). For the future, CSS is working towards improved NEO follow-up capabilities through a combination of access to larger telescopes, instrument upgrades and follow-up scheduling tools.
Worldwide multi-model intercomparison of clear-sky solar irradiance predictions
NASA Astrophysics Data System (ADS)
Ruiz-Arias, Jose A.; Gueymard, Christian A.; Cebecauer, Tomas
2017-06-01
Accurate modeling of solar radiation in the absence of clouds is highly important because solar power production peaks during cloud-free situations. The conventional validation approach of clear-sky solar radiation models relies on the comparison between model predictions and ground observations. Therefore, this approach is limited to locations with availability of high-quality ground observations, which are scarce worldwide. As a consequence, many areas of in-terest for, e.g., solar energy development, still remain sub-validated. Here, a worldwide inter-comparison of the global horizontal irradiance (GHI) and direct normal irradiance (DNI) calculated by a number of appropriate clear-sky solar ra-diation models is proposed, without direct intervention of any weather or solar radiation ground-based observations. The model inputs are all gathered from atmospheric reanalyses covering the globe. The model predictions are compared to each other and only their relative disagreements are quantified. The largest differences between model predictions are found over central and northern Africa, the Middle East, and all over Asia. This coincides with areas of high aerosol optical depth and highly varying aerosol distribution size. Overall, the differences in modeled DNI are found about twice larger than for GHI. It is argued that the prevailing weather regimes (most importantly, aerosol conditions) over regions exhibiting substantial divergences are not adequately parameterized by all models. Further validation and scrutiny using conventional methods based on ground observations should be pursued in priority over those specific regions to correctly evaluate the performance of clear-sky models, and select those that can be recommended for solar concentrating applications in particular.
Guzikowski, Jakub; Czerwińska, Agnieszka E; Krzyścin, Janusz W; Czerwiński, Michał A
2017-08-01
Information regarding the intensity of surface UV radiation, provided for the public, is frequently given in terms of a daily maximum UV Index (UVI), based on a prognostic model. The quality of the UV forecast depends on the accuracy of column amount of ozone and cloudiness prediction. Daily variability of UVI is needed to determine the risk of the UV overexposure during outdoor activities. Various methods of estimating the temporary UVI and the maximum duration of UV exposures (received a dose equal to minimal erythemal dose - MED), at the site of sunbathing, were compared. The UV indices were obtained during a field experiment at the Baltic Sea coast in the period from 13th to 24th July 2015. The following UVI calculation models were considered: UVI measurements by simple hand-held biometers (Silver Crest, Oregon Scientific, or more advanced Solarmeter 6.5), our smartphone models based on cloud cover observations at the site and the cloudless-sky UVI forecast (available for any site for all smartphone users) or measured UVI, and the 24h weather predictions by the ensemble set of 10 models (with various cloud parameterizations). The direct UV measurements, even by a simple biometer, provided useful UVI estimates. The smartphone applications yielded a good agreement with the UV measurements. The weather prediction models for cloudless-sky conditions could provide valuable information if almost cloudless-sky conditions (cloudless-sky or slightly scattered clouds) were observed at the sunbathing site. Copyright © 2017 Elsevier B.V. All rights reserved.
1992-06-01
methods of selecting sites, monitoring flow, and sampling 4 409 runoff. Also, there are some observations on storm water quality findings and some...turning off the flow meters until a rain event is imminent. Make sure you pack plenty of flashlights for night rains. 6. STORM WATER QUALITY SUMMARY
NASA Technical Reports Server (NTRS)
Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; LeBlanc, S.; Russell, P. B.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.;
2014-01-01
The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. Dunagan et al. [2013] present results establishing the performance of the instrument, along with calibration, engineering flight test, and preliminary scientific field data. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft (Shinozuka et al., 2013), and acquired a wealth of data in support of mission objectives on all SEAC4RS and TCAP research flights. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2; Segal-Rosenheimer et al., 2014), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In addition, 4STAR measured zenith radiances underneath cloud decks for retrievals of cloud optical depth and effective diameter. In this presentation, we provide an overview of the new 4STAR capabilities for airborne field campaigns, with an emphasis on comparisons between 4STAR and AERONET sky radiances, and retrievals of aerosol microphysical properties based on sky radiance measurements, column trace gas amounts from spectral direct beam measurements and cloud property retrievals from zenith mode observations for a few select case studies in the SEAC4RS and TCAP experiments. We summarize the aerosol, trace gas, cloud and airmass characterization studies made possible by the combined 4STAR direct beam, and sky/zenith radiance observations.
Hegedüs, Ramón; Akesson, Susanne; Horváth, Gábor
2007-01-01
The foggy sky above a white ice-cover and a dark water surface (permanent polynya or temporary lead) is white and dark gray, phenomena called the 'ice-sky' and the 'water-sky,' respectively. Captains of icebreaker ships used to search for not-directly-visible open waters remotely on the basis of the water sky. Animals depending on open waters in the Arctic region may also detect not-directly-visible waters from a distance by means of the water sky. Since the polarization of ice-skies and water-skies has not, to our knowledge, been studied before, we measured the polarization patterns of water-skies above polynyas in the arctic ice-cover during the Beringia 2005 Swedish polar research expedition to the North Pole region. We show that there are statistically significant differences in the angle of polarization between the water-sky and the ice-sky. This polarization phenomenon could help biological and man-made sensors to detect open waters not directly visible from a distance. However, the threshold of polarization-based detection would be rather low, because the degree of linear polarization of light radiated by water-skies and ice-skies is not higher than 10%.
On the Dome Effect of Flux Radiometers to Radiative Forcing
NASA Technical Reports Server (NTRS)
Tsay, S.-C.; Ji, Q.
1999-01-01
Since the introduction of thermopile, pyranometers (solar, e.g., 0.3-3.0 microns) and pyrgeometers (terrestrial, e.g., 4-50 microns) have become instruments commonly used for measuring the broadband hemispherical irradiances at the surface in a long-term, monitoring mode for decades. These commercially available radiometers have been manufactured in several countries such as from the United States, Asia, and Europe, and are generally reliable and economical. These worldwide distributions of surface measurements become even more important in the era of Earth remote sensing in studying climate forcing. However, recent studies from field campaigns have pointed out that erroneous factors (e.g., temperature gradients between the filter dome and detector, emissivity of the thermopile) are responsible for the unacceptable level of uncertainty (e.g., 10-20 W/square Meter). Using a newly developed instrument of Quantum Well Infrared Photodetector (QWIP), we have characterized the brightness temperature fields of pyranometers and pyrgeometers under various sky conditions. The QWIP is based on the superlattice (GaAs/AlGaAs) technology and has a noise equivalent temperature (NE delta T) less than 0.1 K. The quality of pyranometer and pyrgeometer measurements can be improved largely by applying proper knowledge of the thermal parameters affecting the operation of the thermopile systems. For example, we show a method to determine the "dome factor" (the longwave emission divided by the longwave transmission of a pyrgeometer dome) from field measurements. The results show, and are verified independently by the QWIP, that our dome factors of 0.59 and 0.90 are much smaller than the value of 4.0 assumed by the WMO. Data correction procedure and algorithm will be presented and discussed.
Infrared Sky Imager (IRSI) Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, Victor R.
2016-04-01
The Infrared Sky Imager (IRSI) deployed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility is a Solmirus Corp. All Sky Infrared Visible Analyzer. The IRSI is an automatic, continuously operating, digital imaging and software system designed to capture hemispheric sky images and provide time series retrievals of fractional sky cover during both the day and night. The instrument provides diurnal, radiometrically calibrated sky imagery in the mid-infrared atmospheric window and imagery in the visible wavelengths for cloud retrievals during daylight hours. The software automatically identifies cloudy and clear regions at user-defined intervals and calculates fractional sky cover, providing amore » real-time display of sky conditions.« less
NASA Astrophysics Data System (ADS)
Parsamian, Elma S.
2007-08-01
The most important discovery, which enriched our knowledge of ancient astronomy in Armenia, was the complex of platforms for astronomical observations on the Small Hill of Metzamor, which may be called an ancient “observatory”. Investigations on that Hill show that the ancient inhabitants of the Armenian Highlands have left us not only pictures of celestial bodies, but a very ancient complex of platforms for observing the sky. Among the ancient monuments in Armenia there is a megalithic monument, probably, being connected with astronomy. 250km South-East of Yerevan there is a structure Zorats Kar (Karahunge) dating back to II millennium B.C. Vertical megaliths many of which are more than two meters high form stone rings resembling ancient stone monuments - henges in Great Britain and Brittany. Medieval observations of comets and novas by data in ancient Armenian manuscripts are found. In the collection of ancient Armenian manuscripts (Matenadaran) in Yerevan there are many manuscripts with information about observations of astronomical events as: solar and lunar eclipses, comets and novas, bolides and meteorites etc. in medieval Armenia.
Iyengar, Anagha; Beach, Matthew; Newby, Robert J.; ...
2015-11-12
Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee. The 0.5 m 2 system consisting of 8 EJ-301 liquid scintillation detectors was used to collect neutron background measurements in order to better understand the systematic background variations that depend solely on the street-level measurement position in a local, downtown area. Data was collected along 5 different streets in the downtown Knoxville area, and the measurements were found to be repeatable. Using 10-min measurements, fractional uncertainty in each measured data point was <2%. Compared with fast neutron background count rates measured away from downtown Knoxville, a reductionmore » in background count rates ranging from 10-50% was observed in the downtown area, sometimes varying substantially over distances of tens of meters. These reductions are attributed to the shielding of adjacent buildings, quantified in part here by the metric angle-of-open-sky. The adjacent buildings may serve to shield cosmic ray neutron flux.« less
Astrometry with A-Track Using Gaia DR1 Catalogue
NASA Astrophysics Data System (ADS)
Kılıç, Yücel; Erece, Orhan; Kaplan, Murat
2018-04-01
In this work, we built all sky index files from Gaia DR1 catalogue for the high-precision astrometric field solution and the precise WCS coordinates of the moving objects. For this, we used build-astrometry-index program as a part of astrometry.net code suit. Additionally, we added astrometry.net's WCS solution tool to our previously developed software which is a fast and robust pipeline for detecting moving objects such as asteroids and comets in sequential FITS images, called A-Track. Moreover, MPC module was added to A-Track. This module is linked to an asteroid database to name the found objects and prepare the MPC file to report the results. After these innovations, we tested a new version of the A-Track code on photometrical data taken by the SI-1100 CCD with 1-meter telescope at TÜBİTAK National Observatory, Antalya. The pipeline can be used to analyse large data archives or daily sequential data. The code is hosted on GitHub under the GNU GPL v3 license.
2000-11-02
At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants watch as helium-filled balloons take to the sky after their lines were cut. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch’s worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO
2000-11-02
At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants watch as helium-filled balloons take to the sky after their lines were cut. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch’s worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO
Commissioning of a new helium pipeline
NASA Technical Reports Server (NTRS)
2000-01-01
At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants watch as helium-filled balloons take to the sky after their lines were cut. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO.
Evaluation of window-tinting films for sunlight phototherapy.
Vreman, Hendrik J; Slusher, Tina M; Wong, Ronald J; Schulz, Stephanie; Olusanya, Bolajoko O; Stevenson, David K
2013-12-01
We evaluated nine semi-transparent plastic window-tinting films for their ability to block ultraviolet A (UVA) and infrared (IR) radiation and transmit therapeutic blue light (400-520 nm) for treating jaundiced newborns. For indoor testing, three light sources (TL/52 special blue fluorescent, Black Light UVA and IR heat lamps) were positioned above each film and measured successively using a thermocouple thermometer, UVA radiometer and blue light irradiance meter, placed below each film. For outdoor testing, the same setup was used with the sun at zenith and a cloudless sky. Compared with unfiltered radiation, blue light transmission through films ranged from 24 to 83%, UVA transmission was 0.1-7.1% and reductions in IR heat were 6-12°C and 5-10°C for heat lamp and sun, respectively. The data suggest that most of the relatively low-cost window-tinting films tested can effectively reduce sunlight UV and IR and offer a range of significant attenuations of therapeutic blue light.
An educational distributed Cosmic Ray detector network based on ArduSiPM
NASA Astrophysics Data System (ADS)
Bocci, V.; Chiodi, G.; Fresch, P.; Iacoangeli, F.; Recchia, L.
2017-10-01
The advent of high performance microcontrollers equipped with analog and digital peripherals, makes the design of a complete particle detector and a relative acquisition system on a single microcontroller chip possible. The existence of a world wide data infrastructure such as the internet, allows for the conception of a distributed network of cheap detectors able to elaborate and send data as well as to respond to setting commands. The internet infrastructure enables the distribution of the absolute time, with precision of a few milliseconds, to all devices independently of their physical location, when the sky view is accessible it possible to use a GPS module to reach synchronization of tens of nanoseconds. These devices can be far apart from each other and their relative distance can range from a few meters to thousands of kilometers. This allows for the design of a crowdsourcing experiment of citizen science, based on the use of many small scintillation-based particle detectors to monitor the high energetic cosmic ray and the radiation environment.
NASA Astrophysics Data System (ADS)
Iyengar, A.; Beach, M.; Newby, R. J.; Fabris, L.; Heilbronn, L. H.; Hayward, J. P.
2015-02-01
Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee, USA. The 0.5 m2 system, consisting of eight EJ-301 liquid scintillation detectors, was used to collect neutron background measurements in order to better understand the systematic variations in background that depend solely on the street-level measurement position in a downtown area. Data was collected along 5 different streets, and the measurements were found to be repeatable. Using 10-min measurements, the fractional uncertainty in each measured data point was <2%. Compared with fast neutron background count rates measured away from downtown Knoxville, a reduction in background count rates ranging from 10% to 50% was observed in the downtown area, sometimes varying substantially over distances of tens of meters. These reductions are attributed to the net shielding of the cosmic ray neutron flux by adjacent buildings. For reference, the building structure as observed at street level is quantified in part here by a measured angle-of-open-sky metric.
Leveraging AMI data for distribution system model calibration and situational awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini
The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation andmore » regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.« less
Leveraging AMI data for distribution system model calibration and situational awareness
Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini; ...
2015-01-15
The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation andmore » regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.« less
Saltus, R.W.; Milicevic, B.
2004-01-01
A preliminary data grid and maps are presented for an aeromagnetic survey of the Taylor Mountains and a portion of the Bethel quadrangles, Alaska. The aeromagnetic survey was flown by McPhar Geosurveys Ltd. for the U.S. Geological Survey (USGS). A flight-line spacing of 1,600 meters (1 mile) and nominal flight height of 305 meters (1,000 feet) above topography (draped) was used for the survey. The preliminary data grid has a grid cell size of 350 meters (1150 feet). Final data processing and quality control have not been applied to these data. The purpose of this preliminary data release is to allow prompt public access to these data, which are of interest for active mineral exploration in the region. A more complete data release and description will be published later once the final data processing is complete.
NASA Technical Reports Server (NTRS)
Shuai, Yanmin; Masek, Jeffrey G.; Gao, Feng; Schaaf, Crystal B.; He, Tao
2014-01-01
Land surface albedo has been recognized by the Global Terrestrial Observing System (GTOS) as an essential climate variable crucial for accurate modeling and monitoring of the Earth's radiative budget. While global climate studies can leverage albedo datasets from MODIS, VIIRS, and other coarse-resolution sensors, many applications in heterogeneous environments can benefit from higher-resolution albedo products derived from Landsat. We previously developed a "MODIS-concurrent" approach for the 30-meter albedo estimation which relied on combining post-2000 Landsat data with MODIS Bidirectional Reflectance Distribution Function (BRDF) information. Here we present a "pre-MODIS era" approach to extend 30-m surface albedo generation in time back to the 1980s, through an a priori anisotropy Look-Up Table (LUT) built up from the high quality MCD43A BRDF estimates over representative homogenous regions. Each entry in the LUT reflects a unique combination of land cover, seasonality, terrain information, disturbance age and type, and Landsat optical spectral bands. An initial conceptual LUT was created for the Pacific Northwest (PNW) of the United States and provides BRDF shapes estimated from MODIS observations for undisturbed and disturbed surface types (including recovery trajectories of burned areas and non-fire disturbances). By accepting the assumption of a generally invariant BRDF shape for similar land surface structures as a priori information, spectral white-sky and black-sky albedos are derived through albedo-to-nadir reflectance ratios as a bridge between the Landsat and MODIS scale. A further narrow-to-broadband conversion based on radiative transfer simulations is adopted to produce broadband albedos at visible, near infrared, and shortwave regimes.We evaluate the accuracy of resultant Landsat albedo using available field measurements at forested AmeriFlux stations in the PNW region, and examine the consistency of the surface albedo generated by this approach respectively with that from the "concurrent" approach and the coincident MODIS operational surface albedo products. Using the tower measurements as reference, the derived Landsat 30-m snow-free shortwave broadband albedo yields an absolute accuracy of 0.02 with a root mean square error less than 0.016 and a bias of no more than 0.007. A further cross-comparison over individual scenes shows that the retrieved white sky shortwave albedo from the "pre-MODIS era" LUT approach is highly consistent (R(exp 2) = 0.988, the scene-averaged low RMSE = 0.009 and bias = -0.005) with that generated by the earlier "concurrent" approach. The Landsat albedo also exhibits more detailed landscape texture and a wider dynamic range of albedo values than the coincident 500-m MODIS operational products (MCD43A3), especially in the heterogeneous regions. Collectively, the "pre-MODIS" LUT and "concurrent" approaches provide a practical way to retrieve long-term Landsat albedo from the historic Landsat archives as far back as the 1980s, as well as the current Landsat-8 mission, and thus support investigations into the evolution of the albedo of terrestrial biomes at fine resolution.
Journal of Air Transportation, Volume 12, No. 1
NASA Technical Reports Server (NTRS)
Bowers, Brent D. (Editor); Kabashkin, Igor (Editor)
2007-01-01
Topics discussed include: a) Data Mining Methods Applied to Flight Operations Quality Assurance Data: A Comparison to Standard Statistical Methods; b) Financial Comparisons across Different Business Models in the Canadian Airline Industry; c) Carving a Niche for the "No-Frills" Carrier, Air Arabia, in Oil-Rich Skies; d) Situational Leadership in Air Traffic Control; and e) The Very Light Jet Arrives: Stakeholders and Their Perceptions.
Effects of temporal averaging on short-term irradiance variability under mixed sky conditions
NASA Astrophysics Data System (ADS)
Lohmann, Gerald M.; Monahan, Adam H.
2018-05-01
Characterizations of short-term variability in solar radiation are required to successfully integrate large numbers of photovoltaic power systems into the electrical grid. Previous studies have used ground-based irradiance observations with a range of different temporal resolutions and a systematic analysis of the effects of temporal averaging on the representation of variability is lacking. Using high-resolution surface irradiance data with original temporal resolutions between 0.01 and 1 s from six different locations in the Northern Hemisphere, we characterize the changes in representation of temporal variability resulting from time averaging. In this analysis, we condition all data to states of mixed skies, which are the most potentially problematic in terms of local PV power volatility. Statistics of clear-sky index k* and its increments Δk*τ (i.e., normalized surface irradiance and changes therein over specified intervals of time) are considered separately. Our results indicate that a temporal averaging time scale of around 1 s marks a transition in representing single-point irradiance variability, such that longer averages result in substantial underestimates of variability. Higher-resolution data increase the complexity of data management and quality control without appreciably improving the representation of variability. The results do not show any substantial discrepancies between locations or seasons.
NASA Astrophysics Data System (ADS)
Surace, J.; Laher, R.; Masci, F.; Grillmair, C.; Helou, G.
2015-09-01
The Palomar Transient Factory (PTF) is a synoptic sky survey in operation since 2009. PTF utilizes a 7.1 square degree camera on the Palomar 48-inch Schmidt telescope to survey the sky primarily at a single wavelength (R-band) at a rate of 1000-3000 square degrees a night. The data are used to detect and study transient and moving objects such as gamma ray bursts, supernovae and asteroids, as well as variable phenomena such as quasars and Galactic stars. The data processing system at IPAC handles realtime processing and detection of transients, solar system object processing, high photometric precision processing and light curve generation, and long-term archiving and curation. This was developed under an extremely limited budget profile in an unusually agile development environment. Here we discuss the mechanics of this system and our overall development approach. Although a significant scientific installation in of itself, PTF also serves as the prototype for our next generation project, the Zwicky Transient Facility (ZTF). Beginning operations in 2017, ZTF will feature a 50 square degree camera which will enable scanning of the entire northern visible sky every night. ZTF in turn will serve as a stepping stone to the Large Synoptic Survey Telescope (LSST), a major NSF facility scheduled to begin operations in the early 2020s.
Galactic reddening in 3D from stellar photometry - an improved map
NASA Astrophysics Data System (ADS)
Green, Gregory M.; Schlafly, Edward F.; Finkbeiner, Douglas; Rix, Hans-Walter; Martin, Nicolas; Burgett, William; Draper, Peter W.; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.; Metcalfe, Nigel; Tonry, John L.; Wainscoat, Richard; Waters, Christopher
2018-07-01
We present a new 3D map of interstellar dust reddening, covering three quarters of the sky (declinations of δ ≳ -30°) out to a distance of several kiloparsecs. The map is based on high-quality stellar photometry of 800 million stars from Pan-STARRS 1 and 2MASS. We divide the sky into sightlines containing a few hundred stars each, and then infer stellar distances and types, along with the line-of-sight dust distribution. Our new map incorporates a more accurate average extinction law and an additional 1.5 yr of Pan-STARRS 1 data, tracing dust to greater extinctions and at higher angular resolutions than our previous map. Out of the plane of the Galaxy, our map agrees well with 2D reddening maps derived from far-infrared dust emission. After accounting for a 25 per cent difference in scale, we find a mean scatter of ˜10 per cent between our map and the Planck far-infrared emission-based dust map, out to a depth of 0.8 mag in E(gP1 - rP1), with the level of agreement varying over the sky. Our map can be downloaded at http://argonaut.skymaps.info, or from the Harvard Dataverse (Green 2017).
Measurements of airglow on Maunakea at Gemini Observatory
NASA Astrophysics Data System (ADS)
Roth, Katherine C.; Smith, Adam; Stephens, Andrew; Smirnova, Olesja
2016-07-01
Gemini Observatory on Maunakea has been collecting optical and infrared science data for almost 15 years. We have begun a program to analyze imaging data from two of the original facility instruments, GMOS and NIRI, in order to measure sky brightness levels in multiple infrared and optical broad-band filters. The present work includes data from mid-2016 back through late-2008. We present measured background levels as a function of several operational quantities (e.g. moon phase, hours from twilight, season). We find that airglow is a significant contributor to background levels in several filters. Gemini is primarily a queue scheduled telescope, with observations being optimally executed in order to provide the most efficient use of telescope time. We find that while most parameters are well-understood, the atmospheric airglow remains challenging to predict. This makes it difficult to schedule observations which require dark skies in these filters, and we suggest improvements to ensure data quality.
An optical to IR sky brightness model for the LSST
NASA Astrophysics Data System (ADS)
Yoachim, Peter; Coughlin, Michael; Angeli, George Z.; Claver, Charles F.; Connolly, Andrew J.; Cook, Kem; Daniel, Scott; Ivezić, Željko; Jones, R. Lynne; Petry, Catherine; Reuter, Michael; Stubbs, Christopher; Xin, Bo
2016-07-01
To optimize the observing strategy of a large survey such as the LSST, one needs an accurate model of the night sky emission spectrum across a range of atmospheric conditions and from the near-UV to the near-IR. We have used the ESO SkyCalc Sky Model Calculator1, 2 to construct a library of template spectra for the Chilean night sky. The ESO model includes emission from the upper and lower atmosphere, scattered starlight, scattered moonlight, and zodiacal light. We have then extended the ESO templates with an empirical fit to the twilight sky emission as measured by a Canon all-sky camera installed at the LSST site. With the ESO templates and our twilight model we can quickly interpolate to any arbitrary sky position and date and return the full sky spectrum or surface brightness magnitudes in the LSST filter system. Comparing our model to all-sky observations, we find typical residual RMS values of +/-0.2-0.3 magnitudes per square arcsecond.
Touch the Cosmos: The 2012 International Earth and Sky Photo Contest
NASA Astrophysics Data System (ADS)
Walker, C. E.; Tafreshi, B.; Simmons, M.
2013-04-01
In April 2012, the National Optical Astronomy Observatory in partnership with The World At Night organized the Third International Earth and Sky Photo Contest on the importance of preserving dark skies for the Dark Skies Awareness theme of Global Astronomy Month. At the Fall 2012 ASP conference, a presentation on the Earth and Sky Photo Contest was made. The intended outcomes of the 10-minute oral talk were 1) to inspire visual learners to be more aware of the disappearing starry night sky due to light pollution, 2) to provide some basic understanding of what the issues are surrounding light pollution, 3) to provide incentive to get people to participate in the photo contest as a way of promoting dark skies awareness and 4) to provide a stepping stone to more active involvement in dark skies preservation. With more than half of the world's population in cities, Earth and Sky photos of dark, starry skies offer the next best thing to being there.
Simulation of hydrodynamics, temperature, and dissolved oxygen in Beaver Lake, Arkansas, 1994-1995
Haggard, Brian; Green, W. Reed
2002-01-01
The tailwaters of Beaver Lake and other White River reservoirs support a cold-water trout fishery of significant economic yield in northwestern Arkansas. The Arkansas Game and Fish Commission has requested an increase in existing minimum flows through the Beaver Lake dam to increase the amount of fishable waters downstream. Information is needed to assess the impact of additional minimum flows on temperature and dissolved-oxygen qualities of reservoir water above the dam and the release water. A two-dimensional, laterally averaged hydrodynamic, thermal and dissolved-oxygen model was developed and calibrated for Beaver Lake, Arkansas. The model simulates surface-water elevation, currents, heat transport and dissolved-oxygen dynamics. The model was developed to assess the impacts of proposed increases in minimum flows from 1.76 cubic meters per second (the existing minimum flow) to 3.85 cubic meters per second (the additional minimum flow). Simulations included assessing (1) the impact of additional minimum flows on tailwater temperature and dissolved-oxygen quality and (2) increasing initial water-surface elevation 0.5 meter and assessing the impact of additional minimum flow on tailwater temperatures and dissolved-oxygen concentrations. The additional minimum flow simulation (without increasing initial pool elevation) appeared to increase the water temperature (<0.9 degrees Celsius) and decrease dissolved oxygen concentration (<2.2 milligrams per liter) in the outflow discharge. Conversely, the additional minimum flow plus initial increase in pool elevation (0.5 meter) simulation appeared to decrease outflow water temperature (0.5 degrees Celsius) and increase dissolved oxygen concentration (<1.2 milligrams per liter) through time. However, results from both minimum flow scenarios for both water temperature and dissolved oxygen concentration were within the boundaries or similar to the error between measured and simulated water column profile values.
Vowinkel, Eric F.; Tapper, Robert J.
1995-01-01
Previously collected and new water-quality data from shallow wells (screened interval less than 30 meters below the land surface) in predominantly agricultural areas of the New Jersey Coastal Plain were used to determine the relation of nitrate concentrations in shallow ground water to various hydrogeologic and land-use factors in the study area. Information on land use, well construction, hydrogeology, and water quality were used to predict the conditions under which concentrations of nitrate as nitrogen in water from domestic wells in predominantly agricultural areas are most likely to be equal to or larger than the U.S. Environmental Protection Agency maximum contaminant level (MCL) of 10 milligrams per liter. Results of the analyses of water-quality samples collected during 1980-89 from 230 shallow wells in the outcrop areas of the Kirkwood-Cohansey and Potomac-Raritan-Magothy aquifer systems were used to evaluate the regional effects of land use on shallow-ground-water quality. Results of statistical analysis indicate that concentrations of nitrate in shallow ground water are significantly different (p= 0.001) in agricultural areas than in undeveloped areas in both aquifer systems. Concentrations of nitrate nitrogen exceeded the MCL in water from more than 33 percent of the 60 shallow wells in agricultural areas. Concentrations of hitrate in water from shallow wells in agricultural areas increased as the percentage of agricultural land within an 800-meter-radius buffer zone of the wellhead increased (r= 0.81). Concentrations ofhitrate in water from domestic wells in agricultural areas were similar (p= 0.23) to those concentrations in water from irrigation wells. These results indicate that most of the nitrate in water from domestic wells in agricultural areas results from agricultural practices rather than other sources, such as septic systems. Water-quality samples collected from 12 shallow domestic wells in agricultural areas screened in the outcrop areas of the Kirkwood-Cohansey and Potomac-Raritan-Magothy aquifer systems were used to evaluate the local effects of hydrogeologic conditions and land-use activities on shallow-ground-water quality. Concentrations of water-quality constituents in these wells were similar among four sampling events over a l-year span. The concentration of hitrate in water from 6 of the 12 wells exceeded the MCL. Concentrations of nitrate greater than the MCL are associated with: values of specific conductance greater than 200 microsiemens per centimeter at 25 degrees Celsius, a screened interval whose top is less than 20 meters below land surface, concentrations of dissolved oxygen greater than 6 milligrams per liter, presence of pesticides in the ground water, a distance of less than 250 meters between the wellhead and the surfacewater divide, and presence of livestock near the wellhead. Ratios of stable isotopes of nitrogen in the water samples indicate that the source of hitrate in the ground water was predominantly chemical fertilizers rather than livestock wastes or effluent from septic systems.
Stanton, Gregory P.; Kress, Wade; Hobza, Christopher M.; Czarnecki, John B.
2003-01-01
A surface-geophysical investigation of the Red River Aluminum site at Stamps, Arkansas, was conducted in cooperation with the Arkansas Department of Environmental Quality to determine the possible extent and depth of saltwater contamination. Water-level measurements indicate the distance to water level below land surface ranges from about 1.2 to 3.9 feet (0.37 to 1.19 meters) in shallow monitor wells and about 10.5 to 17.1 feet (3.20 to 5.21 meters) in deeper monitoring wells. The two-dimensional, direct-current resistivity method identified resistivities less than 5 ohm-meters which indicated possible areas of salt contamination occurring in near-surface or deep subsurface ground water along four resistivity lines within the site. One line located east of the site yielded data that demonstrated no effect of salt contamination. Sections from two of the five data sets were modeled. The input model grids were created on the basis of the known geology and the results and interpretations of borehole geophysical data. The clay-rich Cook Mountain Formation is modeled as 25 ohm-meters and extends from 21 meters (68.9 feet) below land surface to the bottom of the model (about 52 meters (170.6 feet)). The models were used to refine interpretation of the resistivity data and to determine extent of saltwater contamination and depth to the Cook Mountain Formation. Data from the resistivity lines indicate both near-surface and subsurface saltwater contamination. The near-surface contamination appears as low resistivity (less than 5 ohm-meters) on four of the five resistivity lines, extending up to 775 meters (2,542.8 feet) horizontally in a line that traverses the entire site south to north. Model resistivity data indicate that the total depth of saltwater contamination is about 18 meters (59 feet) below land surface. Data from four resistivity lines identified areas containing low resistivity anomalies interpreted as possible salt contamination. A fifth line located just east of the site showed no saltwater contamination.
NASA Astrophysics Data System (ADS)
Ivanov, Victor; Borovski, Alexander; Postylyakov, Oleg
2017-10-01
Formaldehyde (HCHO) is involved in a lot of chemical reactions in the atmosphere. Taking into account that HCHO basically undergo by photolysis and reaction with hydroxyl radical within a few hours, short-lived VOCs and direct HCHO emissions can cause local HCHO enhancement over certain areas, and, hence, exceeding background level of HCHO can be examined as a local pollution of the atmosphere by VOCs or existence of a local HCHO source. Several retrieval algorithms applicable for DOAS measurements in cloudless were previously developed. In previous works we proposed a new algorithm applicable for the overcast conditions. The algorithm has the typical F-coefficient error of about 10% for winter season, about 5% for summer season, and varying from 15 to 45% for transition season if the atmospheric boundary layer is below the cloud base. In this paper we briefly present our results of the HCHO vertical column retrieval measured at Zvenigorod Scientific Station (ZSS) for overcast. ZSS (55°41'49''N, 36°46'29''E) is located in Moscow region in 38 km west from Moscow. Because Western winds prevail in this region, ZSS is a background station the most part of time. But in cases of Eastern wind, the air quality at ZSS is affected by Moscow megapolis, and polluted air masses formed above Moscow can reach station in a few hours. Due to the absence of alternative overcast data of HCHO, we compare our overcast data with the HCHO vertical content, which we obtained for clear sky. We investigate similarities and differences in their statistical behavior in different air mass. The average overcast HCHO data have similar to clear-sky HCHO positive temperature trends for all wind direction. We found that the average retrieved overcast HCHO contents are systematically greater than the clear-sky retrieval data. But the difference between data retrieved for the overcast and clear-sky conditions are different for Eastern and Western winds. This difference is about 0.5×1016 mol cm-2 for Western winds and about 1.2×1016 mol cm-2 for Eastern winds. We suppose that observed difference between the overcast and clear-sky formaldehyde data can be caused by dependence of chemical reactions leading to the HCHO destruction and the HCHO formation from Moscow anthropogenic predecessors on the cloudy conditions.
Limiting Magnitude, τ, t eff, and Image Quality in DES Year 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
H. Neilsen, Jr.; Bernstein, Gary; Gruendl, Robert
The Dark Energy Survey (DES) is an astronomical imaging survey being completed with the DECam imager on the Blanco telescope at CTIO. After each night of observing, the DES data management (DM) group performs an initial processing of that night's data, and uses the results to determine which exposures are of acceptable quality, and which need to be repeated. The primary measure by which we declare an image of acceptable quality ismore » $$\\tau$$, a scaling of the exposure time. This is the scale factor that needs to be applied to the open shutter time to reach the same photometric signal to noise ratio for faint point sources under a set of canonical good conditions. These conditions are defined to be seeing resulting in a PSF full width at half maximum (FWHM) of 0.9" and a pre-defined sky brightness which approximates the zenith sky brightness under fully dark conditions. Point source limiting magnitude and signal to noise should therefore vary with t in the same way they vary with exposure time. Measurements of point sources and $$\\tau$$ in the first year of DES data confirm that they do. In the context of DES, the symbol $$t_{eff}$$ and the expression "effective exposure time" usually refer to the scaling factor, $$\\tau$$, rather than the actual effective exposure time; the "effective exposure time" in this case refers to the effective duration of one second, rather than the effective duration of an exposure.« less
Guide to Flow Measurement for Electric Propulsion Systems
NASA Technical Reports Server (NTRS)
Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve
2013-01-01
In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."
Frequency of College Students' Night-Sky Watching Behaviors
ERIC Educational Resources Information Center
Kelly, William E.; Kelly, Kathryn E.; Batey, Jason
2006-01-01
College students (N = 112) completed the Noctcaelador Inventory, a measure of psychological attachment to the night-sky, and estimated various night-sky watching related activities: frequency and duration of night-sky watching, astro-tourism, ownership of night-sky viewing equipment, and attendance of observatories or planetariums. The results…
Sky online: linking amateur and professional astronomers on the world wide web
NASA Astrophysics Data System (ADS)
Fienberg, Richard Tresch
SKY Online is the World Wide Web site of Sky Publishing Corporation, publisher of Sky & Telescope magazine. Conceived mainly as an electronic extension of the company's marketing and promotion efforts, SKY Online has also proven to be a useful tool for communication between amateur and professional astronomers.
The Sky This Week, 2016 January 19 - 26 - Naval Oceanography Portal
are here: Home ⺠USNO ⺠News, Tours & Events ⺠Sky This Week ⺠The Sky This Week, 2016 January 19 - 26 USNO Logo USNO Navigation Tour Information USNO Scientific Colloquia Sky This Week The Sky This Week, 2016 January 19 - 26 Info The Sky This Week, 2016 January 19 - 26 See all the bright planets
The Sky This Week, 2016 April 19 - 26 - Naval Oceanography Portal
are here: Home ⺠USNO ⺠News, Tours & Events ⺠Sky This Week ⺠The Sky This Week, 2016 April 19 - 26 USNO Logo USNO Navigation Tour Information USNO Scientific Colloquia Sky This Week The Sky This Week, 2016 April 19 - 26 Info The Sky This Week, 2016 April 19 - 26 A bright and speedy star
The Sky This Week, 2015 December 8 - 15 - Naval Oceanography Portal
are here: Home ⺠USNO ⺠News, Tours & Events ⺠Sky This Week ⺠The Sky This Week, 2015 December 8 - 15 USNO Logo USNO Navigation Tour Information USNO Scientific Colloquia Sky This Week The Sky This Week, 2015 December 8 - 15 Info The Sky This Week, 2015 December 8 - 15 The year's best meteor
Custom Sky-Image Mosaics from NASA's Information Power Grid
NASA Technical Reports Server (NTRS)
Jacob, Joseph; Collier, James; Craymer, Loring; Curkendall, David
2005-01-01
yourSkyG is the second generation of the software described in yourSky: Custom Sky-Image Mosaics via the Internet (NPO-30556), NASA Tech Briefs, Vol. 27, No. 6 (June 2003), page 45. Like its predecessor, yourSkyG supplies custom astronomical image mosaics of sky regions specified by requesters using client computers connected to the Internet. Whereas yourSky constructs mosaics on a local multiprocessor system, yourSkyG performs the computations on NASA s Information Power Grid (IPG), which is capable of performing much larger mosaicking tasks. (The IPG is high-performance computation and data grid that integrates geographically distributed 18 NASA Tech Briefs, September 2005 computers, databases, and instruments.) A user of yourSkyG can specify parameters describing a mosaic to be constructed. yourSkyG then constructs the mosaic on the IPG and makes it available for downloading by the user. The complexities of determining which input images are required to construct a mosaic, retrieving the required input images from remote sky-survey archives, uploading the images to the computers on the IPG, performing the computations remotely on the Grid, and downloading the resulting mosaic from the Grid are all transparent to the user
NASA Astrophysics Data System (ADS)
Tessari, Giulia; Pasquali, Paolo; Floris, Mario
2016-04-01
Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques have been applied to investigate sinkholes affecting the Jordanian coast of the Dead Sea. The Dead Sea is a hyper saline terminal lake located in a pull-apart basin. Most of the area is characterized by highly karstic and fractured rock formations that are connected with faults. Karstic conduits extend from the land into the sea. Since the 1960s, the Dead Sea level is dropping at an increasing rate: from about 60 cm/yr in the 1970s up to 1 m/yr in the 2000s. From about the mid-1980s, sinkholes appeared more and more frequently over and around the emerged mudflats and salt flats. Strong subsidence and landslides also affect some segments of the coast. Nowadays, several thousands of sinkholes attest that the degradation of the Dead Sea coast is worsening. Deformation analysis has been focused on the Ghor Al Haditha area, located in the South-Eastern part of the lake coast. SAR data acquired by three different sensors, ERS, ENVISAT and COSMO- SkyMed have been analysed. 70 ERS images from 1992 to 2009 and 30 ENVISAT images from 2003 to 2010 have been processed. SBAS technique has been applied to define surface velocity and displacement maps. Results obtained from the SBAS technique, applied to ERS and Envisat data, highlight a diffuse subsiding of the entire Eastern coast of the Dead Sea. It was not possible to detect single sinkholes because of the resolution of these sensors (25m2) and the small size of each punctual event that is generally varying from a few meters to a hundred meters diameter. Furthermore, SBAS has been applied to 23 COSMO-SkyMed SAR satellite images from December 2011 to May 2013. The high resolution of these data (3m x 3m) and the short revisiting time allowed precise information of the displacement of punctual sinkholes beyond the overall subsidence of the coast. A specific sinkhole has been identified in order to understand its temporal evolution. The considered phenomenon reached a total displacement of around 120 mm in 18 months in its central part. On the basis of the results from DInSAR processing, a simplified analytical model has been implemented. Vertical and horizontal components of the surface displacement field obtained from analysis of SAR images have been used as input data to derive geometric parameters of the source and in particular to estimate the volumetric strain of the phenomenon. Position, dimension and mechanism have been obtained.
The Sky This Week, 2016 March 15 - 23 - Naval Oceanography Portal
are here: Home ⺠USNO ⺠News, Tours & Events ⺠Sky This Week ⺠The Sky This Week, 2016 March 15 - 23 USNO Logo USNO Navigation Tour Information USNO Scientific Colloquia Sky This Week The Sky This Week, 2016 March 15 - 23 Info The Sky This Week, 2016 March 15 - 23 The equinox and the calendar
The Sky This Week, 2016 January 5 - 12 - Naval Oceanography Portal
are here: Home ⺠USNO ⺠News, Tours & Events ⺠Sky This Week ⺠The Sky This Week, 2016 January 5 - 12 USNO Logo USNO Navigation Tour Information USNO Scientific Colloquia Sky This Week The Sky This Week, 2016 January 5 - 12 Info The Sky This Week, 2016 January 5 - 12 Count the stars in Orion for
Analysing Smart Metering Systems from a Consumer Perspective
NASA Astrophysics Data System (ADS)
Yesudas, Rani
Many countries are deploying smart meters and Advanced Metering Infrastructure systems as part of demand management and grid modernisation efforts. Several of these projects are facing consumer resistance. The advertised benefits to the consumer appear mainly monetary but detailed analysis shows that financial benefits are hard to realise since the fixed services charges are high. Additionally, the data collected from smart meters have security and privacy implications for the consumer. These projects failed to consider end-users as an important stakeholder group during planning stages resulting in the design and roll-out of expensive systems, which do not demonstrate clear consumer benefits. The overall goal of the research reported in this thesis was to improve the smart metering system to deliver consumer benefits that increase confidence and acceptance of these projects. The smart metering system was examined from an end-user perspective for realistic insights into consumer concerns. Processes from Design Science Research methodology were utilised to conduct this research due to the utilitarian nature of the objective. Consumer segmentation was central to the proposed measures. Initially, a consumer-friendly risk analysis framework was devised, and appropriate requirement elicitation techniques were identified. Control options for smart meter data transfer and storage were explored. Various scenarios were analysed to determine consumer-friendly features in the smart metering system, including control options for smart meter data transfer and storage. Proposed functionalities (billing choices, feedback information and specific configurations to match the needs of different user segments) were studied using the Australian smart metering system. Smart meters vary in capabilities depending on the manufacturer, mode and place of deployment. The research showed that features proposed in this thesis are implementable in smart meters, by examining their applicability to those used in Victoria (Australia). This study demonstrated that intelligent systems for demand and distribution-side management can be built without the use of detailed consumption data from the consumer. Many issues related to smart meter data could be avoided by distributing intelligent metering devices across the network. A check-list was generated to guide project proponents to achieve a consumer-friendly outcome. This research establishes that by applying well-established theories during the planning process, in particular, requirement elicitation and risk analysis, consumer support can be gained leading to the deployment of user-friendly and sustainable systems. The check-list generated will help the industry to appropriately plan and develop systems that can avoid opposition and even stimulate adoption. Options proposed provide choices for different consumer segments without affecting major operations such as billing. On evaluation, it has been identified that the proposed measures do not affect the quality attributes of the system. Since the proposals presented in this thesis were based on smart meters used in Victoria (Australia), smart meters used in other areas may require upgrades or revisions to support these functions. The scope of this research is limited to identifying improvements in the system that will benefit the residential consumer and does not extend to the analysis of the effects of these improvements on the profitability of the investors.
NASA Astrophysics Data System (ADS)
Kim, S.; Kim, H.; Choi, M.; Kim, K.
2016-12-01
Estimating spatiotemporal variation of soil moisture is crucial to hydrological applications such as flood, drought, and near real-time climate forecasting. Recent advances in space-based passive microwave measurements allow the frequent monitoring of the surface soil moisture at a global scale and downscaling approaches have been applied to improve the spatial resolution of passive microwave products available at local scale applications. However, most downscaling methods using optical and thermal dataset, are valid only in cloud-free conditions; thus renewed downscaling method under all sky condition is necessary for the establishment of spatiotemporal continuity of datasets at fine resolution. In present study Support Vector Machine (SVM) technique was utilized to downscale a satellite-based soil moisture retrievals. The 0.1 and 0.25-degree resolution of daily Land Parameter Retrieval Model (LPRM) L3 soil moisture datasets from Advanced Microwave Scanning Radiometer 2 (AMSR2) were disaggregated over Northeast Asia in 2015. Optically derived estimates of surface temperature (LST), normalized difference vegetation index (NDVI), and its cloud products were obtained from MODerate Resolution Imaging Spectroradiometer (MODIS) for the purpose of downscaling soil moisture in finer resolution under all sky condition. Furthermore, a comparison analysis between in situ and downscaled soil moisture products was also conducted for quantitatively assessing its accuracy. Results showed that downscaled soil moisture under all sky condition not only preserves the quality of AMSR2 LPRM soil moisture at 1km resolution, but also attains higher spatial data coverage. From this research we expect that time continuous monitoring of soil moisture at fine scale regardless of weather conditions would be available.
Planck 2013 results. XIII. Galactic CO emission
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Dempsey, J. T.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Fukui, Y.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Handa, T.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hily-Blant, P.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Moore, T. J. T.; Morgante, G.; Morino, J.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nakajima, T.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Okuda, T.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Thomas, H. S.; Toffolatti, L.; Tomasi, M.; Torii, K.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yamamoto, H.; Yoda, T.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
Rotational transition lines of CO play a major role in molecular radio astronomy as a mass tracer and in particular in the study of star formation and Galactic structure. Although a wealth of data exists for the Galactic plane and some well-known molecular clouds, there is no available high sensitivity all-sky survey of CO emission to date. Such all-sky surveys can be constructed using the Planck HFI data because the three lowest CO rotational transition lines at 115, 230 and 345 GHz significantly contribute to the signal of the 100, 217 and 353 GHz HFI channels, respectively. Two different component separation methods are used to extract the CO maps from Planck HFI data. The maps obtained are then compared to one another and to existing external CO surveys. From these quality checks the best CO maps, in terms of signal to noise ratio and/or residual contamination by other emission, are selected. Three different sets of velocity-integrated CO emission maps are produced with different trade-offs between signal-to-noise, angular resolution, and reliability. Maps for the CO J = 1 → 0, J = 2 → 1, and J = 3 → 2 rotational transitions are presented and described in detail. They are shown to be fully compatible with previous surveys of parts of the Galactic plane as well as with undersampled surveys of the high latitude sky. The Planck HFI velocity-integrated CO maps for the J = 1 → 0, J = 2 → 1, and J = 3 →2 rotational transitions provide an unprecedented all-sky CO view of the Galaxy. These maps are also of great interest to monitor potential CO contamination of the Planck studies of the cosmological microwave background.
PePSS - A portable sky scanner for measuring extremely low night-sky brightness
NASA Astrophysics Data System (ADS)
Kocifaj, Miroslav; Kómar, Ladislav; Kundracik, František
2018-05-01
A new portable sky scanner designed for low-light-level detection at night is developed and employed in night sky brightness measurements in a rural region. The fast readout, adjustable sensitivity and linear response guaranteed in 5-6 orders of magnitude makes the device well suited for narrow-band photometry in both dark areas and bright urban and suburban environments. Quasi-monochromatic night-sky brightness data are advantageous in the accurate characterization of spectral power distribution of scattered and emitted light and, also allows for the possibility to retrieve light output patterns from whole-city light sources. The sky scanner can operate in both night and day regimes, taking advantage of the complementarity of both radiance data types. Due to its inherent very high sensitivity the photomultiplier tube could be used in night sky radiometry, while the spectrometer-equipped system component capable of detecting elevated intensities is used in daylight monitoring. Daylight is a source of information on atmospheric optical properties that in turn are necessary in processing night sky radiances. We believe that the sky scanner has the potential to revolutionize night-sky monitoring systems.
Song, Yingchao; Luo, Haibo; Ma, Junkai; Hui, Bin; Chang, Zheng
2018-04-01
Sky detection plays an essential role in various computer vision applications. Most existing sky detection approaches, being trained on ideal dataset, may lose efficacy when facing unfavorable conditions like the effects of weather and lighting conditions. In this paper, a novel algorithm for sky detection in hazy images is proposed from the perspective of probing the density of haze. We address the problem by an image segmentation and a region-level classification. To characterize the sky of hazy scenes, we unprecedentedly introduce several haze-relevant features that reflect the perceptual hazy density and the scene depth. Based on these features, the sky is separated by two imbalance SVM classifiers and a similarity measurement. Moreover, a sky dataset (named HazySky) with 500 annotated hazy images is built for model training and performance evaluation. To evaluate the performance of our method, we conducted extensive experiments both on our HazySky dataset and the SkyFinder dataset. The results demonstrate that our method performs better on the detection accuracy than previous methods, not only under hazy scenes, but also under other weather conditions.
NASA Astrophysics Data System (ADS)
Hegedüs, Ramón; Åkesson, Susanne; Horváth, Gábor
2007-05-01
The effects of forest fire smoke on sky polarization and animal orientation are practically unknown. Using full-sky imaging polarimetry, we therefore measured the celestial polarization pattern under a smoky sky in Fairbanks, Alaska, during the forest fire season in August 2005. It is quantitatively documented here that the celestial polarization, a sky attribute that is necessary for orientation of many polarization-sensitive animal species, above Fairbanks on 17 August 2005 was in several aspects anomalous due to the forest fire smoke: (i) The pattern of the degree of linear polarization p of the reddish smoky sky differed considerably from that of the corresponding clear blue sky. (ii) Due to the smoke, p of skylight was drastically reduced (pmax≤14%, paverage≤8%). (iii) Depending on wavelength and time, the Arago, Babinet, and Brewster neutral points of sky polarization had anomalous positions. We suggest that the disorientation of certain insects observed by Canadian researchers under smoky skies during the forest fire season in August 2003 in British Columbia was the consequence of the anomalous sky polarization caused by the forest fire smoke.
Song, Yingchao; Luo, Haibo; Ma, Junkai; Hui, Bin; Chang, Zheng
2018-01-01
Sky detection plays an essential role in various computer vision applications. Most existing sky detection approaches, being trained on ideal dataset, may lose efficacy when facing unfavorable conditions like the effects of weather and lighting conditions. In this paper, a novel algorithm for sky detection in hazy images is proposed from the perspective of probing the density of haze. We address the problem by an image segmentation and a region-level classification. To characterize the sky of hazy scenes, we unprecedentedly introduce several haze-relevant features that reflect the perceptual hazy density and the scene depth. Based on these features, the sky is separated by two imbalance SVM classifiers and a similarity measurement. Moreover, a sky dataset (named HazySky) with 500 annotated hazy images is built for model training and performance evaluation. To evaluate the performance of our method, we conducted extensive experiments both on our HazySky dataset and the SkyFinder dataset. The results demonstrate that our method performs better on the detection accuracy than previous methods, not only under hazy scenes, but also under other weather conditions. PMID:29614778
Observations of Twilight Fireballs over Kiev in 2013-2015
NASA Astrophysics Data System (ADS)
Churyumov, Klim; Steklov, Aleksey; Vidmachenko, Anatoliy; Dashkiev, Grigoriy
2016-07-01
The phenomenon of "Chelyabinsk bolide" 15.02.2013, resulted in damage to more than 1000 buildings and injure more than 500 people, after the explosion of fireball's body in the atmosphere over Chelyabinsk. The question about the dangers of such astronomical phenomena for life and health of citizens and for the existence of entire countries, arose with renewed vigor. Normally, bolides leave bright trace from ionized gas and dust. Traces of ionization can be seen particularly well at night. If a meteorite invades at the daytime at the cloudless sky and bright sunshine, the phenomenon of the fireball may not be visible. But if the fireball's track has noticeable angular size, it can be seen even in the daytime. After the flight, bolide remains a noticeable trace of a dust, dark against the light sky. If such a dust trail illuminated by the rays of the Sun, which had just hid behind the horizon (or even in the moonlight), it is visible as bright lanes in the night sky or in twilight. That's why we call it the twilight bolides. Typically, astronomical observations using of meteor patrols, carried out at night after the evening astronomical twilight. But from March 2013 to October 2015, the authors have obtained several thousands of different tracks in the sky over Kiev. Therefore, we have identified a special class of twilight observations of fireballs. We register the traces of invading to atmosphere of meteoroids of natural and artificial origin. At the same time, observe the traces of fireballs at the day-time are also possible. But they are less effective than in the twilight. Night observations of bright meteoric tracks can usually observe some seconds. While traces of the twilight bolides we observed from some minutes up to two hours, before they be scattered by atmospheric currents. It opens the great prospects for low-cost direct experiments probing of these tracks by using, for example, the astronomical aviation. We propose the twilight tracks are classified into the following types: AMT - aero-meteorological tracks, AST - aero-space, ATT - aero-technical, and NST - not yet classified tracks of an unknown nature. In recent years, geostationary satellites often registered flashes in the atmosphere brighter than -17m. The typical initial sizes of the stone bodies have 1-3 meters. If these meteoroids are consist of ice and snow (fragments of cometary nuclei), their size can be increased up to tens of meters. It was a set of fine dust particles with lower average density interconnected by ice of frozen water, carbon dioxide and others. Thus, such a body is actively destroying during the flight through the atmosphere. The mass of Tunguska initial body is estimated at about 2x10^{6} tons. At the speed of entry into the atmosphere 31 km/s, in the way of an explosion, it has passed about 200 km and a lost hundreds of thousands of tons of fine dust. The height of the explosion and flash light, is at a height of maximum braking at altitudes significantly less than the height of the homogeneous atmosphere ( 7.5 km). According to the theory of point explosion in a medium with variable density exponentially if a thermal explosion of the meteoroid will happen at the height of 15 km, the shock wave does not reach the Earth's surface. 06.25.2014 we observed evening twilight bolide in the sky over Kiev. Images were synchronously obtained by Dashkiev G. N. and Steklov A. F. The basic distance between the points of photographing according to GPS data was 8.55 km. A fragment in the atmosphere has moved from the southwest to the northeast. The disintegration of fragment began at a height more of 25 km (it is the highest point of the visible trace, not closed by building and clouds). Traces of disintegration visible at altitudes from 18 to 8.2 km. Therefore, the body is not reached the Earth's surface and disintegrated into finely dispersed particles. Trace was visible for about 20 minutes. Preliminary estimates of the initial mass of this fragment before the atmospheric entry indicates on the mass from 1 to 10 tons. Fragments with a little more mass, formed three bolide phenomena in the sky above the Kyiv 29.03.2013 at 16 hours 22 minutes local time. They arose for about some seconds and been accompanied by flashes, explosions and multiple cascade decays of three fragments, apparently, of the cometary nature, at heights of 35 to 15 km. Thus, we believe that the astronomical studies should be based on a detailed study of the interaction of the planet with the space environment, especially with hazardous meteoroids. During the short period of our observations (from March 2013), was fixed falling at least a dozen fragments of cometary nuclei, at least five of sufficiently large and dozens of smaller fragments of meteoroids. The results of our observations also showed that during the morning and evening twilight over Kiev clearly visible the plume of aerosols of technical nature from the plants, factories and other production facilities.
Multiple Sensitivity Testing for Regional Air Quality Model in summer 2014
NASA Astrophysics Data System (ADS)
Tang, Y.; Lee, P.; Pan, L.; Tong, D.; Kim, H. C.; Huang, M.; Wang, J.; McQueen, J.; Lu, C. H.; Artz, R. S.
2015-12-01
The NOAA Air Resources laboratory leads to improve the performance of the U.S. Air Quality Forecasting Capability (NAQFC). It is operational in NOAA National Centers for Environmental Prediction (NCEP) which focuses on predicting surface ozone and PM2.5. In order to improve its performance, we tested several approaches, including NOAA Environmental Modeling System Global Aerosol Component (NGAC) simulation derived ozone and aerosol lateral boundary conditions (LBC), bi-direction NH3 emission and HMS(Hazard Mapping System)-BlueSky emission with the latest U.S. EPA Community Multi-scale Air Quality model (CMAQ) version and the U.S EPA National Emission Inventory (NEI)-2011 anthropogenic emissions. The operational NAQFC uses static profiles for its lateral boundary condition (LBC), which does not impose severe issue for near-surface air quality prediction. However, its degraded performance for the upper layer (e.g. above 3km) is evident when comparing with aircraft measured ozone. NCEP's Global Forecast System (GFS) has tracer O3 prediction treated as 3-D prognostic variable (Moorthi and Iredell, 1998) after being initialized with Solar Backscatter Ultra Violet-2 (SBUV-2) satellite data. We applied that ozone LBC to the CMAQ's upper layers and yield more reasonable O3 prediction than that with static LBC comparing with the aircraft data in Discover-AQ Colorado campaign. NGAC's aerosol LBC also improved the PM2.5 prediction with more realistic background aerosols. The bi-direction NH3 emission used in CMAQ also help reduce the NH3 and nitrate under-prediction issue. During summer 2014, strong wildfires occurred in northwestern USA, and we used the US Forest Service's BlueSky fire emission with HMS fire counts to drive CMAQ and tested the difference of day-1 and day-2 fire emission estimation. Other related issues were also discussed.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Comiso, Josefino C.; DiGirolamo, Nicolo E.; Shuman, Christopher A.; Key, Jeffrey R.; Koenig, Lora S.
2011-01-01
We have developed a climate-quality data record of the clear-sky surface temperature of the Greenland Ice Sheet using the Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra ice-surface temperature (1ST) algorithm. A climate-data record (CDR) is a time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change. We present daily and monthly Terra MODIS ISTs of the Greenland Ice Sheet beginning on 1 March 2000 and continuing through 31 December 2010 at 6.25-km spatial resolution on a polar stereographic grid within +/-3 hours of 17:00Z or 2:00 PM Local Solar Time. Preliminary validation of the ISTs at Summit Camp, Greenland, during the 2008-09 winter, shows that there is a cold bias using the MODIS IST which underestimates the measured surface temperature by approximately 3 C when temperatures range from approximately -50 C to approximately -35 C. The ultimate goal is to develop a CDR that starts in 1981 with the Advanced Very High Resolution (AVHRR) Polar Pathfinder (APP) dataset and continues with MODIS data from 2000 to the present. Differences in the APP and MODIS cloud masks have so far precluded the current IST records from spanning both the APP and MODIS IST time series in a seamless manner though this will be revisited when the APP dataset has been reprocessed. The Greenland IST climate-quality data record is suitable for continuation using future Visible Infrared Imager Radiometer Suite (VIIRS) data and will be elevated in status to a CDR when at least 9 more years of climate-quality data become available either from MODIS Terra or Aqua, or from the VIIRS. The complete MODIS IST data record will be available online in the summer of 2011.
Veley, Ronald J.; Moran, Michael J.
2012-01-01
The U.S. Geological Survey, in cooperation with the National Park Service and Southern Nevada Water Authority, collected near-continuous depth-dependent water-quality data at Lake Mead, Arizona and Nevada, as part of a multi-agency monitoring network maintained to provide resource managers with basic data and to gain a better understanding of the hydrodynamics of the lake. Water-quality data-collection stations on Lake Mead were located in shallow water (less than 20 meters) at Las Vegas Bay (Site 3) and Overton Arm, and in deep water (greater than 20 meters) near Sentinel Island and at Virgin and Temple Basins. At each station, near-continual depth-dependent water-quality data were collected from October 2004 through September 2009. The data were collected by using automatic profiling systems equipped with multiparameter water-quality sondes. The sondes had sensors for temperature, specific conductance, dissolved oxygen, pH, turbidity, and depth. Data were collected every 6 hours at 2-meter depth intervals (for shallow-water stations) or 5-meter depth intervals (for deep-water stations) beginning at 1 meter below water surface. Data were analyzed to determine water-quality conditions related to stratification of the lake and temporal trends in water-quality parameters. Three water-quality parameters were the main focus of these analyses: temperature, specific conductance, and dissolved oxygen. Statistical temporal-trend analyses were performed for a single depth at shallow-water stations [Las Vegas Bay (Site 3) and Overton Arm] and for thermally-stratified lake layers at deep-water stations (Sentinel Island and Virgin Basin). The limited period of data collection at the Temple Basin station prevented the application of statistical trend analysis. During the summer months, thermal stratification was not observed at shallow-water stations, nor were major maxima or minima observed for specific-conductance or dissolved-oxygen profiles. A clearly-defined thermocline and well-defined maxima and minima in specific-conductance and dissolved-oxygen profiles were observed at deep-water stations during the summer months. Specific-conductance maxima were likely the result of inflow of water from either the Las Vegas Wash or Muddy/Virgin Rivers or both, while the minima were likely the result of inflow of water from the Colorado River. Maxima and minima for dissolved oxygen were likely the result of primary productivity blooms and their subsequent decay. Temporal-trend analyses indicated that specific conductance decreased at all stations over the period of record, except for Las Vegas Bay (Site 3), where specific conductance increased. Temperature also decreased over the period of record at deep-water stations for certain lake layers. Decreasing temperature and specific conductance at deep-water stations is the result of decreasing values in these parameters in water coming from the Colorado River. Quagga mussels (Dreissena rostriformis bugensis), however, could play a role in trends of decreasing specific conductance through incorporation of calcite in their shells. Trends of decreasing turbidity and pH at deep-water stations support the hypothesis that quagga mussels could be having an effect on the physical properties and water chemistry of Lake Mead. Unlike other stations, Las Vegas Bay (Site 3) had increasing specific conductance and is interpreted as the result of lowering lake levels decreasing the volume of lake water available for mixing and dilution of the high-conductance water coming from Las Vegas Wash. Dissolved oxygen increased over the period of record in some lake layers at the deep-water stations. Increasing dissolved oxygen at deep-water stations is believed to result, in part, from a reduction of phosphorus entering Lake Mead and the concomitant reduction of biological oxygen demand.
Measurement of Light Pollution of Iranian National Observatory
NASA Astrophysics Data System (ADS)
Son Hosseini, S.; Nasiri, S.
2006-08-01
The problem of Light pollution became important mainly since 1960, by growth of urban development and using more artificial lights and lamps at the nighttimes. Optical telescopes share the same range of wavelengths as are used to provide illumination of roadways, buildings and automobiles. The light glow that emanates from man made pollution will scatter off the atmosphere and affects the images taken by the observatory instruments. A method of estimating the night sky brightness produced by a city of known population and distance is useful in site testing of the new observatories, as well as in studying the likely future deterioration of existing sites. Now with planning the Iranian National Observatory that will house a 2-meter telescope and on the way of the site selection project, studying the light pollution is propounded in Iran. Thus, we need a site with the least light pollution, beside other parameters, i.e. seeing, meteorological, geophysical and local parameters. The seeing parameter is being measured in our 4 preliminary selected sites at Qom, Kashan, Kerman and Birjand since 2 years ago using an out of focus Differential Image Motion Monitor. These sites are selected among 33 candidate sites by studying the meteorological data obtained from the local synoptic stations and the Meteosat. We use the Walker's law to estimate the Sky glow of these sites having the population and the distances of the nearby regions. The results are corrected by the methods introduced by Treanor and Berry using the atmospheric extinction coefficients. The data obtained using an 11 inch telescope with a ST7 CCD camera for above sites are consistent with the estimated values of the light pollution mentioned above.
Nurturing The STEM Pipeline: Graduate Student Leadership In NIRCam's Ongoing E/PO Mission For JWST
NASA Astrophysics Data System (ADS)
Schlingman, Wayne M.; Stock, N.; Teske, J.; Tyler, K.; Biller, B.; Donley, J.; Hedden, A.; Knierman, K.; Young, P.
2011-01-01
The Astronomy Camp for Girl Scout Leaders is an education and public outreach (E/PO) program offered by the science team of the Near-InfraRed Camera (NIRCam) for NASA's 6.5-meter James Webb Space Telescope (JWST). Since 2003, astronomy graduate students have helped design and lead biannual "Train the Trainer” workshops for adults from the Girl Scouts of the USA (GSUSA), engaging these trainers in the process of scientific inquiry and equipping them to host astronomy-related activities at the troop level. These workshops have helped revise the national GSUSA badge curriculum and directly benefitted thousands of young girls of all ages, not only in general science and math education but also in specific astronomical and technological concepts relating to JWST. To date, nine graduate students have become members of NIRCam's E/PO team. They have developed curriculum and activities used to teach concepts in stellar nucleosynthesis, lookback time, galaxy classification, etc. They have also contributed to the overall strategic approach and helped lead more general activities in basic astronomy (night sky, phases of the Moon, the scale of the Solar System and beyond, stars, galaxies, telescopes, etc.) as well as JWST-specific research areas in extrasolar planetary systems and cosmology, to pave the way for girls and women to understand the first images from JWST. The resulting experience has empowered these students to propose and to develop their own E/PO programs after graduation as postdocs and young faculty. They also continue as part of NIRCam's growing worldwide network of 160 trainers teaching young women essential STEM-related concepts using astronomy, the night sky environment, applied math, engineering, and critical thinking. NIRCam and its E/PO program are funded by NASA under contract NAS5-02105.
The LCOGT Near Earth Object (NEO) Follow-up Network
NASA Astrophysics Data System (ADS)
Lister, Tim; Gomez, Edward; Christensen, Eric; Larson, Steve
2014-11-01
Las Cumbres Observatory Global Telescope (LCOGT) network is a planned homogeneous network of over 35 telescopes at 6 locations in the northern and southern hemispheres. This network is versatile and designed to respond rapidly to target of opportunity events and also to do long term monitoring of slowly changing astronomical phenomena. The global coverage of the network and the apertures of telescope available make LCOGT ideal for follow-up and characterization of Solar System objects (e.g. asteroids, Kuiper Belt Objects, comets, Near-Earth Objects (NEOs)) and ultimately for the discovery of new objects.LCOGT has completed the first phase of the deployment with the installation and commissioning of nine 1-meter telescopes at McDonald Observatory (Texas), Cerro Tololo (Chile), SAAO (South Africa) and Siding Spring Observatory (Australia). The telescope network is now operating and observations are being executed remotely and robotically.I am using the LCOGT network to confirm newly detected NEO candidates produced by the major sky surveys such as Catalina Sky Survey (CSS), NEOWISE and PanSTARRS (PS1). Over 600 NEO candidates have been targeted so far this year with 250+ objects reported to the MPC, including 70 confirmed NEOs. An increasing amount of time is being spent to obtain follow-up astrometry and photometry for radar-targeted objects in order to improve the orbits and determine the rotation periods. This will be extended to obtain more light curves of other NEOs which could be Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) or Asteroid Retrieval Mission (ARM) targets. Recent results have included the first period determination for the Apollo 2002 NV16 and our first NEO spectrum from the FLOYDS spectrographs on the LCOGT 2m telescopes obtained for 2012 DA14 during the February 2013 closepass.
Follow-up and Characterization of NEOs with the LCOGT Network
NASA Astrophysics Data System (ADS)
Lister, Tim
2013-10-01
Las Cumbres Observatory Global Telescope (LCOGT) network is a planned homogeneous network of over 35 telescopes at 6 locations in the northern and southern hemispheres. This network is versatile and designed to respond rapidly to target of opportunity events and also to do long term monitoring of slowly changing astronomical phenomena. The global coverage of the network and the apertures of telescope available make LCOGT ideal for follow-up and characterization of Solar System objects (e.g. asteroids, Kuiper Belt Objects, comets, Near-Earth Objects (NEOs)) and ultimately for the discovery of new objects. LCOGT has completed the first phase of the deployment with the installation and commissioning of nine 1-meter telescopes at McDonald Observatory (Texas), Cerro Tololo (Chile), SAAO (South Africa) and Siding Spring Observatory (Australia). The telescope network is now operating and observations are being executed remotely and robotically. I am using the LCOGT network to confirm newly detected NEO candidates produced by the major sky surveys such as Catalina Sky Survey (CSS) and PanSTARRS (PS1). An increasing amount of time is being spent to obtain follow-up astrometry and photometry for radar-targeted objects in order to improve the orbits and determine the rotation periods. This will be extended to obtain more light curves of other NEOs which could be Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) or Asteroid Retrieval Mission (ARM) targets. Recent results have included the first period determination for the Apollo 2002 NV16 and our first NEO spectrum from the FLOYDS spectrographs on the LCOGT 2m telescopes obtained for 2012 DA14 during the February 2013 closepass.
Scientific Summary of the First BINA Workshop
NASA Astrophysics Data System (ADS)
Sagar, Ram
2018-04-01
Scientific summary of the first Belgo-Indian Network for Astronomy & Astrophysics (BINA) work-shop is presented here. In the workshop, invited talks were supplemented with the contributory talks and poster paper presentations. The talks presented during the workshop provide latest information on the 3.6-m Devasthal Optical Telescope (DOT) and 4-m International Liquid Mirror Telescope (ILMT) projects. These observing fa-cilities are built jointly by the astronomical communities of India and Belgium. In the ILMT, reseachers from Canada, Poland and Uzbekistan are also actively participating. Preliminary results obtained from the on sky test indicate that 3.6-m DOT is capable of resolving binary stars separated by 0.4 arc second. CCD observations obtained with the telescope indicate that atmospheric conditions at Devasthal are very good for optical observations and the site can be considered internationally competitive. Buildings and telescope houses constructed at Devasthal have not deteriorated natural seeing conditions observed at the site 2 decades ago during 1997¬1999. Pointing and tracking accuracies of the 3.6-m DOT are as per specifications. All these indicate that on sky performance of the newly installed 3.6-m DOT is better than the specifications prescribed at the time of placing order. It is therefore capable of providing internationally competitive science with the modern backend instruments and also have global importance due to their geographical location particularly for the time domain and multi-wavelength astrophysical studies. A large number of talks and poster papers presented during the workshop discussed astrophysical potential of the Indian largest size (4 meter class) new technology optical telescopes located at Devasthal. All these indicate beyond doubt that there are enormous opportunities for the growth of astronomy in India.
NASA Technical Reports Server (NTRS)
Chen, Yonghua; Naud, Catherine M.; Rangwala, Imtiaz; Landry, Christopher C.; Miller, James R.
2014-01-01
Among the potential reasons for enhanced warming rates in many high elevation regions is the nonlinear relationship between surface downward longwave radiation (DLR) and specific humidity (q). In this study we use ground-based observations at two neighboring high elevation sites in Southwestern Colorado that have different local topography and are 1.3 kilometers apart horizontally and 348 meters vertically. We examine the spatial consistency of the sensitivities (partial derivatives) of DLR with respect to changes in q, and the sensitivities are obtained from the Jacobian matrix of a neural network analysis. Although the relationship between DLR and q is the same at both sites, the sensitivities are higher when q is smaller, which occurs more frequently at the higher elevation site. There is a distinct hourly distribution in the sensitivities at both sites especially for high sensitivity cases, although the range is greater at the lower elevation site. The hourly distribution of the sensitivities relates to that of q. Under clear skies during daytime, q is similar between the two sites, however under cloudy skies or at night, it is not. This means that the DLR-q sensitivities are similar at the two sites during daytime but not at night, and care must be exercised when using data from one site to infer the impact of water vapor feedbacks at another site, particularly at night. Our analysis suggests that care should be exercised when using the lapse rate adjustment to infill high frequency data in a complex topographical region, particularly when one of the stations is subject to cold air pooling as found here.
SETI with Help from Five Million Volunteers: The Berkeley SETI Efforts
NASA Astrophysics Data System (ADS)
Korpela, E. J.; Anderson, D. P.; Bankay, R.; Cobb, J.; Foster, G.; Howard, A.; Lebofsky, M.; Marcy, G.; Parsons, A.; Siemion, A.; von Korff, J.; Werthimer, D.; Douglas, K. A.
2009-12-01
We summarize radio and optical SETI programs based at the University of California, Berkeley. The ongoing SERENDIP V sky survey searches for radio signals at the 300 meter Arecibo Observatory. The currently installed configuration supports 128 million channels over a 200 MHz bandwidth with 1.6 Hz spectral resolution. Frequency stepping allows the spectrometer to cover the full 300 MHz band of the Arecibo L-band receivers. The final configuration will allow data from all 14 receivers in the Arecibo L-band Focal Array to be monitored simultaneously with over 1.8 billion simultaneous channels. SETI@home uses desktop computers volunteers to analyze over 100 TB of at taken at Arecibo. Over 5 million volunteers have run SETI@home during its 10 year history. The SETI@home sky survey is 10 times more sensitive than SERENDIP V but it covers only a 2.5 MHz band, centered on 1420 MHz. SETI@home searches a much wider parameter space, including 14 octaves of signal bandwidth and 15 octaves of pulse period with Doppler drift corrections from -100 Hz/s to +100 Hz/s. The ASTROPULSE project is the first SETI search for μs time scale pulses in the radio spectrum. Because short pulses are dispersed by the interstellar medium, and amount of dispersion is unknown, ASTROPULSE must search through 30,000 possible dispersions. Substantial computing power is required to conduct this search, so the project will use volunteers and their personal computers to carry out the computation (using distributed computing similar to SETI@home). The SEVENDIP optical pulse search looks for ns time scale pulses at visible wavelengths. It utilizes an automated 30 inch telescope, three ultra fast photo multiplier tubes and a coincidence detector. The target list includes F,G,K and M stars, globular cluster and galaxies.
First image of clouds over Mars
NASA Technical Reports Server (NTRS)
1997-01-01
This is the first image ever taken from the surface of Mars of an overcast sky. Featured are stratus clouds coming from the northeast at about 15 miles per hour (6.7 meters/second) at an approximate height of ten miles (16 kilometers) above the surface. The 'you are here' notation marks where Earth was situated in the sky at the time the image was taken. Scientists had hoped to see Earth in this image, but the cloudy conditions prevented a clear viewing. Similar images will be taken in the future with the hope of capturing a view of Earth. From Mars, Earth would appear as a tiny blue dot as a star would appear to an Earthbound observer. Pathfinder's imaging system will not be able to resolve Earth's moon. The clouds consist of water ice condensed on reddish dust particles suspended in the atmosphere. Clouds on Mars are sometimes localized and can sometimes cover entire regions, but have not yet been observed to cover the entire planet. The image was taken about an hour and forty minutes before sunrise by the Imager for Mars Pathfinder (IMP) on Sol 16 at about ten degrees up from the eastern Martian horizon.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.An infrared high resolution silicon immersion grating spectrometer for airborne and space missions
NASA Astrophysics Data System (ADS)
Ge, Jian; Zhao, Bo; Powell, Scott; Jiang, Peng; Uzakbaiuly, Berik; Tanner, David
2014-08-01
Broad-band infrared (IR) spectroscopy, especially at high spectral resolution, is a largely unexplored area for the far IR (FIR) and submm wavelength region due to the lack of proper grating technology to produce high resolution within the very constrained volume and weight required for space mission instruments. High resolution FIR spectroscopy is an essential tool to resolve many atomic and molecular lines to measure physical and chemical conditions and processes in the environments where galaxy, star and planets form. A silicon immersion grating (SIG), due to its over three times high dispersion over a traditional reflective grating, offers a compact and low cost design of new generation IR high resolution spectrographs for space missions. A prototype SIG high resolution spectrograph, called Florida IR Silicon immersion grating spectromeTer (FIRST), has been developed at UF and was commissioned at a 2 meter robotic telescope at Fairborn Observatory in Arizona. The SIG with 54.74 degree blaze angle, 16.1 l/mm groove density, and 50x86 mm2 grating area has produced R=50,000 in FIRST. The 1.4-1.8 um wavelength region is completely covered in a single exposure with a 2kx2k H2RG IR array. The on-sky performance meets the science requirements for ground-based high resolution spectroscopy. Further studies show that this kind of SIG spectrometer with an airborne 2m class telescope such as SOFIA can offer highly sensitive spectroscopy with R~20,000-30,000 at 20 to 55 microns. Details about the on-sky measurement performance of the FIRST prototype SIG spectrometer and its predicted performance with the SOFIA 2.4m telescope are introduced.
Environmental Cues to Ultraviolet Radiation and Personal Sun Protection In Outdoor Winter Recreation
Buller, David B.; Walkosz, Barbara J.; Scott, Michael D.; Maloy, Julie A.; Cutter, Gary R.; Dignan, Mark D.
2012-01-01
Objective The prevalence of ultraviolet radiation (UV) at North American ski resorts was predicted using temporal, seasonal, altitudinal, and meteorological factors and associated with a set of adult sun protection behaviors. Design UV observations and cross-sectional survey of adults on sun protection were collected. Setting Data were collected at 32 high-altitude ski areas located in Western North America in 2001–03. Participants The sample consisted of 3,937 adult skier or snowboarders. Main Outcome Measures Measurements of direct, reflected, and diffuse UV were performed at 487 measurement points using handheld meters and combined with self-reported and observed sun protection assessed for adults interviewed on chair lifts. Results The strongest predictors of UV were temporal proximity to noon, deviation from winter solstice, and clear skies. By contrast, altitude and latitude had more modest associations with UV and temperature had a small positive relationship with UV. Guest sun safety was inconsistently associated with UV: UV was positively related to adults wearing more sunscreen, reapplying it after two hours, and wearing protective eyewear but fewer adults exhibited many of the other sun protection behaviors, such as hats, protective clothing or lip balm, on days when UV was elevated. Guests took more sun safety precautions on clear-sky days but took steps to maintain body warmth on inclement days. Conclusions In future sun safety promotions, adults should be encouraged to wear sunscreen on cloudy days because UV is still high and conditions can change rapidly. They need reminders to rely more on season and time of day when judging UV and the need for sun safety. PMID:21079060
DOT National Transportation Integrated Search
2016-10-01
Concrete freeze-thaw durability is prominently linked to the air void system within the concrete. : Concrete pavements in Kansas undergo repetitive freeze-thaw cycles. Total air content measurements : currently used on fresh concrete do not provide a...
Impact of Wind Direction on Near-Road Pollutant Concentrations
Exposure to roadway emissions is an emerging area of research because of recent epidemiological studies reporting association between living within a few hundred meters of high-traffic roadways and adverse health effects. The air quality impact of roadway emissions has been studi...
DOT National Transportation Integrated Search
2016-10-01
Concrete freeze-thaw durability is prominently linked to the air void system : within the concrete. Concrete pavements in Kansas undergo repetitive : freeze-thaw cycles. Total air content measurements currently used on fresh : concrete do not provide...
RHODE ISLAND DIGITAL ORTHOPHOTO QUADRANGLE MOSAIC
Orthophotos combine the image characteristics of a photograph with the geometric qualities of a map. The primary digital orthophotoquad (DOQ) is a 1-meter ground resolution, quarter-quadrangle (3.75-minutes of latitude by 3.75-minutes of longitude) image cast on the Universal Tra...
Land Surface Process and Air Quality Research and Applications at MSFC
NASA Technical Reports Server (NTRS)
Quattrochi, Dale; Khan, Maudood
2007-01-01
This viewgraph presentation provides an overview of land surface process and air quality research at MSFC including atmospheric modeling and ongoing research whose objective is to undertake a comprehensive spatiotemporal analysis of the effects of accurate land surface characterization on atmospheric modeling results, and public health applications. Land use maps as well as 10 meter air temperature, surface wind, PBL mean difference heights, NOx, ozone, and O3+NO2 plots as well as spatial growth model outputs are included. Emissions and general air quality modeling are also discussed.
Galaxy Classification using Machine Learning
NASA Astrophysics Data System (ADS)
Fowler, Lucas; Schawinski, Kevin; Brandt, Ben-Elias; widmer, Nicole
2017-01-01
We present our current research into the use of machine learning to classify galaxy imaging data with various convolutional neural network configurations in TensorFlow. We are investigating how five-band Sloan Digital Sky Survey imaging data can be used to train on physical properties such as redshift, star formation rate, mass and morphology. We also investigate the performance of artificially redshifted images in recovering physical properties as image quality degrades.
ERIC Educational Resources Information Center
2002
This testimony provides an overview of health and environmental issues in U.S. schools and describes efforts by the Environmental Protection Agency (EPA), in concert with other federal agencies, to help schools address environmental issues. These include the Clear Skies Initiative, Indoor Air Quality Tools for Schools, High Performance Schools,…