Science.gov

Sample records for skyrme siii force

  1. Gd isotope systematics with Skyrme and {delta}-pairing forces

    SciTech Connect

    Baran, A.; Hoehenberger, W.

    1996-04-01

    Assuming axial symmetry of the nuclear shape and the Skyrme force SIII updated on the pairing interaction {ital V}{sub 0}{delta}({ital r}{searrow}{sub 12}) we performed constrained Hartree-Fock calculations of well deformed even gadolinium {sub 64}Gd isotopes with neutron numbers {ital N}=86{endash}106. The mass spectrum, nuclear radii, neutron skin thickness, quadrupole moments (deformations), and low-spin rotational levels are calculated. In all the cases viewed the angular momentum projection after variation was performed. This was achieved by explicit inclusion of the rotational energy {minus}{l_angle}{cflx {sq_bullet}}{sup 2}{r_angle}/2J. The procedure corrects the ground state deformations and gives deformations and energies of low excited states as well. The results found have all been compared to experimental data. {copyright} {ital 1996 The American Physical Society.}

  2. Skyrme tensor force in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Stevenson, P. D.; Suckling, E. B.; Fracasso, S.; Barton, M. C.; Umar, A. S.

    2016-05-01

    Background: It is generally acknowledged that the time-dependent Hartree-Fock (TDHF) method provides a useful foundation for a fully microscopic many-body theory of low-energy heavy ion reactions. The TDHF method is also known in nuclear physics in the small-amplitude domain, where it provides a useful description of collective states, and is based on the mean-field formalism, which has been a relatively successful approximation to the nuclear many-body problem. Currently, the TDHF theory is being widely used in the study of fusion excitation functions, fission, and deep-inelastic scattering of heavy mass systems, while providing a natural foundation for many other studies. Purpose: With the advancement of computational power it is now possible to undertake TDHF calculations without any symmetry assumptions and incorporate the major strides made by the nuclear structure community in improving the energy density functionals used in these calculations. In particular, time-odd and tensor terms in these functionals are naturally present during the dynamical evolution, while being absent or minimally important for most static calculations. The parameters of these terms are determined by the requirement of Galilean invariance or local gauge invariance but their significance for the reaction dynamics have not been fully studied. This work addresses this question with emphasis on the tensor force. Method: The full version of the Skyrme force, including terms arising only from the Skyrme tensor force, is applied to the study of collisions within a completely symmetry-unrestricted TDHF implementation. Results: We examine the effect on upper fusion thresholds with and without the tensor force terms and find an effect on the fusion threshold energy of the order several MeV. Details of the distribution of the energy within terms in the energy density functional are also discussed. Conclusions: Terms in the energy density functional linked to the tensor force can play a non

  3. Skyrme forces versus relativistic models: Reexamining instabilities

    SciTech Connect

    Dutra, M.; Lourenco, O.; Delfino, A.; Sa Martins, J. S.; Providencia, C.; Avancini, S. S.; Menezes, D. P.

    2008-03-15

    Experimental constraints are useful tools in helping to decide, among a number of candidates, which is the more suitable equation of state for nuclear matter. In this work we compare nonrelativistic Skyrme-type and relativistic Walecka-type models when they are used to describe processes related to binary system instabilities and phases coexistence. In general, nonrelativistic and relativistic models predict somewhat different behaviors, but we found that one of the parametrizations of the density-dependent hadronic model shows some similarities with nonrelativistic models in many of the features addressed in our investigation. We have checked that, once experimental data obtained in heavy-ion collisions are extrapolated to account for symmetric and neutron matter, some of the models discussed in the present work, both relativistic and nonrelativistic, should be ruled out.

  4. Comparative study of fusion barriers using Skyrme interactions and the energy density functional

    NASA Astrophysics Data System (ADS)

    Ghodsi, O. N.; Torabi, F.

    2015-12-01

    Using different Skyrme interactions, we have carried out a comparative analysis of fusion barriers for a wide range of interacting nuclei in the framework of semiclassical Skyrme energy density formalism. The results of our calculations reveal that SVI, SII, and SIII Skyrme forces are able to reproduce the empirical values of barrier heights with higher accuracy than the other considered forces in this formalism. It is also shown that the calculated nucleus-nucleus potentials derived from such Skyrme interactions are able to explain the fusion cross sections at energies near and above the barrier.

  5. Hyperon puzzle of neutron stars with Skyrme force models

    NASA Astrophysics Data System (ADS)

    Lim, Yeunhwan; Hyun, Chang Ho; Kwak, Kyujin; Lee, Chang-Hwan

    2015-12-01

    We consider the so-called hyperon puzzle of neutron star (NS). We employ Skyrme force models for the description of in-medium nucleon-nucleon (NN), nucleon-Lambda hyperon (NΛ) and Lambda-Lambda (ΛΛ) interactions. A phenomenological finite-range force (FRF) for the ΛΛ interaction is considered as well. Equation of state (EoS) of NS matter is obtained in the framework of density functional theory, and Tolman-Oppenheimer-Volkoff (TOV) equations are solved to obtain the mass-radius relations of NSs. It has been generally known that the existence of hyperons in the NS matter is not well supported by the recent discovery of large-mass NSs (M ≃ 2M⊙) since hyperons make the EoS softer than the one without them. For the selected interaction models, NΛ interactions reduce the maximum mass of NS by about 30%, while ΛΛ interactions can give about 10% enhancement. Consequently, we find that some Skyrme force models predict the maximum mass of NS consistent with the observation of 2M⊙ NSs, and at the same time satisfy observationally constrained mass-radius relations.

  6. Self-consistent separable random-phase approximation for Skyrme forces: Giant resonances in axial nuclei

    SciTech Connect

    Nesterenko, V. O.; Dolci, D. S.; Kleinig, W.; Kvasil, J.; Vesely, P.; Reinhard, P.-G.

    2006-12-15

    We formulate the self-consistent separable random phase approximation (SRPA) method and specify it for Skyrme forces with pairing for the case of axially symmetric deformed nuclei. The factorization of the residual interaction allows diagonalization of high-ranking RPA matrices to be avoided, which dramatically reduces the computational expense. This advantage is crucial for the systems with a huge configuration space, first of all for deformed nuclei. SRPA self-consistently takes into account the contributions of both time-even and time-odd Skyrme terms as well as of the Coulomb force and pairing. The method is implemented to describe isovector E1 and isoscalar E2 giant resonances in a representative set of deformed nuclei: {sup 154}Sm, {sup 238}U, and {sup 254}No. Four different Skyrme parameterizations (SkT6, SkM*, SLy6, and SkI3) are employed to explore the dependence of the strength distributions on some basic characteristics of the Skyrme functional and nuclear matter. In particular, we discuss the role of isoscalar and isovector effective masses and their relation to time-odd contributions. The high sensitivity of the right flank of E1 resonance to different Skyrme forces and the related artificial structure effects are analyzed.

  7. Description of elastic polarized-deuteron scattering in the optical model with Skyrme forces

    NASA Astrophysics Data System (ADS)

    Pilipenko, V. V.; Kuprikov, V. I.

    2015-07-01

    Microscopic deuteron-nucleus optical potential was constructed on the basis of the nucleon-nucleus optical potentials recently obtained by the authors from approximate calculations of the mass operator of the single-particle Green function using the Skyrme forces, which in general involve additional density- and momentum-dependent terms. Both the nucleon- and deuteron-nucleus elastic scattering processes are described in a self-consistent approach using the effective nucleon-nucleon forces, which simultaneously provide a satisfactory description of nuclear structure. The calculations performed using the Watanabe-type approximation have made it possible to obtain reasonable results for describing differential cross sections and polarization observables for the elastic deuteron scattering in a wide range of target-nucleus mass numbers at different incident deuteron energies, when using several Skyrme-force variants both from literature and proposed by the authors. Contributions to elastic deuteron-nucleus scattering cross sections coming from the effects of deuteron virtual breakup have been estimated in the continuum-discretized coupled channels approach.

  8. Physical Origin of Density Dependent Force of the Skyrme Type within the Quark Meson Coupling Model

    SciTech Connect

    Pierre Guichon; Hrayr Matevosyan; N. Sandulescu; Anthony Thomas

    2006-03-17

    A density dependent, effective nucleon-nucleon force of the Skyrme type is derived from the quark-meson coupling model--a self-consistent, relativistic quark level description of nuclear matter. This new formulation requires no assumption that the mean scalar field is small and hence constitutes a significant advance over earlier work. The similarity of the effective interaction to the widely used SkM* force encourages us to apply it to a wide range of nuclear problems, beginning with the binding energies and charge distributions of doubly magic nuclei. Finding impressive results in this conventional arena, we apply the same effective interaction, within the Hartree-Fock-Bogoliubov approach, to the properties of nuclei far from stability. The resulting two neutron drip lines and shell quenching are quite satisfactory. Finally, we apply the relativistic formulation to the properties of dense nuclear matter in anticipation of future application to the properties of neutron stars.

  9. Electrophysiological mechanisms of the SI SII SIII electrocardiographic morphology

    SciTech Connect

    Bayes de Luna, A.; Carrio, I.; Subirana, M.T.; Torner, P.; Cosin, J.; Sagues, F.; Guindo, J.

    1987-01-01

    We studied three groups of individuals by means of spatial-velocity electrocardiograms and thallium-201 myocardial imaging to figure out the electrophysiological explanation of the SI SII SIII electrocardiographic morphology. We studied twelve healthy individuals without SI SII SIII, seven healthy individuals with SI SII SIII and fifteen patients with chronic obstructive pulmonary disease with SI SII SIII. The average values of the QRS-E and QRS-F intervals were higher in the second and third groups than in the first. One patient of the second group and thirteen of the third showed right ventricular enlargement. The slowing down of the right ventricular conduction explained the SI SII SIII morphology in normal individuals in more than half the cases. In patients with chronic obstructive pulmonary disease with SI SII SIII the conduction delay plays an important part in the electrogenesis of the right ventricular enlargement electrocardiographic morphology. We think that these observations can give further data about the electrophysiologic mechanism of the SI SII SIII morphology.

  10. Bimodal Fission in the Skyrme-Hartree-Fock Approach

    SciTech Connect

    Staszczak, A.; Dobaczewski, J.; Nazarewicz, Witold

    2007-01-01

    Spontaneous fission properties of 256Fm, 258Fm, and 260Fm isotopes are studied within the Skyrme-Hartree-Fock+BCS framework. In the particle-hole channel we take the Skyrme SkM* effective force, while in the particle-particle channel we employ the seniority pairing interaction. Three static fission paths for all investigated heavy fermium isotopes are found. The analysis of these fission modes allows to describe observed asymmetric fission of 256Fm, as well as bimodal fission of 258Fm and symmetric fission in 260Fm.

  11. COMPARISON OF SELF-CONSISTENT SKYRME AND GOGNY CALCULATIONS FOR LIGHT Hg ISOTOPES

    SciTech Connect

    Warda, Michal J; Prochniak, L.; Staszczak, Andrzej

    2010-01-01

    The ground-state properties of neutron-deficient Hg isotopes have been investigated by the constrained self-consistent Hartree-Fock-Bogoliubov approach with the Skyrme and Gogny effective forces. In the case of the Skyrme interaction we have also applied the Hartree-Fock+BCS model with the state-dependent {delta}-pairing interaction. Potential energy surfaces and pairing properties have been compared for the both types of forces.

  12. Spectral luminosity indicators in Type Ia supernovae. Understanding the (SiII) line-strength ratio and beyond

    NASA Astrophysics Data System (ADS)

    Hachinger, Stephan; Mazzali, Paolo A.; Tanaka, Masaomi; Hillebrandt, Wolfgang; Benetti, Stefano

    2008-09-01

    Type Ia supernovae (SNe Ia) are good distance indicators because the shape of their light curves, which can be measured independently of distance, varies smoothly with luminosity. This suggests that SNe Ia are a single family of events. Similar correlations are observed between luminosity and spectral properties. In particular, the ratio of the strengths of the SiII λ5972 and λ6355 lines, known as (SiII), was suggested as a potential luminosity indicator. Here, the physical reasons for the observed correlation are investigated. A Monte Carlo code is used to construct a sequence of synthetic spectra resembling those of SNe with different luminosities near B maximum. The influence of abundances and of ionization and excitation conditions on the synthetic spectral features is investigated. The ratio (SiII) depends essentially on the strength of SiII λ5972, because SiII λ6355 is saturated. In less luminous objects, SiII λ5972 is stronger because of a rapidly increasing SiII/SiIII ratio. Thus, the correlation between (SiII) and luminosity is the effect of ionization balance. The SiII λ5972 line itself may be the best spectroscopic luminosity indicator for SNe Ia, but all indicators discussed show scatter which may be related to abundance distributions.

  13. Loosening up the Skyrme model

    NASA Astrophysics Data System (ADS)

    Gudnason, Sven Bjarke

    2016-03-01

    We consider the Skyrme model with the addition of extra scalar potentials that decrease the classical binding energies of the Skyrmions to about the 3% level—without altering the pion mass—if we insist on keeping platonic symmetries that are usually possessed by Skyrmions. A side effect of the potentials under consideration is the smaller size of the 1-Skyrmion resulting in a smaller moment of inertia and in turn a larger spin contribution to the energy upon semiclassical quantization. After taking into account the quantum contributions we find total binding energies at the 6% level.

  14. Black hole Skyrmion in a generalized Skyrme model

    NASA Astrophysics Data System (ADS)

    Gudnason, Sven Bjarke; Nitta, Muneto; Sawado, Nobuyuki

    2016-09-01

    We study a Skyrme-like model with the Skyrme term and a sixth-order derivative term as higher-order terms, coupled to gravity and we construct Schwarzschild black hole Skyrme hair. We find, surprisingly, that the sixth-order derivative term alone cannot stabilize the black hole hair solutions; the Skyrme term with a large enough coefficient is a necessity.

  15. Baby Skyrme models without a potential term

    NASA Astrophysics Data System (ADS)

    Ashcroft, Jennifer; Haberichter, Mareike; Krusch, Steffen

    2015-05-01

    We develop a one-parameter family of static baby Skyrme models that do not require a potential term to admit topological solitons. This is a novel property as the standard baby Skyrme model must contain a potential term in order to have stable soliton solutions, though the Skyrme model does not require this. Our new models satisfy an energy bound that is linear in terms of the topological charge and can be saturated in an extreme limit. They also satisfy a virial theorem that is shared by the Skyrme model. We calculate the solitons of our new models numerically and observe that their form depends significantly on the choice of parameter. In one extreme, we find compactons while at the other there is a scale invariant model in which solitons can be obtained exactly as solutions to a Bogomolny equation. We provide an initial investigation into these solitons and compare them with the baby Skyrmions of other models.

  16. Second-order equation of state with the Skyrme interaction: Cutoff and dimensional regularization with the inclusion of rearrangement terms

    NASA Astrophysics Data System (ADS)

    Yang, C. J.; Grasso, M.; Roca-Maza, X.; Colò, G.; Moghrabi, K.

    2016-09-01

    We evaluate the second-order (beyond-mean-field) contribution to the equation of state of nuclear matter with the effective Skyrme force and use cutoff and dimensional regularizations to treat the ultraviolet divergence produced by the zero-range character of this interaction. An adjustment of the force parameters is then performed in both cases to remove any double counting generated by the explicit computation of beyond-mean-field corrections with the Skyrme force. In addition, we include at second order the rearrangement terms associated with the density-dependent part of the Skyrme force and discuss their effect. Sets of parameters are proposed to define new effective forces which are specially designed for second-order calculations in nuclear matter.

  17. Gauged multisoliton baby Skyrme model

    NASA Astrophysics Data System (ADS)

    Samoilenka, A.; Shnir, Ya.

    2016-03-01

    We present a study of U (1 ) gauged modification of the 2 +1 -dimensional planar Skyrme model with a particular choice of the symmetry breaking potential term which combines a short-range repulsion and a long-range attraction. In the absence of the gauge interaction, the multisolitons of the model are aloof, as they consist of the individual constituents which are well separated. A peculiar feature of the model is that there are usually several different stable static multisoliton solutions of rather similar energy in a topological sector of given degree. We investigate the pattern of the solutions and find new previously unknown local minima. It is shown that coupling of the aloof planar multi-Skyrmions to the magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, their energies, and magnetic fluxes on the strength of the gauge coupling. It is found that, generically, in the strong coupling limit, the coupling to the gauge field results in effective recovery of the rotational invariance of the configuration.

  18. A Skyrme-like model with an exact BPS bound

    NASA Astrophysics Data System (ADS)

    Ferreira, L. A.; Zakrzewski, Wojtek J.

    2013-09-01

    We propose a new Skyrme-like model with fields taking values on the sphere S 3 or, equivalently, on the group SU(2). The action of the model contains a quadratic kinetic term plus a quartic term which is the same as that of the Skyrme-Faddeev model. The novelty of the model is that it possess a first order Bogomolny type equation whose solutions automatically satisfy the second order Euler-Lagrange equations. It also possesses a lower bound on the static energy which is saturated by the Bogomolny solutions. Such Bogomolny equation is equivalent to the so-called force free equation used in plasma and solar Physics, and which possesses large classes of solutions. An old result due to Chandrasekhar prevents the existence of finite energy solutions for the force free equation on the entire three-dimensional space . We construct new exact finite energy solutions to the Bogomolny equations for the case where the space is the three-sphere S 3, using toroidal like coordinates.

  19. Skyrme-Einstein closed cosmic chiral strings

    SciTech Connect

    Rybakov, Yu. P. Ivanova, I. S.

    2007-07-15

    Within the theory of general relativity, the configuration of a closed string (vortex) characterized by a topological charge of the degree type is described for the Skyrme-Einstein SU (2) chiral model. In the approximation of a large vortex-closure radius (a), a solution to equations of motion is obtained, along with estimates for the vortex energy and radius.

  20. Self-consistent RPA calculations with Skyrme-type interactions: The skyrme_rpa program

    NASA Astrophysics Data System (ADS)

    Colò, Gianluca; Cao, Ligang; Van Giai, Nguyen; Capelli, Luigi

    2013-01-01

    the Random Phase Approximation (RPA). This work provides a tool where one starts from an assumed form of nuclear effective interaction (the Skyrme forces) and builds the self-consistent Hartree-Fock mean field of a given nucleus, and then the RPA multipole excitations of that nucleus. Solution method: The Hartree-Fock (HF) equations are solved in a radial mesh, using a Numerov algorithm. The solutions are iterated until self-consistency is achieved (in practice, when the energy eigenvalues are stable within a desired accuracy). In the obtained mean field, unoccupied states necessary for the RPA calculations are found. For all single-particle states, box boundary conditions are assumed. To solve the RPA problem for a given value of total angular momentum and parity Jπ a coupled basis is constructed and the RPA matrix is diagonalized (protons and neutrons are treated explicitly, and no approximation related to the use of isospin formalism is introduced). The transition amplitudes and transition strengths associated to given external operators are calculated. The HF densities and RPA transition densities are also evaluated. Restrictions: The main restrictions are related to the assumed spherical symmetry and absence of pairing correlations. Running time: The typical running time depends strongly on the nucleus, on the multipolarity, on the choice of the model space and of course on the computer. It can vary from a few minutes to several hours.

  1. Nuclear Mass Predictions within the Skyrme HFB Theory

    SciTech Connect

    Samyn, M.; Goriely, S.; Pearson, J.M.

    2005-05-24

    To increase the reliability of predictions of highly neutron-rich nuclear masses we systematically analyze the sensitivity of Hartree-Fock-Bogoliubov (HFB) mass formulae to various physical inputs, such as a density dependence of the pairing interaction, a low effective mass, the particle-number projection, the symmetry energy, ... We typically use a 10-parameter Skyrme force and a 4-parameter {delta}-function pairing force. The 14 degrees of freedom are adjusted to the masses of all measured nuclei with N,Z {>=} 8 given in the 2001 and 2003 Audi et al. compilations. The masses of light and proton-rich nuclei are corrected by a 4-parameter phenomenological Wigner term. With more than ten such parameter sets complete mass tables are constructed, going from one drip line to the other, up to Z = 120.

  2. Nuclear Mass Predictions within the Skyrme HFB Theory

    NASA Astrophysics Data System (ADS)

    Samyn, M.; Goriely, S.; Pearson, J. M.

    2005-05-01

    To increase the reliability of predictions of highly neutron-rich nuclear masses we systematically analyze the sensitivity of Hartree-Fock-Bogoliubov (HFB) mass formulae to various physical inputs, such as a density dependence of the pairing interaction, a low effective mass, the particle-number projection, the symmetry energy, … We typically use a 10-parameter Skyrme force and a 4-parameter δ-function pairing force. The 14 degrees of freedom are adjusted to the masses of all measured nuclei with N,Z ⩾ 8 given in the 2001 and 2003 Audi et al. compilations. The masses of light and proton-rich nuclei are corrected by a 4-parameter phenomenological Wigner term. With more than ten such parameter sets complete mass tables are constructed, going from one drip line to the other, up to Z = 120.

  3. Analysis of volatile lunar compounds: The study of gas retention time on Carbosieve SIII adsorbent with respect to temperature

    NASA Astrophysics Data System (ADS)

    Aseev, S. A.; Gerasimov, M. V.; Zaitsev, M. A.; Sapgir, A. G.

    2016-09-01

    This work presents the study of the characteristic retention times on Carbosieve SIII adsorbent for several permanent gases CO2, CO, CH4, N2 with respect to the temperature of cooling of adsorption accumulators. To perform this work, a laboratory model of a gas chromatograph that included all key components of a standard instrument has been designed.

  4. Fission Half Lives of Fermium Isotopes Within Skyrme Hartree-Fock Theory

    NASA Astrophysics Data System (ADS)

    Baran, A.; Staszczak, A.; Nazarewicz, W.

    Nuclear fission barriers, mass parameters and spontaneous fission half lives of fermium isotopes calculated in a framework of the Skyrme Hartree-Fock-Bogoliubov model with the SkM* force are discussed. Zero-point energy corrections in the ground state are determined for each nucleus using the Gaussian overlap approximation of the generator coordinate method and in the cranking formalism. Results of spontaneous fission half lives are compared to experimental data.

  5. FISSION HALF LIVES OF FERMIUM ISOTOPES WITHIN SKYRME HARTREE-FOCK-BOGOLIUBOV THEORY

    SciTech Connect

    Baran, A.; Staszczak, Andrzej; Nazarewicz, A.

    2011-01-01

    Nuclear fission barriers, mass parameters and spontaneous fission half lives of fermium isotopes calculated in a framework of the Skyrme Hartree-Fock-Bogoliubov model with the SkM* force are discussed. Zero-point energy corrections in the ground state are determined for each nucleus using the Gaussian overlap approximation of the generator coordinate method and in the cranking formalism. Results of spontaneous fission half lives are compared to experimental data.

  6. Isovector splitting of nucleon effective masses, ab initio benchmarks and extended stability criteria for Skyrme energy functionals

    SciTech Connect

    Lesinski, T.; Meyer, J.

    2006-10-15

    We study the effect of the splitting of neutron and proton effective masses with isospin asymmetry on the properties of the Skyrme energy density functional. We discuss the ability of the latter to predict observables of infinite matter and finite nuclei, paying particular attention to controlling the agreement with ab initio predictions of the spin-isospin content of the nuclear equation of state, as well as diagnosing the onset of finite size instabilities, which we find to be of critical importance. We show that these various constraints cannot be simultaneously fulfilled by the standard Skyrme force, calling at least for an extension of its P-wave part.

  7. Skyrme-like models and supersymmetry in 3 +1 dimensions

    NASA Astrophysics Data System (ADS)

    Queiruga, J. M.

    2015-11-01

    We construct supersymmetric extensions for different Skyrme-like models in 3 +1 dimensions. BPS equations and BPS bounds are obtained from supersymmetry in some cases. We discuss also the emergence of several Skyrme-like models from supersymmetric Yang-Mills theory and Born-Infeld theory in 5 dimensions.

  8. Baby Skyrme model, near-BPS approximations, and supersymmetric extensions

    NASA Astrophysics Data System (ADS)

    Bolognesi, S.; Zakrzewski, W.

    2015-02-01

    We study the baby Skyrme model as a theory that interpolates between two distinct BPS systems. For this, a near-BPS approximation can be used when there is a small deviation from each of the two BPS limits. We provide analytical explanation and numerical support for the validity of this approximation. We then study the set of all possible supersymmetric extensions of the baby Skyrme model with N =1 and the particular ones with extended N =2 supersymmetries and relate this to the above mentioned almost-BPS approximation.

  9. Skyrme models and nuclear matter equation of state

    NASA Astrophysics Data System (ADS)

    Adam, C.; Haberichter, M.; Wereszczynski, A.

    2015-11-01

    We investigate the role of pressure in a class of generalized Skyrme models. We introduce pressure as the trace of the spatial part of the energy-momentum tensor and show that it obeys the usual thermodynamical relation. Then, we compute analytically the mean-field equation of state in the high- and medium-pressure regimes by applying topological bounds on compact domains. The equation of state is further investigated numerically for the charge-one Skyrmions. We identify which term in a generalized Skyrme model is responsible for which part in the equation of state. Further, we compare our findings with the corresponding results in the Walecka model.

  10. A new phase diagram of water under negative pressure: The rise of the lowest-density clathrate s-III.

    PubMed

    Huang, Yingying; Zhu, Chongqin; Wang, Lu; Cao, Xiaoxiao; Su, Yan; Jiang, Xue; Meng, Sheng; Zhao, Jijun; Zeng, Xiao Cheng

    2016-02-01

    Ice and ice clathrate are not only omnipresent across polar regions of Earth or under terrestrial oceans but also ubiquitous in the solar system such as on comets, asteroids, or icy moons of the giant planets. Depending on the surrounding environment (temperature and pressure), ice alone exhibits an exceptionally rich and complicated phase diagram with 17 known crystalline polymorphs. Water molecules also form clathrate compounds with inclusion of guest molecules, such as cubic structure I (s-I), cubic structure II (s-II), hexagonal structure H (s-H), tetragonal structure T (s-T), and tetragonal structure K (s-K). Recently, guest-free clathrate structure II (s-II), also known as ice XVI located in the negative-pressure region of the phase diagram of water, is synthesized in the laboratory and motivates scientists to reexamine other ice clathrates with low density. Using extensive Monte Carlo packing algorithm and dispersion-corrected density functional theory optimization, we predict a crystalline clathrate of cubic structure III (s-III) composed of two large icosihexahedral cavities (8(6)6(8)4(12)) and six small decahedral cavities (8(2)4(8)) per unit cell, which is dynamically stable by itself and can be fully stabilized by encapsulating an appropriate guest molecule in the large cavity. A new phase diagram of water ice with TIP4P/2005 (four-point transferable intermolecular potential/2005) model potential is constructed by considering a variety of candidate phases. The guest-free s-III clathrate with ultralow density overtakes s-II and s-H phases and emerges as the most stable ice polymorph in the pressure region below -5834 bar at 0 K and below -3411 bar at 300 K. PMID:26933681

  11. A new phase diagram of water under negative pressure: The rise of the lowest-density clathrate s-III

    PubMed Central

    Huang, Yingying; Zhu, Chongqin; Wang, Lu; Cao, Xiaoxiao; Su, Yan; Jiang, Xue; Meng, Sheng; Zhao, Jijun; Zeng, Xiao Cheng

    2016-01-01

    Ice and ice clathrate are not only omnipresent across polar regions of Earth or under terrestrial oceans but also ubiquitous in the solar system such as on comets, asteroids, or icy moons of the giant planets. Depending on the surrounding environment (temperature and pressure), ice alone exhibits an exceptionally rich and complicated phase diagram with 17 known crystalline polymorphs. Water molecules also form clathrate compounds with inclusion of guest molecules, such as cubic structure I (s-I), cubic structure II (s-II), hexagonal structure H (s-H), tetragonal structure T (s-T), and tetragonal structure K (s-K). Recently, guest-free clathrate structure II (s-II), also known as ice XVI located in the negative-pressure region of the phase diagram of water, is synthesized in the laboratory and motivates scientists to reexamine other ice clathrates with low density. Using extensive Monte Carlo packing algorithm and dispersion-corrected density functional theory optimization, we predict a crystalline clathrate of cubic structure III (s-III) composed of two large icosihexahedral cavities (8668412) and six small decahedral cavities (8248) per unit cell, which is dynamically stable by itself and can be fully stabilized by encapsulating an appropriate guest molecule in the large cavity. A new phase diagram of water ice with TIP4P/2005 (four-point transferable intermolecular potential/2005) model potential is constructed by considering a variety of candidate phases. The guest-free s-III clathrate with ultralow density overtakes s-II and s-H phases and emerges as the most stable ice polymorph in the pressure region below −5834 bar at 0 K and below −3411 bar at 300 K. PMID:26933681

  12. A new phase diagram of water under negative pressure: The rise of the lowest-density clathrate s-III.

    PubMed

    Huang, Yingying; Zhu, Chongqin; Wang, Lu; Cao, Xiaoxiao; Su, Yan; Jiang, Xue; Meng, Sheng; Zhao, Jijun; Zeng, Xiao Cheng

    2016-02-01

    Ice and ice clathrate are not only omnipresent across polar regions of Earth or under terrestrial oceans but also ubiquitous in the solar system such as on comets, asteroids, or icy moons of the giant planets. Depending on the surrounding environment (temperature and pressure), ice alone exhibits an exceptionally rich and complicated phase diagram with 17 known crystalline polymorphs. Water molecules also form clathrate compounds with inclusion of guest molecules, such as cubic structure I (s-I), cubic structure II (s-II), hexagonal structure H (s-H), tetragonal structure T (s-T), and tetragonal structure K (s-K). Recently, guest-free clathrate structure II (s-II), also known as ice XVI located in the negative-pressure region of the phase diagram of water, is synthesized in the laboratory and motivates scientists to reexamine other ice clathrates with low density. Using extensive Monte Carlo packing algorithm and dispersion-corrected density functional theory optimization, we predict a crystalline clathrate of cubic structure III (s-III) composed of two large icosihexahedral cavities (8(6)6(8)4(12)) and six small decahedral cavities (8(2)4(8)) per unit cell, which is dynamically stable by itself and can be fully stabilized by encapsulating an appropriate guest molecule in the large cavity. A new phase diagram of water ice with TIP4P/2005 (four-point transferable intermolecular potential/2005) model potential is constructed by considering a variety of candidate phases. The guest-free s-III clathrate with ultralow density overtakes s-II and s-H phases and emerges as the most stable ice polymorph in the pressure region below -5834 bar at 0 K and below -3411 bar at 300 K.

  13. Baryonic torii: Toroidal baryons in a generalized Skyrme model

    NASA Astrophysics Data System (ADS)

    Gudnason, Sven Bjarke; Nitta, Muneto

    2015-02-01

    We study a Skyrme-type model with a potential term motivated by Bose-Einstein condensates (BECs), which we call the BEC Skyrme model. We consider two flavors of the model: the first is the Skyrme model, and the second has a sixth-order derivative term instead of the Skyrme term, both with the added BEC-motivated potential. The model contains toroidally shaped Skyrmions, and they are characterized by two integers P and Q , representing the winding numbers of two complex scalar fields along the toroidal and poloidal cycles of the torus, respectively. The baryon number is B =P Q . We find stable Skyrmion solutions for P =1 ,2 ,3 ,4 ,5 with Q =1 , while for P =6 and Q =1 , it is only metastable. We further find that configurations with higher Q >1 are all unstable and split into Q configurations with Q =1 . Finally we discover a phase transition, possibly of first order, in the mass parameter of the potential under study.

  14. Structure of topological solitons in the Skyrme model

    SciTech Connect

    Kozhevnikov, I.R.; Rybakov, Yu.P.; Fomin, M.B.

    1988-12-01

    The types of invariant configurations admitted by the field equations in four-dimensional SU(2) chiral models are studied. It is shown that in the Skyrme model in the second and higher homotopy classes the fields that realize an absolute minimum of the energy are axisymmetric, while those in the first class are spherically symmetric.

  15. Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XII. Stiffness and stability of neutron-star matter

    SciTech Connect

    Goriely, S.; Chamel, N.; Pearson, J. M.

    2010-09-15

    We construct three new Hartree-Fock-Bogoliubov (HFB) mass models, labeled HFB-19, HFB-20, and HFB-21, with unconventional Skyrme forces containing t{sub 4} and t{sub 5} terms, i.e., density-dependent generalizations of the usual t{sub 1} and t{sub 2} terms, respectively. The new forces underlying these models are fitted respectively to three different realistic equations of state of neutron matter for which the density dependence of the symmetry energy ranges from the very soft to the very stiff, reflecting thereby our present lack of complete knowledge of the high-density behavior of nuclear matter. All unphysical instabilities of nuclear matter, including the transition to a polarized state in neutron-star matter, are eliminated with the new forces. At the same time the new models fit essentially all the available mass data with rms deviations of 0.58 MeV and give the same high-quality fits to measured charge radii that we obtained in earlier models with conventional Skyrme forces. Being constrained by neutron matter, these new mass models, which all give similar extrapolations out to the neutron drip line, are highly appropriate for studies of the r process and the outer crust of neutron stars. Moreover, the underlying forces, labeled BSk19, BSk20 and BSk21, respectively, are well adapted to the study of the inner crust and core of neutron stars. The new family of Skyrme forces thus opens the way to a unified description of all regions of neutron stars.

  16. Skyrme-Hartree-Fock-Bogoliubov nuclear mass formulas: crossing the 0.6 MeV accuracy threshold with microscopically deduced pairing.

    PubMed

    Goriely, S; Chamel, N; Pearson, J M

    2009-04-17

    We present a new Skyrme-Hartree-Fock-Bogoliubov nuclear-mass model in which the contact-pairing force is constructed from microscopic pairing gaps of symmetric nuclear matter and neutron matter calculated from realistic two- and three-body forces, with medium-polarization effects included. With the pairing being treated more realistically than in any of our earlier models, the rms deviation with respect to essentially all the available mass data falls to 0.581 MeV, the best value ever found within the mean-field framework. Since our Skyrme force is also constrained by the properties of pure neutron matter, this new model is particularly well suited for application to astrophysical problems involving a neutron-rich environment, such as the elucidation of the r process of nucleosynthesis, and the description of supernova cores and neutron-star crusts. PMID:19518625

  17. Effect of the tensor part of Skyrme interaction on the description of elastic nucleon-nucleus scattering on the basis of the optical model

    SciTech Connect

    Kuprikov, V. I.; Pilipenko, V. V.

    2013-01-15

    A microscopic optical nucleon-nucleus potential constructed on the basis of calculating the mass operator for the single-particle Green's function with Skyrme nucleon-nucleon forces was used to study the effect of the tensor part of Skyrme forces on describing differential cross sections for elastic nucleon-nucleus scattering and the structure of nuclei within a self-consistent approach. It was shown that an increase in the tensor terms of nucleon-nucleon forces impaired the description of nucleon-nucleus scattering within the model being considered. The parameters of Skyrme forces were optimized on the basis of an analysis of cross sections for neutron-nucleus scattering, the properties of nuclear matter and the structure of nuclei being tested in doing this. This optimization led to nucleon-nucleon force versions where the tensor part was small or zero and which described satisfactorily the structure of nuclei and cross sections for elastic neutron and proton scattering on nuclei over a broad range of target mass numbers.

  18. Genesis and evolution of the Skyrme model from 1954 to the present

    SciTech Connect

    San Yuk, V.I. . Dept. of Physics)

    1992-01-10

    Not widely known facts on the genesis of the Skyrme model are presented in a historical survey, based on Skyrme's earliest papers and on his own published remembrance. This paper considers the evolution of Skyrme's model description of nuclear matter from the Mesonic Fluid model up to its final version, known as the baryon model. We pay special tribute to some well-known ideas in contemporary particle physics which one can find in Skyrme's earlier papers, such as: Nuclear Democracy, the Solitonic Mechanism, the Nonlinear Realization of Chiral Symmetry, Topological Charges, Fermi-Bose Transmutations, etc. It is curious to note in the final version of the Skyrme model gleams of Kelvin's Vortex Atoms theory. In conclusion we make a brief analysis of the validity of Skyrme's conjectures in view of recent results and pinpoint some questions which still remain.

  19. Investigations of the Nature of Zn(II) -Si(II) Bonds.

    PubMed

    Schäfer, Sebastian; Köppe, Ralf; Roesky, Peter W

    2016-05-17

    A series of zinc(II) silylenes was prepared by using the silylene {PhC(NtBu)2 }(C5 Me5 )Si. Whereas reaction of the silylene with ZnX2 (X=Cl, I) gave the halide-bridged dimers [{PhC(NtBu)2 }(C5 Me5 )SiZnX(μ-X)]2 , with ZnR2 (R=Ph, Et, C6 F5 ) as reagent the monomers [{PhC(NtBu)2 }(C5 Me5 )SiZnR2 ] were obtained. The stability of the complexes and the Zn-Si bond lengths clearly depend on the substitution pattern of the zinc atom. Electron-withdrawing groups stabilize these adducts, whereas electron-donating groups destabilize them. This could be rationalized by quantum chemical calculations. Two different bonding modes in these molecules were identified, which are responsible for the differences in reactivity: 1) strong polar Zn-Si single bonds with short Zn-Si distances, Zn-Si force constants close to that of a classical single bond, and strong binding energy (ca. 2.39 Å, 1.33 mdyn Å(-1) , and 200 kJ mol(-1) ), which suggest an ion pair consisting of a silyl cation with a Zn-Si single bond; 2) relatively weak donor-acceptor Zn-Si bonds with long Zn-Si distances, low Zn-Si force constants, and weak binding energy (ca. 2.49 Å, 0.89 mdyn Å(-1) , and 115 kJ mol(-1) ), which can be interpreted as a silylene-zinc adduct.

  20. Hairy black holes in the general Skyrme model

    NASA Astrophysics Data System (ADS)

    Adam, C.; Kichakova, O.; Shnir, Ya.; Wereszczynski, A.

    2016-07-01

    We study the existence of hairy black holes in the generalized Einstein-Skyrme model. It is proven that in the Bogomol'nyi-Prasad-Sommerfield model limit there are no hairy black hole solutions, although the model admits gravitating (and flat space) solitons. Furthermore, we find strong evidence that a necessary condition for the existence of black holes with Skyrmionic hair is the inclusion of the Skyrme term L4. As an example, we show that there are no hairy black holes in the L2+L6+L0 model and present a new kind of black hole solutions with compact Skyrmion hair in the L4+L6+L0 model.

  1. Error estimates for the Skyrme-Hartree-Fock model

    NASA Astrophysics Data System (ADS)

    Erler, J.; Reinhard, P.-G.

    2015-03-01

    There are many complementary strategies to estimate the extrapolation errors of a model calibrated in least-squares fits. We consider the Skyrme-Hartree-Fock model for nuclear structure and dynamics and exemplify the following five strategies: uncertainties from statistical analysis, covariances between observables, trends of residuals, variation of fit data, and dedicated variation of model parameters. This gives useful insight into the impact of the key fit data as they consist of binding energies, charge rms radii, and charge formfactor. Amongst others, we check in particular the predictive value for observables in the stable nucleus 208Pb, the super-heavy element 266Hs, r-process nuclei, and neutron stars.

  2. Speed of sound in nuclear matter and Skyrme effective interactions

    SciTech Connect

    Su, R.K.; Kuo, T.T.S.

    1987-02-01

    Using a nuclear equation of state derived from a finite-temperature Green's function method and the Skyrme effective interactions SkI, SkIII and SkM*, the authors have calculated the speed of sound in symmetric nuclear matter. For certain densities and temperatures, this speed is found to become super-luminous. Causal boundaries in the density-temperature plane are determined, and they indicate that SkM* is a more desirable effective interaction than SkI and SkIII. Comparison with a similar calculation by Osnes and Strottman is made.

  3. Force.

    ERIC Educational Resources Information Center

    Gamble, Reed

    1989-01-01

    Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)

  4. Solitons in Skyrme - Faddeev spinor model and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Rybakov, Y.

    2016-07-01

    We discuss the possibility of unification of Skyrme and Faddeev approaches for the description of baryons and leptons respectively as topological solitons within the scope of 16-spinor model. The motivation for such a unification is based on a special 8- semispinor identity invented by the Italian geometrician F. Brioschi. This remarkable identity permits one to realize baryon or lepton states through the effect of spontaneous symmetry breaking emerging due to special structure of the Higgs potential in the model. At large distances from the particle - soliton small excitation of the vacuum satisfies Klein - Gordon equation with some mass that permits one to establish the correspondence with quantum mechanics in special stochastic representation of the wave function for extended particles - solitons. Finally, we illustrate the peculiar properties of stochastic representation by the famous T. Young's experiment with n slits in soliton realization.

  5. Topological phase transitions in the gauged BPS baby Skyrme model

    NASA Astrophysics Data System (ADS)

    Adam, C.; Naya, C.; Romanczukiewicz, T.; Sanchez-Guillen, J.; Wereszczynski, A.

    2015-05-01

    We demonstrate that the gauged BPS baby Skyrme model with a double vacuum potential allows for phase transitions from a non-solitonic to a solitonic phase, where the latter corresponds to a ferromagnetic liquid. Such a transition can be generated by increasing the external pressure P or by turning on an external magnetic field H. As a consequence, the topological phase where gauged BPS baby skyrmions exist, is a higher density phase. For smaller densities, obtained for smaller values of P and H, a phase without solitons is reached. We find the critical line in the P, H parameter space. Furthermore, in the soliton phase, we find the equation of state for the baby skyrmion matter V = V( P,H) at zero temperature, where V is the "volume", i.e., area of the solitons.

  6. Toroidal Superheavy Nuclei in Skyrme-Hartree-Fock Approach

    SciTech Connect

    Staszczak, A.; Wong, Cheuk-Yin

    2009-01-01

    Within the self-consistent constraint Skyrme-Hartree-Fock+BCS model (SHF+BCS), we found equilibrium toroidal nuclear density distributions in the region of superheavy elements. For nuclei with a sufficient oblate deformation (Q_{20} < -200 b), it becomes energetically favorable to change the genus of nuclear surface from 0 to 1, i.e., to switch the shape from a biconcave disc to a torus. The energy of the toroidal (genus=1) SHF+BCS solution relative to the compact (genus=0) ground state energy is strongly dependent both on the atomic number Z and the mass number A. We discuss the region of Z and A where the toroidal SHF+BCS total energy begins to be a global minimum.

  7. Determining a Skyrme-type effective interaction from realistic two-nucleon interaction

    SciTech Connect

    Manisa, K.

    2011-07-15

    The Variational Monte Carlo (VMC) method is employed to determine characteristics of symmetric and asymmetric nuclear matter. The realistic Urbana v14 nucleon-nucleon interaction potential of Lagaris and Pandharipande was used in the VMC calculations with addition of a phenomenological density-dependent term to simulate many-body interactions. A new Skyrme parameter set SKaan-U14 is found to consistently reproduce the characteristics of the nuclear matter obtained from VMC calculations. The properties of symmetric and asymmetric nuclear matter are calculated by the new Skyrme parameter set. The results obtained by using the new Skyrme parameter set are compared with results obtained by different Skyrme parameter sets in the literature.

  8. Collective Inertia and Fission Barriers Within the Skyrme-Hartree-Fock Theory

    SciTech Connect

    Baran, A.; Staszczak, A.; Dobaczewski, J.; Nazarewicz, Witold

    2007-01-01

    Spontaneous fission barriers, quadrupole inertia tensor, and zero-point quadrupole correlation energy are calculated for 252,256,258Fm in the framework of the self-consistent Skyrme-Hartree-Fock+BCS theory. Two ways of computing collective inertia are employed: the Gaussian Overlap Approximation to the Generator Coordinate Method and cranking ansatz. The Skyrme results are compared with those of the Gogny-Hartree-Fock-Bogoliubov model.

  9. Constraining the surface properties of effective Skyrme interactions

    NASA Astrophysics Data System (ADS)

    Jodon, R.; Bender, M.; Bennaceur, K.; Meyer, J.

    2016-08-01

    Background: Deformation energy surfaces map how the total binding energy of a nuclear system depends on the geometrical properties of intrinsic configurations, thereby providing a powerful tool to interpret nuclear spectroscopy and large-amplitude collective-motion phenomena such as fission. The global behavior of the deformation energy is known to be directly connected to the surface properties of the effective interaction used for its calculation. Purpose: The precise control of surface properties during the parameter adjustment of an effective interaction is key to obtain a reliable and predictive description of nuclear properties. The most relevant indicator is the surface-energy coefficient asurf. There are several possibilities for its definition and estimation, which are not fully equivalent and require a computational effort that can differ by orders of magnitude. The purpose of this study is threefold: first, to identify a scheme for the determination of asurf that offers the best compromise between robustness, precision, and numerical efficiency; second, to analyze the correlation between values for asurf and the characteristic energies of the fission barrier of 240Pu; and third, to lay out an efficient and robust procedure for how the deformation properties of the Skyrme energy density functional (EDF) can be constrained during the parameter fit. Methods: There are several frequently used possibilities to define and calculate the surface energy coefficient asurf of effective interactions built for the purpose of self-consistent mean-field calculations. The most direct access is provided by the model system of semi-infinite nuclear matter, but asurf can also be extracted from the systematics of binding energies of finite nuclei. Calculations can be carried out either self-consistently [Hartree-Fock (HF)], which incorporates quantal shell effects, or in one of the semiclassical extended Thomas-Fermi (ETF) or modified Thomas-Fermi (MTF) approximations. The

  10. Second RPA calculations with the Skyrme and Gogny interactions

    NASA Astrophysics Data System (ADS)

    Gambacurta, Danilo; Grasso, Marcella

    2016-07-01

    The Second Random Phase Approximation (SRPA) is a natural extension of RPA where more general excitation operators are introduced. These operators contain, in addition to the one particle-one hole configurations already considered in RPA, also two particle-two hole excitations. Only in the last years, large-scale SRPA calculations have been performed, showing the merits and limits of this approach. In the first part of this paper, we present an overview of recent applications of the SRPA based on the Skyrme and Gogny interactions. Giant resonances in 16O will be studied and their properties discussed by using different models. In particular, we will present the first applications of the SRPA model with the finite-range Gogny interaction, discussing the advantages and drawbacks of using such an interaction in this type of calculations. After that, some more recent results, obtained by using a subtraction procedure to overcome double-counting in the SRPA, will be discussed. We will show that this procedure leads to results that are weakly cutoff dependent and that a strong reduction of the SRPA downwards shift with respect to the RPA spectra is found. Moreover, applying this procedure for the first time in the Gogny-SRPA framework, we will show that this method is able to reduce the anomalous shift found in previous calculations and related to some proton-neutron matrix elements of the residual interaction.

  11. Solitons and black holes in a generalized Skyrme model with dilaton-quarkonium field

    SciTech Connect

    Doneva, Daniela D.; Stefanov, Ivan Zh.; Yazadjiev, Stoytcho S.

    2011-06-15

    Skyrme theory is among the viable effective theories which emerge from the low-energy limit of quantum chromodynamics. Many of its generalizations include also a dilaton. Here we find new self-gravitating solutions, both solitons and black holes, in a generalized Skyrme model in which a dilaton is present. The investigation of the properties of the solutions is done numerically. We find that the introduction of the dilaton in the theory does not change the picture qualitatively, only quantitatively. The model considered here has one free parameter more than the Einstein-Skyrme model which comes from the potential of the dilaton. We have applied also the turning point method to establish that one of the black-hole branches of solutions is unstable. The turning point method here is based on the first law of black-hole thermodynamics a detailed derivation of which is given in the Appendix of the paper.

  12. Bogomol'nyi-Prasad-Sommerfield Skyrme model and nuclear binding energies.

    PubMed

    Adam, C; Naya, C; Sanchez-Guillen, J; Wereszczynski, A

    2013-12-01

    We use the classical Bogomol'nyi-Prasad-Sommerfield (BPS) soliton solutions of the BPS Skyrme model together with corrections from the collective coordinate quantization of spin and isospin, the electrostatic Coulomb energies, and a small explicit breaking of the isospin symmetry-accounting for the proton-neutron mass difference-to calculate nuclear binding energies. We find that the resulting binding energies are already in excellent agreement with their physical values for heavier nuclei, demonstrating thereby that the BPS Skyrme model is a distinguished starting point for a detailed quantitative investigation of nuclear and low-energy strong interaction physics.

  13. Fission barriers for neutron-rich nuclei by means of Skyrme-Hartree-Fock-Bogoliubov calculation

    SciTech Connect

    Hashizume, K.; Wada, T.; Ohta, M.; Samyn, M.; Goriely, S.

    2007-02-26

    The nuclear fission barrier height has been estimated by means of the constraint Skyrme Hartree-Fock-Bogoliubov method. The potential energy surfaces obtained by the method are analyzed with the flooding method to find several saddle points. The results for U, Np, Bk isotopes are compared with the barrier derived from the extended Thomas-Fermi plus Strutinsky integral method.

  14. Towards the establishment of nonlinear hidden symmetries of the Skyrme model

    SciTech Connect

    Herrera-Aguilar, A.; Kanakoglou, K.; Paschalis, J. E.

    2006-09-25

    We present a preliminary attempt to establish the existence of hidden nonlinear symmetries of the SU(N) Skyrme model which could, in principle, lead to the further integration of the system. An explicit illustration is given for the SU(2) symmetry group.

  15. Thermal quasiparticle random-phase approximation with Skyrme interactions and supernova neutral-current neutrino-nucleus reactions

    NASA Astrophysics Data System (ADS)

    Dzhioev, Alan A.; Vdovin, A. I.; Martínez-Pinedo, G.; Wambach, J.; Stoyanov, Ch.

    2016-07-01

    The thermal quasiparticle random-phase approximation is combined with the Skyrme energy density functional method (Skyrme-TQRPA) to study the response of a hot nucleus to an external perturbation. For the sample nuclei 56Fe and 82Ge, the Skyrme-TQRPA is applied to analyze thermal effects on the strength function of charge-neutral Gamow-Teller transitions, which dominate neutrino-nucleus reactions at Eν≲20 MeV. For the relevant supernova temperatures we calculate the cross sections for inelastic neutrino scattering. We also apply the method to examine the rate of neutrino-antineutrino pair emission by hot nuclei. The cross sections and rates are compared with those obtained earlier from the TQRPA calculations based on the phenomenological quasiparticle-phonon model Hamiltonian. For inelastic neutrino scattering on 56Fe we also compare the Skyrme-TQRPA results to those obtained earlier from a hybrid approach that combines shell-model and RPA calculations.

  16. Nuclear charge and neutron radii and nuclear matter: Trend analysis in Skyrme density-functional-theory approach

    NASA Astrophysics Data System (ADS)

    Reinhard, P.-G.; Nazarewicz, W.

    2016-05-01

    Background: Radii of charge and neutron distributions are fundamental nuclear properties. They depend on both nuclear interaction parameters related to the equation of state of infinite nuclear matter and on quantal shell effects, which are strongly impacted by the presence of nuclear surface. Purpose: In this work, by studying the correlation of charge and neutron radii, and neutron skin, with nuclear matter parameters, we assess different mechanisms that drive nuclear sizes. Method: We apply nuclear density functional theory using a family of Skyrme functionals obtained by means of optimization protocols, which do not include any radius information. By performing the Monte Carlo sampling of reasonable functionals around the optimal parametrization, we scan all correlations between nuclear matter properties and observables characterizing charge and neutron distributions of spherical closed-shell nuclei 48Ca,208Pb, and 298Fl. Results: By considering the influence of various nuclear matter properties on charge and neutron radii in a multidimensional parameter space of Skyrme functionals, we demonstrate the existence of two strong relationships: (i) between the nuclear charge radii and the saturation density of symmetric nuclear matter ρ0, and (ii) between the neutron skins and the slope of the symmetry energy L . The impact of other nuclear matter properties on nuclear radii is weak or nonexistent. For functionals optimized to experimental binding energies only, proton and neutron radii are found to be weakly correlated due to canceling trends from different nuclear matter characteristics. Conclusion: The existence of only two strong relations connecting nuclear radii with nuclear matter properties has important consequences. First, by requiring that the nuclear functional reproduces the empirical saturation point of symmetric nuclear matter practically fixes the charge (or proton) radii, and vice versa. This explains the recent results of ab initio calculations

  17. Stochastic approach to correlations beyond the mean field with the Skyrme interaction

    SciTech Connect

    Fukuoka, Y.; Nakatsukasa, T.; Funaki, Y.; Yabana, K.

    2012-10-20

    Large-scale calculation based on the multi-configuration Skyrme density functional theory is performed for the light N=Z even-even nucleus, {sup 12}C. Stochastic procedures and the imaginary-time evolution are utilized to prepare many Slater determinants. Each state is projected on eigenstates of parity and angular momentum. Then, performing the configuration mixing calculation with the Skyrme Hamiltonian, we obtain low-lying energy-eigenstates and their explicit wave functions. The generated wave functions are completely free from any assumption and symmetry restriction. Excitation spectra and transition probabilities are well reproduced, not only for the ground-state band, but for negative-parity excited states and the Hoyle state.

  18. Deformation around Neutron-Rich Cr Isotopes in Axially Symmetric Skyrme-Hatree-Fock-Bogoliubov Method

    NASA Astrophysics Data System (ADS)

    Oba, H.; Matsuo, M.

    2008-07-01

    We analyse the deformation mechanism in neutron-rich Cr, Fe and Ti isotopes with N = 32-44 using a Skyrme-Hartree-Fock-Bogoliubov mean-field code employing a two-dimensional mesh representation in the cylindrical coordinate system. Evaluating the quadrupole deformation energy systematically, we show that the Skyrme parameter set SkM* gives a quadrupole instability around the neutron numbers N ˜ 38-42 in Cr isotopes, where the deformation energy curve suggests a transitional behavior with a shallow minimum extending to a large prolate deformation. The roles of a deformed N = 38 gap and the position of the neutron g_{9/2} orbit are analysed in detail.

  19. Separation of paralytic shellfish poisoning toxins on Chromarods-SIII by thin-layer chromatography with the Iatroscan (mark 5) and flame thermionic detection.

    PubMed

    Indrasena, W M; Ackman, R G; Gill, T A

    1999-09-10

    Thin-layer chromatography (TLC) on Chromarods-SIII with the Iatroscan (Mark-5) and a flame thermionic detector (FTID) was used to develop a rapid method for the detection of paralytic shellfish poisoning (PSP) toxins. The effect of variation in hydrogen (H2) flow, air flow, scan time and detector current on the FTID peak response for both phosphatidylcholine (PC) and PSP were studied in order to define optimum detection conditions. A combination of hydrogen and air flow-rates of 50 ml/min and 1.5-2.0 l/min respectively, along with a scan time of 40 s/rod and detector current of 3.0 A (ampere) or above were found to yield the best results for the detection of PSP compounds. Increasing the detector current level to as high as 3.3 A gave about 130 times more FTID response than did flame ionization detection (FID), for PSP components. Quantities of standards as small as 1 ng neosaxitoxin (NEO), 5 ng saxitoxin (STX), 5 ng B1-toxins (B1), 2 ng gonyautoxin (GTX) 2/3, 6 ng GTX 1/4 and 6 ng C-toxins (C1/C2) could be detected with the FTID. The method detection limits for toxic shellfish tissues using the FTID were 0.4, 2.1, 0.8 and 2.5 micrograms per g tissue for GTX 2/3, STX, NEO and C toxins, respectively. The FTID response increased with increasing detector current and with increasing the scan time. Increasing hydrogen and air flow-rates resulted in decreasing sensitivity within defined limits. Numerous solvent systems were tested, and, solvent consisting of chloroform: methanol-water-acetic acid (30:50:8:2) could separate C toxins from GTX, which eluted ahead of NEO and STX. Accordingly, TLC/FTID with the Iatroscan (Mark-5) seems to be a promising, relatively inexpensive and rapid method of screening plant and animal tissues for PSP toxins.

  20. Higgs-and Skyrme-Chern-Simons densities in all dimensions

    NASA Astrophysics Data System (ADS)

    Tchrakian, D. H.

    2015-09-01

    Two types of new Chern-Simons (CS) densities, both defined in all odd and even dimensions, are proposed. These new CS densities feature a scalar field interacting with the gauge field. In one case this is a Higgs scalar while in the other it is a Skyrme scalar. The motivation is to study the effects of adding these new CS terms to a Lagrangian which supports static soliton solutions prior to their introduction.

  1. Towards Skyrmion stars: Large baryon configurations in the Einstein-Skyrme model

    SciTech Connect

    Piette, Bernard M. A. G.; Probert, Gavin I.

    2007-06-15

    We investigate the large baryon number sector of the Einstein-Skyrme model as a possible model for baryon stars. Gravitating hedgehog skyrmions have been investigated previously and the existence of stable solitonic stars excluded due to energy considerations [P. Bizon and T. Chmaj, Phys. Lett. B 297, 55 (1992).]. However, in this paper we demonstrate that by generating gravitating Skyrmions using rational maps, we can achieve multibaryon bound states while recovering spherical symmetry in the limit where B becomes large.

  2. Exact results in the Skyrme model in (3+1) dimensions via the generalized hedgehog ansatz

    NASA Astrophysics Data System (ADS)

    Canfora, Fabrizio

    2016-09-01

    We present exact results in the (3 + 1) -dimensional Skyrme model. First of all, it will be shown that, in the Pionic sector, a quite remarkable phenomenon for a non-integrable (3 + 1) -dimensional field theory appears: a non-linear superposition law is available allowing the composition of solutions in order to generate new solutions of the full field equations keeping alive, at the same time, the interactions terms in the energy-density. Secondly, it will be shown that the generalized hedgehog ansatz can be extended to suitable curved backgrounds. Interestingly, one can choose the background metric in such a way to describe finite-volume effects and, at the same time, to simplify the Skyrme field equations. In this way, it is possible to construct the first exact multi-Skyrmionic configurations of the (3 + 1) -dimensional Skyrme model with arbitrary high winding number and living at finite volume. Last but not least, a novel BPS bound (which is sharper than the usual one in term of the winding number) will be derived which can be saturated and reduces the field equations to a first-order equation for the profile.

  3. Rotational 2+ states of superheavy elements in the Skyrme-Hartree-Fock-Bogoliubov model

    NASA Astrophysics Data System (ADS)

    Baran, A.; Staszczak, A.

    2013-05-01

    The Skyrme-Hartree-Fock-Bogoliubov calculations of the energies of first 2+ rotational states of deformed superheavy (SH) elements in the region of 108 ⩽ Z ⩽ 126 and 148 ⩽ N ⩽ 180 are reported. The results agree well in the case of fermium isotopes after a proper scaling of the moment of inertia. The scaling factor equals 1.3. The extension of the model to the region of SH elements gives a possibility of better estimation of the Q-values of α-decay, which is a dominant decay mode of SH elements.

  4. Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XVI. Inclusion of self-energy effects in pairing

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Chamel, N.; Pearson, J. M.

    2016-03-01

    Extending our earlier work, a new family of three Hartree-Fock-Bogoliubov (HFB) mass models, labeled HFB-30, HFB-31, and HFB-32, is presented, along with their underlying interactions, BSk30, BSk31, and BSk32, respectively. The principle new feature is a purely phenomenological pairing term that depends on the density gradient. This enables us to have a bulk pairing term that is fitted to realistic nuclear-matter calculations in which for the first time the self-energy corrections are included, while the behavior of the nucleon effective masses in asymmetric homogeneous nuclear matter is significantly improved. Furthermore, in the particle-hole channel all the highly realistic constraints of our earlier work are retained. In particular, the unconventional Skyrme forces containing t4 and t5 terms are still constrained to fit realistic equations of state of neutron matter stiff enough to support the massive neutron stars PSR J1614-2230 and PSR J0348+0432. All unphysical long-wavelength spin and spin-isospin instabilities of nuclear matter, including the unphysical transition to a polarized state in neutron-star matter, are eliminated. Our three interactions are characterized by values of the symmetry coefficient J of 30, 31, and 32 MeV, respectively. The best fit to the database of 2353 nuclear masses is found for model HFB-31 (J =31 MeV ) with a model error of 0.561 MeV. This model also fits the charge-radius data with an root-mean-square error of 0.027 fm.

  5. Kaon-Nucleon systems and their interactions in the Skyrme model

    NASA Astrophysics Data System (ADS)

    Ezoe, Takashi; Hosaka, Atsushi

    2016-08-01

    We study kaon-nucleon systems in the Skyrme model in a method based on the bound state approach of Callan-Klebanov but with the kaon around the physical nucleon of the rotating hedgehog. This corresponds to the variation after projection, reversing the order of semiclassical quantization of 1 /Nc expansion. The method, however, is considered to be suited to the study of weakly interacting kaon-nucleon systems including loosely K ¯N bound states such as Λ (1405 ). We have found a bound state with binding energy of order 10 MeV, consistent with the observed state. We also discuss the K ¯N interaction and find that it consists of an attraction in the middle range and a repulsion in the short range.

  6. Multidimensional Skyrme-density-functional study of the spontaneous fission of 238U

    SciTech Connect

    Sadhukhan, J.; Mazurek, K.; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2015-01-01

    We determined the spontaneous fission lifetime of 238U by a minimization of the action integral in a three-dimensional space of collective variables. Apart from the mass-distribution multipole moments Q20 (elongation) and Q30 (left–right asymmetry), we also considered the pairing-fluctuation parameter λ2 as a collective coordinate. The collective potential was obtained self-consistently using the Skyrme energy density functional SkM*. The inertia tensor was obtained within the nonperturbative cranking approximation to the adiabatic time-dependent Hartree–Fock–Bogoliubov approach. As a result, the pairing-fluctuation parameter λ2 allowed us to control the pairing gap along the fission path, which significantly changed the spontaneous fission lifetime.

  7. Multidimensional Skyrme-density-functional study of the spontaneous fission of 238U

    DOE PAGES

    Sadhukhan, J.; Mazurek, K.; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2015-01-01

    We determined the spontaneous fission lifetime of 238U by a minimization of the action integral in a three-dimensional space of collective variables. Apart from the mass-distribution multipole moments Q20 (elongation) and Q30 (left–right asymmetry), we also considered the pairing-fluctuation parameter λ2 as a collective coordinate. The collective potential was obtained self-consistently using the Skyrme energy density functional SkM*. The inertia tensor was obtained within the nonperturbative cranking approximation to the adiabatic time-dependent Hartree–Fock–Bogoliubov approach. As a result, the pairing-fluctuation parameter λ2 allowed us to control the pairing gap along the fission path, which significantly changed the spontaneous fission lifetime.

  8. Fractional vortex molecules and vortex polygons in a baby Skyrme model

    NASA Astrophysics Data System (ADS)

    Kobayashi, Michikazu; Nitta, Muneto

    2013-06-01

    We construct a molecule of fractional vortices with fractional topological lump charges as a baby Skyrmion with the unit topological lump charge in the antiferromagnetic (or XY) baby Skyrme model, that is, an O(3) sigma model with a four-derivative term and an antiferromagnetic or XY-type potential term quadratic in fields. We further construct configurations with topological lump charges Q≤7 and find that bound states of vortex molecules constitute regular polygons with 2Q vertices as vortices, where the rotational symmetry SO(2) in real space is spontaneously broken into a discrete subgroup ZQ. We also find metastable and arrayed bound states of fractional vortices for Q=5, 6. On the other hand, we find for Q=7 that the regular polygon is metastable and the arrayed bound state is stable. We calculate binding energies of all configurations.

  9. Exact vortex solutions in a CP N Skyrme-Faddeev type model

    NASA Astrophysics Data System (ADS)

    Ferreira, L. A.; Klimas, P.

    2010-10-01

    We consider a four dimensional field theory with target space being CP N which constitutes a generalization of the usual Skyrme-Faddeev model defined on CP 1. We show that it possesses an integrable sector presenting an infinite number of local conservation laws, which are associated to the hidden symmetries of the zero curvature representation of the theory in loop space. We construct an infinite class of exact solutions for that integrable submodel where the fields are meromorphic functions of the combinations ( x 1 + ix 2) and x 3 + x 0 of the Cartesian coordinates of four dimensional Minkowski space-time. Among those solutions we have static vortices and also vortices with waves traveling along them with the speed of light. The energy per unity of length of the vortices show an interesting and intricate interaction among the vortices and waves.

  10. Systematics of the First 2{sup +} Excitation in Spherical Nuclei with Skyrme-QRPA

    SciTech Connect

    Terasaki, J.

    2009-05-07

    We use the Quasiparticle Random Phase Approximation (QRPA) and the Skyrme interactions SLy4 and SkM* to systematically calculate energies and transition strengths for the lowest 2{sup +} state in spherical even-even nuclei. The SkM* functional, applied to 178 spherical nuclei between Z = 10 and 90, produces excitation energies that are on average 11% higher than experimental values, with residuals that fluctuate about the average by -35%+55%. The predictions of SkM* and SLy4 have significant differences, in part because of differences in the calculated ground state deformations; SkM* performs better in both the average and dispersion of energies. Comparing the QRPA results with those of generator-coordinate-method (GCM) calculations, we find that the QRPA reproduces trends near closed shells better than the GCM, and overpredicts the energies less severely in general.

  11. Investigation of Nuclear Ground State Properties of Fuel Materials of 232Th and 238U Using Skyrme-Extended-Thomas-Fermi Approach Method

    NASA Astrophysics Data System (ADS)

    Yulianto, Yacobus; Su'ud, Zaki

    2016-08-01

    It has been performed the nuclear ground state properties investigation of 232Th and 238U using Skyrme interaction. The local density, the kinetic energy density, and the spin-orbit density for proton and neutron have been calculated using Extended-Thomas-Fermi approach method. Then the calculation results have been compared with Skyrme-Hartree-Fock results (using HAFOMN and HFBRAD codes). Total energy calculations obtained from this research are -1792.973947 MeV (for 232Th) deviated 0.29244% from experiment energy and -1761.519459 MeV (for 238U) deviated 0.48369% from experiment energy. The distribution profiles of local density and local potential for 232Th and 238U are quite similar with Skyrme- Hartree-Fock results. It is indicated that Skyrme-Extended-Thomas-Fermi method can be used to study the nuclear ground state properties, especially even nuclei.

  12. Comparison of global phenomenological and microscopic optical potentials for nuclear data predictions

    SciTech Connect

    Cai, C. ); Shen, Q.; Zhuo, Y. )

    1991-10-01

    In this paper the chi-square ({chi}{sup 2}) values, which represent the degree of agreement between the calculated total, nonelastic, and differential elastic cross sections and their experimental values, are calculated for seven kinds of optical potentials: the phenomenological optimal optical potential (OOP) for a specific element, the global phenomenological optical potentials given by Becchetti and Greenlees (BGP) and by Varner et al. (CH86) for a large number of target nuclei, and the microscopic optical potentials based on conventional Skyrme force (SII and SIII), generalized Skyrme force (GS2), and modified Skyrme force (SKa). Fourteen natural elements (each containing one to four isotopes) are calculated with 12 to 20 neutron incident energies, which are in the 0.1- to 24-MeV energy region for each element. The calculated average total chi-square values are {bar {chi}}{sub OOP}{sup 2} - 0.309, {bar {chi}}{sub BGP}{sup 2} = 0.807, {bar {chi}}{sub CH86}{sup 2} = 0.684, {bar {chi}}{sub GS2}{sup 2} = 0.600, {bar {chi}}{sub SKa}{sup 2} = 0.646, {bar {chi}}{sub SII}{sup 2} = 2.587, and {bar {chi}}{sub SIII}{sup 2} = 1.368. The conclusion is that the microscopic optical potential based on generalized and modified Skyrme force (GS2 and SKa), which has an analytical formalism without any free parameters, is useful in nuclear data calculation and evaluation.

  13. Global description of β- decay in even-even nuclei with the axially-deformed Skyrme finite-amplitude method

    NASA Astrophysics Data System (ADS)

    Mustonen, M. T.; Engel, J.

    2016-01-01

    We use the finite-amplitude method for computing charge-changing Skyrme-quasiparticle random-phase approximation (QRPA) transition strengths in axially-deformed nuclei together with a modern Skyrme energy-density functional to fit several previously unconstrained parameters in the charge-changing time-odd part of the functional. With the modified functional we then calculate rates of β- decay for all medium-mass and heavy even-even nuclei between the valley of stability and the neutron drip line. We fit the Skyrme parameters to a limited set of β -decay rates, a set of Gamow-Teller resonance energies, and a set of spin-dipole resonance energies, in both spherical and deformed nuclei. Comparison to available experimental β -decay rates shows agreement at roughly the same level as in other global QRPA calculations. We estimate the uncertainty in our rates all the way to the neutron drip line through a construction that extrapolates the errors of known β -decay rates in nuclei with intermediate Q values to less stable isotopes with higher Q values.

  14. Tensor part of the Skyrme energy density functional. II. Deformation properties of magic and semi-magic nuclei

    NASA Astrophysics Data System (ADS)

    Bender, M.; Bennaceur, K.; Duguet, T.; Heenen, P.-H.; Lesinski, T.; Meyer, J.

    2009-12-01

    We study systematically the impact of the time-even tensor terms of the Skyrme energy density functional, i.e., terms bilinear in the spin-current tensor density, on deformation properties of closed-shell nuclei corresponding to 20,28,40,50,82, and 126 neutron or proton shell closures. We compare results obtained with three different families of Skyrme parametrizations whose tensor terms have been adjusted on properties of spherical nuclei: (i) TIJ interactions proposed in the first article of this series [T. Lesinski , Phys. Rev. C 76, 014312 (2007)] that were constructed through a complete readjustment of the rest of the functional and (ii) parametrizations whose tensor terms have been added perturbatively to existing Skyrme interactions, with or without readjusting the spin-orbit coupling constant. We analyze in detail the mechanisms at play behind the impact of tensor terms on deformation properties and how studying the latter can help screen out unrealistic parametrizations. It is expected that findings of the present article are to a large extent independent of remaining deficiencies of the central and spin-orbit interactions and will be of great value for the construction of future, improved energy functionals.

  15. Skyrme functional from a three-body pseudopotential of second order in gradients: Formalism for central terms

    NASA Astrophysics Data System (ADS)

    Sadoudi, J.; Duguet, T.; Meyer, J.; Bender, M.

    2013-12-01

    Background: In one way or another, all modern parametrizations of the nuclear energy density functional (EDF) do not respect the exchange symmetry associated with Pauli's principle. It has been recently shown that this practice jeopardizes multireference (MR) EDF calculations by contaminating the energy with spurious self-interactions that, for example, lead to finite steps or even divergences when plotting it as a function of collective coordinates [J. Dobaczewski , Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.76.054315 76, 054315 (2007); D. Lacroix , Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.79.044318 79, 044318 (2009)]. As of today, the only viable option to bypass these pathologies is to rely on EDF kernels that enforce Pauli's principle from the outset by strictly and exactly deriving from a genuine, i.e., density-independent, Hamilton operator.Purpose: The objective is to build cutting-edge parametrizations of the EDF kernel deriving from a pseudopotential that can be safely employed in symmetry restoration and configuration mixing calculations.Methods: We wish to develop the most general Skyrme-like EDF parametrization containing linear, bilinear, and trilinear terms in the density matrices with up to two gradients, under the key constraint that it derives strictly from an effective Hamilton operator. While linear and bilinear terms are obtained from a standard one-body kinetic energy operator and a (density-independent) two-body Skyrme pseudopotential, the most general three-body Skyrme-like pseudopotential containing up to two gradient operators is constructed to generate the trilinear part. The present study is limited to central terms. Spin orbit and tensor will be addressed in a forthcoming paper.Results: The most general central Skyrme-type zero-range three-body interaction is built up to second order in derivatives. The complete trilinear EDF, including time-odd and T=1 pairing parts, is derived along with the corresponding normal and anomalous

  16. Dipole response in neutron-rich nuclei with new Skyrme interactions

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Burrello, S.; Colonna, M.; Baran, V.

    2016-07-01

    We investigate the isoscalar and isovector E 1 response of neutron-rich nuclei, within a semiclassical transport model employing effective interactions for the nuclear mean field. In particular, we adopt the recently introduced SAMi-J Skyrme interactions, whose parameters are specifically tuned to improve the description of spin-isospin properties of nuclei. Our analysis evidences a relevant degree of isoscalar-isovector mixing of the collective excitations developing in neutron-rich systems. Focusing on the low-lying strength emerging in the isovector response, we show that this energy region essentially corresponds to the excitation of isoscalar-like modes, which also contribute to the isovector response owing to their mixed character. Considering effective interactions which mostly differ in the isovector channels, we observe that these mixing effects increase with the slope L of the symmetry energy at saturation density, leading to a larger strength in the low-energy region of the isovector response. This result appears connected to the increase, with L , of the neutron-proton asymmetry at the surface of the considered nuclei, i.e., to the neutron skin thickness.

  17. Search for the Skyrme-Hartree-Fock solutions for chiral rotation in N=75 isotones

    SciTech Connect

    Olbratowski, P.; Dobaczewski, J.; Dudek, J.

    2006-05-15

    A search for self-consistent solutions for the chiral rotational bands in the N=75 isotones {sup 130}Cs, {sup 132}La, {sup 134}Pr, and {sup 136}Pm is performed within the Skyrme-Hartree-Fock cranking approach using SKM* and SLy4 parametrizations. The dependence of the solutions on the time-odd contributions in the energy functional is studied. From among the four isotones considered, self-consistent chiral solutions are obtained only in {sup 132}La. The microscopic calculations are compared with the {sup 132}La experimental data and with results of a classical model that contains all the mechanisms underlying the chirality of the collective rotational motion. Strong similarities between the Hartree-Fock and classical model results are found. The suggestion formulated earlier by the authors that the chiral rotation cannot exist below a certain critical frequency is further illustrated and discussed, together with the microscopic origin of a transition from planar to chiral rotation in nuclei. We also formulate the separability rule by which the tilted-axis-cranking solutions can be inferred from three independent principal-axis-cranking solutions corresponding to three different axes of rotation.

  18. A new Skyrme energy density functional for a better description of spin-isospin resonances

    NASA Astrophysics Data System (ADS)

    Roca-Maza, X.; Colò, G.; Cao, Li-Gang; Sagawa, H.

    2015-10-01

    A correct determination of the isospin and spin-isospin properties of the nuclear effective interaction should lead to an accurate description of the Gamow-Teller resonance (GT), the Spin Dipole Resonance (SDR), the Giant Dipole Resonance (GDR) or the Antianalog Giant Dipole Resonance (AGDR), among others. A new Skyrme energy density functional named SAMi is introduced with the aim of going a step forward in setting the bases for a more precise description of spin-isospin resonances [1, 2]. In addition, we will discuss some new features of our analysis on the AGDR in 208Pb [3] as compared with available experimental data on this resonance [4, 5, 6], and on the GDR [7]. Such study, guided by a simple yet physical pocket formula, has been developed by employing the so called SAMi-J family of systematically varied interactions. This set of interactions is compatible with experimental data for values of the symmetry energy at saturation J and slope parameter L falling in the ranges 31-33 MeV and 75-95 MeV, respectively.

  19. A new Skyrme energy density functional for a better description of spin-isospin resonances

    SciTech Connect

    Roca-Maza, X.; Colò, G.; Cao, Li-Gang; Sagawa, H.

    2015-10-15

    A correct determination of the isospin and spin-isospin properties of the nuclear effective interaction should lead to an accurate description of the Gamow-Teller resonance (GT), the Spin Dipole Resonance (SDR), the Giant Dipole Resonance (GDR) or the Antianalog Giant Dipole Resonance (AGDR), among others. A new Skyrme energy density functional named SAMi is introduced with the aim of going a step forward in setting the bases for a more precise description of spin-isospin resonances [1, 2]. In addition, we will discuss some new features of our analysis on the AGDR in {sup 208}Pb [3] as compared with available experimental data on this resonance [4, 5, 6], and on the GDR [7]. Such study, guided by a simple yet physical pocket formula, has been developed by employing the so called SAMi-J family of systematically varied interactions. This set of interactions is compatible with experimental data for values of the symmetry energy at saturation J and slope parameter L falling in the ranges 31−33 MeV and 75−95 MeV, respectively.

  20. Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei

    SciTech Connect

    Wang Ning; Scheid, Werner; Wu Xizhen; Liu Min; Li Zhuxia

    2006-10-15

    The Skyrme energy-density functional approach has been extended to study massive heavy-ion fusion reactions. Based on the potential barrier obtained and the parametrized barrier distribution the fusion (capture) excitation functions of a lot of heavy-ion fusion reactions are studied systematically. The average deviations of fusion cross sections at energies near and above the barriers from experimental data are less than 0.05 for 92% of 76 fusion reactions with Z{sub 1}Z{sub 2}<1200. For the massive fusion reactions, for example, the {sup 238}U-induced reactions and {sup 48}Ca+{sup 208}Pb, the capture excitation functions have been reproduced remarkably well. The influence of structure effects in the reaction partners on the capture cross sections is studied with our parametrized barrier distribution. By comparing the reactions induced by double-magic nucleus {sup 48}Ca and by {sup 32}S and {sup 35}Cl, the ''threshold-like'' behavior in the capture excitation function for {sup 48}Ca-induced reactions is explored and an optimal balance between the capture cross section and the excitation energy of the compound nucleus is studied. Finally, the fusion reactions with {sup 36}S, {sup 37}Cl, {sup 48}Ca, and {sup 50}Ti bombarding {sup 248}Cm, {sup 247,249}Bk, {sup 250,252,254}Cf, and {sup 252,254}Es, as well as the reactions leading to the same compound nucleus with Z=120 and N=182, are studied further. The calculation results for these reactions are useful for searching for the optimal fusion configuration and suitable incident energy in the synthesis of superheavy nuclei.

  1. Description of induced nuclear fission with Skyrme energy functionals. II. Finite temperature effects

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Duke, D.; Carr, H.

    2015-03-01

    Understanding the mechanisms of induced nuclear fission for a broad range of neutron energies could help resolve fundamental science issues, such as the formation of elements in the universe, but could have also a large impact on societal applications in energy production or nuclear waste management. The goal of this paper is to set up the foundations of a microscopic theory to study the static aspects of induced fission as a function of the excitation energy of the incident neutron, from thermal to fast neutrons. To account for the high excitation energy of the compound nucleus, we employ a statistical approach based on finite temperature nuclear density functional theory with Skyrme energy densities, which we benchmark on the 239Pu(n ,f ) reaction. We compute the evolution of the least-energy fission pathway across multidimensional potential energy surfaces with up to five collective variables as a function of the nuclear temperature and predict the evolution of both the inner and the outer fission barriers as a function of the excitation energy of the compound nucleus. We show that the coupling to the continuum induced by the finite temperature is negligible in the range of neutron energies relevant for many applications of neutron-induced fission. We prove that the concept of quantum localization introduced recently can be extended to T >0 , and we apply the method to study the interaction energy and total kinetic energy of fission fragments as a function of the temperature for the most probable fission. While large uncertainties in theoretical modeling remain, we conclude that a finite temperature nuclear density functional may provide a useful framework to obtain accurate predictions of fission fragment properties.

  2. Properties of nuclei in the nobelium region studied within the covariant, Skyrme, and Gogny energy density functionals

    SciTech Connect

    Dobaczewski, J.; Afanasjev, A. V.; Bender, M.; Shi, Yue

    2015-07-29

    In this study, we calculate properties of the ground and excited states of nuclei in the nobelium region for proton and neutron numbers of 92 ≤ Z ≤ 104 and 144 ≤ N ≤ 156, respectively. We use three different energy-density-functional (EDF) approaches, based on covariant, Skyrme, and Gogny functionals, each with two different parameter sets. A comparative analysis of the results obtained for quasiparticle spectra, odd–even and two-particle mass staggering, and moments of inertia allows us to identify single-particle and shell effects that are characteristic to these different models and to illustrate possible systematic uncertainties related to using the EDF modelling.

  3. Properties of nuclei in the nobelium region studied within the covariant, Skyrme, and Gogny energy density functionals

    NASA Astrophysics Data System (ADS)

    Dobaczewski, J.; Afanasjev, A. V.; Bender, M.; Robledo, L. M.; Shi, Yue

    2015-12-01

    We calculate properties of the ground and excited states of nuclei in the nobelium region for proton and neutron numbers of 92 ≤ Z ≤ 104 and 144 ≤ N ≤ 156, respectively. We use three different energy-density-functional (EDF) approaches, based on covariant, Skyrme, and Gogny functionals, each with two different parameter sets. A comparative analysis of the results obtained for quasiparticle spectra, odd-even and two-particle mass staggering, and moments of inertia allows us to identify single-particle and shell effects that are characteristic to these different models and to illustrate possible systematic uncertainties related to using the EDF modelling.

  4. Properties of nuclei in the nobelium region studied within the covariant, Skyrme, and Gogny energy density functionals

    DOE PAGES

    Dobaczewski, J.; Afanasjev, A. V.; Bender, M.; Robledo, L. M.; Shi, Yue

    2015-07-29

    In this study, we calculate properties of the ground and excited states of nuclei in the nobelium region for proton and neutron numbers of 92 ≤ Z ≤ 104 and 144 ≤ N ≤ 156, respectively. We use three different energy-density-functional (EDF) approaches, based on covariant, Skyrme, and Gogny functionals, each with two different parameter sets. A comparative analysis of the results obtained for quasiparticle spectra, odd–even and two-particle mass staggering, and moments of inertia allows us to identify single-particle and shell effects that are characteristic to these different models and to illustrate possible systematic uncertainties related to using themore » EDF modelling.« less

  5. Systematics of the first 2{sup +} excitation in spherical nuclei with the Skyrme quasiparticle random-phase approximation

    SciTech Connect

    Terasaki, J.; Engel, J.; Bertsch, G. F.

    2008-10-15

    We use the quasiparticle random-phase approximation (QRPA) and the Skyrme interactions SLy4 and SkM* to systematically calculate energies and transition strengths for the lowest 2{sup +} state in spherical even-even nuclei. The SkM* functional, applied to 178 spherical nuclei between Z=10 and 90, produces excitation energies that are on average 11% higher than experimental values, with residuals that fluctuate about the average by -35% to +55%. The predictions of SkM* and SLy4 have significant differences, in part because of differences in the calculated ground state deformations; SkM* performs better in both the average and dispersion of energies. Comparing the QRPA results with those of generator-coordinate-method (GCM) calculations, we find that the QRPA reproduces trends near closed shells better than the GCM, and that it overpredicts the energies less severely in general.

  6. Rotational properties of nuclei around No254 investigated using a spectroscopic-quality Skyrme energy density functional

    NASA Astrophysics Data System (ADS)

    Shi, Yue; Dobaczewski, J.; Greenlees, P. T.

    2014-03-01

    Background: Nuclei in the Z ≈100 mass region represent the heaviest systems where detailed spectroscopic information is experimentally available. Although microscopic-macroscopic and self-consistent models have achieved great success in describing the data in this mass region, a fully satisfying precise theoretical description is still missing. Purpose: By using fine-tuned parametrizations of the energy density functionals, the present work aims at an improved description of the single-particle properties and rotational bands in the nobelium region. Such locally optimized parametrizations may have better properties when extrapolating towards the superheavy region. Methods: Skyrme Hartree-Fock-Bogolyubov and Lipkin-Nogami methods were used to calculate the quasiparticle energies and rotational bands of nuclei in the nobelium region. Starting from the most recent Skyrme parametrization, UNEDF1, the spin-orbit coupling constants and pairing strengths have been tuned, so as to achieve a better agreement with the excitation spectra and odd-even mass differences in 251Cf and 249Bk. Results: The quasiparticle properties of 251Cf and 249Bk were very well reproduced. At the same time, crucial deformed neutron and proton shell gaps open up at N =152 and Z =100, respectively. Rotational bands in Fm, No, and Rf isotopes, where experimental data are available, were also fairly well described. To help future improvements towards a more precise description, small deficiencies of the approach were carefully identified. Conclusions: In the Z ≈100 mass region, larger spin-orbit strengths than those from global adjustments lead to improved agreement with data. Puzzling effects of particle-number restoration on the calculated moment of inertia, at odds with the experimental behavior, require further scrutiny.

  7. Collective coordinate quantization and spin statistics of the solitons in the C PN Skyrme-Faddeev model

    NASA Astrophysics Data System (ADS)

    Amari, Yuki; Klimas, Paweł; Sawado, Nobuyuki

    2016-07-01

    The C PN extended Skyrme-Faddeev model possesses planar soliton solutions. We consider quantum aspects of the solutions applying collective coordinate quantization in regime of rigid body approximation. In order to discuss statistical properties of the solutions we include an Abelian Chern-Simons term (the Hopf term) in the Lagrangian. Since Π3(C P1)=Z then for N =1 the term becomes an integer. On the other hand for N >1 it became perturbative because Π3(C PN) is trivial. The prefactor of the Hopf term (anyon angle) Θ is not quantized and its value depends on the physical system. The corresponding fermionic models can fix value of the angle Θ for all N in a way that the soliton with N =1 is not an anyon type whereas for N >1 it is always an anyon even for Θ =n π , n ∈Z . We quantize the solutions and calculate several mass spectra for N =2 . Finally we discuss generalization for N ≧3 .

  8. Nuclear forces

    SciTech Connect

    Machleidt, R.

    2013-06-10

    These lectures present an introduction into the theory of nuclear forces. We focus mainly on the modern approach, in which the forces between nucleons emerge from low-energy QCD via chiral effective field theory.

  9. Labor Force

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2012

    2012-01-01

    The labor force is the number of people ages 16 or older who are either working or looking for work. It does not include active-duty military personnel or the institutionalized population, such as prison inmates. Determining the size of the labor force is a way of determining how big the economy can get. The size of the labor force depends on two…

  10. Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (VII) HFODD (v2.49t): A new version of the program

    SciTech Connect

    Schunck, Nicolas F; McDonnell, J.; Sheikh, J. A.; Staszczak, A.; Stoitsov, Mario; Dobaczewski, J.; Toivanen, P.

    2012-01-01

    We describe the new version (v2.49t) of the code HFODD which solves the nuclear Skyrme Hartree-Fock (HF) or Skyrme Hartree-Fock-Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin mixing and projection, (ii) the finite temperature formalism for the HFB and HF+BCS methods, (iii) the Lipkin translational energy correction method, (iv) the calculation of the shell correction. A number of specific numerical methods have also been implemented in order to deal with large-scale multi-constraint calculations and hardware limitations: (i) the two-basis method for the HFB method, (ii) the Augmented Lagrangian Method (ALM) for multi-constraint calculations, (iii) the linear constraint method based on the approximation of the RPA matrix for multi-constraint calculations, (iv) an interface with the axial and parity-conserving Skyrme-HFB code HFBTHO, (v) the mixing of the HF or HFB matrix elements instead of the HF fields. Special care has been paid to using the code on massively parallel leadership class computers. For this purpose, the following features are now available with this version: (i) the Message Passing Interface (MPI) framework, (ii) scalable input data routines, (iii) multi-threading via OpenMP pragmas, (iv) parallel diagonalization of the HFB matrix in the simplex breaking case using the ScaLAPACK library. Finally, several little significant errors of the previous published version were corrected.

  11. Modeling nuclear 'pasta' and the transition to uniform nuclear matter with the 3D Skyrme-Hartree-Fock method at finite temperature: Core-collapse supernovae

    SciTech Connect

    Newton, W. G.; Stone, J. R.

    2009-05-15

    The first results of a new three-dimensional, finite temperature Skyrme-Hartree-Fock+BCS study of the properties of inhomogeneous nuclear matter at densities and temperatures leading to the transition to uniform nuclear matter are presented. Calculations are carried out in a cubic box representing a unit cell of the locally periodic structure of the matter. A constraint is placed on the two independent components of the quadrupole moment of the neutron density to investigate the dependence of the total energy density of matter on the geometry of the nuclear structure in the unit cell. This approach allows self-consistent modeling of effects such as (i) neutron drip, resulting in a neutron gas external to the nuclear structure; (ii) shell effects of bound and unbound nucleons; (iii) the variety of exotic nuclear shapes that emerge, collectively termed nuclear pasta; and (iv) the dissolution of these structures into uniform nuclear matter as density and/or temperature increase. In Part I of this work the calculation of the properties of inhomogeneous nuclear matter in the core collapse of massive stars is reported. Emphasis is on exploring the effects of the numerical method on the results obtained; notably, the influence of the finite cell size on the nuclear shapes and energy-density obtained. Results for nuclear matter in {beta} equilibrium in cold neutrons stars are the subject of Part II. The calculation of the band structure of unbound neutrons in neutron star matter, yielding thermal conductivity, specific heat, and entrainment parameters, is outlined in Part III. Calculations are performed at baryon number densities of n{sub b}=0.04-0.12 fm{sup -3}, a proton fraction of y{sub p}=0.3 and temperatures in the range 0-7.5 MeV. A wide variety of nuclear shapes are shown to emerge. It is suggested that thermodynamical properties change smoothly in the pasta regime up to the transition to uniform matter; at that transition, thermodynamic properties of the matter

  12. One Force

    NASA Astrophysics Data System (ADS)

    Kotas, Ronald R.

    2002-04-01

    There is only one entity that can extend force and couple through space; and it should be apparent that Electromagnetism is that entity. In the cases of the nuclear strong force and the nuclear weak force, this is the same fundamental Electromagnetism manifesting itself in two different ways in the nucleus. It remains the same basic Electromagnetism. On the other hand, General Relativity fails to produce force at a distance, fails the Cavendish experiment, and does not allow an apple to fall to the ground. The result shows there is only Electromagnetism that functions through physical nature providing gravity, actions in the nucleus, as well as all other physical actions universally, including Gravity and Gravitation. There are many direct proofs of this, the same proofs as in NUCLEAR QUANTUM GRAVITATION. In contrast, General Relativity plainly relies on fallacy abstract and incoherent proofs; proofs which have now been mostly disproved. In the past it was deemed necessary by some to have an "ether" to propagate Electromagnetic waves. The fallacy concept of time space needs "space distortions" in order to cause gravity. However, Electromagnetic gravity does not have this problem. Clearly there is only ONE FORCE that causes Gravity, Electromagnetism, the Nuclear Strong Force, and the Nuclear Weak Force, and that ONE FORCE is Electromagnetism.

  13. Labor Force

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2010

    2010-01-01

    The labor force is the number of people aged 16 or older who are either working or looking for work. It does not include active-duty military personnel or institutionalized people, such as prison inmates. Quantifying this total supply of labor is a way of determining how big the economy can get. Labor force participation rates vary significantly…

  14. Force sensor

    DOEpatents

    Grahn, A.R.

    1993-05-11

    A force sensor and related method for determining force components is described. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  15. Force sensor

    DOEpatents

    Grahn, Allen R.

    1993-01-01

    A force sensor and related method for determining force components. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  16. Self-consistent calculation of nuclear photoabsorption cross sections: Finite amplitude method with Skyrme functionals in the three-dimensional real space

    NASA Astrophysics Data System (ADS)

    Inakura, Tsunenori; Nakatsukasa, Takashi; Yabana, Kazuhiro

    2009-10-01

    The finite amplitude method (FAM), which we have recently proposed [T. Nakatsukasa, T. Inakura, and K. Yabana, Phys. Rev. C 76, 024318 (2007)], significantly simplifies the fully self-consistent calculation of the random-phase approximation (RPA). This article presents a computational scheme of FAM suitable for systematic investigation and shows its performance for realistic Skyrme energy functionals. We adopt the mixed representation in which the forward and backward RPA amplitudes are represented by index of hole orbitals and of the spatial grid points for the three-dimensional real space. We solve a linear algebraic problem with a sparse non-Hermitian matrix, using an iterative method. We show results of the dipole response for selected spherical and deformed nuclei. The calculated peak energies of the giant dipole resonance well agree with experiments for heavy nuclei. However, they are systematically underestimated for light nuclei. We also discuss the width of the giant dipole resonance in the fully self-consistent RPA calculation.

  17. Vacuum force

    NASA Astrophysics Data System (ADS)

    Han, Yongquan

    2015-03-01

    To study on vacuum force, we must clear what is vacuum, vacuum is a space do not have any air and also ray. There is not exist an absolute the vacuum of space. The vacuum of space is relative, so that the vacuum force is relative. There is a certain that vacuum vacuum space exists. In fact, the vacuum space is relative, if the two spaces compared to the existence of relative vacuum, there must exist a vacuum force, and the direction of the vacuum force point to the vacuum region. Any object rotates and radiates. Rotate bend radiate- centripetal, gravity produced, relative gravity; non gravity is the vacuum force. Gravity is centripetal, is a trend that the objects who attracted wants to Centripetal, or have been do Centripetal movement. Any object moves, so gravity makes the object curve movement, that is to say, the radiation range curve movement must be in the gravitational objects, gravity must be existed in non vacuum region, and make the object who is in the region of do curve movement (for example: The earth moves around the sun), or final attracted in the form gravitational objects, and keep relatively static with attract object. (for example: objects on the earth moves but can't reach the first cosmic speed).

  18. Strategic forces

    SciTech Connect

    Not Available

    1990-10-01

    The Air Force now plans to retain the Minuteman II and III missile force through fiscal year 2008. Introduced about 25 years ago, these missiles have served as a nuclear deterrence for longer than initially envisioned. Over the extended lives of the systems, questions have arisen over their continued reliability and operational effectiveness, particularly the Minuteman II system. Limited flight testing, due to a shortage of test missiles, and reduced reliability caused by age-related deterioration of guidance computers and propulsion motors are two factors undermining confidence in the Minuteman II. GAO believes that the Minuteman II could be retired before 1998 as presently contemplated under an assumption of a Strategic Arms Reduction Talks agreement. An alternative would be to reinstate the Air Force's plans to replace deteriorated missile components and acquire the assets needed to resume flight testing at rates necessary to restore and sustain confidence in the system's performance through fiscal year 2008. However, on the basis of current test schedules, GAO is concerned that components to test the missile's warheads will be depleted by about 1999.

  19. Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (VI) HFODD (v2.40h): A new version of the program

    SciTech Connect

    Dobaczewski, Jacek; Satula, W.; Sarich, J.; Schunck, Nicolas F; Staszczak, A.; Stoitsov, Mario

    2009-01-01

    We describe the new version (v2.40h) of the code hfodd which solves the nuclear Skyrme-Hartree-Fock or Skyrme-Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented: (i) projection on good angular momentum (for the Hartree-Fock states), (ii) calculation of the GCM kernels, (iii) calculation of matrix elements of the Yukawa interaction, (iv) the BCS solutions for state-dependent pairing gaps, (v) the HFB solutions for broken simplex symmetry, (vi) calculation of Bohr deformation parameters, (vii) constraints on the Schiff moments and scalar multipole moments, (viii) the D{sub 2h}{sup T} transformations and rotations of wave functions, (ix) quasiparticle blocking for the HFB solutions in odd and odd-odd nuclei, (x) the Broyden method to accelerate the convergence, (xi) the Lipkin-Nogami method to treat pairing correlations, (xii) the exact Coulomb exchange term, (xiii) several utility options, and we have corrected three insignificant errors.

  20. Generic constraints on the relativistic mean-field and Skyrme-Hartree-Fock models from the pure neutron matter equation of state

    NASA Astrophysics Data System (ADS)

    Fattoyev, F. J.; Newton, W. G.; Xu, Jun; Li, Bao-An

    2012-08-01

    We study the nuclear symmetry energy S(ρ) and related quantities of nuclear physics and nuclear astrophysics predicted generically by relativistic mean-field (RMF) and Skyrme-Hartree-Fock (SHF) models. We establish a simple prescription for preparing equivalent RMF and SHF parametrizations starting from a minimal set of empirical constraints on symmetric nuclear matter, nuclear binding energy, and charge radii, enforcing equivalence of their Lorenz effective masses, and then using the pure neutron matter (PNM) equation of state obtained from ab initio calculations to optimize the pure isovector parameters in the RMF and SHF models. We find that the resulting RMF and SHF parametrizations give broadly consistent predictions of the symmetry energy J and its slope parameter L at saturation density within a tight range of ≲2 and ≲6 MeV, respectively, but that clear model dependence shows up in the predictions of higher-order symmetry energy parameters, leading to important differences in (a) the slope of the correlation between J and L from the confidence ellipse, (b) the isospin-dependent part of the incompressibility of nuclear matter Kτ, (c) the symmetry energy at suprasaturation densities, and (d) the predicted neutron star radii. The model dependence can lead to about 1-2 km difference in predictions of the neutron star radius given identical predicted values of J and L and symmetric nuclear matter (SNM) saturation properties. Allowing the full freedom in the effective masses in both models leads to constraints of 30≲J≲31.5 MeV, 35≲L≲60 MeV, and -330≲Kτ≲-216 MeV for the RMF model as a whole and 30≲J≲33 MeV, 28≲L≲65 MeV, and -420≲Kτ≲-325 MeV for the SHF model as a whole. Notably, given PNM constraints, these results place RMF and SHF models as a whole at odds with some constraints on Kτ inferred from giant monopole resonance and neutron skin experimental results.

  1. The swim force as a body force

    NASA Astrophysics Data System (ADS)

    Yan, Wen; Brady, John

    2015-11-01

    Net (as opposed to random) motion of active matter results from an average swim (or propulsive) force. It is shown that the average swim force acts like a body force - an internal body force [Yan and Brady, Soft Matter, DOI:10.1039/C5SM01318F]. As a result, the particle-pressure exerted on a container wall is the sum of the swim pressure [Takatori et al., Phys. Rev. Lett., 2014, 113, 028103] and the `weight' of the active particles. A continuum mechanical description is possible when variations occur on scales larger than the run length of the active particles and gives a Boltzmann-like distribution from a balance of the swim force and the swim pressure. Active particles may also display `action at a distance' and accumulate adjacent to (or be depleted from) a boundary without any external forces. In the momentum balance for the suspension - the mixture of active particles plus fluid - only external body forces appear.

  2. α versus non-α cluster decays of the excited compound nucleus *124Ce using various formulations of the nuclear proximity potential

    NASA Astrophysics Data System (ADS)

    Kaur, Arshdeep; Chopra, Sahila; Gupta, Raj K.

    2015-06-01

    The earlier study of *124Ce formed in the 32S+92Mo reaction at an above barrier beam energy of 150 MeV, using the pocket formula of Blocki et al. for the nuclear proximity potential in the dynamical cluster-decay model (DCM), is extended to the use of other nuclear interaction potentials derived from the Skyrme energy density functional (SEDF) based on the semiclassical extended Thomas Fermi (ETF) approach under the frozen density approximation. The Skyrme forces used are the old SII, SIII, SIV, SKa, SkM, and SLy4 and new GSkI and KDE0(v1), given for both normal and isospin-rich nuclei. It is found that the α -nucleus structure, over the non-α nucleus structure, is preferred for only two Skyrme forces, the SIII and KDE0(v1). An extended intermediate mass fragments (IMFs) window, along with the new decay region of heavy mass fragments (HMFs) and the near-symmetric and symmetric fission fragments which, on adding the complementary heavy fragments, corresponds to (A /2 )±12 mass region of the fusion-fission (ff) process, are predicted by considering cross sections of orders observed in the experiment under study. For the predicted (total) fusion cross section, the survival probability Psurv of the compound nucleus (CN) against fission is shown to be very small because of the very large predicted ff component. On the other hand, the CN formation probability PCN is found to be nearly equal to 1, and hence the decay under study is a pure CN decay for all the nuclear potentials considered, since the estimated noncompound nucleus (nCN) content is almost negligible. We have also applied the extended-Wong model of Gupta and collaborators, and find that the ℓmax values and total fusion cross sections are of the same order as for the DCM. Thus, the extended-Wong model, which describes only the total fusion cross section in terms of the barrier characteristics of the entrance channel nuclei, could be useful for initial experimental studies to be fully treated using the DCM

  3. Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis.. (VII) HFODD (v2.49t): A new version of the program

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Dobaczewski, J.; McDonnell, J.; Satuła, W.; Sheikh, J. A.; Staszczak, A.; Stoitsov, M.; Toivanen, P.

    2012-01-01

    We describe the new version (v2.49t) of the code HFODD which solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin mixing and projection, (ii) the finite-temperature formalism for the HFB and HF + BCS methods, (iii) the Lipkin translational energy correction method, (iv) the calculation of the shell correction. A number of specific numerical methods have also been implemented in order to deal with large-scale multi-constraint calculations and hardware limitations: (i) the two-basis method for the HFB method, (ii) the Augmented Lagrangian Method (ALM) for multi-constraint calculations, (iii) the linear constraint method based on the approximation of the RPA matrix for multi-constraint calculations, (iv) an interface with the axial and parity-conserving Skyrme-HFB code HFBTHO, (v) the mixing of the HF or HFB matrix elements instead of the HF fields. Special care has been paid to using the code on massively parallel leadership class computers. For this purpose, the following features are now available with this version: (i) the Message Passing Interface (MPI) framework, (ii) scalable input data routines, (iii) multi-threading via OpenMP pragmas, (iv) parallel diagonalization of the HFB matrix in the simplex-breaking case using the ScaLAPACK library. Finally, several little significant errors of the previous published version were corrected. New version program summaryProgram title:HFODD (v2.49t) Catalogue identifier: ADFL_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADFL_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence v3 No. of lines in distributed program, including test data, etc.: 190 614 No. of bytes in distributed program, including test data, etc.: 985 898 Distribution

  4. Nanonet Force Microscopy for Measuring Cell Forces.

    PubMed

    Sheets, Kevin; Wang, Ji; Zhao, Wei; Kapania, Rakesh; Nain, Amrinder S

    2016-07-12

    The influence of physical forces exerted by or felt by cells on cell shape, migration, and cytoskeleton arrangement is now widely acknowledged and hypothesized to occur due to modulation of cellular inside-out forces in response to changes in the external fibrous environment (outside-in). Our previous work using the non-electrospinning Spinneret-based Tunable Engineered Parameters' suspended fibers has revealed that cells are able to sense and respond to changes in fiber curvature and structural stiffness as evidenced by alterations to focal adhesion cluster lengths. Here, we present the development and application of a suspended nanonet platform for measuring C2C12 mouse myoblast forces attached to fibers of three diameters (250, 400, and 800 nm) representing a wide range of structural stiffness (3-50 nN/μm). The nanonet force microscopy platform measures cell adhesion forces in response to symmetric and asymmetric external perturbation in single and cyclic modes. We find that contractility-based, inside-out forces are evenly distributed at the edges of the cell, and that forces are dependent on fiber structural stiffness. Additionally, external perturbation in symmetric and asymmetric modes biases cell-fiber failure location without affecting the outside-in forces of cell-fiber adhesion. We then extend the platform to measure forces of (1) cell-cell junctions, (2) single cells undergoing cyclic perturbation in the presence of drugs, and (3) cancerous single-cells transitioning from a blebbing to a pseudopodial morphology. PMID:27410747

  5. Force propagation and force generation in cells.

    PubMed

    Jonas, Oliver; Duschl, Claus

    2010-09-01

    Determining how forces are produced by and propagated through the cytoskeleton (CSK) of the cell is of great interest as dynamic processes of the CSK are intimately correlated with many molecular signaling pathways. We are presenting a novel approach for integrating measurements on cell elasticity, transcellular force propagation, and cellular force generation to obtain a comprehensive description of dynamic and mechanical properties of the CSK under force loading. This approach uses a combination of scanning force microscopy (SFM) and Total Internal Reflection Fluorescence (TIRF) microscopy. We apply well-defined loading schemes onto the apical cell membrane of fibroblasts using the SFM and simultaneously use TIRF microscopy to image the topography of the basal cell membrane. The locally distinct changes of shape and depth of the cytoskeletal imprints onto the basal membrane are interpreted as results of force propagation through the cytoplasm. This observation provides evidence for the tensegrity model and demonstrates the usefulness of our approach that does not depend on potentially disturbing marker compounds. We confirm that the actin network greatly determines cell stiffness and represents the substrate that mediates force transduction through the cytoplasm of the cell. The latter is an essential feature of tensegrity. Most importantly, our new finding that, both intact actin and microtubule networks are required for enabling the cell to produce work, can only be understood within the framework of the tensegrity model. We also provide, for the first time, a direct measurement of the cell's mechanical power output under compression at two femtowatts. PMID:20607861

  6. Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  7. Microprocessor controlled force actuator

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. C.; Inman, D. J.; Horner, G. C.

    1986-01-01

    The mechanical and electrical design of a prototype force actuator for vibration control of large space structures (LSS) is described. The force actuator is an electromagnetic system that produces a force by reacting against a proof-mass. The actuator has two colocated sensors, a digital microcontroller, and a power amplifier. The total weight of actuator is .998 kg. The actuator has a steady state force output of approximately 2.75 N from approximately 2 Hz to well beyond 1000 Hz.

  8. Fluid force transducer

    DOEpatents

    Jendrzejczyk, Joseph A.

    1982-01-01

    An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

  9. Forces in General Relativity

    ERIC Educational Resources Information Center

    Ridgely, Charles T.

    2010-01-01

    Many textbooks dealing with general relativity do not demonstrate the derivation of forces in enough detail. The analyses presented herein demonstrate straightforward methods for computing forces by way of general relativity. Covariant divergence of the stress-energy-momentum tensor is used to derive a general expression of the force experienced…

  10. Turkish Students' Force Meanings

    ERIC Educational Resources Information Center

    Menekse, Muhsin; Clark, Douglas B.; Ozdemir, Gokhan; D'angelo, Cynthia; Scheligh, Sharon

    2009-01-01

    What are Turkish pre, elementary, middle, and high school students' force ideas? And, how do Turkish students' non-normative force ideas differ or be similar to the well-known force misconceptions reported in the literature? Students have false and persistent beliefs about the physical world and they struggle with challenging misconceptions based…

  11. Debunking Coriolis Force Myths

    ERIC Educational Resources Information Center

    Shakur, Asif

    2014-01-01

    Much has been written and debated about the Coriolis force. Unfortunately, this has done little to demystify the paradoxes surrounding this fictitious force invoked by an observer in a rotating frame of reference. It is the purpose of this article to make another valiant attempt to slay the dragon of the Coriolis force! This will be done without…

  12. Crossflow force transducer. [LMFBR

    SciTech Connect

    Mulcahy, T M

    1982-05-01

    A force transducer for measuring lift and drag coefficients for a circular cylinder in turbulent water flow is presented. In addition to describing the actual design and construction of the strain-gauged force- ring based transducer, requirements for obtained valid fluid force test data are discussed, and pertinent flow test experience is related.

  13. Efficacy of climate forcings

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Sato, M.; Ruedy, R.; Nazarenko, L.; Lacis, A.; Schmidt, G. A.; Russell, G.; Aleinov, I.; Bauer, M.; Bauer, S.; Bell, N.; Cairns, B.; Canuto, V.; Chandler, M.; Cheng, Y.; Del Genio, A.; Faluvegi, G.; Fleming, E.; Friend, A.; Hall, T.; Jackman, C.; Kelley, M.; Kiang, N.; Koch, D.; Lean, J.; Lerner, J.; Lo, K.; Menon, S.; Miller, R.; Minnis, P.; Novakov, T.; Oinas, V.; Perlwitz, Ja.; Perlwitz, Ju.; Rind, D.; Romanou, A.; Shindell, D.; Stone, P.; Sun, S.; Tausnev, N.; Thresher, D.; Wielicki, B.; Wong, T.; Yao, M.; Zhang, S.

    2005-09-01

    We use a global climate model to compare the effectiveness of many climate forcing agents for producing climate change. We find a substantial range in the "efficacy" of different forcings, where the efficacy is the global temperature response per unit forcing relative to the response to CO2 forcing. Anthropogenic CH4 has efficacy ˜110%, which increases to ˜145% when its indirect effects on stratospheric H2O and tropospheric O3 are included, yielding an effective climate forcing of ˜0.8 W/m2 for the period 1750-2000 and making CH4 the largest anthropogenic climate forcing other than CO2. Black carbon (BC) aerosols from biomass burning have a calculated efficacy ˜58%, while fossil fuel BC has an efficacy ˜78%. Accounting for forcing efficacies and for indirect effects via snow albedo and cloud changes, we find that fossil fuel soot, defined as BC + OC (organic carbon), has a net positive forcing while biomass burning BC + OC has a negative forcing. We show that replacement of the traditional instantaneous and adjusted forcings, Fi and Fa, with an easily computed alternative, Fs, yields a better predictor of climate change, i.e., its efficacies are closer to unity. Fs is inferred from flux and temperature changes in a fixed-ocean model run. There is remarkable congruence in the spatial distribution of climate change, normalized to the same forcing Fs, for most climate forcing agents, suggesting that the global forcing has more relevance to regional climate change than may have been anticipated. Increasing greenhouse gases intensify the Hadley circulation in our model, increasing rainfall in the Intertropical Convergence Zone (ITCZ), Eastern United States, and East Asia, while intensifying dry conditions in the subtropics including the Southwest United States, the Mediterranean region, the Middle East, and an expanding Sahel. These features survive in model simulations that use all estimated forcings for the period 1880-2000. Responses to localized forcings, such

  14. Cell adhesion force microscopy

    PubMed Central

    Sagvolden, G.; Giaever, I.; Pettersen, E. O.; Feder, J.

    1999-01-01

    The adhesion forces of cervical carcinoma cells in tissue culture were measured by using the manipulation force microscope, a novel atomic force microscope. The forces were studied as a function of time and temperature for cells cultured on hydrophilic and hydrophobic polystyrene substrates with preadsorbed proteins. The cells attached faster and stronger at 37°C than at 23°C and better on hydrophilic than on hydrophobic substrates, even though proteins adsorb much better to the hydrophobic substrates. Because cell adhesion serves to control several stages in the cell cycle, we anticipate that the manipulation force microscope can help clarify some cell-adhesion related issues. PMID:9892657

  15. Entropic force between biomembranes

    NASA Astrophysics Data System (ADS)

    Li, Long; Song, Fan

    2016-08-01

    Undulation force, an entropic force, stems from thermally excited fluctuations, and plays a key role in the essential interactions between neighboring surfaces of objects. Although the characteristics of the undulation force have been widely studied theoretically and experimentally, the distance dependence of the force, which constitutes its most fundamental characteristic, remains poorly understood. In this paper, first, we obtain a novel expression for the undulation force by employing elasticity and statistical mechanics and prove it to be in good agreement with existing experimental results. Second, we clearly demonstrate that the two representative forms of the undulation force proposed by Helfrich and Freund were respectively the upper and lower bounds of the present expression when the separation between membranes is sufficiently small, which was intrinsically different from the existing results where Helfrich's and Freund's forms of the undulation force were only suitable for the intermediate and small separations. The investigations show that only in a sufficiently small separation does Helfrich's result stand for the undulation force with a large wave number and Freund's result express the force with a small wave number. Finally, a critical acting distance of the undulation force, beyond which the entropic force will rapidly decay approaching zero, is presented.

  16. Forces in molecules.

    PubMed

    Hernández-Trujillo, Jesús; Cortés-Guzmán, Fernando; Fang, De-Chai; Bader, Richard F W

    2007-01-01

    Chemistry is determined by the electrostatic forces acting within a collection of nuclei and electrons. The attraction of the nuclei for the electrons is the only attractive force in a molecule and is the force responsible for the bonding between atoms. This is the attractive force acting on the electrons in the Ehrenfest force and on the nuclei in the Feynman force, one that is countered by the repulsion between the electrons in the former and by the repulsion between the nuclei in the latter. The virial theorem relates these forces to the energy changes resulting from interactions between atoms. All bonding, as signified by the presence of a bond path, has a common origin in terms of the mechanics determined by the Ehrenfest, Feynman and virial theorems. This paper is concerned in particular with the mechanics of interaction encountered in what are classically described as 'nonbonded interactions'--are atoms that 'touch' bonded or repelling one another?

  17. Forces in molecules.

    PubMed

    Hernández-Trujillo, Jesús; Cortés-Guzmán, Fernando; Fang, De-Chai; Bader, Richard F W

    2007-01-01

    Chemistry is determined by the electrostatic forces acting within a collection of nuclei and electrons. The attraction of the nuclei for the electrons is the only attractive force in a molecule and is the force responsible for the bonding between atoms. This is the attractive force acting on the electrons in the Ehrenfest force and on the nuclei in the Feynman force, one that is countered by the repulsion between the electrons in the former and by the repulsion between the nuclei in the latter. The virial theorem relates these forces to the energy changes resulting from interactions between atoms. All bonding, as signified by the presence of a bond path, has a common origin in terms of the mechanics determined by the Ehrenfest, Feynman and virial theorems. This paper is concerned in particular with the mechanics of interaction encountered in what are classically described as 'nonbonded interactions'--are atoms that 'touch' bonded or repelling one another? PMID:17328425

  18. Force-Measuring Clamps

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark

    2003-01-01

    Force-measuring clamps have been invented to facilitate and simplify the task of measuring the forces or pressures applied to clamped parts. There is a critical need to measure clamping forces or pressures in some applications for example, while bonding sensors to substrates or while clamping any sensitive or delicate parts. Many manufacturers of adhesives and sensors recommend clamping at specific pressures while bonding sensors or during adhesive bonding between parts in general. In the absence of a force-measuring clamp, measurement of clamping force can be cumbersome at best because of the need for additional load sensors and load-indicating equipment. One prior method of measuring clamping force involved the use of load washers or miniature load cells in combination with external power sources and load-indicating equipment. Calibrated spring clamps have also been used. Load washers and miniature load cells constitute additional clamped parts in load paths and can add to the destabilizing effects of loading mechanisms. Spring clamps can lose calibration quickly through weakening of the springs and are limited to the maximum forces that the springs can apply. The basic principle of a force-measuring clamp can be implemented on a clamp of almost any size and can enable measurement of a force of almost any magnitude. No external equipment is needed because the component(s) for transducing the clamping force and the circuitry for supplying power, conditioning the output of the transducers, and displaying the measurement value are all housed on the clamp. In other words, a force-measuring clamp is a complete force-application and force-measurement system all in one package. The advantage of unitary packaging of such a system is that it becomes possible to apply the desired clamping force or pressure with precision and ease.

  19. Force Limited Vibration Testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry; Chang, Kurng Y.

    2005-01-01

    This slide presentation reviews the concept and applications of Force Limited Vibration Testing. The goal of vibration testing of aerospace hardware is to identify problems that would result in flight failures. The commonly used aerospace vibration tests uses artificially high shaker forces and responses at the resonance frequencies of the test item. It has become common to limit the acceleration responses in the test to those predicted for the flight. This requires an analysis of the acceleration response, and requires placing accelerometers on the test item. With the advent of piezoelectric gages it has become possible to improve vibration testing. The basic equations have are reviewed. Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface . In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification. Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments. Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test

  20. Coulomb force as an entropic force

    SciTech Connect

    Wang Tower

    2010-05-15

    Motivated by Verlinde's theory of entropic gravity, we give a tentative explanation to the Coulomb's law with an entropic force. When trying to do this, we find the equipartition rule should be extended to charges and the concept of temperature should be reinterpreted. If one accepts the holographic principle as well as our generalizations and reinterpretations, then Coulomb's law, the Poisson equation, and the Maxwell equations can be derived smoothly. Our attempt can be regarded as a new way to unify the electromagnetic force with gravity, from the entropic origin. Possibly some of our postulates are related to the D-brane picture of black hole thermodynamics.

  1. Coulomb force as an entropic force

    NASA Astrophysics Data System (ADS)

    Wang, Tower

    2010-05-01

    Motivated by Verlinde’s theory of entropic gravity, we give a tentative explanation to the Coulomb’s law with an entropic force. When trying to do this, we find the equipartition rule should be extended to charges and the concept of temperature should be reinterpreted. If one accepts the holographic principle as well as our generalizations and reinterpretations, then Coulomb’s law, the Poisson equation, and the Maxwell equations can be derived smoothly. Our attempt can be regarded as a new way to unify the electromagnetic force with gravity, from the entropic origin. Possibly some of our postulates are related to the D-brane picture of black hole thermodynamics.

  2. Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis.. (VI) HFODD (v2.40h): A new version of the program

    NASA Astrophysics Data System (ADS)

    Dobaczewski, J.; Satuła, W.; Carlsson, B. G.; Engel, J.; Olbratowski, P.; Powałowski, P.; Sadziak, M.; Sarich, J.; Schunck, N.; Staszczak, A.; Stoitsov, M.; Zalewski, M.; Zduńczuk, H.

    2009-11-01

    We describe the new version (v2.40h) of the code HFODD which solves the nuclear Skyrme-Hartree-Fock or Skyrme-Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented: (i) projection on good angular momentum (for the Hartree-Fock states), (ii) calculation of the GCM kernels, (iii) calculation of matrix elements of the Yukawa interaction, (iv) the BCS solutions for state-dependent pairing gaps, (v) the HFB solutions for broken simplex symmetry, (vi) calculation of Bohr deformation parameters, (vii) constraints on the Schiff moments and scalar multipole moments, (viii) the DT2h transformations and rotations of wave functions, (ix) quasiparticle blocking for the HFB solutions in odd and odd-odd nuclei, (x) the Broyden method to accelerate the convergence, (xi) the Lipkin-Nogami method to treat pairing correlations, (xii) the exact Coulomb exchange term, (xiii) several utility options, and we have corrected three insignificant errors. New version program summaryProgram title: HFODD (v2.40h) Catalogue identifier: ADFL_v2_2 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADFL_v2_2.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 79 618 No. of bytes in distributed program, including test data, etc.: 372 548 Distribution format: tar.gz Programming language: FORTRAN-77 and Fortran-90 Computer: Pentium-III, AMD-Athlon, AMD-Opteron Operating system: UNIX, LINUX, Windows XP Has the code been

  3. Quantum Fictitious Forces

    NASA Astrophysics Data System (ADS)

    Białynicki-Birula, I.; Cirone, M. A.; Dahl, J. P.; Seligman, T. H.; Straub, F.; Schleich, W. P.

    2003-09-01

    We present Heisenberg's equation of motion for the radial variable of a free non-relativistic particle in D dimensions. The resulting radial force consists of three contributions: (i) the quantum fictitious force which is either attractive or repulsive depending on the number of dimensions, (ii) a singular quantum force located at the origin, and (iii) the centrifugal force associated with non-vanishing angular momentum. Moreover, we use Heisenberg's uncertainty relation to introduce a lower bound for the kinetic energy of an ensemble of neutral particles. This bound is quadratic in the number of atoms and can be traced back to the repulsive quantum fictitious potential. All three forces arise for a free particle: “Force without force”.

  4. Axially deformed solution of the Skyrme-Hartree-Fock-Bogoliubov equations using the transformed harmonic oscillator basis (II) HFBTHO v2.00d: A new version of the program

    NASA Astrophysics Data System (ADS)

    Stoitsov, M. V.; Schunck, N.; Kortelainen, M.; Michel, N.; Nam, H.; Olsen, E.; Sarich, J.; Wild, S.

    2013-06-01

    We describe the new version 2.00d of the code HFBTHO that solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogoliubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the modified Broyden method for non-linear problems, (ii) optional breaking of reflection symmetry, (iii) calculation of axial multipole moments, (iv) finite temperature formalism for the HFB method, (v) linear constraint method based on the approximation of the Random Phase Approximation (RPA) matrix for multi-constraint calculations, (vi) blocking of quasi-particles in the Equal Filling Approximation (EFA), (vii) framework for generalized energy density with arbitrary density-dependences, and (viii) shared memory parallelism via OpenMP pragmas. Program summaryProgram title: HFBTHO v2.00d Catalog identifier: ADUI_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUI_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 167228 No. of bytes in distributed program, including test data, etc.: 2672156 Distribution format: tar.gz Programming language: FORTRAN-95. Computer: Intel Pentium-III, Intel Xeon, AMD-Athlon, AMD-Opteron, Cray XT5, Cray XE6. Operating system: UNIX, LINUX, WindowsXP. RAM: 200 Mwords Word size: 8 bits Classification: 17.22. Does the new version supercede the previous version?: Yes Catalog identifier of previous version: ADUI_v1_0 Journal reference of previous version: Comput. Phys. Comm. 167 (2005) 43 Nature of problem: The solution of self-consistent mean-field equations for weakly-bound paired nuclei requires a correct description of the asymptotic properties of nuclear quasi-particle wave functions. In the present implementation, this is achieved by using the single-particle wave functions

  5. Relativistic Linear Restoring Force

    ERIC Educational Resources Information Center

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  6. Debunking Coriolis Force Myths

    NASA Astrophysics Data System (ADS)

    Shakur, Asif

    2014-11-01

    Much has been written and debated about the Coriolis force.1-8 Unfortunately, this has done little to demystify the paradoxes surrounding this fictitious force invoked by an observer in a rotating frame of reference. It is the purpose of this article to make another valiant attempt to slay the dragon of the Coriolis force! This will be done without unleashing the usual mathematical apparatus, which we believe is more of a hindrance than a help.

  7. Electrodynamic force law controversy.

    PubMed

    Graneau, P; Graneau, N

    2001-05-01

    Cavalleri et al. [Phys. Rev. E 52, 2505 (1998); Eur. J. Phys. 17, 205 (1996)] have attempted to resolve the electrodynamic force law controversy. This attempt to prove the validity of either the Ampère or Lorentz force law by theory and experiment has revealed only that the two are equivalent when predicting the force on part of a circuit due to the current in the complete circuit. However, in our analysis of internal stresses, only Ampère's force law agrees with experiment. PMID:11415053

  8. Climate forcings and feedbacks

    NASA Technical Reports Server (NTRS)

    Hansen, James

    1993-01-01

    Global temperature has increased significantly during the past century. Understanding the causes of observed global temperature change is impossible in the absence of adequate monitoring of changes in global climate forcings and radiative feedbacks. Climate forcings are changes imposed on the planet's energy balance, such as change of incoming sunlight or a human-induced change of surface properties due to deforestation. Radiative feedbacks are radiative changes induced by climate change, such as alteration of cloud properties or the extent of sea ice. Monitoring of global climate forcings and feedbacks, if sufficiently precise and long-term, can provide a very strong constraint on interpretation of observed temperature change. Such monitoring is essential to eliminate uncertainties about the relative importance of various climate change mechanisms including tropospheric sulfate aerosols from burning of coal and oil smoke from slash and burn agriculture, changes of solar irradiance changes of several greenhouse gases, and many other mechanisms. The considerable variability of observed temperature, together with evidence that a substantial portion of this variability is unforced indicates that observations of climate forcings and feedbacks must be continued for decades. Since the climate system responds to the time integral of the forcing, a further requirement is that the observations be carried out continuously. However, precise observations of forcings and feedbacks will also be able to provide valuable conclusions on shorter time scales. For example, knowledge of the climate forcing by increasing CFC's relative to the forcing by changing ozone is important to policymakers, as is information on the forcing by CO2 relative to the forcing by sulfate aerosols. It will also be possible to obtain valuable tests of climate models on short time scales, if there is precise monitoring of all forcings and feedbacks during and after events such as a large volcanic eruption

  9. Elementary Particles and Forces.

    ERIC Educational Resources Information Center

    Quigg, Chris

    1985-01-01

    Discusses subatomic particles (quarks, leptons, and others) revealed by higher accelerator energies. A connection between forces at this subatomic level has been established, and prospects are good for a description of forces that encompass binding atomic nuclei. Colors, fundamental interactions, screening, camouflage, electroweak symmetry, and…

  10. Polarizable force fields.

    PubMed

    Antila, Hanne S; Salonen, Emppu

    2013-01-01

    This chapter provides an overview of the most common methods for including an explicit description of electronic polarization in molecular mechanics force fields: the induced point dipole, shell, and fluctuating charge models. The importance of including polarization effects in biomolecular simulations is discussed, and some of the most important achievements in the development of polarizable biomolecular force fields to date are highlighted.

  11. Forces in yeast flocculation.

    PubMed

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N; Dufrêne, Yves F

    2015-02-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion ("flocculation") is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  12. Forces in yeast flocculation

    NASA Astrophysics Data System (ADS)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.

    2015-01-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (``flocculation'') is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  13. Force Concept Inventory.

    ERIC Educational Resources Information Center

    Hestenes, David; And Others

    1992-01-01

    Reports the rationale, design, validation, and uses of the "Force Concept Inventory," an instrument to assess the students' beliefs on force. Includes results and implications of two studies that compared the inventory with the "Mechanics Baseline." Includes a copy of the instrument. (MDH)

  14. SCM-Forcing Data

    DOE Data Explorer

    Xie, Shaocheng; Tang,Shuaiqi; Zhang,Yunyan; Zhang,Minghua

    2016-07-01

    Single-Column Model (SCM) Forcing Data are derived from the ARM facility observational data using the constrained variational analysis approach (Zhang and Lin 1997 and Zhang et al., 2001). The resulting products include both the large-scale forcing terms and the evaluation fields, which can be used for driving the SCMs and Cloud Resolving Models (CRMs) and validating model simulations.

  15. Lorentz force velocimetry.

    PubMed

    Thess, A; Votyakov, E V; Kolesnikov, Y

    2006-04-28

    We describe a noncontact technique for velocity measurement in electrically conducting fluids. The technique, which we term Lorentz force velocimetry (LFV), is based on exposing the fluid to a magnetic field and measuring the drag force acting upon the magnetic field lines. Two series of measurements are reported, one in which the force is determined through the angular velocity of a rotary magnet system and one in which the force on a fixed magnet system is measured directly. Both experiments confirm that the measured signal is a linear function of the flow velocity. We then derive the scaling law that relates the force on a localized distribution of magnetized material to the velocity of an electrically conducting fluid. This law shows that LFV, if properly designed, has a wide range of potential applications in metallurgy, semiconductor crystal growth, and glass manufacturing. PMID:16712237

  16. Conservative entropic forces

    NASA Astrophysics Data System (ADS)

    Visser, Matt

    2011-10-01

    Entropic forces have recently attracted considerable attention as ways to reformulate, retrodict, and perhaps even "explain" classical Newtonian gravity from a rather specific thermodynamic perspective. In this article I point out that if one wishes to reformulate classical Newtonian gravity in terms of an entropic force, then the fact that Newtonian gravity is described by a conservative force places significant constraints on the form of the entropy and temperature functions. (These constraints also apply to entropic reinterpretations of electromagnetism, and indeed to any conservative force derivable from a potential.) The constraints I will establish are sufficient to present real and significant problems for any reasonable variant of Verlinde's entropic gravity proposal, though for technical reasons the constraints established herein do not directly impact on either Jacobson'sor Padmanabhan's versions of entropic gravity. In an attempt to resolve these issues, I will extend the usual notion of entropic force to multiple heat baths with multiple "temperatures" and multiple "entropies".

  17. Traceable periodic force calibration

    NASA Astrophysics Data System (ADS)

    Schlegel, Ch; Kieckenap, G.; Glöckner, B.; Buß, A.; Kumme, R.

    2012-06-01

    A procedure for dynamic force calibration using sinusoidal excitations of force transducers is described. The method is based on a sinusoidal excitation of force transducers equipped with an additional top mass excited with an electrodynamic shaker system. The acting dynamic force can in this way be determined according to Newton's law as mass times acceleration, whereby the acceleration is measured on the surface of the top mass with the aid of laser interferometers. The dynamic sensitivity, which is the ratio of the electrical output signal of the force transducer and the acting dynamic force, is the main point of interest of such a dynamic calibration. In addition to the sensitivity, the parameter stiffness and damping of the transducer can also be determined. The first part of the paper outlines a mathematical model to describe the dynamic behaviour of a transducer. This is followed by a presentation of the traceability of the measured quantities involved and their uncertainties. The paper finishes with an example calibration of a 25 kN strain gauge force transducer.

  18. Turbomachinery rotor forces

    NASA Technical Reports Server (NTRS)

    Arndt, Norbert

    1988-01-01

    The fluid-induced forces, both steady and unsteady, acting upon an impeller of a centrifugal pump, and impeller blade-diffuser vane interaction in centrifugal pumps with vaned radial diffusers were evaluated experimentally and theoretically. Knowledge of the steady and unsteady forces, and the associated rotordynamic coefficients are required to effectively model the rotor dynamics of the High Pressure Fuel Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). These forces and rotordynamic coefficients were investigated using different impellers in combination with volutes and vaned diffusers, and axial inducers. These rotor forces are global. Local forces and pressures are also important in impeller-diffuser interaction, for they may cause cavitation damage and even vane failures. Thus, in a separate investigation, impeller wake, and impeller blade and diffuser vane pressure measurements were made. The nature of the rotordynamic forces is discussed, the experimental facility is described, and the measurements of unsteady forces and pressure are reported together with a brief and incomplete attempt to calculate these flows.

  19. OOTW Force Design Tools

    SciTech Connect

    Bell, R.E.; Hartley, D.S.III; Packard, S.L.

    1999-05-01

    This report documents refined requirements for tools to aid the process of force design in Operations Other Than War (OOTWs). It recommends actions for the creation of one tool and work on other tools relating to mission planning. It also identifies the governmental agencies and commands with interests in each tool, from whom should come the user advisory groups overseeing the respective tool development activities. The understanding of OOTWs and their analytical support requirements has matured to the point where action can be taken in three areas: force design, collaborative analysis, and impact analysis. While the nature of the action and the length of time before complete results can be expected depends on the area, in each case the action should begin immediately. Force design for OOTWs is not a technically difficult process. Like force design for combat operations, it is a process of matching the capabilities of forces against the specified and implied tasks of the operation, considering the constraints of logistics, transport and force availabilities. However, there is a critical difference that restricts the usefulness of combat force design tools for OOTWs: the combat tools are built to infer non-combat capability requirements from combat capability requirements and cannot reverse the direction of the inference, as is required for OOTWs. Recently, OOTWs have played a larger role in force assessment, system effectiveness and tradeoff analysis, and concept and doctrine development and analysis. In the first Quadrennial Defense Review (QDR), each of the Services created its own OOTW force design tool. Unfortunately, the tools address different parts of the problem and do not coordinate the use of competing capabilities. These tools satisfied the immediate requirements of the QDR, but do not provide a long-term cost-effective solution.

  20. Manual discrimination of force

    NASA Technical Reports Server (NTRS)

    Pang, Xiao-Dong; Tan, HONG-Z.; Durlach, Nathaniel I.

    1991-01-01

    Optimal design of human-machine interfaces for teleoperators and virtual-environment systems which involve the tactual and kinesthetic modalities requires knowledge of the human's resolving power in these modalities. The resolution of the interface should be appropriately matched to that of the human operator. We report some preliminary results on the ability of the human hand to distinguish small differences in force under a variety of conditions. Experiments were conducted on force discrimination with the thumb pushing an interface that exerts a constant force over the pushing distance and the index finger pressing against a fixed support. The dependence of the sensitivity index d' on force increment can be fit by a straight line through the origin and the just-noticeable difference (JND) in force can thus be described by the inverse of the slope of this line. The receiver operating characteristic (ROC) was measured by varying the a priori probabilities of the two alternatives, reference force and reference force plus an increment, in one-interval, two-alternative, forced-choice experiments. When plotted on normal deviate coordinates, the ROC's were roughly straight lines of unit slope, thus supporting the assumption of equal-variance normal distributions and the use of the conventional d' measure. The JND was roughly 6-8 percent for reference force ranging from 2.5 to 10 newtons, pushing distance from 5 to 30 mm, and initial finger-span from 45 to 125 mm. Also, the JND remained the same when the subjects were instructed to change the average speed of pushing from 23 to 153 mm/sec. The pushing was terminated by reaching either a wall or a well, and the JND's were essentially the same in both cases.

  1. Dilatonic Entropic Force

    NASA Astrophysics Data System (ADS)

    Sakalli, I.

    2011-08-01

    We show in detail that the entropic force of the static spherically symmetric spacetimes with unusual asymptotics can be calculated through the Verlinde's arguments. We introduce three different holographic screen candidates, which are first employed thoroughly by Myung and Kim [Phys. Rev. D 81, 105012 (2010)] for Schwarzschild black hole solutions, in order to identify the entropic force arising between a charged dilaton black hole and a test particle. The significance of the dilaton parameter on the entropic force is highlighted, and shown graphically.

  2. Causal reasoning with forces

    PubMed Central

    Wolff, Phillip; Barbey, Aron K.

    2015-01-01

    Causal composition allows people to generate new causal relations by combining existing causal knowledge. We introduce a new computational model of such reasoning, the force theory, which holds that people compose causal relations by simulating the processes that join forces in the world, and compare this theory with the mental model theory (Khemlani et al., 2014) and the causal model theory (Sloman et al., 2009), which explain causal composition on the basis of mental models and structural equations, respectively. In one experiment, the force theory was uniquely able to account for people's ability to compose causal relationships from complex animations of real-world events. In three additional experiments, the force theory did as well as or better than the other two theories in explaining the causal compositions people generated from linguistically presented causal relations. Implications for causal learning and the hierarchical structure of causal knowledge are discussed. PMID:25653611

  3. Forces in Motion.

    ERIC Educational Resources Information Center

    Goodsell, David; And Others

    1995-01-01

    Describes an activity to give students experience with the variables and forces impacting a moving body on an inclined plane by observing a ball as it rolls down an inclined PVC pipe of fixed length. Includes a student worksheet. (MKR)

  4. Metamaterials enhancing optical forces

    NASA Astrophysics Data System (ADS)

    Ginis, Vincent; Tassin, Philippe; Soukoulis, Costas M.; Veretennicoff, Irina

    2014-05-01

    The interaction between light and matter involves not only an energy transfer, but also the transfer of linear momentum. In everyday life applications this linear momentum of light is too small to play any significant role. However, in nanoscale dimensions, the associated optical forces start to play an increasingly important role. These forces are, e.g., large enough for exiting experiments in the fields of cavity-optomechanics, laser cooling and optical trapping of small particles. Recently, it has been suggested that optical gradient forces can also be employed for all-optical actuation in micro- and nanophotonic systems. The typical setup consists of two slab waveguides positioned in each others vicinity such that they are coupled through the interaction of the evanescent tails. Although the gradient forces between these waveguides can be enhanced considerably using electromagnetic resonators or slow-light techniques, the resulting displacements remain relatively small. In this contribution, we present an alternative approach to enhance optical gradient forces between waveguides using a combination of transformation optics and metamaterials. Our design starts from the observation that gradient forces exponentially decay with the separation distance between the waveguides. Therefore, we employ transformation optics to annihilate the apparent distance for light between the waveguides. Analytical calculations confirm that the resulting forces indeed increase when such an annihilating cladding is inserted. Subsequently, we discuss the metamaterial implementation of this annihilating medium. Such lensing media automatically translate into anisotropic metamaterials with negative components in the permittivity and permeability tensors. Our full-wave numerical simulations show that the overall amplification is highly limited by the loss-tangent of the metamaterial cladding. However, as this cladding only needs to operate in the near-field for a specific polarization

  5. Strategic forces briefing

    SciTech Connect

    Bing, G.; Chrzanowski, P.; May, M.; Nordyke, M.

    1989-04-06

    The Strategic Forces Briefing'' is our attempt, accomplished over the past several months, to outline and highlight the more significant strategic force issues that must be addressed in the near future. Some issues are recurrent: the need for an effective modernized Triad and a constant concern for force survivability. Some issues derive from arms control: the Strategic Arms Reduction Talks (SALT) are sufficiently advanced to set broad numerical limits on forces, but not so constraining as to preclude choices among weapon systems and deployment modes. Finally, a new administration faced with serious budgetary problems must strive for the most effective strategic forces limited dollars can buy and support. A review of strategic forces logically begins with consideration of the missions the forces are charged with. We begin the briefing with a short review of targeting policy and implementation within the constraints of available unclassified information. We then review each element of the Triad with sections on SLBMs, ICBMs, and Air-Breathing (bomber and cruise missile) systems. A short section at the end deals with the potential impact of strategic defense on offensive force planning. We consider ABM, ASAT, and air defense; but we do not attempt to address the technical issues of strategic defense per se. The final section gives a brief overview of the tritium supply problem. We conclude with a summary of recommendations that emerge from our review. The results of calculation on the effectiveness of various weapon systems as a function of cost that are presented in the briefing are by Paul Chrzanowski.

  6. Force-Measuring Clamp

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2004-01-01

    A precision clamp that accurately measures force over a wide range of conditions is described. Using a full bridge or other strain gage configuration. the elastic deformation of the clamp is measured or detected by the strain gages. Thc strain gages transmit a signal that corresponds to the degree of stress upon the clamp. Thc strain gage signal is converted to a numeric display. Calibration is achieved by ero and span potentiometers which enable accurate measurements by the force-measuring clamp.

  7. Optical ``Bernoulli'' forces

    NASA Astrophysics Data System (ADS)

    Movassagh, Ramis; Johnson, Steven

    2015-03-01

    By Bernoulli's law, an increase in the relative speed of a fluid around a body is accompanies by a decrease in the pressure. Therefore, a rotating body in a fluid stream experiences a force perpendicular to the motion of the fluid because of the unequal relative speed of the fluid across its surface. It is well known that light has a constant speed irrespective of the relative motion. Does a rotating body immersed in a stream of photons experience a Bernoulli-like force? We show that, indeed, a rotating dielectric cylinder experiences such a lateral force from an electromagnetic wave. In fact, the sign of the lateral force is the same as that of the fluid-mechanical analogue as long as the electric susceptibility is positive (ɛ >ɛ0), but for negative-susceptibility materials (e.g. metals) we show that the lateral force is in the opposite direction. Because these results are derived from a classical electromagnetic scattering problem, Mie-resonance enhancements that occur in other scattering phenomena also enhance the lateral force. [This talk is based on Phys. Rev. A 88, 023829 (2013).] Supported in part by the U.S. Army Research Office under contract W911NF-13-D-0001.

  8. The Missing Climate Forcing

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Sato, M.; Lacis, A.; Ruedy, R.

    1997-02-01

    Observed climate change is consistent with radiative forcings on several time scales for which the dominant forcings are known, ranging from the few years after a large volcanic eruption to glacial-to-interglacial changes. In the period with most detailed data, 1979 to the present, climate observations contain clear signatures of both natural and anthropogenic forcings. But in the full period since the industrial revolution began, global warming is only about half of that expected due to the principal forcing, increasing greenhouse gases. The direct radiative effect of anthropogenic aerosols contributes only little towards resolving this discrepancy. Unforced climate variability is an unlikely explanation. We argue on the basis of several lines of indirect evidence that aerosol effects on clouds have caused a large negative forcing, at least -1 Wm-2, which has substantially offset greenhouse warming. The tasks of observing this forcing and determining the microphysical mechanisms at its basis are exceptionally difficult, but they are essential for the prognosis of future climate change.

  9. Van der Waals Forces

    NASA Astrophysics Data System (ADS)

    Parsegian, V. Adrian

    2006-03-01

    This should prove to be the definitive work explaining van der Waals forces, how to calculate them and take account of their impact under any circumstances and conditions. These weak intermolecular forces are of truly pervasive impact, and biologists, chemists, physicists and engineers will profit greatly from the thorough grounding in these fundamental forces that this book offers. Parsegian has organized his book at three successive levels of mathematical sophistication, to satisfy the needs and interests of readers at all levels of preparation. The Prelude and Level 1 are intended to give everyone an overview in words and pictures of the modern theory of van der Waals forces. Level 2 gives the formulae and a wide range of algorithms to let readers compute the van der Waals forces under virtually any physical or physiological conditions. Level 3 offers a rigorous basic formulation of the theory. Author is among the most highly respected biophysicists Van der Waals forces are significant for a wide range of questions and problems in the life sciences, chemistry, physics, and engineering, ranging up to the macro level No other book that develops the subject vigorously, and this book also makes the subject intuitively accessible to students who had not previously been mathematically sophisticated enough to calculate them

  10. Introduction to low-momentum effective interactions with Brown-Rho scaling and three-nucleon forces

    NASA Astrophysics Data System (ADS)

    Kuo, T. T. S.; Holt, J. W.; Osnes, E.

    2016-03-01

    Model-space effective interactions V eff derived from free-space nucleon-nucleon interactions V NN are reviewed. We employ a double decimation approach: first we extract a low-momentum interaction {V}{low-k} from V NN using a T-matrix equivalence decimation method. Then V eff is obtained from {V}{low-k} by way of a folded-diagram effective interaction method. For decimation momentum {{Λ }}≃ 2 {{fm}}-1, the {V}{low-k} interactions derived from different realistic V NN models are nearly model independent, and so are the resulting shell-model effective interactions. For nucleons in a low-density nuclear medium like valence nucleons near the nuclear surface, such effective interactions derived from free-space V NN are satisfactory in reproducing experimental nuclear properties. But it is not so for nucleons in a nuclear medium with density near or beyond nuclear matter saturation density. In this case it may be necessary to include the effects from Brown-Rho (BR) scaling of hadrons and/or three-nucleon forces V 3N , effectively changing the free-space V NN into a density-dependent one. The density-dependent effects from BR scaling and V 3N are compared with those from empirical Skyrme effective interactions.

  11. Lenz's Law: Feel the Force.

    ERIC Educational Resources Information Center

    Sawicki, Charles A.

    1996-01-01

    Describes a simple, inexpensive system that allows students to have hands-on contact with simple experiments involving forces generated by induced currents. Discusses the use of a dynamic force sensor in making quantitative measurements of the forces generated. (JRH)

  12. Surgical force detection probe

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Roberts, Paul; Scott, Charles; Prass, Richard

    1991-01-01

    The development progress of a precision electro-mechanical instrument which allows the detection and documentation of the forces and moment applied to human tissue during surgery (under actual operation room conditions), is reported. The pen-shaped prototype probe which measures 1/2 inch in diameter and 7 inches in length was fabricated using an aerodynamic balance. The aerodynamic balance, a standard wind tunnel force and moment sensing transducer, measures the forces and the moments transmitted through the surgeon's hand to the human tissue during surgery. The prototype probe which was fabricated as a development tool was tested successfully. The final version of the surgical force detection probe will be designed based on additional laboratory tests in order to establish the full scale loads. It is expected that the final product will require a simplified aerodynamic balance with two or three force components and one moment component with lighter full scale loads. A signal conditioner was fabricated to process and display the outputs from the prototype probe. This unit will be interfaced with a PC-based data system to provide automatic data acquisition, data processing, and graphics display. The expected overall accuracy of the probe is better than one percent full scale.

  13. Radiative Forcing by Contrails

    NASA Technical Reports Server (NTRS)

    Meerkoetter, R.; Schumann, U.; Doelling, D. R.; Nakajima, T.; Tsushima, Y.

    1999-01-01

    A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmospheres The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, mid-latitude, and subarctic summer and winter atmospheres Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 W/m(exp 2)a daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover.

  14. Rectified Forces in Rubidium

    NASA Astrophysics Data System (ADS)

    Grove, Timothy Todd

    The forces exerted on a three-level atom by a bichromatic standing-wave field are investigated. A theoretical analysis shows that the standing-wave dipole force can be rectified, i.e., maintain its sign over many optical wavelengths. Three systems in particular are studied: the lambda, the vee, and the cascade. Experimental results for the rubidium 5S --> 5P --> 5D cascade system are used to confirm the theory. The nearly coincident transition wavelengths for this system (780.0 nm and 776.0 nm) provide potential wells repeating at the beat wavelength (71 μm) which can accumulate laser cooled atoms. This force may have future applications in forming deep neutral atom traps as well as in the creation of new elements for atom optics. Two-color, two-photon spectroscopy of the 5D_{5/2}<=vel using the same cascade system (5S --> 5P --> 5D) was also performed.

  15. Linear force device

    NASA Technical Reports Server (NTRS)

    Clancy, John P.

    1988-01-01

    The object of the invention is to provide a mechanical force actuator which is lightweight and manipulatable and utilizes linear motion for push or pull forces while maintaining a constant overall length. The mechanical force producing mechanism comprises a linear actuator mechanism and a linear motion shaft mounted parallel to one another. The linear motion shaft is connected to a stationary or fixed housing and to a movable housing where the movable housing is mechanically actuated through actuator mechanism by either manual means or motor means. The housings are adapted to releasably receive a variety of jaw or pulling elements adapted for clamping or prying action. The stationary housing is adapted to be pivotally mounted to permit an angular position of the housing to allow the tool to adapt to skewed interfaces. The actuator mechanisms is operated by a gear train to obtain linear motion of the actuator mechanism.

  16. Carbohydrate force fields

    PubMed Central

    Foley, B. Lachele; Tessier, Matthew B.; Woods, Robert J.

    2014-01-01

    Carbohydrates present a special set of challenges to the generation of force fields. First, the tertiary structures of monosaccharides are complex merely by virtue of their exceptionally high number of chiral centers. In addition, their electronic characteristics lead to molecular geometries and electrostatic landscapes that can be challenging to predict and model. The monosaccharide units can also interconnect in many ways, resulting in a large number of possible oligosaccharides and polysaccharides, both linear and branched. These larger structures contain a number of rotatable bonds, meaning they potentially sample an enormous conformational space. This article briefly reviews the history of carbohydrate force fields, examining and comparing their challenges, forms, philosophies, and development strategies. Then it presents a survey of recent uses of these force fields, noting trends, strengths, deficiencies, and possible directions for future expansion. PMID:25530813

  17. [Forced spirometry procedure].

    PubMed

    Cortés Aguilera, Antonio Javier

    2008-11-01

    Forced spirometry consists in a complementary test which is carried out in a health office in a workplace in order to determine the lung capacity of workers exposed to determined professional risks or those susceptible to determined working conditions which could lead to the development of respiratory problems. This test has been developed based on health vigilance laws under Article 22 of the Law for Prevention of Risks in the Workplace and requires that the technician, a nurse in a workplace, who performs it have some knowledge and skills regarding its use, following the norms for forced spirometry set by the Spanish Association for Pneumatology and Thoracic Surgery (SEPAR). PMID:19203116

  18. Radiative Forcing of Climate Change

    SciTech Connect

    Ramaswamy, V.; Boucher, Olivier; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myhre, G.; Nakajima, Takahito; Shi, Guangyu; Solomon, S.; Betts, Robert E.; Charlson, R.; Chuang, C. C.; Daniel, J. S.; Del Genio, Anthony D.; Feichter, J.; Fuglestvedt, J.; Forster, P. M.; Ghan, Steven J.; Jones, A.; Kiehl, J. T.; Koch, D.; Land, C.; Lean, J.; Lohmann, Ulrike; Minschwaner, K.; Penner, Joyce E.; Roberts, D. L.; Rodhe, H.; Roelofs, G.-J.; Rotstayn, Leon D.; Schneider, T. L.; Schumann, U.; Schwartz, Stephen E.; Schwartzkopf, M. D.; Shine, K. P.; Smith, Steven J.; Stevenson, D. S.; Stordal, F.; Tegen, I.; van Dorland, R.; Zhang, Y.; Srinivasan, J.; Joos, Fortunat

    2001-10-01

    Chapter 6 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 6.1 Radiative Forcing 6.2 Forcing-Response Relationship 6.3 Well-Mixed Greenhouse Gases 6.4 Stratospheric Ozone 6.5 Radiative Forcing By Tropospheric Ozone 6.6 Indirect Forcings due to Chemistry 6.7 The Direct Radiative Forcing of Tropospheric Aerosols 6.8 The Indirect Radiative Forcing of Tropospheric Aerosols 6.9 Stratospheric Aerosols 6.10 Land-use Change (Surface Albedo Effect) 6.11 Solar Forcing of Climate 6.12 Global Warming Potentials hydrocarbons 6.13 Global Mean Radiative Forcings 6.14 The Geographical Distribution of the Radiative Forcings 6.15 Time Evolution of Radiative Forcings Appendix 6.1 Elements of Radiative Forcing Concept References.

  19. Lorentz force particle analyzer

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Thess, André; Moreau, René; Tan, Yanqing; Dai, Shangjun; Tao, Zhen; Yang, Wenzhi; Wang, Bo

    2016-07-01

    A new contactless technique is presented for the detection of micron-sized insulating particles in the flow of an electrically conducting fluid. A transverse magnetic field brakes this flow and tends to become entrained in the flow direction by a Lorentz force, whose reaction force on the magnetic-field-generating system can be measured. The presence of insulating particles suspended in the fluid produce changes in this Lorentz force, generating pulses in it; these pulses enable the particles to be counted and sized. A two-dimensional numerical model that employs a moving mesh method demonstrates the measurement principle when such a particle is present. Two prototypes and a three-dimensional numerical model are used to demonstrate the feasibility of a Lorentz force particle analyzer (LFPA). The findings of this study conclude that such an LFPA, which offers contactless and on-line quantitative measurements, can be applied to an extensive range of applications. These applications include measurements of the cleanliness of high-temperature and aggressive molten metal, such as aluminum and steel alloys, and the clean manufacturing of semiconductors.

  20. The Force of Ideas

    ERIC Educational Resources Information Center

    Ascher, Carol

    2005-01-01

    "The Force of Ideas" describes a little-known aspect of both educational history and Viennese psychoanalysis during the interwar years: the movement for psychoanalytic pedagogy. The author traces her father's own story, beginning with his application to the Vienna Psychoanalytic Society for training as a psychoanalytic pedagogue, as a way to…

  1. Force limited vibration testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry D.

    1991-01-01

    A new method of conducting lab vibration tests of spacecraft equipment was developed to more closely simulate the vibration environment experienced when the spacecraft is launched on a rocket. The improved tests are tailored to identify equipment design and workmanship problems without inducing artificial failures that would not have occurred at launch. These new, less destructive types of vibration tests are essential to JPL's protoflight test approach in which lab testing is conducted using the flight equipment, often one of a kind, to save time and money. In conventional vibration tests, only the input vibratory motion is specified; the feedback, or reaction force, between the test item and the vibration machine is ignored. Most test failures occur when the test item goes into resonance, and the reaction force becomes very large. It has long been recognized that the large reaction force is a test artifact which does not occur with the lightweight, flexible mounting structures characteristic of spacecraft and space vehicles. In new vibration tests, both the motion and the force provided to the test item by the vibration machine are controlled, so that the vibration ride experienced by the test item is as in flight.

  2. Measuring Your Force

    ERIC Educational Resources Information Center

    Gee, David E.

    2005-01-01

    This article talks about the force behind education leaders. With all the challenges facing public education today, it is difficult to remain focused and to remember why one chartered this particular leadership course. Perhaps someone respected encouraged one to take this path long ago. Perhaps this kind of service to the nation and its future…

  3. Unification of Fundamental Forces

    NASA Astrophysics Data System (ADS)

    Salam, Abdus; Taylor, Foreword by John C.

    2005-10-01

    Foreword John C. Taylor; 1. Unification of fundamental forces Abdus Salam; 2. History unfolding: an introduction to the two 1968 lectures by W. Heisenberg and P. A. M. Dirac Abdus Salam; 3. Theory, criticism, and a philosophy Werner Heisenberg; 4. Methods in theoretical physics Paul Adrian Maurice Dirac.

  4. The Dynamic Force Table

    ERIC Educational Resources Information Center

    Geddes, John B.; Black, Kelly

    2008-01-01

    We examine an experimental apparatus that is used to motivate the connections between the basic properties of vectors, potential functions, systems of nonlinear equations, and Newton's method for nonlinear systems of equations. The apparatus is an adaptation of a force table where we remove the center-pin and allow the center-ring to move freely.…

  5. Perpendicular-Force Latch

    NASA Technical Reports Server (NTRS)

    Mattei, John P.; Buck, Peter A.; Williams, Michael D.

    1990-01-01

    Latching mechanism simultaneously applies force in two perpendicular directions to install or remove electronic-equipment modules. Used to simplify installation and removal of modular equipment where movement restricted by protective clothing as in hazardous environments or where installation and removal to be performed by robots or remote manipulators. Concept adaptable to hydraulic, pneumatic, and mechanical systems.

  6. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  7. Chiral drag force

    NASA Astrophysics Data System (ADS)

    Rajagopal, Krishna; Sadofyev, Andrey V.

    2015-10-01

    We provide a holographic evaluation of novel contributions to the drag force acting on a heavy quark moving through strongly interacting plasma. The new contributions are chiral in the sense that they act in opposite directions in plasmas containing an excess of left- or right-handed quarks. The new contributions are proportional to the coefficient of the axial anomaly, and in this sense also are chiral. These new contributions to the drag force act either parallel to or antiparallel to an external magnetic field or to the vorticity of the fluid plasma. In all these respects, these contributions to the drag force felt by a heavy quark are analogous to the chiral magnetic effect (CME) on light quarks. However, the new contribution to the drag force is independent of the electric charge of the heavy quark and is the same for heavy quarks and antiquarks, meaning that these novel effects do not in fact contribute to the CME current. We show that although the chiral drag force can be non-vanishing for heavy quarks that are at rest in the local fluid rest frame, it does vanish for heavy quarks that are at rest in a suitably chosen frame. In this frame, the heavy quark at rest sees counterpropagating momentum and charge currents, both proportional to the axial anomaly coefficient, but feels no drag force. This provides strong concrete evidence for the absence of dissipation in chiral transport, something that has been predicted previously via consideration of symmetries. Along the way to our principal results, we provide a general calculation of the corrections to the drag force due to the presence of gradients in the flowing fluid in the presence of a nonzero chemical potential. We close with a consequence of our result that is at least in principle observable in heavy ion collisions, namely an anticorrelation between the direction of the CME current for light quarks in a given event and the direction of the kick given to the momentum of all the heavy quarks and

  8. Amplification of actin polymerization forces

    PubMed Central

    Dmitrieff, Serge; Nédélec, François

    2016-01-01

    The actin cytoskeleton drives many essential processes in vivo, using molecular motors and actin assembly as force generators. We discuss here the propagation of forces caused by actin polymerization, highlighting simple configurations where the force developed by the network can exceed the sum of the polymerization forces from all filaments. PMID:27002174

  9. Investigation of Calibrating Force Transducer Using Sinusoidal Force

    SciTech Connect

    Zhang Li; Wang Yu; Zhang Lizhe

    2010-05-28

    Sinusoidal force calibration method was studied several years before at Physikalisch-Technische Bundesanstalt (PTB). A similar dynamic force calibration system is developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses electro-dynamic shakers to generate dynamic force in the range from 1 N to 20 kN, and heterodyne laser interferometers are used for acceleration measurement. The force transducer to be calibrated is mounted on the shaker, and a mass block is screwed on the top of force transducer, the sinusoidal forces realized by accelerated load masses are traceable to acceleration and mass according to the force definition. The methods of determining Spatial-dependent acceleration on mass block and measuring the end mass of force transducer in dynamic force calibration are discussed in this paper.

  10. Force Feedback Joystick

    NASA Technical Reports Server (NTRS)

    1997-01-01

    I-FORCE, a computer peripheral from Immersion Corporation, was derived from virtual environment and human factors research at the Advanced Displays and Spatial Perception Laboratory at Ames Research Center in collaboration with Stanford University Center for Design Research. Entrepreneur Louis Rosenberg, a former Stanford researcher, now president of Immersion, collaborated with Dr. Bernard Adelstein at Ames on studies of perception in virtual reality. The result was an inexpensive way to incorporate motors and a sophisticated microprocessor into joysticks and other game controllers. These devices can emulate the feel of a car on the skid, a crashing plane, the bounce of a ball, compressed springs, or other physical phenomenon. The first products incorporating I-FORCE technology include CH- Products' line of FlightStick and CombatStick controllers.

  11. Suicide and Forced Marriage

    PubMed Central

    Pridmore, Saxby; Walter, Garry

    2013-01-01

    Background: The prevailing view that the vast majority of those who complete suicide have an underlying psychiatric disorder has been recently challenged by research on the contribution of “predicaments”, in the absence of mental illness, to suicide. In this paper, we sought data to support the notion that forced marriage may lead to suicide without the presence of psychiatric disorder. Methods: Historical records, newspapers, and the electronic media were searched for examples. Results: Two examples from ancient times and six from the last hundred years were located and described. Conclusion: These cases suggest that forced marriage may lead to suicide and complements earlier findings that loss of fortune, health, liberty, and reputation may lead to suicide in the absence of mental disorder. PMID:23983577

  12. Forces Driving Chaperone Action.

    PubMed

    Koldewey, Philipp; Stull, Frederick; Horowitz, Scott; Martin, Raoul; Bardwell, James C A

    2016-07-14

    It is still unclear what molecular forces drive chaperone-mediated protein folding. Here, we obtain a detailed mechanistic understanding of the forces that dictate the four key steps of chaperone-client interaction: initial binding, complex stabilization, folding, and release. Contrary to the common belief that chaperones recognize unfolding intermediates by their hydrophobic nature, we discover that the model chaperone Spy uses long-range electrostatic interactions to rapidly bind to its unfolded client protein Im7. Short-range hydrophobic interactions follow, which serve to stabilize the complex. Hydrophobic collapse of the client protein then drives its folding. By burying hydrophobic residues in its core, the client's affinity to Spy decreases, which causes client release. By allowing the client to fold itself, Spy circumvents the need for client-specific folding instructions. This mechanism might help explain how chaperones can facilitate the folding of various unrelated proteins. PMID:27293188

  13. Force Modulator System

    SciTech Connect

    Redmond Clark

    2009-04-30

    Many metal parts manufacturers use large metal presses to shape sheet metal into finished products like car body parts, jet wing and fuselage surfaces, etc. These metal presses take sheet metal and - with enormous force - reshape the metal into a fully formed part in a manner of seconds. Although highly efficient, the forces involved in forming metal parts also damage the press itself, limit the metals used in part production, slow press operations and, when not properly controlled, cause the manufacture of large volumes of defective metal parts. To date, the metal-forming industry has not been able to develop a metal-holding technology that allows full control of press forces during the part forming process. This is of particular importance in the automotive lightweighting efforts under way in the US automotive manufacturing marketplace. Metalforming Controls Technology Inc. (MC2) has developed a patented press control system called the Force Modulator that has the ability to control these press forces, allowing a breakthrough in stamping process control. The technology includes a series of hydraulic cylinders that provide controlled tonnage at all points in the forming process. At the same time, the unique cylinder design allows for the generation of very high levels of clamping forces (very high tonnages) in very small spaces; a requirement for forming medium and large panels out of HSS and AHSS. Successful production application of these systems testing at multiple stamping operations - including Ford and Chrysler - has validated the capabilities and economic benefits of the system. Although this technology has been adopted in a number of stamping operations, one of the primary barriers to faster adoption and application of this technology in HSS projects is system cost. The cost issue has surfaced because the systems currently in use are built for each individual die as a custom application, thus driving higher tooling costs. This project proposed to better

  14. Air Force seal activities

    NASA Astrophysics Data System (ADS)

    Mayhew, Ellen R.

    1994-07-01

    Seal technology development is an important part of the Air Force's participation in the Integrated High Performance Turbine Engine Technology (IHPTET) initiative, the joint DOD, NASA, ARPA, and industry endeavor to double turbine engine capabilities by the turn of the century. Significant performance and efficiency improvements can be obtained through reducing internal flow system leakage, but seal environment requirements continue to become more extreme as the engine thermodynamic cycles advance towards these IHPTET goals. Brush seal technology continues to be pursued by the Air Force to reduce leakage at the required conditions. Likewise, challenges in engine mainshaft air/oil seals are also being addressed. Counter-rotating intershaft applications within the IHPTET initiative involve very high rubbing velocities. This viewgraph presentation briefly describes past and current seal research and development programs and gives a summary of seal applications in demonstrator and developmental engine testing.

  15. Ultrasonic Force Microscopies

    NASA Astrophysics Data System (ADS)

    Kolosov, Oleg; Briggs, Andrew

    Ultrasonic Force Microscopy, or UFM, allows combination of two apparently mutually exclusive requirements for the nanomechanical probe—high stiffness for the efficient indentation and high mechanical compliance that brings force sensitivity. Somewhat inventively, UFM allows to combine these two virtues in the same cantilever by using indention of the sample at high frequency, when cantilever is very rigid, but detecting the result of this indention at much lower frequency. That is made possible due to the extreme nonlinearity of the nanoscale tip-surface junction force-distance dependence, that acts as "mechanical diode" detecting ultrasound in AFM. After introducing UFM principles, we discuss features of experimental UFM implementation, and the theory of contrast in this mode, progressing to quantitative measurements of contact stiffness. A variety of UFM applications ranging from semiconductor quantum nanostructures, graphene, very large scale integrated circuits, and reinforced ceramics to polymer composites and biological materials is presented via comprehensive imaging gallery accompanied by the guidance for the optimal UFM measurements of these materials. We also address effects of adhesion and topography on the elasticity imaging and the approaches for reducing artifacts connected with these effects. This is complemented by another extremely useful feature of UFM—ultrasound induced superlubricity that allows damage free imaging of materials ranging from stiff solid state devices and graphene to biological materials. Finally, we proceed to the exploration of time-resolved nanoscale phenomena using nonlinear mixing of multiple vibration frequencies in ultrasonic AFM—Heterodyne Force Microscopy, or HFM, that also include mixing of ultrasonic vibration with other periodic physical excitations, eg. electrical, photothermal, etc. Significant section of the chapter analyzes the ability of UFM and HFM to detect subsurface mechanical inhomogeneities, as well as

  16. ``Force,'' ontology, and language

    NASA Astrophysics Data System (ADS)

    Brookes, David T.; Etkina, Eugenia

    2009-06-01

    We introduce a linguistic framework through which one can interpret systematically students’ understanding of and reasoning about force and motion. Some researchers have suggested that students have robust misconceptions or alternative frameworks grounded in everyday experience. Others have pointed out the inconsistency of students’ responses and presented a phenomenological explanation for what is observed, namely, knowledge in pieces. We wish to present a view that builds on and unifies aspects of this prior research. Our argument is that many students’ difficulties with force and motion are primarily due to a combination of linguistic and ontological difficulties. It is possible that students are primarily engaged in trying to define and categorize the meaning of the term “force” as spoken about by physicists. We found that this process of negotiation of meaning is remarkably similar to that engaged in by physicists in history. In this paper we will describe a study of the historical record that reveals an analogous process of meaning negotiation, spanning multiple centuries. Using methods from cognitive linguistics and systemic functional grammar, we will present an analysis of the force and motion literature, focusing on prior studies with interview data. We will then discuss the implications of our findings for physics instruction.

  17. Force Fluctuations and Correlations

    NASA Astrophysics Data System (ADS)

    Behringer, Robert

    1998-03-01

    Granular materials exhibit a rich array of dynamic and static phenomena which are only partly understood. Here, I focus on fluctuations in kinetic properties and in forces for slowly sheared granular materials. We have carried out a series of experiments in both 2D and in 3D. For 2D, we use a novel apparatus which allows us to quantify the forces, positions and orientations associated with individual grains. For slow to moderate shear rates, we find rate independence except for small random deviations which are associated with very long time changes in the system. The system evolves to a nearly steady average flow profile in which the velocity falls off approximately exponentially with distance from the shearing surface. The particle rotation shows systematic oscillations near the shearing surface. Velocity profiles show a complicated non-gaussian structure. Force measurements in both the 2D and 3D system are approximately exponentially distributed, but there are also some systematic deviations. Companion calculations by S. Schoellmann, S. Luding and H. Herrmann capture a number of these features. The experimental work has been carried out partially at Duke and partially at the E.S.P.C.I. Paris in collaboration with D. Howell, B. Miller, S. Tennakoon, and C. Veje.

  18. The task force process

    SciTech Connect

    Applegate, J.S.

    1995-01-31

    This paper focuses on the unique aspects of the Fernald Citizens Task Force process that have contributed to a largely successful public participation effort at Fernald. The Fernald Citizens Task Force passed quickly by many procedural issues. Instead, the Task Force concentrated on (a) educating itself about the site, its problems, and possible solutions, and (b) choosing a directed way to approach its mandate: To make recommendations on several {open_quotes}big picture{close_quotes} issues, including future use of the site, cleanup levels, waste disposition, and cleanup priorities. This paper presents the approach used at Fernald for establishing and running a focused site-specific advisory board, the key issues that have been faced, and how these issues were resolved. The success of Fernald in establishing a strong and functioning site-specific advisory board serves as a useful model for other DOE facilities, although the Fernald model is just one of many approaches that can be taken. However, the approach presented here has worked extremely well for Fernald.

  19. Modified entropic force

    SciTech Connect

    Gao Changjun

    2010-04-15

    The theory of statistical thermodynamics tells us the equipartition law of energy does not hold in the limit of very low temperatures. It is found the Debye model is very successful in explaining the experimental results for most of the solid objects. Motivated by this fact, we modify the entropic force formula which is proposed very recently. Since the Unruh temperature is proportional to the strength of the gravitational field, so the modified entropic force formula is an extension of the Newtonian gravity to the weak field. On the contrary, general relativity extends Newtonian gravity to the strong field case. Corresponding to Debye temperature, there exists a Debye acceleration g{sub D}. It is found the Debye acceleration is g{sub D}=10{sup -15} N kg{sup -1}. This acceleration is very much smaller than the gravitational acceleration 10{sup -4} N kg{sup -1} which is felt by Neptune and the gravitational acceleration 10{sup -10} N kg{sup -1} felt by the Sun. Therefore, the modified entropic force can be very well approximated by the Newtonian gravity in the Solar System and in the Galaxy. With this Debye acceleration, we find the current cosmic speeding up can be explained without invoking any kind of dark energy.

  20. Finger force perception during ipsilateral and contralateral force matching tasks

    PubMed Central

    Park, Woo-Hyung; Leonard, Charles T.; Li, Sheng

    2010-01-01

    The aims of the present study were to compare matching performance between ipsilateral and contralateral finger force matching tasks and to examine the effect of handedness on finger force perception. Eleven subjects were instructed to produce reference forces by an instructed finger (index – I or little – L finger) and to reproduce the same amount force by the same or a different finger within the hand (i.e., ipsilateral matching task), or by a finger of the other hand (i.e., contralateral matching task). The results of the ipsilateral and contralateral tasks in the present study commonly showed that 1) the reference and matching forces were matched closely when the two forces were produced by the same or homologous finger(s) such as I/I task; 2) the weaker little finger underestimated the magnitude of reference force of the index finger (I/L task), even with the higher level of effort (relative force), but the two forces were matched when considering total finger forces; 3) the stronger index finger closely matched the reference force of the little finger with the lower level of relative force (i.e., L/I task); 4) when considering the constant errors, I/L tasks showed an underestimation and L/I tasks showed an overestimation compared to I/I tasks. There was no handedness effect during ipsilateral tasks. During the contralateral task, the dominant hand overestimated the force of the non-dominant hand, while the non-dominant hand attempted to match the absolute force of the dominant hand. The overall results support the notion that the absolute, rather than relative, finger force is perceived and reproduced during ipsilateral and contralateral finger force matching tasks, indicating the uniqueness of finger force perception. PMID:18488212

  1. Atomic Force Microscope

    SciTech Connect

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  2. Causal Entropic Forces

    NASA Astrophysics Data System (ADS)

    Wissner-Gross, A. D.; Freer, C. E.

    2013-04-01

    Recent advances in fields ranging from cosmology to computer science have hinted at a possible deep connection between intelligence and entropy maximization, but no formal physical relationship between them has yet been established. Here, we explicitly propose a first step toward such a relationship in the form of a causal generalization of entropic forces that we find can cause two defining behaviors of the human “cognitive niche”—tool use and social cooperation—to spontaneously emerge in simple physical systems. Our results suggest a potentially general thermodynamic model of adaptive behavior as a nonequilibrium process in open systems.

  3. Turbulent forced diffusion flames

    SciTech Connect

    Arpaci, V.S.; Li, C.Y.

    1995-07-01

    It is the purpose of this study to introduce a turbulent microscale appropriate for forced diffusion flames and to propose models for fuel consumption and skin friction in terms of this scale. The study consists of four sections. Following the introduction, Section 2 recapitulates the laminar theories of reacting boundary layers in terms of dimensional arguments and proposes models for fuel consumption and skin friction. Section 3 extends these arguments by introducing a microscale appropriate for turbulent flames and, in terms of this scale, develops models for fuel consumption and skin friction, correlates the experimental data on skin friction, and Section 4 concludes the study.

  4. Radiative forcing of climate

    NASA Technical Reports Server (NTRS)

    Ramanswamy, V.; Shine, Keith; Leovy, Conway; Wang, Wei-Chyung; Rodhe, Henning; Wuebbles, Donald J.; Ding, M.; Lelieveld, Joseph; Edmonds, Jae A.; Mccormick, M. Patrick

    1991-01-01

    An update of the scientific discussions presented in Chapter 2 of the Intergovernmental Panel on Climate Change (IPCC) report is presented. The update discusses the atmospheric radiative and chemical species of significance for climate change. There are two major objectives of the present update. The first is an extension of the discussion on the Global Warming Potentials (GWP's), including a reevaluation in view of the updates in the lifetimes of the radiatively active species. The second important objective is to underscore major developments in the radiative forcing of climate due to the observed stratospheric ozone losses occurring between 1979 and 1990.

  5. Forces stabilizing proteins.

    PubMed

    Nick Pace, C; Scholtz, J Martin; Grimsley, Gerald R

    2014-06-27

    The goal of this article is to summarize what has been learned about the major forces stabilizing proteins since the late 1980s when site-directed mutagenesis became possible. The following conclusions are derived from experimental studies of hydrophobic and hydrogen bonding variants. (1) Based on studies of 138 hydrophobic interaction variants in 11 proteins, burying a -CH2- group on folding contributes 1.1±0.5 kcal/mol to protein stability. (2) The burial of non-polar side chains contributes to protein stability in two ways: first, a term that depends on the removal of the side chains from water and, more importantly, the enhanced London dispersion forces that result from the tight packing in the protein interior. (3) Based on studies of 151 hydrogen bonding variants in 15 proteins, forming a hydrogen bond on folding contributes 1.1±0.8 kcal/mol to protein stability. (4) The contribution of hydrogen bonds to protein stability is strongly context dependent. (5) Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. (6) Polar group burial can make a favorable contribution to protein stability even if the polar group is not hydrogen bonded. (7) Hydrophobic interactions and hydrogen bonds both make large contributions to protein stability.

  6. Magnetic force microscopy

    PubMed Central

    Passeri, Daniele; Dong, Chunhua; Reggente, Melania; Angeloni, Livia; Barteri, Mario; Scaramuzzo, Francesca A; De Angelis, Francesca; Marinelli, Fiorenzo; Antonelli, Flavia; Rinaldi, Federica; Marianecci, Carlotta; Carafa, Maria; Sorbo, Angela; Sordi, Daniela; Arends, Isabel WCE; Rossi, Marco

    2014-01-01

    Magnetic force microscopy (MFM) is an atomic force microscopy (AFM) based technique in which an AFM tip with a magnetic coating is used to probe local magnetic fields with the typical AFM spatial resolution, thus allowing one to acquire images reflecting the local magnetic properties of the samples at the nanoscale. Being a well established tool for the characterization of magnetic recording media, superconductors and magnetic nanomaterials, MFM is finding constantly increasing application in the study of magnetic properties of materials and systems of biological and biomedical interest. After reviewing these latter applications, three case studies are presented in which MFM is used to characterize: (i) magnetoferritin synthesized using apoferritin as molecular reactor; (ii) magnetic nanoparticles loaded niosomes to be used as nanocarriers for drug delivery; (iii) leukemic cells labeled using folic acid-coated core-shell superparamagnetic nanoparticles in order to exploit the presence of folate receptors on the cell membrane surface. In these examples, MFM data are quantitatively analyzed evidencing the limits of the simple analytical models currently used. Provided that suitable models are used to simulate the MFM response, MFM can be used to evaluate the magnetic momentum of the core of magnetoferritin, the iron entrapment efficiency in single vesicles, or the uptake of magnetic nanoparticles into cells. PMID:25050758

  7. Pairing forces in nuclei

    SciTech Connect

    Chasman, R.R.

    1996-12-31

    In this contribution, the author mentions some features of pairing forces that are unique to nuclei and cover some areas of major interest in nuclear structure research, that involve pairing. At the level of most nuclear structure studies, nuclei are treated as consisting of two kinds of fermions (protons and neutrons) in a valence space with rather few levels. These features give rise to unique aspects of pairing forces in nuclei: (1) n-p pairing in T = 0 as well as the usual T = 1 pairing that is characteristic of like fermions; (2) a need to correct pairing calculations for the (1/N) effects that can typically be neglected in superconducting solids. An issue of current concern is the nature of the pairing interaction: several recent studies suggest a need for a density dependent form of the pairing interaction. There is a good deal of feedback between the questions of accurate calculations of pairing interactions and the form and magnitude of the pairing interaction. Finally, the authors discuss some many-body wave functions that are a generalization of the BCS wave function form, and apply them to a calculation of energy level spacings in superdeformed rotational bands.

  8. Forces Stabilizing Proteins

    PubMed Central

    Pace, C. Nick; Scholtz, J. Martin; Grimsley, Gerald R.

    2014-01-01

    The goal of this article is to summarize what has been learned about the major forces stabilizing proteins since the late 1980s when site-directed mutagenesis became possible. The following conclusions are derived from experimental studies of hydrophobic and hydrogen bonding variants. 1. Based on studies of 138 hydrophobic interaction variants in 11 proteins, burying a –CH2– group on folding contributes 1.1 ± 0.5 kcal/mol to protein stability. 2. The burial of nonpolar side chains contributes to protein stability in two ways: first, a term that depends on the removal of the side chains from water and, more importantly, the enhanced London dispersion forces that result from the tight packing in the protein interior. 3. Based on studies of 151 hydrogen bonding variants in 15 proteins, forming a hydrogen bond on folding contributes 1.1 ± 0.8 kcal/mol to protein stability. 4. The contribution of hydrogen bonds to protein stability is strongly context dependent. 5. Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. 6. Polar group burial can make a favorable contribution to protein stability even if the polar group is not hydrogen bonded. 7. Hydrophobic interactions and hydrogen bonds both make large contributions to protein stability. PMID:24846139

  9. Environmental Crack Driving Force

    NASA Astrophysics Data System (ADS)

    Hall, M. M.

    2013-03-01

    The effect of environment on the crack driving force is considered, first by assuming quasistatic extension of a stationary crack and second, by use of stress corrosion cracking (SCC) crack growth rate models developed previously by this author and developed further here. A quasistatic thermodynamic energy balance approach, of the Griffith-Irwin type, is used to develop stationary crack threshold expressions, tilde{J}_c , which represent the conjoint mechanical and electrochemical conditions, below which stationary cracks are stable. Expressions for the electrochemical crack driving force (CDF) were derived using an analysis that is analogous to that used by Irwin to derive his "strain energy release rate," G, which Rice showed as being equivalent to his mechanical CDF, J. The derivations show that electrochemical CDFs both for active path dissolution (APD) and hydrogen embrittlement (HE) mechanisms of SCC are simply proportional to Tafel's electrochemical anodic and cathodic overpotentials, η a and η c, respectively. Phenomenological SCC models based on the kinetics of APD and HE crack growth are used to derive expressions for the kinetic threshold, J scc, below which crack growth cannot be sustained. These models show how independent mechanical and environmental CDFs may act together to drive SCC crack advance. Development of a user-friendly computational tool for calculating Tafel's overpotentials is advocated.

  10. Force normalization in paraplegics.

    PubMed

    Serra-Añó, P; García-Massó, X; Pellicer, M; González, L-M; López-Pascual, J; Giner-Pascual, M; Toca-Herrera, J L

    2012-06-01

    The principal aim of our study was the determination of the effectiveness of a standardized ratio, allometric scaling model and a gamma function model in normalizing the isometric torque data of spinal cord patients and healthy subjects. For this purpose we studied a sample of 21 healthy males and 23 spinal cord injury males. The experiment consisted of the measurement of the force of the upper limb movement executed by all the subjects. We also determined anthropometric variables with dual-energy x-ray absorptiometry. The experimental data were analyzed with 3 force normalization methods. Our results indicate that the most important confounding variable was the fat free mass of the dominant upper limb (r>0.36, p<0.05). With the standardization by body mass and allometric scaling model, the normalized torque was influenced by body size variables. However, the normalized torque by the gamma function model was independent of body size measures. Paraplegics were weaker (p<0.05) in extension movements when the data were normalized by the gamma function model. In summary, this study shows that the gamma function model with fat free mass of the dominant upper limb was more effective than the standardized ratio in removing the influence of body size variables. PMID:22377940

  11. Forced emigration, favourable outcomes.

    PubMed

    Pearn, J

    2001-10-01

    The discipline of public health and preventive medicine in Australia and New Zealand had its genesis in the advocacy of 18th and 19th century military pioneers. Military (Royal Navy and British Army) surgeons were posted to Australia as part of their non-discretionary duty. Civilian doctors emigrated variously for adventure, escapism and gold fever. One group, a particularly influential group disproportionate to their numbers, came in one sense as forced emigrants because of chronic respiratory disease in general, and tuberculosis in particular. Tuberculosis was an occupational hazard of 19th century medical and surgical practice throughout western Europe. This paper analyses six examples of such emigration which had, perhaps unforeseen at the time, significant results in the advancement of public health. Such emigration was in one sense voluntary, but in another was forced upon the victims in their quest for personal survival. In Australia, such medical individuals became leading advocates and successful catalysts for change in such diverse fields as social welfare, public health, the preventive aspects of medical practice, child health, nutrition and medical education. A number of such public health pioneers today have no physical memorials; but their influence is to be seen in the ethos of medical practice in Australia and New Zealand today. Their memory is further perpetuated in the names of Australian native wildflowers and trees that symbolise not only a healthy environment but the long-term investment, accrued with interest, of the institution of public health measures for which their advocacy achieved much success.

  12. Force reflecting hand controller

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas A. (Inventor); Snow, Edward R. (Inventor); Townsend, William T. (Inventor)

    1993-01-01

    A universal input device for interfacing a human operator with a slave machine such as a robot or the like includes a plurality of serially connected mechanical links extending from a base. A handgrip is connected to the mechanical links distal from the base such that a human operator may grasp the handgrip and control the position thereof relative to the base through the mechanical links. A plurality of rotary joints is arranged to connect the mechanical links together to provide at least three translational degrees of freedom and at least three rotational degrees of freedom of motion of the handgrip relative to the base. A cable and pulley assembly for each joint is connected to a corresponding motor for transmitting forces from the slave machine to the handgrip to provide kinesthetic feedback to the operator and for producing control signals that may be transmitted from the handgrip to the slave machine. The device gives excellent kinesthetic feedback, high-fidelity force/torque feedback, a kinematically simple structure, mechanically decoupled motion in all six degrees of freedom, and zero backlash. The device also has a much larger work envelope, greater stiffness and responsiveness, smaller stowage volume, and better overlap of the human operator's range of motion than previous designs.

  13. Force reflecting hand controller

    NASA Astrophysics Data System (ADS)

    McAffee, Douglas A.; Snow, Edward R.; Townsend, William T.

    1993-03-01

    A universal input device for interfacing a human operator with a slave machine such as a robot or the like includes a plurality of serially connected mechanical links extending from a base. A handgrip is connected to the mechanical links distal from the base such that a human operator may grasp the handgrip and control the position thereof relative to the base through the mechanical links. A plurality of rotary joints is arranged to connect the mechanical links together to provide at least three translational degrees of freedom and at least three rotational degrees of freedom of motion of the handgrip relative to the base. A cable and pulley assembly for each joint is connected to a corresponding motor for transmitting forces from the slave machine to the handgrip to provide kinesthetic feedback to the operator and for producing control signals that may be transmitted from the handgrip to the slave machine. The device gives excellent kinesthetic feedback, high-fidelity force/torque feedback, a kinematically simple structure, mechanically decoupled motion in all six degrees of freedom, and zero backlash. The device also has a much larger work envelope, greater stiffness and responsiveness, smaller stowage volume, and better overlap of the human operator's range of motion than previous designs.

  14. Force-Field Parameter Fitter

    SciTech Connect

    2015-05-27

    ParFit is a flexible and extendable framework and library of classes for fitting force-field parameters to data from high-level ab-initio calculations on the basis of deterministic and stochastic algorithms. Currently, the code is fitting MM3 and Merck force-field parameters but could easily extend to other force-field types.

  15. Proximal arm kinematics affect grip force-load force coordination.

    PubMed

    Vermillion, Billy C; Lum, Peter S; Lee, Sang Wook

    2015-10-01

    During object manipulation, grip force is coordinated with load force, which is primarily determined by object kinematics. Proximal arm kinematics may affect grip force control, as proximal segment motion could affect control of distal hand muscles via biomechanical and/or neural pathways. The aim of this study was to investigate the impact of proximal kinematics on grip force modulation during object manipulation. Fifteen subjects performed three vertical lifting tasks that involved distinct proximal kinematics (elbow/shoulder), but resulted in similar end-point (hand) trajectories. While temporal coordination of grip and load forces remained similar across the tasks, proximal kinematics significantly affected the grip force-to-load force ratio (P = 0.042), intrinsic finger muscle activation (P = 0.045), and flexor-extensor ratio (P < 0.001). Biomechanical coupling between extrinsic hand muscles and the elbow joint cannot fully explain the observed changes, as task-related changes in intrinsic hand muscle activation were greater than in extrinsic hand muscles. Rather, between-task variation in grip force (highest during task 3) appears to contrast to that in shoulder joint velocity/acceleration (lowest during task 3). These results suggest that complex neural coupling between the distal and proximal upper extremity musculature may affect grip force control during movements, also indicated by task-related changes in intermuscular coherence of muscle pairs, including intrinsic finger muscles. Furthermore, examination of the fingertip force showed that the human motor system may attempt to reduce variability in task-relevant motor output (grip force-to-load force ratio), while allowing larger fluctuations in output less relevant to task goal (shear force-to-grip force ratio). PMID:26289460

  16. Proximal arm kinematics affect grip force-load force coordination

    PubMed Central

    Vermillion, Billy C.; Lum, Peter S.

    2015-01-01

    During object manipulation, grip force is coordinated with load force, which is primarily determined by object kinematics. Proximal arm kinematics may affect grip force control, as proximal segment motion could affect control of distal hand muscles via biomechanical and/or neural pathways. The aim of this study was to investigate the impact of proximal kinematics on grip force modulation during object manipulation. Fifteen subjects performed three vertical lifting tasks that involved distinct proximal kinematics (elbow/shoulder), but resulted in similar end-point (hand) trajectories. While temporal coordination of grip and load forces remained similar across the tasks, proximal kinematics significantly affected the grip force-to-load force ratio (P = 0.042), intrinsic finger muscle activation (P = 0.045), and flexor-extensor ratio (P < 0.001). Biomechanical coupling between extrinsic hand muscles and the elbow joint cannot fully explain the observed changes, as task-related changes in intrinsic hand muscle activation were greater than in extrinsic hand muscles. Rather, between-task variation in grip force (highest during task 3) appears to contrast to that in shoulder joint velocity/acceleration (lowest during task 3). These results suggest that complex neural coupling between the distal and proximal upper extremity musculature may affect grip force control during movements, also indicated by task-related changes in intermuscular coherence of muscle pairs, including intrinsic finger muscles. Furthermore, examination of the fingertip force showed that the human motor system may attempt to reduce variability in task-relevant motor output (grip force-to-load force ratio), while allowing larger fluctuations in output less relevant to task goal (shear force-to-grip force ratio). PMID:26289460

  17. Parallel computation with the force

    NASA Technical Reports Server (NTRS)

    Jordan, H. F.

    1985-01-01

    A methodology, called the force, supports the construction of programs to be executed in parallel by a force of processes. The number of processes in the force is unspecified, but potentially very large. The force idea is embodied in a set of macros which produce multiproceossor FORTRAN code and has been studied on two shared memory multiprocessors of fairly different character. The method has simplified the writing of highly parallel programs within a limited class of parallel algorithms and is being extended to cover a broader class. The individual parallel constructs which comprise the force methodology are discussed. Of central concern are their semantics, implementation on different architectures and performance implications.

  18. Updates on Force Limiting Improvements

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Scharton, Terry

    2013-01-01

    The following conventional force limiting methods currently practiced in deriving force limiting specifications assume one-dimensional translation source and load apparent masses: Simple TDOF model; Semi-empirical force limits; Apparent mass, etc.; Impedance method. Uncorrelated motion of the mounting points for components mounted on panels and correlated, but out-of-phase, motions of the support structures are important and should be considered in deriving force limiting specifications. In this presentation "rock-n-roll" motions of the components supported by panels, which leads to a more realistic force limiting specifications are discussed.

  19. Forced to be right.

    PubMed

    Trout, J D

    2014-05-01

    In "Forced to be Free", Neil Levy surveys the raft of documented decision-making biases that humans are heir to, and advances several bold proposals designed to enhance the patient's judgment. Gratefully, Levy is moved by the psychological research on judgment and decision-making that documents people's inaccuracy when identifying courses of action will best promote their subjective well-being. But Levy is quick to favour the patient's present preferences, to ensure they get "final say" about their treatment. I urge the opposite inclination, raising doubts about whether the patient's "present preferences" are the best expression of their "final say". When there is adequate evidence that people, by their own lights, overemphasize their present preferences about the future, we should carefully depreciate those preferences, in effect biasing them to make the right decision by their own lights.

  20. [Galileo and centrifugal force].

    PubMed

    Vilain, Christiane

    This work intends to focus on Galileo's study of what is now called "centrifugal force," within the framework of the Second Day of his Dialogo written in 1632, rather than on the previously published commentaries on the topic. Galileo proposes three geometrical demonstrations in order to prove that gravity will always overcome centrifugalforce, and that the potential rotation of the Earth, whatever its speed, cannot in any case project objects beyond it. Each of these demonstrations must consequently contain an error and it has seemed to us that the first one had not been understood up until now. Our analysis offers an opportunity to return to Galileo's geometrical representation of dynamical questions; actually, we get an insight into the sophistication of Galileo's practices more than into his mistakes. Our second point, concerning the historiography of the problem, shows an evolution from anachronic critics to more contextual considerations, in the course of the second half of the twentieth century. PMID:25029818

  1. Silicon force sensor

    DOEpatents

    Galambos, Paul C.; Crenshaw, Thomas B.; Nishida, Erik E.; Burnett, Damon J.; Lantz, Jeffrey W.

    2016-07-05

    The various technologies presented herein relate to a sensor for measurement of high forces and/or high load shock rate(s), whereby the sensor utilizes silicon as the sensing element. A plate of Si can have a thinned region formed therein on which can be formed a number of traces operating as a Wheatstone bridge. The brittle Si can be incorporated into a layered structure comprising ductile and/or compliant materials. The sensor can have a washer-like configuration which can be incorporated into a nut and bolt configuration, whereby tightening of the nut and bolt can facilitate application of a compressive preload upon the sensor. Upon application of an impact load on the bolt, the compressive load on the sensor can be reduced (e.g., moves towards zero-load), however the magnitude of the preload can be such that the load on the sensor does not translate to tensile stress being applied to the sensor.

  2. [Galileo and centrifugal force].

    PubMed

    Vilain, Christiane

    This work intends to focus on Galileo's study of what is now called "centrifugal force," within the framework of the Second Day of his Dialogo written in 1632, rather than on the previously published commentaries on the topic. Galileo proposes three geometrical demonstrations in order to prove that gravity will always overcome centrifugalforce, and that the potential rotation of the Earth, whatever its speed, cannot in any case project objects beyond it. Each of these demonstrations must consequently contain an error and it has seemed to us that the first one had not been understood up until now. Our analysis offers an opportunity to return to Galileo's geometrical representation of dynamical questions; actually, we get an insight into the sophistication of Galileo's practices more than into his mistakes. Our second point, concerning the historiography of the problem, shows an evolution from anachronic critics to more contextual considerations, in the course of the second half of the twentieth century.

  3. Force Limit System

    NASA Technical Reports Server (NTRS)

    Pawlik, Ralph; Krause, David; Bremenour, Frank

    2011-01-01

    The Force Limit System (FLS) was developed to protect test specimens from inadvertent overload. The load limit value is fully adjustable by the operator and works independently of the test system control as a mechanical (non-electrical) device. When a test specimen is loaded via an electromechanical or hydraulic test system, a chance of an overload condition exists. An overload applied to a specimen could result in irreparable damage to the specimen and/or fixturing. The FLS restricts the maximum load that an actuator can apply to a test specimen. When testing limited-run test articles or using very expensive fixtures, the use of such a device is highly recommended. Test setups typically use electronic peak protection, which can be the source of overload due to malfunctioning components or the inability to react quickly enough to load spikes. The FLS works independently of the electronic overload protection.

  4. Forced Migration: Refugee Populations

    PubMed Central

    Boyle, Joyceen S.

    2015-01-01

    Undocumented migration is a global phenomenon that manifests in various contexts. This article describes the impact of the movement of large numbers of people in several African countries, producing a unique type of migrant—the refugee. We describe issues that refugee movements create on fragile health care systems, situations that precipitate refugee movements, certain human rights violations that are of particular concern such as gender based violence (GBV) and child soldiers, and lastly, implications for nursing practice and policy. We use examples from several countries in Sub-Saharan Africa, including the Democratic Republic of the Congo, Rwanda, Liberia, Sierra Leone, and Mozambique. Drawing on key documents from the United Nations High Commissioner for Refugees, current literature, as well as the international experience of the authors, this article presents an overview of forced migration and discusses opportunities for nurses to impact research, practice and policy related to refugee health. PMID:25645484

  5. Force protection: today's reality.

    PubMed

    Torgerson, Ron

    2004-11-11

    Most US infrastructure and major chemical manufacturing facilities as well as their supporting utility systems are inherently vulnerable to a terrorist attack. Force protection is a military and civilian term used to protect personnel and critical facilities and assets against would-be aggressors or terrorists. The war on terrorism is a 200-300-year war. Terrorist attacks on US soil could become as common-place as in the State of Israel. It is very easy to penetrate infrastructure or plants as evidenced by vulnerability assessments performed for states, cities, plants, and military facilities by Versar and others around the country. Chemical, biological, radiological, nuclear, and explosive weapons can be readily used to attack facilities in the US. This paper will explain some of those vulnerabilities, outline the current DoD standard as it relates to vulnerability assessments, and explain how this may be used in commercial applications to deter potential aggressors.

  6. Comparison between static maximal force and handbrake pulling force.

    PubMed

    Chateauroux, E; Wang, X

    2012-01-01

    The measurement of maximum pulling force is important not only for specifying force limit of industrial workers but also for designing controls requiring high force. This paper presents a comparison between maximal static handbrake pulling force (FST) and force exerted during normal handbrake pulling task (FDY). These forces were measured for different handle locations and subject characteristics. Participants were asked to pull a handbrake on an adjustable car mock-up as they would do when parking their own car, then to exert a force as high as possible on the pulled handbrake. Hand pulling forces were measured using a six-axes force sensor. 5 fixed handbrake positions were tested as well as a neutral handbrake position defined by the subject. FST and FDY were significantly correlated. Both were found to be dependent on handbrake position, age and gender. As expected, women and older subjects exerted lower forces. FST was significantly higher than FDY. The ratio FmR (FDY divided by FST) was also analyzed. Women showed higher FmR than men meaning that the task required a higher amount of muscle capability for women. FmR was also influenced by handbrake location. These data will be useful for handbrake design.

  7. Normal Force and Drag Force in Magnetorheological Finishing

    SciTech Connect

    Miao, C.; Shafrir, S.N.; Lambropoulos, J.C.; Jacobs, S.D.

    2010-01-13

    The material removal in magnetorheological finishing (MRF) is known to be controlled by shear stress, tau, which equals drag force, Fd, divided by spot area, As. However, it is unclear how the normal force, Fn, affects the material removal in MRF and how the measured ratio of drag force to normal force Fd/Fn, equivalent to coefficient of friction, is related to material removal. This work studies, for the first time for MRF, the normal force and the measured ratio Fd/Fn as a function of material mechanical properties. Experimental data were obtained by taking spots on a variety of materials including optical glasses and hard ceramics with a spot-taking machine (STM). Drag force and normal force were measured with a dual load cell. Drag force decreases linearly with increasing material hardness. In contrast, normal force increases with hardness for glasses, saturating at high hardness values for ceramics. Volumetric removal rate decreases with normal force across all materials. The measured ratio Fd/Fn shows a strong negative linear correlation with material hardness. Hard materials exhibit a low “coefficient of friction”. The volumetric removal rate increases with the measured ratio Fd/Fn which is also correlated with shear stress, indicating that the measured ratio Fd/Fn is a useful measure of material removal in MRF.

  8. Flow mechanotransduction regulates traction forces, intercellular forces, and adherens junctions

    PubMed Central

    Ting, Lucas H.; Jahn, Jessica R.; Jung, Joon I.; Shuman, Benjamin R.; Feghhi, Shirin; Han, Sangyoon J.; Rodriguez, Marita L.

    2012-01-01

    Endothelial cells respond to fluid shear stress through mechanotransduction responses that affect their cytoskeleton and cell-cell contacts. Here, endothelial cells were grown as monolayers on arrays of microposts and exposed to laminar or disturbed flow to examine the relationship among traction forces, intercellular forces, and cell-cell junctions. Cells under laminar flow had traction forces that were higher than those under static conditions, whereas cells under disturbed flow had lower traction forces. The response in adhesion junction assembly matched closely with changes in traction forces since adherens junctions were larger in size for laminar flow and smaller for disturbed flow. Treating the cells with calyculin-A to increase myosin phosphorylation and traction forces caused an increase in adherens junction size, whereas Y-27362 cause a decrease in their size. Since tugging forces across cell-cell junctions can promote junctional assembly, we developed a novel approach to measure intercellular forces and found that these forces were higher for laminar flow than for static or disturbed flow. The size of adherens junctions and tight junctions matched closely with intercellular forces for these flow conditions. These results indicate that laminar flow can increase cytoskeletal tension while disturbed flow decreases cytoskeletal tension. Consequently, we found that changes in cytoskeletal tension in response to shear flow conditions can affect intercellular tension, which in turn regulates the assembly of cell-cell junctions. PMID:22447948

  9. Microphotonic Forces from Superfluid Flow

    NASA Astrophysics Data System (ADS)

    McAuslan, D. L.; Harris, G. I.; Baker, C.; Sachkou, Y.; He, X.; Sheridan, E.; Bowen, W. P.

    2016-04-01

    In cavity optomechanics, radiation pressure and photothermal forces are widely utilized to cool and control micromechanical motion, with applications ranging from precision sensing and quantum information to fundamental science. Here, we realize an alternative approach to optical forcing based on superfluid flow and evaporation in response to optical heating. We demonstrate optical forcing of the motion of a cryogenic microtoroidal resonator at a level of 1.46 nN, roughly 1 order of magnitude larger than the radiation pressure force. We use this force to feedback cool the motion of a microtoroid mechanical mode to 137 mK. The photoconvective forces we demonstrate here provide a new tool for high bandwidth control of mechanical motion in cryogenic conditions, while the ability to apply forces remotely, combined with the persistence of flow in superfluids, offers the prospect for new applications.

  10. Force feedback in limb lengthening.

    PubMed

    Wee, Jinyong; Rahman, Tariq; Seliktar, Rahamim; Akins, Robert; Levine, David; Richardson, Dean; Dodge, George R; Thabet, Ahmed M; Holmes, Lauren; Mackenzie, William G

    2010-01-01

    A new variable-rate distraction system using a motorized distractor driven by feedback from the distraction force was designed. The distractor was mounted on a unilateral fixator and attached to the tibiae of 6 sheep that underwent distraction osteogenesis. The sheep were divided equally into 3 groups. In group 1, the forces were recorded but were not used to drive the lengthening rate. In group 2, force feedback was used and the desired distraction force level was set to 300 N and the initial rate was 1 mm/day. Group 3 also underwent force feedback with the desired force limit at 300 N, but the rate change was initiated earlier, at 200 N. The distraction force was recorded at 15 second intervals throughout the distraction phase and stored onboard the distractor.

  11. Force oscillations simulating breathing maneuvers do not prevent force adaptation.

    PubMed

    Pascoe, Chris; Jiao, Yuekan; Seow, Chun Y; Paré, Peter D; Bossé, Ynuk

    2012-07-01

    Airway inflammation in patients with asthma exposes the airway smooth muscle (ASM) to a variety of spasmogens. These spasmogens increase ASM tone, which can lead to force adaptation. Length oscillations of ASM, which occur in vivo due to breathing maneuvers, can attenuate force adaptation. However, in the presence of tone, the force oscillations required to achieve these length oscillations may be unphysiologic (i.e., magnitude greater than the ones achieved due to the swings in transpulmonary pressure required for breathing). In the present study, we applied force oscillations simulating the tension oscillations experienced by the wall of a fourth-generation airway during tidal breathing with or without deep inspirations (DI) to ASM. The goal was to investigate whether force adaptation occurs in conditions mimicking breathing maneuvers. Tone was induced by carbachol (average, 20 nM), and the force-generating capacity of the ASM was assessed at 5-minute intervals before and after carbachol administration using electrical field stimulations (EFS). The results show that force oscillations applied before the introduction of tone had a small effect on the force produced by EFS (declined to 96.8% [P > 0.05] and 92.3% [P < 0.05] with and without DI, respectively). The tone induced by carbachol transiently decreased after a DI and declined significantly (P < 0.05) due to tidal breathing oscillations (25%). These force oscillations did not prevent force adaptation (gain of force of 11.2 ± 2.2 versus 13.5 ± 2.7 and 11.2 ± 3.0% in static versus dynamic conditions with or without DI, respectively). The lack of effect of simulated breathing maneuvers on force adaptation suggests that this gain in ASM force may occur in vivo and could contribute to the development of airway hyperresponsiveness. PMID:22323367

  12. Chin force in violin playing.

    PubMed

    Obata, Satoshi; Kinoshita, Hiroshi

    2012-06-01

    Force generated between the left mandible of violinists and the chinrest of the violin was examined using a force-sensing chinrest developed in this study. A strain-gauge force sensor was built, and it was fixed between the violin's top plate and a chin cup. Fifteen professional/amateur violinists held the violin statically, played musical scales with different sound properties and sounding techniques, as well as an excerpt from a Max Bruch concerto. Peak and mean forces were evaluated for each task. In a separate experiment, lateral movement of the lower teeth due to different levels of voluntary chin force exertion was measured. Static holding forces observed were 15 and 22 N with and without the help of the left hand, respectively. Peak force increased from 16 N at soft dynamics to 20 N at strong dynamics during scales. The force further increased to 29 N with the use of vibrato technique and 35 N during shifts. Tempo and hand position did not affect the force. Playing a Bruch concerto induced a mean peak force of 52 N, ranging from 31 to 82 N among the violinists. The developed force-sensing chinrest could accurately record the generated chin force. Typical chin force to stabilize the violin during ordinary musical performance was less than 30 N, but it could momentarily exceed 50 N when technically demanding musical pieces were performed. The lateral shift of the mandible was fairly small (<0.4 mm) even with high chin-force exertion, possibly due to clenching of the molars.

  13. Chin force in violin playing.

    PubMed

    Obata, Satoshi; Kinoshita, Hiroshi

    2012-06-01

    Force generated between the left mandible of violinists and the chinrest of the violin was examined using a force-sensing chinrest developed in this study. A strain-gauge force sensor was built, and it was fixed between the violin's top plate and a chin cup. Fifteen professional/amateur violinists held the violin statically, played musical scales with different sound properties and sounding techniques, as well as an excerpt from a Max Bruch concerto. Peak and mean forces were evaluated for each task. In a separate experiment, lateral movement of the lower teeth due to different levels of voluntary chin force exertion was measured. Static holding forces observed were 15 and 22 N with and without the help of the left hand, respectively. Peak force increased from 16 N at soft dynamics to 20 N at strong dynamics during scales. The force further increased to 29 N with the use of vibrato technique and 35 N during shifts. Tempo and hand position did not affect the force. Playing a Bruch concerto induced a mean peak force of 52 N, ranging from 31 to 82 N among the violinists. The developed force-sensing chinrest could accurately record the generated chin force. Typical chin force to stabilize the violin during ordinary musical performance was less than 30 N, but it could momentarily exceed 50 N when technically demanding musical pieces were performed. The lateral shift of the mandible was fairly small (<0.4 mm) even with high chin-force exertion, possibly due to clenching of the molars. PMID:21952980

  14. Mapping interaction forces with the atomic force microscope.

    PubMed Central

    Radmacher, M; Cleveland, J P; Fritz, M; Hansma, H G; Hansma, P K

    1994-01-01

    Force curves were recorded as the sample was raster-scanned under the tip. This opens new opportunities for imaging with the atomic force microscope: several characteristics of the samples can be measured simultaneously, for example, topography, adhesion forces, elasticity, van der Waals, and electrostatic interactions. The new opportunities are illustrated by images of several characteristics of thin metal films, aggregates of lysozyme, and single molecules of DNA. Images FIGURE 1 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:8075349

  15. An Integrated Higgs Force Theory

    NASA Astrophysics Data System (ADS)

    Colella, Antonio

    2016-03-01

    An Integrated Higgs force theory (IHFT) was based on 2 key requirement amplifications: a matter particle/Higgs force was one and inseparable; a matter particle/Higgs force bidirectionally condensed/evaporated from/to super force. These were basis of 5 theories: particle creation, baryogenesis, superpartner/quark decays, spontaneous symmetry breaking, and stellar black holes. Our universe's 129 matter/force particles contained 64 supersymmetric Higgs particles; 9 transient matter particles/Higgs forces decayed to 8 permanent matter particles/Higgs forces; mass was given to a matter particle by its Higgs force and gravitons; and sum of 8 Higgs force energies of 8 permanent matter particles was dark energy. An IHFT's essence is the intimate physical relationships between 8 theories. These theories are independent because physicists in one theory worked independently of physicists in the other seven. An IHFT's premise is without sacrificing their integrities, 8 independent existing theories are replaced by 8 interrelated amplified theories. Requirement amplifications provide interfaces between the 8 theories. Intimate relationships between 8 theories including the above 5 and string, Higgs forces, and Super Universe are described. The sorting category selected was F. PARTICLES AND FIELDS (e.g., F1 Higgs Physics, F10 Alternative Beyond the Standard Model Physics, F11 Dark Sector Theories and Searches, and F12 Particle Cosmology).

  16. Theory of Casimir Forces without the Proximity-Force Approximation.

    PubMed

    Lapas, Luciano C; Pérez-Madrid, Agustín; Rubí, J Miguel

    2016-03-18

    We analyze both the attractive and repulsive Casimir-Lifshitz forces recently reported in experimental investigations. By using a kinetic approach, we obtain the Casimir forces from the power absorbed by the materials. We consider collective material excitations through a set of relaxation times distributed in frequency according to a log-normal function. A generalized expression for these forces for arbitrary values of temperature is obtained. We compare our results with experimental measurements and conclude that the model goes beyond the proximity-force approximation. PMID:27035293

  17. Automated force controller for amplitude modulation atomic force microscopy.

    PubMed

    Miyagi, Atsushi; Scheuring, Simon

    2016-05-01

    Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollable drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed. PMID:27250433

  18. Performance of different force fields in force probe simulations.

    PubMed

    Schlesier, Thomas; Diezemann, Gregor

    2013-02-14

    We present detailed force probe molecular dynamic simulations of mechanically interlocked dimeric calix[4]arene-catenanes, comparing the results obtained using three different commonly used force fields (GROMOS G53a5, OPLS-AA, and AMBER GAFF). The model system is well characterized as a two-state system consisting of a closed compact and an elongated structure. Both states are stabilized by a different hydrogen-bond network, and complete separation of the dimer is prevented by the mechanical lock of the entangled aliphatic loops. The system shows fully reversible rebinding meaning that after bond rupture the system rejoins when the external force is relaxed. We present a detailed study of quantities determined in simulations using a force ramp, like the rupture force and rejoin force distributions. Additionally, we analyze the dynamics of the hydrogen-bond network. We find that the results obtained from using the different force fields qualitatively agree in the sense that always the fully reversible behavior is found. The details, like the mean rupture forces, however, do depend on the particular force field. Some of the differences observed can be traced back to differences in the strength of the hydrogen-bond networks.

  19. The new neutron rich nuclei

    SciTech Connect

    Gridnev, K. A.; Gridnev, D. K.; Tarasov, V. N.; Tarasov, D. V.; Viñas, X.; Greiner, W.

    2014-07-23

    Using HF+BCS method with Skyrme forces we analyze the neutron drip line. It is shown that around magic and new magic numbers the drip line may form stability peninsulas. It is shown that the location of these peninsulas does not depend on the choice of Skyrme forces. It is found that the size of the peninsulas is sensitive to the choice of Skyrme forces and the most extended peninsulas appear with the SkI2 set.

  20. Elementary Implantable Force Sensor

    PubMed Central

    Wachs, Rebecca A.; Ellstein, David; Drazan, John; Healey, Colleen P.; Uhl, Richard L.; Connor, Kenneth A.

    2014-01-01

    Implementing implantable sensors which are robust enough to maintain long term functionality inside the body remains a significant challenge. The ideal implantable sensing system is one which is simple and robust; free from batteries, telemetry, and complex electronics. We have developed an elementary implantable sensor for orthopaedic smart implants. The sensor requires no telemetry and no batteries to communicate wirelessly. It has no on-board signal conditioning electronics. The sensor itself has no electrical connections and thus does not require a hermetic package. The sensor is an elementary L-C resonator which can function as a simple force transducer by using a solid dielectric material of known stiffness between two parallel Archimedean coils. The operating characteristics of the sensors are predicted using a simplified, lumped circuit model. We have demonstrated sensor functionality both in air and in saline. Our preliminary data indicate that the sensor can be reasonably well modeled as a lumped circuit to predict its response to loading. PMID:24883335

  1. Tunneling magnetic force microscopy

    NASA Technical Reports Server (NTRS)

    Burke, Edward R.; Gomez, Romel D.; Adly, Amr A.; Mayergoyz, Isaak D.

    1993-01-01

    We have developed a powerful new tool for studying the magnetic patterns on magnetic recording media. This was accomplished by modifying a conventional scanning tunneling microscope. The fine-wire probe that is used to image surface topography was replaced with a flexible magnetic probe. Images obtained with these probes reveal both the surface topography and the magnetic structure. We have made a thorough theoretical analysis of the interaction between the probe and the magnetic fields emanating from a typical recorded surface. Quantitative data about the constituent magnetic fields can then be obtained. We have employed these techniques in studies of two of the most important issues of magnetic record: data overwrite and maximizing data-density. These studies have shown: (1) overwritten data can be retrieved under certain conditions; and (2) improvements in data-density will require new magnetic materials. In the course of these studies we have developed new techniques to analyze magnetic fields of recorded media. These studies are both theoretical and experimental and combined with the use of our magnetic force scanning tunneling microscope should lead to further breakthroughs in the field of magnetic recording.

  2. Maximum bow force revisited.

    PubMed

    Mores, Robert

    2016-08-01

    Schelleng [J. Acoust. Soc. Am. 53, 26-41 (1973)], Askenfelt [J. Acoust. Soc. Am. 86, 503-516 (1989)], Schumacher [J. Acoust. Soc. Am. 96, 1985-1998 (1994)], and Schoonderwaldt, Guettler, and Askenfelt [Acta Acust. Acust. 94, 604-622 (2008)] formulated-in different ways-how the maximum bow force relates to bow velocity, bow-bridge distance, string impedance, and friction coefficients. Issues of uncertainty are how to account for friction or for the rotational admittance of the strings. Related measurements at the respective transitions between regimes of Helmholtz motion and non-Helmholtz motion employ a variety of bowing machines and stringed instruments. The related findings include all necessary parameters except the friction coefficients, leaving the underlying models unconfirmed. Here, a bowing pendulum has been constructed which allows precise measurement of relevant bowing parameters, including the friction coefficients. Two cellos are measured across all strings for three different bow-bridge distances. The empirical data suggest that-taking the diverse elements of existing models as options-Schelleng's model combined with Schumacher's velocity term yields the best fit. Furthermore, the pendulum employs a bow driving mechanism with adaptive impedance which discloses that mentioned regimes are stable and transitions between them sometimes require a hysteresis on related parameters. PMID:27586745

  3. Forced air heater

    SciTech Connect

    Livezey, D.J.

    1980-09-23

    An air heating chamber is supported to project into a stove through an opening provided in the rear wall of the stove by a mounting plate mounted to the exterior of the stove rear wall. The mounting plate which forms the exterior end wall of the heating chamber, includes laterally spaced heating chamber inlet and outlet openings. A blower is detachably mounted to the exterior of the mounting plate in registration with the heating chamber inlet opening to deliver cool forced air into the heating chamber. After circulating therethrough, the air exits the heating chamber through the outlet opening and flows into a hot air manifold, which is also detachably mounted to the exterior of the mounting plate. The manifold includes an upwardly extending inlet chamber with a hot air inlet at its lower end aligned with the heating chamber outlet opening. A horizontal outlet chamber is attached to the top end of the inlet chamber to extend laterally along the back of the stove. Hot air outlets are provided at each end of the manifold outlet chamber to discharge the heated air horizontally over the top and towards the front of the stove.

  4. Deep atomic force microscopy

    SciTech Connect

    Barnard, H.; Drake, B.; Randall, C.; Hansma, P. K.

    2013-12-15

    The Atomic Force Microscope (AFM) possesses several desirable imaging features including the ability to produce height profiles as well as two-dimensional images, in fluid or air, at high resolution. AFM has been used to study a vast selection of samples on the scale of angstroms to micrometers. However, current AFMs cannot access samples with vertical topography of the order of 100 μm or greater. Research efforts have produced AFM scanners capable of vertical motion greater than 100 μm, but commercially available probe tip lengths are still typically less than 10 μm high. Even the longest probe tips are below 100 μm and even at this range are problematic. In this paper, we present a method to hand-fabricate “Deep AFM” probes with tips of the order of 100 μm and longer so that AFM can be used to image samples with large scale vertical topography, such as fractured bone samples.

  5. Force Limited Vibration Testing Monograph

    NASA Technical Reports Server (NTRS)

    Scharton, Terry D.

    1997-01-01

    The practice of limiting the shaker force in vibration tests was investigated at the NASA Jet Propulsion Laboratory (JPL) in 1990 after the mechanical failure of an aerospace component during a vibration test. Now force limiting is used in almost every major vibration test at JPL and in many vibration tests at NASA Goddard Space Flight Center (GSFC) and at many aerospace contractors. The basic ideas behind force limiting have been in the literature for several decades, but the piezo-electric force transducers necessary to conveniently implement force limiting have been available only in the last decade. In 1993, funding was obtained from the NASA headquarters Office of Chief Engineer to develop and document the technology needed to establish force limited vibration testing as a standard approach available to all NASA centers and aerospace contractors. This monograph is the final report on that effort and discusses the history, theory, and applications of the method in some detail.

  6. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2006-08-22

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  7. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V.; Wang, Chengpu

    2004-11-16

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  8. Coriolis Force on Your Arms

    NASA Astrophysics Data System (ADS)

    Johns, Robert

    2003-12-01

    The Coriolis force is a sideward force that acts on a rotating object as it moves toward or away from the center of rotation. It is important to long-range artillery and the formation of tornados, but we seldom experience this force on a human scale, unless we play on a merry-go-round or similar apparatus. This note describes a simple activity that lets us see the effect of the Coriolis force on our outstretched arms as they fall down to our sides while we rotate.

  9. Force As A Momentum Current

    SciTech Connect

    Munera, Hector A.

    2010-07-28

    Advantages of a neo-Cartesian approach to classical mechanics are noted. If conservation of linear momentum is the fundamental principle, Newton's three laws become theorems. A minor paradox in static Newtonian mechanics is identified, and solved by reinterpreting force as a current of momentum. Contact force plays the role of a mere midwife in the exchange of momentum; however, force cannot be eliminated from physics because it provides the numerical value for momentum current. In this sense, in a neo-Cartesian formulation of mechanics the concept of force becomes strengthened rather than weakened.

  10. Force As A Momentum Current

    NASA Astrophysics Data System (ADS)

    Múnera, Héctor A.

    2010-07-01

    Advantages of a neo-Cartesian approach to classical mechanics are noted. If conservation of linear momentum is the fundamental principle, Newton's three laws become theorems. A minor paradox in static Newtonian mechanics is identified, and solved by reinterpreting force as a current of momentum. Contact force plays the role of a mere midwife in the exchange of momentum; however, force cannot be eliminated from physics because it provides the numerical value for momentum current. In this sense, in a neo-Cartesian formulation of mechanics the concept of force becomes strengthened rather than weakened.

  11. Adding Value to Force Diagrams: Representing Relative Force Magnitudes

    ERIC Educational Resources Information Center

    Wendel, Paul

    2011-01-01

    Nearly all physics instructors recognize the instructional value of force diagrams, and this journal has published several collections of exercises to improve student skill in this area. Yet some instructors worry that too few students perceive the conceptual and problem-solving utility of force diagrams, and over recent years a rich variety of…

  12. Magnetic force and optical force sensing with ultrathin silicon resonator

    NASA Astrophysics Data System (ADS)

    Ono, Takahito; Esashi, Masayoshi

    2003-12-01

    In this article, we demonstrated magnetic and optical force measurements using an ultrathin silicon cantilever down to 20 nm or 50 nm in thickness. The cantilever was heated in an ultrahigh vacuum for enhancing the Q factor and a magnetic particle was mounted at the end of the cantilever using a manipulator. The vibration was measured by a laser Doppler vibrometer and its signal was fed to an opposed metal electrode for electrostatic self-oscillation. An application of a magnetic field with a coil exerted a force to the magnetic material, which results in the change of the resonant frequency. However, the change in the mechanical properties of the cantilever, due to mechanical instability and temperature variation, drifts the resonance peak. Force balancing between the magnetic force and an electrostatic force in the opposite phase can minimize the vibration amplitude. From the electrostatic force at the minimum point, the exerted force can be estimated. A magnetic moment of 4×10-20 J/T was measured by this method. The same technique was also applied to measure the optical force of ˜10-17 N, impinging on the cantilever by a laser diode.

  13. Bacterial adhesion force quantification by fluidic force microscopy

    NASA Astrophysics Data System (ADS)

    Potthoff, Eva; Ossola, Dario; Zambelli, Tomaso; Vorholt, Julia A.

    2015-02-01

    Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many cells. The contact time and setpoint dependence of the adhesion forces of E. coli and Streptococcus pyogenes, as well as the sequential detachment of bacteria out of a chain, are shown, revealing distinct force patterns in the detachment curves. This study demonstrates the potential of the FluidFM technology for quantitative bacterial adhesion measurements of cell-substrate and cell-cell interactions that are relevant in biofilms and infection biology.Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many

  14. Atomic Force Microscope Operation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation (large file)

    This animation is a scientific illustration of the operation of NASA's Phoenix Mars Lander's Atomic Force Microscope, or AFM. The AFM is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer, or MECA.

    The AFM is used to image the smallest Martian particles using a very sharp tip at the end of one of eight beams.

    The beam of the AFM is set into vibration and brought up to the surface of a micromachined silicon substrate. The substrate has etched in it a series of pits, 5 micrometers deep, designed to hold the Martian dust particles.

    The microscope then maps the shape of particles in three dimensions by scanning them with the tip.

    At the end of the animation is a 3D representation of the AFM image of a particle that was part of a sample informally called 'Sorceress.' The sample was delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008).

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Radiative forcing and climate response

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Sato, M.; Ruedy, R.

    1997-03-01

    We examine the sensitivity of a climate model to a wide range of radiative forcings, including changes of solar irradiance, atmospheric CO2, O3, CFCs, clouds, aerosols, surface albedo, and a "ghost" forcing introduced at arbitrary heights, latitudes, longitudes, seasons, and times of day. We show that, in general, the climate response, specifically the global mean temperature change, is sensitive to the altitude, latitude, and nature of the forcing; that is, the response to a given forcing can vary by 50% or more depending upon characteristics of the forcing other than its magnitude measured in watts per square meter. The consistency of the response among different forcings is higher, within 20% or better, for most of the globally distributed forcings suspected of influencing global mean temperature in the past century, but exceptions occur for certain changes of ozone or absorbing aerosols, for which the climate response is less well behaved. In all cases the physical basis for the variations of the response can be understood. The principal mechanisms involve alterations of lapse rate and decrease (increase) of large-scale cloud cover in layers that are preferentially heated (cooled). Although the magnitude of these effects must be model-dependent, the existence and sense of the mechanisms appear to be reasonable. Overall, we reaffirm the value of the radiative forcing concept for predicting climate response and for comparative studies of different forcings; indeed, the present results can help improve the accuracy of such analyses and define error estimates. Our results also emphasize the need for measurements having the specificity and precision needed to define poorly known forcings such as absorbing aerosols and ozone change. Available data on aerosol single scatter albedo imply that anthropogenic aerosols cause less cooling than has commonly been assumed. However, negative forcing due to the net ozone change since 1979 appears to have counterbalanced 30

  16. Exotic nuclei and nuclear forces

    NASA Astrophysics Data System (ADS)

    Otsuka, Takaharu

    2013-01-01

    I overview new aspects of the structure of exotic nuclei as compared to stable nuclei, focusing on several characteristic effects of nuclear forces. The shell structure of nuclei has been proposed by Mayer and Jensen, and has been considered to be kept valid basically for all nuclei, with well-known magic numbers, 2, 8, 20, 28, 50, …. Nuclear forces were shown, very recently, to change this paradigm. It will be presented that the evolution of shell structure occurs in various ways as more neutrons and/or protons are added, and I will present basic points of this shell evolution in terms of the monopole interaction of nuclear forces. I will discuss three types of nuclear forces. The first one is the tensor force. The tensor force is one of the most fundamental nuclear forces, but its first-order effect on the shell structure has been clarified only recently in studies on exotic nuclei. The tensor force can change the spin-orbit splitting depending on the occupation of specific orbits. This results in changes of the shell structure in many nuclei, and consequently some of Mayer-Jensen's magic numbers are lost and new ones emerge, in certain nuclei. This mechanism can be understood in an intuitive way, meaning that the effect is general and robust. The second type of nuclear forces is central force. I will show a general but unknown property of the central force in the shell-model Hamiltonian that can describe nuclear properties in a good agreement with experiment. I will then demonstrate how it can be incorporated into a simple model of the central force, and will discuss how this force works in the shell evolution. Actually, by combining this central force with the tensor force, one can understand and foresee how the same proton-neutron interaction drives the shell evolution, for examples such as Sn/Sb isotopes, N = 20 nuclei and Ni/Cu isotopes. The distribution of single-particle strength is discussed also in comparison to (e,e‧p) experiment on 48Ca. The shell

  17. How Does Force Affect Motion?

    ERIC Educational Resources Information Center

    Darling, Gerald

    2012-01-01

    Whether playing soccer at recess, walking to lunch, or sitting at their desk, children encounter forces every moment of their lives. The connection between force and motion is absolutely amazing to children, so anyone working with them better be prepared for the battery of tough questions they ask: "What made the ball move that way? Why does a…

  18. Low-closing-force seal

    NASA Technical Reports Server (NTRS)

    Bergquist, L. E.

    1973-01-01

    Compress soft, inert metal gasket between cone and corresponding socket to attach tubes to vessels containing gas samples. Technique effects seals with minimum of applied force and does not contaminate contents. Seal is formed when port connector is pushed firmly into its socket. Gold washer is deformed and forced to flow into imperfections in surfaces.

  19. Minorities in the Armed Forces

    ERIC Educational Resources Information Center

    Griggs, Anthony

    1973-01-01

    Summarizes the findings of the Congressional Black Caucus and the specially formed task force; reports that high ranking officers have pledged to attack racial discrimination; and describes an association of minority officers whose purpose is to enhance the image of the armed forces within the minority community. (Author/JM)

  20. Force optimized recoil control system

    NASA Astrophysics Data System (ADS)

    Townsend, P. E.; Radkiewicz, R. J.; Gartner, R. F.

    1982-05-01

    Reduction of the recoil force of high rate of fire automatic guns was proven effective. This system will allow consideration of more powerful guns for use in both helicopter and armored personnel carrier applications. By substituting the large shock loads of firing guns with a nearly constant force, both vibration and fatigue problems that prevent mounting of powerful automatic guns is eliminated.

  1. Pseudo force acting between bodies

    NASA Astrophysics Data System (ADS)

    Baruah, Abhinav Ray; Deva, Anish; Sarma, Arun

    It has been shown that a non-contact force acts between two macroscopic physical objects held close together, which is not associated with the gravitational and electrostatic force. An experiment was conducted with objects of different mass, material and geometry to find the magnitude and properties of this apparent or pseudo force. The order of magnitude was found to be 10-5 and it remained constant for all types of objects while only the coefficient increased as the distance between the objects reduced. It only started acting at small distances and failed to make a body move if it experienced static friction from any contact surface. The nature of the force was found to be attractive as well as repulsive. Due to gravitation being a solely attractive force, it was eliminated as a possible reason for the pseudo force. The experiment was performed twice, once by grounding the apparatus and then again without grounding. The order of the force remained the same for both cases. As the test objects were held by hand, they were grounded through the human body. Also, none of the objects used were in contact with each other for the duration of this work, preventing any contact electrification. Due to these factors, the force was not considered electrostatic in nature.

  2. The Forced Hard Spring Equation

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2006-01-01

    Through numerical investigations, various examples of the Duffing type forced spring equation with epsilon positive, are studied. Since [epsilon] is positive, all solutions to the associated homogeneous equation are periodic and the same is true with the forcing applied. The damped equation exhibits steady state trajectories with the interesting…

  3. Grasp force control in telemanipulation

    NASA Technical Reports Server (NTRS)

    Wiker, Steven F.; Duffie, Neil A.

    1992-01-01

    This paper presents two experiments which focus upon the issue of grasp force control in telemanipulation. The first experiment examines the ability to control and stabilize master-controller grasp force during a 30-s compensatory tracking task under different levels of master controller digit mass, friction, and backlash. The second experiment explores the potential for substituting tactile feedback in lieu of direct force-feedback to gage and control remote grasp force. Results show that subjects were better able to control force when mass and friction levels were increased. Even when perceptual gains between tactile and direct force feedback displays were matched, force reflection produced better grasp control. The lack of backlash effects and improvements in performance with direct force reflection in comparison to tactile feedback are attributable to reflexive short-loop adjustment of grasp tension afforded by the muscle's length-tension control system. The criterion of acceptable operator performance, dependent upon both the quality of the transmission of control commands and feedback, and the response of the remote device, is discussed.

  4. Simplified Relativistic Force Transformation Equation.

    ERIC Educational Resources Information Center

    Stewart, Benjamin U.

    1979-01-01

    A simplified relativistic force transformation equation is derived and then used to obtain the equation for the electromagnetic forces on a charged particle, calculate the electromagnetic fields due to a point charge with constant velocity, transform electromagnetic fields in general, derive the Biot-Savart law, and relate it to Coulomb's law.…

  5. Origin of Enthalpic Depletion Forces.

    PubMed

    Sapir, Liel; Harries, Daniel

    2014-04-01

    Solutes excluded from macromolecules or colloids are known to drive depletion attractions. The established Asakura-Oosawa model, as well as subsequent theories aimed at explaining the effects of macromolecular crowding, attribute depletion forces to diminished hard-core excluded volume upon compaction, and hence predict depletion forces dominated by entropy. However, recent experiments measuring the effect of preferentially excluded solutes on protein folding and macromolecular association find these forces can also be enthalpic. We use simulations of macromolecular association in explicit binary cosolute-solvent mixtures, with solvent and cosolute intermolecular interactions that go beyond hard-cores, to show that not all cosolutes conform to the established entropically dominated model. We further demonstrate how the enthalpically dominated depletion forces that we find can be well described within an Asakura-Oosawa like model provided that the hard-core macromolecule-cosolute potential of mean force is augmented by a "soft" step-like repulsion.

  6. Simulated 2050 aviation radiative forcing

    NASA Astrophysics Data System (ADS)

    Chen, C. C.; Gettelman, A.

    2015-12-01

    The radiative forcing from aviation is investigated by using a comprehensive general circulation model in the present (2006) and the future (2050). Global flight distance is projected to increase by a factor of 4 between 2006 and 2050. However, simulated contrail cirrus radiative forcing can increase by a factor of 7, and thus does not scale linearly with fuel emission mass. Simulations indicate negative radiative forcing induced by the indirect effect of aviation sulfate aerosols on liquid clouds that increasesby a factor of 4 in 2050. As a result, the net 2050 aviation radiative forcing is a cooling. Aviation sulfates emitted at cruise altitude canbe transported down to the lowest troposphere, increasing the aerosolconcentration, thus increasing the cloud drop number concentration and persistenceof low-level clouds. Aviation black carbon aerosols produce a negligible forcing.

  7. Gene regulation by mechanical forces

    NASA Technical Reports Server (NTRS)

    Oluwole, B. O.; Du, W.; Mills, I.; Sumpio, B. E.

    1997-01-01

    Endothelial cells are subjected to various mechanical forces in vivo from the flow of blood across the luminal surface of the blood vessel. The purpose of this review was to examine the data available on how these mechanical forces, in particular cyclic strain, affect the expression and regulation of endothelial cell function. Studies from various investigators using models of cyclic strain in vitro have shown that various vasoactive mediators such as nitric oxide and prostacyclin are induced by the effect of mechanical deformation, and that the expression of these mediators may be regulated at the transcription level by mechanical forces. There also seems to be emerging evidence that endothelial cells may also act as mechanotransducers, whereby the transmission of external forces induces various cytoskeletal changes and second messenger cascades. Furthermore, it seems these forces may act on specific response elements of promoter genes.

  8. Nonadditivity of critical Casimir forces.

    PubMed

    Paladugu, Sathyanarayana; Callegari, Agnese; Tuna, Yazgan; Barth, Lukas; Dietrich, Siegfried; Gambassi, Andrea; Volpe, Giovanni

    2016-01-01

    In soft condensed matter physics, effective interactions often emerge due to the spatial confinement of fluctuating fields. For instance, microscopic particles dissolved in a binary liquid mixture are subject to critical Casimir forces whenever their surfaces confine the thermal fluctuations of the order parameter of the solvent close to its critical demixing point. These forces are theoretically predicted to be nonadditive on the scale set by the bulk correlation length of the fluctuations. Here we provide direct experimental evidence of this fact by reporting the measurement of the associated many-body forces. We consider three colloidal particles in optical traps and observe that the critical Casimir force exerted on one of them by the other two differs from the sum of the forces they exert separately. This three-body effect depends sensitively on the distance from the critical point and on the chemical functionalisation of the colloid surfaces. PMID:27097797

  9. Nonadditivity of critical Casimir forces

    PubMed Central

    Paladugu, Sathyanarayana; Callegari, Agnese; Tuna, Yazgan; Barth, Lukas; Dietrich, Siegfried; Gambassi, Andrea; Volpe, Giovanni

    2016-01-01

    In soft condensed matter physics, effective interactions often emerge due to the spatial confinement of fluctuating fields. For instance, microscopic particles dissolved in a binary liquid mixture are subject to critical Casimir forces whenever their surfaces confine the thermal fluctuations of the order parameter of the solvent close to its critical demixing point. These forces are theoretically predicted to be nonadditive on the scale set by the bulk correlation length of the fluctuations. Here we provide direct experimental evidence of this fact by reporting the measurement of the associated many-body forces. We consider three colloidal particles in optical traps and observe that the critical Casimir force exerted on one of them by the other two differs from the sum of the forces they exert separately. This three-body effect depends sensitively on the distance from the critical point and on the chemical functionalisation of the colloid surfaces. PMID:27097797

  10. Entropic forces in Brownian motion

    NASA Astrophysics Data System (ADS)

    Roos, Nico

    2014-12-01

    Interest in the concept of entropic forces has risen considerably since Verlinde proposed in 2011 to interpret the force in Newton's second law and gravity as entropic forces. Brownian motion—the motion of a small particle (pollen) driven by random impulses from the surrounding molecules—may be the first example of a stochastic process in which such forces are expected to emerge. In this article, it is shown that at least two types of entropic force can be identified in three-dimensional Brownian motion. This analysis yields simple derivations of known results of Brownian motion, Hooke's law, and—applying an external (non-radial) force—Curie's law and the Langevin-Debye equation.

  11. Force reconstruction from tapping mode force microscopy experiments.

    PubMed

    Payam, Amir F; Martin-Jimenez, Daniel; Garcia, Ricardo

    2015-05-01

    Fast, accurate, and robust nanomechanical measurements are intensely studied in materials science, applied physics, and molecular biology. Amplitude modulation force microscopy (tapping mode) is the most established nanoscale characterization technique of surfaces for air and liquid environments. However, its quantitative capabilities lag behind its high spatial resolution and robustness. We develop a general method to transform the observables into quantitative force measurements. The force reconstruction algorithm has been deduced on the assumption that the observables (amplitude and phase shift) are slowly varying functions of the tip-surface separation. The accuracy and applicability of the method is validated by numerical simulations and experiments. The method is valid for liquid and air environments, small and large free amplitudes, compliant and rigid materials, and conservative and non-conservative forces.

  12. Climate forcing by anthropogenic aerosols.

    PubMed

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  13. Climate Forcing by Anthropogenic Aerosols

    NASA Astrophysics Data System (ADS)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  14. Climate forcing by anthropogenic aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol, in particular, has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  15. Differential force balances during levitation

    NASA Astrophysics Data System (ADS)

    Todd, Paul

    The simplest arithmetic of inertial, buoyant, magnetic and electrokinetic levitation is explored in the context of a model living system with “acceleration-sensitive structures” in which motion, if allowed, produces a biological effect. The simple model is a finite-sized object enclosed within another finite-sized object suspended in an outer fluid (liquid or vapor) medium. The inner object has density and electrical and magnetic properties quantitatively different from those of the outer object and the medium. In inertial levitation (“weightlessness”) inertial accelerations are balanced, and the forces due to them are canceled in accordance with Newton’s third law. In the presence of inertial acceleration (gravity, centrifugal) motionlessness depends on a balance between the levitating force and the inertial force. If the inner and outer objects differ in density one or the other will be subjected to an unbalanced force when one object is levitated by any other force (buoyant, magnetic, electrokinetic). The requirements for motionlessness of the internal object in the presence of a levitating force are equality of density in the case of buoyant levitation, equality of magnetic susceptibility in the case of magnetic levitation, and equality of zeta potential and dielectric constant in the case of electrokinetic levitation. Examples of internal “acceleration-sensitive structures” are cellular organelles and the organs of advanced plants and animals. For these structures fundamental physical data are important in the interpretation of the effects of forces used for levitation.

  16. Nuclear forces and chiral theories

    SciTech Connect

    Friar, J.L. |

    1995-09-01

    Recent successes in ab initio calculations of light nuclei (A=2-6) will be reviewed and correlated with the dynamical consequences of chiral symmetry. The tractability of nuclear physics evinced by these results is evidence for that symmetry. The relative importance of three-nucleon forces, four-nucleon forces, multi-pion exchanges, and relativistic corrections will be discussed in the context of effective field theories and dimensional power counting. Isospin violation in the nuclear force will also be discussed in this context.

  17. The force of impacting rain.

    PubMed

    Soto, Dan; De Larivière, Aurélie Borel; Boutillon, Xavier; Clanet, Christophe; Quéré, David

    2014-07-21

    Drop impacts are difficult to characterize due to their transient, non-stationary nature. We discuss the force generated during such impacts, a key quantity for animals, plants, roofs or soil erosion. Although a millimetric drop has a modest weight, it can generate collision forces on the order of thousand times this weight. We measure and discuss this amplification, considering natural parameters such as drop radius and density, impact speed and response time of the substrate. We finally imagine two kinds of devices allowing us to deduce the size of the raindrop from impact forces.

  18. Calibration of frictional forces in atomic force microscopy

    SciTech Connect

    Ogletree, D.F.; Carpick, R.W.; Salmeron, M.

    1996-09-01

    The atomic force microscope can provide information on the atomic-level frictional properties of surfaces, but reproducible quantitative measurements are difficult to obtain. Parameters that are either unknown or difficult to precisely measure include the normal and lateral cantilever force constants (particularly with microfabricated cantilevers), the tip height, the deflection sensor response, and the tip structure and composition at the tip-surface contact. We present an {ital in} {ital situ} experimental procedure to determine the response of a cantilever to lateral forces in terms of its normal force response. This procedure is quite general. It will work with any type of deflection sensor and does not require the knowledge or direct measurement of the lever dimensions or the tip height. In addition, the shape of the tip apex can be determined. We also discuss a number of specific issues related to force and friction measurements using optical lever deflection sensing. We present experimental results on the lateral force response of commercially available V-shaped cantilevers. Our results are consistent with estimates of lever mechanical properties using continuum elasticity theory. {copyright} {ital 1996 American Institute of Physics.}

  19. A Graphene Surface Force Balance

    PubMed Central

    2014-01-01

    We report a method for transferring graphene, grown by chemical vapor deposition, which produces ultraflat graphene surfaces (root-mean-square roughness of 0.19 nm) free from polymer residues over macroscopic areas (>1 cm2). The critical step in preparing such surfaces involves the use of an intermediate mica template, which itself is atomically smooth. We demonstrate the compatibility of these model surfaces with the surface force balance, opening up the possibility of measuring normal and lateral forces, including friction and adhesion, between two graphene sheets either in contact or across a liquid medium. The conductivity of the graphene surfaces allows forces to be measured while controlling the surface potential. This new apparatus, the graphene surface force balance, is expected to be of importance to the future understanding of graphene in applications from lubrication to electrochemical energy storage systems. PMID:25171130

  20. Dissipative Forces and Quantum Mechanics

    ERIC Educational Resources Information Center

    Eck, John S.; Thompson, W. J.

    1977-01-01

    Shows how to include the dissipative forces of classical mechanics in quantum mechanics by the use of non-Hermetian Hamiltonians. The Ehrenfest theorem for such Hamiltonians is derived, and simple examples which show the classical correspondences are given. (MLH)

  1. FORCE: FORtran for Cosmic Errors

    NASA Astrophysics Data System (ADS)

    Colombi, Stéphane; Szapudi, István

    We review the theory of cosmic errors we have recently developed for count-in-cells statistics. The corresponding FORCE package provides a simple and useful way to compute cosmic covariance on factorial moments and cumulants measured in galaxy catalogs.

  2. Molecular Force Spectroscopy on Cells

    NASA Astrophysics Data System (ADS)

    Liu, Baoyu; Chen, Wei; Zhu, Cheng

    2015-04-01

    Molecular force spectroscopy has become a powerful tool to study how mechanics regulates biology, especially the mechanical regulation of molecular interactions and its impact on cellular functions. This force-driven methodology has uncovered a wealth of new information of the physical chemistry of molecular bonds for various biological systems. The new concepts, qualitative and quantitative measures describing bond behavior under force, and structural bases underlying these phenomena have substantially advanced our fundamental understanding of the inner workings of biological systems from the nanoscale (molecule) to the microscale (cell), elucidated basic molecular mechanisms of a wide range of important biological processes, and provided opportunities for engineering applications. Here, we review major force spectroscopic assays, conceptual developments of mechanically regulated kinetics of molecular interactions, and their biological relevance. We also present current challenges and highlight future directions.

  3. HRP ForceShoe Evaluation

    NASA Video Gallery

    Maintaining astronaut bone and muscle health in microgravity is an ongoing concern for NASA. In May of 2014, NASA delivered the ForceShoe, designed by XSENS, to the International Space Station (ISS...

  4. Calibration of lateral force measurements in atomic force microscopy with a piezoresistive force sensor

    SciTech Connect

    Xie Hui; Vitard, Julien; Haliyo, Sinan; Regnier, Stephane

    2008-03-15

    We present here a method to calibrate the lateral force in the atomic force microscope. This method makes use of an accurately calibrated force sensor composed of a tipless piezoresistive cantilever and corresponding signal amplifying and processing electronics. Two ways of force loading with different loading points were compared by scanning the top and side edges of the piezoresistive cantilever. Conversion factors between the lateral force and photodiode signal using three types of atomic force microscope cantilevers with rectangular geometries (normal spring constants from 0.092 to 1.24 N/m and lateral stiffness from 10.34 to 101.06 N/m) were measured in experiments using the proposed method. When used properly, this method calibrates the conversion factors that are accurate to {+-}12.4% or better. This standard has less error than the commonly used method based on the cantilever's beam mechanics. Methods such of this allow accurate and direct conversion between lateral forces and photodiode signals without any knowledge of the cantilevers and the laser measuring system.

  5. COOLING FORCE MEASUREMENTS IN CELSIUS.

    SciTech Connect

    GALNANDER, B.; FEDOTOV, A.V.; LITVINENKO, V.N.; ET AL.

    2005-09-18

    The design of future high energy coolers relies heavily on extending the results of cooling force measurements into new regimes by using simulation codes. In order to carefully benchmark these codes we have accurately measured the longitudinal friction force in CELSIUS by recording the phase shift between the beam and the RF voltage while varying the RF frequency. Moreover, parameter dependencies on the electron current, solenoid magnetic field and magnetic field alignment were carried out.

  6. Electrostatic forces for personnel restraints

    NASA Technical Reports Server (NTRS)

    Ashby, N.; Ciciora, J.; Gardner, R.; Porter, K.

    1977-01-01

    The feasibility of utilizing electrostatic forces for personnel retention devices on exterior spacecraft surfaces was analyzed. The investigation covered: (1) determination of the state of the art; (2) analysis of potential adhesion surfaces; (3) safety considerations for personnel; (4) electromagnetic force field determination and its effect on spacecraft instrumentation; and (5) proposed advances to current technology based on documentation review, analyses, and experimental test data.

  7. Finger Forces in Clarinet Playing

    PubMed Central

    Hofmann, Alex; Goebl, Werner

    2016-01-01

    Clarinettists close and open multiple tone holes to alter the pitch of the tones. Their fingering technique must be fast, precise, and coordinated with the tongue articulation. In this empirical study, finger force profiles and tongue techniques of clarinet students (N = 17) and professional clarinettists (N = 6) were investigated under controlled performance conditions. First, in an expressive-performance task, eight selected excerpts from the first Weber Concerto were performed. These excerpts were chosen to fit in a 2 × 2 × 2 design (register: low–high; tempo: slow–fast, dynamics: soft–loud). There was an additional condition controlled by the experimenter, which determined the expression levels (low–high) of the performers. Second, a technical-exercise task, an isochronous 23-tone melody was designed that required different effectors to produce the sequence (finger-only, tongue-only, combined tongue-finger actions). The melody was performed in three tempo conditions (slow, medium, fast) in a synchronization-continuation paradigm. Participants played on a sensor-equipped Viennese clarinet, which tracked finger forces and reed oscillations simultaneously. From the data, average finger force (Fmean) and peak force (Fmax) were calculated. The overall finger forces were low (Fmean = 1.17 N, Fmax = 3.05 N) compared to those on other musical instruments (e.g., guitar). Participants applied the largest finger forces during the high expression level performance conditions (Fmean = 1.21 N). For the technical exercise task, timing and articulation information were extracted from the reed signal. Here, the timing precision of the fingers deteriorated the timing precision of the tongue for combined tongue-finger actions, especially for faster tempi. Although individual finger force profiles were overlapping, the group of professional players applied less finger force overall (Fmean = 0.54 N). Such sensor instruments provide useful insights into player

  8. Mechanical force analysis of peptide interactions using atomic force microscopy.

    PubMed

    Nakamura, Chikashi; Takeda, Seiji; Kageshima, Masami; Ito, Miyuki; Sugimoto, Naoki; Sekizawa, Kazuko; Miyake, Jun

    2004-01-01

    Some peptides have previously been reported to bind low molecular weight chemicals. One such peptide with the amino acid sequence His-Ala-Ser-Tyr-Ser was selectively screened from a phage library and bound to a cationic porphyrin, 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21H,23H-porphine (TMpyP), with a binding constant of 10(5) M(-1) (J. Kawakami, T. Kitano, and N. Sugimoto, Chemical Communications, 1999, pp. 1765-1766). The proposed binding was due to pi-electron stacking from two aromatic amino acids of histidine and tyrosine. In this study, the weak interactions between TMpyP and the peptide were further investigated by force curve analysis using atomic force microscopy (AFM). The mechanical force required to unbind the peptide-porphyrin complex was measured by vertical movement of the AFM tip. Peptide self-assembled monolayers were formed on both a gold-coated mica substrate and a gold-coated AFM tip. The TMpyPs could bind between the two peptide layers when the peptide-immobilized AFM tip contacted the peptide-immobilized substrate in solution containing TMpyP. In the retracting process a force that ruptured the interaction between TMpyPs and peptides was observed. The unbinding force values correlated to the concentration of TMpyP. A detection limit of 100 ng/mL porphyrin was obtained for the force measurement, and was similar to surface plasmon resonance sensor detection limits. Furthermore, we calculated the product of the observed force and the length of the molecular elongation to determine the work required to unbind the complexes. The obtained values of unbinding work were in a reasonable range compared to the binding energy of porphyrin-peptide.

  9. Photoinduced magnetic force between nanostructures

    NASA Astrophysics Data System (ADS)

    Guclu, Caner; Tamma, Venkata Ananth; Wickramasinghe, Hemantha Kumar; Capolino, Filippo

    2015-12-01

    Photoinduced magnetic force between nanostructures, at optical frequencies, is investigated theoretically. Till now optical magnetic effects were not used in scanning probe microscopy because of the vanishing natural magnetism with increasing frequency. On the other hand, artificial magnetism in engineered nanostructures led to the development of measurable optical magnetism. Here two examples of nanoprobes that are able to generate strong magnetic dipolar fields at optical frequency are investigated: first, an ideal magnetically polarizable nanosphere and then a circular cluster of silver nanospheres that has a looplike collective plasmonic resonance equivalent to a magnetic dipole. Magnetic forces are evaluated based on nanostructure polarizabilities, i.e., induced magnetic dipoles, and magnetic-near field evaluations. As an initial assessment on the possibility of a magnetic nanoprobe to detect magnetic forces, we consider two identical magnetically polarizable nanoprobes and observe magnetic forces on the order of piconewtons, thereby bringing it within detection limits of conventional atomic force microscopes at ambient pressure and temperature. The detection of magnetic force is a promising method in studying optical magnetic transitions that can be the basis of innovative spectroscopy applications.

  10. New formula of Nuclear Force

    NASA Astrophysics Data System (ADS)

    Uddin, Kamal

    2011-04-01

    It is well established that the forces between nucleons are transmitted by meson. The quantitative explanation of nuclear forces in terms of meson theory was extremely tentative & in complete but this theory supplies a valuable point of view . it is fairly certain now that the nucleons within nuclear matter are in a state made rather different from their free condition by the proximity of other nucleons charge independence of nuclear forces demand the existence of neutral meson as amongst the same type of nucleolus (P-P) or (N-N). this force demand the same spin & orbital angular momentum. The exchange interaction in produced by only a neutral meson. The involving mesons without electric charge, that it gives exchanges forces between proton & Neutron & also therefore maintains charge in dependence character. It is evident for the nature of the products that neutral mesons decay by strong & weak interaction both. It means that neutral mesons constituents responsible for the electromagnetic interaction. Dramatically neutral mesons plays important role for electromagnetic & nuclear force both.

  11. Intramolecular screening of intermolecular forces

    NASA Astrophysics Data System (ADS)

    Liang, Ying Q.; Hunt, K. L. C.

    1993-03-01

    By use of nonlocal polarizability densities, we analyze the intramolecular screening of intermolecular fields. For two interacting molecules A and B with weak or negligible charge overlap, we show that the reaction field and the field due to the unperturbed charge distribution of the neighboring molecule are screened identically via the Sternheimer shielding tensor and its generalizations to nonuniform fields and nonlinear response. The induction force on nucleus I in molecule A, derived from perturbation theory, results from linear screening of the reaction field due to B and nonlinear screening of the field from the permanent charge distribution of B. In general, at first or second order in the molecular interaction, the screening-tensor expressions for the force on nucleus I involve susceptibilities of one order higher than the expressions derived from perturbation theory. The first-order force from perturbation theory involves permanent charge moments, while the first-order screened force involves linear response tensors; and the second-order screened force depends on hyperpolarizabilities, while second-order induction effects are specified in terms of static, lowest-order susceptibilities. The equivalence of the two formulations for these forces, order by order, is a new illustration of the interrelations we have found among permanent moments, linear-response tensors, and nonlinear response. This work also provides new insight into the dispersion forces on an individual nucleus I in molecule A by separating the forces into two distinct terms—the first term results from changes in the reaction of A to the fluctuating charge distribution of the neighboring molecule B, when nucleus I shifts infinitesimally, and the second term stems from changes in correlations of the fluctuating charge distribution of A itself. Changes in the fluctuation correlations are determined by changes in the classical Coulomb field of nucleus I and by the imaginary part of the

  12. Force measurements in aerodynamics using piezoelectric multicomponent force transducers

    NASA Astrophysics Data System (ADS)

    Schewe, G.

    The present paper is concerned with a device for the measurement of steady and unsteady aerodynamic forces in a wind tunnel test. The paper represents a continuation of an article written by Schewe (1982) about a multicomponent balance consisting of piezoelectric force transducers for a high-pressure wind tunnel. Advantages of the piezoelectric force-measuring technique compared to other techniques are related to the high rigidity of the quartz crystal sensor elements, taking into account low interference (cross talk) for multicomponent measurements, high natural frequency, and broad dynamic range. It is pointed out that the limitations with respect to quasi-static measurements imposed by the drift of the zero point are not as extensive as generally believed, while drift correction methods improve the measurement accuracy.

  13. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2003-01-01

    An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.

  14. Forces driving epithelial wound healing

    PubMed Central

    Veldhuis, Jim H.; Gupta, Mukund; Colombelli, Julien; Muñoz, José J.; Brodland, G. Wayne; Ladoux, Benoit; Trepat, Xavier

    2015-01-01

    A fundamental feature of multicellular organisms is their ability to self-repair wounds through the movement of epithelial cells into the damaged area. This collective cellular movement is commonly attributed to a combination of cell crawling and “purse-string” contraction of a supracellular actomyosin ring. Here we show by direct experimental measurement that these two mechanisms are insufficient to explain force patterns observed during wound closure. At early stages of the process, leading actin protrusions generate traction forces that point away from the wound, showing that wound closure is initially driven by cell crawling. At later stages, we observed unanticipated patterns of traction forces pointing towards the wound. Such patterns have strong force components that are both radial and tangential to the wound. We show that these force components arise from tensions transmitted by a heterogeneous actomyosin ring to the underlying substrate through focal adhesions. The structural and mechanical organization reported here provides cells with a mechanism to close the wound by cooperatively compressing the underlying substrate. PMID:27340423

  15. Note: Helical nanobelt force sensors

    SciTech Connect

    Hwang, G.; Hashimoto, H.

    2012-12-15

    We present the fabrication and characterization of helical nanobelt force sensors. These self-sensing force sensors are based on the giant piezoresistivity of helical nanobelts. The three-dimensional helical nanobelts are self-formed from 27 nm-thick n-type InGaAs/GaAs bilayers using rolled-up techniques, and assembled onto electrodes on a micropipette using nanorobotic manipulations. The helical nanobelt force sensors can be calibrated using a calibrated atomic force microscope cantilever system under scanning electron microscope. Thanks to their giant piezoresistance coefficient (515 Multiplication-Sign 10{sup -10} Pa{sup -1}), low stiffness (0.03125 N/m), large-displacement capability ({approx}10 {mu}m), and good fatigue resistance, they are well suited to function as stand-alone, compact ({approx}20 {mu}m without the plug-in support), light ({approx}5 g including the plug-in support), versatile and large range ({approx}{mu}N) and high resolution ({approx}nN) force sensors.

  16. Method of Calibrating a Force Balance

    NASA Technical Reports Server (NTRS)

    Parker, Peter A. (Inventor); Rhew, Ray D. (Inventor); Johnson, Thomas H. (Inventor); Landman, Drew (Inventor)

    2015-01-01

    A calibration system and method utilizes acceleration of a mass to generate a force on the mass. An expected value of the force is calculated based on the magnitude and acceleration of the mass. A fixture is utilized to mount the mass to a force balance, and the force balance is calibrated to provide a reading consistent with the expected force determined for a given acceleration. The acceleration can be varied to provide different expected forces, and the force balance can be calibrated for different applied forces. The acceleration may result from linear acceleration of the mass or rotational movement of the mass.

  17. Forces in rotary motion systems

    NASA Astrophysics Data System (ADS)

    Tilsch, Markus K.; Elliott, Gregory K.

    2008-09-01

    In many coating chambers substrates are moved by simple or planetary rotary motion systems. Isaac Newton already taught that an object in uniform motion tends to stay in uniform motion unless acted upon by a net external force. To move a substrate on a rotary trajectory, centripetal and gravitational forces must act upon the substrate. The substrate must be somehow confined. Confinement options range from firm attachment to a fixture to loose placement in a pocket. Depending on the rotary motion pattern, a loosely held substrate may slide once against a confinement boundary and then stay, or may constantly slide around. 'Rattling around' may be undesirable as it could lead to edge destruction, debris formation, precession of the substrate, and other adverse effects. Firm attachment is advantageous in most cases, but often adds process complexity. We examine the forces present on substrates in typical rotary motion systems and discuss the implications of different confinement methods.

  18. The Mouse Forced Swim Test

    PubMed Central

    Can, Adem; Dao, David T.; Arad, Michal; Terrillion, Chantelle E.; Piantadosi, Sean C.; Gould, Todd D.

    2012-01-01

    The forced swim test is a rodent behavioral test used for evaluation of antidepressant drugs, antidepressant efficacy of new compounds, and experimental manipulations that are aimed at rendering or preventing depressive-like states. Mice are placed in an inescapable transparent tank that is filled with water and their escape related mobility behavior is measured. The forced swim test is straightforward to conduct reliably and it requires minimal specialized equipment. Successful implementation of the forced swim test requires adherence to certain procedural details and minimization of unwarranted stress to the mice. In the protocol description and the accompanying video, we explain how to conduct the mouse version of this test with emphasis on potential pitfalls that may be detrimental to interpretation of results and how to avoid them. Additionally, we explain how the behaviors manifested in the test are assessed. PMID:22314943

  19. Global forcing and regional interactions

    USGS Publications Warehouse

    1992-01-01

    The Climate System Modeling Program (CSMP) sponsored a “Global Forcing and Regional Interaction Workshop” from October 21 to 23, 1991, at Colorado State University's Pingree Park campus, to evaluate the relationship between global climate forcing and the response of the land surface on a regional scale. The general aim of the workshop was to develop specific action plans and preliminary science research strategies for regional-global interactions. Each participant was invited to identify tractable, high pay-off science issues related to global forcing and regional interactions. The workshop, with twenty-six participants about evenly split between atmospheric scientists, hydrologists, and ecologists, was also designed to facilitate a network of collaborators to prepare multidisciplinary research proposals. Discussion also focused on regional climate over the last 200 years and included the influence of atmosphere-land surface processes on natural climate variability. Several major recommendations were made on topics discussed.

  20. The mouse forced swim test.

    PubMed

    Can, Adem; Dao, David T; Arad, Michal; Terrillion, Chantelle E; Piantadosi, Sean C; Gould, Todd D

    2012-01-29

    The forced swim test is a rodent behavioral test used for evaluation of antidepressant drugs, antidepressant efficacy of new compounds, and experimental manipulations that are aimed at rendering or preventing depressive-like states. Mice are placed in an inescapable transparent tank that is filled with water and their escape related mobility behavior is measured. The forced swim test is straightforward to conduct reliably and it requires minimal specialized equipment. Successful implementation of the forced swim test requires adherence to certain procedural details and minimization of unwarranted stress to the mice. In the protocol description and the accompanying video, we explain how to conduct the mouse version of this test with emphasis on potential pitfalls that may be detrimental to interpretation of results and how to avoid them. Additionally, we explain how the behaviors manifested in the test are assessed.

  1. Forced Oscillations of Supported Drops

    NASA Technical Reports Server (NTRS)

    Wilkes, Edward D.; Basaran, Osman A.

    1996-01-01

    Oscillations of supported liquid drops are the subject of wide scientific interest, with applications in areas as diverse as liquid-liquid extraction, synthesis of ceramic powders, growing of pure crystals in low gravity, and measurement of dynamic surface tension. In this research, axisymmetric forced oscillations of arbitrary amplitude of viscous liquid drops of fixed volume which are pendant from or sessile on a rod with a fixed or moving contact line and surrounded by an inviscid ambient gas are induced by moving the rod in the vertical direction sinusiodally in time. In this paper, a preliminary report is made on the computational analysis of the oscillations of supported drops that have 'clean' interfaces and whose contact lines remain fixed throughout their motions. The relative importance of forcing to damping can be increased by either increasing the amplitude of rod motion A or Reynolds number Re. It is shown that as the ratio of forcing to damping rises, for drops starting from an initial rest state a sharp increase in deformation can occur when they are forced to oscillate in the vicinity of their resonance frequencies, indicating the incipience of hysteresis. However, it is also shown that the existence of a second stable limit cycle and the occurrence of hysteresis can be observed if the drop is subjected to a so-called frequency sweep, where the forcing frequency is first increased and then decreased over a suitable range. Because the change in drop deformation response is abrupt in the vicinity of the forcing frequencies where hysteresis occurs, it should be possible to exploit the phenomenon to accurately measure the viscosity and surface tension of the drop liquid.

  2. Finger Forces in Clarinet Playing.

    PubMed

    Hofmann, Alex; Goebl, Werner

    2016-01-01

    Clarinettists close and open multiple tone holes to alter the pitch of the tones. Their fingering technique must be fast, precise, and coordinated with the tongue articulation. In this empirical study, finger force profiles and tongue techniques of clarinet students (N = 17) and professional clarinettists (N = 6) were investigated under controlled performance conditions. First, in an expressive-performance task, eight selected excerpts from the first Weber Concerto were performed. These excerpts were chosen to fit in a 2 × 2 × 2 design (register: low-high; tempo: slow-fast, dynamics: soft-loud). There was an additional condition controlled by the experimenter, which determined the expression levels (low-high) of the performers. Second, a technical-exercise task, an isochronous 23-tone melody was designed that required different effectors to produce the sequence (finger-only, tongue-only, combined tongue-finger actions). The melody was performed in three tempo conditions (slow, medium, fast) in a synchronization-continuation paradigm. Participants played on a sensor-equipped Viennese clarinet, which tracked finger forces and reed oscillations simultaneously. From the data, average finger force (F mean ) and peak force (F max ) were calculated. The overall finger forces were low (F mean = 1.17 N, F max = 3.05 N) compared to those on other musical instruments (e.g., guitar). Participants applied the largest finger forces during the high expression level performance conditions (F mean = 1.21 N). For the technical exercise task, timing and articulation information were extracted from the reed signal. Here, the timing precision of the fingers deteriorated the timing precision of the tongue for combined tongue-finger actions, especially for faster tempi. Although individual finger force profiles were overlapping, the group of professional players applied less finger force overall (F mean = 0.54 N). Such sensor instruments provide useful insights into player

  3. Finger Forces in Clarinet Playing.

    PubMed

    Hofmann, Alex; Goebl, Werner

    2016-01-01

    Clarinettists close and open multiple tone holes to alter the pitch of the tones. Their fingering technique must be fast, precise, and coordinated with the tongue articulation. In this empirical study, finger force profiles and tongue techniques of clarinet students (N = 17) and professional clarinettists (N = 6) were investigated under controlled performance conditions. First, in an expressive-performance task, eight selected excerpts from the first Weber Concerto were performed. These excerpts were chosen to fit in a 2 × 2 × 2 design (register: low-high; tempo: slow-fast, dynamics: soft-loud). There was an additional condition controlled by the experimenter, which determined the expression levels (low-high) of the performers. Second, a technical-exercise task, an isochronous 23-tone melody was designed that required different effectors to produce the sequence (finger-only, tongue-only, combined tongue-finger actions). The melody was performed in three tempo conditions (slow, medium, fast) in a synchronization-continuation paradigm. Participants played on a sensor-equipped Viennese clarinet, which tracked finger forces and reed oscillations simultaneously. From the data, average finger force (F mean ) and peak force (F max ) were calculated. The overall finger forces were low (F mean = 1.17 N, F max = 3.05 N) compared to those on other musical instruments (e.g., guitar). Participants applied the largest finger forces during the high expression level performance conditions (F mean = 1.21 N). For the technical exercise task, timing and articulation information were extracted from the reed signal. Here, the timing precision of the fingers deteriorated the timing precision of the tongue for combined tongue-finger actions, especially for faster tempi. Although individual finger force profiles were overlapping, the group of professional players applied less finger force overall (F mean = 0.54 N). Such sensor instruments provide useful insights into player

  4. Forced removals embodied as tuberculosis.

    PubMed

    Richardson, Eugene T; Morrow, Carl D; Ho, Theodore; Fürst, Nicole; Cohelia, Rebekkah; Tram, Khai Hoan; Farmer, Paul E; Wood, Robin

    2016-07-01

    South Africa has one of the worst tuberculosis burdens in the world. Several ecological forces have contributed to this, including high HIV prevalence; failing TB control strategies; crowded, poorly ventilated indoor environments-including the complex web of political and economic interests which produce them; the development of racial capitalism; and mining and migration. In the following study, we measure CO2 levels in public transport to investigate the role extended commutes from peri-urban settlements to urban sites of work-a direct result of forced removals-potentially play in propagating the TB epidemic in Cape Town, South Africa. PMID:27239703

  5. Contact sensing from force measurements

    NASA Technical Reports Server (NTRS)

    Bicchi, Antonio; Salisbury, J. K.; Brock, David L.

    1993-01-01

    This article addresses contact sensing (i.e., the problem of resolving the location of a contact, the force at the interface, and the moment about the contact normals). Called 'intrinsic' contact sensing for the use of internal force and torque measurements, this method allows for practical devices that provide simple, relevant contact information in practical robotic applications. Such sensors have been used in conjunction with robot hands to identify objects, determine surface friction, detect slip, augment grasp stability, measure object mass, probe surfaces, and control collision and for a variety of other useful tasks. This article describes the theoretical basis for their operation and provides a framework for future device design.

  6. Automatic HTS force measurement instrument

    DOEpatents

    Sanders, S.T.; Niemann, R.C.

    1999-03-30

    A device is disclosed for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed. 3 figs.

  7. Automatic HTS force measurement instrument

    DOEpatents

    Sanders, Scott T.; Niemann, Ralph C.

    1999-01-01

    A device for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed.

  8. Force-Time Entropy of Isometric Impulse.

    PubMed

    Hsieh, Tsung-Yu; Newell, Karl M

    2016-01-01

    The relation between force and temporal variability in discrete impulse production has been viewed as independent (R. A. Schmidt, H. Zelaznik, B. Hawkins, J. S. Frank, & J. T. Quinn, 1979 ) or dependent on the rate of force (L. G. Carlton & K. M. Newell, 1993 ). Two experiments in an isometric single finger force task investigated the joint force-time entropy with (a) fixed time to peak force and different percentages of force level and (b) fixed percentage of force level and different times to peak force. The results showed that the peak force variability increased either with the increment of force level or through a shorter time to peak force that also reduced timing error variability. The peak force entropy and entropy of time to peak force increased on the respective dimension as the parameter conditions approached either maximum force or a minimum rate of force production. The findings show that force error and timing error are dependent but complementary when considered in the same framework with the joint force-time entropy at a minimum in the middle parameter range of discrete impulse.

  9. [Forced Oscillations of DNA Bases].

    PubMed

    Yakushevich, L V; Krasnobaeva, L A

    2016-01-01

    This paper presents the results of the studying of forced angular oscillations of the DNA bases with the help of the mathematical model consisting of two coupled nonlinear differential equations that take into account the effects of dissipation and the influence of an external periodic field. The calculation results are illustrated for sequence of gene encoding interferon alpha 17 (IFNA 17).

  10. American Indian Task Force Report.

    ERIC Educational Resources Information Center

    Mackey, John E., Ed.

    Assuming that the client is central to any service program, the American Indian Task Force examined a national sample of "grass roots" social service organizations and/or individuals and schools of social work to determine the capability of providing relevant social work education to American Indians. Accordingly, the highest priorities…

  11. Forced-Flow Evaporative Cooler

    NASA Technical Reports Server (NTRS)

    Ellis, Wilbert E.; Niggemann, Richard E.

    1987-01-01

    Evaporative cooler absorbs heat efficiently under unusual gravitational conditions by using centrifugal force and vapor vortexes to maintain good thermal contact between heat-transfer surface and vaporizable coolant. System useful for cooling electronic or other equipment under low gravity encountered in spacecraft or under multiple-gravity conditions frequently experienced in high-performance airplanes.

  12. Forcing contact inhibition of locomotion.

    PubMed

    Roycroft, Alice; Mayor, Roberto

    2015-07-01

    Contact inhibition of locomotion drives a variety of biological phenomenon, from cell dispersion to collective cell migration and cancer invasion. New imaging techniques have allowed contact inhibition of locomotion to be visualised in vivo for the first time, helping to elucidate some of the molecules and forces involved in this phenomenon.

  13. [Forced Oscillations of DNA Bases].

    PubMed

    Yakushevich, L V; Krasnobaeva, L A

    2016-01-01

    This paper presents the results of the studying of forced angular oscillations of the DNA bases with the help of the mathematical model consisting of two coupled nonlinear differential equations that take into account the effects of dissipation and the influence of an external periodic field. The calculation results are illustrated for sequence of gene encoding interferon alpha 17 (IFNA 17). PMID:27192830

  14. Forcing contact inhibition of locomotion

    PubMed Central

    Roycroft, Alice; Mayor, Roberto

    2015-01-01

    Contact inhibition of locomotion drives a variety of biological phenomenon, from cell dispersion to collective cell migration and cancer invasion. New imaging techniques have allowed contact inhibition of locomotion to be visualised in vivo for the first time, helping to elucidate some of the molecules and forces involved in this phenomenon. PMID:25981318

  15. Force10 P10 Evaluation

    SciTech Connect

    Allen, J; Goldstone, R; Instenes, S; Lawver, B

    2007-06-08

    The lack of an acceptable intrusion monitoring solution limits the deployment of 10GE (10 Gigabit-per-second Ethernet) technology across the LLNL's unclassified network infrastructure. The desire to operate at 10GE motivates us to evaluate the functionality and performance of a 10GE intrusion monitoring solution, the Force10 P10.

  16. The Forced Soft Spring Equation

    ERIC Educational Resources Information Center

    Fay, T. H.

    2006-01-01

    Through numerical investigations, this paper studies examples of the forced Duffing type spring equation with [epsilon] negative. By performing trial-and-error numerical experiments, the existence is demonstrated of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions. Subharmonic boundaries are…

  17. Dynamic properties of force fields.

    PubMed

    Vitalini, F; Mey, A S J S; Noé, F; Keller, B G

    2015-02-28

    Molecular-dynamics simulations are increasingly used to study dynamic properties of biological systems. With this development, the ability of force fields to successfully predict relaxation timescales and the associated conformational exchange processes moves into focus. We assess to what extent the dynamic properties of model peptides (Ac-A-NHMe, Ac-V-NHMe, AVAVA, A10) differ when simulated with different force fields (AMBER ff99SB-ILDN, AMBER ff03, OPLS-AA/L, CHARMM27, and GROMOS43a1). The dynamic properties are extracted using Markov state models. For single-residue models (Ac-A-NHMe, Ac-V-NHMe), the slow conformational exchange processes are similar in all force fields, but the associated relaxation timescales differ by up to an order of magnitude. For the peptide systems, not only the relaxation timescales, but also the conformational exchange processes differ considerably across force fields. This finding calls the significance of dynamic interpretations of molecular-dynamics simulations into question.

  18. Force of an actin spring

    NASA Astrophysics Data System (ADS)

    Shin, Jennifer; Mahadevan, L.; Matsudaira, Paul

    2003-03-01

    The acrosomal process of the horseshoe crab sperm is a novel mechanochemical molecular spring that converts its elastic stain energy to mechanical work upon the chemical activation by Ca2+. Twisted and bent, the initial state of the acrosomal bundle features a high degree of complexity in its structure and the energy is believed to be stored in the highly strained actin filaments as an elastic potential energy. When activated, the bundle relaxes from the coil of the highly twisted and bent filaments to its straight conformation at a mean velocity of 15um/s. The mean extension velocity increases dramatically from 3um/s to 27um/s when temperature of the medium is changed from 9.6C to 32C (respective viscosities of 1.25-0.75cp), yet it exhibits a very weak dependence on changes in the medium viscosity (1cp-33cp). These experiments suggest that the uncoiling of the actin spring should be limited not by the viscosity of the medium but by the unlatching events of involved proteins at a molecular level. Unlike the viscosity-limited processes, where force is directly related to the rate of the reaction, a direct measurement is required to obtain the spring force of the acrosomal process. The extending acrosomal bundle is forced to push against a barrier and its elastic buckling response is analyzed to measure the force generated during the uncoiling.

  19. Comet Halley and nongravitational forces

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1977-01-01

    The motion of comet Halley is investigated over the 1607-1911 interval. The required nongravitational-force model was found to be most consistent with a rocket-type thrust from the vaporization of water ice in the comet's nucleus. The nongravitational effects are time-independent over the investigated interval.

  20. Parachute drag and radial force

    SciTech Connect

    Purvis, J.W.

    1986-01-01

    This paper presents a combination of old and new wind tunnel data in a format which illustrates the effects of inflated diameter, geometric porosity, reefing line length, suspension line length, number of gores, and number of ribbons on parachute drag. A new definition of radial force coefficient is presented, as well as a universal drag curve for flat circular and conical parachutes.

  1. Thought experiments on gravitational forces

    NASA Astrophysics Data System (ADS)

    Lynden-Bell, D.; Katz, Joseph

    2014-03-01

    Large contributions to the near closure of the Universe and to the acceleration of its expansion are due to the gravitation of components of the stress-energy tensor other than its mass density. To familiarize astronomers with the gravitation of these components we conduct thought experiments on gravity, analogous to the real experiments that our forebears conducted on electricity. By analogy to the forces due to electric currents we investigate the gravitational forces due to the flows of momentum, angular momentum and energy along a cylinder. Under tension the gravity of the cylinder decreases but the `closure' of the 3-space around it increases. When the cylinder carries a torque the flow of angular momentum along it leads to a novel helical interpretation of Levi-Civita's external metric and a novel relativistic effect. Energy currents give gravomagnetic effects in which parallel currents repel and antiparallel currents attract, though such effects must be added to those of static gravity. The gravity of beams of light give striking illustrations of these effects and a re-derivation of light bending via the gravity of the light itself. Faraday's experiments lead us to discuss lines of force of both gravomagnetic and gravity fields. A serious conundrum arises if Landau and Lifshitz's definition of gravitational force is adopted.

  2. Structural Truss Elements and Forces

    ERIC Educational Resources Information Center

    Troyer, Steve; Griffis, Kurt; Shackelford, Ray

    2005-01-01

    In the field of construction, most structures are supported by several groups of truss systems working together synergistically. A "truss" is a group of centered and balanced elements combined to carry a common load (Warner, 2003). Trusses provide strength against loads and forces within a structure. Though a complex field of study, structural…

  3. Coffee Cup Atomic Force Microscopy

    ERIC Educational Resources Information Center

    Ashkenaz, David E.; Hall, W. Paige; Haynes, Christy L.; Hicks, Erin M.; McFarland, Adam D.; Sherry, Leif J.; Stuart, Douglas A.; Wheeler, Korin E.; Yonzon, Chanda R.; Zhao, Jing; Godwin, Hilary A.; Van Duyne, Richard P.

    2010-01-01

    In this activity, students use a model created from a coffee cup or cardstock cutout to explore the working principle of an atomic force microscope (AFM). Students manipulate a model of an AFM, using it to examine various objects to retrieve topographic data and then graph and interpret results. The students observe that movement of the AFM…

  4. Bonds that strengthen under force

    NASA Astrophysics Data System (ADS)

    Vogel, Viola

    2006-03-01

    While the adhesive strength of most receptor-ligand interactions is exponentially reduced if strained, some receptor-ligand complexes exist that strengthen under force which is the hallmark of catch bonds. Although the existence of catch bonds was theoretically predicted, the first experimental demonstrations of their existence were given only recently, i.e. for the bacterial adhesin FimH that is located at the tip of type I fimbriae of E. coli and for p-selectin. In a major collaborative effort, we studied the structural origin by which the FimH-mannose bond is switched by force to a high binding state. Mutational studies were thereby combined with steered molecular dynamic simulations to decipher how force might affect protein conformation. Force-activation of FimH leads to a complex `stick-and-roll' bacterial adhesion behavior in which E. coli preferentially rolls over mannosylated surfaces at low shear but increasingly sticks firmly as the shear is increased. Interesting similarities are further seen if comparing the structural mechanisms by which liganded FimH and liganded integrins are switched to a high binding state. This comparison was made possible by docking fibronectin's 10^th type III module (fnIII10) to αVβ3 integrin. αVβ3 can switch from the ``closed'' αVβ3 integrin headpiece to the ``open'' conformation by opening the hinge angle between the βA domain and the hybrid domain of the β-integrin. The ``open'' state has been implicated by many experimental laboratories to correspond to the activated state of integrins. W. E. Thomas, E. Trintchina, M. Forero, V. Vogel, E. Sokurenko, Bacterial adhesion to target cells enhanced by shear-force, Cell, 109 (2002) 913. W. E. Thomas, L. M. Nilsson, M. Forero, E. V. Sokurenko, V. Vogel, Shear-dependent `stick-and-roll' adhesion of type 1 fimbriated Escherichia coli, Molecular Microbiology 53 (2004) 1545. W. Thomas, M. Forero, O. Yakovenko, L. Nilsson, P. Vicini, E. Sokurenko, V. Vogel, Catch Bond Model

  5. Effective Forces Between Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Tehver, Riina; Banavar, Jayanth R.; Koplik, Joel

    1999-01-01

    Colloidal suspensions have proven to be excellent model systems for the study of condensed matter and its phase behavior. Many of the properties of colloidal suspensions can be investigated with a systematic variation of the characteristics of the systems and, in addition, the energy, length and time scales associated with them allow for experimental probing of otherwise inaccessible regimes. The latter property also makes colloidal systems vulnerable to external influences such as gravity. Experiments performed in micro-ravity by Chaikin and Russell have been invaluable in extracting the true behavior of the systems without an external field. Weitz and Pusey intend to use mixtures of colloidal particles with additives such as polymers to induce aggregation and form weak, tenuous, highly disordered fractal structures that would be stable in the absence of gravitational forces. When dispersed in a polarizable medium, colloidal particles can ionize, emitting counterions into the solution. The standard interaction potential in these charged colloidal suspensions was first obtained by Derjaguin, Landau, Verwey and Overbeek. The DLVO potential is obtained in the mean-field linearized Poisson-Boltzmann approximation and thus has limited applicability. For more precise calculations, we have used ab initio density functional theory. In our model, colloidal particles are charged hard spheres, the counterions are described by a continuum density field and the solvent is treated as a homogeneous medium with a specified dielectric constant. We calculate the effective forces between charged colloidal particles by integrating over the solvent and counterion degrees of freedom, taking into account the direct interactions between the particles as well as particle-counterion, counterion-counterion Coulomb, counterion entropic and correlation contributions. We obtain the effective interaction potential between charged colloidal particles in different configurations. We evaluate two

  6. Fuel oil quality task force

    SciTech Connect

    Laisy, J.; Turk, V.

    1997-09-01

    In April, 1996, the R.W. Beckett Corporation became aware of a series of apparently unrelated symptoms that made the leadership of the company concerned that there could be a fuel oil quality problem. A task force of company employees and industry consultants was convened to address the topic of current No. 2 heating oil quality and its effect on burner performance. The task force studied changes in fuel oil specifications and trends in properties that have occurred over the past few years. Experiments were performed at Beckett and Brookhaven National Laboratory to understand the effect of changes in some fuel oil properties. Studies by other groups were reviewed, and field installations were inspected to gain information about the performance of fuel oil that is currently being used in the U.S. and Canada. There was a special concern about the use of red dye in heating oils and the impact of sulfur levels due to the October, 1993 requirement of low sulfur (<0.05%) for on-highway diesel fuel. The results of the task force`s efforts were published in July, 1996. The primary conclusion of the task force was that there is not a crisis or widespread general problem with fuel oil quality. Localized problems that were seen may have been related to refinery practices and/or non-traditional fuel sources. System cleanliness is very important and the cause of many oil burner system problems. Finally, heating oil quality should get ongoing careful attention by Beckett engineering personnel and heating oil industry groups.

  7. 22 CFR 130.3 - Armed forces.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Armed forces. 130.3 Section 130.3 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS POLITICAL CONTRIBUTIONS, FEES AND COMMISSIONS § 130.3 Armed forces. Armed forces means the army, navy, marine, air force, or coast guard,...

  8. May the Force Be with You!

    ERIC Educational Resources Information Center

    Young, Timothy; Guy, Mark

    2011-01-01

    Students have a difficult time understanding force, especially when dealing with a moving object. Many forces can be acting on an object at the same time, causing it to stay in one place or move. By directly observing these forces, students can better understand the effect these forces have on an object. With a simple, student-built device called…

  9. 22 CFR 130.3 - Armed forces.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Armed forces. 130.3 Section 130.3 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS POLITICAL CONTRIBUTIONS, FEES AND COMMISSIONS § 130.3 Armed forces. Armed forces means the army, navy, marine, air force, or coast guard,...

  10. 22 CFR 130.3 - Armed forces.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Armed forces. 130.3 Section 130.3 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS POLITICAL CONTRIBUTIONS, FEES AND COMMISSIONS § 130.3 Armed forces. Armed forces means the army, navy, marine, air force, or coast guard,...

  11. 22 CFR 130.3 - Armed forces.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Armed forces. 130.3 Section 130.3 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS POLITICAL CONTRIBUTIONS, FEES AND COMMISSIONS § 130.3 Armed forces. Armed forces means the army, navy, marine, air force, or coast guard,...

  12. 22 CFR 130.3 - Armed forces.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Armed forces. 130.3 Section 130.3 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS POLITICAL CONTRIBUTIONS, FEES AND COMMISSIONS § 130.3 Armed forces. Armed forces means the army, navy, marine, air force, or coast guard,...

  13. Articulated Multimedia Physics, Lesson 7, Combining Forces.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    As the seventh lesson of the Articulated Multimedia Physics Course, instructional materials are presented in this study guide with relation to the force combination. The topics are concerned with the definition and units of forces, sliding forces on inclined planes, and the equilibrant of two or more forces. The content is arranged in scrambled…

  14. The effect of occlusal forces on restorations.

    PubMed

    Larson, Thomas D

    2014-09-01

    This review will focus on the effect occlusal forces, both normal masticatory force and paranormal bruxing and clenching force, have on various restorative materials and their interaction with the teeth through a variety of bonding mechanisms. Salient physical properties of each of the materials will be reviewed, as well as the effect occlusal force has on restoration durability.

  15. Force dependent metalloprotein conductance by conducting atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Jianwei; Davis, Jason J.

    2003-09-01

    Our ability to analyse charge transport through a biological macromolecule, pertinent to our understanding not only of biological redox processes but also, for example, to our interpretation of tunnelling imaging, remains a significant practical and theoretical issue. Though much information can be gained by carrying out such examinations at a molecular level, there exist few methods where such controlled analyses are, in fact, feasible. Here we report on the electron transport characteristics of a blue copper metalloprotein as characterized at a refined level by conductive-probe atomic force microscopy. The modulation of this conductance with compressional force has also been examined. Though highly resistive, observations are consistent with the ability of the protein matrix to mediate appreciable tunnelling current. This work, then, paves the way for designed implementation of biomacromolecules into electronic devices.

  16. Cutting Force Control Applying Sensorless Cutting Force Monitoring Method

    NASA Astrophysics Data System (ADS)

    Kurihara, Daisuke; Kakinuma, Yasuhiro; Katsura, Seiichiro

    Intelligent machine tools require the functions of high-accurate process monitoring and adaptive control to fit the optimum process condition in each workpieces. For realizing these functions, the various techniques to monitor the cutting process and control it using additional sensors have been proposed and widely studied. Authors propose the sensorless cutting force control method using parallel disturbance observer. The performance of our proposed method is evaluated through simulation and experiments using a linear motor driving table.

  17. Facing the partner influences exchanges in force

    PubMed Central

    Takagi, Atsushi; Bagnato, Carlo; Burdet, Etienne

    2016-01-01

    Many studies in psychology have documented how the behaviour of verbally communicating pairs is affected by social factors such as the partner’s gaze. However, few studies have examined whether physically interacting pairs are influenced by social factors. Here, we asked two partners to exchange forces with one another, where the goal was to accurately replicate the force back onto the other. We first measured an individual’s accuracy in reproducing a force from a robot. We then tested pairs who knowingly exchanged forces whilst separated by a curtain. These separated pairs exchanged forces as two independent individuals would, hence the force reproduction accuracy of partners is not affected by knowingly reproducing a force onto a nonvisible partner. On the other hand, pairs who exchanged forces whilst facing one another consistently under-reproduced the partner’s force in comparison to separated partners. Thus, the force reproduction accuracy of subjects is strongly biased by facing a partner. PMID:27739492

  18. Search for a new force

    SciTech Connect

    Thieberger, P.

    1987-01-01

    Horizontal motions of a well-balanced hollow copper sphere floating and almost totally submerged in a well insulated and shielded tank filled with water at 4/sup 0/C were measured in the vicinity of a large cliff. A motion was observed in a direction nearly perpendicular to, and directed away from, the face of the cliff. Conventional explanations for this effect have not been found. The observation is consistent with the existence of a weak, non-Newtonian, substance dependent, medium range force of a magnitude compatible with results deduced from gravity measurements as a function of depth in mines and with conclusions reached in a recent reanalysis of the Eoetvoes experiment. Further measurements with different elements and in different geometries will be required to establish definitely the existence, source, and description of such a new force.

  19. Archimedes force on Casimir apparatus

    NASA Astrophysics Data System (ADS)

    Shevchenko, Vladimir; Shevrin, Efim

    2016-08-01

    This paper addresses a problem of Casimir apparatus in dense medium, put in weak gravitational field. The falling of the apparatus has to be governed by the equivalence principle with proper account for contributions to the weight of the apparatus from its material part and from distorted quantum fields. We discuss general expression for the corresponding force in metric with cylindrical symmetry. By way of example, we compute explicit expression for Archimedes force, acting on the Casimir apparatus of finite size, immersed into thermal bath of free scalar field. It is shown that besides universal term, proportional to the volume of the apparatus, there are non-universal quantum corrections, depending on the boundary conditions.

  20. Physicists' Forced Migrations under Hitler

    NASA Astrophysics Data System (ADS)

    Beyerchen, Alan

    2011-03-01

    When the Nazis came to power in early 1933 they initiated formal and informal measures that forced Jews and political opponents from public institutions such as universities. Some physicists retired and others went into industry, but most emigrated. International communication and contact made emigration a viable option despite the desperate economic times in the Great Depression. Another wave of emigrations followed the annexation of Austria in 1938. Individual cases as well as general patterns of migration and adaptation to new environments will be examined in this presentation. One important result of the forced migrations was that many of the physicists expelled under Hitler played important roles in strengthening physics elsewhere, often on the Allied side in World War II.

  1. Nuclear Force from String Theory

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji

    2010-04-01

    Recent "technology" called holography, or gauge/string duality (AdS/CFT correspondence) found in string theory, makes it possible to compute various quantities of strongly coupled gauge theories. This technology was applied to QCD, and it was found that it describes surprisingly well important properties of low energy QCD, the hadron physics. We apply it further to nuclear physics. In this talk, I review a part of the developments of the holographic QCD, and show a computation of nuclear force at short distance, derived using the holographic QCD, which was done in collaboration with T. Sakai and S. Sugimoto [K. Hashimoto, T. Sakai, and S. Sugimoto, "Holographic Baryons: Static Properties and Form Factors from Gauge/String Duality," Prog. Theor. Phys. 120 (2008) 1093-1137, arXiv:0806.3122 [hep-th]; K. Hashimoto, T. Sakai, and S. Sugimoto, "Nuclear Force from String Theory," arXiv:0901.4449 [hep-th

  2. Mechanical Forces Governing Tissue Dynamics

    NASA Astrophysics Data System (ADS)

    Edwards, Glenn

    2002-10-01

    We have refined a UV-laser microbeam to investigate the forces at play during morphogenesis, i.e. early biological development, in the fruit fly Drosophila (1). While the microbeam typically is used to ablate tissue with cellular spatial resolution, it has the capability for submicron and thus subcellular spatial resolution. The microbeam can be steered in two-dimensions and UV-laser dissection occurred in vivo while the tissue was imaged in real time using a (visible) laser-scanning confocal microscope. We investigated a morphogenic process, known as dorsal closure, in a genetically engineered strain of Drosophila where green fluorescent protein has been fused to a fragment of a native structural protein (2). This allowed us to visualize the fluorescing contours of two opposing, outer sheets of tissue closing over an inner tissue sheet. Time-lapse imaging captured the contours in native closure as well as in response to UV-laser dissection. Specific patterns of dissection essentially eliminated a selected force: by tracking the changes in contour geometry we estimated the relative magnitude of that force (mechanical jump). Using this approach we identified and characterized a set of forces governing tissue dynamics. We have developed a mechanical model for the dynamics of dorsal closure based on this data set. This model provides a theoretical framework for investigating defective closure in mutant flies. Dorsal closure is a model system for various aspects of cell movement in wound healing and vertebrate development. This research has been supported by the DoD MFEL Program as administered by the AFOSR and by the NIH. 1. M.S. Hutson, Y. Tokutake, M-S. Chang, J.W. Bloor, S. Venakides, D.P. Kiehart, and G.S. Edwards. "Laser dissection of morphogenetic dynamics in Drosophila dorsal closure." In preparation. 2. D.P. Kiehart, et al, J. Cell Biol. 149, 471 (2000).

  3. Physics of Forced Unsteady Separation

    NASA Technical Reports Server (NTRS)

    Carr, Lawrence W. (Editor)

    1992-01-01

    This report contains the proceedings of a workshop held at NASA Ames Research Center in April 1990. This workshop was jointly organized by NASA, the Air Force Office of Scientific Research (AFOSR), and the Army Research Office (ARO), and was directed toward improved understanding of the physical processes that cause unsteady separation to occur. The proceedings contain the written contributions for the workshop, and include selected viewgraphs used in the various presentations.

  4. The Falsification of Nuclear Forces

    NASA Astrophysics Data System (ADS)

    Navarro Perez, R.; Amaro, J. E.; Ruiz Arriola, E.

    2016-03-01

    We review our work on the statistical uncertainty analysis of the NN force. This is based on the Granada-2013 database where a statistically meaningful partial wave analysis comprising a total of 6713 np and pp published scattering data from 1950 till 2013 below pion production threshold has been made. We stress the necessary conditions required for a correct and self-consistent statistical interpretation of the discrepancies between theory and experiment which enable a subsequent statistical error propagation and correlation analysis

  5. Forced wetting and hydrodynamic assist

    NASA Astrophysics Data System (ADS)

    Blake, Terence D.; Fernandez-Toledano, Juan-Carlos; Doyen, Guillaume; De Coninck, Joël

    2015-11-01

    Wetting is a prerequisite for coating a uniform layer of liquid onto a solid. Wetting failure and air entrainment set the ultimate limit to coating speed. It is well known in the coating art that this limit can be postponed by manipulating the coating flow to generate what has been termed "hydrodynamic assist," but the underlying mechanism is unclear. Experiments have shown that the conditions that postpone air entrainment also reduce the apparent dynamic contact angle, suggesting a direct link, but how the flow might affect the contact angle remains to be established. Here, we use molecular dynamics to compare the outcome of steady forced wetting with previous results for the spontaneous spreading of liquid drops and apply the molecular-kinetic theory of dynamic wetting to rationalize our findings and place them on a quantitative footing. The forced wetting simulations reveal significant slip at the solid-liquid interface and details of the flow immediately adjacent to the moving contact line. Our results confirm that the local, microscopic contact angle is dependent not simply only on the velocity of wetting but also on the nature of the flow that drives it. In particular, they support an earlier suggestion that during forced wetting, an intense shear stress in the vicinity of the contact line can assist surface tension forces in promoting dynamic wetting, thus reducing the velocity-dependence of the contact angle. Hydrodynamic assist then appears as a natural consequence of wetting that emerges when the contact line is driven by a strong and highly confined flow. Our theoretical approach also provides a self-consistent model of molecular slip at the solid-liquid interface that enables its magnitude to be estimated from dynamic contact angle measurements. In addition, the model predicts how hydrodynamic assist and slip may be influenced by liquid viscosity and solid-liquid interactions.

  6. Force sensitivity of plant gravisensing

    NASA Astrophysics Data System (ADS)

    Laurinavičius, R.; Švegždien≐, D.; Gaina, V.

    Rotation at 4, 10, 50 and 100 rpm on a horizontal clinostat and in microgravity exerts limited effects on the morphogenesis of lettuce and cress root statocytes and statoliths if compared with the vertical control or 1 g spaceflight reference centrifuge. However, the average distance of statoliths from the distal wall increases. The pattern of plastid location of microgravity-grown and that of clino-rotated samples has been determined at 10, 50, and 100 rpm. Experiments on the centrifuge-clinostat and spaceflight centrifuge (acceleration forces of 0.005 to 1 g) revealed that the average statolith location depends on the amplitude of acropetally or basipetally directed mass acceleration. Decreasing the acropetally directed force from 1 g to 0.4 g dislocates statoliths towards the cell center possibly mediated by the elastic forces of the cytoskeleton. In statocytes formed on the clinostat or in microgravity, the majority of statoliths are located at the center of the cell. To force the statoliths from the center of the statocyte towards one of its poles, a threshold mass acceleration of 0.01 g is required. Statocytes with centrally-located statoliths are considerably more effective in transducing a gravistimulus than those with distally-located plastids. The latent time of the graviresponse is shorter and the response itself is enhanced in roots grown on the clinostat compared to vertically grown samples. The early phases of graviperception are independent of root growth conditions since presentation time and g-threshold are similar for roots grown stationary and those on a clinostat. We propose a sequence of events in gravitropic stimulation that considers not only the lateral displacement of statoliths, as predicted by the starch-statolith hypothesis, but also its longitudinal motion, together with differential gravisensitivity of mechanotransducing structures along the lower-most longitudinal cell wall.

  7. Torsional Oscillations with Lorentz Force

    ERIC Educational Resources Information Center

    Gluck, Paul

    2007-01-01

    We have built a device that uses the Lorentz force on a current-carrying wire situated in a magnetic field, F = I L x B, in order to demonstrate a slowly varying alternating current by means of an optical lever. The apparatus consists of a horseshoe magnet, a length of thin enamel-coated wire (ours was 0.3 mm thick), a signal generator, a…

  8. Nanorheology by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Li, Tai-De; Chiu, Hsiang-Chih; Ortiz-Young, Deborah; Riedo, Elisa

    2014-12-01

    We present an Atomic Force Microscopy (AFM) based method to investigate the rheological properties of liquids confined within a nanosize gap formed by an AFM tip apex and a solid substrate. In this method, a conventional AFM cantilever is sheared parallel to a substrate surface by means of a lock-in amplifier while it is approaching and retracting from the substrate in liquid. The normal solvation forces and lateral viscoelastic shear forces experienced by the AFM tip in liquid can be simultaneously measured as a function of the tip-substrate distance with sub-nanometer vertical resolution. A new calibration method is applied to compensate for the linear drift of the piezo transducer and substrate system, leading to a more precise determination of the tip-substrate distance. By monitoring the phase lag between the driving signal and the cantilever response in liquid, the frequency dependent viscoelastic properties of the confined liquid can also be derived. Finally, we discuss the results obtained with this technique from different liquid-solid interfaces. Namely, octamethylcyclotetrasiloxane and water on mica and highly oriented pyrolytic graphite.

  9. Nanorheology by atomic force microscopy.

    PubMed

    Li, Tai-De; Chiu, Hsiang-Chih; Ortiz-Young, Deborah; Riedo, Elisa

    2014-12-01

    We present an Atomic Force Microscopy (AFM) based method to investigate the rheological properties of liquids confined within a nanosize gap formed by an AFM tip apex and a solid substrate. In this method, a conventional AFM cantilever is sheared parallel to a substrate surface by means of a lock-in amplifier while it is approaching and retracting from the substrate in liquid. The normal solvation forces and lateral viscoelastic shear forces experienced by the AFM tip in liquid can be simultaneously measured as a function of the tip-substrate distance with sub-nanometer vertical resolution. A new calibration method is applied to compensate for the linear drift of the piezo transducer and substrate system, leading to a more precise determination of the tip-substrate distance. By monitoring the phase lag between the driving signal and the cantilever response in liquid, the frequency dependent viscoelastic properties of the confined liquid can also be derived. Finally, we discuss the results obtained with this technique from different liquid-solid interfaces. Namely, octamethylcyclotetrasiloxane and water on mica and highly oriented pyrolytic graphite. PMID:25554301

  10. Nanorheology by atomic force microscopy.

    PubMed

    Li, Tai-De; Chiu, Hsiang-Chih; Ortiz-Young, Deborah; Riedo, Elisa

    2014-12-01

    We present an Atomic Force Microscopy (AFM) based method to investigate the rheological properties of liquids confined within a nanosize gap formed by an AFM tip apex and a solid substrate. In this method, a conventional AFM cantilever is sheared parallel to a substrate surface by means of a lock-in amplifier while it is approaching and retracting from the substrate in liquid. The normal solvation forces and lateral viscoelastic shear forces experienced by the AFM tip in liquid can be simultaneously measured as a function of the tip-substrate distance with sub-nanometer vertical resolution. A new calibration method is applied to compensate for the linear drift of the piezo transducer and substrate system, leading to a more precise determination of the tip-substrate distance. By monitoring the phase lag between the driving signal and the cantilever response in liquid, the frequency dependent viscoelastic properties of the confined liquid can also be derived. Finally, we discuss the results obtained with this technique from different liquid-solid interfaces. Namely, octamethylcyclotetrasiloxane and water on mica and highly oriented pyrolytic graphite.

  11. Volcanic forcing in decadal forecasts

    NASA Astrophysics Data System (ADS)

    Ménégoz, Martin; Doblas-Reyes, Francisco; Guemas, Virginie; Asif, Muhammad; Prodhomme, chloe

    2016-04-01

    Volcanic eruptions can significantly impact the climate system, by injecting large amounts of particles into the stratosphere. By reflecting backward the solar radiation, these particles cool the troposphere, and by absorbing the longwave radiation, they warm the stratosphere. As a consequence of this radiative forcing, the global mean surface temperature can decrease by several tenths of degrees. However, large eruptions are also associated to a complex dynamical response of the climate system that is particularly tricky do understand regarding the low number of available observations. Observations seem to show an increase of the positive phases of the Northern Atlantic Oscillation (NAO) the two winters following large eruptions, associated to positive temperature anomalies over the Eurasian continent. The summers following large eruptions are generally particularly cold, especially over the continents of the Northern Hemisphere. Overall, it is really challenging to forecast the climate response to large eruptions, as it is both modulated by, and superimposed to the climate background conditions, largely driven themselves by internal variability at seasonal to decadal scales. This work describes the additional skill of a forecast system used for seasonal and decadal predictions when it includes observed volcanic forcing over the last decades. An idealized volcanic forcing that could be used for real-time forecasts is also evaluated. This work consists in a base for forecasts that will be performed in the context of the next large volcanic eruption.

  12. Nanorheology by atomic force microscopy

    SciTech Connect

    Li, Tai-De; Chiu, Hsiang-Chih; Ortiz-Young, Deborah; Riedo, Elisa

    2014-12-15

    We present an Atomic Force Microscopy (AFM) based method to investigate the rheological properties of liquids confined within a nanosize gap formed by an AFM tip apex and a solid substrate. In this method, a conventional AFM cantilever is sheared parallel to a substrate surface by means of a lock-in amplifier while it is approaching and retracting from the substrate in liquid. The normal solvation forces and lateral viscoelastic shear forces experienced by the AFM tip in liquid can be simultaneously measured as a function of the tip-substrate distance with sub-nanometer vertical resolution. A new calibration method is applied to compensate for the linear drift of the piezo transducer and substrate system, leading to a more precise determination of the tip-substrate distance. By monitoring the phase lag between the driving signal and the cantilever response in liquid, the frequency dependent viscoelastic properties of the confined liquid can also be derived. Finally, we discuss the results obtained with this technique from different liquid-solid interfaces. Namely, octamethylcyclotetrasiloxane and water on mica and highly oriented pyrolytic graphite.

  13. 78 FR 49484 - Exchange of Air Force Real Property for Non-Air Force Real Property

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... Department of Air Force Exchange of Air Force Real Property for Non-Air Force Real Property SUMMARY: Notice identifies excess Federal real property under administrative jurisdiction of the United States Air Force it... under the administrative jurisdiction of the Air Force. FOR FURTHER INFORMATION CONTACT: Mr....

  14. Multistage Force Amplification of Piezoelectric Stacks

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Zuo, Lei (Inventor); Jiang, Xiaoning (Inventor); Kang, Jin Ho (Inventor)

    2015-01-01

    Embodiments of the disclosure include an apparatus and methods for using a piezoelectric device, that includes an outer flextensional casing, a first cell and a last cell serially coupled to each other and coupled to the outer flextensional casing such that each cell having a flextensional cell structure and each cell receives an input force and provides an output force that is amplified based on the input force. The apparatus further includes a piezoelectric stack coupled to each cell such that the piezoelectric stack of each cell provides piezoelectric energy based on the output force for each cell. Further, the last cell receives an input force that is the output force from the first cell and the last cell provides an output apparatus force In addition, the piezoelectric energy harvested is based on the output apparatus force. Moreover, the apparatus provides displacement based on the output apparatus force.

  15. Optical Forces on Metastable Helium

    NASA Astrophysics Data System (ADS)

    Corder, Christopher Scott

    Optical forces using lasers allow precise control over the motion of atoms. The bichromatic optical force (BF) is unique in its large magnitude and velocity range, arising from the absorption and stimulated emission processes. These properties were used to transversely collimate a beam of metastable helium (He*) using the 23S - 23P transition. The collimation created a very bright beam of He*, allowing experiments of neutral atom lithography. The He* beam was used to pattern material surfaces using a resist-based lithography technique, where the pattern was determined by either mechanical or optical masks. The optical masks produced features with a separation of half the wavelength of the light used. Patterning was successfully demonstrated with both IR and UV optical masks. The etched pattern resolution was ˜ 100 nm and limited by the material surface. Further experiments were performed studying the ability of the bichromatic force to cool. The finite velocity range of the BF allows estimation of a characteristic cooling time which is independent of the excited state lifetime, only depending on the atomic mass and optical transition energy. Past experiments, including the helium collimation used for neutral atom lithography, have demonstrated that the BF can collimate and longitudinally slow atomic beams, but required long interaction times that included many spontaneous emission (SE) events. The effect of SE can be mitigated, and is predicted to not be necessary for BF cooling. Since the BF cooling time is not related to the excited state lifetime, a transition can be chosen such that the cooling time is shorter than the SE cycle time, allowing direct laser cooling on atoms and molecules that do not have cycling transitions. Experiments using the helium 2 3S-3P transition were chosen because the BF cooling time (285 ns) is on the order of the average SE cycle time (260 ns). Numerical simulations of the experimental system were run predicting compression of the

  16. Kelvin probe force microscopy in liquid using electrochemical force microscopy

    PubMed Central

    Collins, Liam; Jesse, Stephen; Kilpatrick, Jason I; Tselev, Alexander; Okatan, M Baris; Kalinin, Sergei V

    2015-01-01

    Summary Conventional closed loop-Kelvin probe force microscopy (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid–gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe–sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present). Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q water and aqueous NaCl) and ionically-inactive (non-polar decane) liquids by electrochemical force microscopy (EcFM), a multidimensional (i.e., bias- and time-resolved) spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids), KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD) values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions). EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface. PMID:25671164

  17. Kelvin probe force microscopy in liquid using electrochemical force microscopy.

    PubMed

    Collins, Liam; Jesse, Stephen; Kilpatrick, Jason I; Tselev, Alexander; Okatan, M Baris; Kalinin, Sergei V; Rodriguez, Brian J

    2015-01-01

    Conventional closed loop-Kelvin probe force microscopy (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid-gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid-liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe-sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present). Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q water and aqueous NaCl) and ionically-inactive (non-polar decane) liquids by electrochemical force microscopy (EcFM), a multidimensional (i.e., bias- and time-resolved) spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids), KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD) values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions). EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid-liquid interface.

  18. Kelvin Probe Force Microscopy in liquid using Electrochemical Force Microscopy

    SciTech Connect

    Collins, Liam; Jesse, Stephen; Kilpatrick, J.; Tselev, Alexander; Okatan, Mahmut Baris; Kalinin, Sergei V.; Rodriguez, Brian

    2015-01-01

    Conventional closed loop-Kelvin probe force microscopy (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid-gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe-sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present). Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q water and aqueous NaCl) and ionically-inactive (non-polar decane) liquids by electrochemical force microscopy (EcFM), a multidimensional (i.e., bias- and time-resolved) spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids), KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD) values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions). EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.

  19. Kelvin Probe Force Microscopy in liquid using Electrochemical Force Microscopy

    DOE PAGES

    Collins, Liam; Jesse, Stephen; Kilpatrick, J.; Tselev, Alexander; Okatan, Mahmut Baris; Kalinin, Sergei V.; Rodriguez, Brian

    2015-01-01

    Conventional closed loop-Kelvin probe force microscopy (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid-gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe-sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present). Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q watermore » and aqueous NaCl) and ionically-inactive (non-polar decane) liquids by electrochemical force microscopy (EcFM), a multidimensional (i.e., bias- and time-resolved) spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids), KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD) values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions). EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.« less

  20. Micromachined piconewton force sensor for biophysics investigations

    NASA Astrophysics Data System (ADS)

    Koch, Steven J.; Thayer, Gayle E.; Corwin, Alex D.; de Boer, Maarten P.

    2006-10-01

    The authors describe a micromachined force sensor that is able to measure forces as small as 1pN in both air and water. First, they measured the force field produced by an electromagnet on individual 2.8μm magnetic beads glued to the sensor. By repeating with 11 different beads, they measured a 9% standard deviation in saturation magnetization. They next demonstrated that the sensor was fully functional when immersed in physiological buffer. These results show that the force sensors can be useful for magnetic force calibration and also for measurement of biophysical forces on chip.

  1. Micromachined piconewton force sensor for biophysics investigations

    SciTech Connect

    Koch, Steven J.; Thayer, Gayle E.; Corwin, Alex D.; Boer, Maarten P. de

    2006-10-23

    We describe a micromachined force sensor that is able to measure forces as small as 1 pN in both air and water. First, we measured the force field produced by an electromagnet on individual 2.8 {mu}m magnetic beads glued to the sensor. By repeating with 11 different beads, we measured a 9% standard deviation in saturation magnetization. We next demonstrated that the sensor was fully functional when immersed in physiological buffer. These results show that the force sensors can be useful for magnetic force calibration and also for measurement of biophysical forces on chip.

  2. Genetically encoded force sensors for measuring mechanical forces in proteins

    PubMed Central

    Wang, Yuexiu; Sachs, Frederick

    2011-01-01

    There are three sources of free energy for cells: chemical potential, electrical potential and mechanical potential. There is little known about the last one since there have not been simple ways to measure stress in proteins in cells. we have now developed genetically encoded force sensors to assess the stress in fibrous proteins in living cells. These FReT based fluorescence sensors can be read out at video rates and provide real time maps of the stress distribution in cells, tissues and animals. The sensors can be inserted into specific proteins and in general do not disturb the normal function or anatomy. The original sensors used mutant GFPs linked by elastic linkers. These sensors provide a linear output with applied stress but the response is linear in strain. To improve contrast and dynamic range we have now developed a new class of sensors that are smaller making them less invasive, and have much higher intrinsic sensitivity since force modulates the angle between the donor and acceptor much more than the distance between them. Known as cpstFRET, the probe shows improved biocompatibility, wider dynamic range and higher sensitivity. PMID:21966553

  3. 80 FR 27688 - Make-Up Meetings of the Community Preventive Services Task Force (Task Force)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2015-05-14

    ... of systematic reviews on existing research, and issues recommendations. Task Force recommendations... jurisdictions and constituents. The Task Force's recommendations, along with the systematic reviews of the... Force to consider the findings of systematic reviews and issue findings and recommendations. Task...

  4. Thermal cues and the perception of force.

    PubMed

    Galie, Jessica; Jones, Lynette A

    2010-01-01

    Two experiments were conducted to examine the effect of temperature on force perception. The objective of the first experiment was to quantify the change in skin temperature of the finger as a function of contact force, in order to characterize how much temperature changes under normal contact conditions. The decrease in temperature ranged from 2.3 to 4.2 degrees C as the force increased from 0.1 to 6 N, averaging 3.2 degrees C across the nine force levels studied. The changes in temperature as a function of force were well above threshold, which suggests that thermal cues could be used to discriminate between contact forces if other sources of sensory information were absent. The second experiment examined whether the perceived magnitude of forces (1-8 N) generated by the index finger changed as a function of the temperature of the contact surface against which the force was produced. A contralateral force-matching procedure was used to evaluate force perception. The results indicated that the perceived magnitude of finger forces did not change as a function of the temperature of the reference contact surface which varied from 22 to 38 degrees C. These results provide further support for the centrally generated theory of force perception and indicate that the thermal intensification of tactually perceived weight does not occur when forces are actively generated.

  5. Factors Affecting Aerosol Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Wang, Jingxu; Lin, Jintai; Ni, Ruijing

    2016-04-01

    Rapid industrial and economic growth has meant a large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RF of aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissions per unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size. South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions, its aerosol RF is alleviated by its lowest chemical efficiency. The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is lowered by a small per capita GDP. Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The

  6. Super Unification of All Forces

    NASA Astrophysics Data System (ADS)

    Bacinich, Edward J.

    2003-06-01

    The annihilation of Planck and anti-Planck mass is paramount in explaining the Big-Bang. This total release of primordial energy in the form of electromagnetic-like radiation through `nothing' offers a model similar to the standard model of a Riemannian hypersphere. Our model however would expand radiantly outward from time zero in the form of a hyper-wave which would carry the total energy of the Big-Bang with it. By using this wave concept and the Planck force (FPL) inherent in the quantum vacuum, it is possible to explain the space-time geometry of our universe and complete unification.

  7. Citizen groups: a creative force

    SciTech Connect

    Stoel, T.

    1981-02-01

    The role of citizen groups is as important as that of government agencies when it comes to environmental policy in a democracy. These groups spend little money, yet they have initiated the major US environmental legislation of the past two decades. They are a recent, but effective, force in developing countries even though adversarial approaches are not often appropriate. The methods used by US environmental groups range from lobbying to confrontation in court. Groups outside the US tend to use consensus in democracies and information gathering in developing countries. While the groups' primary concerns are national in scope, international awareness and cooperation are growing. (DCK)

  8. Dynamic force microscopy in liquids

    NASA Astrophysics Data System (ADS)

    Dreier, M.; Anselmetti, D.; Richmond, T.; Dammer, U.; Guentherodt, H.-J.

    1994-11-01

    We applied dynamic force microscopy in a liquid environment to silanized and derivatized glass surfaces, InGaAs, as well as to biological materials such as hexagonally packed intermediate layers of deinococcus radiodurans. The vertical and lateral resolution were estimated to be less than 1 A and 7 - 10 nm, respectively. Upon immersing the cantilever into water, the resonance frequency was found to be reduced by a factor of two and the Q factor was lowered to 20 - 30. The experimental working distance between sensor and sample was determined with approach curves indicating that the range of interaction in water is much shorter compared to air.

  9. Glacial cycles and astronomical forcing

    SciTech Connect

    Muller, R.A.; MacDonald, G.J.

    1997-07-11

    Narrow spectral features in ocean sediment records offer strong evidence that the cycles of glaciation were driven by astronomical forces. Two million years ago, the cycles match the 41,000-year period of Earth`s obliquity. This supports the Croll/Milankovitch theory, which attributes the cycles to variations in insolation. But for the past million years, the spectrum is dominated by a single 100,000-year feature and is a poor match to the predictions of insolation models. The spectrum can be accounted for by a theory that derives the cycles of glaciation from variations in the inclination of Earth`s orbital plane.

  10. Gauge unification of fundamental forces

    NASA Astrophysics Data System (ADS)

    Salam, Abdus

    The following sections are included: * I. Fundamental Particles, Fundamental Forces, and Gauge Unification * II. The Emergence of Spontaneously Broken SU(2)×U(1) Gauge Theory * III. The Present and Its Problems * IV. Direct Extrapolation from the Electroweak to the Electronuclear * A. The three ideas * B. Tests of electronuclear grand unification * V. Elementarity: Unification with Gravity and Nature of Charge * A. The quest for elementarity, prequarks (preons and pre-preons * B. Post-Planck physics, supergravity, and Einstein's dreams * C. Extended supergravity, SU(8) preons, and composite gauge fields * Appendix A: Examples of Grand Unifying Groups * Appendix B: Does the Grand Plateau really exist * References

  11. General Aviation Task Force report

    NASA Technical Reports Server (NTRS)

    1993-01-01

    General aviation is officially defined as all aviation except scheduled airlines and the military. It is the only air transportation to many communities throughout the world. In order to reverse the recent decline in general aviation aircraft produced in the United States, the Task Force recommends that NASA provide the expertise and facilities such as wind tunnels and computer codes for aircraft design. General aviation manufacturers are receptive to NASA's innovations and technological leadership and are expected to be effective users of NASA-generated technologies.

  12. U.S. Preventive Services Task Force

    MedlinePlus

    ... USPSTF Our Members Conflict of Interest Disclosures Task Force 101 Resources Our Partners Reports to Congress Contact ... effort to make the U.S. Preventive Services Task Force (USPSTF) recommendations clearer and its processes more transparent, ...

  13. The Fourth Force in Nature. Part I

    ERIC Educational Resources Information Center

    Marshak, R. E.

    1971-01-01

    The properties of the weak force between the subatomic particles is described. The weak force is observed in the form of nuclear beta radioactivity. Applications are given to terrestrial and extraterrestrial phenomena. (TS)

  14. Dynamic Force Measurement with Strain Gauges

    ERIC Educational Resources Information Center

    Lee, Bruce E.

    1974-01-01

    Discusses the use of four strain gauges, a Wheatstone bridge, and an oscilloscope to measure forces dynamically. Included is an example of determining the centripetal force of a pendulum in a general physics laboratory. (CC)

  15. A Simple Apparatus for Electrostatic Force Measurement.

    ERIC Educational Resources Information Center

    Hale, D. P.

    1981-01-01

    Describes the construction of an apparatus that demonstrates that electrostatic forces can be large and also gives some idea of dependence of electrostatic forces between charged parallel discs on potential differences and separation. (CS)

  16. Down force calibration stand test report

    SciTech Connect

    BOGER, R.M.

    1999-08-13

    The Down Force Calibration Stand was developed to provide an improved means of calibrating equipment used to apply, display and record Core Sample Truck (CST) down force. Originally, four springs were used in parallel to provide a system of resistance that allowed increasing force over increasing displacement. This spring system, though originally deemed adequate, was eventually found to be unstable laterally. For this reason, it was determined that a new method for resisting down force was needed.

  17. Grasp force sensor for robotic hands

    NASA Technical Reports Server (NTRS)

    Scheinman, Victor D. (Inventor); Bejczy, Antal K. (Inventor); Primus, Howard C. (Inventor)

    1989-01-01

    A grasp force sensor for robotic hands is disclosed. A flexible block is located in the base of each claw through which the grasp force is exerted. The block yields minute parallelogram deflection when the claws are subjected to grasping forces. A parallelogram deflection closely resembles pure translational deflection, whereby the claws remain in substantial alignment with each other during grasping. Strain gauge transducers supply signals which provide precise knowledge of and control over grasp forces.

  18. Mammography compression force in New Zealand.

    PubMed

    Poletti, J L

    1994-06-01

    Maximum compression forces have been measured in New Zealand on 37 mammography machines, using a simple hydraulic device. The median measured maximum force was 145 N, and the range 58 to 230 N. Much greater attention needs to be paid to the setting of maximum force for compression devices by service personnel. Compression devices must be included in the quality assurance programme. Where indicated by the machine, the accuracy of the indicated force for some machines is poor. PMID:8074619

  19. Force user's manual: A portable, parallel FORTRAN

    NASA Technical Reports Server (NTRS)

    Jordan, Harry F.; Benten, Muhammad S.; Arenstorf, Norbert S.; Ramanan, Aruna V.

    1990-01-01

    The use of Force, a parallel, portable FORTRAN on shared memory parallel computers is described. Force simplifies writing code for parallel computers and, once the parallel code is written, it is easily ported to computers on which Force is installed. Although Force is nearly the same for all computers, specific details are included for the Cray-2, Cray-YMP, Convex 220, Flex/32, Encore, Sequent, Alliant computers on which it is installed.

  20. Repulsive Casimir Force using metamaterials

    NASA Astrophysics Data System (ADS)

    Pappakrishnan, Venkatesh K.; Mundru, Pattabhiraju C.; Genov, Dentcho A.

    We investigate conditions for Casimir Force (CF) reversal between two parallel half-space metamaterial plates separated by air or vacuum at ambient temperatures. Practically, the Casimir effect can lead to stiction in nanoscale devices, degradation and decreased performance. While material realizations of repulsive CF has been proposed for high dielectric host materials, so far the CF reversal with air/vacuum as intermediate medium remain challenging. Here, we propose a two plate design based on artificial electromagnetic materials known as metamaterials. This configuration allows a simple analytical treatment that accurately describes the large and short distance asymptotics of CF and allows extraction of important parameters such as lower and upper cutoff gap distances that define the repulsive force window. A parametric study has been performed in terms of the plate's dielectric and magnetic plasma frequencies, plate separation distance and temperature. The parametric domain for achieving CF reversal is identified. If successfully implemented the proposed design could potentially result in frictionless bio-fluid transport devices, quantum levitation and coating for ultra-clean room environment.

  1. Vegetation forcing and convective motion

    SciTech Connect

    Hong, X.; Leach, M.J.; Raman, S.

    1995-04-01

    A large irrigated vegetation area in a semiarid or relatively dry location is a strong surface forcing of thermal circulations. Several observational studies have found that such thermally induced mesoscale circulation may contribute to the triggering and development of convective clouds. In the western United States, extensive areas of irrigated farmland are surrounded by hot, dry surfaces, such as a steppe. Substantial gradients of sensible heating in the horizontal direction lead to a {open_quotes}farm breeze{close_quotes} circulation from the cooler agricultural area to the warmer steppes found at Boardman, Oregon. These thermally forced circulations may trigger convection by the related convergence and updraft motion under favorable atmospheric conditions. The role of vegetative covering in convective motion is investigated using a mesoscale numerical model. Two- and three-dimensional simulations are described. The effects of atmospheric stability, moisture in the lower atmosphere, moisture in the upper atmosphere, and horizontal heating scale on thermally induced clouds are studied. The horizontal scale of inhomogeneity is also studied using the two-dimensional model. Finally, a realistic vegetation distribution similar to that of the Boardman Regional Flux Experiment is used in the three-dimensional simulations.

  2. Zero side force volute development

    NASA Technical Reports Server (NTRS)

    Anderson, P. G.; Franz, R. J.; Farmer, R. C.; Chen, Y. S.

    1995-01-01

    Collector scrolls on high performance centrifugal pumps are currently designed with methods which are based on very approximate flowfield models. Such design practices result in some volute configurations causing excessive side loads even at design flowrates. The purpose of this study was to develop and verify computational design tools which may be used to optimize volute configurations with respect to avoiding excessive loads on the bearings. The new design methodology consisted of a volute grid generation module and a computational fluid dynamics (CFD) module to describe the volute geometry and predict the radial forces for a given flow condition, respectively. Initially, the CFD module was used to predict the impeller and the volute flowfields simultaneously; however, the required computation time was found to be excessive for parametric design studies. A second computational procedure was developed which utilized an analytical impeller flowfield model and an ordinary differential equation to describe the impeller/volute coupling obtained from the literature, Adkins & Brennen (1988). The second procedure resulted in 20 to 30 fold increase in computational speed for an analysis. The volute design analysis was validated by postulating a volute geometry, constructing a volute to this configuration, and measuring the steady radial forces over a range of flow coefficients. Excellent agreement between model predictions and observed pump operation prove the computational impeller/volute pump model to be a valuable design tool. Further applications are recommended to fully establish the benefits of this new methodology.

  3. Optical forces in nanorod metamaterial

    PubMed Central

    Bogdanov, Andrey A.; Shalin, Alexander S.; Ginzburg, Pavel

    2015-01-01

    Optomechanical manipulation of micro and nano-scale objects with laser beams finds use in a large span of multidisciplinary applications. Auxiliary nanostructuring could substantially improve performances of classical optical tweezers by means of spatial localization of objects and intensity required for trapping. Here we investigate a three-dimensional nanorod metamaterial platform, serving as an auxiliary tool for the optical manipulation, able to support and control near-field interactions and generate both steep and flat optical potential profiles. It was shown that the ‘topological transition’ from the elliptic to hyperbolic dispersion regime of the metamaterial, usually having a significant impact on various light-matter interaction processes, does not strongly affect the distribution of optical forces in the metamaterial. This effect is explained by the predominant near-fields contributions of the nanostructure to optomechanical interactions. Semi-analytical model, approximating the finite size nanoparticle by a point dipole and neglecting the mutual re-scattering between the particle and nanorod array, was found to be in a good agreement with full-wave numerical simulation. In-plane (perpendicular to the rods) trapping regime, saddle equilibrium points and optical puling forces (directed along the rods towards the light source), acting on a particle situated inside or at the nearby the metamaterial, were found. PMID:26514667

  4. Static in situ calibration of force plates.

    PubMed

    Hall, M G; Fleming, H E; Dolan, M J; Millbank, S F; Paul, J P

    1996-05-01

    An in situ calibration protocol for ground-to-foot force measuring platforms is described. The methodology allows verification of the function of the force plate and allows accurate calibration for three force and moment channels. The effect of cross-sensitivity on recorded data is discussed along with the need for improvements in methodology to quantify this property.

  5. 77 FR 30875 - Armed Forces Day, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... Independence of the United States of America the two hundred and thirty-sixth. (Presidential Sig.) [FR Doc... Documents#0;#0; ] Proclamation 8823 of May 18, 2012 Armed Forces Day, 2012 By the President of the United... circumstances. On Armed Forces Day, we pay tribute to the unparalleled service of our Armed Forces and...

  6. 24 CFR 968.120 - Force account.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Force account. 968.120 Section 968... PUBLIC HOUSING MODERNIZATION General § 968.120 Force account. (a) For both CIAP and CGP, a PHA may undertake the activities using force account labor, only where specifically approved by HUD in the...

  7. 24 CFR 968.120 - Force account.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Force account. 968.120 Section 968... PUBLIC HOUSING MODERNIZATION General § 968.120 Force account. (a) For both CIAP and CGP, a PHA may undertake the activities using force account labor, only where specifically approved by HUD in the...

  8. Precipitation Response to Regional Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.; Voulgarakis, A.; Faluvegi, G.; Milly, G.

    2012-01-01

    Precipitation shifts can have large impacts on human society and ecosystems. Many aspects of how inhomogeneous radiative forcings influence precipitation remain unclear, however. Here we investigate regional precipitation responses to various forcings imposed in different latitude bands in a climate model. We find that several regions show strong, significant responses to most forcings, but that the magnitude and even the sign depends upon the forcing location and type. Aerosol and ozone forcings typically induce larger responses than equivalent carbon dioxide (CO2) forcing, and the influence of remote forcings often outweighs that of local forcings. Consistent with this, ozone and especially aerosols contribute greatly to precipitation changes over the Sahel and South and East Asia in historical simulations, and inclusion of aerosols greatly increases the agreement with observed trends in these areas, which cannot be attributed to either greenhouse gases or natural forcings. Estimates of precipitation responses derived from multiplying our Regional Precipitation Potentials (RPP; the response per unit forcing relationships) by historical forcings typically capture the actual response in full transient climate simulations fairly well, suggesting that these relationships may provide useful metrics. The strong sensitivity to aerosol and ozone forcing suggests that although some air quality improvements may unmask greenhouse gas-induced warming, they have large benefits for reducing regional disruption of the hydrologic cycle.

  9. Force Measurements in Vibration and Acoustic Tests

    NASA Technical Reports Server (NTRS)

    Scharton, T. D.

    1996-01-01

    The advent of triaxial, piezoelectric force gages and the associated signal processing is a precursor to several dynamics testing innovations. This new technology is applicable to spacecraft programs that JPL manages. An application of force measurement is force limiting (when testing spacecraft in random vibration tests). Base-drive and acoustic modal testing is a potential application.

  10. 24 CFR 968.120 - Force account.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Force account. 968.120 Section 968... PUBLIC HOUSING MODERNIZATION General § 968.120 Force account. (a) For both CIAP and CGP, a PHA may undertake the activities using force account labor, only where specifically approved by HUD in the...

  11. 24 CFR 968.120 - Force account.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Force account. 968.120 Section 968... PUBLIC HOUSING MODERNIZATION General § 968.120 Force account. (a) For both CIAP and CGP, a PHA may undertake the activities using force account labor, only where specifically approved by HUD in the...

  12. The Common Forces: Conservative or Nonconservative?

    ERIC Educational Resources Information Center

    Keeports, David

    2006-01-01

    Of the forces commonly encountered when solving problems in Newtonian mechanics, introductory texts usually limit illustrations of the definitions of conservative and nonconservative forces to gravity, spring forces, kinetic friction and fluid resistance. However, at the expense of very little class time, the question of whether each of the common…

  13. Atomic force microscopy measurements of intermolecular binding forces.

    PubMed

    Misevic, Gradimir N; Karamanos, Yannis; Misevic, Nikola J

    2009-01-01

    Atomic force microscopy (AFM) measurements of intermolecular binding strength between a single pair of complementary cell adhesion molecules in physiological solutions provided the first quantitative evidence for their cohesive function. This novel AFM-based nanobiotechnology opens a molecular mechanic approach for studying structure- to function-related properties of any type of individual biological macromolecules. The presented example of Porifera cell adhesion glyconectin proteoglycans showed that homotypic carbohydrate to carbohydrate interactions between two primordial proteoglycans can hold the weight of 1,600 cells. Thus, glyconectin type carbohydrates, as the most peripheral cell surface molecules of sponges (today's simplest living Metazoa), are proposed to be the primary cell adhesive molecules essential for the evolution of the multicellularity.

  14. Kinetic Ductility and Force-Spike Resistance of Proteins from Single-Molecule Force Spectroscopy.

    PubMed

    Cossio, Pilar; Hummer, Gerhard; Szabo, Attila

    2016-08-23

    Ductile materials can absorb spikes in mechanical force, whereas brittle ones fail catastrophically. Here we develop a theory to quantify the kinetic ductility of single molecules from force spectroscopy experiments, relating force-spike resistance to the differential responses of the intact protein and the unfolding transition state to an applied mechanical force. We introduce a class of unistable one-dimensional potential surfaces that encompass previous models as special cases and continuously cover the entire range from ductile to brittle. Compact analytic expressions for force-dependent rates and rupture-force distributions allow us to analyze force-clamp and force-ramp pulling experiments. We find that the force-transmitting protein domains of filamin and titin are kinetically ductile when pulled from their two termini, making them resistant to force spikes. For the mechanostable muscle protein titin, a highly ductile model reconciles data over 10 orders of magnitude in force loading rate from experiment and simulation.

  15. Kinetic Ductility and Force-Spike Resistance of Proteins from Single-Molecule Force Spectroscopy.

    PubMed

    Cossio, Pilar; Hummer, Gerhard; Szabo, Attila

    2016-08-23

    Ductile materials can absorb spikes in mechanical force, whereas brittle ones fail catastrophically. Here we develop a theory to quantify the kinetic ductility of single molecules from force spectroscopy experiments, relating force-spike resistance to the differential responses of the intact protein and the unfolding transition state to an applied mechanical force. We introduce a class of unistable one-dimensional potential surfaces that encompass previous models as special cases and continuously cover the entire range from ductile to brittle. Compact analytic expressions for force-dependent rates and rupture-force distributions allow us to analyze force-clamp and force-ramp pulling experiments. We find that the force-transmitting protein domains of filamin and titin are kinetically ductile when pulled from their two termini, making them resistant to force spikes. For the mechanostable muscle protein titin, a highly ductile model reconciles data over 10 orders of magnitude in force loading rate from experiment and simulation. PMID:27558726

  16. Variance Components in Discrete Force Production Tasks

    PubMed Central

    SKM, Varadhan; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2010-01-01

    The study addresses the relationships between task parameters and two components of variance, “good” and “bad”, during multi-finger accurate force production. The variance components are defined in the space of commands to the fingers (finger modes) and refer to variance that does (“bad”) and does not (“good”) affect total force. Based on an earlier study of cyclic force production, we hypothesized that speeding-up an accurate force production task would be accompanied by a drop in the regression coefficient linking the “bad” variance and force rate such that variance of the total force remains largely unaffected. We also explored changes in parameters of anticipatory synergy adjustments with speeding-up the task. The subjects produced accurate ramps of total force over different times and in different directions (force-up and force-down) while pressing with the four fingers of the right hand on individual force sensors. The two variance components were quantified, and their normalized difference was used as an index of a total force stabilizing synergy. “Good” variance scaled linearly with force magnitude and did not depend on force rate. “Bad” variance scaled linearly with force rate within each task, and the scaling coefficient did not change across tasks with different ramp times. As a result, a drop in force ramp time was associated with an increase in total force variance, unlike the results of the study of cyclic tasks. The synergy index dropped 100-200 ms prior to the first visible signs of force change. The timing and magnitude of these anticipatory synergy adjustments did not depend on the ramp time. Analysis of the data within an earlier model has shown adjustments in the variance of a timing parameter, although these adjustments were not as pronounced as in the earlier study of cyclic force production. Overall, we observed qualitative differences between the discrete and cyclic force production tasks: Speeding-up the cyclic

  17. Enslaving in a serial chain: interactions between grip force and hand force in isometric tasks.

    PubMed

    Paclet, Florent; Ambike, Satyajit; Zatsiorsky, Vladimir M; Latash, Mark L

    2014-03-01

    This study was motivated by the double action of extrinsic hand muscles that produce grip force and also contribute to wrist torque. We explored interactions between grip force and wrist torque in isometric force production tasks. In particular, we tested a hypothesis that an intentional change in one of the two kinetic variables would produce an unintentional change in the other (enslaving). When young healthy subjects produced accurate changes in the grip force, only minor effects on the force produced by the hand (by wrist flexion/extension action) were observed. In contrast, a change in the hand force produced consistent changes in grip force in the same direction. The magnitude of such unintentional grip force change was stronger for intentional hand force decrease as compared to hand force increase. These effects increased with the magnitude of the initial grip force. When the subjects were asked to produce accurate total force computed as the sum of the hand and grip forces, strong negative covariation between the two forces was seen across trials interpreted as a synergy stabilizing the total force. An index of this synergy was higher in the space of "modes," hypothetical signals to the two effectors that could be changed by the controller one at a time. We interpret the complex enslaving effects (positive force covariation) as conditioned by typical everyday tasks. The presence of synergic effects (negative, task-specific force covariation) can be naturally interpreted within the referent configuration hypothesis. PMID:24309747

  18. Enslaving in a serial chain: Interactions between grip force and hand force in isometric tasks

    PubMed Central

    Paclet, Florent; Ambike, Satyajit; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2014-01-01

    This study was motivated by the double action of extrinsic hand muscles that produce grip force and also contribute to wrist torque. We explored interactions between grip force and wrist torque in isometric force production tasks. In particular, we tested a hypothesis that an intentional change in one of the two kinetic variables would produce an unintentional change in the other (enslaving). When young healthy subjects produced accurate changes in the grip force, only minor effects on the force produced by the hand (by wrist flexion/extension action) were observed. In contrast, a change in the hand force produced consistent changes in grip force in the same direction. The magnitude of such unintentional grip force change was stronger for intentional hand force decrease as compared to hand force increase. These effects increased with the magnitude of the initial grip force. When the subjects were asked to produce accurate total force computed as the sum of the hand and grip forces, strong negative co-variation between the two forces was seen across trials interpreted as a synergy stabilizing the total force. An index of this synergy was higher in the space of “modes”, hypothetical signals to the two effectors that could be changed by the controller one at a time. We interpret the complex enslaving effects (positive force co-variation) as conditioned by typical everyday tasks. The presence of synergic effects (negative, task-specific force co-variation) can be naturally interpreted within the referent configuration hypothesis. PMID:24309747

  19. Modeling forces in high-temperature superconductors

    SciTech Connect

    Turner, L. R.; Foster, M. W.

    1997-11-18

    We have developed a simple model that uses computed shielding currents to determine the forces acting on a high-temperature superconductor (HTS). The model has been applied to measurements of the force between HTS and permanent magnets (PM). Results show the expected hysteretic variation of force as the HTS moves first toward and then away from a permanent magnet, including the reversal of the sign of the force. Optimization of the shielding currents is carried out through a simulated annealing algorithm in a C++ program that repeatedly calls a commercial electromagnetic software code. Agreement with measured forces is encouraging.

  20. Micromechanism linear actuator with capillary force sealing

    DOEpatents

    Sniegowski, Jeffry J.

    1997-01-01

    A class of micromachine linear actuators whose function is based on gas driven pistons in which capillary forces are used to seal the gas behind the piston. The capillary forces also increase the amount of force transmitted from the gas pressure to the piston. In a major subclass of such devices, the gas bubble is produced by thermal vaporization of a working fluid. Because of their dependence on capillary forces for sealing, such devices are only practical on the sub-mm size scale, but in that regime they produce very large force times distance (total work) values.

  1. Evidence for water structuring forces between surfaces

    SciTech Connect

    Stanley, Christopher B; Rau, Dr. Donald

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

  2. Hyperbaric Hydrothermal Atomic Force Microscope

    DOEpatents

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2003-07-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  3. Nuclear forces from lattice QCD

    SciTech Connect

    Ishii, Noriyoshi

    2011-05-06

    Lattice QCD construction of nuclear forces is reviewed. In this method, the nuclear potentials are constructed by solving the Schroedinger equation, where equal-time Nambu-Bethe-Salpeter (NBS) wave functions are regarded as quantum mechanical wave functions. Since the long distance behavior of equal-time NBS wave functions is controlled by the scattering phase, which is in exactly the same way as scattering wave functions in quantum mechanics, the resulting potentials are faithful to the NN scattering data. The derivative expansion of this potential leads to the central and the tensor potentials at the leading order. Some of numerical results of these two potentials are shown based on the quenched QCD.

  4. Magnetic Resonance Force Microscope Development

    SciTech Connect

    Hammel, P.C.; Zhang, Z.; Suh, B.J.; Roukes, M.L.; Midzor, M.; Wigen, P.E.; Childress, J.R.

    1999-06-03

    Our objectives were to develop the Magnetic Resonance Force Microscope (MRFM) into an instrument capable of scientific studies of buried structures in technologically and scientifically important electronic materials such as magnetic multilayer materials. This work resulted in the successful demonstration of MRFM-detected ferromagnetic resonance (FMR) as a microscopic characterization tool for thin magnetic films. Strong FMR spectra obtained from microscopic Co thin films (500 and 1000 angstroms thick and 40 x 200 microns in lateral extent) allowed us to observe variations in sample inhomogeneity and magnetic anisotropy field. We demonstrated lateral imaging in microscopic FMR for the first time using a novel approach employing a spatially selective local field generated by a small magnetically polarized spherical crystallite of yttrium iron garnet. These successful applications of the MRFM in materials studies provided the basis for our successful proposal to DOE/BES to employ the MRF M in studies of buried interfaces in magnetic materials.

  5. Shell Evolutions and Nuclear Forces

    NASA Astrophysics Data System (ADS)

    Sorlin, O.

    2014-03-01

    During the last 30 years, and more specifically during the last 10 years, many experiments have been carried out worldwide using different techniques to study the shell evolution of nuclei far from stability. What seemed not conceivable some decades ago became rather common: all known magic numbers that are present in the valley of stability disappear far from stability and are replaced by new ones at the drip line. By gathering selected experimental results, beautifully consistent pictures emerge, that very likely take root in the properties of the nuclear forces.The present manuscript describes some of these discoveries and proposes an intuitive understanding of these shell evolutions derived from observations. Extrapolations to yet unstudied regions, as where the explosive r-process nucleosynthesis occurs, are proposed. Some remaining challenges and puzzling questions are also addressed.

  6. Forced air heat sink apparatus

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E. (Inventor)

    1989-01-01

    A high efficiency forced air heat sink assembly employs a split feed transverse flow configuration to minimize the length of the air flow path through at least two separated fin structures. Different embodiments use different fin structure material configurations including honeycomb, corrugated and serpentine. Each such embodiment uses a thermally conductive plate having opposed exterior surfaces; one for receiving a component to be cooled and one for receiving the fin structures. The serpentine structured fin embodiment employs a plurality of fin supports extending from the plate and forming a plurality of channels for receiving the fin structures. A high thermal conductivity bondant, such as metal-filled epoxy, may be used to bond the fin structures to either the plate or the fin supports. Dip brazing and soldering may also be employed depending upon the materials selected.

  7. Hyperbaric hydrothermal atomic force microscope

    DOEpatents

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2002-01-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  8. Translation Against An Applied Force.

    NASA Astrophysics Data System (ADS)

    Skinner, Gary M.; Seol, Yeonee; Visscher, Koen

    2008-02-01

    Ribosome structure and mechanism are largely conserved among all known forms of life. Therefore, the motions associated with translation may be among the most ancient and fundamental in biology. However, the molecular mechanism of translocation, the coordinated movement of tRNAs and associated mRNA on the ribosome, has eluded scientists and remains obscure. Single-molecule experiments using optical tweezers and fluorescence microscope are starting to shed new light on these questions. For example, we have observed that moderate forces reverse direction of motion and ribosomes seem to slip backward into the 5' direction along a poly(U) message. Although the detailed molecular mechanism for ribosome slippage is not fully understood, these observations raise interesting biological questions about e.g. -1 frameshifting. Is the -1 frameshift essential for HIV-1 replication a result of tension in the message? Single-molecule experiments open the way towards quantitative modeling of ribosome motion and related phenomena such as -1 frameshifting.

  9. Air Force brush seal programs

    NASA Astrophysics Data System (ADS)

    Dowler, Connie

    1993-10-01

    Aggressive pursuit of increased performance in gas turbine engines is driving the thermodynamic cycle to higher pressure ratios, bypass ratios, and turbine inlet temperatures. As these parameters increase, internal air system and resultant thermodynamic cycle losses increase. This conflict of reducing internal airflows while increasing thermodynamic efficiency and performance is putting more emphasis on improvements to the internal flow system. One improvement that has been and continues to be pursued by the Air Force for both man-rated and expendable turbine engine applications is the brush seal. This presentation briefly describes both past and current brush seal research and development programs and gives a summary of demonstrator and developmental engine testing of brush seals.

  10. Dark Forces At The Tevatron

    DOE PAGES

    Buckley, Matt; Fileviez Perez, Pavel; Hooper, Dan; Neil, Ethan

    2011-08-19

    A simple explanation of the W + dijet excess recently reported by the CDF collaboration involves the introduction of a new gauge boson with sizable couplings to quarks, but with no or highly suppressed couplings to leptons. Anomaly-free theories which include such a leptophobic gauge boson must also include additional particle content, which may include a stable and otherwise viable candidate for dark matter. Based on the couplings and mass of the Z` required to generate the CDF excess, we predict such a dark matter candidate to possess an elastic scattering cross section with nucleons on the order of σmore » ~ 10-40 cm2, providing a natural explanation for the signals reported by the CoGeNT and DAMA/LIBRA collaborations. In this light, CDF may be observing the gauge boson responsible for the force which mediates the interactions between the dark and visible matter of our universe.« less

  11. Atomic force microscope: Enhanced sensitivity

    SciTech Connect

    Davis, D.T.

    1995-06-01

    Atomic force microscopes (AFMs) are a recent development representing the state of the art in measuring ultrafine surface features. Applications are found in such fields of research as biology, microfabrication, material studies, and surface chemistry. Fiber-optic interferometer techniques developed at LLNL offer the potential of improving the vertical resolution of these instruments by up to 2 orders of magnitude. We are attempting to replace the current AFM measurement scheme, which consists of an optical beam deflection approach, with our fiber-optic interferometer scheme, a much more sensitive displacement measurement technique. In performing this research, we hope to accomplish two important goals; (1) to enhance the sensitivity of the AFM, and (2) to achieve important improvements in our fiber-optic interferometer technology.

  12. Dark Forces At The Tevatron

    SciTech Connect

    Buckley, Matt; Fileviez Perez, Pavel; Hooper, Dan; Neil, Ethan

    2011-08-19

    A simple explanation of the W + dijet excess recently reported by the CDF collaboration involves the introduction of a new gauge boson with sizable couplings to quarks, but with no or highly suppressed couplings to leptons. Anomaly-free theories which include such a leptophobic gauge boson must also include additional particle content, which may include a stable and otherwise viable candidate for dark matter. Based on the couplings and mass of the Z` required to generate the CDF excess, we predict such a dark matter candidate to possess an elastic scattering cross section with nucleons on the order of σ ~ 10-40 cm2, providing a natural explanation for the signals reported by the CoGeNT and DAMA/LIBRA collaborations. In this light, CDF may be observing the gauge boson responsible for the force which mediates the interactions between the dark and visible matter of our universe.

  13. Knee joint forces: prediction, measurement, and significance

    PubMed Central

    D’Lima, Darryl D.; Fregly, Benjamin J.; Patil, Shantanu; Steklov, Nikolai; Colwell, Clifford W.

    2011-01-01

    Knee forces are highly significant in osteoarthritis and in the survival and function of knee arthroplasty. A large number of studies have attempted to estimate forces around the knee during various activities. Several approaches have been used to relate knee kinematics and external forces to internal joint contact forces, the most popular being inverse dynamics, forward dynamics, and static body analyses. Knee forces have also been measured in vivo after knee arthroplasty, which serves as valuable validation of computational predictions. This review summarizes the results of published studies that measured knee forces for various activities. The efficacy of various methods to alter knee force distribution, such as gait modification, orthotics, walking aids, and custom treadmills are analyzed. Current gaps in our knowledge are identified and directions for future research in this area are outlined. PMID:22468461

  14. Climate forcings in the industrial era.

    PubMed

    Hansen, J E; Sato, M; Lacis, A; Ruedy, R; Tegen, I; Matthews, E

    1998-10-27

    The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. One consequence of this partial balance is that the natural forcing due to solar irradiance changes may play a larger role in long-term climate change than inferred from comparison with GHGs alone. Current trends in GHG climate forcings are smaller than in popular "business as usual" or 1% per year CO2 growth scenarios. The summary implication is a paradigm change for long-term climate projections: uncertainties in climate forcings have supplanted global climate sensitivity as the predominant issue.

  15. Climate forcings in the Industrial era

    PubMed Central

    Hansen, James E.; Sato, Makiko; Lacis, Andrew; Ruedy, Reto; Tegen, Ina; Matthews, Elaine

    1998-01-01

    The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. One consequence of this partial balance is that the natural forcing due to solar irradiance changes may play a larger role in long-term climate change than inferred from comparison with GHGs alone. Current trends in GHG climate forcings are smaller than in popular “business as usual” or 1% per year CO2 growth scenarios. The summary implication is a paradigm change for long-term climate projections: uncertainties in climate forcings have supplanted global climate sensitivity as the predominant issue. PMID:9788985

  16. Climate Forcings in the Industrial Era

    NASA Astrophysics Data System (ADS)

    Hansen, James E.; Sato, Makiko; Lacis, Andrew; Ruedy, Reto; Tegen, Ina; Matthews, Elaine

    1998-10-01

    The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. One consequence of this partial balance is that the natural forcing due to solar irradiance changes may play a larger role in long-term climate change than inferred from comparison with GHGs alone. Current trends in GHG climate forcings are smaller than in popular ``business as usual'' or 1% per year CO2 growth scenarios. The summary implication is a paradigm change for long-term climate projections: uncertainties in climate forcings have supplanted global climate sensitivity as the predominant issue.

  17. Functional occlusal forces: an investigation by telemetry.

    PubMed

    De Boever, J A; McCall, W D; Holden, S; Ash, M M

    1978-09-01

    In normal chewing the forces exerted on the occlusal surface seldom exceeded 10 to 15 pounds, as recorded by an eight-channel force transmitter in a removable fixed partial denture. Ninety-five percent of forces were less than 3.5 pounds for subject A, 2.0 pounds for subject B, and 10.0 pounds for subject C. The chewing frequency and the places of maximal force on the occlusal surface were relatively constant. The electromyographic chewing patterns could be considered normal in all circumstances. There was a remarkable statistically significant day-to-day variation in force values. The forces also changed for different kinds of food. The differences between maximum and minimum force values were highest in voluntary, nonfunctional movements.

  18. Climate Forcings in the Industrial Era

    NASA Technical Reports Server (NTRS)

    Hansen, James E.; Sato, Makiko; Lacis, Andrew; Ruedy, Reto; Tegen, Ina; Matthews, Elaine

    1998-01-01

    The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. One consequence of this partial balance is-that the natural forcing due to solar irradiance changes may play a larger role in long-term climate change than inferred from comparison with GHGs alone. Current trends in GHG climate forcings are smaller than in popular "business as usual" or 1% per year CO2 growth scenarios. The summary implication is a paradigm change for long-term climate projections: uncertainties in climate forcings have supplanted global climate sensitivity as the predominant issue.

  19. Climate Forcing in the Industrial Era

    NASA Technical Reports Server (NTRS)

    Hansen, James E.

    1998-01-01

    The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. One consequence of this partial balance is that the natural forcing due to solar irradiance changes may play a larger role in long-term climate change than inferred from comparison with GHGs alone. Current trends in GHG climate forcings are smaller than in popular "business as usual" or 1% per year CO2 growth scenarios. The summary implication is a paradigm change for long-term climate projections: uncertainties in climate forcings have supplanted global climate sensitivity as the predominant issue.

  20. Perspective: Climate Forcings in the Industrial Era

    NASA Technical Reports Server (NTRS)

    Hansen, James E.; Sato, Makiko; Lacis, Andrew; Ruedy, Reto; Tegen, Ina; Matthews, Elaine

    1998-01-01

    The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. One consequence of this partial balance is that the natural forcing due to solar irradiance changes may play a larger role in long-term climate change than inferred from comparison with GHGs alone. Current trends in GHG climate forcings are smaller than in popular "business as usual" or 1% per year CO growth scenarios. The summary implication is a paradigm change for long-term climate projections: uncertainties in climate forcings have supplanted global climate sensitivity as the predominant issue.

  1. Tool Forces Developed During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Melendez, M.; Tang, W.; Schmidt, C.; McClure, J. C.; Nunes, A. C.; Murr, L. E.

    2003-01-01

    This paper will describe a technique for measuring the various forces and the torque that exist on the Friction Stir Welding pin tool. Results for various plunge depths, weld speeds, rotational speed, and tool configurations will be presented. Welds made on 6061 aluminum with typical welding conditions require a downward force of 2800 lbs. (12.5 kN) a longitudinal force in the direction of motion of 300 lbs (1.33 kN), a transverse force in the omega x v direction of 30 lbs (135 N). Aluminum 2195 under typical weld conditions requires a downward force of 3100 lbs. (1.38 kN), a longitudinal force of 920 lbs. (4.1 kN), and a transverse force of 45 lbs. (200 N) in the omega x v direction.

  2. Control of parallel manipulators using force feedback

    NASA Technical Reports Server (NTRS)

    Nanua, Prabjot

    1994-01-01

    Two control schemes are compared for parallel robotic mechanisms actuated by hydraulic cylinders. One scheme, the 'rate based scheme', uses the position and rate information only for feedback. The second scheme, the 'force based scheme' feeds back the force information also. The force control scheme is shown to improve the response over the rate control one. It is a simple constant gain control scheme better suited to parallel mechanisms. The force control scheme can be easily modified for the dynamic forces on the end effector. This paper presents the results of a computer simulation of both the rate and force control schemes. The gains in the force based scheme can be individually adjusted in all three directions, whereas the adjustment in just one direction of the rate based scheme directly affects the other two directions.

  3. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    PubMed Central

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  4. Concepts of Force and Frictional Force: The Influence of Preconceptions on Learning across Different Levels

    ERIC Educational Resources Information Center

    Sharma, S. V.; Sharma, K. C.

    2007-01-01

    Students' understanding regarding force and frictional force was probed by administering a force concept inventory (FCI) and a frictional force concept inventory (FFCI) which was followed by practical activities to investigate the application aspect of the concepts in real situations. Analysis of the two audio-video recorded interviews and…

  5. Microrheology of cells with magnetic force modulation atomic force microscopy.

    PubMed

    Rebêlo, L M; de Sousa, J S; Mendes Filho, J; Schäpe, J; Doschke, H; Radmacher, M

    2014-04-01

    We propose a magnetic force modulation method to measure the stiffness and viscosity of living cells using a modified AFM apparatus. An oscillating magnetic field makes a magnetic cantilever oscillate in contact with the sample, producing a small AC indentation. By comparing the amplitude of the free cantilever motion (A0) with the motion of the cantilever in contact with the sample (A1), we determine the sample stiffness and viscosity. To test the method, the frequency-dependent stiffness of 3T3 fibroblasts was determined as a power law k(s)(f) = α + β(f/f¯)(γ) (α = 7.6 × 10(-4) N m(-1), β = 1.0 × 10(-4) N m(-1), f¯ = 1 Hz, γ = 0.6), where the coefficient γ = 0.6 is in good agreement with rheological data of actin solutions with concentrations similar to those in cells. The method also allows estimation of the internal friction of the cells. In particular we found an average damping coefficient of 75.1 μN s m(-1) for indentation depths ranging between 1.0 μm and 2.0 μm. PMID:24651941

  6. Forced marriage, forced sex: the perils of childhood for girls.

    PubMed

    Ouattara, M; Sen, P; Thomson, M

    1998-11-01

    A recently formed interagency Forum on the Rights of Girls and Women in Marriage is investigating the widespread problem of nonconsensual marriage and forced sex and advocating for legislative and policy initiatives. This article reviews three research projects in this area: research by Anti-Slavery International on child marriage in parts of West Africa, an investigation by Save the Children of children's views of early marriage, and research conducted by CHANGE on women's resistance to domestic violence in Calcutta, India. Girls who marry before 15 years of age are more likely to be illiterate than their older counterparts, more likely to be dowry payment brides, less likely to come into contact with development projects, have higher rates of infant mortality, and are most vulnerable to sexual violence. In many cases, intercourse is initiated before the girl begins to menstruate. Although adult women also face sexual violence within marriage, this problem is all the more traumatic for girls who lack any information about sexuality. Sex with girls below a certain age is usually covered by rape legislation, but, in countries such as India, this is mitigated by the religiously defined personal laws. The absence of adequate legal and policy action frameworks to deal with the rights of girls, coupled with the lack of sanctions against these abuses, comprise state complicity and neglect of duty under international law to this vulnerable group.

  7. Forced marriage, forced sex: the perils of childhood for girls.

    PubMed

    Ouattara, M; Sen, P; Thomson, M

    1998-11-01

    A recently formed interagency Forum on the Rights of Girls and Women in Marriage is investigating the widespread problem of nonconsensual marriage and forced sex and advocating for legislative and policy initiatives. This article reviews three research projects in this area: research by Anti-Slavery International on child marriage in parts of West Africa, an investigation by Save the Children of children's views of early marriage, and research conducted by CHANGE on women's resistance to domestic violence in Calcutta, India. Girls who marry before 15 years of age are more likely to be illiterate than their older counterparts, more likely to be dowry payment brides, less likely to come into contact with development projects, have higher rates of infant mortality, and are most vulnerable to sexual violence. In many cases, intercourse is initiated before the girl begins to menstruate. Although adult women also face sexual violence within marriage, this problem is all the more traumatic for girls who lack any information about sexuality. Sex with girls below a certain age is usually covered by rape legislation, but, in countries such as India, this is mitigated by the religiously defined personal laws. The absence of adequate legal and policy action frameworks to deal with the rights of girls, coupled with the lack of sanctions against these abuses, comprise state complicity and neglect of duty under international law to this vulnerable group. PMID:12294409

  8. Radiation force and balance of electromagnetic momentum

    NASA Astrophysics Data System (ADS)

    Campos, I.; Jiménez, J. L.; Roa-Neri, J. A. E.

    2016-07-01

    Some force densities can be expressed as a divergence of a stress tensor, as is the case with the electromagnetic force density. We have shown elsewhere that from the Maxwell equations several balance equations of electromagnetic momentum can be derived, depending on the form these equations are expressed in terms of fields E, D, B, H, and polarisations P and M. These balance equations imply different force densities and different stress tensors, providing a great flexibility to solve particular problems. Among these force densities we have found some proposed in the past with plausibility arguments, like the Einstein-Laub force density, while other proposed force densities appear as particular or limit cases of these general force densities, like the Helmholtz force density. We calculate the radiation force of an electromagnetic wave incident on a semi-infinite negligibly absorbing material using these balance equations, corroborating in this way that the surface integration of the stress tensor gives the same result that the calculation made through a volume integration of the force density, as done by Bohren. As is usual in applications of Gauss’s theorem, the surface on which the surface integral is to be performed must be chosen judiciously, and due care of discontinuities on the boundary conditions must be taken. Advanced undergraduates and graduate students will find a different approach to new aspects of the interaction of radiation with matter.

  9. Photoacoustic radiation force on a microbubble.

    PubMed

    Erkol, Hakan; Aytac-Kipergil, Esra; Unlu, Mehmet Burcin

    2014-08-01

    We investigate the radiation force on a microbubble due to the photoacoustic wave which is generated by using a pulsed laser. In particular, we focus on the dependence of pulsed laser parameters on the radiation force. In order to do so, we first obtain a new and comprehensive analytical solution to the photoacoustic wave equation based on the Fourier transform for various absorption profiles. Then, we write an expression of the radiation force containing explicit laser parameters, pulse duration, and beamwidth of the laser. Furthermore, we calculate the primary radiation force acting on a microbubble. We show that laser parameters and the position of the microbubble relative to a photoacoustic source have a considerable effect on the primary radiation force. By means of recent developments in laser technologies that render tunability of pulse duration and repetition frequency possible, an adjustable radiation force can be applied to microbubbles. High spatial control of applied force is ensured on account of smaller focal spots achievable by focused optics. In this context, conventional piezoelectric acoustic source applications could be surpassed. In addition, it is possible to increase the radiation force by making source wavelength with the absorption peak of absorber concurrent. The application of photoacoustic radiation force can open a cache of opportunities such as manipulation of microbubbles used as contrast agents and as carrier vehicles for drugs and genes with a desired force along with in vivo applications. PMID:25215814

  10. A force calibration standard for magnetic tweezers

    NASA Astrophysics Data System (ADS)

    Yu, Zhongbo; Dulin, David; Cnossen, Jelmer; Köber, Mariana; van Oene, Maarten M.; Ordu, Orkide; Berghuis, Bojk A.; Hensgens, Toivo; Lipfert, Jan; Dekker, Nynke H.

    2014-12-01

    To study the behavior of biological macromolecules and enzymatic reactions under force, advances in single-molecule force spectroscopy have proven instrumental. Magnetic tweezers form one of the most powerful of these techniques, due to their overall simplicity, non-invasive character, potential for high throughput measurements, and large force range. Drawbacks of magnetic tweezers, however, are that accurate determination of the applied forces can be challenging for short biomolecules at high forces and very time-consuming for long tethers at low forces below ˜1 piconewton. Here, we address these drawbacks by presenting a calibration standard for magnetic tweezers consisting of measured forces for four magnet configurations. Each such configuration is calibrated for two commonly employed commercially available magnetic microspheres. We calculate forces in both time and spectral domains by analyzing bead fluctuations. The resulting calibration curves, validated through the use of different algorithms that yield close agreement in their determination of the applied forces, span a range from 100 piconewtons down to tens of femtonewtons. These generalized force calibrations will serve as a convenient resource for magnetic tweezers users and diminish variations between different experimental configurations or laboratories.

  11. Magnus force in superfluids and superconductors

    SciTech Connect

    Sonin, E.B. |

    1997-01-01

    The forces on the vortex, transverse to its velocity, are considered. In addition to the superfluid Magnus force from the condensate (superfluid component), there are transverse forces from thermal quasiparticles and external fields violating the Galilean invariance. The forces between quasiparticles and the vortex originate from interference of quasiparticles with trajectories on the left and on the right from the vortex like similar forces for electrons interacting with the thin magnetic-flux tube (the Aharonov-Bohm effect). These forces are derived for phonons from the equations of superfluid hydrodynamics, and for BCS quasiparticles from the Bogolyubov{endash}de Gennes equations. The effect of external fields breaking Galilean invariance is analyzed for vortices in the two-dimensional Josephson junction array. The symmetry analysis of the classical equations for the array shows that the total transverse force on the vortex vanishes. Therefore the Hall effect which is linear in the transverse force is absent also. This means that the Magnus force from the superfluid component {ital exactly} cancels with the transverse force from the external fields. The results of other approaches are also brought together for discussion. {copyright} {ital 1997} {ital The American Physical Society}

  12. Radiation force and balance of electromagnetic momentum

    NASA Astrophysics Data System (ADS)

    Campos, I.; Jiménez, J. L.; Roa-Neri, J. A. E.

    2016-07-01

    Some force densities can be expressed as a divergence of a stress tensor, as is the case with the electromagnetic force density. We have shown elsewhere that from the Maxwell equations several balance equations of electromagnetic momentum can be derived, depending on the form these equations are expressed in terms of fields E, D, B, H, and polarisations P and M. These balance equations imply different force densities and different stress tensors, providing a great flexibility to solve particular problems. Among these force densities we have found some proposed in the past with plausibility arguments, like the Einstein–Laub force density, while other proposed force densities appear as particular or limit cases of these general force densities, like the Helmholtz force density. We calculate the radiation force of an electromagnetic wave incident on a semi-infinite negligibly absorbing material using these balance equations, corroborating in this way that the surface integration of the stress tensor gives the same result that the calculation made through a volume integration of the force density, as done by Bohren. As is usual in applications of Gauss’s theorem, the surface on which the surface integral is to be performed must be chosen judiciously, and due care of discontinuities on the boundary conditions must be taken. Advanced undergraduates and graduate students will find a different approach to new aspects of the interaction of radiation with matter.

  13. Keratocytes generate traction forces in two phases.

    PubMed

    Burton, K; Park, J H; Taylor, D L

    1999-11-01

    Forces generated by goldfish keratocytes and Swiss 3T3 fibroblasts have been measured with nanonewton precision and submicrometer spatial resolution. Differential interference contrast microscopy was used to visualize deformations produced by traction forces in elastic substrata, and interference reflection microscopy revealed sites of cell-substratum adhesions. Force ranged from a few nanonewtons at submicrometer spots under the lamellipodium to several hundred nanonewtons under the cell body. As cells moved forward, centripetal forces were applied by lamellipodia at sites that remained stationary on the substratum. Force increased and abruptly became lateral at the boundary of the lamellipodium and the cell body. When the cell retracted at its posterior margin, cell-substratum contact area decreased more rapidly than force, so that stress (force divided by area) increased as the cell pulled away. An increase in lateral force was associated with widening of the cell body. These mechanical data suggest an integrated, two-phase mechanism of cell motility: (1) low forces in the lamellipodium are applied in the direction of cortical flow and cause the cell body to be pulled forward; and (2) a component of force at the flanks pulls the rear margins forward toward the advancing cell body, whereas a large lateral component contributes to detachment of adhesions without greatly perturbing forward movement. PMID:10564269

  14. Photoacoustic radiation force on a microbubble

    NASA Astrophysics Data System (ADS)

    Erkol, Hakan; Aytac-Kipergil, Esra; Unlu, Mehmet Burcin

    2014-08-01

    We investigate the radiation force on a microbubble due to the photoacoustic wave which is generated by using a pulsed laser. In particular, we focus on the dependence of pulsed laser parameters on the radiation force. In order to do so, we first obtain a new and comprehensive analytical solution to the photoacoustic wave equation based on the Fourier transform for various absorption profiles. Then, we write an expression of the radiation force containing explicit laser parameters, pulse duration, and beamwidth of the laser. Furthermore, we calculate the primary radiation force acting on a microbubble. We show that laser parameters and the position of the microbubble relative to a photoacoustic source have a considerable effect on the primary radiation force. By means of recent developments in laser technologies that render tunability of pulse duration and repetition frequency possible, an adjustable radiation force can be applied to microbubbles. High spatial control of applied force is ensured on account of smaller focal spots achievable by focused optics. In this context, conventional piezoelectric acoustic source applications could be surpassed. In addition, it is possible to increase the radiation force by making source wavelength with the absorption peak of absorber concurrent. The application of photoacoustic radiation force can open a cache of opportunities such as manipulation of microbubbles used as contrast agents and as carrier vehicles for drugs and genes with a desired force along with in vivo applications.

  15. Unify the electromagnetic force and gravitation

    NASA Astrophysics Data System (ADS)

    Sheng Ming, Zheng

    2013-04-01

    In the process of mankind investigate natural rule: people know four kinds of force: electromagnetic force, gravitation, weak force, and strong force. Meanwhile people use these four kinds force to explain all phenomena in the Nature. Obviously people do not know their mechanism of origin until now. On the other hand, these four kinds force is the difference showing form of one force, is not it? For solve these questions and find their mechanism of origin, I do some experiments and discover that the moving photons produce gravitation. This discovery shows the origin of gravitation. Meanwhile I also do experiments show that light is a particle, but is not a wave-particle duality. My experiments show that the elementary particles moving produce gravitation and electromagnetic force, this effect also produce wave effect. That is to say my experiment and calculate not only reveal the origin of gravitation, but also reveal the origin of electric charge and magnetic force. Base on this I first unify the electromagnetic force and gravitation. The more detail see below website: https://www.lap-publishing.com/catalog/details/store/gb/book/978-3-8473-2658-8/mechanism-of-interaction-in-moving-matter.

  16. Unify the electromagnetic force and gravitation

    NASA Astrophysics Data System (ADS)

    Ming, Zheng Sheng

    2013-04-01

    In the process of mankind investigate natural rule: people know four kinds of force: electromagnetic force, gravitation, weak force, and strong force. Meanwhile people use these four kinds force to explain all phenomena in the Nature. Obviously people do not know their mechanism of origin until now. On the other hand, these four kinds force is the difference showing form of one force, is not it? For solve these questions and find their mechanism of origin, I do some experiments and discover that the moving photons produce gravitation. This discovery shows the origin of gravitation. Meanwhile I also do experiments show that light is a particle, but is not a wave-particle duality. My experiments show that the elementary particles moving produce gravitation and electromagnetic force, this effect also produce wave effect. That is to say my experiment and calculate not only reveal the origin of gravitation, but also reveal the origin of electric charge and magnetic force. Base on this I first unify the electromagnetic force and gravitation. The more detail see below website: https://www.lap-publishing.com/catalog/details/store/gb/book/978-3-8473-2658-8/mechanism-of-interaction-in-moving-matter

  17. Control Strategies for Accurate Force Generation and Relaxation.

    PubMed

    Ohtaka, Chiaki; Fujiwara, Motoko

    2016-10-01

    Characteristics and motor strategies for force generation and force relaxation were examined using graded tasks during isometric force control. Ten female college students (M age = 20.2 yr., SD = 1.1) were instructed to accurately control the force of isometric elbow flexion using their right arm to match a target force level as quickly as possible. They performed: (1) a generation task, wherein they increased their force from 0% maximum voluntary force to 20% maximum voluntary force (0%-20%), 40% maximum voluntary force (0%-40%), or 60% maximum voluntary force (0%-60%) and (2) and a relaxation task, in which they decreased their force from 60% maximum voluntary force to 40% maximum voluntary force (60%-40%), 20% maximum voluntary force (60%-20%), or to 0% maximum voluntary force (60%-0%). Produced force parameters of point of accuracy (force level, error), quickness (reaction time, adjustment time, rate of force development), and strategy (force wave, rate of force development) were analyzed. Errors of force relaxation were all greater, and reaction times shorter, than those of force generation. Adjustment time depended on the magnitude of force and peak rates of force development and force relaxation differed. Controlled relaxation of force is more difficult with low magnitude of force control.

  18. Control Strategies for Accurate Force Generation and Relaxation.

    PubMed

    Ohtaka, Chiaki; Fujiwara, Motoko

    2016-10-01

    Characteristics and motor strategies for force generation and force relaxation were examined using graded tasks during isometric force control. Ten female college students (M age = 20.2 yr., SD = 1.1) were instructed to accurately control the force of isometric elbow flexion using their right arm to match a target force level as quickly as possible. They performed: (1) a generation task, wherein they increased their force from 0% maximum voluntary force to 20% maximum voluntary force (0%-20%), 40% maximum voluntary force (0%-40%), or 60% maximum voluntary force (0%-60%) and (2) and a relaxation task, in which they decreased their force from 60% maximum voluntary force to 40% maximum voluntary force (60%-40%), 20% maximum voluntary force (60%-20%), or to 0% maximum voluntary force (60%-0%). Produced force parameters of point of accuracy (force level, error), quickness (reaction time, adjustment time, rate of force development), and strategy (force wave, rate of force development) were analyzed. Errors of force relaxation were all greater, and reaction times shorter, than those of force generation. Adjustment time depended on the magnitude of force and peak rates of force development and force relaxation differed. Controlled relaxation of force is more difficult with low magnitude of force control. PMID:27555365

  19. Atomic Force Microscope Mediated Chromatography

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2013-01-01

    The atomic force microscope (AFM) is used to inject a sample, provide shear-driven liquid flow over a functionalized substrate, and detect separated components. This is demonstrated using lipophilic dyes and normal phase chromatography. A significant reduction in both size and separation time scales is achieved with a 25-micron-length column scale, and one-second separation times. The approach has general applications to trace chemical and microfluidic analysis. The AFM is now a common tool for ultra-microscopy and nanotechnology. It has also been demonstrated to provide a number of microfluidic functions necessary for miniaturized chromatography. These include injection of sub-femtoliter samples, fluidic switching, and sheardriven pumping. The AFM probe tip can be used to selectively remove surface layers for subsequent microchemical analysis using infrared and tip-enhanced Raman spectroscopy. With its ability to image individual atoms, the AFM is a remarkably sensitive detector that can be used to detect separated components. These diverse functional components of microfluidic manipulation have been combined in this work to demonstrate AFM mediated chromatography. AFM mediated chromatography uses channel-less, shear-driven pumping. This is demonstrated with a thin, aluminum oxide substrate and a non-polar solvent system to separate a mixture of lipophilic dyes. In conventional chromatographic terms, this is analogous to thin-layer chromatography using normal phase alumina substrate with sheardriven pumping provided by the AFM tip-cantilever mechanism. The AFM detection of separated components is accomplished by exploiting the variation in the localized friction of the separated components. The AFM tip-cantilever provides the mechanism for producing shear-induced flows and rapid pumping. Shear-driven chromatography (SDC) is a relatively new concept that overcomes the speed and miniaturization limitations of conventional liquid chromatography. SDC is based on a

  20. Nanopatterning by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Tang, Qian

    For the first time, we fabricated nanostructures of a ferroelectric polymer, poly(vinylidene fluoride-trifluorethylene) [P(VDF-TrFE)] on gold substrate via dip-pen nanolithography ink. Lines as thin as 32 nm and dot radius as small as 20 nm have been fabricated. The P(VDF-TrFE) molecules were well oriented on the gold substrate. The hydrophobic P(VDF-TrFE) produced a black contrast in the lateral force microscopy (LFM) images. The DPN-generated P(VDF-TrFE) patterns hold ferroelectric properties. The interaction between the P(VDF-TrFE) and the gold substrate was Van der Waals' interaction. The growth of dot radii/line-width was proportional to t1/2. We studied the influence of experimental conditions on dip-pen nanolithography. The results show: The transport rate of ink increased as the temperature increased for all of the inks. For P(VDF-TrFE), a deviation from Arrhenius plot at about 55°C was observed. It may be caused by a ferroelectric phase transition. Surface roughness influenced both the contrast in LFM images and the transport rate of ink. Surfaces with less roughness resulted in good contrast in LFM images, while rough surfaces resulted in poor contrast. The transport rate of ink increased as the roughness decreased; however, the extent of the influence was strongly ink-dependent. The influence of relative humidity depended on the solubility of the ink in water. The transport rate of hydrophilic inks increased as the relative humidity increased, while the transport rate of hydrophobic inks experienced small change as the relative humidity increased. At the same condition, a tip with a larger curvature radius could generate a larger pattern than a tip with a smaller curvature radius due to a bigger contact point or the formation of a meniscus with a larger size. The chemical affinity was also one of the key controlling parameters for DPN. It is necessary to consider the ink affinity to both the substrate and the tip when designing a new DPN system. We

  1. Configurational forces in solid nanostructures

    SciTech Connect

    Zhigang Suo

    2006-06-12

    The DOE grant (DE-FG02-99ER45787) to Princeton University, entitled Configurational Forces in Solid Nanostructures, was intended to cover the four-year period from September 1999 to September 2003. Effective 1 July 2003, the PI will relocate from Princeton to join the Harvard faculty. Princeton University will submit the Final Financial Report, the Final Property Report, and the Final Patent Report. The expenditures to date are $261,513 with %8,487 remaining of the awarded amount of $320,000. Harvard University will submit a request for the remaining amount. This Final Technical Report covers from the period between September 1999 to June 2003. Three Ph.D. students, Wei Lu, Yanfei Gao and Wei Hong, admitted to Princeton in the fall of 1998, 1999, 2002, respectively, have been dedicated to this project. Wei Lu earned his Ph.D. in August 2001, and is now an assistant professor at The University of Michigan, Ann Arbor. Yanfei Gao earned his Ph.D. in February 2003, and is now a post-doc at Brown University. The amount of funding covers one student at a time. All three students received first-year fellowships from Princeton University. In the Mechanical and Aerospace Engineering Department, to fulfill a doctoral degree requirement, every student serves as a teaching assistant for three semesters, for which the student is partially paid by the University.

  2. Brute force absorption contrast microtomography

    NASA Astrophysics Data System (ADS)

    Davis, Graham R.; Mills, David

    2014-09-01

    In laboratory X-ray microtomography (XMT) systems, the signal-to-noise ratio (SNR) is typically determined by the X-ray exposure due to the low flux associated with microfocus X-ray tubes. As the exposure time is increased, the SNR improves up to a point where other sources of variability dominate, such as differences in the sensitivities of adjacent X-ray detector elements. Linear time-delay integration (TDI) readout averages out detector sensitivities on the critical horizontal direction and equiangular TDI also averages out the X-ray field. This allows the SNR to be increased further with increasing exposure. This has been used in dentistry to great effect, allowing subtle variations in dentine mineralisation to be visualised in 3 dimensions. It has also been used to detect ink in ancient parchments that are too damaged to physically unroll. If sufficient contrast between the ink and parchment exists, it is possible to virtually unroll the tomographic image of the scroll in order that the text can be read. Following on from this work, a feasibility test was carried out to determine if it might be possible to recover images from decaying film reels. A successful attempt was made to re-create a short film sequence from a rolled length of 16mm film using XMT. However, the "brute force" method of scaling this up to allow an entire film reel to be imaged presents a significant challenge.

  3. Mechanical forces and lymphatic transport.

    PubMed

    Breslin, Jerome W

    2014-11-01

    This review examines the current understanding of how the lymphatic vessel network can optimize lymph flow in response to various mechanical forces. Lymphatics are organized as a vascular tree, with blind-ended initial lymphatics, precollectors, prenodal collecting lymphatics, lymph nodes, postnodal collecting lymphatics and the larger trunks (thoracic duct and right lymph duct) that connect to the subclavian veins. The formation of lymph from interstitial fluid depends heavily on oscillating pressure gradients to drive fluid into initial lymphatics. Collecting lymphatics are segmented vessels with unidirectional valves, with each segment, called a lymphangion, possessing an intrinsic pumping mechanism. The lymphangions propel lymph forward against a hydrostatic pressure gradient. Fluid is returned to the central circulation both at lymph nodes and via the larger lymphatic trunks. Several recent developments are discussed, including evidence for the active role of endothelial cells in lymph formation; recent developments on how inflow pressure, outflow pressure, and shear stress affect the pump function of the lymphangion; lymphatic valve gating mechanisms; collecting lymphatic permeability; and current interpretations of the molecular mechanisms within lymphatic endothelial cells and smooth muscle. An improved understanding of the physiological mechanisms by which lymphatic vessels sense mechanical stimuli, integrate the information, and generate the appropriate response is key for determining the pathogenesis of lymphatic insufficiency and developing treatments for lymphedema. PMID:25107458

  4. Mechanical Forces and Lymphatic Transport

    PubMed Central

    Breslin, Jerome W.

    2014-01-01

    This review examines current understanding of how the lymphatic vessel network can optimize lymph flow in response to various mechanical forces. Lymphatics are organized as a vascular tree, with blind-ended initial lymphatics, precollectors, prenodal collecting lymphatics, lymph nodes, postnodal collecting lymphatics and the larger trunks (thoracic duct and right lymph duct) that connect to the subclavian veins. The formation of lymph from interstitial fluid depends heavily on oscillating pressure gradients to drive fluid into initial lymphatics. Collecting lymphatics are segmented vessels with unidirectional valves, with each segment, called a lymphangion, possessing an intrinsic pumping mechanism. The lymphangions propel lymph forward against a hydrostatic pressure gradient. Fluid is returned to the central circulation both at lymph nodes and via the larger lymphatic trunks. Several recent developments are discussed, including: evidence for the active role of endothelial cells in lymph formation; recent developments on how inflow pressure, outflow pressure, and shear stress affect pump function of the lymphangion; lymphatic valve gating mechanisms; collecting lymphatic permeability; and current interpretations of the molecular mechanisms within lymphatic endothelial cells and smooth muscle. Improved understanding of the physiological mechanisms by lymphatic vessels sense mechanical stimuli, integrate the information, and generate the appropriate response is key for determining the pathogenesis of lymphatic insufficiency and developing treatments for lymphedema. PMID:25107458

  5. Ferromagnetic Resonance Force Microscopy Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Midzor, Melissa; Cross, Michael; Wigen, Philip; Hammel, Chris; Roukes, Michael

    2001-03-01

    Magnetic resonance force microscopy (MRFM) has been used to investigate magnetostatic waves on microscopic samples of YIG. This work elucidates the nature of scanned probe (local) imaging in ferromagnetically-coupled systems. Scanning was performed with a specially-designed ultrasharp tip with Permalloy (NiFe) deposited solely in the tip region, to yield a spatial sensitivity of <10um. This has provided the first direct imaging of fundamental and higher order magnetostatic modes in micromagnetic systems. The modal dependence upon applied field and sample size was measured and compares well with theoretical models. However, unlike traditional ferromagnetic resonance detection technique, MRFM not only serves as a non-perturbative detection tool of magnetostatic modes, but also can locally change their dispersion relations via the strong field gradients generated from the cantilever tip. As a result, when the tip is positioned closely to the YIG surface, certain modes of the magnetostatic waves are either enhanced or depressed, depending on their respective wavelengths. This corresponds to the fact when the tip is further away, the dispersion of the FMR modes is mainly determined by the sample size. As the tip moves closer to the surface, a new regime emerges where the FMR dispersion is dominated by the local magnetic field. A quantitative model based on DE theory is proposed, and it explains the main features of the observed tip influence on different magnetostatic modes.

  6. Sinusoidal Forcing of Interfacial Films

    NASA Astrophysics Data System (ADS)

    Rasheed, Fayaz; Raghunandan, Aditya; Hirsa, Amir; Lopez, Juan

    2015-11-01

    Fluid transport, in vivo, is accomplished via pumping mechanisms of the heart and lungs, which results in biological fluids being subjected to oscillatory shear. Flow is known to influence biological macromolecules, but predicting the effect of shear is incomplete without also accounting for the influence of complex interfaces ubiquitous throughout the body. Here, we investigated the oscillatory response of the structure of aqueous interfacial films using a cylindrical knife edge viscometer. Vitamin K1 was used as a model monolayer because its behaviour has been thoroughly quantified and it doesn't show any measurable hysteresis. The monolayer was subjected to sinusoidal forcing under varied conditions of surface concentrations, periodic frequencies, and knife edge amplitudes. Particle Image Velocimetry(PIV) data was collected using Brewster Angle Microscopy(BAM), revealing the influence of oscillatory interfacial shear stress on the monolayer. Insights were gained as to how the velocity profile dampens at specific distances from the knife edge contact depending on the amplitude, frequency, and concentration of Vitamin K1. Supported by NNX13AQ22G, National Aeronautics and Space Administration.

  7. Atomic Force Controlled Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron; Yeshua, Talia; Palchan, Mila; Lovsky, Yulia; Taha, Hesham

    2010-03-01

    Lithography based on scanning probe microscopic techniques has considerable potential for accurate & localized deposition of material on the nanometer scale. Controlled deposition of metallic features with high purity and spatial accuracy is of great interest for circuit edit applications in the semiconductor industry, for plasmonics & nanophotonics and for basic research in surface enhanced Raman scattering & nanobiophysics. Within the context of metal deposition we will review the development of fountain pen nanochemistry and its most recent emulation Atomic Force Controlled Capillary Electrophoresis (ACCE). Using this latter development we will demonstrate achievement of unprecedented control of nanoparticle deposition using a three-electrode geometry. Three electrodes are attached: one on the outside of a metal coated glass probe, one on the inside of a hollow probe in a solution containing Au nanoparticles in the capillary, and a third on the surface where the writing takes place. The three electrodes provide electrical pulses for accurate control of deposition and retraction of the liquid from the surface overcoming the lack of control seen in both dip pen lithography & fountain pen nanochemistry when the tip contacts the surface. With this development, we demonstrate depositing a single 1.3 nm Au nanoparticle onto surfaces such as semiconductors.

  8. Mechanical forces and lymphatic transport.

    PubMed

    Breslin, Jerome W

    2014-11-01

    This review examines the current understanding of how the lymphatic vessel network can optimize lymph flow in response to various mechanical forces. Lymphatics are organized as a vascular tree, with blind-ended initial lymphatics, precollectors, prenodal collecting lymphatics, lymph nodes, postnodal collecting lymphatics and the larger trunks (thoracic duct and right lymph duct) that connect to the subclavian veins. The formation of lymph from interstitial fluid depends heavily on oscillating pressure gradients to drive fluid into initial lymphatics. Collecting lymphatics are segmented vessels with unidirectional valves, with each segment, called a lymphangion, possessing an intrinsic pumping mechanism. The lymphangions propel lymph forward against a hydrostatic pressure gradient. Fluid is returned to the central circulation both at lymph nodes and via the larger lymphatic trunks. Several recent developments are discussed, including evidence for the active role of endothelial cells in lymph formation; recent developments on how inflow pressure, outflow pressure, and shear stress affect the pump function of the lymphangion; lymphatic valve gating mechanisms; collecting lymphatic permeability; and current interpretations of the molecular mechanisms within lymphatic endothelial cells and smooth muscle. An improved understanding of the physiological mechanisms by which lymphatic vessels sense mechanical stimuli, integrate the information, and generate the appropriate response is key for determining the pathogenesis of lymphatic insufficiency and developing treatments for lymphedema.

  9. Forced obliquity variations of Mercury

    NASA Astrophysics Data System (ADS)

    Bills, Bruce G.; Comstock, Robert L.

    2005-04-01

    The spin pole of Mercury is very nearly, but not quite, aligned with its orbit pole. Tidal dissipation has driven the free obliquity to very small values, and the high rate of spin pole precession allows the forced obliquity variations to remain small despite significant variations in orbital inclination and eccentricity. We present calculations of the obliquity for a 10 million year time span, centered on the present. The obliquity remains small, with typical values of 2-4 minutes of arc. The dominant period of obliquity oscillations is 895 kyr, which is also the main period at which the orbital inclination varies. If the orbit pole precession rate were uniform, dissipation would have driven Mercury into a Cassini state, in which the spin pole and orbit pole remain coplanar with the invariable pole, as the spin pole precesses about the moving orbit pole. However, due to the nonuniform orbit precession rate, this simple coplanar configuration is not maintained, except on a mode-by-mode basis. That is, when the orbit pole motion is represented as a sum of normal modes of the coupled oscillations of the planetary system, the spin pole coprecesses with the orbit pole at each modal frequency. This is a generalization of Cassini's second and third laws of lunar rotation to the case of nonuniform orbit precession. We compare results of a linearized obliquity model with a numerical integration of the equations of motion. The two solutions agree at the level of a few seconds of arc.

  10. Custom impression trays. Part II: Removal forces.

    PubMed

    Dixon, D L; Breeding, L C; Moseley, J P

    1994-03-01

    When choosing a material for making custom impression trays, it is important to understand the forces to which the tray will be subjected during removal of the completed impression from the oral cavity. Such forces have not been recorded in the dental literature. The purpose of Part II of this three-part series was to record these forces in vitro, using two different tray-removal methods. A polymethyl methacrylate custom tray was used during this study. Results from this investigation indicated that it is easier to remove a completed impression, made with a custom tray, by a single point of anterior force application (224 N) than by force application evenly around the tray (514 N). The recorded force values from this investigation will be used in Part III of this series.

  11. Retinal Changes Induced by Epiretinal Tangential Forces

    PubMed Central

    Romano, Mario R.; Comune, Chiara; Ferrara, Mariantonia; Cennamo, Gilda; De Cillà, Stefano; Toto, Lisa; Cennamo, Giovanni

    2015-01-01

    Two kinds of forces are active in vitreoretinal traction diseases: tangential and anterior-posterior forces. However, tangential forces are less characterized and classified in literature compared to the anterior-posterior ones. Tangential epiretinal forces are mainly due to anomalous posterior vitreous detachment (PVD), vitreoschisis, vitreopapillary adhesion (VPA), and epiretinal membranes (ERMs). Anomalous PVD plays a key role in the formation of the tangential vectorial forces on the retinal surface as consequence of gel liquefaction (synchysis) without sufficient and fast vitreous dehiscence at the vitreoretinal interface. The anomalous and persistent adherence of the posterior hyaloid to the retina can lead to vitreomacular/vitreopapillary adhesion or to a formation of avascular fibrocellular tissue (ERM) resulting from the proliferation and transdifferentiation of hyalocytes resident in the cortical vitreous remnants after vitreoschisis. The right interpretation of the forces involved in the epiretinal tangential tractions helps in a better definition of diagnosis, progression, prognosis, and surgical outcomes of vitreomacular interfaces. PMID:26421183

  12. Manipulation of particles by weak forces

    NASA Technical Reports Server (NTRS)

    Adler, M. S.; Savkar, S. D.; Summerhayes, H. R.

    1972-01-01

    Quantitative relations between various force fields and their effects on the motion of particles of various sizes and physical characteristics were studied. The forces considered were those derived from light, heat, microwaves, electric interactions, magnetic interactions, particulate interactions, and sound. A physical understanding is given of the forces considered as well as formulae which express how the size of the force depends on the physical and electrical properties of the particle. The drift velocity in a viscous fluid is evaluated as a function of initial acceleration and the effects of thermal random motion are considered. A means of selectively sorting or moving particles by choosing a force system and/or environment such that the particle of interest reacts uniquely was developed. The forces considered and a demonstration of how the initial acceleration, drift velocity, and ultimate particle density distribution is affected by particle, input, and environmental parameters are tabulated.

  13. Force fluctuations in stretching a tethered polymer

    NASA Astrophysics Data System (ADS)

    Varghese, Anoop; Vemparala, Satyavani; Rajesh, R.

    2013-08-01

    The recently proposed fluctuation relation in unfolding forces [Phys. Rev. E1539-375510.1103/PhysRevE.84.060101 84, 060101(R) (2011)] is reexamined taking into account the explicit time dependence of the force distribution. The stretching of a tethered Rouse polymer is exactly solved and the ratio of the probabilities of positive to negative forces is shown to be an exponential in force. Extensive steered molecular dynamics simulations of unfolding of deca alanine peptide confirm the form of fluctuation relation proposed earlier, but with explicit correct time dependence of unfolding forces taken into account. From exact calculations and simulations, a linear dependence of the constant in the exponential of the fluctuation relation on average unfolding forces and inverse temperature is proposed.

  14. Polarization effects in molecular mechanical force fields

    PubMed Central

    Cieplak, Piotr; Dupradeau, François-Yves; Duan, Yong; Wang, Junmei

    2014-01-01

    The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component—polarization energy—and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. PMID:21828594

  15. A tense situation: forcing tumour progression

    PubMed Central

    Butcher, Darci T.; Alliston, Tamara; Weaver, Valerie M.

    2009-01-01

    Cells within tissues are continuously exposed to physical forces including hydrostatic pressure, shear stress, and compression and tension forces. Cells dynamically adapt to force by modifying their behaviour and remodelling their microenvironment. They also sense these forces through mechanoreceptors and respond by exerting reciprocal actomyosin- and cytoskeletal-dependent cell-generated force by a process termed ‘mechanoreciprocity’. Loss of mechanoreciprocity has been shown to promote the progression of disease, including cancer. Moreover, the mechanical properties of a tissue contribute to disease progression, compromise treatment and might also alter cancer risk. Thus, the changing force that cells experience needs to be considered when trying to understand the complex nature of tumorigenesis. PMID:19165226

  16. The force exerted by a fireball

    SciTech Connect

    Makrinich, G.; Fruchtman, A.

    2014-02-15

    The force exerted by a fireball was deduced both from the change of the equilibrium position of a pendulum and from the change in the pendulum oscillation period. That measured force was found to be several times larger than the force exerted by the ions accelerated across the double layer that is assumed to surround the fireball. The force enhancement that is expected by ion-neutral collisions in the fireball is evaluated to be too small to explain the measured enhanced force. Gas pressure increase, due to gas heating through electron-neutral collisions, as recently suggested [Stenzel et al., J. Appl. Phys. 109, 113305 (2011)], is examined as the source for the force enhancement.

  17. Force reflecting hand controller for manipulator teleoperation

    NASA Technical Reports Server (NTRS)

    Bryfogle, Mark D.

    1991-01-01

    A force reflecting hand controller based upon a six degree of freedom fully parallel mechanism, often termed a Stewart Platform, has been designed, constructed, and tested as an integrated system with a slave robot manipulator test bed. A force reflecting hand controller comprises a kinesthetic device capable of transmitting position and orientation commands to a slave robot manipulator while simultaneously representing the environmental interaction forces of the slave manipulator back to the operator through actuators driving the hand controller mechanism. The Stewart Platform was chosen as a novel approach to improve force reflecting teleoperation because of its inherently high ratio of load generation capability to system mass content and the correspondingly high dynamic bandwidth. An additional novelty of the program was to implement closed loop force and torque control about the hand controller mechanism by equipping the handgrip with a six degree of freedom force and torque measuring cell. The mechanical, electrical, computer, and control systems are discussed and system tests are presented.

  18. Force reflecting hand controller for manipulator teleoperation

    NASA Astrophysics Data System (ADS)

    Bryfogle, Mark D.

    1991-12-01

    A force reflecting hand controller based upon a six degree of freedom fully parallel mechanism, often termed a Stewart Platform, has been designed, constructed, and tested as an integrated system with a slave robot manipulator test bed. A force reflecting hand controller comprises a kinesthetic device capable of transmitting position and orientation commands to a slave robot manipulator while simultaneously representing the environmental interaction forces of the slave manipulator back to the operator through actuators driving the hand controller mechanism. The Stewart Platform was chosen as a novel approach to improve force reflecting teleoperation because of its inherently high ratio of load generation capability to system mass content and the correspondingly high dynamic bandwidth. An additional novelty of the program was to implement closed loop force and torque control about the hand controller mechanism by equipping the handgrip with a six degree of freedom force and torque measuring cell. The mechanical, electrical, computer, and control systems are discussed and system tests are presented.

  19. The force exerted by a fireball

    NASA Astrophysics Data System (ADS)

    Makrinich, G.; Fruchtman, A.

    2014-02-01

    The force exerted by a fireball was deduced both from the change of the equilibrium position of a pendulum and from the change in the pendulum oscillation period. That measured force was found to be several times larger than the force exerted by the ions accelerated across the double layer that is assumed to surround the fireball. The force enhancement that is expected by ion-neutral collisions in the fireball is evaluated to be too small to explain the measured enhanced force. Gas pressure increase, due to gas heating through electron-neutral collisions, as recently suggested [Stenzel et al., J. Appl. Phys. 109, 113305 (2011)], is examined as the source for the force enhancement.

  20. Attentional Focusing Instructions and Force Production

    PubMed Central

    Marchant, David C.

    2010-01-01

    Research progress assessing the role of attentional focusing instructions on skill acquisition and performance has lead researchers to apply this approach to force production tasks. Initial converging evidence indicates that force production tasks are sensitive to verbal instruction; externally focused instructions (onto movement outcomes, or onto the object force is being exerted against) are shown to be more beneficial than internally focused instructions (focusing attention onto the movements being executed). These benefits are observed for maximal and accurate force production, as well as the maintenance of force production in prolonged tasks. A range of mechanisms are identified supporting the proposal that an external focus promotes movement efficiency in line with energy and effort conservation. Future research is required to assess how this developing body of work interacts with the broader understanding of psychological and physiological factors implicated in the effective production, maintenance, and limitation of maximal or sub-maximal forces. PMID:21833266

  1. Perceived Submaximal Force Production in Young Adults

    ERIC Educational Resources Information Center

    Jackson, Allen W.; Ludtke, Andrew W.; Martin, Scott B.; Koziris, L. (Perry); Dishman, Rod K.

    2006-01-01

    The purpose of this investigation was to examine the force production patterns using perceived stimulus cues from 10% to 90% of maximal force. In Experiment 1, 54 men (age: 19-34 years) and 53 women (age: 18-37 years) performed leg extensions on a dynamometer at a speed of 60 degrees/s. Participants produced actual forces perceived to be 10-90% of…

  2. The five competitive forces that shape strategy.

    PubMed

    Porter, Michael E

    2008-01-01

    In 1979, a young associate professor at Harvard Business School published his first article for HBR, "How Competitive Forces Shape Strategy." In the years that followed, Michael Porter's explication of the five forces that determine the long-run profitability of any industry has shaped a generation of academic research and business practice. In this article, Porter undertakes a thorough reaffirmation and extension of his classic work of strategy formulation, which includes substantial new sections showing how to put the five forces analysis into practice. The five forces govern the profit structure of an industry by determining how the economic value it creates is apportioned. That value may be drained away through the rivalry among existing competitors, of course, but it can also be bargained away through the power of suppliers or the power of customers or be constrained by the threat of new entrants or the threat of substitutes. Strategy can be viewed as building defenses against the competitive forces or as finding a position in an industry where the forces are weaker. Changes in the strength of the forces signal changes in the competitive landscape critical to ongoing strategy formulation. In exploring the implications of the five forces framework, Porter explains why a fast-growing industry is not always a profitable one, how eliminating today's competitors through mergers and acquisitions can reduce an industry's profit potential, how government policies play a role by changing the relative strength of the forces, and how to use the forces to understand complements. He then shows how a company can influence the key forces in its industry to create a more favorable structure for itself or to expand the pie altogether. The five forces reveal why industry profitability is what it is. Only by understanding them can a company incorporate industry conditions into strategy.

  3. Magnus force effect in optical manipulation

    SciTech Connect

    Cipparrone, Gabriella; Pagliusi, Pasquale; Hernandez, Raul Josue; Provenzano, Clementina

    2011-07-15

    The effect of the Magnus force in optical micromanipulation has been observed. An ad hoc experiment has been designed based on a one-dimensional optical trap that carries angular momentum. The observed particle dynamics reveals the occurrence of this hydrodynamic force, which is neglected in the common approach. Its measured value is larger than the one predicted by the existing theoretical models for micrometric particles and low Reynolds number, showing that the Magnus force can contribute to unconventional optohydrodynamic trapping and manipulation.

  4. Magnus force effect in optical manipulation

    NASA Astrophysics Data System (ADS)

    Cipparrone, Gabriella; Hernandez, Raul Josue; Pagliusi, Pasquale; Provenzano, Clementina

    2011-07-01

    The effect of the Magnus force in optical micromanipulation has been observed. An ad hoc experiment has been designed based on a one-dimensional optical trap that carries angular momentum. The observed particle dynamics reveals the occurrence of this hydrodynamic force, which is neglected in the common approach. Its measured value is larger than the one predicted by the existing theoretical models for micrometric particles and low Reynolds number, showing that the Magnus force can contribute to unconventional optohydrodynamic trapping and manipulation.

  5. The five competitive forces that shape strategy.

    PubMed

    Porter, Michael E

    2008-01-01

    In 1979, a young associate professor at Harvard Business School published his first article for HBR, "How Competitive Forces Shape Strategy." In the years that followed, Michael Porter's explication of the five forces that determine the long-run profitability of any industry has shaped a generation of academic research and business practice. In this article, Porter undertakes a thorough reaffirmation and extension of his classic work of strategy formulation, which includes substantial new sections showing how to put the five forces analysis into practice. The five forces govern the profit structure of an industry by determining how the economic value it creates is apportioned. That value may be drained away through the rivalry among existing competitors, of course, but it can also be bargained away through the power of suppliers or the power of customers or be constrained by the threat of new entrants or the threat of substitutes. Strategy can be viewed as building defenses against the competitive forces or as finding a position in an industry where the forces are weaker. Changes in the strength of the forces signal changes in the competitive landscape critical to ongoing strategy formulation. In exploring the implications of the five forces framework, Porter explains why a fast-growing industry is not always a profitable one, how eliminating today's competitors through mergers and acquisitions can reduce an industry's profit potential, how government policies play a role by changing the relative strength of the forces, and how to use the forces to understand complements. He then shows how a company can influence the key forces in its industry to create a more favorable structure for itself or to expand the pie altogether. The five forces reveal why industry profitability is what it is. Only by understanding them can a company incorporate industry conditions into strategy. PMID:18271320

  6. Force distribution in a semiflexible loop

    NASA Astrophysics Data System (ADS)

    Waters, James T.; Kim, Harold D.

    2016-04-01

    Loops undergoing thermal fluctuations are prevalent in nature. Ringlike or cross-linked polymers, cyclic macromolecules, and protein-mediated DNA loops all belong to this category. Stability of these molecules are generally described in terms of free energy, an average quantity, but it may also be impacted by local fluctuating forces acting within these systems. The full distribution of these forces can thus give us insights into mechanochemistry beyond the predictive capability of thermodynamics. In this paper, we study the force exerted by an inextensible semiflexible polymer constrained in a looped state. By using a simulation method termed "phase-space sampling," we generate the equilibrium distribution of chain conformations in both position and momentum space. We compute the constraint forces between the two ends of the loop in this chain ensemble using Lagrangian mechanics, and show that the mean of these forces is equal to the thermodynamic force. By analyzing kinetic and potential contributions to the forces, we find that the mean force acts in the direction of increasing extension not because of bending stress, but in spite of it. Furthermore, we obtain a distribution of constraint forces as a function of chain length, extension, and stiffness. Notably, increasing contour length decreases the average force, but the additional freedom allows fluctuations in the constraint force to increase. The force distribution is asymmetric and falls off less sharply than a Gaussian distribution. Our work exemplifies a system where large-amplitude fluctuations occur in a way unforeseen by a purely thermodynamic framework, and offers computational tools useful for efficient, unbiased simulation of a constrained system.

  7. An entropic understanding of Coulomb force

    NASA Astrophysics Data System (ADS)

    Cho, Jin-Ho; Kim, Hyosung

    2012-02-01

    Exploiting Verlinde's proposal on the entropic understanding of Newton's law, we show that Coulomb force could also be understood as an entropically emergent force (rather than as a fundamental force). We apply Kaluza-Klein idea to Verlinde's formalism to obtain Coulomb interaction in the lower dimensions. The kinematics concerning the Kaluza-Klein momenta separates the interaction due to the momentum flow from the gravitational interaction. The momentum-charge conversion relation results in the precise form of Coulomb interaction.

  8. Spectroscopic properties of nuclear skyrme energy density functionals.

    PubMed

    Tarpanov, D; Dobaczewski, J; Toivanen, J; Carlsson, B G

    2014-12-19

    We address the question of how to improve the agreement between theoretical nuclear single-particle energies (SPEs) and observations. Empirically, in doubly magic nuclei, the SPEs can be deduced from spectroscopic properties of odd nuclei that have one more or one less neutron or proton. Theoretically, bare SPEs, before being confronted with observations, must be corrected for the effects of the particle vibration coupling (PVC). In the present work, we determine the PVC corrections in a fully self-consistent way. Then, we adjust the SPEs, with PVC corrections included, to empirical data. In this way, the agreement with observations, on average, improves; nevertheless, large discrepancies still remain. We conclude that the main source of disagreement is still in the underlying mean fields, and not in including or neglecting the PVC corrections.

  9. Spectroscopy without quarks: a Skyrme-model sampler

    SciTech Connect

    Karliner, M.; Mattis, M.P.

    1986-06-01

    Focusing on the characteristic energy range of the baryon resonances (typically 1.5 to 2.5 GeV) meson-nucleon scattering in skyrmion models of the nucleon is studied. It is shown that the purely mesonic Lagrangian yields accurate predictions concerning the spectrum of nucleon and delta resonances and the qualitative behavior of the large majority of pion-nucleon and antikaon-nucleon partial wave amplitudes. 16 refs., 7 figs. (LEW)

  10. System analysis of force feedback microscopy

    SciTech Connect

    Rodrigues, Mario S.; Chevrier, Joël; Comin, Fabio

    2014-02-07

    It was shown recently that the Force Feedback Microscope (FFM) can avoid the jump-to-contact in Atomic force Microscopy even when the cantilevers used are very soft, thus increasing force resolution. In this letter, we explore theoretical aspects of the associated real time control of the tip position. We take into account lever parameters such as the lever characteristics in its environment, spring constant, mass, dissipation coefficient, and the operating conditions such as controller gains and interaction force. We show how the controller parameters are determined so that the FFM functions at its best and estimate the bandwidth of the system under these conditions.

  11. Biophysical investigation of the apoptotic force

    NASA Astrophysics Data System (ADS)

    Toyama, Yusuke; Peralta, Xomalin; Wells, Adrienne; Kiehart, Daniel; Edwards, Glenn

    2009-03-01

    Understanding tissue dynamics during development requires knowledge of how cells produce and respond to forces. We have experimentally shown that apoptosis (programmed cell death, which remodels tissue by eliminating cells) also contributes a significant tissue force that promotes cell sheet fusion during dorsal closure in Drosophila development [Science, 321, 1683 (2008)]. By genetically suppressing (enhancing) apoptosis, we slow (increase) the rate of dorsal closure. These changes correlate with the forces produced by the amnioserosa tissue and the rate of seam formation (zipping) for two advancing sheets of lateral epidermis. This apoptotic force is used to drive cell sheet movements during development, a role not classically attributed to apoptosis.

  12. The Bichromatic Force on Small Molecules

    NASA Astrophysics Data System (ADS)

    Aldridge, Leland M.; Galica, Scott E.; Sheets, Donal; Eyler, Edward E.

    2016-06-01

    The bichromatic force is a coherent optical force that has been demonstrated to exceed the saturated radiative force from a monochromatic cw laser by orders of magnitude in atomic systems. By stimulating photon emission between two states, the bichromatic force allows us to increase the photon scattering rate beyond the spontaneous emission rate while also suppressing decays into dark states. We present studies of the efficacy of the bichromatic force on molecular systems using the test cases of B-X (0,0), P11(1.5)/^PQ12(0.5) in CaF and tilde{A}(000)-tilde{X}(000), P11(1.5)/^PQ12(0.5) in the linear triatomic molecule SrOH. Computational results from detailed multilevel models indicate that both of these molecular systems are suitable for the use of the bichromatic force, with neither repumping nor magnetic destabilization of dark states interrupting the coherent cycling at the heart of the force. We comment on the applicability of the bichromatic force to arbitrary polyatomic molecules, and present our experimental progress in demonstrating the bichromatic force on CaF and possibly on SrOH. Supported by the National Science Foundation.

  13. Super-Resolved Traction Force Microscopy (STFM).

    PubMed

    Colin-York, Huw; Shrestha, Dilip; Felce, James H; Waithe, Dominic; Moeendarbary, Emad; Davis, Simon J; Eggeling, Christian; Fritzsche, Marco

    2016-04-13

    Measuring small forces is a major challenge in cell biology. Here we improve the spatial resolution and accuracy of force reconstruction of the well-established technique of traction force microscopy (TFM) using STED microscopy. The increased spatial resolution of STED-TFM (STFM) allows a greater than 5-fold higher sampling of the forces generated by the cell than conventional TFM, accessing the nano instead of the micron scale. This improvement is highlighted by computer simulations and an activating RBL cell model system.

  14. Inhomogeneous radiative forcing of homogeneous greenhouse gases

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Tan, Xiaoxiao; Xia, Yan

    2016-03-01

    Radiative forcing of a homogeneous greenhouse gas (HGG) can be very inhomogeneous because the forcing is dependent on other atmospheric and surface variables. In the case of doubling CO2, the monthly mean instantaneous forcing at the top of the atmosphere is found to vary geographically and temporally from positive to negative values, with the range (-2.5-5.1 W m-2) being more than 3 times the magnitude of the global mean value (2.3 W m-2). The vertical temperature change across the atmospheric column (temperature lapse rate) is found to be the best single predictor for explaining forcing variation. In addition, the masking effects of clouds and water vapor also contribute to forcing inhomogeneity. A regression model that predicts forcing from geophysical variables is constructed. This model can explain more than 90% of the variance of the forcing. Applying this model to analyzing the forcing variation in the Climate Model Intercomparison Project Phase 5 models, we find that intermodel discrepancy in CO2 forcing caused by model climatology leads to considerable discrepancy in their projected change in poleward energy transport.

  15. Undulator with dynamic compensation of magnetic forces

    DOEpatents

    Gluskin, Efim; Trakhtenberg, Emil; Xu, Joseph Z.

    2016-05-31

    A method and apparatus for implementing dynamic compensation of magnetic forces for undulators are provided. An undulator includes a respective set of magnet arrays, each attached to a strongback, and placed on horizontal slides and positioned parallel relative to each other with a predetermined gap. Magnetic forces are compensated by a set of compensation springs placed along the strongback. The compensation springs are conical springs having exponential-force characteristics that substantially match undulator magnetic forces independently of the predetermined gap. The conical springs are positioned along the length of the magnets.

  16. Dynamic force patterns of an undulatory microswimmer

    NASA Astrophysics Data System (ADS)

    Schulman, Rafael D.; Backholm, Matilda; Ryu, William S.; Dalnoki-Veress, Kari

    2014-05-01

    We probe the viscous forces involved in the undulatory swimming of the model organism C. elegans. Using micropipette deflection, we attain direct measurements of lateral and propulsive forces produced in response to the motion of the worm. We observe excellent agreement of the results with resistive force theory, through which we determine the drag coefficients of this organism. The drag coefficients are in accordance with theoretical predictions. Using a simple scaling argument, we obtain a relationship between the size of the worm and the forces that we measure, which well describes our data.

  17. Elastic actuator for precise force control

    DOEpatents

    Pratt, Gill A.; Williamson, Matthew M.

    1997-07-22

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.

  18. Elastic actuator for precise force control

    DOEpatents

    Pratt, G.A.; Williamson, M.M.

    1997-07-22

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section. 30 figs.

  19. Magnetospheric Convection as a Global Force Phenomenon

    NASA Astrophysics Data System (ADS)

    Siscoe, G.

    2007-12-01

    Since 1959 when Thomas Gold showed that motions in the magnetosphere were possible despite plasma being frozen to the magnetic field, magnetospheric convection as a subject of study has gone through several stages (to be reviewed) leading to a recent one that integrates convection into a global system of balance of forces. This area of research has opened by focusing on the region 1 current system as a carrier of force between the solar wind and the ionosphere/thermosphere fluid. An important result to emerge from it is the realization that the force that the solar wind delivers to the magnetosphere in being transferred by the region 1 current system to the ionosphere/thermosphere fluid is amplified by about an order of magnitude. (Vasyliunas refers to this as "leveraging.") The apparent violation of Newton's Third Law results from the main participants in the force balance being not the solar wind force but the JxB force on the ionosphere/thermosphere fluid and the mu-dot-grad-B force on the Earth's dipole. This talk extends the study by considering the global force-balance problem separately for the Pedersen current (a completion of the region 1 problem), the Hall current (thus introducing the region 2 current system), and the Cowling current (bringing in the substorm current wedge). The approach is through representing the ionosphere/thermosphere fluid by the shallow water equations. Novelties that result include force balance by means of tidal bulges and tidal bores.

  20. Force production in the rugby union scrum.

    PubMed

    Quarrie, K L; Wilson, B D

    2000-04-01

    In this study, we examined the relationship between anthropometric, strength and power characteristics of rugby forwards, their body position when scrummaging, and their ability to apply force when scrummaging. Force applied to an instrumented scrum machine was measured for 56 players, both individually and as scrum packs. Measurements of body position for individuals were made by digitizing videotape records of the trials. Forty players subsequently had their anthropometry assessed and completed several strength and power tests. Body mass, each component of somatotype, maximal anaerobic power developed on a cycle ergometer, and isokinetic knee extension strength correlated significantly with individual scrummaging force. A regression model (P < 0.001) including body mass, mesomorphy, maximal anaerobic power and hip angle while in the scrummaging position accounted for 45% of the variance in individual scrummaging force. The packs that produced the largest scrummaging forces were, in general, characterized by a greater pack force to sum of individual force ratio than the packs producing lower forces. Our results emphasize the need for a scrum pack to develop technique and coordination as a unit to maximize scrummaging force. PMID:10824640

  1. Contractile forces in tumor cell migration.

    PubMed

    Mierke, Claudia Tanja; Rösel, Daniel; Fabry, Ben; Brábek, Jan

    2008-09-01

    Cancer is a deadly disease primarily because of the ability of tumor cells to spread from the primary tumor, to invade into the connective tissue, and to form metastases at distant sites. In contrast to cell migration on a planar surface where large cell tractions and contractile forces are not essential, tractions and forces are thought to be crucial for overcoming the resistance and steric hindrance of a dense three-dimensional connective tissue matrix. In this review, we describe recently developed biophysical tools, including 2-D and 3-D traction microscopy to measure contractile forces of cells. We discuss evidence indicating that tumor cell invasiveness is associated with increased contractile force generation.

  2. Theory of multifrequency atomic force microscopy.

    PubMed

    Lozano, Jose R; Garcia, Ricardo

    2008-02-22

    We develop a theory that explains the origin of the high force sensitivity observed in multifrequency force microscopy experiments. The ability of the microscope to extract complementary information on the surface properties is increased by the simultaneous excitation of several flexural cantilever modes. The force sensitivity in multifrequency operation is about 0.2 pN. The analytical model identifies the virial and the energy dissipated by the tip-surface forces as the parameters responsible for the material contrast. The agreement obtained among the theory, experiments and numerical simulations validates the model.

  3. Forces predicted at the ankle during running.

    PubMed

    Burdett, R G

    1982-01-01

    A biomechanical model of the ankle joint was developed and was used to predict the forces at the ankle during the stance phase of running. Measurements from five cadavers were averaged to obtain insertion points and directions of pull of equivalent tendons with respect to the assumed center of the ankle joint. A minimum joint force solution was obtained by assuming that only two equivalent muscle groups could exert force at one time. Three subjects ran at 4.47 m/s across a force platform that recorded the external forces and moments acting on the foot. Cinematography was used to measure the foot and leg positions during stance. Peak resultant joint forces ranging from 9.0 to 13.3 times body weight and peak Achilles tendon forces ranging from 5.3 to 10.0 times body weight were predicted. Small variations in some cases resulted in large differences in predicted forces. The highest tendon forces predicted exceeded those reported to cause damage to cadaver tendons in other studies. PMID:7132650

  4. Cutaneous mechanisms of isometric ankle force control.

    PubMed

    Choi, Julia T; Lundbye-Jensen, Jesper; Leukel, Christian; Nielsen, Jens Bo

    2013-07-01

    The sense of force is critical in the control of movement and posture. Multiple factors influence our perception of exerted force, including inputs from cutaneous afferents, muscle afferents and central commands. Here, we studied the influence of cutaneous feedback on the control of ankle force output. We used repetitive electrical stimulation of the superficial peroneal (foot dorsum) and medial plantar nerves (foot sole) to disrupt cutaneous afferent input in 8 healthy subjects. We measured the effects of repetitive nerve stimulation on (1) tactile thresholds, (2) performance in an ankle force-matching and (3) an ankle position-matching task. Additional force-matching experiments were done to compare the effects of transient versus continuous stimulation in 6 subjects and to determine the effects of foot anesthesia using lidocaine in another 6 subjects. The results showed that stimulation decreased cutaneous sensory function as evidenced by increased touch threshold. Absolute dorsiflexion force error increased without visual feedback during peroneal nerve stimulation. This was not a general effect of stimulation because force error did not increase during plantar nerve stimulation. The effects of transient stimulation on force error were greater when compared to continuous stimulation and lidocaine injection. Position-matching performance was unaffected by peroneal nerve or plantar nerve stimulation. Our results show that cutaneous feedback plays a role in the control of force output at the ankle joint. Understanding how the nervous system normally uses cutaneous feedback in motor control will help us identify which functional aspects are impaired in aging and neurological diseases.

  5. Interfacial force microscopy: Application to polymer surfaces

    SciTech Connect

    HOUSTON,JACK E.; WINTER,R.M.

    2000-05-16

    Scanning-probe microscopies (SPM) are presently widely used in remarkably diverse applications and, as evidenced by this symposium these techniques are rapidly expanding into the important areas of polymer surfaces and interfaces. The Atomic Force Microscope (AFM) is presently the most widely used of the scanning-probe techniques. However, the AFM's range of application suffers from an inherent mechanical instability in its deflection force sensor. The instability problem has been overcome by the development of the Interfacial Force Microscope (IFM), which utilizes a force-feedback sensor concept. In the following, the authors present several examples of polymer applications to illustrate the utility of the IFM sensor concept.

  6. Note: Artificial neural networks for the automated analysis of force map data in atomic force microscopy

    SciTech Connect

    Braunsmann, Christoph; Schäffer, Tilman E.

    2014-05-15

    Force curves recorded with the atomic force microscope on structured samples often show an irregular force versus indentation behavior. An analysis of such curves using standard contact models (e.g., the Sneddon model) would generate inaccurate Young's moduli. A critical inspection of the force curve shape is therefore necessary for estimating the reliability of the generated Young's modulus. We used a trained artificial neural network to automatically recognize curves of “good” and of “bad” quality. This is especially useful for improving the analysis of force maps that consist of a large number of force curves.

  7. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy.

    PubMed

    Leite, Fabio L; Bueno, Carolina C; Da Róz, Alessandra L; Ziemath, Ervino C; Oliveira, Osvaldo N

    2012-10-08

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of afs, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution.

  8. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy

    PubMed Central

    Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.

    2012-01-01

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925

  9. Rupture force of adsorbed self-assembled surfactant layers. Effect of the dielectric exchange force

    NASA Astrophysics Data System (ADS)

    Teschke, O.; Ceotto, G.; de Souza, E. F.

    2001-08-01

    The tip applied force necessary to obtain tip/substrate contact, i.e., rupture force between adsorbed layers of self-assembled surfactant films and atomic force microscope (AFM) tips in water has been measured. A substantial contribution of this rupture force is due to the dielectric exchange force (DEF). The DEF model is in agreement with the observation that the surfactant layer rupture forces are smaller in the thickest layers, where the compactness of the adsorbed film results in the smallest values of the dielectric permittivity. Within experimental accuracy a dielectric permittivity value of ˜4 for bilayers and of ˜36 for monolayers is found.

  10. Muon Collider Task Force Report

    SciTech Connect

    Ankenbrandt, C.; Alexahin, Y.; Balbekov, V.; Barzi, E.; Bhat, C.; Broemmelsiek, D.; Bross, A.; Burov, A.; Drozhdin, A.; Finley, D.; Geer, S.; /Fermilab /Argonne /Brookhaven /Jefferson Lab /LBL, Berkeley /MUONS Inc., Batavia /UCLA /UC, Riverside /Mississippi U.

    2007-12-01

    Muon Colliders offer a possible long term path to lepton-lepton collisions at center-of-mass energies {radical}s {ge} 1 TeV. In October 2006 the Muon Collider Task Force (MCTF) proposed a program of advanced accelerator R&D aimed at developing the Muon Collider concept. The proposed R&D program was motivated by progress on Muon Collider design in general, and in particular, by new ideas that have emerged on muon cooling channel design. The scope of the proposed MCTF R&D program includes muon collider design studies, helical cooling channel design and simulation, high temperature superconducting solenoid studies, an experimental program using beams to test cooling channel RF cavities and a 6D cooling demonstration channel. The first year of MCTF activities are summarized in this report together with a brief description of the anticipated FY08 R&D activities. In its first year the MCTF has made progress on (1) Muon Collider ring studies, (2) 6D cooling channel design and simulation studies with an emphasis on the HCC scheme, (3) beam preparations for the first HPRF cavity beam test, (4) preparations for an HCC four-coil test, (5) further development of the MANX experiment ideas and studies of the muon beam possibilities at Fermilab, (6) studies of how to integrate RF into an HCC in preparation for a component development program, and (7) HTS conductor and magnet studies to prepare for an evaluation of the prospects for of an HTS high-field solenoid build for a muon cooling channel.

  11. Nucleation in Synoptically Forced Cirrostratus

    NASA Technical Reports Server (NTRS)

    Lin, R.-F.; Starr, D. OC.; Reichardt, J.; DeMott, P. J.

    2004-01-01

    Formation and evolution of cirrostratus in response to weak, uniform and constant synoptic forcing is simulated using a one-dimensional numerical model with explicit microphysics, in which the particle size distribution in each grid box is fully resolved. A series of tests of the model response to nucleation modes (homogeneous-freezing-only/heterogeneous nucleation) and heterogeneous nucleation parameters are performed. In the case studied here, nucleation is first activated in the prescribed moist layer. A continuous cloud-top nucleation zone with a depth depending on the vertical humidity gradient and one of the nucleation parameters is developed afterward. For the heterogeneous nucleation cases, intermittent nucleation zones in the mid-upper portion of the cloud form where the relative humidity is on the rise, because existent ice crystals do not uptake excess water vapor efficiently, and ice nuclei (IN) are available. Vertical resolution as fine as 1 m is required for realistic simulation of the homogeneous-freezing-only scenario, while the model resolution requirement is more relaxed in the cases where heterogeneous nucleation dominates. Bulk microphysical and optical properties are evaluated and compared. Ice particle number flux divergence, which is due to the vertical gradient of the gravity-induced particle sedimentation, is constantly and rapidly changing the local ice number concentration, even in the nucleation zone. When the depth of the nucleation zone is shallow, particle number concentration decreases rapidly as ice particles grow and sediment away from the nucleation zone. When the depth of the nucleation zone is large, a region of high ice number concentration can be sustained. The depth of nucleation zone is an important parameter to be considered in parametric treatments of ice cloud generation.

  12. 11. COPY OF 1970 AERIAL PHOTOGRAPH OF LORING AIR FORCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. COPY OF 1970 AERIAL PHOTOGRAPH OF LORING AIR FORCE BASE. PHOTOGRAPH LOCATED AT AIR FORCE BASE CONVERSION AGENCY, LORING AIR FORCE BASE, MAINE. - Loring Air Force Base, Airfield, Central portion of base, Limestone, Aroostook County, ME

  13. Feasibility of measuring antigen-antibody interaction forces using a scanning force microscope.

    PubMed

    Stuart, J K; Hlady, V

    1999-08-31

    The molecular affinity scanning force microscopy (MASFM) described in this study was developed in an effort to test the possibility of antigen-antibody binding measurement using force-separation distance profiles. The MASFM configuration was comprised of a spherical glass bead as an MASFM probe, to which the fluorescein antigen has been covalently attached, and a silicon dioxide-based substrate, to which the antifluorescyl IgG antibody was covalently bound. The bead was glued to the tip of a commercial SFM cantilever. Adhesion forces have been measured between two different specific antigen-antibody pairs and between nonspecific surfaces bearing only glycidoxypropylsilane immobilization chemistry. In force-separation (F-s) measurements, nonspecific forces displayed relatively few force discontinuities and mean adhesion forces lower than those found for specific antigen-antibody measurements. Force-separation profiles measured between specific antigen-antibody pairs showed many discontinuities and had higher mean forces. Positive controls revealed that the mean forces were slightly reduced by the addition of free ligand. The magnitude of mean forces did not correlate with the respective activation enthalpies of the proteins, as would be expected. At lower force values the force histograms for the specific pairs and for positive controls were indistinguishable. None of the force-separation data sets could fit a Poisson discrete-force model. This statistical analysis showed a large relative contribution from nonspecific interactions. It is concluded that the use of the large sphere as an SFM probe is counterproductive: while the large sphere does sample a larger number of specific interactions during each measurement, it also samples at the same time a large proportion of nonspecific forces. The presence of the nonspecific force contributions is likely due to the deformation of the polymerized GPS spacer layer which is thought to be delaminated from the surface upon

  14. Muscle forces during locomotion in kangaroo rats: force platform and tendon buckle measurements compared.

    PubMed

    Biewener, A A; Blickhan, R; Perry, A K; Heglund, N C; Taylor, C R

    1988-07-01

    The muscle forces and stresses occurring during normal locomotor activity in kangaroo rats are compared with the peak isometric force developed by the same muscles in situ. Two methods were used simultaneously to determine the stresses (force/cross-sectional area) acting in the ankle extensors during steady-speed hopping and during jumps when animals were startled: a direct measurement using a force buckle surgically implanted around a tendon; and an indirect measurement using a force platform/ciné analysis technique. We obtained essentially the same values with the two techniques. We found that at slow speeds (0.7 m s-1) the ankle extensor muscles of kangaroo rats exerted 20% of the maximum isometric force developed when the muscles were stimulated via the tibial nerve. This increased to 53% at higher speeds (1.9 m s-1). At the animals's preferred hopping speed (1.5 m s-1), peak force was approximately 40% of maximum isometric force. In jumps when animals were startled, peak forces as high as 175% of the maximal elicited isometric force were recorded. These high forces always occurred when the muscles were being stretched. It appears that kangaroo rats utilize nearly the entire range of muscle force possible during normal locomotor events (i.e. up to 175% of maximum isometric force when muscles are stretched).

  15. Rigid two-axis MEMS force plate for measuring cellular traction force

    NASA Astrophysics Data System (ADS)

    Takahashi, Hidetoshi; Jung, Uijin G.; Kan, Tetsuo; Tsukagoshi, Takuya; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-10-01

    Cellular traction force is one of the important factors for understanding cell behaviors, such as spreading, migration and differentiation. Cells are known to change their behavior according to the mechanical stiffness of the environment. However, the measurement of cell traction forces on a rigid environment has remained difficult. This paper reports a micro-electromechanical systems (MEMS) force plate that provides a cellular traction force measurement on a rigid substrate. Both the high force sensitivity and high stiffness of the substrate were obtained using piezoresistive sensing elements. The proposed force plate consists of a 70 µm  ×  15 µm  ×  5 µm base as the substrate for cultivating a bovine aortic smooth muscle cell, and the supporting beams with piezoresistors on the sidewall and the surface were used to measure the forces in both the horizontal and vertical directions. The spring constant and force resolution of the fabricated force plate in the horizontal direction were 0.2 N m-1 and less than 0.05 µN, respectively. The cell traction force was measured, and the traction force increased by approximately 1 µN over 30 min. These results demonstrate that the proposed force plate is applicable as an effective traction force measurement.

  16. The nature of constant and cyclic force production: unintentional force-drift characteristics.

    PubMed

    Ambike, Satyajit; Mattos, Daniela; Zatsiorsky, Vladimir M; Latash, Mark L

    2016-01-01

    We explored unintentional changes in forces during performance of constant and cyclic force-production tasks (F-tasks) after visual feedback removal. Based on earlier studies, we expected all force parameters to drop exponentially with time. We also explored possible role of working memory in the force drop phenomena. Healthy subjects performed constant or cyclic isometric F-tasks with the index finger under visual feedback. The cyclic task was paced by a metronome. Removing visual feedback resulted in a consistent force drop in constant F-tasks and a qualitatively similar drift in the mean force in the cyclic F-task. Both were slow with characteristic times of about 10-20 s. In contrast, force amplitude in the cyclic F-task increased quickly (within 1-2 s). When the subjects were asked to stop producing force for 5 s after the visual feedback disappeared and then resume force production, no downward force drift was seen in constant F-tasks, while in cyclic F-tasks, the drift of the mean force was present and an exaggerated increase in force amplitude was also observed. We conclude that while working memory limitations may influence cyclic F-tasks, their role in determining the force drift in constant F-tasks is limited. The results of both experiments are interpreted within the referent configuration hypothesis supplemented with an idea of unintentional drift of referent coordinates (RC-back-coupling) induced by differences between the referent and actual body configurations. PMID:26419663

  17. 14 CFR 1203b.106 - Use of deadly force.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Use of deadly force. 1203b.106 Section 1203b... AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.106 Use of deadly force. Deadly force shall be used only in those circumstances where the security force officer reasonably believes...

  18. 14 CFR 1203b.106 - Use of deadly force.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Use of deadly force. 1203b.106 Section... AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.106 Use of deadly force. Deadly force shall be used only in those circumstances where the security force officer reasonably believes...

  19. 14 CFR 1203b.106 - Use of deadly force.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Use of deadly force. 1203b.106 Section... AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.106 Use of deadly force. Deadly force shall be used only in those circumstances where the security force officer reasonably believes...

  20. 14 CFR § 1203b.106 - Use of deadly force.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Use of deadly force. § 1203b.106 Section Â... AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.106 Use of deadly force. NASA security force personnel may use deadly force only when necessary, that is, when the officer has a...

  1. 14 CFR 1203b.106 - Use of deadly force.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Use of deadly force. 1203b.106 Section... AUTHORITY AND USE OF FORCE BY NASA SECURITY FORCE PERSONNEL § 1203b.106 Use of deadly force. Deadly force shall be used only in those circumstances where the security force officer reasonably believes...

  2. 49 CFR 193.2067 - Wind forces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Wind forces. 193.2067 Section 193.2067...: FEDERAL SAFETY STANDARDS Siting Requirements § 193.2067 Wind forces. (a) LNG facilities must be designed to withstand without loss of structural or functional integrity: (1) The direct effect of wind...

  3. Mathematics and Science Task Force Report.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Green Bay. Inst. for Learning Partnership.

    This document presents a report from the Mathematics and Science Task Force. The Task Force held its initial meeting on January 27, 1999 to develop essential competencies in content knowledge and pedagogy in four areas: (1) elementary mathematics; (2) secondary mathematics; (3) elementary science; and (4) secondary science. Initially Task Force…

  4. An improved proximity force approximation for electrostatics

    SciTech Connect

    Fosco, Cesar D.; Lombardo, Fernando C.; Mazzitelli, Francisco D.

    2012-08-15

    A quite straightforward approximation for the electrostatic interaction between two perfectly conducting surfaces suggests itself when the distance between them is much smaller than the characteristic lengths associated with their shapes. Indeed, in the so called 'proximity force approximation' the electrostatic force is evaluated by first dividing each surface into a set of small flat patches, and then adding up the forces due two opposite pairs, the contributions of which are approximated as due to pairs of parallel planes. This approximation has been widely and successfully applied in different contexts, ranging from nuclear physics to Casimir effect calculations. We present here an improvement on this approximation, based on a derivative expansion for the electrostatic energy contained between the surfaces. The results obtained could be useful for discussing the geometric dependence of the electrostatic force, and also as a convenient benchmark for numerical analyses of the tip-sample electrostatic interaction in atomic force microscopes. - Highlights: Black-Right-Pointing-Pointer The proximity force approximation (PFA) has been widely used in different areas. Black-Right-Pointing-Pointer The PFA can be improved using a derivative expansion in the shape of the surfaces. Black-Right-Pointing-Pointer We use the improved PFA to compute electrostatic forces between conductors. Black-Right-Pointing-Pointer The results can be used as an analytic benchmark for numerical calculations in AFM. Black-Right-Pointing-Pointer Insight is provided for people who use the PFA to compute nuclear and Casimir forces.

  5. Time-resolved force distribution analysis

    PubMed Central

    2013-01-01

    Background Biomolecules or other complex macromolecules undergo conformational transitions upon exposure to an external perturbation such as ligand binding or mechanical force. To follow fluctuations in pairwise forces between atoms or residues during such conformational changes as observed in Molecular Dynamics (MD) simulations, we developed Time-Resolved Force Distribution Analysis (TRFDA). Results The implementation focuses on computational efficiency and low-memory usage and, along with the wide range of output options, makes possible time series analysis of pairwise forces variation in long MD simulations and for large molecular systems. It also provides an exact decomposition of pairwise forces resulting from 3- and 4-body potentials and a unified treatment of pairwise forces between atoms or residues. As a proof of concept, we present a stress analysis during unfolding of ubiquitin in a force-clamp MD simulation. Conclusions TRFDA can be used, among others, in tracking signal propagation at atomic level, for characterizing dynamical intermolecular interactions (e.g. protein-ligand during flexible docking), in development of force fields and for following stress distribution during conformational changes. PMID:24499624

  6. Current and Emerging Forces Impacting Special Education.

    ERIC Educational Resources Information Center

    Yates, James R.

    Using the methodology of force field analysis, the paper develops possible futures for special education based on current trends. Demographic forces impacting special education include age changes, ethnicity changes, the needs of emerging language minorities, specific change in the youth population, environmental factors and the incidence of…

  7. Nanobubbles and the nanobubble bridging capillary force.

    PubMed

    Hampton, M A; Nguyen, A V

    2010-02-26

    Interactions between hydrophobic surfaces at nanometer separation distances in aqueous solutions are important in a number of biological and industrial processes. Force spectroscopy studies, most notably with the atomic force microscope and surface-force apparatus, have found the existence of a long range hydrophobic attractive force between hydrophobic surfaces in aqueous conditions that cannot be explained by classical colloidal science theories. Numerous mechanisms have been proposed for the hydrophobic force, but in many cases the force is an artifact due to the accumulation of submicroscopic bubbles at the liquid-hydrophobic solid interface, the so called nanobubbles. The coalescence of nanobubbles as hydrophobic surfaces approach forms a gaseous capillary bridge, and thus a capillary force. The existence of nanobubbles has been highly debated over the last 15 years. To date, experimental evidence is sound but a theoretical understanding is still lacking. It is the purpose of this review to bring together the many experimental results on nanobubbles and the resulting capillary force in order to clarify these phenomena. A review of pertinent nanobubble stability and formation theories is also presented.

  8. The coordinate system for force control.

    PubMed

    Saha, Devjani J; Hu, Xiao; Perreault, Eric; Murray, Wendy; Mussa-Ivaldi, Ferdinando A

    2015-03-01

    The primary objective of this study was to establish the coordinate frame for force control by observing how parameters of force that are not explicitly specified by a motor task vary across the workspace. We asked subjects to apply a force of a specific magnitude with their hand. Subjects could complete the task by applying forces in any direction of their choice in the transverse plane. They were tested with the arm in seven different configurations. To estimate whether contact forces are represented in extrinsic or intrinsic coordinates, we applied the parallel transport method of differential geometry to the net joint torques applied during the task. This approach allowed us to compare the force variability observed at different arm configurations with the force variability that would be expected if the control system were applying an invariant pattern of joint torques at the tested configurations. The results indicate that for the majority of the subjects, the predominant pattern was consistent with an invariant representation in joint coordinates. However, two out of eleven subjects also demonstrated a preference for extrinsic representation. These findings suggest that the central nervous system can represent contact forces in both coordinate frames, with a prevalence toward intrinsic representations.

  9. NASA/Air Force Cost Model: NAFCOM

    NASA Technical Reports Server (NTRS)

    Winn, Sharon D.; Hamcher, John W. (Technical Monitor)

    2002-01-01

    The NASA/Air Force Cost Model (NAFCOM) is a parametric estimating tool for space hardware. It is based on historical NASA and Air Force space projects and is primarily used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels.

  10. Verbal regulation of grip force in preschoolers.

    PubMed

    Haishi, Koichi; Okuzumi, Hideyuki; Kokubun, Mitsuru; Komatsu, Ayumi; Kitajima, Yoshio; Hosobuchi, Tomio

    2009-04-01

    The purpose of this study was to clarify the developmental processes in verbal regulation by preschool children. Participants were 152 typically developing children (74 boys, 78 girls) between 4 and 6 years of age (M = 5.3, SD = .8), and 30 healthy adults (15 men, 15 women) between 19 and 26 years of age (M = 20.8, SD = 1.4). In Exp. 1, the task was to regulate grip force based on quantitative instruction which implies using a scale for regulation. Participants were required to produce a half-grip force of the maximum (Task 1). In Exp. 2, the task was grip-force regulation based on nonquantitative instruction. The participants were asked to respond with a slightly weaker grip force than the maximum (Task 2) and then a further weaker grip force (Task 3) than that used on Task 2. The regulation rates produced the extent of regulation and suggest regulation by quantitative instruction may develop earlier than by nonquantitative instruction. Also, precise grip-force regulation based on the semantic aspect of instruction may be difficult for young children. The developmental changes in the rate of performance especially observed in children of 4 to 6 years indicate that the tendency to use too much grip force disappears during this preschool period. In addition, too little grip force in regulation may reflect the developmental process toward fine grasping movements. PMID:19544959

  11. ANALYSIS OF THE MAGNETIZED FRICTION FORCE.

    SciTech Connect

    FEDOTOV, A.V.; BRUHWILER, D.L.; SIDORIN, A.O.

    2006-05-29

    A comprehensive examination of theoretical models for the friction force, in use by the electron cooling community, was performed. Here, they present their insights about the models gained as a result of comparison between the friction force formulas and direct numerical simulations, as well as studies of the cooling process as a whole.

  12. 75 FR 28185 - Armed Forces Day, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... thirty-fourth. (Presidential Sig.) [FR Doc. 2010-12267 Filed 5-19-10; 8:45 am] Billing code 3195-W0-P ...#0;#0; ] Proclamation 8522 of May 14, 2010 Armed Forces Day, 2010 By the President of the United... Armed Forces Day, we pay tribute to these patriots who risk their lives, sometimes giving their...

  13. Air Force Training for Instructional Systems Development.

    ERIC Educational Resources Information Center

    Calkins, Ronald R.

    Detailed information is provided about the Air Force Instructional System Development (ISD) Model to supplement the 1979 AECT presentation made in New Orleans. Information of interest to instructional systems designers includes (1) a short overview of the Air Force ISD model, (2) an extended example which demonstrates the Air Training Command…

  14. Associate Degree Standards. Task Force Report.

    ERIC Educational Resources Information Center

    Minnesota Higher Education Coordinating Board, St. Paul.

    Developed by the Minnesota Higher Education Coordinating Board's (MHECB's) Task Force on Associate Degree Standards, this report recommends standards for all associate degrees granted by Minnesota post-secondary institutions. Chapter I provides introductory and background information on the creation and legislative charge of the task force and…

  15. Studying the Frictional Force Directions via Bristles

    ERIC Educational Resources Information Center

    Prasitpong, S.; Chitaree, R.; Rakkapao, S.

    2010-01-01

    We present simple apparatus designed to help Thai high school students visualize the directions of frictional forces. Bristles of toothbrushes, paintbrushes and scrubbing brushes are used to demonstrate the frictional forces acting in a variety of situations. These demonstrations, when followed by discussion of free-body diagrams, were found to be…

  16. Radiation Forces and Torques without Stress (Tensors)

    ERIC Educational Resources Information Center

    Bohren, Craig F.

    2011-01-01

    To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…

  17. Bilateral buccolingual forces produced by extraoral traction.

    PubMed

    Baldini, G; Haack, D C; Weinstein, S

    1981-10-01

    Extraoral appliances have been typically employed to deliver force systems to move teeth in directions parallel to the sagittal plane of the face. Their potential for concurrently producing transverse (buccal or lingual) movement has still not been fully explored. This study considers theoretical and experimental aspects of the magnitude and direction of such forces and related moments.

  18. Forces and torques between nonintersecting straight currents

    NASA Astrophysics Data System (ADS)

    Binder, P.-M.; Cross, Felicity; Silva, J. K.

    2016-07-01

    We analyse two very long current-carrying straight wires that point in arbitrary directions without touching. We find general expressions for the forces and torques for arbitrary points on one wire due to the other. This allows us to make calculations for the overall forces and torques and statements about the stability of parallel and anti-parallel current arrangements.

  19. Examining the Forces That Guide Teaching Decisions

    ERIC Educational Resources Information Center

    Griffith, Robin; Massey, Dixie; Atkinson, Terry S.

    2013-01-01

    This study of two successful first grade teachers examines the forces that guide their instructional decisions. Findings reveal the complexities of forces that influence the moment-to-moment decisions made by these teachers. Teachers repeatedly attempted to balance their desires to be student-centered while addressing state standards and…

  20. FORCE Containing Vocational Training in Europe. Vademecum.

    ERIC Educational Resources Information Center

    FORCE Technical Assistance Office, Brussels (Belgium).

    The aim of the FORCE program is to promote the continuing vocational training of workers in Member States of the European Community (EC). FORCE offers assistance at national and EC levels in implementing measures to enhance both the development and quality of continuing training. Measures at the national level comprise the preparation of regular…