Park, Kwangwook; Kang, Seokjin; Ravindran, Sooraj; ...
2017-01-16
Here, we report changes at the interface between Ga-rich/In-rich GaInP vertical slabs in laterally composition modulated (LCM) GaInP as a function of the V/III ratio. The photoluminescence exhibits satellite peaks, indicating that the parasitic potential between the GaInP vertical slabs disappears as the V/III ratio decreases. However, a high V/III ratio leads to an abrupt interface, increasing the parasitic potential because of the phosphorus-amount-dependent diffusion of group-III atoms during growth. These results suggest that the V/III ratio is an important parameter that must be wisely chosen in designing optoelectronic devices incorporating LCM structure.
Yang, Yanmin; Zhong, Kehua; Xu, Guigui; Zhang, Jian-Min; Huang, Zhigao
2017-07-31
The Electronic structure of PbPdO 2 with (002) and (211) preferred orientations were investigated using first-principles calculation. The calculated results indicate that, (002) and (211) orientations exhibit different electric field dependence of band-gap and carrier concentration. The small band gap and more sensitive electric field modulation of band gap were found in (002) orientation. Moreover, the electric field modulation of the resistivity up to 3-4 orders of magnitude is also observed in (002) slab, which reveals that origin of colossal electroresistance. Lastly, electric field modulation of band gap is well explained. This work should be significant for repeating the colossal electroresistance.
Semi-analytical model for a slab one-dimensional photonic crystal
NASA Astrophysics Data System (ADS)
Libman, M.; Kondratyev, N. M.; Gorodetsky, M. L.
2018-02-01
In our work we justify the applicability of a dielectric mirror model to the description of a real photonic crystal. We demonstrate that a simple one-dimensional model of a multilayer mirror can be employed for modeling of a slab waveguide with periodically changing width. It is shown that this width change can be recalculated to the effective refraction index modulation. The applicability of transfer matrix method of reflection properties calculation was demonstrated. Finally, our 1-D model was employed to analyze reflection properties of a 2-D structure - a slab photonic crystal with a number of elliptic holes.
Development of thermally controlled HALNA DPSSL for inertial fusion energy
NASA Astrophysics Data System (ADS)
Matsumoto, Osamu; Yasuhara, Ryo; Kurita, Takashi; Ikegawa, Tadashi; Sekine, Takashi; Kawashima, Toshiyuki; Kawanaka, Junji; Norimatsu, Takayoshi; Miyanaga, Noriaki; Izawa, Yasukazu; Nakatsuka, Masahiro; Miyamoto, Masahiro; Kan, Hirofumi; Furukawa, Hiroyuki; Motokoshi, Shinji
2006-02-01
We have been developing a high average-power laser system for science and industry applications that can generate an output of 20 J per pulse at 10-Hz operation. Water-cooled Nd:glass zig-zag slab is pumped with 803-nm AlGaAs laser-diode modules. To efficiently extract energy from the laser medium, the laser beam alternately passes through dual zig-zag slab amplifier modules. Twin LD modules equipped on each slab amplifier module pump the laser medium with a peak power density of 2.5 kW/cm2. In high power laser system, thermal load in the laser medium causes serious thermal effects. We arranged cladding glasses on the top and bottom of the laser slab to reduce thermal effects.
Optomechanical coupling in phoxonic–plasmonic slab cavities with periodic metal strips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Tzy-Rong; Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan; Huang, Yin-Chen
2015-05-07
We theoretically investigate the optomechanical (OM) coupling of submicron cavities formed in one-dimensional phoxonic–plasmonic slabs. The phoxonic–plasmonic slabs are structured by depositing periodic Ag strips onto the top surfaces of dielectric GaAs slabs to produce dual band gaps for both electromagnetic and acoustic waves, thereby inducing the coupling of surface plasmons with photons for tailoring the OM coupling. We quantify the OM coupling by calculating the temporal modulation of the optical resonance wavelength with the acoustic phonon-induced photoelastic (PE) and moving-boundary (MB) effects. We also consider the appearance of a uniform Ag layer on the bottom surface of the slabsmore » to modulate the photonic–plasmonic coupling. The results show that the PE and MB effects can be constructive or destructive in the overall OM coupling, and their magnitudes depend not only on the quality factors of the resonant modes but also on the mode area, mode overlap, and individual symmetries of the photonic–phononic mode pairs. Lowering the mode area could be effective for enhancing the OM coupling of subwavelength photons and phonons. This study introduces possible engineering applications to achieve enhanced interaction between photons and phonons in nanoscale OM devices.« less
Cleanliness for the NIF 1ω Laser Amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spaeth, M. L.; Manes, K. R.; Honig, J.
During the years before the National Ignition Facility (NIF) laser system, a set of generally accepted cleaning procedures had been developed for the large 1ω amplifiers of an inertial confinement fusion laser, and up until 1999 similar procedures were planned for NIF. Several parallel sets of test results were obtained from 1992 to 1999 for large amplifiers using these accepted cleaning procedures in the Beamlet physics test bed and in the Amplifier Module Prototype Laboratory (AMPLAB), a four-slab-high prototype large amplifier structure. Both of these showed damage to their slab surfaces that, if projected to operating conditions for NIF, wouldmore » lead to higher than acceptable slab-refurbishment rates. Finally, this study tracks the search for the smoking gun origin of this damage and describes the solution employed in NIF for avoiding flashlamp-induced aerosol damage to its 1ω amplifier slabs.« less
Cleanliness for the NIF 1ω Laser Amplifiers
Spaeth, M. L.; Manes, K. R.; Honig, J.
2017-03-23
During the years before the National Ignition Facility (NIF) laser system, a set of generally accepted cleaning procedures had been developed for the large 1ω amplifiers of an inertial confinement fusion laser, and up until 1999 similar procedures were planned for NIF. Several parallel sets of test results were obtained from 1992 to 1999 for large amplifiers using these accepted cleaning procedures in the Beamlet physics test bed and in the Amplifier Module Prototype Laboratory (AMPLAB), a four-slab-high prototype large amplifier structure. Both of these showed damage to their slab surfaces that, if projected to operating conditions for NIF, wouldmore » lead to higher than acceptable slab-refurbishment rates. Finally, this study tracks the search for the smoking gun origin of this damage and describes the solution employed in NIF for avoiding flashlamp-induced aerosol damage to its 1ω amplifier slabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Kwangwook; Kang, Seokjin; Ravindran, Sooraj
Here, we report changes at the interface between Ga-rich/In-rich GaInP vertical slabs in laterally composition modulated (LCM) GaInP as a function of the V/III ratio. The photoluminescence exhibits satellite peaks, indicating that the parasitic potential between the GaInP vertical slabs disappears as the V/III ratio decreases. However, a high V/III ratio leads to an abrupt interface, increasing the parasitic potential because of the phosphorus-amount-dependent diffusion of group-III atoms during growth. These results suggest that the V/III ratio is an important parameter that must be wisely chosen in designing optoelectronic devices incorporating LCM structure.
Improved Nazca slab structure from teleseismic P-wave tomography along the Andean margin
NASA Astrophysics Data System (ADS)
Portner, D. E.; Beck, S. L.; Scire, A. C.; Zandt, G.
2017-12-01
South America marks the longest continuous ocean-continent subduction zone. As such, there is significant along-strike variability in the subducting Nazca slab structure and the tectonics of the South American margin. Most notably two gaps in the otherwise continuous volcanic arc are correlated with regions of flat slab subduction, indicating that the structure of the Nazca slab plays a controlling role in South American tectonics. Traditionally in subduction zones, our knowledge of slab structure is defined by Wadati-Benioff zone earthquakes. While this method allows for the determination of large-scale variations in Nazca slab structure such as regions of flat slab subduction, a scarcity of intermediate-depth earthquakes hinders our ability to observe the smaller-scale structural variations in the slab that may be critical to our understanding of the geologic record. We use an updated, larger dataset for finite-frequency teleseismic P-wave tomography including relative arrival times from >700 seismic stations along the Andean margin to image the detailed Nazca slab structure throughout the upper mantle and uppermost lower mantle between latitudes 5°S and 45°S. Our results show prominent variations in slab character along the margin. Slab dip varies significantly, from sub-vertical inboard of the Peruvian flat slab segment to 30° dip south of the Pampean flat slab, while the slab's velocity anomaly amplitude changes dramatically near the Pampean flat slab region. High slab velocities north of the Pampean region relative to the south indicate variable slab thermal structures that correspond roughly with the locations of deep (>500 km depth) earthquakes that also occur exclusively north of the Pampean region. Additionally, a wider regional footprint increases our sampling of the upper-lower mantle boundary, improving constraints on the slab's interaction with the 660 km discontinuity along strike. We see that the Nazca slab appears to penetrate into the lower mantle along the majority of the margin.
Asadi, R; Ouyang, Z; Mohammd, M M
2015-07-14
We design a compact, all-optical THz wave generator based on self-modulation in a 1-D slab photonic crystal (PhC) waveguide with a single sub-nanometer graphene layer by using enhanced nonlinearity of graphene. It has been shown that at the bandgap edge of higher bands of a 1-D slab PhC, through only one sub-nanometer graphene layer we can obtain a compact, high modulation factor (about 0.98 percent), self-intensity modulator at a high frequency (about 0.6 THz) and low threshold intensity (about 15 MW per square centimeter), and further a compact, all-optical THz wave generator by integrating the self-modulator with a THz photodiode or photonic mixer. Such a THz source is expected to have a relatively high efficiency compared with conventional sources based on optical methods. The proposed THz source can find wide applications in THz science and technology, e.g., in THz imaging, THz sensors and detectors, THz communication systems, and THz optical integrated logic circuits.
Polarization control of quantum dot emission by chiral photonic crystal slabs
NASA Astrophysics Data System (ADS)
Lobanov, Sergey V.; Weiss, Thomas; Gippius, Nikolay A.; Tikhodeev, Sergei G.; Kulakovskii, Vladimir D.; Konishi, Kuniaki; Kuwata-Gonokami, Makoto
2015-04-01
We investigate theoretically the polarization properties of the quantum dot's optical emission from chiral photonic crystal structures made of achiral materials in the absence of external magnetic field at room temperature. The mirror symmetry of the local electromagnetic field is broken in this system due to the decreased symmetry of the chiral modulated layer. As a result, the radiation of randomly polarized quantum dots normal to the structure becomes partially circularly polarized. The sign and degree of circular polarization are determined by the geometry of the chiral modulated structure and depend on the radiation frequency. A degree of circular polarization up to 99% can be achieved for randomly distributed quantum dots, and can be close to 100% for some single quantum dots.
Polarization control of quantum dot emission by chiral photonic crystal slabs.
Lobanov, Sergey V; Weiss, Thomas; Gippius, Nikolay A; Tikhodeev, Sergei G; Kulakovskii, Vladimir D; Konishi, Kuniaki; Kuwata-Gonokami, Makoto
2015-04-01
We investigate theoretically the polarization properties of the quantum dot's (QDs) optical emission from chiral photonic crystal structures made of achiral materials in the absence of external magnetic field at room temperature. The mirror symmetry of the local electromagnetic field is broken in this system due to the decreased symmetry of the chiral modulated layer. As a result, the radiation of randomly polarized QDs normal to the structure becomes partially circularly polarized. The sign and degree of circular polarization are determined by the geometry of the chiral modulated structure and depend on the radiation frequency. A degree of circular polarization up to 99% can be achieved for randomly distributed QDs, and can be close to 100% for some single QDs.
Resonances in the optical response of a slab with time-periodic dielectric function {epsilon}(t)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zurita-Sanchez, Jorge R.; Halevi, P.
2010-05-15
We demonstrate that the optical response of a periodically modulated dynamic slab exhibits infinite resonances for frequencies {omega}=({Omega}/2)(2l+1), namely, odd multiples of one-half of the modulating frequency {Omega} of the dielectric function {epsilon}(t). These frequencies coincide partially with the usual condition of parametric amplification. However, the resonances occur only for certain normalized slab thicknesses L{sub R}. These resonances follow from detailed numerical studies based on our recent paper [Zurita-Sanchez, Halevi, and Cervantes-Gonzalez, Phys. Rev. A 79, 053821 (2009)]. As the thickness L nearly matches a resonance thickness L{sub R}, the amplitudes of counterpropagating modes in the slab obey a conditionmore » implying that both have the same modulus and their phases match a condition related to L{sub R} and the bulk wave vectors. When this condition is met, the electric field profile inside the slab is a superposition of standing waves with odd and even symmetries, and the reflection and transmission coefficients can reach great values and become infinite at exact resonance. Numerical simulations of the optical response are shown for a sinusoidal {epsilon}(t) with either moderate or strong modulation. As expected, as the modulation strength increases, higher-order harmonics {omega}-n{Omega} (n=0,{+-}1,{+-}2,...) become more noticeable, and short-wavelength bulk modes contribute significantly. However, we found that, regardless of the excitation frequency {omega}=({Omega}/2)(2l+1), the dominant spectral component of the generated fields is {Omega}/2. Also, as the excitation frequency increases, the parity of the standing waves is conserved.« less
NASA Astrophysics Data System (ADS)
Hrubesova, E.; Lahuta, H.; Mohyla, M.; Quang, T. B.; Phi, N. D.
2018-04-01
The paper is focused on the sensitivity analysis of behaviour of the subsoil – foundation system as regards the variant properties of fibre-concrete slab resulting into different relative stiffness of the whole cooperating system. The character of slab and its properties are very important for the character of external load transfer, but the character of subsoil cannot be neglected either because it determines the stress-strain behaviour of the all system and consequently the bearing capacity of structure. The sensitivity analysis was carried out based on experimental results, which include both the stress values in soil below the foundation structure and settlements of structure, characterized by different quantity of fibres in it. Flat dynamometers GEOKON were used for the stress measurements below the observed slab, the strains inside slab were registered by tensometers, the settlements were monitored geodetically. The paper is focused on the comparison of soil stresses below the slab for different quantity of fibres in structure. The results obtained from the experimental stand can contribute to more objective knowledge of soil – slab interaction, to the evaluation of real carrying capacity of the slab, to the calibration of corresponding numerical models, to the optimization of quantity of fibres in the slab, and finally, to higher safety and more economical design of slab.
Refractive index modulation in LiNbO3: MgO slab through Lamb wave
NASA Astrophysics Data System (ADS)
Prakash, Suraj; Sharma, Gaurav; Yadav, Gulab Chand; Singh, Vivek
2018-05-01
Present theoretical analysis deals with inducing refractive index contrast in Y-Z LiNbO3:MgO plate via GHz Lamb wave perturbation for photonic applications. Dispersion curves for Lamb wave in plate are plotted by employing displacement potential technique. Selecting wave parameters from dispersion curve, fundamental symmetric Lamb mode (S0) is excited in slab for 6GHz frequency. Produced displacement field by propagating S0 mode and thus developed strain is estimated to calculate refractive index modulation by applying photo-elastic relations. Modulated refractive index is of sinusoidal nature with period of modulation dependence on Lamb's wavelength. This plate having periodically modulated refractive index can be used as photonic crystal for different applications with acoustically tunable photonic band gap.
Theory of lidar method for measurement of the modulation transfer function of water layers.
Dolin, Lev S
2013-01-10
We develop a method to evaluate the modulation transfer function (MTF) of a water layer from the characteristics of lidar signal backscattered by water volume. We propose several designs of a lidar system for remote measurement of the MTF and the procedure to determine optical properties of water using the measured MTF. We discuss a laser system for sea-bottom imaging that accounts for the influence of water slab on the image structure and allows for correction of image distortions caused by light scattering in water. © 2013 Optical Society of America
NASA Astrophysics Data System (ADS)
Penniston-Dorland, S.; Stern, R. J.; Edwards, B. R.; Kincaid, C. R.
2014-12-01
The NSF-MARGINS Program funded a decade of research on continental margin processes. The NSF-GeoPRISMS Mini-lesson Project, funded by NSF-TUES, is designed to integrate fundamental results from the MARGINS program into open-source college-level curriculum. Three Subduction Factory (SubFac) mini-lessons were developed as part of this project. These include hands-on examinations of data sets representing 3 key components of the subduction zone system: 1) Heat transfer in the subducted slab; 2) Metamorphic processes happening at the plate interface; and 3) Typical magmatic products of arc systems above subduction zones. Module 1: "Slab Temperatures Control Melting in Subduction Zones, What Controls Slab Temperature?" allows students to work in groups using beads rolling down slopes as an analog for the mathematics of heat flow. Using this hands-on, exploration-based approach, students develop an intuition for the mathematics of heatflow and learn about heat conduction and advection in the subduction zone environment. Module 2: "Subduction zone metamorphism" introduces students to the metamorphic rocks that form as the subducted slab descends and the mineral reactions that characterize subduction-related metamorphism. This module includes a suite of metamorphic rocks available for instructors to use in a lab, and exercises in which students compare pressure-temperature estimates obtained from metamorphic rocks to predictions from thermal models. Module 3: "Central American Arc Volcanoes, Petrology and Geochemistry" introduces students to basic concepts in igneous petrology using the Central American volcanic arc, a MARGINS Subduction Factory focus site, as an example. The module relates data from two different volcanoes - basaltic Cerro Negro (Nicaragua) and andesitic Ilopango (El Salvador) including hand sample observations and major element geochemistry - to explore processes of mantle and crustal melting and differentiation in arc volcanism.
Experiment study on RC frame retrofitted by the external structure
NASA Astrophysics Data System (ADS)
Liu, Chunyang; Shi, Junji; Hiroshi, Kuramoto; Taguchi, Takashi; Kamiya, Takashi
2016-09-01
A new retrofitting method is proposed herein for reinforced concrete (RC) structures through attachment of an external structure. The external structure consists of a fiber concrete encased steel frame, connection slab and transverse beams. The external structure is connected to the existing structure through a connection slab and transverse beams. Pseudostatic experiments were carried out on one unretrofitted specimen and three retrofitted frame specimens. The characteristics, including failure mode, crack pattern, hysteresis loops behavior, relationship of strain and displacement of the concrete slab, are demonstrated. The results show that the load carrying capacity is obviously increased, and the extension length of the slab and the number of columns within the external frame are important influence factors on the working performance of the existing structure. In addition, the displacement difference between the existing structure and the outer structure was caused mainly by three factors: shear deformation of the slab, extraction of transverse beams, and drift of the conjunction part between the slab and the existing frame. Furthermore, the total deformation determined by the first two factors accounted for approximately 80% of the damage, therefore these factors should be carefully considered in engineering practice to enhance the effects of this new retrofitting method.
Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs
Williamson, Ian A. D.; Mousavi, S. Hossein; Wang, Zheng
2016-01-01
Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100× wavelength reduction from graphene’s large kinetic inductance. The atomically thin graphene further leads to excellent out-of-plane confinement, and consequently photonic-crystal-slab band structures that closely resemble those of ideal two-dimensional photonic crystals, with broad band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crystals, graphene-cladded photonic crystal slabs confine light along line defects, forming waveguides with the propagation lengths on the order of tens of lattice constants. The proposed structure opens up the possibility to dramatically reduce the size of terahertz photonic systems by orders of magnitude. PMID:27143314
The FLAME-slab method for electromagnetic wave scattering in aperiodic slabs
NASA Astrophysics Data System (ADS)
Mansha, Shampy; Tsukerman, Igor; Chong, Y. D.
2017-12-01
The proposed numerical method, "FLAME-slab," solves electromagnetic wave scattering problems for aperiodic slab structures by exploiting short-range regularities in these structures. The computational procedure involves special difference schemes with high accuracy even on coarse grids. These schemes are based on Trefftz approximations, utilizing functions that locally satisfy the governing differential equations, as is done in the Flexible Local Approximation Method (FLAME). Radiation boundary conditions are implemented via Fourier expansions in the air surrounding the slab. When applied to ensembles of slab structures with identical short-range features, such as amorphous or quasicrystalline lattices, the method is significantly more efficient, both in runtime and in memory consumption, than traditional approaches. This efficiency is due to the fact that the Trefftz functions need to be computed only once for the whole ensemble.
Implementation of Magnetic Dipole Interaction in the Planewave-Basis Approach for Slab Systems
NASA Astrophysics Data System (ADS)
Oda, Tatsuki; Obata, Masao
2018-06-01
We implemented the magnetic dipole interaction (MDI) in a first-principles planewave-basis electronic structure calculation based on spin density functional theory. This implementation, employing the two-dimensional Ewald summation, enables us to obtain the total magnetic anisotropy energy of slab materials with contributions originating from both spin-orbit and magnetic dipole-dipole couplings on the same footing. The implementation was demonstrated using an iron square lattice. The result indicates that the magnetic anisotropy of the MDI is much less than that obtained from the atomic magnetic moment model due to the prolate quadrupole component of the spin magnetic moment density. We discuss the reduction in the anisotropy of the MDI in the case of modulation of the quadrupole component and the effect of magnetic field arising from the MDI on atomic scale.
Overturned Alboran slab beneath westernmost Mediterranean
NASA Astrophysics Data System (ADS)
Sun, D.; Miller, M. S.
2017-12-01
The geological evolution of the westernmost Mediterranean holds an important piece of the puzzle of how whole western Mediterranean evolved due to the convergence of Africa with Eurasia. The idea of continuous slab roll back acting a prominent force in this region is strongly supported by tomographic images with near vertical high velocity structure connecting the surface beneath the Alboran domain [Spakman and Wortel, 2004; Bezada et al., 2013]. However, the slab shape, width, and sharpness of its edges are not well resolved. Here, we use the waveforms recorded from the PICASSO (XB) array and IberArray (IA) for the deep 2010 earthquake beneath Granada to study the detailed Alboran slab structure. We found: (1) A low velocity structure (7 km thickness, δVs = -20%) surrounding the earthquake to explain the second arrivals observed in many stations at Spain. (2) A thin low velocity layer sits on the bottom of the high velocity slab-like structure to explain the high frequency second arrivals and long coda after the P and S arrivals on stations in the Rif Mountains of Morocco. The most feasible explanation of the low velocity structure is the dehydrated surface of the slab lithosphere extending from the 600 km to the shallow mantle. However, such geometry is contradictory with our observation, which the low velocity layer is at the bottom of the slab. We proposed that the Albora slab had undergone significant "roll-over" movement, which overturned the slab surface.
NASA Astrophysics Data System (ADS)
Roshchina, Svetlana; Ezzi, Hisham; Shishov, Ivan; Lukin, Mikhail; Sergeev, Michael
2017-10-01
In single-story industrial buildings, the cost of roof covering comprises 40-55% of the total cost of the buildings. Therefore, research, development and application of new structural forms of reinforced concrete rafter structures, that allow to reduce material consumption and reduce the sub-assembly weight of structures, are the main tasks in the field of improving the existing generic solutions. The article suggests a method for estimating the relieving effect in the rafter structure as the result of combined deformation of the roof slabs with the end arrises. Calculated and experimental method for determining the stress and strain state of the rafter structure upper belt and the roof slabs with regard to their rigid connection has been proposed. A model of a highly effective roof structure providing a significant reduction in the construction height of the roofing and the cubic content of the building at the same time allowing to include the end arrises and a part of the slabs shelves with the help of the monolithic concrete has been proposed. The proposed prefabricated monolithic concrete rafter structure and its rigid connection with ribbed slabs allows to reduce the consumption of the prestressed slabs reinforcement by 50%.
Su, Haijing; Zhou, Xiaoming; Xu, Xianchen; Hu, Gengkai
2014-04-01
A holey-structured metamaterial is proposed for near-field acoustic imaging beyond the diffraction limit. The structured lens consists of a rigid slab perforated with an array of cylindrical holes with periodically modulated diameters. Based on the effective medium approach, the structured lens is characterized by multilayered metamaterials with anisotropic dynamic mass, and an analytic model is proposed to evaluate the transmission properties of incident evanescent waves. The condition is derived for the resonant tunneling, by which evanescent waves can completely transmit through the structured lens without decaying. As an advantage of the proposed lens, the imaging frequency can be modified by the diameter modulation of internal holes without the change of the lens thickness in contrast to the lens due to the Fabry-Pérot resonant mechanism. In this experiment, the lens is assembled by aluminum plates drilled with cylindrical holes. The imaging experiment demonstrates that the designed lens can clearly distinguish two sources separated in the distance below the diffraction limit at the tunneling frequency.
Demountable externally anchored low-stress magnet system and related method
Powell, James; Hsieh, Shih-Yung; Lehner, John R.
1981-01-01
Toroidal field coils are interlaced with other toroidal structures and are operated under supercooled conditions. To facilitate demounting the toroidal field coils, which are supercooled, they are made in the form of connected segments constituting coils of polygonal form. The segments may be rectilinear in form, but some may also be U-shaped or L-shaped. The segments are detachable from one another and are supported in load relieving manner. Power devices are used to displace the segments to facilitate removal of the coils from the aforesaid toroidal structures and to provide for the accommodation of dimensional changes and stresses due to thermal and magnetic conditions. The segments are formed of spaced parallel conductive slabs with the slabs of one segment being interdigitated with the slabs of the adjacent segment. The interdigitated slabs may be soldered together or slidingly engaged. The slabs are shaped to accommodate superconductors and to provide passages for a cooling medium. The slabs are moreover separated by insulator slabs with which they form a coil structure which is jacketed.
Analysis of Slab-column Shearwall Structure of 6000 Tons Cold Storage
NASA Astrophysics Data System (ADS)
He, Dongqing; Song, Pengwei; Jie, Pengyu
2018-05-01
Combining with the functional requirements, the site conditions and the 6000 tons load characteristics of cold storage, so determine its structure system for the slab-column-shear wall structure. The paper recommends the design of foundation, the settings of column cap, the arrangement of shear wall, the punching shear of floor slab and the analysis and calculation results of main structure. By addition shear wall in slab-column structure to increase the overall stiffness of structure and improve the seismic performance of structure. Take the detached form between the main structure and the external wall insulation, while set anchorage beam between in the main floor and the ring beam along the axis of the column grid to enhance the overall stability of the external wall insulation.
NASA Astrophysics Data System (ADS)
Eakin, Caroline M.; Long, Maureen D.; Wagner, Lara S.; Beck, Susan L.; Tavera, Hernando
2015-02-01
The Peruvian flat slab is by far the largest region of flat subduction in the world today, but aspects of its structure and dynamics remain poorly understood. In particular, questions remain over whether the relatively narrow Nazca Ridge subducting beneath southern Peru provides dynamic support for the flat slab or it is just a passive feature. We investigate the dynamics and interaction of the Nazca Ridge and the flat slab system by studying upper mantle seismic anisotropy across southern Peru. We analyze shear wave splitting of SKS, sSKS, and PKS phases at 49 stations distributed across the area, primarily from the PerU Lithosphere and Slab Experiment (PULSE). We observe distinct spatial variations in anisotropic structure along strike, most notably a sharp transition from coherent splitting in the north to pervasive null (non-split) arrivals in the south, with the transition coinciding with the northern limit of the Nazca Ridge. For both anisotropic domains there is evidence for complex and multi-layered anisotropy. To the north of the ridge our *KS splitting measurements likely reflect trench-normal mantle flow beneath the flat slab. This signal is then modified by shallower anisotropic layers, most likely in the supra-slab mantle, but also potentially from within the slab. To the south the sub-slab mantle is similarly anisotropic, with a trench-oblique fast direction, but widespread nulls appear to reflect dramatic heterogeneity in anisotropic structure above the flat slab. Overall the regional anisotropic structure, and thus the pattern of deformation, appears to be closely tied to the location of the Nazca Ridge, which further suggests that the ridge plays a key role in the mantle dynamics of the Peruvian flat slab system.
Manipulation of enhanced absorption with tilted hexagonal boron nitride slabs
NASA Astrophysics Data System (ADS)
Wu, Xiaohu; Fu, Ceji
2018-04-01
The wavevector of electromagnetic wave propagation in a hexagonal boron nitride (hBN) slab can be controlled by tilting its optical axis. This property can be used to manipulate the absorption in a hBN slab. By carefully analyzing the dependence of the absorptivity of a thin hBN slab on the tilted angle of its optical axis, we propose a structure that can realize great absorptivity enhancement in a band by stacking hBN slabs of different tilted angles. Our numerical results show that the absorptivity of a structure made of 91 stacked hBN slabs can be achieved higher than 0.94 in the wavenumber range from 1367 to 1580 cm-1 when the tilted angles of the slabs are properly arranged. The strong absorption is attributed to the combination of impedance matching at the slab interfaces and enlarged wavevectors in the slabs. This work reveals a novel way to realize strong absorption with anisotropic materials for applications in areas such as thermal radiative energy harvesting and conversion.
Pan, Bai Cao; Tang, Wen Xuan; Qi, Mei Qing; Ma, Hui Feng; Tao, Zui; Cui, Tie Jun
2016-07-22
Mutual coupling inside antenna array is usually caused by two routes: signal leakage via conducting currents on the metallic background or surface wave along substrates; radio leakage received from space between antenna elements. The former one can be depressed by changing the distribution of surface currents, as reported in literatures. But when it comes to the latter one, the radiation-leakage-caused coupling, traditional approaches using circuit manipulation may be inefficient. In this article, we propose and design a new type of decoupling module, which is composed of coupled metamaterial (MTM) slabs. Two classes of MTM particles, the interdigital structure (IS) and the split-ring resonators (SRRs), are adopted to provide the first and second modulations of signal. We validate its function to reduce the radiation leakage between two dual-polarized patch antennas. A prototype is fabricated in a volume with subwavelength scale (0.6λ × 0.3λ × 0.053λ) to provide 7dB improvement for both co-polarization and cross-polarization isolations from 1.95 to 2.2 GHz. The design has good potential for wireless communication and radar systems.
Pan, Bai Cao; Tang, Wen Xuan; Qi, Mei Qing; Ma, Hui Feng; Tao, Zui; Cui, Tie Jun
2016-01-01
Mutual coupling inside antenna array is usually caused by two routes: signal leakage via conducting currents on the metallic background or surface wave along substrates; radio leakage received from space between antenna elements. The former one can be depressed by changing the distribution of surface currents, as reported in literatures. But when it comes to the latter one, the radiation-leakage-caused coupling, traditional approaches using circuit manipulation may be inefficient. In this article, we propose and design a new type of decoupling module, which is composed of coupled metamaterial (MTM) slabs. Two classes of MTM particles, the interdigital structure (IS) and the split-ring resonators (SRRs), are adopted to provide the first and second modulations of signal. We validate its function to reduce the radiation leakage between two dual-polarized patch antennas. A prototype is fabricated in a volume with subwavelength scale (0.6λ × 0.3λ × 0.053λ) to provide 7dB improvement for both co-polarization and cross-polarization isolations from 1.95 to 2.2 GHz. The design has good potential for wireless communication and radar systems. PMID:27444147
DOT National Transportation Integrated Search
2014-03-01
For some immersed tube tunnels, the horizontal slab contributes to the structural integrity. If a train running on the slab were subjected to an explosion, which then failed a large area of the horizontal slab, the sidewall might yield under the late...
Wülbern, Jan Hendrik; Petrov, Alexander; Eich, Manfred
2009-01-05
We present a novel concept of a compact, ultra fast electro-optic modulator, based on photonic crystal resonator structures that can be realized in two dimensional photonic crystal slabs of silicon as core material employing a nonlinear optical polymer as infiltration and cladding material. The novel concept is to combine a photonic crystal heterostructure cavity with a slotted defect waveguide. The photonic crystal lattice can be used as a distributed electrode for the application of a modulation signal. An electrical contact is hence provided while the optical wave is kept isolated from the lossy metal electrodes. Thereby, well known disadvantages of segmented electrode designs such as excessive scattering are avoided. The optical field enhancement in the slotted region increases the nonlinear interaction with an external electric field resulting in an envisaged switching voltage of approximately 1 V at modulation speeds up to 100 GHz.
Dynamically tunable graphene/dielectric photonic crystal transmission lines
NASA Astrophysics Data System (ADS)
Williamson, Ian; Mousavi, S. Hossein; Wang, Zheng
2015-03-01
It is well known that graphene supports plasmonic modes with high field confinement and lower losses when compared to conventional metals. Additionally, graphene features a highly tunable conductivity through which the plasmon dispersion can be modulated. Over the years these qualities have inspired a wide range of applications for graphene in the THz and infrared regimes. In this presentation we theoretically demonstrate a graphene parallel plate waveguide (PPWG) that sandwiches a 2D photonic crystal slab. The marriage of these two geometries offers a large two dimensional band gap that can be dynamically tuned over a very broad bandwidth. Our device operates in the low-THz band where the graphene PPWG supports a quasi-TEM mode with a relatively flat attenuation. Unlike conventional photonic crystal slabs, the quasi-TEM nature of the graphene PPWG mode allows the slab thickness to be less than 1/10 of the photonic crystal lattice constant. These features offer up a wealth of opportunities, including tunable metamaterials with a possible platform for large band gaps in 3D structures through tiling and stacking. Additionally, the geometry provides a platform for tunable defect cavities without needing three dimensional periodicity.
Vibration Analysis of Beam and Block Precast Slab System due to Human Vibrations
NASA Astrophysics Data System (ADS)
Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.
2018-04-01
Beam and block precast slabs system are very efficient which generally give maximum structural performance where their voids based on the design of the unit soffit block allow a significant reduction of the whole slab self-weight. Initially for some combinations of components or the joint connection of the structural slab, this structural system may be susceptible to excessive vibrations that could effects the performance and also serviceability. Dynamic forces are excited from people walking and jumping which produced vibrations to the slab system in the buildings. Few studies concluded that human induced vibration on precast slabs system may be harmful to structural performance and mitigate the human comfort level. This study will investigate the vibration analysis of beam and block precast slab by using finite element method at the school building. Human activities which are excited from jumping and walking will induce the vibrations signal to the building. Laser Doppler Vibrometer (LDV) was used to measure the dynamic responses of slab towards the vibration sources. Five different points were assigned specifically where each of location will determine the behaviour of the entire slabs. The finite element analyses were developed in ABAQUS software and the data was further processed in MATLAB ModalV to assess the vibration criteria. The results indicated that the beam and block precast systems adequate enough to the vibration serviceability and human comfort criteria. The overall vibration level obtained was fell under VC-E curve which it is generally under the maximum permissible level of vibrations. The vibration level on the slab is acceptable within the limit that have been used by Gordon.
Production of High Quality Die Steels from Large ESR Slab Ingots
NASA Astrophysics Data System (ADS)
Geng, Xin; Jiang, Zhou-hua; Li, Hua-bing; Liu, Fu-bin; Li, Xing
With the rapid development of manufacture industry in China, die steels are in great need of large slab ingot of high quality and large tonnage, such as P20, WSM718R and so on. Solidification structure and size of large slab ingots produced with conventional methods are not satisfied. However, large slab ingots manufactured by ESR process have a good solidification structure and enough section size. In the present research, the new slab ESR process was used to produce the die steels large slab ingots with the maximum size of 980×2000×3200mm. The compact and sound ingot can be manufactured by the slab ESR process. The ultra-heavy plates with the maximum thickness of 410 mm can be obtained after rolling the 49 tons ingots. Due to reducing the cogging and forging process, the ESR for large slab ingots process can increase greatly the yield and production efficiency, and evidently cut off product costs.
Pacific slab beneath northeast China revealed by regional and teleseismic waveform modeling
NASA Astrophysics Data System (ADS)
WANG, X.; Chen, Q. F.; Wei, S.
2015-12-01
Accurate velocity and geometry of the slab is essential for better understanding of the thermal, chemical structure of the mantle earth, as well as geodynamics. Recent tomography studies show similar morphology of the subducting Pacific slab beneath northeast China, which was stagnant in the mantle transition zone with thickness of more than 200km and an average velocity perturbation of ~1.5% [Fukao and Obayashi, 2013]. Meanwhile, waveform-modeling studies reveal that the Pacific slab beneath Japan and Kuril Island has velocity perturbation up to 5% and thickness up to 90km [Chen et al., 2007; Zhan et al., 2014]. These discrepancies are probably caused by the smoothing and limited data coverage in the tomographic inversions. Here we adopted 1D and 2D waveform modeling methods to study the fine structure of Pacific slab beneath northeast China using dense regional permanent and temporary broadband seismic records. The residual S- and P-wave travel time, difference between data and 1D synthetics, shows significant difference between the eastern and western stations. S-wave travel time residuals indicate 5-10s earlier arrivals for stations whose ray path lies within the slab, compared with those out of the slab. Teleseimic waveforms were used to rule out the major contribution of the possible low velocity structure above 200km. Furthermore, we use 2D finite-difference waveform modeling to confirm the velocity perturbation and geometry of the slab. Our result shows that the velocity perturbation in the slab is significantly higher than those reported in travel-time tomography studies. ReferencesChen, M., J. Tromp, D. Helmberger, and H. Kanamori (2007), Waveform modeling of the slab beneath Japan, J. Geophys. Res.-Solid Earth, 112(B2), 19, doi:10.1029/2006jb004394.Fukao, Y., and M. Obayashi (2013), Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity, J. Geophys. Res.-Solid Earth, 118(11), 5920-5938, doi:10.1002/2013jb010466.Zhan, Z. W., D. V. Helmberger, and D. Z. Li (2014), Imaging subducted slab structure beneath the Sea of Okhotsk with teleseismic waveforms, Phys. Earth Planet. Inter., 232, 30-35, doi:10.1016/j.pepi.2014.03.008.
Electromagnetic Tunneling and Resonances in Pseudochiral Omega Slabs
Razzaz, Faroq; Alkanhal, Majeed A. S.
2017-01-01
This paper presents theoretical investigation of the electromagnetic wave tunneling and anomalous transmission around the trapped modes in a pseudochiral omega slab. The dispersion relation, the conditions of the trapped modes, and the evanescent wave coupling and tunneling in two different reciprocal pseudochiral omega slab structures are derived. The Berreman’s matrix method is applied to obtain the transmission coefficients across the pseudochiral omega slab. When the structure is perturbed, a resonance phenomenon is detected around the trapped modes. This resonance results in transmission anomalies (total transmission and total reflection) and dramatic field amplifications around the trapped modes. The number of the discrete trapped modes and then the resonance frequencies are prescribed by the parameters of the pseudochiral omega slab such as the value of the omega parameter and its orientation and the slab thickness. PMID:28165058
Slab Geometry and Segmentation on Seismogenic Subduction Zone; Insight from gravity gradients
NASA Astrophysics Data System (ADS)
Saraswati, A. T.; Mazzotti, S.; Cattin, R.; Cadio, C.
2017-12-01
Slab geometry is a key parameter to improve seismic hazard assessment in subduction zones. In many cases, information about structures beneath subduction are obtained from geophysical dedicated studies, including geodetic and seismic measurements. However, due to the lack of global information, both geometry and segmentation in seismogenic zone of many subductions remain badly-constrained. Here we propose an alternative approach based on satellite gravity observations. The GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission enables to probe Earth deep mass structures from gravity gradients, which are more sensitive to spatial structure geometry and directional properties than classical gravitational data. Gravity gradients forward modeling of modeled slab is performed by using horizontal and vertical gravity gradient components to better determine slab geophysical model rather than vertical gradient only. Using polyhedron method, topography correction on gravity gradient signal is undertaken to enhance the anomaly signal of lithospheric structures. Afterward, we compare residual gravity gradients with the calculated signals associated with slab geometry. In this preliminary study, straightforward models are used to better understand the characteristic of gravity gradient signals due to deep mass sources. We pay a special attention to the delineation of slab borders and dip angle variations.
SPM of nonlinear surface plasmon waveguides
NASA Astrophysics Data System (ADS)
Li, Yuee; Zhang, Xiaoping
2008-10-01
Pulse propagation equation of nonlinear dispersion surface plasmon waveguide is educed strictly from wave equation. The nonlinear coefficient is defined and then used to assess and compare the nonlinear characteristic of three popular 1-D surface plasmon waveguides: the single metal-dielectric interface, the metal slab bounded by dielectric and the dielectric slab bounded by metal. SPM (self-phase modulation) of the typical surface plasmon waveguide is predicted and discussed.
NASA Astrophysics Data System (ADS)
Bina, Craig; Cizkova, Hana
2014-05-01
Subducting slabs may exhibit buckling instabilities and consequent folding behavior in the mantle transition zone for various combinations of dynamical parameters, accompanied by temporal variations in dip angle, plate velocity, and trench retreat. Parameters governing such behavior include both viscous forces (slab and mantle rheology) and buoyancy forces (slab thermal structure and mineral phase relations). 2D numerical experiments show that many parameter sets lead to slab deflection at the base of the transition zone, typically accompanied by quasi-periodic oscillations (consistent with previous scaling analyses) in largely anticorrelated plate and rollback velocities, resulting in undulating stagnant slabs as buckle folds accumulate subhorizontally atop the lower mantle. Slab interactions with mantle phase transitions are important components of this process (Bina and Kawakatsu, 2010; Čížková and Bina, 2013). For terrestrial parameter sets, trench retreat is found to be nearly ubiquitous, and trench advance is quite rare - due to both rheological structure and ridge-push effects (Čížková and Bina, 2013). Recent analyses of global plate motions indicate that significant trench advance is also rare on Earth, being largely restricted to the Izu-Bonin arc (Matthews et al., 2013). Consequently, we explore the conditions necessary for terrestrial trench advance through dynamical models involving the unusual geometry associated with the Philippine Sea region. Detailed images of buckled stagnant slabs are difficult to resolve due to smoothing effects inherent in seismic tomography, but velocity structures computed for compositionally layered slabs, using laboratory data on relevant mineral assemblages, can be spatially low-pass filtered for comparison with tomographic images of corresponding resolution. When applied to P-wave velocity anomalies from stagnant slab material beneath northeast China, model slabs which undulate due to compound buckling fit observations better than a flat-lying slab (Zhang et al., 2013). Earthquake hypocentral distributions and focal mechanisms may provide clearer insights into slab buckling, as they appear to vary systematically across regions of slab stagnation (Fukao and Obayashi, 2013). Stress fields computed from our dynamical models may help to illuminate such observations. References: Bina, C.R., and H. Kawakatsu, Buoyancy, bending, and seismic visibility in deep slab stagnation, Phys. Earth Planet. Inter., 183, 330-340, 2010. Čížková, H., and C.R. Bina, Effects of mantle and subduction-interface rheologies on slab stagnation and trench rollback, Earth Planet. Sci. Lett., 379, 95-103, 2013. Fukao, Y., and M. Obayashi, Deepest hypocentral distributions associated with stagnant slabs and penetrated slabs, Fall Meeting Abstracts, AGU, DI14A-01, 2013. Li, Z.-H., and N.M. Ribe, Dynamics of free subduction from 3-D boundary element modeling, J. Geophys. Res., 117, B06408. Matthews, D.C., L. Zheng, and R.G. Gordon, Do trenches advance? Fall Meeting Abstracts, AGU, T43D-2682, 2013. Zhang, Y., Y. Wang, Y. Wu, C. Bina, Z. Jin, and S. Dong, Phase transitions of harzburgite and buckled slab under eastern China, Geochem. Geophys. Geosys., 14, 1182-1199, 2013.
NASA Astrophysics Data System (ADS)
Booker, J. R.; Burd, A. I.; Mackie, R.
2011-12-01
Three-dimensional interpretation of a large number of magnetotelluric sites in the Andean back arc of Argentina reveals at least two near-vertical conductive structures that extend from near the top of the mantle transition zone to the base of the lithosphere. Both are of limited horizontal extent. One is near the eastern-most extent of the Nazca flat-slab. It penetrates the most reasonable down-dip extension of the seismogenic subducted slab and suggests that the slab may not extend much deeper than about 200 km. The other is south of the flat-slab region and just east of the large Payun-Matru basaltic volcanic province. It arises roughly where the subducted slab would meet the transition zone if the slab extends linearly down from where it is seismogenic. It is tempting to conclude that both structures are partially molten plumes arising from the transition zone or deeper. The flat-slab plume has not penetrated the compressive lithosphere of the Sierras Pampeanas. The Payunia plume would logically seem connected to the geologically recent OIB-like volcanism near Payun Matru, but the shallow mantle structure beneath the area of most recent activity seems better explained by a connection to the Andean volcanism to the west.
Evaluation of punching shear strength of flat slabs supported on rectangular columns
NASA Astrophysics Data System (ADS)
Filatov, Valery
2018-03-01
The article presents the methodology and results of an analytical study of structural parameters influence on the value of punching force for the joint of columns and flat reinforced concrete slab. This design solution is typical for monolithic reinforced concrete girderless frames, which have a wide application in the construction of high-rise buildings. As the results of earlier studies show the punching shear strength of slabs at rectangular columns can be lower than at square columns with a similar length of the control perimeter. The influence of two structural parameters on the punching strength of the plate is investigated - the ratio of the side of the column cross-section to the effective depth of slab C/d and the ratio of the sides of the rectangular column Cmax/Cmin. According to the results of the study, graphs of reduction the control perimeter depending on the structural parameters are presented for columns square and rectangular cross-sections. Comparison of results obtained by proposed approach and MC2010 simplified method are shown, that proposed approach gives a more conservative estimate of the influence of the structural parameters. A significant influence of the considered structural parameters on punching shear strength of reinforced concrete slabs is confirmed by the results of experimental studies. The results of the study confirm the necessity of taking into account the considered structural parameters when calculating the punching shear strength of flat reinforced concrete slabs and further development of code design methods.
An, Zhe; He, Jing
2011-10-28
The electronic transfer (eT) at bio-interfaces has been achieved by orientating 2D inorganic slabs in a regular arrangement with the slab ab-planes vertical to the electrode substrate. The eT rate is effectively promoted by tuning the nano-micro scale structures of perpendicular LDH arrays. This journal is © The Royal Society of Chemistry 2011
Sub-wavelength grating mode transformers in silicon slab waveguides.
Bock, Przemek J; Cheben, Pavel; Schmid, Jens H; Delâge, André; Xu, Dan-Xia; Janz, Siegfried; Hall, Trevor J
2009-10-12
We report on several new types of sub-wavelength grating (SWG) gradient index structures for efficient mode coupling in high index contrast slab waveguides. Using a SWG, an adiabatic transition is achieved at the interface between silicon-on-insulator waveguides of different geometries. The SWG transition region minimizes both fundamental mode mismatch loss and coupling to higher order modes. By creating the gradient effective index region in the direction of propagation, we demonstrate that efficient vertical mode transformation can be achieved between slab waveguides of different core thickness. The structures which we propose can be fabricated by a single etch step. Using 3D finite-difference time-domain simulations we study the loss, polarization dependence and the higher order mode excitation for two types (triangular and triangular-transverse) of SWG transition regions between silicon-on-insulator slab waveguides of different core thicknesses. We demonstrate two solutions to reduce the polarization dependent loss of these structures. Finally, we propose an implementation of SWG structures to reduce loss and higher order mode excitation between a slab waveguide and a phase array of an array waveguide grating (AWG). Compared to a conventional AWG, the loss is reduced from -1.4 dB to < -0.2 dB at the slab-array interface.
NASA Astrophysics Data System (ADS)
Duretz, T.; Gerya, T. V.
2013-08-01
Collision between continents can lead to the subduction of continental material. If the crust remains coupled to the downgoing slab, a large buoyancy force is generated. This force slows down convergence and promotes slab detachment. If the crust resists to subduction, it may decouple from the downgoing slab and be subjected to buoyant extrusion. We employ two-dimensional thermo-mechanical modelling to study the importance of crustal rheology on the evolution of subduction-collision systems. We propose simple quantifications of the mechanical decoupling between lithospheric levels (σ*) and the potential for buoyant extrusion of the crust (ξ*). The modelling results indicate that a variable crustal rheological structure results in slab detachment, delamination, or the combination of both mechanisms. A strong crust provides coupling at the Moho (low σ*) and remains coherent during subduction (low ξ). It promotes deep subduction of the crust (180 km) and slab detachment. Exhumation occurs in coherent manners via eduction and thrusting. Slab detachment triggers the development of topography (> 4.5 km) close to the suture. A contrasting style of collision occurs using a weak crustal rheology. Mechanical decoupling at the Moho (high σ*) promotes the extrusion of the crust (high ξ), disabling slab detachment. Ongoing shortening leads to buckling of the crust and development of topography on the lower plate. Collisions involving rheologically layered crust allow decoupling at mid-crustal depths. This structure favours both the extrusion of upper crust and the subduction of the lower crust. Such collisions are successively affected by delamination and slab detachment. Topography develops together with the buoyant extrusion of crust onto the foreland and is further amplified by slab detachment. Our results suggest that the occurrence of both delamination (Apennines) and slab detachment (Himalayas) in orogens may indicate differences in the initial crustal structure of subducting continental plates in these regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oswald, Iain W.H.; Gourdon, Olivier; Bekins, Amy
Single crystals of Er{sub 1.33}Pt{sub 3}Ga{sub 8} were synthesized in a molten Ga flux. Er{sub 1.33}Pt{sub 3}Ga{sub 8} can be considered to be a modulated variant of the Er{sub 4}Pt{sub 9}Al{sub 24}-structure type, where the partial occupancies are ordered. Indeed, the presence of weak satellite reflections indicates a complex organization and distribution of the Er and Ga atoms within the [ErGa] slabs. The structure has been solved based on single crystal X-ray diffraction data in the monoclinic superspace group X2/m(0β0)00 with a commensurate modulated vector q=1/3b*. Precession images also indicate diffusion in the perpendicular direction indicating a partial disorder ofmore » this arrangement from layer to layer. In addition, Er{sub 1.33}Pt{sub 3}Ga{sub 8} shows antiferromagnetic ordering at T{sub N}~5 K. - Graphical abstract: A precession image of the hk0 zone showing weak, periodic, unindexed reflections indicating modulation and representation of the commensurate [ErGa] layer showing the waving modulated occupation. - Highlights: • Single crystals of Er{sub 1.33}Pt{sub 3}Ga{sub 8} were grown from gallium flux. • The structure of Er{sub 1.33}Pt{sub 3}Ga{sub 8} is compared to Er{sub 4}Pt{sub 9}Al{sub 24}. • Structure has been solved in the monoclinic superspace group X2/m(0β0)00 with a commensurate modulated vector q=1/3b*.« less
NASA Astrophysics Data System (ADS)
Cho, S.; Rhie, J.; Lee, S. H.; Kim, S.; Kang, T. S.
2017-12-01
A study on the detailed velocity structures of the stagnant Pacific slab is important to understand the complex processes happening in the upper mantle. Although waveform modeling of P triplicated phases can reveal the detailed velocity structures especially for the discontinuities, the regions where the method can be applied are limited due to uneven distribution of earthquakes and stations. In this study, we used waveforms generated by two deep earthquakes near Izu-Bonin Trench and recorded by stations in South Korea. These event-station pairs are appropriate to study the upper mantle structures beneath the northeastern Philippine Sea, where no previous results by triplicated waveform modeling have been reported. In this region, the subducting Pacific slab seems to hit the 660 km discontinuity and become stagnant. We applied the reflectivity method to calculate waveforms and found the best fitting model by trial-and-error and manual inspection. In general, our best model is similar to M3.11, which is widely accepted 1D model for the regions where the stagnant slab exists and the 660 km discontinuity is depressed by the slab. The most noticeable feature of our model is that P wave velocities of inside and above the slab are considerably higher and lower than ones for M3.11, respectively. This specific velocity model is necessary to explain arrivals of two distinct phases identified in observed waveforms; one refracts inside the slab and the other reflects on the upper boundary of the slab. To understand the cause of the differences between our model and M3.11, further studies including thermal and mechanical modelling of the slab in this region will be recommended.
On reducing bumps at pavement-bridge interface.
DOT National Transportation Integrated Search
2010-12-21
This report contains the causes and long-term solutions to the bumps at bridge/approach slab and/or approach slab/pavement interface. A research was conducted on both structural and geotechnical aspects of an approach slab. : A 3-D finite element ana...
Cross-linked polyimides for integrated optics
NASA Astrophysics Data System (ADS)
Singer, Kenneth D.; Kowalczyk, Tony C.; Nguyen, Hung D.; Beuhler, Allyson J.; Wargowski, David A.
1997-01-01
We have investigated a promising class of polyimide materials for both passive and active electro-optic devices, namely crosslinkable polyimides. These fluorinated polyimides are soluble in the imidized form and are both thermally and photo-crosslinkable leading to easy processability into waveguide structures and the possibility of stable electro-optic properties. We have fabricated channel and slab waveguides and investigated the mechanism of optical propagation loss using photothermal deflection spectroscopy and waveguide loss spectroscopy, and found the losses to arise from residual absorption due to the formation of charge transfer states. The absorption is inhibited by fluorination leading to propagation losses as low as 0.3 dB/cm in the near infrared. Because of the ability to photocrosslink, channel waveguides are fabricated using a simple wet-etch process. Channel waveguides so formed are observed to have no excess loss over slab structures. Solubility followed by thermal cross-linking allows the formation of multilayer structures. We have produced electro-optic polymers by doping with the nonlinear optical chromophores, DCM and DADC; and a process of concurrent poling and thermal crosslinking. Multilayer structures have been investigated and poling fields optimized in the active layer by doping the cladding with an anti-static agent. The high glass-transition temperature and cross-linking leads to very stable electro-optic properties. We are currently building electro-optic modulators based on these materials. Progress and results in this area also are reported.
Li, Zheng-Yao; Wang, Huibo; Yang, Wenyun; Yang, Jinbo; Zheng, Lirong; Chen, Dongfeng; Sun, Kai; Han, Songbai; Liu, Xiangfeng
2018-01-17
Exploiting advanced layered transition metal oxide cathode materials is of great importance to rechargeable sodium batteries. Layered oxides are composed of negatively charged TMO 2 slabs (TM = transition metal) separated by Na + diffusion layers. Herein, we propose a novel insight, for the first time, to control the electrochemical properties by tuning Coulombic repulsion between negatively charged TMO 2 slabs. Coulombic repulsion can finely tailor the d-spacing of Na ion layers and material structural stability, which can be achieved by employing Na + cations to serve as effective shielding layers between TMO 2 layers. A series of O3-type Na x Mn 1/3 Fe 1/3 Cu 1/6 Mg 1/6 O 2 (x = 1.0, 0.9, 0.8, and 0.7) have been prepared, and Na 0.7 Mn 1/3 Fe 1/3 Cu 1/6 Mg 1/6 O 2 shows the largest Coulombic repulsion between TMO 2 layers, the largest space for Na ion diffusion, the best structural stability, and also the longest Na-O chemical bond with weaker Coulombic attraction, thus leading to the best electrochemical performance. Meanwhile, the thermal stability depends on the Na concentration in pristine materials. Ex situ X-ray absorption (XAS) analysis indicates that Mn, Fe, and Cu ions are all electrochemically active components during insertion and extraction of sodium ion. This study enables some new insights to promote the development of advanced layered Na x TMO 2 materials for rechargeable sodium batteries in the future.
Behaviour of reinforced concrete slabs with steel fibers
NASA Astrophysics Data System (ADS)
Baarimah, A. O.; Syed Mohsin, S. M.
2017-11-01
This paper investigates the potential effect of steel fiber added into reinforced concrete slabs. Four-point bending test is conducted on six slabs to investigate the structural behaviour of the slabs by considering two different parameters; (i) thickness of slab (ii) volume fraction of steel fiber. The experimental work consists of six slabs, in which three slabs are designed in accordance to Eurocode 2 to fulfil shear capacity characteristic, whereas, the other three slabs are designed with 17% less thickness, intended to fail in shear. Both series of slabs are added with steel fiber with a volume fraction of Vf = 0%, Vf = 1% and Vf = 2% in order to study the effect and potential of fiber to compensate the loss in shear capacity. The slab with Vf = 0% steel fiber and no reduction in thickness is taken as the control slab. The experimental result suggests promising improvement of the load carrying capacity (up to 32%) and ductility (up to 87%) as well as delayed in crack propagation for the slabs with Vf = 2%. In addition, it is observed that addition of fibers compensates the reduction in the slab thickness as well as changes the failure mode of the slab from brittle to a more ductile manner.
Advanced analysis of complex seismic waveforms to characterize the subsurface Earth structure
NASA Astrophysics Data System (ADS)
Jia, Tianxia
2011-12-01
This thesis includes three major parts, (1) Body wave analysis of mantle structure under the Calabria slab, (2) Spatial Average Coherency (SPAC) analysis of microtremor to characterize the subsurface structure in urban areas, and (3) Surface wave dispersion inversion for shear wave velocity structure. Although these three projects apply different techniques and investigate different parts of the Earth, their aims are the same, which is to better understand and characterize the subsurface Earth structure by analyzing complex seismic waveforms that are recorded on the Earth surface. My first project is body wave analysis of mantle structure under the Calabria slab. Its aim is to better understand the subduction structure of the Calabria slab by analyzing seismograms generated by natural earthquakes. The rollback and subduction of the Calabrian Arc beneath the southern Tyrrhenian Sea is a case study of slab morphology and slab-mantle interactions at short spatial scale. I analyzed the seismograms traversing the Calabrian slab and upper mantle wedge under the southern Tyrrhenian Sea through body wave dispersion, scattering and attenuation, which are recorded during the PASSCAL CAT/SCAN experiment. Compressional body waves exhibit dispersion correlating with slab paths, which is high-frequency components arrivals being delayed relative to low-frequency components. Body wave scattering and attenuation are also spatially correlated with slab paths. I used this correlation to estimate the positions of slab boundaries, and further suggested that the observed spatial variation in near-slab attenuation could be ascribed to mantle flow patterns around the slab. My second project is Spatial Average Coherency (SPAC) analysis of microtremors for subsurface structure characterization. Shear-wave velocity (Vs) information in soil and rock has been recognized as a critical parameter for site-specific ground motion prediction study, which is highly necessary for urban areas located in seismic active zones. SPAC analysis of microtremors provides an efficient way to estimate Vs structure. Compared with other Vs estimating methods, SPAC is noninvasive and does not require any active sources, and therefore, it is especially useful in big cities. I applied SPAC method in two urban areas. The first is the historic city, Charleston, South Carolina, where high levels of seismic hazard lead to great public concern. Accurate Vs information, therefore, is critical for seismic site classification and site response studies. The second SPAC study is in Manhattan, New York City, where depths of high velocity contrast and soil-to-bedrock are different along the island. The two experiments show that Vs structure could be estimated with good accuracy using SPAC method compared with borehole and other techniques. SPAC is proved to be an effective technique for Vs estimation in urban areas. One important issue in seismology is the inversion of subsurface structures from surface recordings of seismograms. My third project focuses on solving this complex geophysical inverse problems, specifically, surface wave phase velocity dispersion curve inversion for shear wave velocity. In addition to standard linear inversion, I developed advanced inversion techniques including joint inversion using borehole data as constrains, nonlinear inversion using Monte Carlo, and Simulated Annealing algorithms. One innovative way of solving the inverse problem is to make inference from the ensemble of all acceptable models. The statistical features of the ensemble provide a better way to characterize the Earth model.
NASA Astrophysics Data System (ADS)
Bodmer, M.; Toomey, D. R.; Hooft, E. E. E.; Bezada, M.; Schmandt, B.; Byrnes, J. S.
2017-12-01
Amphibious studies of subduction zones promise advances in understanding links between incoming plate structure, the subducting slab, and the upper mantle beneath the slab. However, joint onshore/offshore imaging is challenging due to contrasts between continental and oceanic structure. We present P-wave teleseismic tomography results for the Cascadia subduction zone (CSZ) that utilize existing western US datasets, amphibious seismic data from the Cascadia Initiative, and tomographic algorithms that permit 3D starting models, nonlinear ray tracing, and finite frequency kernels. Relative delay times show systematic onshore/offshore trends, which we attribute to structure in the upper 50 km. Shore-crossing CSZ seismic refraction models predict relative delays >1s, with equal contributions from elevation and crustal thickness. We use synthetic data to test methods of accounting for such shallow structure. Synthetic tests using only station static terms produce margin-wide, sub-slab low-velocity artifacts. Using a more realistic a priori 3D model for the upper 50 km better reproduces known input structures. To invert the observed delays, we use data-constrained starting models of the CSZ. Our preferred models utilize regional surface wave studies to construct a starting model, directly account for elevation, and use 3D nonlinear ray tracing. We image well-documented CSZ features, including the subducted slab down to 350 km, along strike slab variations below 150 km, and deep slab fragmentation. Inclusion of offshore data improves resolution of the sub-slab mantle, where we resolve localized low-velocity anomalies near the edges of the CSZ (beneath the Klamath and Olympic mountains). Our new imaging and resolution tests indicate that previously reported margin-wide, sub-slab low-velocity asthenospheric anomalies are an imaging artifact. Offshore, we observe low-velocity anomalies beneath the Gorda plate consistent with regional deformation and broad upwelling resulting from plate stagnation. At the Juan de Fuca Ridge we observe asymmetric low-velocity anomalies consistent with dynamic upwelling. Our results agree with recent offshore tomography studies using S wave data; however, differences in the recovered relative amplitudes are likely due to anisotropy, which we are exploring.
Exceptional points of resonant states on a periodic slab
NASA Astrophysics Data System (ADS)
Abdrabou, Amgad; Lu, Ya Yan
2018-06-01
A special kind of degeneracy, known as exceptional points (EPs), for resonant states on a dielectric periodic slab are investigated. Due to their unique properties, EPs have found important applications in lasing, sensing, unidirectional operations, etc. In general, EPs may appear in non-Hermitian eigenvalue problems, including those related to -parity-time-symmetric systems and those for open dielectric structures (due to the existence of radiation loss). In this paper, we study EPs on a simple periodic structure: a slab with a periodic array of gaps. By using an efficient numerical method, we calculate the EPs and study their dependence on geometric parameters. Analytic results are obtained for the limit as the periodic slab approaches a uniform one. Our work provides a simple platform for further studies concerning EPs on dielectric periodic structures, their unusual properties, and applications.
Seismicity and structure of Nazca Plate subduction zone in southern Peru
NASA Astrophysics Data System (ADS)
Lim, H.; Kim, Y.; Clayton, R. W.
2015-12-01
We image the Nazca plate subduction zone system by detecting and (re)locating intra-slab earthquakes in southern Peru. Dense seismic arrays (PeruSE, 2013) were deployed along four lines to target geophysical characterization of the subduction system in the transition zone between flat and normal dipping segments of the Nazca plate (2-15°S). The arc volcanism is absent near the flat slab segment, and currently, the correlation between the location of the active volcanic front and corresponding slab depth is neither clear nor consistent between previously published models from seismicity. We detect 620 local earthquakes from August 2008 to February 2013 by manually picking 6559 and 4145 arrival times for P- and S-phases, respectively. We observe that the S-phase data is helpful to reduce the trade-off between origin time and depth of deeper earthquakes (>100 km). Earthquake locations are relocated to constrain the Nazca slab-mantle interface in the slab-dip transition zone using 7322 measurements of differential times of nearby earthquake pairs by waveform cross-correlation. We also employ the double-difference tomography (Zhang and Thurber, 2003) to further improve earthquake source locations and the spatial resolution of the velocity structure simultaneously. The relocated hypocenters clearly delineate the dipping Wadati-Benioff zone in the slab-dip transition zone between the shallow- (25°) to-flat dipping slab segment in the north and the normal (40°) dipping segment in the south. The intermediate-depth seismicity in the flat slab region stops at a depth of ~100 km and a horizontal distance of ~400 km from the trench. We find a significant slab-dip difference (up to 10°) between our relocated seismicity and previously published slab models along the profile region sampling the normal-dip slab at depth (>100 km).
NASA Astrophysics Data System (ADS)
Lang, Ye; Chen, Yanzhong; Liao, Lifen; Guo, Guangyan; He, Jianguo; Fan, Zhongwei
2018-03-01
In high power diode lasers, the input cooling water temperature would affect both output power and output spectrum. In double face pumped slab laser, the spectrum of two laser diode arrays (LDAs) must be optimized for efficiency reason. The spectrum mismatch of two LDAs would result in energy storing decline. In this work, thermal induced efficiency decline due to spectral overlap between high power LDAs and laser medium was investigated. A numerical model was developed to describe the energy storing variation with changing LDAs cooling water temperature and configuration (series/parallel connected). A confirmatory experiment was conducted using a double face pumped slab module. The experiment results show good agreements with simulations.
NASA Astrophysics Data System (ADS)
Chapeleau, Xavier; Cottineau, Louis-Marie; Sedran, Thierry; Cailliau, Joël; Gueguen, Ivan; Dumoulin, Jean
2015-04-01
While relatively expensive to build, ballastless track structures are presently seen as an attractive alternative to conventional ballast. Firstly, they are built quickly since the slabs can be cast in place in an automated fashion by a slipform paver. Secondly, with its service life of at least 60 years, they requires little maintenance and hence they offers great availability. Other reasons for using ballastless tracks instead of ballasted tracks are the lack of suitable ballast material and the need of less noise and vibration for high-speed, in particularly. In the framework of a FUI project (n° 072906053), a new ballastless track structure based on concrete slabs was designed and its thermal-mechanical behavior in fatigue under selected mechanical and thermal conditions was tested on a real scale mockup in our laboratory [1,2]. By applying to the slabs both together mechanical stresses and thermal gradients, finite elements simulation and experimental results show that the weather conditions influence significantly the concrete slabs curvatures and by the way, the contact conditions with the underlaying layers. So it is absolutely necessary to take into account this effect in the design of the ballastless track structures in order to guarantee a long target life of at least of 50 years. After design and experimental tests in laboratory, a real ballastless track structure of 1km was built in France at the beginning of year 2013. This structure has 2 tracks on which several trains circulate every day since the beginning of year 2014. Before the construction, it was decided to monitor this structure to verify that the mechanical behavior is conform to the simulations. One part of the instrumentation is dedicated to monitor quasi-continuously the evolution of the curvature of a concrete slab. For this, 2 accelerometers were fixed on the slab under the track. One was placed on the edge and the other in the middle of the slab. The acquisition of the signals by a nano computer (called Pegase and developed at Ifsttar for data acquisition [3]) were performed automatically every time that a threshold is exceeded due to the passage of a train. These data are then send to a web server via a 3G Wireless Network. Many data was thus stored daily for several months. Moreover, several thermocouples were embedded at different depths in order to measure thermal gradients into the track slab. From the accelerometers signals, the deflection of the track slab are then obtained and compared to the measurements of thermal gradients. This comparison show clearly the daily evolution of the curvature with the thermal gradient changes as estimated by the simulation. This result was confirmed indirectly by strain profile measurements obtained by the Rayleigh fiber optic sensing technique. Two fiber optics embedded in the upper and lower part of the foundation slab show that contact conditions between the foundation slab and the track slab change with thermal gradient. 1 - X. Chapeleau, T. Sedran, L.-M. Cottineau, J. Cailliau, F. Taillade, I. Gueguen, J.-M. Henault. Study of ballastless track structure monitoring by distributed optical fiber sensors on a real-scale mockup in laboratory. Engineering Structures, 2013, 56, pp. 1751-1757. 2 - X. Chapeleau, L.-M. Cottineau, T. Sedran, J. Cailliau, I. Gueguen. Instrumentation by distributed optical fiber sensors of a new ballastless track structure. EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, id. EGU2013-8946 3 - V. Le Cam, L. Lemarchand, L-M. Cottineau and F. Bourquin. Design of a generic smart and wireless sensors network - benefits of emerging technologies. Structural Health Monitoring 2008, 1(1), pp. 598-605.
Imaging performance of an isotropic negative dielectric constant slab.
Shivanand; Liu, Huikan; Webb, Kevin J
2008-11-01
The influence of material and thickness on the subwavelength imaging performance of a negative dielectric constant slab is studied. Resonance in the plane-wave transfer function produces a high spatial frequency ripple that could be useful in fabricating periodic structures. A cost function based on the plane-wave transfer function provides a useful metric to evaluate the planar slab lens performance, and using this, the optimal slab dielectric constant can be determined.
Design of electromagnetic refractor and phase transformer using coordinate transformation theory.
Lin, Lan; Wang, Wei; Cui, Jianhua; Du, Chunlei; Luo, Xiangang
2008-05-12
We designed an electromagnetic refractor and a phase transformer using form-invariant coordinate transformation of Maxwell's equations. The propagation direction of electromagnetic energy in these devices can be modulated as desired. Unlike the conventional dielectric refractor, electromagnetic fields at our refraction boundary do not conform to the Snell's law in isotropic materials and the impedance at this boundary is matched which makes the reflection extremely low; and the transformation of the wave front from cylindrical to plane can be realized in the phase transformer with a slab structure. Two dimensional finite-element simulations were performed to confirm the theoretical results.
High performance electro-optical modulator based on photonic crystal and graphene
NASA Astrophysics Data System (ADS)
Malekmohammad, M.; Asadi, R.
2017-07-01
An electro-optical modulator is demonstrated based on Fano-resonance effect in an out-of-plane illumination of one-dimensional slab photonic crystal composed of two graphene layers. It has been shown that high sensitivity of the Fano-resonance and electro-refractive tuning of graphene layers provides a suitable condition to obtain an electro-optical modulator with low energy consumption (8 pJ) with contrast of 0.4.
Broadband unidirectional invisibility for airborne sound
NASA Astrophysics Data System (ADS)
Kan, Weiwei; Guo, Mengping; Shen, Zhonghua
2018-05-01
We present a metafluid-based broadband cloak capable of guiding acoustic waves around obstacles along given directions while maintaining the wavefront undisturbed. The required parameter distribution of the proposed cloak is derived by coordinate transformation and practically implemented by employing the acoustic metafluid formed with periodically arranged slabs in acoustic chambers. The method for independently modulating the effective mass density and bulk modulus of the metafluid is developed by tuning the geometry parameters and the temperature of the acoustic chamber in a specific process. By virtue of this free-modulated method, the range of realizable effective parameters is substantially broadened, and the acoustic impedance of the anisotropic structures can be well matched to the background. The performance of the designed structure is quantitatively evaluated in the frequency range of 3-4 kHz by the averaged invisibility factor. The results show that the proposed cloak is effective in manipulating the acoustic field along the given direction and suppressing the wave scattering from the hidden object.
NASA Astrophysics Data System (ADS)
Lücke, O. H.; Arroyo, I. G.
2015-07-01
The eastern part of the oceanic Cocos Plate presents a heterogeneous crustal structure due to diverse origins and ages as well as plate-hot spot interactions which originated the Cocos Ridge, a structure that converges with the Caribbean Plate in southeastern Costa Rica. The complex structure of the oceanic plate directly influences the dynamics and geometry of the subduction zone along the Middle American Trench. In this paper an integrated interpretation of the slab geometry is presented based on three-dimensional density modeling of combined satellite and surface gravity data, constrained by available geophysical and geological data and seismological information obtained from local networks. The results show the continuation of steep subduction geometry from the Nicaraguan margin into Northwestern Costa Rica, followed by a moderate dipping slab under the Central Cordillera toward the end of the Central American Volcanic Arc. To the southeast end of the volcanic arc, our preferred model shows a steep, coherent slab that extends up to the landward projection of the Panama Fracture Zone. Overall, a gradual change in the depth of the intraplate seismicity is observed, reaching 220 km in the northwestern part, and becoming progressively shallower toward the southeast, where it reaches a terminal depth of 75 km. The changes in the terminal depth of the observed seismicity correlate with the increased density in the modeled slab. The absence of intermediate depth intraplate seismicity in the southeastern section and the higher densities for the subducted slab in this area, support a model in which dehydration reactions in the subducted slab cease at a shallower depth, originating an anhydrous and thus aseismic slab.
NASA Astrophysics Data System (ADS)
Lücke, O. H.; Arroyo, I. G.
2015-10-01
The eastern part of the oceanic Cocos Plate presents a heterogeneous crustal structure due to diverse origins and ages as well as plate-hot spot interactions which originated the Cocos Ridge, a structure that converges with the Caribbean Plate in southeastern Costa Rica. The complex structure of the oceanic plate directly influences the dynamics and geometry of the subduction zone along the Middle American Trench. In this paper an integrated interpretation of the slab geometry in Costa Rica is presented based on 3-D density modeling of combined satellite and surface gravity data, constrained by available geophysical and geological data and seismological information obtained from local networks. The results show the continuation of steep subduction geometry from the Nicaraguan margin into northwestern Costa Rica, followed by a moderate dipping slab under the Central Cordillera toward the end of the Central American Volcanic Arc. Contrary to commonly assumed, to the southeast end of the volcanic arc, our preferred model shows a steep, coherent slab that extends up to the landward projection of the Panama Fracture Zone. Overall, a gradual change in the depth of the intraplate seismicity is observed, reaching 220 km in the northwestern part, and becoming progressively shallower toward the southeast, where it reaches a maximum depth of 75 km. The changes in the terminal depth of the observed seismicity correlate with the increased density in the modeled slab. The absence of intermediate depth (> 75 km) intraplate seismicity in the southeastern section and the higher densities for the subducted slab in this area, support a model in which dehydration reactions in the subducted slab cease at a shallower depth, originating an anhydrous and thus aseismic slab.
NASA Astrophysics Data System (ADS)
Li, Bo; Guo, Ming-Zhe; Yu, Hui; Chen, Shao-Xia
2018-03-01
Impulsively generated sausage wave trains in coronal structures are important for interpreting a substantial number of observations of quasi-periodic signals with quasi-periods of order seconds. We have previously shown that the Morlet spectra of these wave trains in coronal tubes depend crucially on the dispersive properties of trapped sausage waves, the existence of cutoff axial wavenumbers, and the monotonicity of the dependence of the axial group speed on the axial wavenumber in particular. This study examines the difference a slab geometry may introduce, for which purpose we conduct a comprehensive eigenmode analysis, both analytically and numerically, on trapped sausage modes in coronal slabs with a considerable number of density profiles. For the profile descriptions examined, coronal slabs can trap sausage waves with longer axial wavelengths, and the group speed approaches the internal Alfvén speed more rapidly at large wavenumbers in the cylindrical case. However, common to both geometries, cutoff wavenumbers exist only when the density profile falls sufficiently rapidly at distances far from coronal structures. Likewise, the monotonicity of the group speed curves depends critically on the profile steepness right at the structure axis. Furthermore, the Morlet spectra of the wave trains are shaped by the group speed curves for coronal slabs and tubes alike. Consequently, we conclude that these spectra have the potential for inferring the subresolution density structuring inside coronal structures, although their detection requires an instrumental cadence of better than ∼1 s.
Cause Analysis on the Void under Slabs of Cement Concrete Pavement
NASA Astrophysics Data System (ADS)
Wen, Li; Zhu, Guo Xin; Baozhu
2017-06-01
This paper made a systematic analysis on the influence of the construction, environment, water and loads on the void beneath road slabs, and also introduced the formation process of structural void and pumping void, and summarizes the deep reasons for the bottom of the cement concrete pavement. Based on the analysis above, this paper has found out the evolution law of the void under slabs which claimed that the void usually appeared in the slab corners and then the cross joint, resulting void in the four sides with the void area under the front slab larger than the rear one.
NASA Astrophysics Data System (ADS)
Gans, Christine R.; Beck, Susan L.; Zandt, George; Gilbert, Hersh; Alvarado, Patricia; Anderson, Megan; Linkimer, Lepolt
2011-07-01
The Pampean flat slab of central Chile and Argentina (30°-32°S) has strongly influenced Cenozoic tectonics in western Argentina, which contains both the thick-skinned, basement-cored uplifts of the Sierras Pampeanas and the thin-skinned Andean Precordillera fold and thrust belt. In this region of South America, the Nazca Plate is subducting nearly horizontally beneath the South American Plate at ˜100 km depth. To gain a better understanding of the deeper structure of this region, including the transition from flat to 'normal' subduction to the south, three IRIS-PASSCAL arrays of broad-band seismic stations have been deployed in central Argentina. Using the dense SIEMBRA array, combined with the broader CHARGE and ESP arrays, the flat slab is imaged for the first time in 3-D detail using receiver function (RF) analysis. A distinct pair of RF arrivals consisting of a negative pulse that marks the top of the oceanic crust, followed by a positive pulse, which indicates the base of the oceanic crust, can be used to map the slab's structure. Depths to Moho and oceanic crustal thicknesses estimated from RF results provide new, more detailed regional maps. An improved depth to continental Moho map shows depths of more than 70 km in the main Cordillera and ˜50 km in the western Sierras Pampeanas, that shallow to ˜35 km in the eastern Sierras Pampeanas. Depth to Moho contours roughly follow terrane boundaries. Offshore, the hotspot seamount chain of the Juan Fernández Ridge (JFR) is thought to create overthickened oceanic crust, providing a mechanism for flat slab subduction. By comparing synthetic RFs, based on various structures, to the observed RF signal we determine that the thickness of the oceanic crust at the top of the slab averages at least ˜13-19 km, supporting the idea of a moderately overthickened crust to provide the additional buoyancy for the slab to remain flat. The overthickened region is broader than the area directly aligned with the path of the JFR, however, and indicates, along with the slab earthquake locations, that the flat slab area is wider than the JFR volcanic chain observed in the offshore bathymetry. Further, RFs indicate that the subducted oceanic crust in the region directly along the path of the subducted ridge is broken by trench-parallel faults. One explanation for these faults is that they are older structures within the oceanic crust that were created when the slab subducted. Alternatively, it is possible that faults formed recently from tectonic underplating caused by increased interplate coupling in the flat slab region.
Demonstration of pulse controlled all-optical switch/modulator.
Akin, Osman; Dinleyici, M S
2014-03-15
An all-optical pulse controlled switch/modulator based on evanescent coupling between a polymer slab waveguide and a single mode fiber is demonstrated. Very fast all-optical modulation/switching is achieved via Kerr effect of the nonlinear polymer placed in the evanescent region of the optical fiber. Local refractive index perturbation (Δn=-1.45612×10(-5)) on the thin film leads to 0.374 nW power modulation at the fiber output, which results in a switching efficiency of ≈1.5%.
ERIC Educational Resources Information Center
Sjoberg, Daniel
2008-01-01
This paper presents an overview of how circuit models can be used for analysing wave propagation in stratified structures. Relatively complex structures can be analysed using models which are accessible to undergraduate students. Homogeneous slabs are modelled as transmission lines, and thin sheets between the slabs are modelled as lumped…
Thermal structure of the Kanto region, Japan
NASA Astrophysics Data System (ADS)
Wada, Ikuko; He, Jiangheng
2017-07-01
Using a 3-D numerical thermal model, we investigate the thermal structure of the Kanto region of Japan where two oceanic plates subduct. In a typical subduction setting with one subducting slab, the motion of the slab drives solid-state mantle flow in the overlying mantle wedge, bringing in hot mantle from the back-arc toward the forearc. Beneath Kanto, however, the presence of the subducting Philippine Sea plate between the overlying North American plate and the subducting Pacific plate prevents a typical mantle wedge flow pattern, resulting in a cooler condition. Further, frictional heating and the along-margin variation in the maximum depth of slab-mantle decoupling along the Pacific slab surface affect the thermal structure significantly. The model provides quantitative estimates of spatial variations in the temperature condition that are consistent with the observed surface heat flow pattern and distributions of interplate seismicity and arc volcanoes in Kanto.
NASA Astrophysics Data System (ADS)
Tsuji, Y.; Nakajima, J.; Kita, S.; Okada, T.; Matsuzawa, T.; Hasegawa, A.
2007-12-01
Three-dimensional heterogeneous structure beneath northeastern (NE) Japan has been investigated by previous studies and an inclined seismic low-velocity zone is imaged in the mantle wedge sub-parallel to the down-dip direction of the subducting slab (Zhao et al., 1992, Nakajima et al., 2001). However, the heterogeneous structure within the slab has not been well studied even though it is very important to understand the whole process of water transportation from the slab to the surface. Here we show a detailed 3D seismic velocity structure within the subducted Pacific slab around Japan and propose a water-transportation path from the slab to the mantle wedge. In this study, we estimated 3D velocity structure within the Pacific slab by the double-difference tomography (Zhang and Thurber, 2003). We divided the study area, from Hokkaido to Kanto, into 6 areas due to the limitation of memory and computation time. In each area, arrival-time data of 7,500-17,000 events recorded at 70-170 stations were used in the analysis. The total number of absolute travel-time data was about 140,000-312,000 for P wave and 123,000-268,000 for S wave, and differential data were about 736,000-1,920,000 for P wave and 644,000-1,488,000 for S wave. Horizontal and vertical grid separations are 10-25 km and 6.5 km, respectively. RMS residuals of travel times for P wave decreased from 0.23s to 0.09s and for S wave from 0.35s to 0.13s. The obtained results are as follows: (1) a remarkable low-Vs zone exists in the uppermost part of the subducting slab, (2) it extends down to a depth of about 80 km, (3) the termination of this low-Vs zone almost corresponds to the "seismic belt" recently detected in the upper plane of the double seismic zone (Kita et al.,2006; Hasegawa et al., 2007), (4) at depths deeper than 80 km, a low-Vs and high-Vp/Vs zone is apparently distributed in the mantle wedge, immediately above the slab crust. We consider that these features reflect water-transportation processes from the slab to the mantle wedge. A low- Vs zone in the uppermost part of the subducting slab corresponds to the hydrous oceanic crust since its absolute velocity is about 4.0 km/s, comparable to that expected for the oceanic crust (Hacker et al., 2003). Dehydration reactions occur in the oceanic crust as temperature and pressure increase, and a relatively large amount of water is released at depths of about 80-100 km. The water generated by dehydration reactions could migrate upward and react peridotite at the base of the mantle wedge, forming a thin-serpentine layer there. Then, the layer is dragged by the subducting slab to deeper depths (e.g. Iwamori, 1998). Such water-transportation processes from the slab to the mantle wedge are partly constrained by a recent receiver function analysis (Kawakatsu and Watada, 2007). We further found an along-arc variation of the termination depth of the low-velocity oceanic crust, suggesting the along-arc variation in the amount of fluids released from the slab.
Imaging the slab structure in the Alpine region by high-resolution P-wave tomography
NASA Astrophysics Data System (ADS)
Guillot, Stéphane; Zhao, Liang; Paul, Anne; Malusà, Marco G.; Xu, Xiaobing; Zheng, Tianyu; Solarino, stefano; Schwartz, Stéphane; Dumont, Thierry; Salimbeni, Simone; Aubert, Coralie; Pondrelli, Silvia; Wang, Qingchen; Zhu, Rixiang
2017-04-01
Based upon a finite-frequency inversion of traveltimes, we computed a new high-resolution tomography model using P-wave data from 527 broadband seismic stations, both from permanent networks and temporary experiments (Zhao et al., 2016). This model provides an improved image of the slab structure in the Alpine region, and fundamental pin-points for the analysis of Cenozoic magmatism, (U)HP metamorphism and Alpine topography. Our results document the lateral continuity of the European slab from the Western to the Central Alps, and the down-dip slab continuity beneath the Central Alps, ruling out the hypothesis of slab breakoff to explain Cenozoic Alpine magmatism. A low velocity anomaly is observed in the upper mantle beneath the core of the Western Alps, pointing to dynamic topography effects (Malusà et al., this meeting). A NE-dipping Adriatic slab, consistent with Dinaric subduction, is possibly observed beneath the Eastern Alps, whereas the laterally continuous Adriatic slab of the Northern Apennines shows major gaps at the boundary with the Southern Apennines, and becomes near vertical in the Alps-Apennines transition zone. Tear faults accommodating opposite-dipping subductions during Alpine convergence may represent reactivated lithospheric faults inherited from Tethyan extension. Our results suggest that the interpretations of previous tomography results that include successive slab breakoffs along the Alpine-Zagros-Himalaya orogenic belt might be proficiently reconsidered. Malusà M.G. et alii (2017) On the potential asthenospheric linkage between Apenninic slab rollback and Alpine topographic uplift: insights from P wave tomography and seismic anisotropy analysis. EGU 2017. Zhao L. et alii (2016), Continuity of the Alpine slab unraveled by high-resolution P wave tomography. J. Geophys. Res., doi:10.1002/2016JB013310.
Dynamic Eigenvalue Problem of Concrete Slab Road Surface
NASA Astrophysics Data System (ADS)
Pawlak, Urszula; Szczecina, Michał
2017-10-01
The paper presents an analysis of the dynamic eigenvalue problem of concrete slab road surface. A sample concrete slab was modelled using Autodesk Robot Structural Analysis software and calculated with Finite Element Method. The slab was set on a one-parameter elastic subsoil, for which the modulus of elasticity was separately calculated. The eigen frequencies and eigenvectors (as maximal vertical nodal displacements) were presented. On the basis of the results of calculations, some basic recommendations for designers of concrete road surfaces were offered.
Structure and morphology of submarine slab slides: clues to origin and behavior
O'Leary, Dennis W.
1991-01-01
Geologic features suggest that some slab slides probably result from long-term strength degradation of weak layers deep in the homoclinal section. Time-dependent strain in clay-rich layers can create potential slide surfaces of low frictional strength. Competent layers are weak in tension and probably fragment in the first instance of, or even prior to, translation, and the allochthonous mass is readily transformed into a high-momentum debris flow. The structure and geomorphology of slab slides provide important clues to their origin and behavior. -from Author
DAPHNE silicon photonics technological platform for research and development on WDM applications
NASA Astrophysics Data System (ADS)
Baudot, Charles; Fincato, Antonio; Fowler, Daivid; Perez-Galacho, Diego; Souhaité, Aurélie; Messaoudène, Sonia; Blanc, Romuald; Richard, Claire; Planchot, Jonathan; De-Buttet, Come; Orlando, Bastien; Gays, Fabien; Mezzomo, Cécilia; Bernard, Emilie; Marris-Morini, Delphine; Vivien, Laurent; Kopp, Christophe; Boeuf, Frédéric
2016-05-01
A new technological platform aimed at making prototypes and feasibility studies has been setup at STMicroelectronics using 300mm wafer foundry facilities. The technology, called DAPHNE (Datacom Advanced PHotonic Nanoscale Environment), is devoted at developing and evaluating new devices and sub-systems in particular for wavelength division multiplexing (WDM) applications and ring resonator based applications. Developed in the course of PLAT4MFP7 European project, DAPHNE is a flexible platform that fits perfectly R&D needs. The fabrication flow enables the processing of photonic integrated circuits using a silicon-on-insulator (SOI) of 300nm, partial etches of 150nm and 50nm and a total silicon etching. Consequently, two varieties of rib waveguides and one strip waveguide can be fabricated simultaneously with auto-alignment properties. The process variability on the 150nm partially etched silicon and the thin 50nm slab region are both less than 6 nm. Using a variety of different implantation configurations and a back-end of line of 5 metal layers, active devices are fabricated both in germanium and silicon. An available far back-end of line process consists of making 20 μm diameter copper posts on top of the electrical pads so that an electronic integrated circuit can be bonded on top the photonic die by 3D integration. Besides having those fabrication process options, DAPHNE is equipped with a library of standard cells for optical routing and multiplexing. Moreover, typical Mach-Zehnder modulators based on silicon pn junctions are also available for optical signal modulation. To achieve signal detection, germanium photodetectors also exist as standard cells. The measured single-mode propagation losses are 3.5 dB/cm for strip, 3.7 dB/cm for deep-rib (50nm slab) and 1.4 dB/cm for standard rib (150nm slab) waveguides. Transition tapers between different waveguide structures are as low as 0.006 dB.
A seismological constraint on the age of a subducting slab: the Huatung basin offshore Taiwan
NASA Astrophysics Data System (ADS)
Chang, Y.; Kuo, B.
2010-12-01
At the northwestern corner of the Philippine basin, collision and subduction are taking place simultaneously as the Philippine Sea plate is obliquely subducting beneath the Ryukyu trench and NE Taiwan. What is engaging in these processes is the Huatung basin (HB) lithosphere, a small piece of oceanic lithosphere which, unlike the rest of the Philippine Sea plate, is controversial in its age and structure. Because certain ages of lithosphere correspond to certain overall velocity structures, we examine how old the subducting slab of the HB has to be to satisfy seismological observations. We select from broadband seismic networks on Taiwan a rough linear array that points to the events in the Kuril trench region, rendering a slab dipping towards the upcoming P wave field. The slab thus defocuses seismic energy and produces an amplitude low along the array with magnitude and spread controlled by the age of the slab. We employ a 2D finite-difference waveform technique and experimented with 2 types of slab models with various ages: a simplistic conduction model and a high-resolution slab-wedge convection model. The older and thicker the slab, the more widely the predicted amplitude low spreads. Comparison with the observations indicates that the best slab ages fall into 20-50 Ma. This is at odds with the 125 Ma Ar-Ar dating model. Now the issue is not how to make the chronologically old lithosphere seismologically young, but why those basaltic rock samples dated to be old are located on the HB.
NASA Astrophysics Data System (ADS)
Xu, Yanlong; Li, Yi; Cao, Liyun; Yang, Zhichun; Zhou, Xiaoling
2017-09-01
The generalized Snell's law (GSL) with phase discontinuity proposed based on the concept of a metasurface, which can be used to control arbitrarily the reflection and refraction of waves, attracts a growing attention in these years. The concept of abnormally deflecting the incident wave has been applied to the elastic field very recently. However, most of the studies on metasurfaces are based on passive materials, which restricts the frequency or the deflected angles always working in a single state. Here, we steer elastic SH wave propagation in an electrorheological (ER) elastomer with a structured meta-slab composed of geometrically periodic wave guides by exposing the slab to the programmed electric fields. The dependence of phase velocities of SH waves on the applied electric fields can make the phase shift under the form of a special function along the slab, which will control the refraction angles of the transmitted SH waves by the GSL. Accordingly we design the meta-slab theoretically and conduct corresponding numerical simulations. The results demonstrate that the structured meta-slab under the programmed external electric fields can deflect SH wave flexibly with tunable refraction angles and working frequencies, and can focus SH wave with tunable focal lengths. The present study will broaden the scope of applying adaptive materials to design metasurfaces with tunability.
Investigation of evanescent coupling between tapered fiber and a multimode slab waveguide.
Dong, Shaofei; Ding, Hui; Liu, Yiying; Qi, Xiaofeng
2012-04-01
A tapered fiber-slab waveguide coupler (TFSC) is proposed in this paper. Both the numerical analysis based on the beam propagation method and experiments are used for investigating the dependencies of TFSC transmission features on their geometric parameters. From the simulations and experimental results, the rules for fabricating a TFSC with low transmission loss and sharp resonant spectra by optimizing the configuration parameters are presented. The conclusions derived from our work may provide helpful references for optimally designing and fabricating TFSC-based devices, such as sensors, wavelength filters, and intensity modulators.
Dynamics of Secondary Large-Scale Structures in ETG Turbulence Simulations
NASA Astrophysics Data System (ADS)
Li, Jiquan; Y, Kishimoto; Dong, Jiaqi; N, Miyato; T, Matsumoto
2006-01-01
The dynamics of secondary large-scale structures in electron-temperature-gradient (ETG) turbulence is investigated based on gyrofluid simulations in sheared slab geometry. It is found that structural bifurcation to zonal flow dominated or streamer-like states depends on the spectral anisotropy of turbulent ETG fluctuation, which is governed by the magnetic shear. The turbulent electron transport is suppressed by enhanced zonal flows. However, it is still low even if the streamer is formed in ETG turbulence with strong shears. It is shown that the low transport may be related to the secondary excitation of poloidal long-wavelength mode due to the beat wave of the most unstable components or a modulation instability. This large-scale structure with a low frequency and a long wavelength may saturate, or at least contribute to the saturation of ETG fluctuations through a poloidal mode coupling. The result suggests a low fluctuation level in ETG turbulence.
Damage Assessment of Two-Way Bending RC Slabs Subjected to Blast Loadings
Jia, Haokai; Wu, Guiying
2014-01-01
Terrorist attacks on vulnerable structures and their individual structural members may cause considerable damage and loss of life. However, the research work on response and damage analysis of single structural components, for example, a slab to blast loadings, is limited in the literature and this is necessary for assessing its vulnerability. This study investigates the blast response and damage assessment of a two-way bending reinforced concrete (RC) slab subjected to blast loadings. Numerical modeling and analysis are carried out using the commercial finite element code LS-DYNA 971. A damage assessment criterion for the two-way bending RC slab is defined based on the original and residual uniformly distributed load-carrying capacity. Parametric studies are carried out to investigate the effects of explosive weight and explosive position on the damage mode of the two-way RC slab. Some design parameters, such as the boundary conditions and the negative reinforcement steel bar length, are also discussed. The illustrated results show that the proposed criterion can apply to all failure modes. The damage assessment results are more accurate than the ones due to the conventional deformation criterion. PMID:25121134
NASA Astrophysics Data System (ADS)
Ishise, Motoko; Kawakatsu, Hitoshi; Morishige, Manabu; Shiomi, Katsuhiko
2018-05-01
We investigate slab and mantle structure of the NE Japan subduction zone from P wave azimuthal and radial anisotropy using travel time tomography. Trench normal E-W-trending azimuthal anisotropy (AA) and radial anisotropy (RA) with VPV > VPH are found in the mantle wedge, which supports the existence of small-scale convection in the mantle wedge with flow-induced LPO of mantle minerals. In the subducting Pacific slab, trench parallel N-S-trending AA and RA with VPH > VPV are obtained. Considering the effect of dip of the subducting slab on apparent anisotropy, we suggest that both characteristics can be explained by the presence of laminar structure, in addition to AA frozen-in in the subducting plate prior to subduction.
Seismic Behaviour of Masonry Vault-Slab Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesi, Claudio; Butti, Ferdinando; Ferrari, Marco
2008-07-08
Spandrel walls typically play a structural role in masonry buildings, transferring load from a slab to the supporting vault. Some indications are given in the literature on the behaviour of spandrels under the effect of vertical loads, but little attention is given to the effect coming from lateral forces acting on the building. An opportunity to investigate this problem has come from the need of analyzing a monumental building which was damaged by the Nov. 24, 2004 Val Sabbia earthquake in the north of Italy. The finite element model set up for the analysis of the vault-spandrel-slab system is presentedmore » and the structural role resulting for the spandrels is discussed.« less
Temporal photonic crystals with modulations of both permittivity and permeability
NASA Astrophysics Data System (ADS)
Martínez-Romero, Juan Sabino; Becerra-Fuentes, O. M.; Halevi, P.
2016-06-01
We present an in-depth study of electromagnetic wave propagation in a temporal photonic crystal, namely, a nonconducting medium whose permittivity ɛ (t ) and/or permeability μ (t ) are modulated periodically by unspecified agents (these modulations not necessarily being in phase). Maxwell's equations lead to an eigenvalue problem whose solution provides the dispersion relation ω (k ) for the waves that can propagate in such a dynamic medium. This is a generalization of previous work [J. R. Zurita-Sánchez and P. Halevi, Phys. Rev. A 81, 053834 (2010)], 10.1103/PhysRevA.81.053834 that was restricted to the electric modulation ɛ (t ) . For our numerical work (only) we assumed the harmonic modulations ɛ (t ) =ɛ ¯[1 +mɛsin(Ω t ) ] and μ (t ) =μ ¯[1 +mμsin(Ω t +θ ) ] , where Ω is the circular modulation frequency; mɛ and mμ are, respectively, the strengths of the electric and magnetic modulations; and θ is the phase difference between these modulations. An analytic calculation for weak modulations (mɛ≪1 ,mμ≪1 ) leads to two k bands, k1(ω ) and k2(ω ) , that are separated by a k gap. If the modulations are in phase (θ =0 ) , this gap is proportional to | mɛ-mμ| , while the gap is proportional to (mɛ+mμ) if the modulations are out of phase (θ =π ) . The gap thus disappears for equal, in-phase, modulations (mɛ=mμ) . An exact solution of the eigenvalue equation confirms that these approximations hold reasonably well even for moderate modulations. In fact, there are no k gaps for equal modulations even if these are very strong (mɛ ,μ≲1 ) . The photonic band structure k (ω ) is periodic in ω , with period Ω , and there is an infinite number of bands k1(ω ) , k2(ω ) ,... Further, by allowing ɛ (t ) and μ (t ) to have imaginary parts, we examined the effects of damping [Im k (ω )] on the k bands. We also determined the optical response of a temporal photonic crystal slab, applying the above harmonic model for ɛ (t ) and μ (t ) . The reflected and transmitted light represent a frequency comb of frequencies ω , |ω ±Ω | , |ω ±2 Ω |,... The transmission coefficients Tn(ω ) for these harmonics n Ω of the modulation frequency strongly depend on the parameters mɛ, mμ, and θ , as well as on the thickness of the slab. Moreover, they can much exceed unity, as a result of energy transfer from the source of modulation. In a particularly interesting case, Tn(ω ) exhibits oscillations with peaks that resemble parametric resonances, rather than the usual Fabry-Perot resonances.
NASA Astrophysics Data System (ADS)
Tian, M.; Katz, R. F.; Rees Jones, D. W.; May, D.
2017-12-01
Compared with other plate-tectonic boundaries, subduction zones (SZ) host the most drastic mechanical, thermal, and chemical changes. The transport of carbon through this complex environment is crucial to mantle carbon budget but remains the subject of active debate. Synthesis of field studies suggests that carbon subducted with the incoming slab is almost completely returned to the surface environment [Kelemen and Manning, 2015], whereas thermodynamic modelling indicates that a significant portion of carbon is retained in the slab and descends into the deep mantle [Gorman et al., 2006]. To address this controversy and quantify the carbon fluxes within SZs, it is necessary to treat the chemistry of fluid/volatile-rock interaction and the mechanics of porous fluid/volatile migration in a consistent modelling framework. This requirement is met by coupling a thermodynamic parameterization of de/re-volatilization with a two-phase flow model of subduction zones. The two-phase system is assumed to comprise three chemical components: rock containing only non-volatile oxides, H2O and CO2; the fluid phase includes only the latter two. Perple_X is used to map out the binary subsystems rock+H2O and rock+CO2; the results are parameterised in terms of volatile partition coefficients as a function of pressure and temperature. In synthesising the binary subsystems to describe phase equilibria that incorporate all three components, a Margules coefficient is introduced to account for non-ideal mixing of CO2/H2O in the fluid, such that the partition coefficients depend further on bulk composition. This procedure is applied to representative compositions of sediment, MORB, and gabbro for the slab, and peridotite for the mantle. The derived parameterization of each rock type serves as a lightweight thermodynamic module interfaceable with two-phase flow models of SZs. We demonstrate the application of this thermodynamic module through a simple model of carbon flux with a prescribed flow direction through (and out of) the slab. This model allows us to evaluate the effects of flow path and lithology on carbon storage within the slab.
NASA Astrophysics Data System (ADS)
Zhang, Peng
The highly developed nano-fabrication techniques allow light to be modulated with photonic structures in a more intensive way. These photonic structures involve photonic crystals, metals supporting surface plasmon polaritons, metamaterials, etc. In this thesis work, three different ways for light manipulation are numerically investigated. First, the light propagation is modulated using a photonic crystal with Dirac cones. It is demonstrated that the zero-index behavior of this photonic crystal which happens for normal incident waves, is lost at oblique incidence. A new method combining complex-k band calculations and absorbing boundary conditions for Bloch modes is developed to analyze the Bloch mode interaction in details. Second, the mechanic states of graphene are modulated through the optical gradient force. This force is induced by the coupled surface plasmons on the double graphene sheets and is greatly enhanced in comparison to the regular waveguides. By applying different strengths of forces in accordance to the input power, the mechanic state transition is made possible, accompanied by an abrupt change in the transmission and reflection spectra. Third, the helicity/chirality of light is studied to modulate the lateral force on a small particle. A left-hand material slab which supports coherent TE ad TM plasmons simultaneously is introduced. By mixing the TE and TM surface plasmons with different relative phases, the lateral force on a chiral particle can be changed, which will be beneficial for chiral particle sorting.
NASA Astrophysics Data System (ADS)
Liu, X.; Currie, C. A.
2017-12-01
The subducted Farallon plate is believed to have evolved to a flat geometry underneath North America plate during Late Cretaceous, triggering Laramide deformation within the continental interior. However, the mechanism that caused the oceanic slab to flatten and the factors that control the flat-slab depth remain uncertain. In this work, we use 2D thermal-mechanical models using the SOPALE code to study the subduction dynamics from 90 Ma to 50 Ma. During this period, an oceanic plateau (Shatsky Conjugate) is inferred to have subducted beneath western North America and interacted with the continental lithosphere, including areas of thicker lithosphere such as the Colorado Plateau and Wyoming Craton. Based on seismic tomography and plate reconstruction data sets, we built a set of models to examine the influence of the structure and rheology of the oceanic and continental plates on slab dynamics. Models include a 600 km wide oceanic plateau consisting of 18 km thick crust and a 36 km thick underlying harzburgite layer, and we ran a series of model experiments to test different continental thicknesses (80 km, 120 km, & 180 km) and continental mantle lithosphere strengths (approximating conditions from wet olivine to dry olivine). Consistent with earlier studies, we find that creation of a long flat slab requires a buoyant oceanic plateau (i.e., non-eclogitized crust) and trenchward motion of the continent. In addition, our models demonstrate the upper plate has an important control on slab dynamics. A flat slab requires either a thin continent or, if the continent is thick, its mantle lithosphere must be relatively weak so that it can be displaced by the flattening slab. The depth of the flat slab is mainly controlled by two factors: (1) the continental thickness and (2) the strength of the continental mantle lithosphere. For the same initial lithosphere thickness (120 km), a shallower flat slab ( 90 km depth) occurs for the weakest mantle lithosphere ( wet olivine) compared to 120 km depth for strong ( dry) mantle lithosphere because the flat slab removes the lowermost weak lithosphere. Moreover, an even deeper slab ( 130 km) can be found underneath the weakest but thicker continental lithosphere (180 km). Future models will focus on how the flat slab may induce hydration and deformation for the overriding continental plate.
NASA Astrophysics Data System (ADS)
Serrano Juan, Alejandro; Vázquez-Suñè, Enric; Pujades, Estanislao; Velasco, Violeta; Criollo, Rotman; Jurado, Anna
2016-04-01
Underground constructions search the most efficient solutions to increase safety, reduce impacts in both underground construction (such as bottom slab water pressures) and groundwater (such as groundwater barrier effect), reduce future maintenance processes and ensure that everything is implemented by the minimum cost. Even being all the previous solutions directly related to groundwater, independent solutions are usually designed to independently deal with each problem. This paper shows how with a groundwater by-pass design that enables the groundwater flow through the structure it is possible to provide an homogeneous distribution of the water pressures under the bottom slab and reduce the barrier effect produced by the structure. The new integrated design has been applied to the largest infrastructure of Barcelona: La Sagrera railway station. Through a hydrogeological model has been possible to test the project and the integrated designs in three different scenarios. This new solution resolves the barrier effect produced by the structure and optimizes the bottom slab, reducing considerably the costs and increasing safety during the construction phase.
Design and simulation of a planar micro-optic free-space receiver
NASA Astrophysics Data System (ADS)
Nadler, Brett R.; Hallas, Justin M.; Karp, Jason H.; Ford, Joseph E.
2017-11-01
We propose a compact directional optical receiver for free-space communications, where a microlens array and micro-optic structures selectively couple light from a narrow incidence angle into a thin slab waveguide and then to an edge-mounted detector. A small lateral translation of the lenslet array controls the coupled input angle, enabling the receiver to select the transmitter source direction. We present the optical design and simulation of a 10mm x 10mm aperture receiver using a 30μm thick silicon waveguide able to couple up to 2.5Gbps modulated input to a 10mm x 30μm wide detector.
NASA Astrophysics Data System (ADS)
Roy, M.; Maksym, P. A.; Bruls, D.; Offermans, P.; Koenraad, P. M.
2010-11-01
An effective-mass theory of subsurface scanning tunneling microscopy (STM) is developed. Subsurface structures such as quantum dots embedded into a semiconductor slab are considered. States localized around subsurface structures match on to a tail that decays into the vacuum above the surface. It is shown that the lateral variation in this tail may be found from a surface envelope function provided that the effects of the slab surfaces and the subsurface structure decouple approximately. The surface envelope function is given by a weighted integral of a bulk envelope function that satisfies boundary conditions appropriate to the slab. The weight function decays into the slab inversely with distance and this slow decay explains the subsurface sensitivity of STM. These results enable STM images to be computed simply and economically from the bulk envelope function. The method is used to compute wave-function images of cleaved quantum dots and the computed images agree very well with experiment.
En face OCT in Stargardt disease.
Sodi, Andrea; Mucciolo, Dario Pasquale; Cipollini, Francesca; Murro, Vittoria; Caporossi, Orsola; Virgili, Gianni; Rizzo, Stanislao
2016-09-01
To evaluate the structural features of the macular region by enface OCT imaging in patients with clinical diagnosis of Stargardt disease, confirmed by the detection of ABCA4 mutations. Thirty-two STGD patients were included in the study for a total of 64 eyes. All patients received a comprehensive ophthalmological examination, color fundus photography, fundus auto-fluorescence imaging and OCT. Five OCT scans were considered: ILM and RPE scans (both automatically obtained from the instrument), above-RPE slab, photoreceptor slab and sub-RPE slab (these last three manually obtained). ILM scans showed evident radial folds on the retinal surface in 8/64 eyes (12.5 %). In 6 of the 7 patients, these vitreo-retinal interface abnormalities were unilateral. The photoreceptor slab showed some macular alterations ranging from dis-homogeneous, hypo-reflective abnormalities (7/64 eyes, 11 %) to a homogeneous, well-defined, roundish, hypo-reflective area (17/64 eyes, 27 %) in all the eyes. The sub-RPE slab showed a centrally evident, hyper-reflective abnormality in 58/64 eyes (90.6 %). Superimposing the sub-RPE slab over the images corresponding to the photoreceptor slab, the area of the photoreceptor atrophy sharply exceeded that of the RPE atrophy (44/46 eyes, 96 %). Enface OCT proved to be a clinically useful tool for the management of STGD patients, illustrating in vivo the structural abnormalities of the different retinal layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Bisset
This calculation documents the design of the Spent Nuclear Fuel (SNF) and High-Level Waste (HLW) Cask storage slab for the Aging Area. The design is based on the weights of casks that may be stored on the slab, the weights of vehicles that may be used to move the casks, and the layout shown on the sketch for a 1000 Metric Ton of Heavy Metal (MTHM) storage pad on Attachment 2, Sht.1 of the calculation 170-C0C-C000-00100-000-00A (BSC 2004a). The analytical model used herein is based on the storage area for 8 vertical casks. To simplify the model, the storage areamore » of the horizontal concrete modules and their related shield walls is not included. The heavy weights of the vertical storage casks and the tensile forces due to pullout at the anchorages will produce design moments and shear forces that will envelope those that would occur in the storage area of the horizontal modules. The design loadings will also include snow and live loads. In addition, the design will also reflect pertinent geotechnical data. This calculation will document the preliminary thickness and general reinforcing steel requirements for the slab. This calculation also documents the initial design of the cask anchorage. Other slab details are not developed in this calculation. They will be developed during the final design process. The calculation also does not include the evaluation of the effects of cask drop loads. These will be evaluated in this or another calculation when the exact cask geometry is known.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Bo; Habbal, Shadia Rifai; Chen Yanjun, E-mail: bbl@sdu.edu.cn
2013-04-20
In the applications of solar magneto-seismology, the ratio of the period of the fundamental mode to twice the period of its first overtone, P{sub 1}/2P{sub 2}, plays an important role. We examine how field-aligned flows affect the dispersion properties, and hence the period ratios, of standing modes supported by magnetic slabs in the solar atmosphere. We numerically solve the dispersion relations and devise a graphic means to construct standing modes. For coronal slabs, we find that the flow effects are significant for the fast kink and sausage modes alike. For the kink ones, they may reduce P{sub 1}/2P{sub 2} bymore » up to 23% compared with the static case, and the minimum allowed P{sub 1}/2P{sub 2} can fall below the lower limit analytically derived for static slabs. For the sausage modes, while introducing the flow reduces P{sub 1}/2P{sub 2} by typically {approx}< 5% relative to the static case, it significantly increases the threshold aspect ratio only above which standing sausage modes can be supported, meaning that their detectability is restricted to even wider slabs. In the case of photospheric slabs, the flow effect is not as strong. However, standing modes are distinct from the coronal case in that standing kink modes show a P{sub 1}/2P{sub 2} that deviates from unity even for a zero-width slab, while standing sausage modes no longer suffer from a threshold aspect ratio. We conclude that transverse structuring in plasma density and flow speed should be considered in seismological applications of multiple periodicities to solar atmospheric structures.« less
Tectonic evolution of the Mexico flat slab and patterns of intraslab seismicity.
NASA Astrophysics Data System (ADS)
Moresi, L. N.; Sandiford, D.
2017-12-01
The Cocos plate slab is horizontal for about 250 km beneath the Guerrero region of southern Mexico. Analogous morphologies can spontaneously develop in subduction models, through the presence of a low-viscosity mantle wedge. The Mw 7.1 Puebla earthquake appears to have ruptured the inboard corner of the Mexican flat slab; likely in close proximity to the mantle wedge corner. In addition to the historical seismic record, the Puebla earthquake provides a valuable constraint through which to assess geodynamic models for flat slab evolution. Slab deformation predicted by the "weak wedge" model is consistent with past seismicity in the both the upper plate and slab. Below the flat section, the slab is anomalously warm relative to its depth; the lack of seismicity in the deeper part of the slab fits the global pattern of temperature-controlled slab seismicity. This has implications for understanding the deeper structure of the slab, including the seismic hazard from source regions downdip of the Puebla rupture (epicenters closer to Mexico City). While historical seismicity provides a deformation pattern consistent with the weak wedge model , the Puebla earthquake is somewhat anomalous. The earthquake source mechanism is consistent with stress orientations in our models, however it maps to a region of relatively low deviatoric stress.
NASA Astrophysics Data System (ADS)
Shiina, Takahiro; Nakajima, Junichi; Matsuzawa, Toru
2018-05-01
We investigate P-wave attenuation, Qp-1, in the Pacific slab beneath northeastern (NE) Japan, adopting for the first time the spectral ratio technique for intraslab earthquakes. When seismograms of two earthquakes are recorded at a station and their ray paths to the station are largely overlapped, station-dependent amplification and structural effects on the overlapped rays can be canceled out from the ratio of the spectral amplitudes of the seismograms. Therefore, adopting the spectral ratio technique for intraslab earthquakes has a great advantage for the precise evaluation of Qp-1 in the slab because the structural effects above the slab, including the high-attenuation mantle wedge, are removed. For estimating the intraslab Qp-1, we determined corner frequency of the intraslab earthquakes using the S-coda wave spectral ratio as the first step. Then, we evaluated the inter-event path attenuation, Δt*, from the ratio of the spectral amplitudes of P waves. The obtained result shows that P-wave attenuation in the Pacific slab marks Qp-1 of 0.0015 (Qp of ∼670) at depths of 50-250 km. This indicates that the P-wave attenuation in the Pacific slab is weaker than that in the mantle wedge. The relatively high-Qp-1 is correlated with the distributions of intraslab earthquakes, suggesting that the P-wave amplitude is more attenuated around active seismicity zones in the slab. Therefore, our observations likely indicate the presence of fractures, hydrous minerals, and dehydrated fluid around seismogenic zones in the slab at intermediate depths.
A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile
NASA Astrophysics Data System (ADS)
Constantin Manea, Vlad; Manea, Marina; Ferrari, Luca; Orozco, María Teresa; Wong Valenzuela, Raul; Husker, Allen Leroy; Kostoglodovc, Vlad; Ionescu, Constantin
2017-04-01
Subducting plates around the globe display a large variability in terms of slab geometry, including regions where smooth and little variation in subduction parameters is observed. While the vast majority of subduction slabs plunge into the mantle at different, but positive dip angles, the end-member case of flat-slab subduction seems to strongly defy this rule and move horizontally several hundreds of kilometers before diving into the surrounding hotter mantle. By employing a comparative assessment for the Mexican, Peruvian and Chilean flat-slab subduction zones we find a series of parameters that apparently facilitate slab flattening. Among them, trench roll-back, as well as strong variations and discontinuities in the structure of oceanic and overriding plates seem to be the most important. However, we were not able to find the necessary and sufficient conditions that provide an explanation for the formation of flat slabs in all three subduction zones. In order to unravel the origin of flat-slab subduction, it is probably necessary a numerical approach that considers also the influence of surrounding plates, and their corresponding geometries, on 3D subduction dynamics.
A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile
NASA Astrophysics Data System (ADS)
Manea, V. C.; Manea, M.; Ferrari, L.; Orozco-Esquivel, T.; Valenzuela, R. W.; Husker, A.; Kostoglodov, V.
2017-01-01
Subducting plates around the globe display a large variability in terms of slab geometry, including regions where smooth and little variation in subduction parameters is observed. While the vast majority of subduction slabs plunge into the mantle at different, but positive dip angles, the end-member case of flat-slab subduction seems to strongly defy this rule and move horizontally several hundreds of kilometers before diving into the surrounding hotter mantle. By employing a comparative assessment for the Mexican, Peruvian and Chilean flat-slab subduction zones we find a series of parameters that apparently facilitate slab flattening. Among them, trench roll-back, as well as strong variations and discontinuities in the structure of oceanic and overriding plates seem to be the most important. However, we were not able to find the necessary and sufficient conditions that provide an explanation for the formation of flat slabs in all three subduction zones. In order to unravel the origin of flat-slab subduction, it is probably necessary a numerical approach that considers also the influence of surrounding plates, and their corresponding geometries, on 3D subduction dynamics.
Effect of kenaf fiber in reinforced concrete slab
NASA Astrophysics Data System (ADS)
Syed Mohsin, S. M.; Baarimah, A. O.; Jokhio, G. A.
2018-04-01
The effect of kenaf fibers in reinforced concrete slab with different thickness is discusses and presented in this paper. Kenaf fiber is a type of natural fiber and is added in the reinforced concrete slab to improve the structure strength and ductility. For this study, three types of mixtures were prepared with fiber volume fraction of 0%, 1% and 2%, respectively. The design compressive strength considered was 20 MPa. Six cubes were prepared to be tested at 7th and 28th day. A total of six reinforced concrete slab with two variances of thickness were also prepared and tested under four-point bending test. The differences in the thickness is to study the potential of kenaf fiber to serve as part of shear reinforcement in reinforced concrete slab that was design to fail in shear. It was observed that, addition of kenaf fiber in reinforced concrete slab improves the flexural strength and ductility of the reinforced concrete slab. In the slab with reduction in thickness, the mode of failure change from brittle to ductile with the inclusion of kenaf fiber.
Subducted Slab Dynamics: Toward Understanding the Causes of Slab Stagnation
NASA Astrophysics Data System (ADS)
King, S. D.; Frost, D. J.; Rubie, D. C.
2013-12-01
The evolution and dynamics of subducted slabs are controlled by a number of factors, including rheology and composition. The correlation of the transformations from olivine to wadslayite and ringwoodite to perovskite plus magnesiowüstite with the seismic velocity discontinuities at 410 and 660 km depth, along with the density changes have been extensively investigated in terms of their impact on slab dynamics. Owing to the relatively smaller changes in density extending over a broader depth range, the impact of the pyroxene-garnet system has received less attention. Recent experimental work has found that the majorite component in garnet--a product of the transition from pyroxene into garnet--is one of the slowest-diffusing components in Earth's mantle. At the relatively low temperatures of the slab, this slow diffusion inhibits the dissolution of pyroxene into garnet, so that the slab remains buoyant relative to the ambient mantle and stagnates. We present dynamic subduction calculations that illustrate the effect of the non-equilibrium pyroxene to garnet transition on slab dynamics. If the transition between equilibrium and non-equilibrium behavior is below 1000 K, we find no impact on slab dynamics. If the transition occurs at 1200 K, it is enough to cause the slab to thicken and stagnate in the transition zone for an extended period of time. Our analysis suggests that cold slabs should be more likely to stagnate in the transition zone and we will compare a global compilation of slab geometries with slab thermal structure to evaluate.
3D receiver function Kirchhoff depth migration image of Cascadia subduction slab weak zone
NASA Astrophysics Data System (ADS)
Cheng, C.; Allen, R. M.; Bodin, T.; Tauzin, B.
2016-12-01
We have developed a highly computational efficient algorithm of applying 3D Kirchhoff depth migration to telesismic receiver function data. Combine primary PS arrival with later multiple arrivals we are able to reveal a better knowledge about the earth discontinuity structure (transmission and reflection). This method is highly useful compare with traditional CCP method when dipping structure is met during the imaging process, such as subduction slab. We apply our method to the reginal Cascadia subduction zone receiver function data and get a high resolution 3D migration image, for both primary and multiples. The image showed us a clear slab weak zone (slab hole) in the upper plate boundary under Northern California and the whole Oregon. Compare with previous 2D receiver function image from 2D array(CAFE and CASC93), the position of the weak zone shows interesting conherency. This weak zone is also conherent with local seismicity missing and heat rising, which lead us to think about and compare with the ocean plate stucture and the hydralic fluid process during the formation and migration of the subduction slab.
A "place n play" modular pump for portable microfluidic applications.
Li, Gang; Luo, Yahui; Chen, Qiang; Liao, Lingying; Zhao, Jianlong
2012-03-01
This paper presents an easy-to-use, power-free, and modular pump for portable microfluidic applications. The pump module is a degassed particle desorption polydimethylsiloxane (PDMS) slab with an integrated mesh-shaped chamber, which can be attached on the outlet port of microfluidic device to absorb the air in the microfluidic system and then to create a negative pressure for driving fluid. Different from the existing monolithic degassed PDMS pumps that are generally restricted to limited pumping capacity and are only compatible with PDMS-based microfluidic devices, this pump can offer various possible configures of pumping power by varying the geometries of the pump or by combining different pump modules and can also be employed in any material microfluidic devices. The key advantage of this pump is that its operation only requires the user to place the degassed PDMS slab on the outlet ports of microfluidic devices. To help design pumps with a suitable pumping performance, the effect of pump module geometry on its pumping capacity is also investigated. The results indicate that the performance of the degassed PDMS pump is strongly dependent on the surface area of the pump chamber, the exposure area and the volume of the PDMS pump slab. In addition, the initial volume of air in the closed microfluidic system and the cross-linking degree of PDMS also affect the performance of the degassed PDMS pump. Finally, we demonstrated the utility of this modular pumping method by applying it to a glass-based microfluidic device and a PDMS-based protein crystallization microfluidic device.
A “place n play” modular pump for portable microfluidic applications
Li, Gang; Luo, Yahui; Chen, Qiang; Liao, Lingying; Zhao, Jianlong
2012-01-01
This paper presents an easy-to-use, power-free, and modular pump for portable microfluidic applications. The pump module is a degassed particle desorption polydimethylsiloxane (PDMS) slab with an integrated mesh-shaped chamber, which can be attached on the outlet port of microfluidic device to absorb the air in the microfluidic system and then to create a negative pressure for driving fluid. Different from the existing monolithic degassed PDMS pumps that are generally restricted to limited pumping capacity and are only compatible with PDMS-based microfluidic devices, this pump can offer various possible configures of pumping power by varying the geometries of the pump or by combining different pump modules and can also be employed in any material microfluidic devices. The key advantage of this pump is that its operation only requires the user to place the degassed PDMS slab on the outlet ports of microfluidic devices. To help design pumps with a suitable pumping performance, the effect of pump module geometry on its pumping capacity is also investigated. The results indicate that the performance of the degassed PDMS pump is strongly dependent on the surface area of the pump chamber, the exposure area and the volume of the PDMS pump slab. In addition, the initial volume of air in the closed microfluidic system and the cross-linking degree of PDMS also affect the performance of the degassed PDMS pump. Finally, we demonstrated the utility of this modular pumping method by applying it to a glass-based microfluidic device and a PDMS-based protein crystallization microfluidic device. PMID:22685507
Stress-strain state of the structure in the service area of underground railway
NASA Astrophysics Data System (ADS)
Barabash, M.; Bashinsky, Y.; Korjakins, A.
2017-10-01
The paper focuses on numerical study how vibration due to underground trains influences the load-bearing building structures. Diagrams of vibration levels for monolithic floor slab depending on frequency are obtained. Levels of vibrations on floor slabs and columns are measured. The simulation of dynamic load from underground railway onto load-bearing building structures is presented as an example with account of load transmission through the soil. Recommendations for generation of design model in dynamic analysis of structure are provided.
NASA Astrophysics Data System (ADS)
Hembree, Robert H.; Vazhappilly, Tijo; Micha, David A.
2017-12-01
The conductivity of holes and electrons photoexcited in Si slabs is affected by the slab thickness and by adsorbates. The mobilities of those charged carriers depend on how many layers compose the slab, and this has important scientific and technical consequences for the understanding of photovoltaic materials. A previously developed general computational procedure combining density matrix and electronic band structure treatments has been applied to extensive calculations of mobilities of photoexcited electrons and holes at Si(111) nanostructured surfaces with varying slab thickness and for varying photon energies, to investigate the expected change in mobility magnitudes as the slab thickness is increased. Results have been obtained with and without adsorbed silver clusters for comparison of their optical and photovoltaic properties. Band states were generated using a modified ab initio density functional treatment with the PBE exchange and correlation density functionals and with periodic boundary conditions for large atomic supercells. An energy gap correction was applied to the unoccupied orbital energies of each band structure by running more accurate HSE hybrid functional calculations for a Si(111) slab. Photoexcited state populations for slabs with 6, 8, 10, and 12 layers were generated using a steady state reduced density matrix including dissipative effects due to energy exchange with excitons and phonons in the medium. Mobilities have been calculated from the derivatives of voltage-driven electronic energies with respect to electronic momentum, for each energy band and for the average over bands. Results show two clear trends: (a) adding Ag increases the hole photomobilities and (b) decreasing the slab thickness increases hole photomobilities. The increased hole populations in 6- and 8-layer systems and the large increase in hole mobility for these thinner slabs can be interpreted as a quantum confinement effect of hole orbitals. As the slab thickness increases to ten and twelve layers, the effect of silver adsorbates decreases leading to smaller relative enhancements to the conduction electron and hole mobilities, but the addition of the silver nanoclusters still increases the absorbance of light and the mobility of holes compared to their mobilities in the pure Si slabs.
Cost Effectiveness of Precast Reinforced Concrete Roof Slabs
NASA Astrophysics Data System (ADS)
Parskiy, N. D.; Molodtsov, M. V.; Molodtsova, V. E.
2017-11-01
Engineers always seek to free interior space from intermediate supporting elements. Nowadays plants, being at the forefront of technology, produce a new generation of exclusive patented prefabricated reinforced concrete elements with a high load-bearing capacity, excellent heat resistance characteristics combined with the aesthetics and beauty. It is a system of Seagull Gabbiano prestressed roof slabs for the spans of 12m - 40m. The article shows the advantages of the Seagull slabs over conventional precast reinforced concrete and metal roof trusses. It also gives the analysis of the technical and economic indices of design and construction of a building with the Seagull slabs depending on the size of spans to cover. The use of structural systems with increased spans allows for the modern buildings and structures of prefabricated reinforced concrete with enhanced functionality and aesthetics alongside with a wide range of planning solutions.
Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones.
Pons, Marie-Laure; Debret, Baptiste; Bouilhol, Pierre; Delacour, Adélie; Williams, Helen
2016-12-16
Subduction zones modulate the chemical evolution of the Earth's mantle. Water and volatile elements in the slab are released as fluids into the mantle wedge and this process is widely considered to result in the oxidation of the sub-arc mantle. However, the chemical composition and speciation of these fluids, which is critical for the mobility of economically important elements, remain poorly constrained. Sulfur has the potential to act both as oxidizing agent and transport medium. Here we use zinc stable isotopes (δ 66 Zn) in subducted Alpine serpentinites to decipher the chemical properties of slab-derived fluids. We show that the progressive decrease in δ 66 Zn with metamorphic grade is correlated with a decrease in sulfur content. As existing theoretical work predicts that Zn-SO 4 2- complexes preferentially incorporate heavy δ 66 Zn, our results provide strong evidence for the release of oxidized, sulfate-rich, slab serpentinite-derived fluids to the mantle wedge.
A new anion-deficient fluorite-related superstructure of Bi{sub 28}V{sub 8}O{sub 62}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Đorđević, T., E-mail: tamara.djordjevic@univie.ac.at; Karanović, Lj., E-mail: ljika2002@yahoo.com
2014-12-15
New hydrothermally synthesized Bi{sub 28}V{sub 8}O{sub 62} was structurally characterized using single-crystal X-ray diffraction data. Bi{sub 28}V{sub 8}O{sub 62} crystallizes in the novel type of defect fluorite structure related to the face-centered cubic δ-Bi{sub 2}O{sub 3}. It is monoclinic, s. g. P2{sub 1}/c, and the relation to the fluorite subcell is given as a∼(3/2)a{sub F}+(3/2)c{sub F}; b∼ −b{sub F}; c∼2a{sub F} −4c{sub F} (F in subscript indicate the unit cell parameter of fluorite). Its structure is characterized by slabs of edge sharing OBi{sub 4} tetrahedra surrounded by the OBi{sub 3} triangles. As a part of these OBi{sub 3} triangles, twomore » positionally disordered Bi{sup 3+} cations were observed in the marginal part of the slabs. The slabs are extending along b axis and are linked by inter-slab portion of the structure composed of VO{sub 4} tetrahedra and BiO{sub 6−x} coordination polyhedra, where x is a number of vacant oxygen sites. Raman spectra verified the coordination environment of vanadium atoms in the structure. - Graphical abstract: The [4{sup ¯}01] projection of two slabs and inter-slab part of the structure in one layer parallel to the (3{sup ¯}08)=(002{sup ¯}){sub F} plane (F in subscript indicate a fluorite type structure). The large green circles are Bi atoms. Small blue circles represent partly and fully occupied O sites, respectively. Pink (hatched black) are V1O{sub 4} and blue (hatched white) are V2O{sub 4} coordination tetrahedra. - Highlights: • Single crystals of Bi{sub 28}V{sub 8}O{sub 62} were grown using hydrothermal technique. • The crystal structure of Bi{sub 28}V{sub 8}O{sub 62} was solved using single-crystal XRD method. • Bi{sub 28}V{sub 8}O{sub 62} has an anion-deficient fluorite-related superstructure. • Raman spectrum confirmed the coordination environment of vanadium atoms. • Relation to the structurally related compound was discussed.« less
NASA Astrophysics Data System (ADS)
Boutelier, D.; Cruden, A. R.
2005-12-01
New physical models of subduction investigate the impact of large-scale mantle flow on the structure of the subducted slab and deformation of the downgoing and overriding plates. The experiments comprise two lithospheric plates made of highly filled silicone polymer resting on a model asthenosphere of low viscosity transparent silicone polymer. Subduction is driven by a piston that pushes the subducting plate at constant rate, a slab-pull force due to the relative density of the slab, and a basal drag force exerted by flow in the model asthenosphere. Large-scale mantle flow is imposed by a second piston moving at constant rate in a tunnel at the bottom of the experiment tank. Passive markers in the mantle track the evolution of flow during the experiment. Slab structure is recorded by side pictures of the experiment while horizontal deformation is studied via passive marker grids on top of both plates. The initial mantle flow direction beneath the overriding plate can be sub-horizontal or sub-vertical. In both cases, as the slab penetrates the mantle, the mantle flow pattern changes to accommodate the subducting high viscosity lithosphere. As the slab continues to descend, the imposed flow produces either over- or under-pressure on the lower surface of the slab depending on the initial mantle flow pattern (sub-horizontal or sub-vertical respectively). Over-pressure imposed on the slab lower surface promotes shallow dip subduction while under-pressure tends to steepen the slab. These effects resemble those observed in previous experiments when the overriding plate moves horizontally with respect to a static asthenosphere. Our experiments also demonstrate that a strong vertical drag force (due to relatively fast downward mantle flow) exerted on the slab results in a decrease in strain rate in both the downgoing and overriding plates, suggesting a decrease in interplate pressure. Furthermore, with an increase in drag force deformation in the downgoing plate can switch from compression to extension. The density contrast between the downgoing plate and asthenosphere is varied from 0% to ~2% in order to investigate the relative contributions of mantle flow and slab pull force on the geometry of the slab and tectonic regime (compressional or extensional).
Refining the Tonga Slab Geometry Using Slab Phases of Seismic Waves
NASA Astrophysics Data System (ADS)
Alongi, T.; Wei, S. S.; Blackman, D. K.
2017-12-01
Although the Tonga subducting slab geometry has been previously mapped by earthquake distribution, its detailed morphology is poorly constrained. The uncertainties of the slab surface relative to earthquakes can be translated into large errors in predicted temperature of hypocenters that is considered as a chief control of intermediate-depth seismicity. Seismic waves converted at the interface between the slab crust and the overlying mantle wedge can provide additional constraints on the location of the slab surface. A PS phase converted at the slab interface is observable in the horizontal components, whereas an SP converted phase can be seen in the vertical component. In this study, we analyze PS and SP phases in the seismic dataset of the 2009-2010 Ridge2000 Lau Spreading Center project, which consisted of 50 ocean bottom seismographs (OBSs) and 17 island-based seismic stations deployed in Fiji, Tonga, and the Lau Basin for about one year. More than 1,000 PS arrivals from local events were manually picked, predominantly with a 1-3 Hz filter. Next, the PS-P differential travel times will be inverted to determine improved depths of the slab surface relative to the local earthquakes and the receiving stations. The refined slab geometry will allow us to assess the thermal structure and dehydration reactions of the Tonga slab, lending further insight into the mechanisms of intermediate-depth seismicity.
Elimination of deck joints using a corrosion resistant FRP approach
NASA Astrophysics Data System (ADS)
Aleti, Ashok Reddy
The research presented herein describes the development of durable link slabs for jointless bridge decks based on using FRP grid for reinforcement. Specifically, the ductility of the FRP material was utilized to accommodate bridge deck deformations imposed by girder deflection, temperature variations, and concrete shrinkage. It would also provide a solution to a number of deterioration problems associated with bridge deck joints. The design concept of the link slabs was then examined to form the basis of design for FRP grid link slabs. Improved design of FRP grid link slab/concrete deck slab interface was confirmed in the numerical analysis. The mechanical properties between the FRP grid and concrete were evaluated. The behavior of the link slab was investigated and confirmed for durability. The results indicated that the technique would allow simultaneous achievement of structural need (lower flexural stiffness of the link slab approaching the behavior of a hinge) and durability need of the link slab. Also, the development length results confirm that the bond between the FRP grid and the concrete was highly improved. The overall investigation supports the contention that durable jointless concrete bridge decks may be designed and constructed with FRP grid link slabs. It is recommended that the link slab technique be used during new construction of the bridge decks and in repair and retrofit of the bridge decks.
Seismicity and structure of Nazca Plate subduction zone in southern Peru
NASA Astrophysics Data System (ADS)
Lim, H.; Kim, Y.; Clayton, R. W.; Thurber, C. H.
2016-12-01
We define subducting plate geometries in the Nazca subduction zone by (re)locating intra-slab earthquakes in southern Peru (2-18°S) and taking previously published converted phase analysis results, to clarify the slab geometry and inferred relationships to the seismicity. We also provide both P- and S-wave velocities of the subducting Nazca Plate and mantle wedge portions close to the slab using double-difference tomography (Zhang and Thurber, 2003) to understand upper plate volcanism and subduction process. A total of 492 regional earthquakes from August 2008 to February 2013 recorded from the dense seismic array (PeruSE, 2013) are selected for the relocation and tomography. The relocated seismicity shows a smooth contortion in the slab-dip transition zone for 400 km between the shallow (25°)-to-flat dipping interface in the north and 40°-dipping interface in the south. We find a significant slab-dip difference (up to 10°) between our results and previously published slab models along the profile region sampling the normal-dip slab at depth (>100 km). Robust features in both P- and S-wave tomography inversions are dipping low-velocity slabs down to 100 km transitioning to higher-velocities at 100-140 km in both flat slab and dipping slab regions. Differences in the velocities of the mantle wedge between the two regions may indicate different hydration states in the wedge.
NASA Astrophysics Data System (ADS)
Booth-Rea, Guillermo; Pérez-Peña, Vicente; Azañón, José Miguel; de Lis Mancilla, Flor; Morales, Jose; Stich, Daniel; Giaconia, Flavio
2014-05-01
Most of the geological features of the Betics and Rif have resulted from slab tearing, edge delamination and punctual slab breakoff events between offset STEP faults. New P-reciever function data of the deep structure under the Betics and Rif have helped to map the deep boundaries of slab tearing and rupture in the area. Linking surface geological features with the deep structure shows that STEP faulting under the Betics occurred along ENE-WSW segments offset towards the south, probably do to the westward narrowing of the Tethys slab. The surface expression of STEP faulting at the Betics consists of ENE-WSW dextral strike-slip fault segments like the Crevillente, Alpujarras or Torcal faults that are interrupted by basins and elongated extensional domes were exhumed HP middle crust occurs. Exhumation of deep crust erases the effects of strike-slip faulting in the overlying brittle crust. Slab tearing affected the eastern Betics during the Tortonian to Messinian, producing the Fortuna and Lorca basins, and later propagated westward generating the end-Messinian to Pleistocene Guadix-Baza basins and the Granada Pliocene-Pleistocene depocentre. At present slab tearing is occurring beneath the Málaga depression, where the Torcal dextral strike-slip fault ends in a region of active distributed shortening and where intermediate depth seismicity occurs. STEP fault migration has occurred at average rates between 2 and 4 cm/yr since the late Miocene, producing a wave of alternating uplift-subsidence pulses. These initiate with uplift related to slab flexure, subsidence related to slab-pull, followed by uplift after rupture and ending with thermal subsidence. This "yo-yo" type tectonic evolution leads to the generation of endorheic basins that later evolve to exhorheic when they are uplifted and captured above the region where asthenospheric upwelling occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, N. A.; Myers, S. C.; Johannesson, G.
In this study, ancient subducted tectonic plates have been observed in past seismic images of the mantle beneath North America and Eurasia, and it is likely that other ancient slab structures have remained largely hidden, particularly in the seismic-data-limited regions beneath the vast oceans in the Southern Hemisphere. Here we present a new global tomographic image, which shows a slab-like structure beneath the southern Indian Ocean with coherency from the upper mantle to the core-mantle boundary region—a feature that has never been identified. We postulate that the structure is an ancient tectonic plate that sank into the mantle along anmore » extensive intraoceanic subduction zone that migrated southwestward across the ancient Tethys Ocean in the Mesozoic Era. Slab material still trapped in the transition zone is positioned near the edge of East Gondwana at 140 Ma suggesting that subduction terminated near the margin of the ancient continent prior to breakup and subsequent dispersal of its subcontinents.« less
Simmons, N. A.; Myers, S. C.; Johannesson, G.; ...
2015-11-14
In this study, ancient subducted tectonic plates have been observed in past seismic images of the mantle beneath North America and Eurasia, and it is likely that other ancient slab structures have remained largely hidden, particularly in the seismic-data-limited regions beneath the vast oceans in the Southern Hemisphere. Here we present a new global tomographic image, which shows a slab-like structure beneath the southern Indian Ocean with coherency from the upper mantle to the core-mantle boundary region—a feature that has never been identified. We postulate that the structure is an ancient tectonic plate that sank into the mantle along anmore » extensive intraoceanic subduction zone that migrated southwestward across the ancient Tethys Ocean in the Mesozoic Era. Slab material still trapped in the transition zone is positioned near the edge of East Gondwana at 140 Ma suggesting that subduction terminated near the margin of the ancient continent prior to breakup and subsequent dispersal of its subcontinents.« less
NASA Astrophysics Data System (ADS)
Wu, Sheng-xing; Liu, Guan-guo; Bian, Han-bing; Lv, Wei-bo; Jiang, Jian-hua
2016-04-01
An experimental research was conducted to determine the corrosion and bearing capacity of a reinforced concrete (RC) slab at different ages in a marine environment. Results show that the development of corrosion-induced cracks on a slab in a marine environment can be divided into three stages according to crack morphology at the bottom of the slab. In the first stage, cracks appear. In the second stage, cracks develop from the edges to the middle of the slab. In the third stage, longitudinal and transverse corrosion-induced cracks coexist. The corrosion ratio of reinforcements nonlinearly increases with the age, and the relationship between the corrosion ratio of the reinforcements and the corrosion-induced crack width of the concrete is established. The flexural capacity of the corroded RC slab nonlinearly decreases with the age, and the model for the bearing capacity factor of the corroded RC slab is established. The mid-span deflection of the corroded RC slab that corresponds to the yield of the reinforcements linearly increases with the increase in corrosion ratio. Finally, the mechanisms of corrosion morphology and the degradation of the mechanical properties of an RC slab in a marine environment are discussed on the basis of the basic theories of steel corrosion in concrete and concrete structure design.
In-house fabrication of precast concrete bridge slabs.
DOT National Transportation Integrated Search
1976-01-01
Information is reported on the labor, equipment, material, and cost required for seven bridge maintenance situations in which state forces widened or replaced an existing short span structure. Precast concrete slabs were installed at three of the loc...
Optimization of reinforced concrete slabs
NASA Technical Reports Server (NTRS)
Ferritto, J. M.
1979-01-01
Reinforced concrete cells composed of concrete slabs and used to limit the effects of accidental explosions during hazardous explosives operations are analyzed. An automated design procedure which considers the dynamic nonlinear behavior of the reinforced concrete of arbitrary geometrical and structural configuration subjected to dynamic pressure loading is discussed. The optimum design of the slab is examined using an interior penalty function. The optimization procedure is presented and the results are discussed and compared with finite element analysis.
Mantle structure and tectonic history of SE Asia
NASA Astrophysics Data System (ADS)
Hall, Robert; Spakman, Wim
2015-09-01
Seismic travel-time tomography of the mantle under SE Asia reveals patterns of subduction-related seismic P-wave velocity anomalies that are of great value in helping to understand the region's tectonic development. We discuss tomography and tectonic interpretations of an area centred on Indonesia and including Malaysia, parts of the Philippines, New Guinea and northern Australia. We begin with an explanation of seismic tomography and causes of velocity anomalies in the mantle, and discuss assessment of model quality for tomographic models created from P-wave travel times. We then introduce the global P-wave velocity anomaly model UU-P07 and the tectonic model used in this paper and give an overview of previous interpretations of mantle structure. The slab-related velocity anomalies we identify in the upper and lower mantle based on the UU-P07 model are interpreted in terms of the tectonic model and illustrated with figures and movies. Finally, we discuss where tomographic and tectonic models for SE Asia converge or diverge, and identify the most important conclusions concerning the history of the region. The tomographic images of the mantle record subduction beneath the SE Asian region to depths of approximately 1600 km. In the upper mantle anomalies mainly record subduction during the last 10 to 25 Ma, depending on the region considered. We interpret a vertical slab tear crossing the entire upper mantle north of west Sumatra where there is a strong lateral kink in slab morphology, slab holes between c.200-400 km below East Java and Sumbawa, and offer a new three-slab explanation for subduction in the North Sulawesi region. There is a different structure in the lower mantle compared to the upper mantle and the deep structure changes from west to east. What was imaged in earlier models as a broad and deep anomaly below SE Asia has a clear internal structure and we argue that many features can be identified as older subduction zones. We identify remnants of slabs that detached in the Early Miocene such as the Sula slab, now found in the lower mantle north of Lombok, and the Proto-South China Sea slab now at depths below 700 km curving from northern Borneo to the Philippines. Based on our tectonic model we interpret virtually all features seen in upper mantle and lower mantle to depths of at least 1200 km to be the result of Cenozoic subduction.
Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere
NASA Astrophysics Data System (ADS)
Kirby, Stephen H.; Stein, Seth; Okal, Emile A.; Rubie, David C.
1996-05-01
Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside slabs. Numerical simulations of reaction rates show that the olivine → spinel transformation should be kinetically hindered in old, cold slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold slabs. This consideration of the mineralogical states of slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes should cease at depths near 700 km, because the seismogenic phase transformations in the slab are completed or can no longer occur. Substantial metastability is expected only in old, cold slabs, consistent with the observed restriction of deep earthquakes to those settings. Earthquakes should be restricted to the cold cores of slabs, as in any model in which the seismicity is temperature controlled, via the distribution of metastability. However, the geometries of recent large deep earthquakes pose a challenge for any such models. Transformational faulting may give insight into why deep shocks lack appreciable aftershocks and why their source characteristics, including focal mechanisms indicating localized shear failure rather than implosive deformation, are so similar to those of shallow earthquakes. Finally, metastable phase changes in slabs would produce an internal source of stress in addition to those due to the weight of the sinking slab. Such internal stresses may explain the occurrence of earthquakes in portions of lithosphere which have foundered to the bottom of the transition zone and/or are detached from subducting slabs. Metastability in downgoing slabs could have considerable geodynamic significance. Metastable wedges would reduce the negative buoyancy of slabs, decrease the driving force for subduction, and influence the state of stress in slabs. Heat released by metastable phase changes would raise temperatures within slabs and facilitate the transformation of spinel to the lower mantle mineral assemblage, causing slabs to equilibrate more rapidly with the ambient mantle and thus contribute to the cessation of deep seismicity. Because wedge formation should occur only for fast subducting slabs, it may act as a "parachute" and contribute to regulating plate speeds. Wedge formation would also have consequences for mantle evolution because the density of a slab stagnated near the bottom of the transition zone would increase as it heats up and the wedge transforms to denser spinel, favoring the subsequent sinking of the slab into the lower mantle.
NASA Astrophysics Data System (ADS)
Wang, K.; Gao, X.; Rogers, G. C.
2017-12-01
The M=8.2 Tehuantepec and M=7.1 Puebla earthquakes of September 2017 are similar to the 1999 Oaxaca (M=7.5, Mexico), 2001 Geiyo (M=6.7, Nankai), and 2001 Nisqually (M=6.8, Cascadia) earthquakes. All these events are normal-faulting events in the 40-60 km depth range within young and warm subducting slabs. They all ruptured the mantle part of the slab. To investigate the thermal and petrologic conditions of these earthquakes, we have developed finite element thermal models in the areas of the two September events. Along the northern transect for the M=7.1 event, where the age of the incoming plate is 13.5 Ma, the slab geometry is well constrained by previous receiver function and earthquake location studies. Two available hypocenter locations of the main shock fall within or at the lower boundary of our model-predicted zone of serpentine (antigorite) stability in the slab mantle. Along the southern transect for the M=8.2 event, where the age of the incoming plate is 25.5 Ma, the slab geometry is less well known, and we have considered two published geometrical models. Several available hypocenter locations of the main shock are within or below the serpentine stability zone, depending on which slab geometry is assumed. Most of the rupture zone is shallower than the hypocenter. The model results support the following hypothesis. The two September earthquakes probably ruptured pre-existing normal faults that extended into the oceanic mantle and had been locally hydrated prior to and during the beginning phase of subduction. The earthquakes may have initiated at the dehydration boundary of antigorite or chlorite, facilitated by elevated pore fluid pressure (dehydration embrittlement). Most of the rupture was in the uppermost mantle part of the slab but may have involved parts of the slab crust. That large intra-slab earthquakes of this type tend to involve mantle rupture has been explained as due to the structural condition caused by warm-slab metamorphism (Wang et al., 2004): The upper crust of the slab is too fragmented due to metamorphic densification, but hydrated deep-cutting faults can produce large earthquakes in the more coherent mantle and lower crust. Wang, K., J. F. Cassidy, I. Wada, and A. J. Smith (2004), Effects of metamorphic crustal densification on earthquake size in warm slabs, Geophys. Res. Lett., 31, L01605, doi:10.1029/2003GL018644.
Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete
López-Uceda, Antonio; Ayuso, Jesús; Jiménez, José Ramón; Agrela, Francisco; Barbudo, Auxiliadora; De Brito, Jorge
2016-01-01
This research aims to produce non-structural concrete with mixed recycled aggregates (MRA) in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%), using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results) from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors’ knowledge, there have not been any upscaled applications of concrete with MRA and low cement content. PMID:28787892
Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete.
López-Uceda, Antonio; Ayuso, Jesús; Jiménez, José Ramón; Agrela, Francisco; Barbudo, Auxiliadora; De Brito, Jorge
2016-02-02
This research aims to produce non-structural concrete with mixed recycled aggregates (MRA) in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%), using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results) from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors' knowledge, there have not been any upscaled applications of concrete with MRA and low cement content.
Structure of the Flat Slab in Southern Peru
NASA Astrophysics Data System (ADS)
Ma, Y.; Clayton, R. W.
2014-12-01
We investigate the detailed structure of the flat-subduction portion of the subduction zone in Southern Peru using converted phases recorded by the PeruSE seismic array. The migrated image along a profile above the flat subduction is shown in the figure, overlain by the receiver functions of one well-recorded event. We see that the slab descends to 100 km depth at a distance of about 100 km inland from the coast, and then it rises to 90 km depth and remains flat for the next 300 km distance before diving into the mantle. The Moho itself has about 10 km relief above the flat slab, which is anti-correlated with the surface topography indicating Airy compensation. Interestingly, the flat slab image is missing under this part of Moho. The mid-crust structure is also evident. In the west, it coincides with the Andean Low Velocity Zone (ALVZ) mapped in this region (Ma and Clayton, 2014). In the east, it is related with the underthrusting Brazilian Shield (Phillips and Clayton, 2014). In this paper, we further investigate the causes of the missing or weak flat slab signal, possibly due to anomalous attenuation of S waves in the mantle wedge (but not P wave, since Moho is well imaged). We will also extend our study to the flat-normal transition area beneath the array.
Slab replacement and dowel bar retrofit, district 11, San Diego County
DOT National Transportation Integrated Search
2002-01-01
The project Resident Engineer requested that the Office of Rigid Pavement Materials and Structural Concrete examine cracking in replacement slabs and dowel bar retrofit installations on a project rehabilitating a section of Route 08 in District 11 ne...
DOT National Transportation Integrated Search
2009-04-01
Bridge approaches provide smooth and safe transition of vehicles from highway pavements to bridge : structures. However, settlement of the bridge approach slab relative to bridge decks usually creates a : bump in the roadway. The bump causes inconven...
Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere
Kirby, S.H.; Stein, S.; Okal, E.A.; Rubie, David C.
1996-01-01
Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside slabs. Numerical simulations of reaction rates show that the olivine ??? spinel transformation should be kinetically hindered in old, cold slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold slabs. This consideration of the mineralogical states of slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes should cease at depths near 700 km, because the seismogenic phase transformations in the slab are completed or can no longer occur. Substantial metastability is expected only in old, cold slabs, consistent with the observed restriction of deep earthquakes to those settings. Earthquakes should be restricted to the cold cores of slabs, as in any model in which the seismicity is temperature controlled, via the distribution of metastability. However, the geometries of recent large deep earthquakes pose a challenge for any such models. Transformational faulting may give insight into why deep shocks lack appreciable aftershocks and why their source characteristics, including focal mechanisms indicating localized shear failure rather than implosive deformation, are so similar to those of shallow earthquakes. Finally, metastable phase changes in slabs would produce an internal source of stress in addition to those due to the weight of the sinking slab. Such internal stresses may explain the occurrence of earthquakes in portions of lithosphere which have foundered to the bottom of the transition zone and/or are detached from subducting slabs. Metastability in downgoing slabs could have considerable geodynamic significance. Metastable wedges would reduce the negative buoyancy of slabs, decrease the driving force for subduction, and influence the state of stress in slabs. Heat released by metastable phase changes would raise temperatures within slabs and facilitate the transformation of spinel to the lower mantle mineral assemblage, causing slabs to equilibrate more rapidly with the ambient mantle and thus contribute to the cessation of deep seismicity. Because wedge formation should occur only for fast subducting slabs, it may act as a "parachute" and contribute to regulating plate speeds. Wedge formation would also have consequences for mantle evolution because the density of a slab stagnated near the bottom of the transition zone would increase as it heats up and the wedge tra
Thermal structure and geodynamics of subduction zones
NASA Astrophysics Data System (ADS)
Wada, Ikuko
The thermal structure of subduction zones depends on the age-controlled thermal state of the subducting slab and mantle wedge flow. Observations indicate that the shallow part of the forearc mantle wedge is stagnant and the slab-mantle interface is weakened. In this dissertation, the role of the interface strength in controlling mantle wedge flow, thermal structure, and a wide range of subduction zone processes is investigated through two-dimensional finite-element modelling and a global synthesis of geological and geophysical observations. The model reveals that the strong temperature-dependence of the mantle strength always results in full slab-mantle decoupling along the weakened part of the interface and hence complete stagnation of the overlying mantle. The interface immediately downdip of the zone of decoupling is fully coupled, and the overlying mantle is driven to flow at a rate compatible with the subduction rate. The sharpness of the transition from decoupling to coupling depends on the rheology assumed and increases with the nonlinearity of the flow system. This bimodal behaviour of the wedge flow gives rise to a strong thermal contrast between the cold stagnant and hot flowing parts of the mantle wedge. The maximum depth of decoupling (MDD) thus dictates the thermal regime of the forearc. Observed surface heat flow patterns and petrologically and geochemically estimated mantle wedge temperatures beneath the volcanic arc require an MDD of 70--80 km in most, if not all, subduction zones regardless of their thermal regime of the slab. The common MDD of 70--80 km explains the observed systematic variations of the petrologic, seismological, and volcanic processes with the thermal state of the slab and thus explains the rich diversity of subduction zones in a unified fashion. Models for warm-slab subduction zones such as Cascadia and Nankai predict shallow dehydration of the slab beneath the cold stagnant part of the mantle wedge, which provides ample fluid for mantle wedge serpentinization in the forearc but little fluid for melt generation beneath the arc. In contrast, models for colder-slab subduction zones such as NE Japan and Kamchatka predict deeper dehydration, which provides greater fluid supply for melt generation beneath the arc and allows deeper occurrence of intraslab earthquakes but less fluid for forearc mantle wedge serpentinization. The common MDD also explains the intriguing uniform configuration of subduction zones, that is, the volcanic arc always tends to be situated where the slab is at about 100 km depth. The sudden onset of mantle wedge flow downdip of the common MDD overshadows the thermal effect of the slab, and the resultant thermal field and slab dehydration control the location of the volcanic arc. The recognition of the fundamental importance of the MDD has important implications to the study of geodynamics and earthquake hazard in subduction zones.
2009-02-01
solved, great care is exercised by the seismic engineer to size the mesh so that moderate to high wave frequencies are not artificially excluded in...buttressing effect of a reinforced concrete slab (Figure 1.7) is represented in this simplified dynamic model by the user-specified force Presist...retaining wall that is buttressed by an invert spill- way slab (which is a reinforced concrete slab), exemplify a category of Corps retaining walls that may
DROPOUT OF DIRECTIONAL ELECTRON INTENSITIES IN LARGE SOLAR ENERGETIC PARTICLE EVENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lun C.; Reames, Donald V., E-mail: ltan@umd.edu
2016-01-10
In the “gradual” solar energetic particle (SEP) event during solar cycle 23 we have observed the dispersionless modulation (“dropout”) in directional intensities of nonrelativistic electrons. The average duration of dropout periods is ∼0.8 hr, which is consistent with the correlation scale of solar wind turbulence. During the dropout period electrons could display scatter-free transport in an intermittent way. Also, we have observed a decrease in the anisotropic index of incident electrons with increasing electron energy (E{sub e}), while the index of scattered/reflected electrons is nearly independent of E{sub e}. We hence perform an observational examination of the correlation between the anisotropicmore » index of low-energy scattered/reflected electrons and the signature of the locally measured solar wind turbulence in the dissipation range, which is responsible for resonant scattering of nonrelativistic electrons. Since during the dropout period the slab turbulence fraction is dominant (0.8 ± 0.1), we pay close attention to the effect of slab fraction on the correlation examined. Our observation is consistent with the simulation result that in the dominance of the slab turbulence component there should exist a dispatched structure of magnetic flux tubes, along which electrons could be transported in a scatter-free manner. Since a similar phenomenon is exhibited in the “impulsive” SEP event, electron dropout should be a transport effect. Therefore, being different from most ion dropout events, which are due to a compact flare source, the dropout of directional electron intensities should be caused by the change of turbulence status in the solar wind.« less
NASA Technical Reports Server (NTRS)
Petre-Lazar, S.; Popeea, G.
1974-01-01
Sound absorbing slabs and structures made up of bound or unbound granular materials are considered and how to manufacture these elements at the building site. The raw material is a single grain powder (sand, expanded blast furnace slag, etc.) that imparts to the end products an apparent porosity of 25-45% and an energy dissipation within the structure leading to absorption coefficients that can be compared with those of mineral wool and urethane.
Bridge approach slabs for Missouri DOT looking at alternative and cost efficient approaches.
DOT National Transportation Integrated Search
2010-12-01
The objective of this project is to develop innovative and cost effective structural solutions for the construction of : both new and replacement deteriorated Bridge Approach Slabs (BAS). A cost study and email survey was performed to identify : stat...
DOE Office of Scientific and Technical Information (OSTI.GOV)
See, Gloria G.; Naughton, Matt S.; Kenis, Paul J. A.
2016-04-25
We demonstrate a method for combining sputtered TiO{sub 2} deposition with liquid phase dip-coating of a quantum dot (QD) layer that enables precise depth placement of QD emitters within a high-index dielectric film, using a photonic crystal (PC) slab resonator to demonstrate enhanced emission from the QDs when they are located at a specific depth within the film. The depth of the QDs within the PC is found to modulate the resonant wavelength of the PC as well as the emission enhancement efficiency, as the semiconducting material embedded within the dielectric changes its spatial overlap with the resonant mode.
Three-Dimensional Shear Wave Velocity Structure of the Peru Flat Slab Subduction Segment
NASA Astrophysics Data System (ADS)
Knezevic Antonijevic, S.; Wagner, L. S.; Beck, S. L.; Zandt, G.; Long, M. D.
2012-12-01
Recent studies focused on flat slab subduction segments in central Chile (L. S. Wagner, 2006) and Alaska (B. R. Hacker and G. A. Aber, 2012) suggest significant differences in seismic velocity structures, and hence, composition in the mantle wedge between flat and normal "steep" subducting slabs. Instead of finding the low velocities and high Vp/Vs ratios common in normal subduction zones, these studies find low Vp, high Vs, and very low Vp/Vs above flat slabs. This may indicate the presence of dry, cold material in the mantle wedge. In order to investigate the seismic velocities of the upper mantle above the Peruvian flat segment, we have inverted for 2D Rayleigh wave phase velocity maps using data from the currently deployed 40 station PULSE seismic network and some adjacent stations from the CAUGHT seismic network. We then used the sensitivity of surface waves to shear wave velocity structure with depth to develop a 3D shear wave velocity model. This model will allow us to determine the nature of the mantle lithosphere above the flat slab, and how this may have influenced the development of local topography. For example, dry conditions (high Vs velocities) above the flat slab would imply greater strength of this material, possibly making it capable of causing further inland overthrusting, while wet conditions (low Vs) would imply weaker material. This could provide some insight into the ongoing debate over whether the Fitzcarrald arch (along the northern most flank of the Altiplano) could be a topographical response to the subducted Nazca ridge hundred kilometers away from the trench (N. Espurt, 2012, P. Baby, 2005, V. A. Ramos, 2012) or not (J. Martinod, 2005, M. Wipf, 2008, T. Gerya, 2008).
Parametric amplification and bidirectional invisibility in PT -symmetric time-Floquet systems
NASA Astrophysics Data System (ADS)
Koutserimpas, Theodoros T.; Alù, Andrea; Fleury, Romain
2018-01-01
Parity-time (PT )-symmetric wave devices, which exploit balanced interactions between material gain and loss, exhibit extraordinary properties, including lasing and flux-conserving scattering processes. In a seemingly different research field, periodically driven systems, also known as time-Floquet systems, have been widely studied as a relevant platform for reconfigurable active wave control and manipulation. In this article, we explore the connection between PT -symmetry and parametric time-Floquet systems. Instead of relying on material gain, we use parametric amplification by considering a time-periodic modulation of the refractive index at a frequency equal to twice the incident signal frequency. We show that the scattering from a simple parametric slab, whose dynamics follows the Mathieu equation, can be described by a PT -symmetric scattering matrix, whose PT -breaking threshold corresponds to the Mathieu instability threshold. By combining different parametric slabs modulated out of phase, we create PT -symmetric time-Floquet systems that feature exceptional scattering properties, such as coherent perfect absorption (CPA)-laser operation and bidirectional invisibility. These bidirectional properties, rare for regular PT -symmetric systems, are related to a compensation of parametric amplification due to multiple scattering between two parametric systems modulated with a phase difference.
NASA Astrophysics Data System (ADS)
Zhang, H.; Thurber, C. H.
2005-12-01
Subduction zones are one of the most important components of the Earth's plate tectonic system. Knowing the detailed seismic velocity structure within and around subducting slabs is vital to understand the constitution of the slab, the cause of intermediate depth earthquakes inside the slab, the fluid distribution and recycling, and tremor occurrence [Hacker et al., 2001; Obara, 2002].Thanks to the ability of double-difference tomography [Zhang and Thurber, 2003] to resolve the fine-scale structure near the source region and the favorable seismicity distribution inside many subducting slabs, it is now possible to characterize the fine details of the velocity structure and earthquake locations inside the slab, as shown in the study of the Japan subduction zone [Zhang et al., 2004]. We further develop the double-difference tomography method in two aspects: the first improvement is to use an adaptive inversion mesh rather than a regular inversion grid and the second improvement is to determine a reliable Vp/Vs structure using various strategies rather than directly from Vp and Vs [see our abstract ``Strategies to solve for a better Vp/Vs model using P and S arrival time'' at Session T29]. The adaptive mesh seismic tomography method is based on tetrahedral diagrams and can automatically adjust the inversion mesh according to the ray distribution so that the inversion mesh nodes are denser where there are more rays and vice versa [Zhang and Thurber, 2005]. As a result, the number of inversion mesh nodes is greatly reduced compared to a regular inversion grid with comparable spatial resolution, and the tomographic system is more stable and better conditioned. This improvement is quite valuable for characterizing the fine structure of the subduction zone considering the highly uneven distribution of earthquakes within and around the subducting slab. The second improvement, to determine a reliable Vp/Vs model, lies in jointly inverting Vp, Vs, and Vp/Vs using P, S, and S-P times in a manner similar to double-difference tomography. Obtaining a reliable Vp/Vs model of the subduction zone is more helpful for understanding its mechanical and petrologic properties. Our applications of the original version of double-difference tomography to several subduction zones beneath northern Honshu, Japan, the Wellington region, New Zealand, and Alaska, United States, have shown evident velocity variations within and around the subducting slab, which likely is evidence of dehydration reactions of various hydrous minerals that are hypothesized to be responsible for intermediate depth earthquakes. We will show the new velocity models for these subduction zones by applying our advanced tomographic methods.
Superprism effect in a metal-clad terahertz photonic crystal slab.
Prasad, Tushar; Colvin, Vicki L; Jian, Zhongping; Mittleman, Daniel M
2007-03-15
We report an experimental demonstration of the superprism effect in a photonic crystal slab at terahertz frequencies. For a 10% frequency variation around 0.28 THz, the refraction angle at the output facet of a wedge-shaped photonic crystal varies by about 15 degrees. A comparison with the predictions of a band structure calculation demonstrates that a three-dimensional treatment, accurately modeling the finite slab thickness and the metallic boundary conditions, is required for even a qualitative agreement with the experimental observations.
DOT National Transportation Integrated Search
2017-06-01
The precast prestressed concrete voided slab structure is a popular bridge design because of its rapid construction and cost : savings in terms of eliminating formwork at the jobsite. However, the longitudinal shear transfer mechanism often fails, le...
DOT National Transportation Integrated Search
2004-12-01
This study evaluates the rehabilitation method utilizing the injection of Uretek (polyurethane) into the pavement structures on continuously reinforced concrete pavement (CRCP), jointed concrete pavement (JCP), and bridge approach slabs. The polyuret...
NASA Astrophysics Data System (ADS)
Guo, Zhi; Gao, Xing; Li, Tong; Wang, Wei
2018-05-01
We use P-wave receiver function H-k stacking and joint inversion of receiver functions and Rayleigh wave dispersions to investigate crustal and uppermost mantle structure beneath the South China. The obtained results reveal prominent crustal structure variations in the study area, Moho depth increases from ∼30 km in the Cathaysia Block to more than ∼60 km in the eastern Tibetan Plateau. A Moho undulation and Vp/Vs ratio variations can be observed from the Cathaysia Block to Yangtze Craton. These observations consistent with the crustal structures predict by the flat slab subduction model. We interpret these lateral crustal structure variations reflect the tectonic evolution of the Yangtze Craton and Cathaysia Block prior the Mesozoic and the post-orogenic magmatism due to the breaking up of the subducted flat slab and subsequent slab rollback in the South China. The observed variations of the crustal structures not only reveal the lateral crustal inhomogeneity, but also provide constraints on the geodynamic evolution of the South China.
Gan, Lin; Liu, Ya-Zhao; Li, Jiang-Yan; Zhang, Ze-Bo; Zhang, Dao-Zhong; Li, Zhi-Yuan
2009-06-08
We demonstrate design, fabrication, and ray trace observation of negative refraction of near-infrared light in a two-dimensional square lattice of air holes etched into an air-bridged silicon slab. Special surface morphologies are designed to reduce the impedance mismatch when light refracts from a homogeneous silicon slab into the photonic crystal slab. We clearly observed negative refraction of infrared light for TE-like modes in a broad wavelength range by using scanning near-field optical microscopy technology. The experimental results are in good agreement with finite-difference time-domain simulations. The results indicate the designed photonic crystal structure can serve as polarization beam splitter.
Planar waveguide solar concentrator with couplers fabricated by laser-induced backside wet etching
NASA Astrophysics Data System (ADS)
Zhang, Nikai
Solar radiation can be converted directly into electricity by using the photovoltaic effect, which represents the principle of operation of solar cells. Currently, most solar cells are made of crystalline silicon and have a conversion efficiency of about 20% or less. Multi-junction solar cells, made of III-V compound semiconductors, can have efficiencies in excess of 40%. The main factor that prohibits such high-efficiency technologies from wider acceptance is the cost. An alternative approach to using large-area expensive solar cells is to employ lower cost optics and concentrate the solar radiation to smaller cell area, which is the basic principle of solar concentrators. In this thesis, we consider a solar concentrator module that consists of a combination of a lens array and a slab waveguide with etched conical holes on one side of the waveguide, which are aligned with the lenslets. Sunlight coming through each of these lenslets is focused on the backside of the waveguide, where a coupling structure (an etched cone) is fabricated. This coupler changes the propagation direction of the incident light in such a way that light is guided through total internal reflection (TIR) within the glass slab and eventually reaches a solar cell, which is properly mounted on the side of the slab. The concept of this concentrated photovoltaic (CPV) system is based on a planar light guide solar concentrator module, proposed earlier by another group. This project builds on the original idea by including the following substantial modifications. The lens array is to be made of solid glass by a mold technology and provided to us by our industrial partner, Libbey, Inc., as opposed to silicone on glass technology, in which the lenses are made out of silicone and sit on a glass substrate. The coupling structures are cone-shaped holes etched directly into the solid glass waveguide, as opposed to coupling structures that are formed by addition of polymeric layer and consequent patterning. The fabrication of the etched holes in the glass is proposed to be based on a self-aligned process using a laser-induced backside etching (LIBWE) method, which is discussed in this project and its feasibility is examined. The role of different parameters to the concentration level and the optical efficiency of the CPV system are studied by simulations in ZEMAX (which is a leading optical analysis/design software) using non-sequential ray tracing. The optical efficiency of this design under different light concentration level is studied and discussed. The main contributions of this research consist of a new design of a waveguide-based CPV system which can be made entirely of glass by a low-cost glass fabrication method, and a feasibility study in terms of critical fabrication steps and optical performance.
ERIC Educational Resources Information Center
Suitor, Cheryl
2012-01-01
In science class, fourth graders investigate the structure of plants and leaves from trees and how the process of photosynthesis turns sunlight into sugar proteins. In this article, the author fuses art and science for a creative and successful clay slab project in her elementary art classroom. (Contains 1 online resource.)
Slab anisotropy from subduction zone guided waves in Taiwan
NASA Astrophysics Data System (ADS)
Chen, K. H.; Tseng, Y. L.; Hu, J. C.
2014-12-01
Frozen-in anisotropic structure in the oceanic lithosphere and faulting/hydration in the upper layer of the slab are expected to play an important role in anisotropic signature of the subducted slab. Over the past several decades, despite the advances in characterizing anisotropy using shear wave splitting method and its developments, the character of slab anisotropy remains poorly understood. In this study we investigate the slab anisotropy using subduction zone guided waves characterized by long path length in the slab. In the southernmost Ryukyu subduction zone, seismic waves from events deeper than 100 km offshore northern Taiwan reveal wave guide behavior: (1) a low-frequency (< 1 Hz) first arrival recognized on vertical and radial components but not transverse component (2) large, sustained high-frequency (3-10 Hz) signal in P and S wave trains. The depth dependent high-frequency content (3-10Hz) confirms the association with a waveguide effect in the subducting slab rather than localized site amplification effects. Using the selected subduction zone guided wave events, we further analyzed the shear wave splitting for intermediate-depth earthquakes in different frequency bands, to provide the statistically meaningful shear wave splitting parameters. We determine shear wave splitting parameters from the 34 PSP guided events that are deeper than 100 km with ray path traveling along the subducted slab. From shear wave splitting analysis, the slab and crust effects reveal consistent polarization pattern of fast directions of EN-WS and delay time of 0.13 - 0.27 sec. This implies that slab anisotropy is stronger than the crust effect (<0.1 s) but weaker than the mantle wedge and sub-slab mantle effect (0.3-1.3 s) in Taiwan.
Structural Element Tests in Support of the Keyworker Blast Shelter Program
1985-10-01
forced concrete -lab with two transverse reinforced concrete floor beams to transfer the interior column loads to the floor slab. Using a roof slab... lateral buck- "-4 ling; however, this could have occurred after a column buckled and the roof collapsed. Since load cell 2 (middle column ) recorded the...ANALYSIS OF FREE-FIELD AND STRUCTURE LOADING DATA ... ........ .. 102 6.1.1 Loading Wave Velocity ........... .................... ... 102 6.1.2 Lateral
Super-Planckian Thermophotovoltaics Without Vacuum Gaps
NASA Astrophysics Data System (ADS)
Mirmoosa, M. S.; Biehs, S.-A.; Simovski, C. R.
2017-11-01
We introduce the concept of a thermophotovoltaic system whose emitter is separated from the photovoltaic cell by an intermediate thick slab of gallium arsenide. Owing to the engineered structure of the emitter (a multilayer structure of negative- and positive-ɛ layers) together with a high refractiveindex and transparency of the intermediate slab, we achieve a super-Planckian and frequency-selective spectrum of radiative heat transfer which is desirable for the efficient performance of thermophotovoltaic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D`Yachenko, O.G.; Tabachenko, V.V.; Sundberg, M.
The structure of Mo{sub 7.6}W{sub 1.4}O{sup 25} has been determined from single crystal X-ray data. The symmetry is monoclinic with lattice parameters a = 5.448(1), b = 27.639(8), c = 6.739 (1) {angstrom}, {beta} = 90.180(9){degrees}, and space group P2{sub 1}/n. The refinement led to R = 0.046 for 2060 observed unique reflections. The Mo:W ratio was confirmed by microanalysis. The (Mo, W){sub 9}O{sub 25} structure is built up of cornersharing distorted MO{sub 6} octahedra in slabs of ReO{sub 3}-type, cut parallel to (211) and seven octahedra wide along two subcell axes. The slabs appear alternatively in mirrored orientations. Themore » slabs are mutually linked by corner sharing of fairly regular MoO{sub 4} tetrahedra so that five-sided tunnels are formed. High-resolution electron microscopy images showed well-ordered crystal fragments.« less
Transverse shifts of a light beam reflected from a uniaxially anisotropic chiral slab
NASA Astrophysics Data System (ADS)
Xu, Guoding; Li, Jun; Xiao, Yuting; Mao, Hongmin; Sun, Jian; Pan, Tao
2015-01-01
We study for the first time the transverse shifts of a Gaussian beam reflected from a uniaxially anisotropic chiral (UAC) slab, where the chirality appears only in one direction and the host medium is a uniaxial crystal or an electric plasma. The results indicate that the transverse shifts are closely related to the propagation behaviors of the eigenwaves in the slab. Specifically, when one or both of the eigenwaves are totally reflected at the second interface of the slab, the spatial transverse shift becomes resonances but is not enhanced; when one eigenwave is totally reflected at the first interface and the other is transmitted at the second interface, the larger and negative transverse shifts can be obtained. The propagation behaviors of the eigenwaves in the UAC slab provide more abundant information about the transverse shifts than in a single interface structure.
NASA Astrophysics Data System (ADS)
Bilčík, Juraj; Sonnenschein, Róbert; Gažovičová, Natália
2017-09-01
This paper focuses on the causes and consequences of early-age cracking of mass concrete foundation slabs due to restrained volume changes. Considering the importance of water leaking through cracks in terms of the serviceability, durability and environmental impact of watertight concrete structures, emphasis is placed on the effect of temperature loads on foundation slabs. Foundation slabs are usually restrained to some degree externally or internally. To evaluate the effect of external restraints on foundation slabs, friction and interaction models are introduced. The reinforcement of concrete cannot prevent the initiation of cracking, but when cracking has occurred, it may act to reduce the spacing and width of cracks. According to EN 1992-1-1, results of calculating crack widths with local variations included in National Annexes (NAs) vary considerably. A comparison of the required reinforcement areas according to different NAs is presented.
Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones
Pons, Marie-Laure; Debret, Baptiste; Bouilhol, Pierre; Delacour, Adélie; Williams, Helen
2016-01-01
Subduction zones modulate the chemical evolution of the Earth's mantle. Water and volatile elements in the slab are released as fluids into the mantle wedge and this process is widely considered to result in the oxidation of the sub-arc mantle. However, the chemical composition and speciation of these fluids, which is critical for the mobility of economically important elements, remain poorly constrained. Sulfur has the potential to act both as oxidizing agent and transport medium. Here we use zinc stable isotopes (δ66Zn) in subducted Alpine serpentinites to decipher the chemical properties of slab-derived fluids. We show that the progressive decrease in δ66Zn with metamorphic grade is correlated with a decrease in sulfur content. As existing theoretical work predicts that Zn-SO42− complexes preferentially incorporate heavy δ66Zn, our results provide strong evidence for the release of oxidized, sulfate-rich, slab serpentinite-derived fluids to the mantle wedge. PMID:27982033
DOT National Transportation Integrated Search
2017-02-01
The two focus areas of this research address longstanding problems of (1) cracking of concrete slabs due to creep and shrinkage and (2) high performance compositions for grouting and joining precast concrete structural elements. Cracking of bridge de...
Sustainability assessment of a lightweight biomimetic ceiling structure.
Antony, Florian; Grießhammer, Rainer; Speck, Thomas; Speck, Olga
2014-03-01
An intensive and continuous debate centres on the question of whether biomimetics has a specific potential to contribute to sustainability. In the context of a case study, the objective of this paper is to contribute to this debate by presenting the first systematic approach to assess the sustainability of a complex biomimetic product. The object of inquiry is a lecture hall's ribbed slab. Based on criteria suggested by the Association of German Engineers (VDI), it has been verified that the slab has been correctly defined as biomimetic. Moreover, a systematic comparative product sustainability assessment has been carefully carried out. For purposes of comparison, estimated static calculations have been performed for conceivable current state-of-the-art lightweight ceiling structures. Alternative options are a hollow article slab and a pre-stressed flat slab. Besides a detailed benefit analysis and a discussion of social effects, their costs have also been compared. A particularly detailed life cycle assessment on the respective environmental impacts has also been performed. Results show that the biomimetic ribbed slab built in the 1960s is able to keep up with the current state-of-the-art lightweight solutions in terms of sustainability. These promising results encourage a systematic search for a broad range of sustainable biomimetic solutions.
NASA Astrophysics Data System (ADS)
Kincaid, C.
2005-12-01
Subduction of oceanic lithosphere provides a dominant driving force for mantle dynamics and plate tectonics, and strongly modulates the thermal evolution of the mantle. Magma generation in arc environments is related to slab temperatures, slab dehydration/wedge hydration processes and circulation patterns in the mantle wedge. A series of laboratory experiments is used to model three-dimensional aspects of flow in subduction zones, and the consequent temperature variations in the slab and overlying mantle wedge. The experiments utilize a tank of glucose syrup to simulate the mantle and a Phenolic plate to represent subducting oceanic lithosphere. Different modes of plate sinking are produced using hydraulic pistons. The effects of longitudinal, rollback and slab-steepening components of slab motions are considered, along with different thicknesses of the over-riding lithosphere. Models look specifically at how distinct modes of back-arc spreading alter subduction zone temperatures and flow in the mantle wedge. Results show remarkably different temperature and circulation patterns when spreading is produced by rollback of the trench-slab-arc relative to a stationary overriding back-arc plate versus spreading due to motion of the overriding plate away from a fixed trench location. For rollback-induced spreading, flow trajectories in the wedge are shallow (e.g., limited upwelling), both the sub-arc and back-arc regions are supplied by material flowing around the receding slab. Flow lines in the sub-arc wedge are strongly trench-parallel. In these cases, strong lateral variations in slab surface temperature (SST) are recorded (hot at plate center, cool at plate edge). When the trench is fixed in space and spreading is produced by motion of the overriding plate, strong vertical flow velocities are recorded in the wedge, both the shallow sub-arc and back-arc regions are supplied by flow from under the overriding plate producing strong vertical shear. In these cases SSTs are nearly uniform across the plate. Results have implications for geochemical and seismic models of 3-D flow in subduction zones influenced by back-arc spreading, such as the Marianas.
Reconciling the geological history of western Turkey with plate circuits and mantle tomography
NASA Astrophysics Data System (ADS)
Kaymakci, N.; van Hinsbergen, D. J.; Spakman, W.; Torsvik, T. H.
2010-12-01
We place the geological history since Cretaceous times in western Turkey in a context of convergence, subduction, collision and slab break-off. To this end, we compare the west Anatolian geological history with amounts of Africa-Europe convergence calculated from the Atlantic plate circuit, and the seismic tomography images of the west Anatolian mantle structure. Western Turkish geology reflects the convergence between the Sakarya continent (here treated as Eurasia) in the north and Africa in the south, with the Anatolide-Tauride Block (ATB) between two strands of the Neotethyan ocean. Convergence between the Sakarya and the ATB started at least ~95-90Myr ago, marked by ages of metamorphic soles of ophiolites that form the highest structural unit below Sakarya. These are underlain by high-pressure, low-temperature metamorphic rocks of the Tavsanli and Afyon zones, and the Ören Unit, which in turn are underlain by the Menderes Massif derived from the ATB. Underthrusting of the ATB below Sakarya was since ~50Ma, associated with high-temperature metamorphism and widespread granitic magmatism. Thrusting in the Menderes Massif continued until 35 Ma, after which there is no record of accretion in western Turkey. Plate circuits show that since 90 Ma, ~1400 km of Africa-Europe convergence occurred, of which ~700 km since 50 Ma and ~450 km since 35Ma. Seismic tomography shows that the African slab under western Turkey is decoupled from the African Plate. This detached slab is a single, coherent body, representing the lithosphere consumed since 90 Ma. There was no subduction re-initiation after slab break-off. ATB collision with Europe therefore did not immediately lead to slab break-off but instead to delamination of subducting lithospheric mantle from accreting ATB crust, while staying attached to the African Plate. This led to asthenospheric inflow below the ATB crust, high-temperature metamorphism and felsic magmatism. Slab break-off in western Turkey probably occurred ~15 Myr ago, after which overriding plate compression and rotation accommodated ongoing Africa-Europe convergence. Slab break-off was accommodated along a vertical NE trending subduction transform edge propagator (STEP) fault zone, accelerating southwestward slab retreat of the Aegean slab. The SE Aegean slab edge may have existed already since early Miocene times or before, but started to rapidly roll back along the southeastern Aegean STEP in middle Miocene times, penetrating the Aegean region in the Pliocene.
Out-of-plane reflections - are they evidence for deep subducted lithosphere?
NASA Astrophysics Data System (ADS)
Schumacher, Lina; Thomas, Christine
2015-04-01
Subduction zones form dominant tectonic features on the Earth and have complex three-dimensional structures. Tomographic inversions for P- and S-wave seismic velocities in the Earth's mantle give impressive images of slabs descending into the deep Earth. However, direct observations of deep slabs are scarce but necessary to make statements concerning physical parameters, structural differences within the slab and its behavior with depth. The main objective of this study is to investigate the geometry, physical parameters and structural differences of subducted lithosphere by investigating seismic P-wave arrivals that reflect off the base of the slab using seismic array techniques. The great circle paths of the source-receiver combinations used do not intersect the slab and serve as reference. We focus on the North pacific region by using earthquakes from Japan, the Philippines and the Hindukush recorded at North American networks (e.g. USArray, Alaska and Canada). The data cover a period from 2000-2012 with a minimum magnitude of 5.6 Mw and depths below 100 km. We are looking for reflections from the slab region that would arrive at the stations with deviating backazimuths. Information on slowness, backazimuth and travel time of the observed out-of-plane arrivals is used to backtrace the wave to its scattering location and to map seismic heterogeneities associated with subduction zones. The reflection points give an idea for the 3D structures within the mantle. Assuming only single scattering in the backtracing algorithm, most out-of-plane signals have to travel as P*P and only a few as S*P phases, due to their timing. Taking into account the radiation pattern of each event in direction of the great circle path and towards the calculated reflection point, it is possible to compare the polarities of the out-of-plane signals with P and/or PP. Furthermore, we analyze the out-of-plane waveforms in the beam trace of the observed slowness and backazimuth by cross-correlating them with great circle path phases and applying a systematic frequency analysis. Since the backtracing results are used for the further analysis of the signals, it is important to know how robust the backtracing routine is. We therefore analyze synthetic seismograms for 3D models with and without slab like heterogeneities. The result helps us to understand the depth dependent thermal behavior of sinking lithosphere, its internal structure and the extent to which it is seismically visible.
Collision-induced light scattering in a thin xenon layer between graphite slabs - MD study.
Dawid, A; Górny, K; Wojcieszyk, D; Dendzik, Z; Gburski, Z
2014-08-14
The collision-induced light scattering many-body correlation functions and their spectra in thin xenon layer located between two parallel graphite slabs have been investigated by molecular dynamics computer simulations. The results have been obtained at three different distances (densities) between graphite slabs. Our simulations show the increased intensity of the interaction-induced light scattering spectra at low frequencies for xenon atoms in confined space, in comparison to the bulk xenon sample. Moreover, we show substantial dependence of the interaction-induced light scattering correlation functions of xenon on the distances between graphite slabs. The dynamics of xenon atoms in a confined space was also investigated by calculating the mean square displacement functions and related diffusion coefficients. The structural property of confined xenon layer was studied by calculating the density profile, perpendicular to the graphite slabs. Building of a fluid phase of xenon in the innermost part of the slot was observed. The nonlinear dependence of xenon diffusion coefficient on the separation distance between graphite slabs has been found. Copyright © 2014. Published by Elsevier B.V.
Tottori earthquakes and Daisen volcano: Effects of fluids, slab melting and hot mantle upwelling
NASA Astrophysics Data System (ADS)
Zhao, Dapeng; Liu, Xin; Hua, Yuanyuan
2018-03-01
We investigate the 3-D seismic structure of source areas of the 6 October 2000 Western Tottori earthquake (M 7.3) and the 21 October 2016 Central Tottori earthquake (M 6.6) which occurred near the Daisen volcano in SW Japan. The two large events took place in a high-velocity zone in the upper crust, whereas low-velocity (low-V) and high Poisson's ratio (high-σ) anomalies are revealed in the lower crust and upper mantle. Low-frequency micro-earthquakes (M 0.0-2.1) occur in or around the low-V and high-σ zones, which reflect upward migration of magmatic fluids from the upper mantle to the crust under the Daisen volcano. The nucleation of the Tottori earthquakes may be affected by the ascending fluids. The flat subducting Philippine Sea (PHS) slab has a younger lithosphere age and so a higher temperature beneath the Daisen and Tottori area, facilitating the PHS slab melting. It is also possible that a PHS slab window has formed along the extinct Shikoku Basin spreading ridge beneath SW Japan, and mantle materials below the PHS slab may ascend to the shallow area through the slab window. These results suggest that the Daisen adakite magma was affected by the PHS slab melting and upwelling flow in the upper mantle above the subducting Pacific slab.
A dipping, thick Farallon slab below central United States
NASA Astrophysics Data System (ADS)
Sun, D.; Gurnis, M.; Saleeby, J.; Helmberger, D. V.
2015-12-01
It has been hypothesized that much of the Laramide orogeny was caused by dynamic effects induced by an extensive flat slab during a period of plateau subduction. A particularly thick block containing the Shatsky Rise conjugate, now in the mid-mantle, left a distinctive deformation footprint from southern California to Denver, Colorado. Thus mid-mantle, relic slabs can provide fundamental information about past subduction and the history of plate tectonics if properly imaged. Here we find clear evidence for a northeastward dipping (35° dip), slab-like, but fat (up to 400-500 km thick) seismic anomaly within the top of the lower mantle below the central United States. Using a deep focus earthquake below Spain with direct seismic paths that propagate along the top and bottom of the anomaly, we find that the observed, stacked seismic waveforms recorded with the dense USArray show multi-pathing indicative of sharp top and bottom surfaces. Plate tectonic reconstructions in which the slab is migrated back in time suggest strong coupling of the slab to North America. In combination with the reconstructions, we interpret the structure as arising from eastward dipping Farallon subduction at the western margin of North America during the Cretaceous, in contrast with recent interpretations. The slab could have been fattened through a combination of pure shear thickening during flat-slab subduction and a folding instability during penetration into the lower mantle.
Exact image theory for the problem of dielectric/magnetic slab
NASA Technical Reports Server (NTRS)
Lindell, I. V.
1987-01-01
Exact image method, recently introduced for the exact solution of electromagnetic field problems involving homogeneous half spaces and microstrip-like geometries, is developed for the problem of homogeneous slab of dielectric and/or magnetic material in free space. Expressions for image sources, creating the exact reflected and transmitted fields, are given and their numerical evaluation is demonstrated. Nonradiating modes, guided by the slab and responsible for the loss of convergence of the image functions, are considered and extracted. The theory allows, for example, an analysis of finite ground planes in microstrip antenna structures.
Constraining Slab Breakoff Induced Magmatism through Numerical Modelling
NASA Astrophysics Data System (ADS)
Freeburn, R.; Van Hunen, J.; Maunder, B. L.; Magni, V.; Bouilhol, P.
2015-12-01
Post-collisional magmatism is markedly different in nature and composition than pre-collisional magmas. This is widely interpreted to mark a change in the thermal structure of the system due to the loss of the oceanic slab (slab breakoff), allowing a different source to melt. Early modelling studies suggest that when breakoff takes place at depths shallower than the overriding lithosphere, magmatism occurs through both the decompression of upwelling asthenopshere into the slab window and the thermal perturbation of the overriding lithosphere (Davies & von Blanckenburg, 1995; van de Zedde & Wortel, 2001). Interpretations of geochemical data which invoke slab breakoff as a means of generating magmatism mostly assume these shallow depths. However more recent modelling results suggest that slab breakoff is likely to occur deeper (e.g. Andrews & Billen, 2009; Duretz et al., 2011; van Hunen & Allen, 2011). Here we test the extent to which slab breakoff is a viable mechanism for generating melting in post-collisional settings. Using 2-D numerical models we conduct a parametric study, producing models displaying a range of dynamics with breakoff depths ranging from 150 - 300 km. Key models are further analysed to assess the extent of melting. We consider the mantle wedge above the slab to be hydrated, and compute the melt fraction by using a simple parameterised solidus. Our models show that breakoff at shallow depths can generate a short-lived (< 3 Myr) pulse of mantle melting, through the hydration of hotter, undepleted asthenosphere flowing in from behind the detached slab. However, our results do not display the widespread, prolonged style of magmatism, observed in many post-collisional areas, suggesting that this magmatism may be generated via alternative mechanisms. This further implies that using magmatic observations to constrain slab breakoff is not straightforward.
Kinematic variables and water transport control the formation and location of arc volcanoes.
Grove, T L; Till, C B; Lev, E; Chatterjee, N; Médard, E
2009-06-04
The processes that give rise to arc magmas at convergent plate margins have long been a subject of scientific research and debate. A consensus has developed that the mantle wedge overlying the subducting slab and fluids and/or melts from the subducting slab itself are involved in the melting process. However, the role of kinematic variables such as slab dip and convergence rate in the formation of arc magmas is still unclear. The depth to the top of the subducting slab beneath volcanic arcs, usually approximately 110 +/- 20 km, was previously thought to be constant among arcs. Recent studies revealed that the depth of intermediate-depth earthquakes underneath volcanic arcs, presumably marking the slab-wedge interface, varies systematically between approximately 60 and 173 km and correlates with slab dip and convergence rate. Water-rich magmas (over 4-6 wt% H(2)O) are found in subduction zones with very different subduction parameters, including those with a shallow-dipping slab (north Japan), or steeply dipping slab (Marianas). Here we propose a simple model to address how kinematic parameters of plate subduction relate to the location of mantle melting at subduction zones. We demonstrate that the location of arc volcanoes is controlled by a combination of conditions: melting in the wedge is induced at the overlap of regions in the wedge that are hotter than the melting curve (solidus) of vapour-saturated peridotite and regions where hydrous minerals both in the wedge and in the subducting slab break down. These two limits for melt generation, when combined with the kinematic parameters of slab dip and convergence rate, provide independent constraints on the thermal structure of the wedge and accurately predict the location of mantle wedge melting and the position of arc volcanoes.
The Role of Air-sea Coupling in the Response of Climate Extremes to Aerosols
NASA Astrophysics Data System (ADS)
Mahajan, S.
2017-12-01
Air-sea interactions dominate the climate of surrounding regions and thus also modulate the climate response to local and remote aerosol forcings. To clearly isolate the role of air-sea coupling in the climate response to aerosols, we conduct experiments with a full complexity atmosphere model that is coupled to a series of ocean models progressively increasing in complexity. The ocean models range from a data ocean model with prescribed SSTs, to a slab ocean model that only allows thermodynamic interactions, to a full dynamic ocean model. In a preliminary study, we have conducted single forcing experiments with black carbon aerosols in an atmosphere GCM coupled to a data ocean model and a slab ocean model. We find that while black carbon aerosols can intensify mean and extreme summer monsoonal precipitation over the Indian sub-continent, air-sea coupling can dramatically modulate this response. Black carbon aerosols in the vicinity of the Arabian Sea result in an increase of sea surface temperatures there in the slab ocean model, which intensify the low-level Somali Jet. The associated increase in moisture transport into Western India enhances the mean as well as extreme precipitation. In prescribed SST experiments, where SSTs are not allowed to respond BC aerosols, the response is muted. We will present results from a hierarchy of GCM simulations that investigate the role of air-sea coupling in the climate response to aerosols in more detail.
DOT National Transportation Integrated Search
1974-04-01
This report presents the results of a critical review of the technical factors which govern the design and performance of at-grade slab track for urban rail systems. The assessment of current design practices is based on a review of the literature an...
Min, Qiao; Chen, Chengkun; Berini, Pierre; Gordon, Reuven
2010-08-30
We show that long-range surface plasmons (LRSPs) are supported in a physically asymmetric thin film structure, consisting of a low refractive index medium on a metal slab, supported by a high refractive index dielectric layer (membrane) over air, as a suspended waveguide. For design purposes, an analytic formulation is derived in 1D yielding a transcendental equation that ensures symmetry of the transverse fields of the LRSP within the metal slab by constraining its thicknesses and that of the membrane. Results from the formulation are in quantitative agreement with transfer matrix calculations for a candidate slab waveguide consisting of an H(2)O-Au-SiO(2)-air structure. Biosensor-relevant figures of merit are compared for the asymmetric and symmetric structures, and it is found that the asymmetric structure actually improves performance, despite higher losses. The finite difference method is also used to analyse metal stripes providing 2D confinement on the structure, and additional constraints for non-radiative LRSP guiding thereon are discussed. These results are promising for sensors that operate with an aqueous solution that would otherwise require a low refractive index-matched substrate for the LRSP.
Study on the Old Girders in the Widening Hollow Slab Girder Bridge
NASA Astrophysics Data System (ADS)
Wang, Ying; Zhang, Li Fang; Ma, Hai Yan
2018-06-01
Taking the bridge widening project of Shanghai-Hangzhou-Ningbo expressway widening construction project (China) as the background in this paper, the variation law of the internal force of the old bridge in the widening hollow slab girder bridge under vehicle load is studied, which is under the condition of different span lengths and different widening widths. Three different span lengths of the pre-tensioned prestressed hollow slab girder bridges are selected, the spatial finite element models of both the old bridge and the whole structure of widening bridge are established and calculated respectively by Midas/Civil software. The influences of widening and load increasing on the old bridges under the vehicle load are compared and analyzed. In addition, the authors also analyze the influences of different widening widths on the force state of old bridges under the condition of widening the same number of lane. Moreover , the effects on the old bridges that are caused by the uneven foundation settlement of widening bridge structure are also studied in this paper. This paper can provide some references for widening design of hollow slab bridges.
Dry Juan de Fuca slab revealed by quantification of water entering Cascadia subduction zone
NASA Astrophysics Data System (ADS)
Canales, J. P.; Carbotte, S. M.; Nedimović, M. R.; Carton, H.
2017-11-01
Water is carried by subducting slabs as a pore fluid and in structurally bound minerals, yet no comprehensive quantification of water content and how it is stored and distributed at depth within incoming plates exists for any segment of the global subduction system. Here we use seismic data to quantify the amount of pore and structurally bound water in the Juan de Fuca plate entering the Cascadia subduction zone. Specifically, we analyse these water reservoirs in the sediments, crust and lithospheric mantle, and their variations along the central Cascadia margin. We find that the Juan de Fuca lower crust and mantle are drier than at any other subducting plate, with most of the water stored in the sediments and upper crust. Variable but limited bend faulting along the margin limits slab access to water, and a warm thermal structure resulting from a thick sediment cover and young plate age prevents significant serpentinization of the mantle. The dryness of the lower crust and mantle indicates that fluids that facilitate episodic tremor and slip must be sourced from the subducted upper crust, and that decompression rather than hydrous melting must dominate arc magmatism in central Cascadia. Additionally, dry subducted lower crust and mantle can explain the low levels of intermediate-depth seismicity in the Juan de Fuca slab.
NASA Astrophysics Data System (ADS)
Wang, Gang; Wei, Wenbo; Ye, Gaofeng; Jin, Sheng; Jing, Jianen; Zhang, Letian; Dong, Hao; Xie, Chengliang; Omisore, Busayo O.; Guo, Zeqiu
2017-09-01
The approximately north-south trending Cenozoic Yadong-Gulu rift (YGR) in the eastern Lhasa block is an ideal location to investigate the extensional kinematic mechanism of the upper crust and the deformation characteristics of the Indian lithospheric slab in southern Tibet. The magnetotelluric (MT) method has been widely used in probing subsurface structures at lithospheric scale and is sensitive to high electrically conductive body (conductor). A three-dimensional (3-D) inversion of MT data was conducted to derive the east-west electrical structures across the northern segment of the YGR. The result reveals that the conductors in the middle crust are not continuous in the east-west direction. The deep conductor underneath the YGR is interpreted to result from the tearing of the Indian lithospheric slab. The upper crust to the east of the YGR is significantly intruded by underlying conductors. Based on the features of the 3-D inversion result from this study and other geophysical observations, the formation of the YGR is most likely caused by tearing of the Indian lithospheric slab through the pull of mid-lower crustal conductors that have locally weak strength beneath the YGR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suryavanshi, A.K.; Swamy, R.N.
1997-07-01
The long-term performance of a concrete slab (CPF slab) exposed to chloride ingress and atmospheric carbonation from the surface generated by controlled permeability formwork (CPF) is investigated. The results are compared with a similar slab exposed to long-term chloride ingress and atmospheric carbonation from the cast face (Control slab). Techniques such as X-ray diffraction (XRD) and differential thermal analyses (DTA) were employed to determine the resistance against carbonation while, mercury porosimetry was used for investigating the pore size distribution at the surface of the slabs. Amount of acid soluble chlorides was determined by using Volhard`s method. The CPF employed atmore » the bottom of the mould was not fully effective in its intended purpose of generating a permanent and dense impermeable concrete layer adjacent to it when the design water-cement (w/c) ration of the concrete mix was 0.60. This resulted in an almost similar extent of carbonation at the surface for both CPF and control slabs as shown by XRD and DTA studies. Similarly, there were no significant differences in the amount of chlorides and their depths of penetration for both CPF and control slabs, although the former was marginally superior in chloride penetration resistance at the surface.« less
Detecting slab structure beneath the Banda Arc from waveform analysis of deep focus earthquakes
NASA Astrophysics Data System (ADS)
Miller, M. S.; Sun, D.; Holt, A. F.
2017-12-01
We investigate the structure of the subducting Australian slab by utilizing 30 recently installed, temporary broadband seismometers (YS network) in the Banda Arc region of the Indonesia archipelago. This region is of particular tectonic interest as it is the archetypal example of a young arc-continent collision along with known varied lithospheric structure of the incoming Australian plate. Previous (e.g. Widiyantoro et al. 2011) and preliminary body wave tomography (Harris et al., this session) indicate complex subducted slab structures, where gaps in fast velocity anomalies in the upper mantle are interpreted as slab tears and are linked to the variation in the incoming plate structures. The detailed shape and location of these tears are important for kinematic reconstructions and for understanding the evolution of the entire subduction system. However, tomographic images are inherently smooth due to being produced with damped inversions and therefore underestimate the sharpness of these structures. We investigate possible sharp-sided structures within and at the edges of the subducted plate from deep focus earthquakes beneath the Banda Arc that occur beneath the seismic stations. Preliminary results show that the energy associated with the P-wave first arrival exhibits large variability between waveforms recorded at different stations along the arc, both in terms of frequency content and maximum amplitudes. Three main observations are shown with these initial results: (i) Variation in frequency content along strike from the deep events; (ii) There are two "regions" that have low frequency signals which possibly correspond to subducted continental lithosphere; (iii) There are two "regions" that have high frequency signals which possibly correspond to subducted oceanic lithosphere.
Tectonic evolution and mantle structure of the Caribbean
NASA Astrophysics Data System (ADS)
van Benthem, Steven; Govers, Rob; Spakman, Wim; Wortel, Rinus
2013-06-01
investigate whether predictions of mantle structure from tectonic reconstructions are in agreement with a detailed tomographic image of seismic P wave velocity structure under the Caribbean region. In the upper mantle, positive seismic anomalies are imaged under the Lesser Antilles and Puerto Rico. These anomalies are interpreted as remnants of Atlantic lithosphere subduction and confirm tectonic reconstructions that suggest at least 1100 km of convergence at the Lesser Antilles island arc during the past 45 Myr. The imaged Lesser Antilles slab consists of a northern and southern anomaly, separated by a low-velocity anomaly across most of the upper mantle, which we interpret as the subducted North America-South America plate boundary. The southern edge of the imaged Lesser Antilles slab agrees with vertical tearing of South America lithosphere. The northern Lesser Antilles slab is continuous with the Puerto Rico slab along the northeastern plate boundary. This results in an amphitheater-shaped slab, and it is interpreted as westward subducting North America lithosphere that remained attached to the surface along the northeastern boundary of the Caribbean plate. At the Muertos Trough, however, material is imaged until a depth of only 100 km, suggesting a small amount of subduction. The location and length of the imaged South Caribbean slab agrees with proposed subduction of Caribbean lithosphere under the northern South America plate. An anomaly related to proposed Oligocene subduction at the Nicaragua rise is absent in the tomographic model. Beneath Panama, a subduction window exists across the upper mantle, which is related to the cessation of subduction of the Nazca plate under Panama since 9.5 Ma and possibly the preceding subduction of the extinct Cocos-Nazca spreading center. In the lower mantle, two large anomaly patterns are imaged. The westernmost anomaly agrees with the subduction of Farallon lithosphere. The second lower mantle anomaly is found east of the Farallon anomaly and is interpreted as a remnant of the late Mesozoic subduction of North and South America oceanic lithosphere at the Greater Antilles, Aves ridge, and Leeward Antilles. The imaged mantle structure does not allow us to discriminate between an "Intra-Americas origin" and a "Pacific origin" of the Caribbean plate.
Tectonic evolution and mantle structure of the Caribbean
NASA Astrophysics Data System (ADS)
Benthem, Steven; Govers, Rob; Spakman, Wim; Wortel, Rinus
2013-06-01
investigate whether predictions of mantle structure from tectonic reconstructions are in agreement with a detailed tomographic image of seismic P wave velocity structure under the Caribbean region. In the upper mantle, positive seismic anomalies are imaged under the Lesser Antilles and Puerto Rico. These anomalies are interpreted as remnants of Atlantic lithosphere subduction and confirm tectonic reconstructions that suggest at least 1100 km of convergence at the Lesser Antilles island arc during the past ~45 Myr. The imaged Lesser Antilles slab consists of a northern and southern anomaly, separated by a low-velocity anomaly across most of the upper mantle, which we interpret as the subducted North America-South America plate boundary. The southern edge of the imaged Lesser Antilles slab agrees with vertical tearing of South America lithosphere. The northern Lesser Antilles slab is continuous with the Puerto Rico slab along the northeastern plate boundary. This results in an amphitheater-shaped slab, and it is interpreted as westward subducting North America lithosphere that remained attached to the surface along the northeastern boundary of the Caribbean plate. At the Muertos Trough, however, material is imaged until a depth of only 100 km, suggesting a small amount of subduction. The location and length of the imaged South Caribbean slab agrees with proposed subduction of Caribbean lithosphere under the northern South America plate. An anomaly related to proposed Oligocene subduction at the Nicaragua rise is absent in the tomographic model. Beneath Panama, a subduction window exists across the upper mantle, which is related to the cessation of subduction of the Nazca plate under Panama since 9.5 Ma and possibly the preceding subduction of the extinct Cocos-Nazca spreading center. In the lower mantle, two large anomaly patterns are imaged. The westernmost anomaly agrees with the subduction of Farallon lithosphere. The second lower mantle anomaly is found east of the Farallon anomaly and is interpreted as a remnant of the late Mesozoic subduction of North and South America oceanic lithosphere at the Greater Antilles, Aves ridge, and Leeward Antilles. The imaged mantle structure does not allow us to discriminate between an "Intra-Americas origin" and a "Pacific origin" of the Caribbean plate.
NASA Astrophysics Data System (ADS)
Jiang, M.; He, Y.; Zheng, T.; Mon, C. T.; Thant, M.; Hou, G.; Ai, Y.; Chen, Q. F.; Sein, K.
2017-12-01
The Indo-Myanmar block locates to the southern and southeastern of the Eastern Himalayan Syntax (EHS) and marks a torsional boundary of the collision between the Indian and Eurasian plates. There are two fundamental questions concerned on the tectonics of Indo-Myanmar block since the Cenozoic time. One is whether and how the oblique subduction is active in the deep; the other is where and how the transition from oceanic subduction and continental subduction operates. However, the two problems are still under heated debate mainly because the image of deep structure beneath this region is still blurring. Since June, 2016, we have executed the China-Myanmar Geophysical Survey in the Myanmar Orogen (CMGSMO) and deployed the first portable seismic array in Myanmar in cooperation with Myanmar Geosciences Society (MGS). This array contains 70 stations with a dense-deployed main profile across the Indo-Myanmar Range, Central Basin and Shan State Plateau along latitude of 22° and a 2-D network covering the Indo-Myanmar Range and the western part of the Central Basin. Based on the seismic data collected by the new array, we conducted the studies on the lithospheric structure using the routine surface wave tomography and receiver function CCP stacking. The preliminary results of surface wave tomography displayed a remarkable high seismic velocity fabric in the uppermost of mantle beneath the Indo-Myanmar Range and Central Basin, which was interpreted as the subducted slab eastward. Particularly, we found a low velocity bulk within the high-velocity slab, which was likely to be a slab window due to the slab tearing. The preliminary results of receiver function CCP stacking showed the obvious variations of the lithospheric structures from the Indo-Myanmar Range to the Central Basin and Shan State Plateau. The lithospheric structure beneath the Indo-Myanmar Range is more complex than that beneath the Central Basin and Shan State Plateau. Our resultant high-resolution images will provide important constrains for establishing the tectonic framework of Indian plate eastward subduction. This study is supported by the National Natural Science Foundation of China (grants 41490612, 41274002).
Realization of a complementary medium using dielectric photonic crystals.
Xu, Tao; Fang, Anan; Jia, Ziyuan; Ji, Liyu; Hang, Zhi Hong
2017-12-01
By exploiting the scaling invariance of photonic band diagrams, a complementary photonic crystal slab structure is realized by stacking two uniformly scaled double-zero-index dielectric photonic crystal slabs together. The space cancellation effect in complementary photonic crystals is demonstrated in both numerical simulations and microwave experiments. The refractive index dispersion of double-zero-index dielectric photonic crystal is experimentally measured. Using pure dielectrics, our photonic crystal structure will be an ideal platform to explore various intriguing properties related to a complementary medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lei; Lei, Gang; Gao, Qiang
2015-08-15
Graphical abstract: Spin-polarized total and atomic DOS at S-(1 1 1) terminated slab and bulk in CsCl-type RbS. - Highlights: • The half metallic properties of CsCl-type RbS and KS have been studied. • The RbS's and KS's (1 1 1) slabs have been investigated. • Surface energy of RbS's and KS's (1 1 1) slabs are calculated. - Abstract: The electronic and magnetic properties of RbS and KS in CsCl structure have been investigated by using the full-potential local-orbital minimum-basis method. Calculating the relation between the total energies and lattice parameters for RbS and KS, we find out thatmore » the equilibrium lattice parameters are 4.02 Å and 3.84 Å for RbS and KS, respectively. According to our calculations in generalized gradient approximation approximation, both RbS and KS are half-metallic ferromagnets with the magnetic moments of 1 μ{sub B} per formula unit, and band gap of 4.287 eV for RbS and 4.395 eV for KS. We also have studied the electronic and magnetic properties of (1 1 1) surfaces of RbS and KS, and have found out that the half-metallicity of their bulk is preserved in all of those surfaces. Finally, through the calculations of formation energy of RbS and KS, it is found that their thin films are stable in the equilibrium conditions, and the Rb-terminated (1 1 1) slab of RbS and the K-terminated (1 1 1) slab of KS are more stable than their S-terminated (1 1 1) slabs. All of the above properties lead the compounds of RbS and KS in CsCl structure to be promising candidates for spintronic applications.« less
Lamb waves in phononic crystal slabs with square or rectangular symmetries
NASA Astrophysics Data System (ADS)
Brunet, Thomas; Vasseur, Jérôme; Bonello, Bernard; Djafari-Rouhani, Bahram; Hladky-Hennion, Anne-Christine
2008-08-01
We report on both numerical and experimental results showing the occurrence of band gaps for Lamb waves propagating in phononic crystal plates. The structures are made of centered rectangular and square arrays of holes drilled in a silicon plate. A supercell plane wave expansion method is used to calculate the band structures and to predict the position and the magnitude of the gaps. The band structures of phononic crystal slabs are then measured using a laser ultrasonic technique. Lamb waves in the megahertz range and with wave vectors ranging over more than the first two reduced Brillouin zones are investigated.
Tectonic evolution and mantle structure of the Caribbean
NASA Astrophysics Data System (ADS)
van Benthem, Steven; Govers, Rob; Spakman, Wim; Wortel, Rinus
2013-04-01
In the broad context of investigating the relationship between deep structure & processes and surface expressions, we study the Caribbean plate and underlying mantle. We investigate whether predictions of mantle structure from tectonic reconstructions are in agreement with a detailed tomographic image of seismic P-wave velocity structure under the Caribbean region. In the upper mantle, positive seismic anomalies are imaged under the Lesser Antilles and Puerto Rico. These anomalies are interpreted as remnants of Atlantic lithosphere subduction and confirm tectonic reconstructions that suggest at least 1100 km of convergence at the Lesser Antilles island arc during the past ~45 Myr. The imaged Lesser-Antilles slab consists of a northern and southern anomaly, separated by a low velocity anomaly across most of the upper mantle, which we interpret as the subducted North-South America plate boundary. The southern edge of the imaged Lesser Antilles slab agrees with vertical tearing of South America lithosphere. The northern Lesser Antilles slab is continuous with the Puerto Rico slab along the northeastern plate boundary. This results in an amphitheater-shaped slab and it is interpreted as westward subducting North America lithosphere that remained attached to the surface along the northern boundary. At the Muertos Trough, however, material is imaged until a depth of only 100 km, suggesting a small amount of subduction. The location and length of the imaged South Caribbean slab agrees with proposed subduction of Caribbean lithosphere under the northern South America plate. An anomaly related to proposed Oligocene subduction at the Nicaragua rise is absent in the tomographic model. Beneath Panama, a subduction window exists across the upper mantle, which is related to the cessation of subduction of the Nazca plate under Panama since 9.5 Ma and possibly the preceding subduction of the extinct Cocos-Nazca spreading center. In the lower mantle two large anomaly patterns are imaged. The westernmost anomaly agrees with the subduction of Farallon lithosphere. The second lower mantle anomaly is found east of the Farallon anomaly and is interpreted as a remnant of the late Mesozoic subduction of North and South America oceanic lithosphere at the Greater Antilles, Aves ridge and Leeward Antilles. The imaged mantle structure does not allow us to discriminate between an 'Intra-Americas' origin and a 'Pacific origin' of the Caribbean plate.
Discussion on the installation checking method of precast composite floor slab with lattice girders
NASA Astrophysics Data System (ADS)
Chen, Li; Jin, Xing; Wang, Yahui; Zhou, Hele; Gu, Jianing
2018-03-01
Based on the installation checking requirements of China’s current standards and the international norms for prefabricated structural precast components, it proposed an installation checking method for precast composite floor slab with lattice girders. By taking an equivalent composite beam consisted of a single lattice girder and the precast concrete slab as the checking object, compression instability stress of upper chords and yield stress of slab distribution reinforcement at the maximum positive moment, tensile yield stress of upper chords, slab normal section normal compression stress and shear instability stress of diagonal bars at the maximum negative moment were checked. And the bending stress and deflection of support beams, strength and compression stability bearing capacity of the vertical support, shear bearing capacity of the bolt and compression bearing capacity of steel tube wall at the bolt were checked at the same time. Every different checking object was given a specific load value and load combination. Application of installation checking method was given and testified by example.
Reasonable Temperature Schedules for Cold or Hot Charging of Continuously Cast Steel Slabs
NASA Astrophysics Data System (ADS)
Li, Yang; Chen, Xin; Liu, Ke; Wang, Jing; Wen, Jin; Zhang, Jiaquan
2013-12-01
Some continuously cast steel slabs are sensitive to transverse fracture problems during transportation or handling away from their storage state, while some steel slabs are sensitive to surface transverse cracks during the following rolling process in a certain hot charging temperature range. It is revealed that the investigated steel slabs with high fracture tendency under room cooling condition always contain pearlite transformation delayed elements, which lead to the internal brittle bainitic structure formation, while some microalloyed steels exhibit high surface crack susceptibility to hot charging temperatures due to carbonitride precipitation. According to the calculated internal cooling rates and CCT diagrams, the slabs with high fracture tendency during cold charging should be slowly cooled after cutting to length from hot strand or charged to the reheating furnace directly above their bainite formation temperatures. Based on a thermodynamic calculation for carbonitride precipitation in austenite, the sensitive hot charging temperature range of related steels was revealed for the determination of reasonable temperature schedules.
Emplacement of the Kodiak batholith and slab-window migration
Farris, David W.; Haeussler, Peter J.; Friedman, Richard; Paterson, Scott R.; Saltus, R.W.; Ayuso, Robert A.
2006-01-01
The Kodiak batholith is one of the largest, most elongate intrusive bodies in the forearc Sanak-Baranof plutonic belt located in southern Alaska. This belt is interpreted to have formed during the subduction of an oceanic spreading center and the associated migration of a slab window. Individual plutons of the Kodiak batholith track the location and evolution of the underlying slab window. Six U/Pb zircon ages from the axis of the batholith exhibit a northeastward-decreasing age progression of 59.2 ± 0.2 Ma at the southwest end to 58.4 ± 0.2 Ma at the northeast tip. The trench-parallel rate of age progression is within error of the average slab-window migration rate for the entire Sanak-Baranof belt (~19 cm/yr). Structural relationships, U/Pb ages, and a model of new gravity data indicate that magma from the Kodiak batholith ascended 5-10 km as a northeastward-younging series of 1-8-km-diameter viscoelastic diapirs. Individual plutons ascended by multiple emplacement mechanisms including downward flow, collapse of wall rock, stoping, and diking. Stokes flow xenolith calculations suggest ascent rates of 5-100 m/yr and an effective magmatic viscosity of 107-108 Pa s. Pre-existing structural or lithologic heterogeneities did not dominantly control the location of the main batholith. Instead, its location was determined by migration of the slab window at depth.
Review of Punching Shear Behaviour of Flat Slabs Reinforced with FRP Bars
NASA Astrophysics Data System (ADS)
Mohamed, Osama A.; Khattab, Rania
2017-10-01
Using Fibre Reinforced Polymer (FRP) bars to reinforce two-way concrete slabs can extend the service life, reduce maintenance cost and improve-life cycle cost efficiency. FRP reinforcing bars are more environmentally friendly alternatives to traditional reinforcing steel. Shear behaviour of reinforced concrete structural members is a complex phenomenon that relies on the development of internal load-carrying mechanisms, the magnitude and combination of which is still a subject of research. Many building codes and design standards provide design formulas for estimation of punching shear capacity of FRP reinforced flat slabs. Building code formulas take into account the effects of the axial stiffness of main reinforcement bars, the ratio of the perimeter of the critical section to the slab effective depth, and the slab thickness on the punching shear capacity of two-way slabs reinforced with FRP bars or grids. The goal of this paper is to compare experimental data published in the literature to the equations offered by building codes for the estimation of punching shear capacity of concrete flat slabs reinforced with FRP bars. Emphasis in this paper is on two North American codes, namely, ACI 440.1R-15 and CSA S806-12. The experimental data covered in this paper include flat slabs reinforced with GFRP, BFRP, and CFRP bars. Both ACI 440.1R-15 and CSA S806-12 are shown to be in good agreement with test results in terms of predicting the punching shear capacity.
Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina.
Booker, John R; Favetto, Alicia; Pomposiello, M Cristina
2004-05-27
Beneath much of the Andes, oceanic lithosphere descends eastward into the mantle at an angle of about 30 degrees (ref. 1). A partially molten region is thought to form in a wedge between this descending slab and the overlying continental lithosphere as volatiles given off by the slab lower the melting temperature of mantle material. This wedge is the ultimate source for magma erupted at the active volcanoes that characterize the Andean margin. But between 28 degrees and 33 degrees S the subducted Nazca plate appears to be anomalously buoyant, as it levels out at about 100 km depth and extends nearly horizontally under the continent. Above this 'flat slab', volcanic activity in the main Andean Cordillera terminated about 9 million years ago as the flattening slab presumably squeezed out the mantle wedge. But it is unknown where slab volatiles go once this happens, and why the flat slab finally rolls over to descend steeply into the mantle 600 km further eastward. Here we present results from a magnetotelluric profile in central Argentina, from which we infer enhanced electrical conductivity along the eastern side of the plunging slab, indicative of the presence of partial melt. This conductivity structure may imply that partial melting occurs to at least 250 km and perhaps to more than 400 km depth, or that melt is supplied from the 410 km discontinuity, consistent with the transition-zone 'water-filter' model of Bercovici and Karato.
Resonance-enhanced optical forces between coupled photonic crystal slabs.
Liu, Victor; Povinelli, Michelle; Fan, Shanhui
2009-11-23
The behaviors of lateral and normal optical forces between coupled photonic crystal slabs are analyzed. We show that the optical force is periodic with displacement, resulting in stable and unstable equilibrium positions. Moreover, the forces are strongly enhanced by guided resonances of the coupled slabs. Such enhancement is particularly prominent near dark states of the system, and the enhancement effect is strongly dependent on the types of guided resonances involved. These structures lead to enhancement of light-induced pressure over larger areas, in a configuration that is directly accessible to externally incident, free-space optical beams.
NASA Astrophysics Data System (ADS)
Kovalovs, A.; Rucevskis, S.; Akishin, P.; Kolupajevs, J.
2017-10-01
The paper presents numerical results of loss of prestress in the reinforced prestressed precast hollow core slabs by modal analysis. Loss of prestress is investigated by the 3D finite element method, using ANSYS software. In the numerical examples, variables initial stresses were introduced into seven-wire stress-relieved strands of the concrete slabs. The effects of span and material properties of concrete on the modal frequencies of the concrete structure under initial stress were studied. Modal parameters computed from the finite element models were compared. Applicability and effectiveness of the proposed method was investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mészárosová, Hana; Karlický, Marian; Jelínek, Petr
Currently, there is a common endeavor to detect magnetoacoustic waves in solar flares. This paper contributes to this topic using an approach of numerical simulations. We studied a spatial and temporal evolution of impulsively generated fast and slow magnetoacoustic waves propagating along the dense slab and Harris current sheet using two-dimensional magnetohydrodynamic numerical models. Wave signals computed in numerical models were used for computations of the temporal and spatial wavelet spectra for their possible comparison with those obtained from observations. It is shown that these wavelet spectra allow us to estimate basic parameters of waveguides and perturbations. It was foundmore » that the wavelet spectra of waves in the dense slab and current sheet differ in additional wavelet components that appear in association with the main tadpole structure. These additional components are new details in the wavelet spectrum of the signal. While in the dense slab this additional component is always delayed after the tadpole head, in the current sheet this component always precedes the tadpole head. It could help distinguish a type of the waveguide in observed data. We present a technique based on wavelets that separates wave structures according to their spatial scales. This technique shows not only how to separate the magnetoacoustic waves and waveguide structure in observed data, where the waveguide structure is not known, but also how propagating magnetoacoustic waves would appear in observations with limited spatial resolutions. The possibilities detecting these waves in observed data are mentioned.« less
Systematic variation in the depths of slabs beneath arc volcanoes
England, P.; Engdahl, R.; Thatcher, W.
2004-01-01
The depths to the tops of the zones of intermediate-depth seismicity beneath arc volcanoes are determined using the hypocentral locations of Engdahl et al. These depths are constant, to within a few kilometres, within individual arc segments, but differ by tens of kilometres from one arc segment to another. The range in depths is from 65 km to 130 km, inconsistent with the common belief that the volcanoes directly overlie the places where the slabs reach a critical depth that is roughly constant for all arcs. The depth to the top of the intermediate-depth seismicity beneath volcanoes correlates neither with age of the descending ocean floor nor with the thermal parameter of the slab. This depth does, however, exhibit an inverse correlation with the descent speed of the subducting plate, which is the controlling factor both for the thermal structure of the wedge of mantle above the slab and for the temperature at the top of the slab. We interpret this result as indicating that the location of arc volcanoes is controlled by a process that depends critically upon the temperature at the top of the slab, or in the wedge of mantle, immediately below the volcanic arc.
Bend Faulting at the Edge of a Flat Slab: The 2017 Mw7.1 Puebla-Morelos, Mexico Earthquake
NASA Astrophysics Data System (ADS)
Melgar, Diego; Pérez-Campos, Xyoli; Ramirez-Guzman, Leonardo; Spica, Zack; Espíndola, Victor Hugo; Hammond, William C.; Cabral-Cano, Enrique
2018-03-01
We present results of a slip model from joint inversion of strong motion and static Global Positioning System data for the Mw7.1 Puebla-Morelos earthquake. We find that the earthquake nucleates at the bottom of the oceanic crust or within the oceanic mantle with most of the moment release occurring within the oceanic mantle. Given its location at the edge of the flat slab, the earthquake is likely the result of bending stresses occurring at the transition from flat slab subduction to steeply dipping subduction. The event strikes obliquely to the slab, we find a good agreement between the seafloor fabric offshore the source region and the strike of the earthquake. We argue that the event likely reactivated a fault first created during seafloor formation. We hypothesize that large bending-related events at the edge of the flat slab are more likely in areas of low misalignment between the seafloor fabric and the slab strike where reactivation of preexisting structures is favored. This hypothesis predicts decreased likelihood of bending-related events northwest of the 2017 source region but also suggests that they should be more likely southeast of the 2017 source region.
Seismogenesis of dual subduction beneath Kanto, central Japan controlled by fluid release.
Ji, Yingfeng; Yoshioka, Shoichi; Manea, Vlad C; Manea, Marina
2017-12-04
Dual subduction represents an unusual case of subduction where one oceanic plate subducts on top of another, creating a highly complex tectonic setting. Because of the complex interaction between the two subducted plates, the origin of seismicity in such region is still not fully understood. Here we investigate the thermal structure of dual subduction beneath Kanto, central Japan formed as a consequence of a unique case of triple trench junction. Using high-resolution three-dimensional thermo-mechanical models tailored for the specific dual subduction settings beneath Kanto, we show that, compared with single-plate subduction systems, subduction of double slabs produces a strong variation of mantle flow, thermal and fluid release pattern that strongly controls the regional seismicity distribution. Here the deepening of seismicity in the Pacific slab located under the Philippine Sea slab is explained by delaying at greater depths (~150 km depth) of the eclogitization front in this region. On the other hand, the shallower seismicity observed in the Philippine Sea slab is related to a young and warm plate subduction and probably to the presence of a hot mantle flow traveling underneath the slab and then moving upward on top of the slab.
2-dimensional triplicated waveform modeling of the mantle transition zone beneath Northeast Asia
NASA Astrophysics Data System (ADS)
Lai, Y.; Chen, L.; Wang, T.
2017-12-01
The Mantle Transition Zone (MTZ) of Northeast Asia has long been investigated by geoscientists for its critical importance where the subducted Pacific slab is stagnant above the 660km discontinuity, accompanied by complicated mantle processes. Taking advantages of the frequent occurrent deep earthquakes in subduction zone and dense seismic arrays in Northeast China, we successfully constructed the fine-scale P and SH velocity structure of a narrow azimuthal fan area based on 2-Dimensional (2D) triplicated waveform modeling for three deep close earthquakes, in which the triplicated waveforms are very sensitive to MTZ velocity structure in general, particularly the morphology of the stagnant slab in Northeast Asia. In our 2D triplication study, for the first time, we show a quite consistent feature of a high velocity layer for both Vp and Vs with the thickness of 140km and the length of 1200km just atop the 660km discontinuity, the western edge of the stagnant slab intersect with the North-South Gravity Lineament in China and has the subducting age of 30 Ma. Compared with a quite normal Vp, the Shear wave velocity reduction of -0.5% in the slab and -2.5% in the upper MTZ is required to reconcile the SH waves featured by the broad BOD. The high Vp/Vs ratio beneath Northeast Asia may imply a water-rich MTZ with the H2O content of 0.1-0.3 wt%. Particularly, a low velocity anomaly of about 150km wide was detected in the overall high-velocity stagnant slab by both P and SH triplicated waveform modeling, with the velocity anomaly value of -1% and -3%, respectively. The gap/window in the stagnant slab may provide a passage for hot deeper mantle materials to penetrate through the thick slab and feed the surface Changbaishan volcano. We also speculate that the existence of such a gap can be the manifestation of the original heterogeneity in the subducted slab and will further exacerbatethe impending gravitational instability and speed up mantle avalanche.
Reconciling the geological history of western Turkey with plate circuits and mantle tomography
NASA Astrophysics Data System (ADS)
van Hinsbergen, Douwe J. J.; Kaymakci, Nuretdin; Spakman, Wim; Torsvik, Trond H.
2010-09-01
We place the geological history since Cretaceous times in western Turkey in a context of convergence, subduction, collision and slab break-off. To this end, we compare the west Anatolian geological history with amounts of Africa-Europe convergence calculated from the Atlantic plate circuit, and the seismic tomography images of the west Anatolian mantle structure. Western Turkish geology reflects the convergence between the Sakarya continent (here treated as Eurasia) in the north and Africa in the south, with the Anatolide-Tauride Block (ATB) between two strands of the Neotethyan ocean. Convergence between the Sakarya and the ATB started at least ~ 95-90 Myr ago, marked by ages of metamorphic soles of ophiolites that form the highest structural unit below Sakarya. These are underlain by high-pressure, low-temperature metamorphic rocks of the Tavşanlı and Afyon zones, and the Ören Unit, which in turn are underlain by the Menderes Massif derived from the ATB. Underthrusting of the ATB below Sakarya was since ~ 50 Ma, associated with high-temperature metamorphism and widespread granitic magmatism. Thrusting in the Menderes Massif continued until 35 Ma, after which there is no record of accretion in western Turkey. Plate circuits show that since 90 Ma, ~ 1400 km of Africa-Europe convergence occurred, of which ~ 700 km since 50 Ma and ~ 450 km since 35 Ma. Seismic tomography shows that the African slab under western Turkey is decoupled from the African Plate. This detached slab is a single, coherent body, representing the lithosphere consumed since 90 Ma. There was no subduction re-initiation after slab break-off. ATB collision with Europe therefore did not immediately lead to slab break-off but instead to delamination of subducting lithospheric mantle from accreting ATB crust, while staying attached to the African Plate. This led to asthenospheric inflow below the ATB crust, high-temperature metamorphism and felsic magmatism. Slab break-off in western Turkey probably occurred ~ 15 Myr ago, after which overriding plate compression and rotation accommodated ongoing Africa-Europe convergence. Slab break-off was accommodated along a vertical NE trending subduction transform edge propagator (STEP) fault zone, accelerating southwestward slab retreat of the Aegean slab. The SE Aegean slab edge may have existed already since early Miocene times or before, but started to rapidly roll back along the southeastern Aegean STEP in middle Miocene times, penetrating the Aegean region in the Pliocene.
Metamorphic density controls on early-stage subduction dynamics
NASA Astrophysics Data System (ADS)
Duesterhoeft, Erik; Oberhänsli, Roland; Bousquet, Romain
2013-04-01
Subduction is primarily driven by the densification of the downgoing oceanic slab, due to dynamic P-T-fields in subduction zones. It is crucial to unravel slab densification induced by metamorphic reactions to understand the influence on plate dynamics. By analyzing the density and metamorphic structure of subduction zones, we may gain knowledge about the driving, metamorphic processes in a subduction zone like the eclogitization (i.e., the transformation of a MORB to an eclogite), the breakdown of hydrous minerals and the release of fluid or the generation of partial melts. We have therefore developed a 2D subduction zone model down to 250 km that is based on thermodynamic equilibrium assemblage computations. Our model computes the "metamorphic density" of rocks as a function of pressure, temperature and chemical composition using the Theriak-Domino software package at different time stages. We have used this model to investigate how the hydration, dehydration, partial melting and fractionation processes of rocks all influence the metamorphic density and greatly depend on the temperature field within subduction systems. These processes are commonly neglected by other approaches (e.g., gravitational or thermomechanical in nature) reproducing the density distribution within this tectonic setting. The process of eclogitization is assumed as being important to subduction dynamics, based on the very high density (3.6 g/cm3) of eclogitic rocks. The eclogitization in a MORB-type crust is possible only if the rock reaches the garnet phase stability field. This process is primarily temperature driven. Our model demonstrates that the initiation of eclogitization of the slab is not the only significant process that makes the descending slab denser and is responsible for the slab pull force. Indeed, our results show that the densification of the downgoing lithospheric mantle (due to an increase of pressure) starts in the early subduction stage and makes a significant contribution to the slab pull, where eclogitization does not occur. Thus, the lithospheric mantle acts as additional ballast below the sinking slab shortly after the initiation of subduction. Our calculation shows that the dogma of eclogitized basaltic, oceanic crust as the driving force of slab pull is overestimated during the early stage of subduction. These results improve our understanding of the force budget for slab pull during the intial and early stage of subduction. Therefore, the complex metamorphic structure of a slab and mantle wedge has an important impact on the development and dynamics of subduction zones. Further Reading: Duesterhoeft, Oberhänsli & Bousquet (2013), submitted to Earth and Planetary Science Letters
On the consistency of tomographically imaged lower mantle slabs
NASA Astrophysics Data System (ADS)
Shephard, Grace E.; Matthews, Kara J.; Hosseini, Kasra; Domeier, Mathew
2017-04-01
Over the last few decades numerous seismic tomography models have been published, each constructed with choices of data input, parameterization and reference model. The broader geoscience community is increasingly utilizing these models, or a selection thereof, to interpret Earth's mantle structure and processes. It follows that seismically identified remnants of subducted slabs have been used to validate, test or refine relative plate motions, absolute plate reference frames, and mantle sinking rates. With an increasing number of models to include, or exclude, the question arises - how robust is a given positive seismic anomaly, inferred to be a slab, across a given suite of tomography models? Here we generate a series of "vote maps" for the lower mantle by comparing 14 seismic tomography models, including 7 s-wave and 7 p-wave. Considerations include the retention or removal of the mean, the use of a consistent or variable reference model, the statistical value which defines the slab "contour", and the effect of depth interpolation. Preliminary results will be presented that address the depth, location and degree of agreement between seismic tomography models, both for the 14 combined, and between the p-waves and s-waves. The analysis also permits a broader discussion of slab volumes and subduction flux. And whilst the location and geometry of slabs, matches some the documented regions of long-lived subduction, other features do not, illustrating the importance of a robust approach to slab identification.
Three-dimensional periodic dielectric structures having photonic Dirac points
Bravo-Abad, Jorge; Joannopoulos, John D.; Soljacic, Marin
2015-06-02
The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the .beta.-factor) over large areas, contrary to the conventional wisdom that the .beta.-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.
Detecting metastable olivine wedge beneath Japan Sea with deep earthquake coda wave interferometry
NASA Astrophysics Data System (ADS)
Shen, Z.; Zhan, Z.
2017-12-01
It has been hypothesized for decades that the lower-pressure olivine phase would kinetically persist in the interior of slab into the transition zone, forming a low-velocity "Metastable Olivine Wedge" (MOW). MOW, if exists, would play a critical role in generating deep earthquakes and parachuting subducted slabs with its buoyancy. However, seismic evidences for MOW are still controversial, and it is suggested that MOW can only be detected using broadband waveforms given the wavefront healing effects for travel times. On the other hand, broadband waveforms are often complicated by shallow heterogeneities. Here we propose a new method using the source-side interferometry of deep earthquake coda to detect MOW. In this method, deep earthquakes are turned into virtual sensors with the reciprocity theorem, and the transient strain from one earthquake to the other is estimated by cross-correlating the coda from the deep earthquake pair at the same stations. This approach effectively isolates near-source structure from complicated shallow structures, hence provide finer resolution to deep slab structures. We apply this method to Japan subduction zone with Hi-Net data, and our preliminary result does not support a large MOW model (100km thick at 410km) as suggested by several previous studies. Metastable olivine at small scales or distributed in an incoherent manner in deep slabs may still be possible.
Optical Study of 2D Photonic Crystals in an InP/GaInAsP Slab Waveguide Structure
2002-01-01
the values n,,,,. = 3.35 and n, ,, = 3.17 are assumed for the refraction index of GaInAsP and InP, respectively. The resulting structure is a multimode...contributes to increase out-of- plane scattering. On the other hand, when entering the PC, the hole pattern is felt as a low refractive index contrast...in an InP/GaInAsP step- index waveguide. Transmission (T) measurements through simple PC slabs and through one-dimensional (1D) Fabry-P6rot (FP
Crystal structure of BaMn2(AsO4)2 containing discrete [Mn4O18]28- units.
Alcantar, Salvador; Ledbetter, Hollis R; Ranmohotti, Kulugammana G S
2017-12-01
In our attempt to search for mixed alkaline-earth and transition metal arsenates, the title compound, barium dimanganese(II) bis-(arsenate), has been synthesized by employing a high-temperature RbCl flux. The crystal structure of BaMn 2 (AsO 4 ) 2 is made up of MnO 6 octa-hedra and AsO 4 tetra-hedra assembled by sharing corners and edges into infinite slabs with composition [Mn 2 (AsO 4 ) 2 ] 2- that extend parallel to the ab plane. The barium cations reside between parallel slabs maintaining the inter-slab connectivity through coordination to eight oxygen anions. The layered anionic framework comprises weakly inter-acting [Mn 4 O 18 ] 28- tetra-meric units. In each tetra-mer, the manganese(II) cations are in a planar arrangement related by a center of inversion. Within the slabs, the tetra-meric units are separated from each other by 6.614 (2) Å (Mn⋯Mn distances). The title compound has isostructural analogues amongst synthetic Sr M 2 ( X O 4 ) 2 compounds with M = Ni, Co, and X = As, P.
Effective bichromatic potential for ultra-high Q-factor photonic crystal slab cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alpeggiani, Filippo, E-mail: filippo.alpeggiani01@ateneopv.it; Andreani, Lucio Claudio; Gerace, Dario
2015-12-28
We introduce a confinement mechanism in photonic crystal slab cavities, which relies on the superposition of two incommensurate one-dimensional lattices in a line-defect waveguide. It is shown that the resulting photonic profile realizes an effective quasi-periodic bichromatic potential for the electromagnetic field confinement yielding extremely high quality (Q) factor nanocavities, while simultaneously keeping the mode volume close to the diffraction limit. We apply these concepts to pillar- and hole-based photonic crystal slab cavities, respectively, and a Q-factor improvement by over an order of magnitude is shown over existing designs, especially in pillar-based structures. Thanks to the generality and easy adaptationmore » of such confinement mechanism to a broad class of cavity designs and photonic lattices, this work opens interesting routes for applications where enhanced light–matter interaction in photonic crystal structures is required.« less
Recent Developments in Ground-Borne Noise and Vibration Control
NASA Astrophysics Data System (ADS)
Nelson, J. T.
1996-05-01
Vibration control provisions available to the transit designer include (among others) precision straightened rail, ballast mats, floating slabs and very soft direct fixation fasteners, in addition to rail grinding, wheel truing, and continuous welded rail. Recently, the Los Angeles Metro has developed specifications for a soft resilient direct fixation fastener to fit the same base dimensions as the standard direct fixation fastener. In San Francisco, low resonance frequency (8 Hz) floating slabs have been constructed to mitigate predicted ground vibration impacts at nearby residential structures. In Atlanta, low resonance frequency loading slabs have been constructed to maintain a low vibration environment in a medical building planned to be built over the subway structure. In Portland and Pasadena, ballast mats have been recommended to control light rail transit ground vibration impacts on housing located at typically 35 feet from the alignment. Each of these provisions are briefly described in view of recent applications at U.S. transit systems.
The intermediate-depth Tonga double-seismic zone and relationship to slab thermal structure
NASA Astrophysics Data System (ADS)
Wei, S. S.; Wiens, D.; Van Keken, P. E.; Adams, A. N.; Cai, C.
2015-12-01
We used data from the ocean bottom seismographs and island-based stations deployed in the Tonga-Fiji area from 2009 to 2010 to investigate the seismicity of the Tonga subducting slab. We relocated 785 events from the Reviewed ISC Bulletin with local array data, 379 newly detected intermediate-depth events, as well as 1976-2012 events with Global Centroid-Moment-Tensor (CMT) solutions. The events were relocated with both local and teleseismic P, pP, and S arrivals using a hypocentroidal decomposition relative location algorithm. The results show a double-seismic zone (DSZ) with a separation of about 30 km along the Tonga slab within a depth range of about 70 - 300 km. The upper plane is more seismically active and characterized by downdip compressional stress whereas the lower plane is characterized by downdip tensional stress, consistent with the slab unbending model. Accordingly, focal mechanisms of the earthquakes along the surface of the slab show downdip extension above the depth of 80 km, but turn to compression below it, coinciding with the change of the slab dip angle from 30˚ to 60˚ at the same depth. The lower limit of the DSZ beneath Tonga is significantly deeper than that in Japan and Mariana (about 200 km), implying the importance of thermal variations in controlling the DSZ. Since the Tonga slab, with the fastest subduction rate, is cooler than other slabs, thermally controlled processes such as dehydration embrittlement can occur at greater depths, resulting in a deeper depth extent of the DSZ.
3D Visualization of Sheath Folds in Roman Marble from Ephesus, Turkey
NASA Astrophysics Data System (ADS)
Wex, Sebastian; Passchier, Cornelis W.; de Kemp, Eric A.; Ilhan, Sinan
2013-04-01
Excavation of a palatial 2nd century AD house (Terrace House Two) in the ancient city of Ephesus, Turkey in the 1970s produced 10.313 pieces of colored, folded marble which belonged to 54 marble plates of 1.6 cm thickness that originally covered the walls of the banquet hall of the house. The marble plates were completely reassembled and restored by a team of workers over the last 6 years. The plates were recognized as having been sawn from two separate large blocks of "Cipollino verde", a green mylonitized marble from Karystos on the Island of Euboea, Greece. After restoration, it became clear that all slabs had been placed on the wall in approximately the sequence in which they had been cut off by a Roman stone saw. As a result, the marble plates give a full 3D insight in the folded internal structure of 1m3 block of mylonite. The restoration of the slabs was recognized as a first, unique opportunity for detailed reconstruction of the 3D geometry of m-scale folds in mylonitized marble. Photographs were taken of each slab and used to reconstruct their exact arrangement within the originally quarried blocks. Outlines of layers were digitized and a full 3D reconstruction of the internal structure of the block was created using ArcMap and GOCAD. Fold structures in the block include curtain folds and multilayered sheath folds. Several different layers showing these structures were digitized on the photographs of the slab surfaces and virtually mounted back together within the model of the marble block. Due to the serial sectioning into slabs, with cm-scale spacing, the visualization of the 3D geometry of sheath folds was accomplished with a resolution better than 4 cm. Final assembled 3D images reveal how sheath folds emerge from continuous layers and show their overall consistency as well as a constant hinge line orientation of the fold structures. Observations suggest that a single deformation phase was responsible for the evolution of "Cipollino verde" structures. Furthermore the XY plane of all analyzed sheath folds was orientated perpendicular to the layering of the marble, indicating a compressional component during shear deformation. This study sheds light on the general evolution and possible interpretation of sheath folds, currently still subject of debate, and on the structural evolution of "Cipollino verde", which is still used in modern architectural design. Furthermore, the detailed analysis of the slabs helps in the interpretation and reconstruction of Roman stone saws. For future applications this work could serve as an excellent 3D test set for geologic reconstruction methodologies and interpolation algorithms. The results presented could only be obtained by close cooperation of workers in geology and archaeology.
NASA Astrophysics Data System (ADS)
Kurashimo, E.; Sato, H.; Abe, S.; Mizohata, S.; Hirata, N.
2011-12-01
The 2011 Tohoku-Oki Earthquake (Mw9.0) occurred on the Japan Trench off the eastern shore of northern Honshu, Japan. The southward expansion of the afterslip area has reached the Kanto region, central Japan (Ozawa et al., 2011). The Philippine Sea Plate (PHS) subducts beneath the Kanto region. The bottom of the PHS is in contact with the upper surface of the Pacific Plate (PAC) beneath northeastern Kanto. Detailed structure of the PHS-PAC contact zone is important to constrain the southward rupture process of the Tohoku-Oki Earthquake and provide new insight into the process of future earthquake occurrence beneath the Kanto region. Active and passive seismic experiments were conducted to obtain a structural image beneath northeastern Kanto in 2010 (Sato et al., 2010). The geometry of upper surface of the PHS has been revealed by seismic reflection profiling (Sato et al., 2010). Passive seismic data set is useful to obtain a deep structural image. Two passive seismic array observations were conducted to obtain a detailed structure image of the PHS-PAC contact zone beneath northeastern Kanto. One was carried out along a 50-km-long seismic line trending NE-SW (KT-line) and the other was carried out along a 65-km-long seismic line trending NW-SE (TM-line). Sixty-five 3-component portable seismographs were deployed on KT-line with 500 to 700 m interval and waveforms were continuously recorded during a four-month period from June, 2010. Forty-five 3-component portable seismographs were deployed on TM-line with about 1-2 km spacing and waveforms were continuously recorded during the seven-month period from June, 2010. Arrival times of earthquakes were used in a joint inversion for earthquake locations and velocity structure, using the iterative damped least-squares algorithm, simul2000 (Thurber and Eberhart-Phillips, 1999). The relocated hypocenter distribution shows that the seismicity along the upper surface of the PAC is located at depths of 45-75 km beneath northeastern Kanto. The seismicity associated with the northwestward subducting PHS can be traced to a depth of 60 km. The depth section of Vp/Vs structure shows the lateral variation of the Vp/Vs values along the top of the PHS. Clustered earthquakes are located in and around the high Vp/Vs zone. High Vp/Vs ratio and low Vp zone with low seismicity is observed in the slab-slab contact zone beneath northeastern Kanto. The heterogeneity of the slab-slab contact zone beneath northeastern Kanto may affect the southward expansion of the afterslip of the Tohoku-Oki Earthquake. Acknowledgments: This study was supported by the Earthquake Research Institute cooperative research program.
NASA Astrophysics Data System (ADS)
Helal, Alaa N. Abu; Taya, Sofyan A.; Elwasife, Khitam Y.
2018-06-01
The dispersion equation of an asymmetric three-layer slab waveguide, in which all layers are chiral materials is presented. Then, the dispersion equation of a symmetric slab waveguide, in which the claddings are chiral materials and the core layer is negative index material, is derived. Normalized cut-off frequencies, field profile, and energies flow of right-handed and left-handed circularly polarized modes are derived and plotted. We consider both odd and even guided modes. Numerical results of guided low-order modes are provided. Some novel features, such as abnormal dispersion curves, are found.
An efficient self-collimating photonic crystal coupling technique in the RF regime
NASA Astrophysics Data System (ADS)
Sabas, Jerico N.; Mirza, Iftekhar O.; Shi, Shouyuan; Prather, Dennis W.
2010-02-01
In this paper, we present both numerical and experimental results for the waveguiding of light using a low-index-contrast (LIC) self-collimating photonic crystal (SCPhC) in the RF frequency regime. This waveguiding structure utilizes the unique interactions of light with the periodic structure of the photonic crystal (PhC) to propagate a beam of light without divergence. This design also employs materials with a low index contrast (LIC), which reduces the electromagnetic signature of the PhC. This SCPhC was designed by extracting its dispersion contours and numerically simulating it using HFSS, a commercial 3-D, full-wave FEM software. In particular, we addressed the issue of coupling the PhC to a coaxial medium by designing an input/output (I/O) coupler consisting of a coaxial-to-waveguide transition, a rectangular waveguide and a tapered dielectric transition. We fabricated the SCPhC with a rigid polyurethane foam slab and Rexolite polystyrene rods using an automated CNC router to drill the periodic lattice in the slab. We also fabricated the dielectric segments of the I/O couplers with Rexolite slabs using an automated milling machine. Using these I/O couplers and SCPhC slab, we simulated and subsequently measured experimentally an insertion loss, for the entire system, of -3.3 dB through a 24" PhC slab, and a coupling loss of -0.95 dB at each coupler-PhC interface.
Correlation transfer and diffusion of ultrasound-modulated multiply scattered light.
Sakadzić, Sava; Wang, Lihong V
2006-04-28
We develop a temporal correlation transfer equation (CTE) and a temporal correlation diffusion equation (CDE) for ultrasound-modulated multiply scattered light. These equations can be applied to an optically scattering medium with embedded optically scattering and absorbing objects to calculate the power spectrum of light modulated by a nonuniform ultrasound field. We present an analytical solution based on the CDE and Monte Carlo simulation results for light modulated by a cylinder of ultrasound in an optically scattering slab. We further validate with experimental measurements the numerical calculations for an actual ultrasound field. The CTE and CDE are valid for moderate ultrasound pressures and on a length scale comparable with the optical transport mean-free path. These equations should be applicable to a wide spectrum of conditions for ultrasound-modulated optical tomography of soft biological tissues.
NASA Astrophysics Data System (ADS)
Agard, P.; Yamato, P.; Soret, M.; Prigent, C.; Guillot, S.; Plunder, A.; Dubacq, B.; Chauvet, A.; Monié, P.
2016-10-01
Subduction infancy corresponds to the first few million years following subduction initiation, when slabs start their descent into the mantle. It coincides with the transient (yet systematic) transfer of material from the top of the slab to the upper plate, as witnessed by metamorphic soles welded beneath obducted ophiolites. Combining structure-lithology-pressure-temperature-time data from metamorphic soles with flow laws derived from experimental rock mechanics, this study highlights two main successive rheological switches across the subduction interface (mantle wedge vs. basalts, then mantle wedge vs. sediments; at ∼800 °C and ∼600 °C, respectively), during which interplate mechanical coupling is maximized by the existence of transiently similar rheologies across the plate contact. We propose that these rheological switches hinder slab penetration and are responsible for slicing the top of the slab and welding crustal pieces (high- then low-temperature metamorphic soles) to the base of the mantle wedge during subduction infancy. This mechanism has implications for the rheological properties of the crust and mantle (and for transient episodes of accretion/exhumation of HP-LT rocks in mature subduction systems) and highlights the role of fluids in enabling subduction to overcome the early resistance to slab penetration.
Stability of Molasse: TLS for structural analysis in the valley of Gotteron-Fribourg, Switzerland
NASA Astrophysics Data System (ADS)
Ben Hammouda, Mariam; Jaboyedoff, Michel; Derron, Marc Henri; Bouaziz, Samir; Mazotti, Benoit
2016-04-01
The marine molasses of Fribourg (Switzerland) is an area where the cliff collapses and rockfalls are quite frequent and difficult to predict due to this particular lithology, a poorly consolidated greywacke. Because of some recent rockfall events, the situation became critical especially in the valley of Gotteron where a big block has slightly moved down and might destroy a house in case of rupture. The cliff made of jointed sandstone and thin layers of clay and siltstone presents many fractures, joints and massive cross bedding surfaces which increases the possibility of slab failure. This paper presents a detailed structural analysis of the cliff and the identification of the potential failure mechanisms. The methodology is about combining field observation and terrestrial LiDAR scanning point cloud in order to assess the stability of potential slope instabilities of molasses. Three LiDAR scans were done i) to extract discontinuity families depending to the dip and the dip direction of joints and ii) to run kinematic tests in order to identify responsible sets for each potential failure mechanisms. Raw point clouds were processed using IMAlign module of Polyworks and CloudCompare software. The structural analysis based on COLTOP 3D (Jaboyedoff et al. 2007) allowed the identification of four discontinuity sets that were not measured in the field. Two different failure mechanisms have been identified as critical: i) planar sliding which is the main responsible mechanism of the present fallen block and ii) wedge sliding. The planar sliding is defined by the discontinuity sets J1 and J5 with a direction parallel to the slope and with a steep dip angle. The wedges, defined by couples of discontinuity sets, contribute to increase cracks' opening and to the detachment of slabs. The use of TLS combined with field survey provides us a first interpretation of instabilities and a very promising structural analysis.
NASA Astrophysics Data System (ADS)
Bordo, V. G.
2018-03-01
The theory of the optical response of a metamaterial slab which is represented by metal nanoparticles embedded in a dielectric matrix is developed. It is demonstrated that the account of the reflections from the slab boundaries essentially modifies the local field in the slab and leads to the anisotropy and spatial dispersion of its dielectric function as well as to the emergence of modes which do not exist in an infinite metamaterial. It is shown that these features introduce the existence of self-excited normal waves (polaritons) and mechanical excitons (polarization waves). These findings reveal that the metamaterial slab can be regarded as an active device ("plasmonic oscillator") which generates sustained polaritons in the presence of dissipation. A relation of this effect with the phenomenon of a plasmonic blackbody or perfect absorber, observed in such structures, is discussed and a possible mechanism of this phenomenon is proposed.
NASA Astrophysics Data System (ADS)
Klingelhoefer, F.; Laurencin, M.; Marcaillou, B.; Graindorge, D.; Evain, M.; Lebrun, J. F.
2016-12-01
One of the goals of the Antithesis cruises (2013 and 2016) was investigating the deep structure of the Lesser Antilles subduction zone in order to: 1) constrain the possible along-strike variations of deep margin structures and slab geometry, 2) assess the nature of the crust and 3) discuss the potential impact of these structures on seismic hazard. Four combined wide-angle and multichannel seismic profiles were acquired between Barbuda and the Virgin Islands using 66 ocean bottom seismometers, a 4.5 km digital streamer and a 7200 cu inch seismic source. Along every line, we performed forward modelling of the wide-angle seismic data, gravity models and synthetic data calculations. The 5-7-km-thick subducting Atlantic oceanic plate is modelled with a single layer along every profile. The sedimentary prism fill is globally thin with maximal 5 km thick and 20-30 km wide. The 18-km-thick Caribbean crust is subdivided in 2 or 3 layers interpreted, from top to bottom, as following. A 2 to 4 km thick upper layer with velocity ranging from 2.5 to 3.5 km/s possibly consists of consolidate sediments or a carbonate platform. The underlying 4 to 6 km thick layer, with velocity ranging from 4.7 to 6.15 km/s might correspond to volcanic products. The lower 15 km thick lower crustal layer shows velocity up to 7.4 km/s, typical of basal velocities in oceanic crust. The structure and velocity model is thus closely consistent with a possibly overthickened oceanic crust. Our southernmost model, offshore of Barbuda, reveal a general crust structure and slab geometry which appear very to those described South of Guadeloupe along a line proposed by Kopp et al. (2011). It suggests an overall homogeneity for these structural features within the central segment of the Lesser Antilles (Martinique - Antigua). When the overall structure of the Caribbean plate is stable, the deep structure of the frontal margin and slab geometry is evolving from south to north. The wideness and thickness of the prism decrease toward the north as a consequence of the presence of blocking ridges and less sediment inputs. Frontal bending of the slab is also decreasing toward the north leading to a less steep slab within the first 30 kilometers as a consequence of increasing obliquity of subduction in the northern Antilles. This phenomena may increase the wideness of a seismogenic zone?
NASA Astrophysics Data System (ADS)
Andreeva, Olga V.; Dement'ev, Dmitry A.; Chekalin, Sergey V.; Kompanets, V. O.; Matveets, Yu. A.; Serov, Oleg B.; Smolovich, Anatoly M.
2002-05-01
The recording geometry and recording media for the method of achromatic wavefront reconstruction are discussed. The femtosecond recording on the thick slabs of dichromated gelatin and the samples of silver-containing porous glass was obtained. The applications of the method to ultrafast laser spectroscopy and to phase conjugation were suggested.
Applications of acoustics in the measurement of coal slab thickness
NASA Technical Reports Server (NTRS)
Hadden, W. J., Jr.; Mills, J. M.; Pierce, A. D.
1980-01-01
The determination of the possibility of employing acoustic waves at ultrasonic frequencies for measurements of thicknesses of slabs of coal backed by shale is investigated. Fundamental information concerning the acoustical properties of coal, and the relationship between these properties and the structural and compositional parameters used to characterize coal samples was also sought. The testing device, which utilizes two matched transducers, is described.
A Tractable Estimate for the Dissipation Range Onset Wavenumber Throughout the Heliosphere
NASA Astrophysics Data System (ADS)
Engelbrecht, N. Eugene; Strauss, R. Du Toit
2018-04-01
The modulation of low-energy electrons in the heliosphere is extremely sensitive to the behavior of the dissipation range slab turbulence. The present study derives approximate expressions for the wavenumber at which the dissipation range on the slab turbulence power spectrum commences, by assuming that this onset occurs when dispersive waves propagating parallel to the background magnetic field gyroresonate with thermal plasma particles. This assumption yields results in reasonable agreement with existing spacecraft observations. These expressions are functions of the solar wind proton and electron temperatures, which are here modeled throughout the region where the solar wind is supersonic using a two-component turbulence transport model. The results so acquired are compared with extrapolations of existing models for the dissipation range onset wavenumber, and conclusions are drawn therefrom.
Benchmark study for charge deposition by high energy electrons in thick slabs
NASA Technical Reports Server (NTRS)
Jun, I.
2002-01-01
The charge deposition profiles created when highenergy (1, 10, and 100 MeV) electrons impinge ona thick slab of elemental aluminum, copper, andtungsten are presented in this paper. The chargedeposition profiles were computed using existing representative Monte Carlo codes: TIGER3.0 (1D module of ITS3.0) and MCNP version 4B. The results showed that TIGER3.0 and MCNP4B agree very well (within 20% of each other) in the majority of the problem geometry. The TIGER results were considered to be accurate based on previous studies. Thus, it was demonstrated that MCNP, with its powerful geometry capability and flexible source and tally options, could be used in calculations of electron charging in high energy electron-rich space radiation environments.
Asymptotic behavior of the Kohn-Sham exchange potential at a metal surface
NASA Astrophysics Data System (ADS)
Qian, Zhixin
2012-03-01
The asymptotic structure of the Kohn-Sham exchange potential vx(r) in the classically forbidden region of a metal surface is investigated, together with that of the Slater exchange potential VxS(r) and those of the approximate Krieger-Li-Iafrate VxKLI(r) and Harbola-Sahni Wx(r) exchange potentials. Particularly, the former is shown to have the form of vx(z→∞)=-αx/z with αx a constant dependent only of bulk electron density. The same result in previous work is thus confirmed; in the meanwhile, a controversy raised recently gets resolved. The structure of the exchange hole ρx(r,r') is examined, and the delocalization of it in the metal bulk when the electron is at large distance from the metal surface is demonstrated with analytical expressions. The asymptotic structures of vx(r), VxS(r), VxKLI(r), and Wx(r) at a slab metal surface are also investigated. Particularly, vx(z→∞)=-1/z in the slab case. The distinction, in this respect, between the semi-infinite and the slab metal surfaces is elucidated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charkin, Dmitri O.; Black, Cameron; Downie, Lewis J.
Two new rare-earth – alkali – tellurium oxide halides were synthesized by a salt flux technique and characterized by single-crystal X-ray diffraction. The structures of the new compounds Cs{sub 7}Sm{sub 11}[TeO{sub 3}]{sub 12}Cl{sub 16} (I) and Rb{sub 7}Nd{sub 11}[TeO{sub 3}]{sub 12}Br{sub 16} (II) (both tetragonal, space group I4/mcm) correspond to the sequence of [MLn{sub 11}(TeO{sub 3}){sub 12}] and [M{sub 6}X{sub 16}] layers and bear very strong similarities to those of known selenite analogs. We discuss the trends in similarities and differences in compositions and structural details between the Se and Te compounds; more members of the family are predicted. -more » Graphical abstract: Two new rare-earth – alkali – tellurium oxide halides were predicted and synthesized. - Highlights: • Two new rare-earth – alkali – tellurium oxide halides were synthesized. • They adopt slab structure of rare earth-tellurium-oxygen and CsCl-like slabs. • The Br-based CsCl-like slabs have been observed first in this layered family.« less
Usage of digital image correlation in assessment of behavior of block element pavement structure
NASA Astrophysics Data System (ADS)
Grygierek, M.; Grzesik, B.; Rokitowski, P.; Rusin, T.
2018-05-01
In diagnostics of existing road pavement structures deflection measurements have fundamental meaning, because of ability to assess present stiffness (bearing capacity) of whole layered construction. During test loading the reaction of pavement structure to applied load is measured in central point or in a few points located along a straight on a 1.5 ÷ 1.8 m distance (i.e. Falling Weight Deflectometer) in similar spacing equal to 20 ÷ 30 cm. Typical measuring techniques are productive and precise enough for most common pavement structures such as flexible, semi-rigid and rigid. It should be noted that in experimental research as well as in pavements in complex stress state, measurement techniques allowing observation of pavement deformation in 3D would have been very helpful. A great example of that type of pavements is a block element pavement structure consisting of i.e. paving blocks or stone slabs. Due to high stiffness and confined ability of cooperation of surrounding block elements, in that type of pavements fatigue life is strongly connected with displacement distribution. Unfortunately, typical deflection measurement methods forefend displacement observations and rotation of single block elements like paving blocks or slabs. Another difficult problem is to carry out unmistakable analysis of cooperation between neighboring elements. For more precise observations of displacements state of block element pavements under a wheel load a Digital Image Correlation (DIC) was used. Application of this method for assessment of behavior of stone slabs pavement under a traffic load enabled the monitoring of deformations distribution and encouraged to formulate conclusions about the initiation mechanism and development of damages in this type of pavement structures. Results shown in this article were obtained in field tests executed on an exploited pavement structure with a surface course made of granite slabs with dimensions 0.5x1.0x0.14 m.
Non-traditional shape GFRP rebars for concrete reinforcement
NASA Astrophysics Data System (ADS)
Claure, Guillermo G.
The use of glass-fiber-reinforced-polymer (GFRP) composites as internal reinforcement (rebars) for concrete structures has proven to be an alternative to traditional steel reinforcement due to significant advantages such as magnetic transparency and, most importantly, corrosion resistance equating to durability and structural life extension. In recent years, the number of projects specifying GFRP reinforcement has increased dramatically leading the construction industry towards more sustainable practices. Typically, GFRP rebars are similar to their steel counterparts having external deformations or surface enhancements designed to develop bond to concrete, as well as having solid circular cross-sections; but lately, the worldwide composites industry has taken advantage of the pultrusion process developing GFRP rebars with non-traditional cross-sectional shapes destined to optimize their mechanical, physical, and environmental attributes. Recently, circular GFRP rebars with a hollow-core have also become available. They offer advantages such as a larger surface area for improved bond, and the use of the effective cross-sectional area that is engaged to carry load since fibers at the center of a solid cross-section are generally not fully engaged. For a complete understanding of GFRP rebar physical properties, a study on material characterization regarding a quantitative cross-sectional area analysis of different GFRP rebars was undertaken with a sample population of 190 GFRP specimens with rebar denomination ranging from #2 to #6 and with different cross-sectional shapes and surface deformations manufactured by five pultruders from around the world. The water displacement method was applied as a feasible and reliable way to conduct the investigation. In addition to developing a repeatable protocol for measuring cross-sectional area, the objectives of establishing critical statistical information related to the test methodology and recommending improvements to existing provisions and standards allowing for a consistent universal norm for all GFRP rebars were reached. This dissertation also presents an evaluation of the structural behavior of reinforced concrete (RC) beams and slabs using the new type of GFRP rebar consisting of a non-traditional hollow-core shape compared to "traditional" solid round rebars with equivalent cross-sectional areas within the framework of two studies, respectively. To validate the design assumptions following ACI 440.1R design guidelines, two conditions were investigated: under-reinforced (failure controlled by rupture of GFRP rebar); and, over-reinforced (failure controlled by crushing of concrete). For comparison, a cyclic three-point bending load test matrix was developed: for beams, 3 under-reinforced and 3 over-reinforced with hollow-core and solid GFRP rebars, respectively, making a total of 12 RC specimens; for slabs, 3 under-reinforced and 3 over-reinforced with hollow-core and 2 types of solid GFRP rebars, respectively, making a total of 18 RC slabs. The studies on GFRP RC beams and slabs concluded that the hollow-core GFRP rebars were as effective as their solid counterpart and ACI 440.1R design guidelines were applicable to predict their performance. It was shown that final design may be controlled by the permissible deflections as governing parameter for elements under service conditions. Also, a final study with a test matrix containing six extra specimens was generated for post-fire residual strength evaluation of fire-exposed GFRP RC slabs along with temperature gradient in the slabs and dynamic mechanical analysis (DMA) investigation on GFRP samples extracted from the fire-exposed slabs. In this study, the ability of GFRP RC slabs to retain structural integrity during a standards fire exposure as well as determining the residual structural capacity were investigated. The residual strength evaluation of the fire-exposed slabs showed a range of results varying between +/- 10%, of the virgin slabs. And, 19 mm (0.75 in.) cover with normal weight concrete was shown to be adequate to provide the necessary fire protection to the GFRP rebars preventing irreversible damage for two-hour fire rated GFRP RC slabs subjected to service loads; also, from the DMA and glass transition temperature of samples extracted from the GFRP rebars, it is inferred that the resin had undergone a post curing phase.
NASA Astrophysics Data System (ADS)
Porter, R. C.; Gilbert, H. J.; Zandt, G.; Beck, S. L.; Warren, L. M.; Calkins, J. A.; Alvarado, P. M.; Anderson, M. L.
2011-12-01
The Pampean flat slab region, located in Chile and western Argentina between 29° and 34° S, is characterized by the subducting Nazca plate assuming a sub-horizontal geometry for ~300 km laterally before resuming a more "normal" angle of subduction. The onset of flat slab subduction is associated with the cessation of regional arc related volcanism and the migration of deformation inboard from the high Andes into the thin-skinned Precordillera and thick-skinned Sierras Pampeanas. Developing a better understanding of this region's geology is of particular importance, as it is an ideal area to study flat slab subduction and serves as a modern analogue to Laramide flat slab subduction in the western US. To study the crustal and mantle structure in the region, we combine ambient noise tomography and ballistic surface wave tomography to produce a regional 3D shear wave velocity model that encompasses flat slab subduction in the north and normal subduction geometry in the south, allowing for a comparison of the two. Results from this work show that shear velocities within the upper crust are largely determined by composition, with sedimentary basins and areas with active volcanism exhibiting slower velocities than basement cored uplifts and other bedrock exposures. Though surface waves are not particularly sensitive to the depth of sharp velocity contrasts, we observe an eastward increase in shear velocity at depth that correlates with an eastward decrease in crustal thickness. In both the slab and overlying mantle, we observe significant variations in shear wave velocity. North of 32° S, where flat slab subduction is occurring, the Nazca plate contains low-velocity zones (LVZs) beneath the high Andes and Precordillera that are not present in the east beneath the Sierras Pampeanas. An opposite transition is observed in the overlying mantle, which changes from fast in the west to slow in the east. Both of these observations are consistent with an initially hydrated slab dehydrating and releasing water into the overlying mantle. Within this region we also observe a LVZ immediately above the slab as the subduction angle steepens. This zone potentially represents asthenosphere or hydrated lithospheric mantle. South of 32° S, where subduction is occurring at a more normal angle, the slab is visible as a high-velocity body with a low-velocity mantle wedge present beneath the arc and back arc. The variations in slab and upper mantle shear velocities are consistent with a hydrated flat slab and the presence of a LVZ above the flat slab as it steepens suggests that water is being transported to a significant depth or that an asthenospheric wedge is present between the slab and cratonic lithosphere.
NASA Astrophysics Data System (ADS)
Bie, L.; Garth, T.; Rietbrock, A.
2017-12-01
The Lesser Antilles subduction zone offers a unique opportunity to study the subduction of oceanic material formed at a slow spreading mid-ocean ridge. The seismicity rates in the Lesser Antilles subduction zone vary strongly along the arc, and low seismicity rates in the Southern part of the Arc have made accurate mapping of the slab at depth difficult. Here we present an innovative method of constraining the slab geometry using global earthquake catalogue data, and a prescribed formula for the geometry of the slab. The global earthquake catalogues are filtered for events of different quality, and the slab fit is weighted to events that are well located by observations at several stations. This allows a series of slab profiles to be fitted to the seismicity within the slab. These profiles are used to produce a smoothed slab geometry for the whole arc. The results confirm the marked difference in the slab geometry between the steeply dipping Northern part (> 14°latitude) of the arc and the more shallow dip of the Southern part of the arc (< 14° latitude). The change in dip at 14° latitude occurs abruptly. We therefore support the hypothesis that the North and South parts of the arc are in fact separate subducting plates with a distinct gap between them. This theory has previously been supported by tele-seismic tomography (Benthem et al., 2013), and shear wave splitting observations in the region. In addition, the subducted slab geometry beneath the Lesser Antilles is used to quantify variations in the thickness of the WBZ (Wadati-Benioff zone) seismicity along strike. We find a significant variation in the WBZ thickness along strike, which cannot be explained by the relatively small variation in age of the incoming plate. We propose that these variations are instead explained by pre-existing structures in the subducting plate. The thickness of the WBZ correlates well with the occurrence of paleo-spreading ridges of the incoming plate, as inferred from global plate age models (Muller et al., 2008). Ridges on the incoming plate, inferred from variations in the gravity anomaly, and related to transform faults at the spreading ridge, correlate with marked changes in the thickness of the WBZ along the arc. These findings support the hypothesis that there is a direct link between WBZ seismicity and hydration of the mantle of the incoming plate.
Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials.
Liu, Aiping; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai
2012-10-01
The resonant tunneling effects that could result in complete transmission of evanescent waves are examined in acoustic metamaterials of anisotropic effective mass. The tunneling conditions are first derived for the metamaterials composed of classical mass-in-mass structures. It is found that the tunneling transmission occurs when the total length of metamaterials is an integral number of half-wavelengths of the periodic Bloch wave. Due to the local resonance of building units of metamaterials, the Bloch waves are spatially modulated within the periodic structures, leading to the resonant tunneling occurring in the low-frequency region. The metamaterial slab lens with anisotropic effective mass is designed by which the physics of resonant tunneling and the features for evanescent field manipulations are examined. The designed lens interacts with evanescent waves in the way of the propagating wavenumber weakly dependent on the spatial frequency of evanescent waves. Full-wave simulations validate the imaging performance of the proposed lens with the spatial resolution beyond the diffraction limit.
Crystal structure of the ATP-gated P2X[subscript 4] ion channel in the closed state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawate, Toshimitsu; Michel, Jennifer Carlisle; Birdsong, William T.
2009-08-13
P2X receptors are cation-selective ion channels gated by extracellular ATP, and are implicated in diverse physiological processes, from synaptic transmission to inflammation to the sensing of taste and pain. Because P2X receptors are not related to other ion channel proteins of known structure, there is at present no molecular foundation for mechanisms of ligand-gating, allosteric modulation and ion permeation. Here we present crystal structures of the zebrafish P2X{sub 4} receptor in its closed, resting state. The chalice-shaped, trimeric receptor is knit together by subunit-subunit contacts implicated in ion channel gating and receptor assembly. Extracellular domains, rich in {beta}-strands, have largemore » acidic patches that may attract cations, through fenestrations, to vestibules near the ion channel. In the transmembrane pore, the 'gate' is defined by an {approx}8 {angstrom} slab of protein. We define the location of three non-canonical, intersubunit ATP-binding sites, and suggest that ATP binding promotes subunit rearrangement and ion channel opening.« less
Coupling of free space sub-terahertz waves into dielectric slabs using PC waveguides.
Ghattan, Z; Hasek, T; Shahabadi, M; Koch, M
2008-04-28
The paper presents theoretical and experimental results on photonic crystal structures which work under the self-collimation condition to couple free space waves into dielectric slabs in the sub-terahertz range. Using a standard machining process, two-dimensional photonic crystal structures consisting of a square array of air holes in the dielectric medium are fabricated. One of the structures has two adjacent parallel line-defects that improve the coupling efficiency. This leads to a combination of self-collimation and directional emission of electromagnetic waves. The experimental results are in good agreement with those of the Finite- Element-Method calculations. Experimentally we achieve a coupling efficiency of 63%.
Negative refraction of acoustic waves using a foam-like metallic structure
NASA Astrophysics Data System (ADS)
Hladky-Hennion, A.-C.; Vasseur, J. O.; Haw, G.; Croënne, C.; Haumesser, L.; Norris, A. N.
2013-04-01
A phononic crystal (PC) slab made of a single metallic phase is shown, theoretically and experimentally, to display perfect negative index matching and focusing capability when surrounded with water. The proposed PC slab is a centimeter scale hollow metallic foam-like structure in which acoustic energy is mediated via the metal lattice. The negative index property arises from an isolated branch of the dispersion curves corresponding to a mode that can be coupled to incident acoustic waves in surrounding water. This band also intercepts the water sound line at a frequency in the ultrasonic range. The metallic structure is consequently a candidate for the negative refraction of incident longitudinal waves.
Kim, Jae Hwan Eric; Chrostowski, Lukas; Bisaillon, Eric; Plant, David V
2007-08-06
We demonstrate a Finite-Difference Time-Domain (FDTD) phase methodology to estimate resonant wavelengths in Fabry-Perot (FP) cavity structures. We validate the phase method in a conventional Vertical-Cavity Surface-Emitting Laser (VCSEL) structure using a transfer-matrix method, and compare results with a FDTD reflectance method. We extend this approach to a Sub-Wavelength Grating (SWG) and a Photonic Crystal (Phc) slab, either of which may replace one of the Distributed Bragg Reflectors (DBRs) in the VCSEL, and predict resonant conditions with varying lithographic parameters. Finally, we compare the resonant tunabilities of three different VCSEL structures, taking quality factors into account.
Signature of slab fragmentation beneath Anatolia from full-waveform tomography
NASA Astrophysics Data System (ADS)
Govers, Rob; Fichtner, Andreas
2016-09-01
When oceanic basins close after a long period of convergence and subduction, continental collision and mountain building is a common consequence. Slab segmentation is expected to have been relatively common just prior to closure of other oceans in the geological past, and may explain some of the complexity that geologists have documented in the Tibetan plateau also. We focus on the eastern Mediterranean basin, which is the last remainder of a once hemispherical neo-Tethys ocean that has nearly disappeared due to convergence of the India and Africa/Arabia plates with the Eurasia plate. We present new results of full-waveform tomography that allow us to image both the crust and upper mantle in great detail. We show that a major discontinuity exists between western Anatolia lithosphere and the region to the east of it. Also, the correlation of geological features and the crustal velocities is substantially stronger in the west than in the east. We interpret these observations as the imprint in the overriding plate of fragmentation of the neo-Tethys slab below it. This north-dipping slab may have fragmented following the Eocene (about 35 million years ago) arrival of a continental promontory (Central Anatolian Core Complex) at the subduction contact. From the Eocene through the Miocene, slab roll-back ensued in the Aegean and west Anatolia, while the Cyprus-Bitlis slab subducted horizontally beneath central and east Anatolia. Following collision of Arabia (about 16 million years ago), the Cyprus-Bitlis slab steepened, exposing the crust of central and east Anatolia to high temperature, and resulting in the velocity structure that we image today. Slab fragmentation thus was a major driver of the evolution of the overriding plate as collision unfolded.
Daniels, Peter; Lichtenberg, Frank; van Smaalen, Sander
2003-02-01
Crystals of pentalanthanum pentatitanium heptadecaoxide (La(5)Ti(5)O(17) with 0.3% oxygen excess, or LaTiO(3.41)) have been synthesized by floating-zone melting, and the structure has been solved using single-crystal X-ray diffraction intensities. The monoclinic (P2(1)/c) structure consists of perovskite-like slabs of vertex-sharing TiO(6) octahedra, which are separated by additional oxygen layers. The slabs are five octahedra wide. Due to the adjustment of the TiO(6) octahedra to meet the coordination requirements of the La(3+) cations, a superstructure develops along the a axis.
NASA Astrophysics Data System (ADS)
Raphael, David T.; McIntee, Diane; Tsuruda, Jay S.; Colletti, Patrick; Tatevossian, Raymond; Frazier, James
2006-03-01
We explored multiple image processing approaches by which to display the segmented adult brachial plexus in a three-dimensional manner. Magnetic resonance neurography (MRN) 1.5-Tesla scans with STIR sequences, which preferentially highlight nerves, were performed in adult volunteers to generate high-resolution raw images. Using multiple software programs, the raw MRN images were then manipulated so as to achieve segmentation of plexus neurovascular structures, which were incorporated into three different visualization schemes: rotating upper thoracic girdle skeletal frames, dynamic fly-throughs parallel to the clavicle, and thin slab volume-rendered composite projections.
Density Functional Calculations for the Neutron Star Matter at Subnormal Density
NASA Astrophysics Data System (ADS)
Kashiwaba, Yu; Nakatsukasa, Takashi
The pasta phases of nuclear matter, whose existence is suggested at low density, may influence observable properties of neutron stars. In order to investigate properties of the neutron star matter, we calculate self-consistent solutions for the ground states of slab-like phase using the microscopic density functional theory with Bloch wave functions. The calculations are performed at each point of fixed average density and proton fraction (\\bar{ρ },Yp), varying the lattice constant of the unit cell. For small Yp values, the dripped neutrons emerge in the ground state, while the protons constitute the slab (crystallized) structure. The shell effect of protons affects the thickness of the slab nuclei.
NASA Astrophysics Data System (ADS)
Mark, Chris; Chew, David; Gupta, Sanjeev
2017-11-01
Complete subduction of an oceanic plate results in slab-window opening. A key uncertainty in this process is whether the higher heat flux and asthenospheric upwelling conventionally associated with slab-window opening generate a detectable topographic signature in the overriding plate. We focus on the Baja California Peninsula, which incorporates the western margin of the Gulf of California rift. The topography and tectonics of the rift flank along the peninsula are strongly bimodal. North of the Puertecitos accommodation zone, the primary drainage divide attains a mean elevation of ca. 1600 m above sea level (asl), above an asthenospheric slab-window opened by Pacific-Farallon spreading ridge subduction along this section of the trench at ca. 17-15 Ma. To the south, mean topography decreases abruptly to ca. 800 m asl (excluding the structurally distinct Los Cabos block at the southern tip of the peninsula), above fragments of the oceanic Farallon slab which stalled following slab tear-off at ca. 15-14 Ma. Along the peninsula, a low-relief surface established atop Miocene subduction-related volcaniclastic units has been incised by a west-draining canyon network in response to uplift. These canyons exhibit cut-and-fill relationships with widespread post-subduction lavas. Here, we utilise LANDSAT and digital elevation model (DEM) data, integrated with previously published K-Ar and 40Ar/39Ar lava crystallisation ages, to constrain the onset of rift flank uplift to ca. 9-5 Ma later than slab-window formation in the north and ca. 11-10 Ma later in the south. These greatly exceed response time estimates of ca. 2 Ma or less for uplift triggered by slab-window opening. Instead, uplift timing of the high-elevation northern region is consistent with lower-lithospheric erosion driven by rift-related convective upwelling. To the south, stalled slab fragments likely inhibited convective return flow, preventing lithospheric erosion and limiting uplift to the isostatic response to crustal unloading during rifting.
Slab rupture and delamination under the Betics and Rif constrained from receiver functions
NASA Astrophysics Data System (ADS)
Mancilla, Flor de Lis; Booth-Rea, Guillermo; Stich, Daniel; Pérez-Peña, José Vicente; Morales, José; Azañón, José Miguel; Martin, Rosa; Giaconia, Flavio
2015-11-01
We map the lithospheric structure under the westernmost Mediterranean convergent setting interpreting P-receiver functions obtained from a dense seismic network. No orogenic root occurs under the eastern and great part of the central Betics. However, the subducted South Iberian continental lithosphere is found beneath the western Betics where the Iberian Moho reaches depths of approximately 65 km, dipping gently towards the SE. Meanwhile, at the Rif, strong crustal and lithospheric thickness contrasts occur across the Nekor NW-SE sinistral fault that overlies the region of present slab tearing. East of the Nekor fault there is no orogenic root and the crust has been thinned to approximately 22 km, whilst to the west the crust reaches 55 km thickness and the Maghrebian continental lithosphere is attached to the lithospheric slab imaged by tomography under the Alboran basin. These data suggest that subduction rollback under the Alboran and Algerian basins, together with continental slab tearing or detachment producing edge delamination under the Betics and Rif have been the main tectonic mechanisms driving extension, magmatism and regional uplift in the westernmost Mediterranean since the Late Miocene until present. The surface expression of edge-delamination and slab tearing is marked by regional uplift, denudation of HP rocks in elongated core-complex type domes, late Miocene volcanism in the Eastern Betics and Rif, and by large NE-SW strike-slip transfer faults like the Alpujarras, Crevillente, Torcal or Nekor faults that accommodate strong gradients in crustal displacements. The Iberian slab is still attached to the oceanic slab imaged under the Alboran basin at the western Betics where intermediate depth seismicity, recent dextral strike-slip faulting and folding, could reflect slab tearing. Meanwhile, active faulting and differential GPS-measured displacements would mark slab tearing beneath the Rif coinciding with the trace of the sinistral Nekor fault.
Three-dimensional Distribution of Azimuthal and Radial Anisotropy in the Japan Subduction
NASA Astrophysics Data System (ADS)
Ishise, M.; Kawakatsu, H.; Shiomi, K.
2014-12-01
Seismic anisotropy has close relationships with past and present tectonic and dynamic processes. Therefore, detailed description of seismic anisotropy of subduction zones provides important information for our understanding of the subduction system. The most common method of detecting anisotropy is the S-wave splitting measurement. However, conventional S-wave splitting analysis is not an appropriate way to investigate anisotropy in the mantle and slab because the technique has no vertical resolution. Thus, we have improved common traveltime tomography to estimate three-dimensional anisotropic structures of P-wave, assuming that the modeling space is composed of weakly anisotropic medium with a hexagonal symmetry about a horizontal axis (Ishise & Oda, 2005, JGR; Ishise & Oda, 2008, PEPI). Recently, we extended the anisotropic tomography for P-wave radial anisotropy with vertical hexagonal symmetry axis (Ishise & Kawakatsu, 2012 JpGU). In this study, we expand the study area of our previous regional analyses of P-wave azimuthal and radial anisotropic tomography (Ishise & Oda, 2005; Ishise & Kawakatsu, 2012, JpGU; Ishise et al., 2012, SSJ) using Hi-net arrival time data and examine the subduction system around the Japan islands, where two trenches with different strike directions and plate junction are included. Here are some of the remarkable results associated with the PAC slab and mantle structure. (1) N-S-trending fast axis of P-wave anisotropy is dominant in the PAC slab. (2) the mantle wedge shows trench-normal anisotropy across the trench-trench junction. (3) horizontal velocity (PH) tends to be faster than vertical velocity (PV) in the slab. (4) PV tends to be faster than PH in the mantle wedge. The characteristics of the obtained azimuthal and radial anisotropy of the PAC slab and the mantle wedge qualitatively consistent with heterogeneous plate models (e.g., Furumura & Kennet, 2005) and numerical simulations of mantle flow (Morishige & Honda, 2011; 2013). In addition, the azimuthal anisotropy in the PAC slab that we obtained is subparallel to that in the PAC plate before subducting (e.g., Shimamura et al., 1983). Therefore, we suggest that the slab anisotropy is "frozen anisotropy", which is attributed to the episode before subduction, and mantle wedge anisotropy reflects present dynamics.
ERIC Educational Resources Information Center
Rojas-Trigos, J. B.; Bermejo-Arenas, J. A.; Marin, E.
2012-01-01
In this paper, some heat transfer characteristics through a sample that is uniformly heated on one of its surfaces by a power density modulated by a periodical square wave are discussed. The solution of this problem has two contributions, comprising a transient term and an oscillatory term, superposed to it. The analytical solution is compared to…
NASA Astrophysics Data System (ADS)
Contenti, Sean; Gu, Yu Jeffrey; Ökeler, Ahmet; Sacchi, Mauricio D.
2012-01-01
In this study we utilize over 5000 SS waveforms to investigate the high-resolution mantle reflectivity structure down to 1200 km beneath the South American convergent margin. Our results indicate that the dynamics of the Nazca subduction are more complex than previously suggested. The 410- and 660-km seismic discontinuities beneath the Pacific Ocean and Amazonian Shield exhibit limited lateral depth variations, but their depths vary substantially in the vicinity of the subducting Nazca plate. The reflection amplitude of the 410-km discontinuity is greatly diminished in a ˜1300-km wide region in the back-arc of the subducting plate, which is likely associated with a compositional heterogeneity on top of the upper mantle transition zone. The underlying 660-km discontinuity is strongly depressed, showing localized depth and amplitude variations both within and to the east of the Wadati-Benioff zone. The width of this anomalous zone (˜1000 km) far exceeds that of the high-velocity slab structure and suggesting significant slab deformation within the transition zone. The shape of the 660-km discontinuity and the presence of lower mantle reflectivity imply both stagnation and penetration are possible as the descending Nazca slab impinges upon the base of the upper mantle.
Brocher, T.M.; ten Brink, Uri S.; Abramovitz, T.
1999-01-01
Compilation of seismic transects across the central and northern California Coast Ranges provides evidence for the widespread tectonic emplacement beneath the margin of a slab of partially subducted oceanic lithosphere. The oceanic crust of this lithosphere can be traced landward from the former convergent margin (fossil trench), beneath the Coast Ranges, to at least as far east as the Coast Range/Great Valley boundary. Comparison of measured shear and compressional wave velocities in the middle crust beneath the Hayward fault with laboratory measurements suggests that the middle crust is a diabase (oceanic crust). Both of these observations are consistent with recent models of the high heat flow and age progression of Neogene volcanism along the Coast Ranges based on tectonic emplacement (stalling) of young, hot oceanic lithosphere beneath the margin, but appear to contradict the major predictions of the slab-gap or asthenospheric-window model. Finally, the Neogene volcanism and major strike-slip faults in the Coast Ranges occur within the thickest regions (>14 km thick) of the forearc, suggesting that the locations of Cenozoic volcanism and faulting along the margin are structurally controlled by the forearc thickness rather than being determined by the location of a broad slab gap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melo, E. G., E-mail: emerdemelo@usp.br; Alvarado, M. A.; Carreño, M. N. P.
2016-01-14
Photonic crystal slabs with a lower-index material surrounding the core layer are an attractive choice to circumvent the drawbacks in the fabrication of membranes suspended in air. In this work we propose a photonic crystal (PhC) slab structure composed of a triangular pattern of air holes in a multilayer thin film of aluminum nitride embedded in silicon dioxide layers designed for operating around 450 nm wavelengths. We show the design of an ideal structure and analyze the effects of material dispersion based on a first-order correction perturbation theory approach using dielectric functions obtained by experimental measurements of the thin film materials.more » Numerical methods were used to investigate the effects of fabrication induced disorder of typical nanofabrication processes on the bandgap size and spectral response of the proposed device. Deviation in holes radii and positions were introduced in the proposed PhC slab model with a Gaussian distribution profile. Impacts of slope in holes sidewalls that might result from the dry etching of AlN were also evaluated. The results show that for operation at the midgap frequency, slope in holes sidewalls is more critical than displacements in holes sizes and positions.« less
Models of Active Glacial Isostasy Roofing Warm Subduction: Case of the South Patagonian Ice Field
NASA Technical Reports Server (NTRS)
Klemann, Volker; Ivins, Erik R.; Martinec, Zdenek; Wolf, Detlef
2007-01-01
Modern geodetic techniques such as precise Global Positioning System (GPS) and high-resolution space gravity mapping (Gravity Recovery and Climate Experiment, GRACE) make it possible to measure the present-day rate of viscoelastic gravitational Earth response to present and past glacier mass changes. The Andes of Patagonia contain glacial environments of dramatic mass change. These mass load changes occur near a tectonically active boundary between the Antarctic and South American plates. The mechanical strength of the continental side of this boundary is influenced by Neogene ridge subduction and by the subduction of a youthful oceanic slab. A ridge of young volcanos parallels the Pacific coastline. Release of volatiles (such as water) at depth along this ridge creates a unique rheological environment. To assess the influence of this rheological ridge structure on the observational land uplift rate, we apply a two dimensional viscoelastic Earth model. A numerical study is presented which examines the sensitivity of the glacial loading-unloading response to the complex structure at depth related to the subducting slab, the viscous wedge between slab and continental lithosphere, and the increase of elastic thickness from oceanic to continental lithosphere. A key feature revealed by our numerical experiments is a continuum flow wherein the slab subdues the material transport toward oceanic mantle and crust. The restricted flow is sensitive to the details of slab mechanical strength and penetration into the upper mantle. The reduced viscosity within the mantle wedge, however, enhances the load-induced material transport everywhere within the asthenosphere.
NASA Astrophysics Data System (ADS)
Darin, Michael
2017-04-01
Despite significant progress toward understanding the kinematics of modern tectonic escape in Anatolia, considerable uncertainty remains regarding the dynamics of the transition from collision to escape. Because of the relatively small size of the Anatolia microplate, regional-scale studies spanning the plate margins and interior are well-suited to investigate the driving forces and space-time evolution of this unique tectonic transition in collisional orogens. CD-CAT (Continental Dynamics-Central Anatolia Tectonics) is a five-year (2011-2016) project funded by the National Science Foundation (USA) designed to explore the surface-to-mantle dynamics of Anatolia during the Cenozoic subduction-collision-escape transition in central Anatolia. Our approach integrates results from a diversity of methods including: structural, stratigraphic, and geomorphic analyses; magnetostratigraphy; low-temperature thermochronometry; Ar/Ar geochronology; geochemistry; passive seismic experiments (71 stations over two years); magnetotellurics; and numerical modeling. The principal results from this project include: recognition of a margin-wide magmatic lull from 40-20 Ma, followed by a southwestward migration of the initiation of magmatism toward and within the Central Anatolia Volcanic Province (CAVP); an early Miocene switch from contraction/transpression to extension/transtension in the Kırşehir and Niǧde Massifs, while contraction changed to late Miocene strike-slip deformation east of the Central Anatolian fault zone (CAFZ); rain shadow development due to uplift of the central Taurides 11-5 Ma; thin to absent lithospheric mantle beneath central Anatolia; the lack of an Arabia slab shallower than 800 km depth; and a change in the Cyprus slab from horizontal beneath the central Taurides and apparently fragmented beneath the CAVP, to very steeply dipping beneath the eastern Isparta Angle. The CAFZ lies along part of the Inner Tauride Suture (ITS) and represents a fundamental inherited lithosphere-scale structure that has accommodated contrasting magnitudes and styles of deformation to the east and west since Arabia collision. The coincidence of a similarly NNE-oriented lower plate boundary (Africa COB) or STEP fault between the Cyprus and Arabia slabs may have amplified the role of the CAFZ in controlling differential upper plate deformation. These findings support the following tectonic scenario: the first stage involved late Eocene to early Miocene horizontal subduction of the Afro-Arabia slab from central Anatolia to the Zagros, culminating in the final suturing of the Taurides and Pontides in Anatolia. The second stage occurred during the Miocene and involved the segmentation of the downgoing slab at the longitude of the CAFZ to form the Arabia slab in the east and the Cyprus slab in the west. North of Arabia, early Miocene rollback and foundering of the Arabia slab resulted in widespread volcanism, slab delamination beneath the eastern Taurides and eventual break-off and rapid sinking into the lower mantle starting at 15-10 Ma. North of Cyprus, initial rollback, steepening and breakup of the Cyprus slab are recorded by early Miocene upper plate extension and exhumation, followed by middle Miocene voluminous CAVP magmatism and uplift of the southern Taurides margin. The final stage involved a transition from diffuse to localized strain along transcurrent structures that have facilitated the westward escape of Anatolia since the latest Miocene-Pliocene.
NASA Astrophysics Data System (ADS)
Lee, H.; Bezada, M.
2017-12-01
Teleseismic P-wave tomography models often show low-velocity anomalies behind subducted slabs (i.e. opposite the direction of subduction). One such anomaly, behind the Alboran slab in the westernmost Mediterranean, requires partial melt in the mantle if taken at face-value. However, mantle anisotropy can cause low-velocity anomalies in tomographic models that assume isotropy. In fact, results from SKS splitting suggest rollback-induced anisotropy within the low-velocity region, and we investigate if this anisotropy can explain the sub-slab anomaly. We include anisotropy as an a priori constraint on the inversion and test different magnitudes, azimuths, and dips within the low-velocity region. We find that a range of anisotropic models can fit the travel time data as well as the isotropic models while significantly reducing or eliminating the low-velocity anomaly behind the slab. We conclude that this alternative interpretation (delays are caused by anisotropic structure) is as consistent with the travel time data as an isotropic low-velocity anomaly, and more consistent with SKS splitting observations and the known history of rollback. In addition, we find that models that include anisotropy with steeply dipping fast axes, meant to simulate the effect of downgoing entrained mantle, provide a poorer fit to the travel times than all the other models. This suggests that the slab may no longer be actively subducting.
NASA Astrophysics Data System (ADS)
Gürer, Derya; Plunder, Alexis; Kirst, Frederik; Corfu, Fernando; Schmid, Stefan M.; van Hinsbergen, Douwe J. J.
2018-01-01
Central Anatolia exposes previously buried and metamorphosed, continent-derived rocks - the Kırşehir and Afyon zones - now covering an area of ∼300 × 400 km. So far, the exhumation history of these rocks has been poorly constrained. We show for the first time that the major, >120 km long, top-NE 'Ivriz' Detachment controlled the exhumation of the HP/LT metamorphic Afyon Zone in southern Central Anatolia. We date its activity at between the latest Cretaceous and early Eocene times. Combined with previously documented isolated extensional detachments found in the Kırşehir Block, our results suggest that a major province governed by extensional exhumation was active throughout Central Anatolia between ∼80 and ∼48 Ma. Although similar in dimension to the Aegean extensional province to the east, the Central Anatolian extensional province is considerably older and was controlled by a different extension direction. From this, we infer that the African slab(s) that subducted below Anatolia must have rolled back relative to the Aegean slab since at least the latest Cretaceous, suggesting that these regions were underlain by a segmented slab. Whether or not these early segments already corresponded to the modern Aegean, Antalya, and Cyprus slab segments remains open for debate, but slab segmentation must have occurred much earlier than previously thought.
Mantle transition zone, stagnant slab and intraplate volcanism in Northeast Asia
NASA Astrophysics Data System (ADS)
Chen, Chuanxu; Zhao, Dapeng; Tian, You; Wu, Shiguo; Hasegawa, Akira; Lei, Jianshe; Park, Jung-Ho; Kang, Ik-Bum
2017-04-01
3-D P- and S-wave velocity structures of the mantle down to a depth of 800 km beneath NE Asia are investigated using ∼981 000 high-quality arrival-time data of local earthquakes and teleseismic events recorded at 2388 stations of permanent and portable seismic networks deployed in NE China, Japan and South Korea. Our results do not support the existence of a gap (or a hole) in the stagnant slab under the Changbai volcano, which was proposed by a previous study of teleseismic tomography. In this work we conducted joint inversions of both local-earthquake arrival times and teleseismic relative traveltime residuals, leading to a robust tomography of the upper mantle and the mantle transition zone (MTZ) beneath NE Asia. Our joint inversion results reveal clearly the subducting Pacific slab beneath the Japan Islands and the Japan Sea, as well as the stagnant slab in the MTZ beneath the Korean Peninsula and NE China. A big mantle wedge (BMW) has formed in the upper mantle and the upper part of the MTZ above the stagnant slab. Localized low-velocity anomalies are revealed clearly in the crust and the BMW directly beneath the active Changbai and Ulleung volcanoes, indicating that the intraplate volcanism is caused by hot and wet upwelling in the BMW associated with corner flows in the BMW and deep slab dehydration as well.
Assessing the role of slab rheology in coupled plate-mantle convection models
NASA Astrophysics Data System (ADS)
Bello, Léa; Coltice, Nicolas; Tackley, Paul J.; Dietmar Müller, R.; Cannon, John
2015-11-01
Reconstructing the 3D structure of the Earth's mantle has been a challenge for geodynamicists for about 40 yr. Although numerical models and computational capabilities have substantially progressed, parameterizations used for modeling convection forced by plate motions are far from being Earth-like. Among the set of parameters, rheology is fundamental because it defines in a non-linear way the dynamics of slabs and plumes, and the organization of lithosphere deformation. In this study, we evaluate the role of the temperature dependence of viscosity (variations up to 6 orders of magnitude) and the importance of pseudo-plasticity on reconstructing slab evolution in 3D spherical models of convection driven by plate history models. Pseudo-plasticity, which produces plate-like behavior in convection models, allows a consistent coupling between imposed plate motions and global convection, which is not possible with temperature-dependent viscosity alone. Using test case models, we show that increasing temperature dependence of viscosity enhances vertical and lateral coherence of slabs, but leads to unrealistic slab morphologies for large viscosity contrasts. Introducing pseudo-plasticity partially solves this issue, producing thin laterally and vertically more continuous slabs, and flat subduction where trench retreat is fast. We evaluate the differences between convection reconstructions employing different viscosity laws to be very large, and similar to the differences between two models with the same rheology but using two different plate histories or initial conditions.
Slab photonic crystals with dimer colloid bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Erin K.; Liddell Watson, Chekesha M., E-mail: cliddell@ccmr.cornell.edu
2014-06-14
The photonic band gap properties for centered rectangular monolayers of asymmetric dimers are reported. Colloids in suspension have been organized into the phase under confinement. The theoretical model is inspired by the range of asymmetric dimers synthesized via seeded emulsion polymerization and explores, in particular, the band structures as a function of degree of lobe symmetry and degree of lobe fusion. These parameters are varied incrementally from spheres to lobe-tangent dimers over morphologies yielding physically realizable particles. The work addresses the relative scarcity of theoretical studies on photonic crystal slabs with vertical variation that is consistent with colloidal self-assembly. Odd,more » even and polarization independent gaps in the guided modes are determined for direct slab structures. A wide range of lobe symmetry and degree of lobe fusion combinations having Brillouin zones with moderate to high isotropy support gaps between odd mode band indices 3-4 and even mode band indices 1-2 and 2-3.« less
NASA Astrophysics Data System (ADS)
Pratama, C.; Ito, T.; Sasajima, R.; Tabei, T.; Kimata, F.; Gunawan, E.; Ohta, Y.; Yamashina, T.; Ismail, N.; Muksin, U.; Maulida, P.; Meilano, I.; Nurdin, I.; Sugiyanto, D.; Efendi, J.
2017-12-01
Postseismic deformation following the 2012 Indian Ocean earthquake has been modeled by several studies (Han et al. 2015, Hu et al. 2016, Masuti et al. 2016). Although each study used different method and dataset, the previous studies constructed a significant difference of earth structure. Han et al. (2015) ignored subducting slab beneath Sumatra while Masuti et al. (2016) neglect sphericity of the earth. Hu et al. (2016) incorporated elastic slab and spherical earth but used uniform rigidity in each layer of the model. As a result, Han et al. (2015) model estimated one order higher Maxwell viscosity than the Hu et al. (2016) and half order lower Kelvin viscosity than the Masuti et al. (2016) model predicted. In the present study, we conduct a quantitative analysis of each heterogeneous geometry and parameter effect on rheology inference. We develop heterogeneous three-dimensional spherical-earth finite element models. We investigate the effect of subducting slab, spherical earth, and three-dimensional earth rigidity on estimated lithosphere-asthenosphere rheology beneath the Indian Ocean. A wide range of viscosity structure from time constant rheology to time dependent rheology was chosen as previous studies have been modeled. In order to evaluate actual displacement, we compared the model to the Global Navigation Satellite System (GNSS) observation. We incorporate the GNSS data from previous studies and introduce new GNSS site as a part of the Indonesian Continuously Operating Reference Stations (InaCORS) located in Sumatra that has not been used in the last analysis. As a preliminary result, we obtained the effect of the spherical earth and elastic slab when we assumed burgers rheology. The model that incorporates the sphericity of the earth needs a one third order lower viscosity than the model that neglects earth curvature. The model that includes elastic slab needs half order lower viscosity than the model that excluding the elastic slab.
Software for Acoustic Rendering
NASA Technical Reports Server (NTRS)
Miller, Joel D.
2003-01-01
SLAB is a software system that can be run on a personal computer to simulate an acoustic environment in real time. SLAB was developed to enable computational experimentation in which one can exert low-level control over a variety of signal-processing parameters, related to spatialization, for conducting psychoacoustic studies. Among the parameters that can be manipulated are the number and position of reflections, the fidelity (that is, the number of taps in finite-impulse-response filters), the system latency, and the update rate of the filters. Another goal in the development of SLAB was to provide an inexpensive means of dynamic synthesis of virtual audio over headphones, without need for special-purpose signal-processing hardware. SLAB has a modular, object-oriented design that affords the flexibility and extensibility needed to accommodate a variety of computational experiments and signal-flow structures. SLAB s spatial renderer has a fixed signal-flow architecture corresponding to a set of parallel signal paths from each source to a listener. This fixed architecture can be regarded as a compromise that optimizes efficiency at the expense of complete flexibility. Such a compromise is necessary, given the design goal of enabling computational psychoacoustic experimentation on inexpensive personal computers.
Exact exchange potential for slabs: Asymptotic behavior of the Krieger-Li-Iafrate approximation
NASA Astrophysics Data System (ADS)
Engel, Eberhard
2018-02-01
The Krieger-Li-Iafrate (KLI) approximation for the exact exchange (EXX) potential of density functional theory is investigated far outside the surface of slabs. For large z the Slater component of the EXX/KLI potential falls off as -1 /z , where z is the distance to the surface of a slab parallel to the x y plane. The Slater potential thus reproduces the behavior of the exact EXX potential. Here it is demonstrated that the second component of the EXX/KLI potential, often called the orbital-shift term, is also proportional to 1 /z for large z , at least in general. This result is obtained by an analytical evaluation of the Brillouin zone integrals involved, relying on the exponential decay of the states into the vacuum. Several situations need to be distinguished in the Brillouin zone integration, depending on the band structure of the slab. In all standard situations, including such prominent cases as graphene and Si(111) slabs, however, a 1 /z dependence of the orbital-shift potential is obtained to leading order. The complete EXX/KLI potential therefore does not reproduce the asymptotic behavior of the exact EXX potential.
A Preliminary Experimental Study on Vibration Responses of Foamed Concrete Composite Slabs
NASA Astrophysics Data System (ADS)
Rum, R. H. M.; Jaini, Z. M.; Ghaffar, N. H. Abd; Rahman, N. Abd
2017-11-01
In recent years, composite slab has received utmost demand as a floor system in the construction industry. The composite slab is an economical type of structure and able to accelerate the construction process. Basically, the composite slab can be casting by using a combination of corrugated steel deck and normal concrete in which selfweight represents a very large proportion of the total action. Therefore, foamed concrete become an attractive alternative to be utilized as a replacement of normal concrete. However, foamed concrete has high flexibility due to the presence of large amount of air-void and low modulus elasticity. It may result in vibration responses being greater. Hence, this experimental study investigates the vibration responses of composite slab made of corrugated steel deck and foamed concrete. The specimens were prepared with dimension of 750mm width, 1600mm length and 125mm thickness. The hammer-impact test was conducted to obtain the acceleration-time history. The analysis revealed that the first natural frequency is around 27.97 Hz to 40.94 Hz, while the maximum acceleration reaches 1.31 m/s2 to 1.88 m/s2. The first mode shape depicts normal pattern and favourable agreement of deformation.
NASA Astrophysics Data System (ADS)
Suzuki, Yuki; Kawai, Kenji; Geller, Robert J.; Borgeaud, Anselme F. E.; Konishi, Kensuke
2016-12-01
We conduct waveform inversion to infer the three-dimensional (3-D) S-velocity structure in the lowermost 400 km of the mantle (the D'' region) beneath the Northern Pacific region. Our dataset consists of about 20,000 transverse component broadband body-wave seismograms observed at North American stations for 131 intermediate and deep earthquakes which occurred beneath the western Pacific subduction region. We use S, ScS, and other phases that arrive between them. Resolution tests indicate that our methods and dataset can resolve the velocity structure in the target region with a horizontal scale of about 150 km and a vertical scale of about 50 km. The 3-D S-velocity model obtained in this study shows three prominent features: (1) prominent sheet-like lateral high-velocity anomalies up to ˜3% faster than the Preliminary Reference Earth Model (PREM) with a thickness of ˜200 km, whose lower boundary is ˜150 km above the core-mantle boundary (CMB). (2) A prominent low-velocity anomaly block located to the west of the Kamchatka peninsula, which is ˜2.5% slower than PREM, immediately above the CMB beneath the high-velocity anomalies. (3) A relatively thin (˜300 km) low-velocity structure continuous from the low-velocity anomaly "(2)" to at least 400 km above the CMB. We also detect a continuous low-velocity anomaly from the east of the Kamchatka peninsula at an altitude of 50 km above the CMB to the far east of the Kuril islands at an altitude of 400 km above the CMB. We interpret these features respectively as: (1) remnants of slab material where the bridgmanite to Mg-post-perovskite phase transition may have occurred within the slab, (2, 3) large amounts of hot and less dense materials beneath the cold Kula or Pacific slab remnants just above the CMB which ascend and form a passive plume upwelling at the edge of the slab remnants.[Figure not available: see fulltext.
Subduction zone evolution and low viscosity wedges and channels
NASA Astrophysics Data System (ADS)
Manea, Vlad; Gurnis, Michael
2007-12-01
Dehydration of subducting lithosphere likely transports fluid into the mantle wedge where the viscosity is decreased. Such a decrease in viscosity could form a low viscosity wedge (LVW) or a low viscosity channel (LVC) on top of the subducting slab. Using numerical models, we investigate the influence of low viscosity wedges and channels on subduction zone structure. Slab dip changes substantially with the viscosity reduction within the LVWs and LVCs. For models with or without trench rollback, overthickening of slabs is greatly reduced by LVWs or LVCs. Two divergent evolutionary pathways have been found depending on the maximum depth extent of the LVW and wedge viscosity. Assuming a viscosity contrast of 0.1 with background asthenosphere, models with a LVW that extends down to 400 km depth show a steeply dipping slab, while models with an LVW that extends to much shallower depth, such as 200 km, can produce slabs that are flat lying beneath the overriding plate. There is a narrow range of mantle viscosities that produces flat slabs (5 to10 × 10 19 Pa s) and the slab flattening process is enhanced by trench rollback. Slab can be decoupled from the overriding plate with a LVC if the thickness is at least a few 10 s of km, the viscosity reduction is at least a factor of two and the depth extent of the LVC is several hundred km. These models have important implications for the geochemical and spatial evolution of volcanic arcs and the state of stress within the overriding plate. The models explain the poor correlation between traditional geodynamic controls, subducting plate age and convergence rates, on slab dip. We predict that when volcanic arcs change their distance from the trench, they could be preceded by changes in arc chemistry. We predict that there could be a larger volatile input into the wedge when arcs migrate toward the trench and visa-versa. The transition of a subduction zone into the flat-lying regime could be preceded by changes in the volatile budget such that the dehydration front moves to shallower depths. Our flat-slab models shed some light on puzzling flat subduction systems, like in Central Mexico, where there is no deformation within the overriding plate above the flat segment. The lack of in-plane compression in Central Mexico suggests the presence of a low viscosity shear zone above the flat slab.
FT-Raman Spectroscopy Study of the Remineralization of Microwave-Exposed Artificial Caries.
Kerr, J E; Arndt, G D; Byerly, D L; Rubinovitz, R; Theriot, C A; Stangel, I
2016-03-01
Dental caries is a microbially mediated disease that can result in significant tooth structure degradation. Although the preponderance of lesions is treated by surgical intervention, various strategies have been developed for its noninvasive management. Here, we use a novel approach for noninvasive treatment based on killing Streptococcus mutans with high-frequency microwave energy (ME). The rationale for this approach is based on modulating the pH of caries to a physiological state to enable spontaneous tooth remineralization from exogenous sources. In the present study, after demonstrating that ME kills >99% of S. mutans in planktonic cultures, 8 enamel slabs were harvested from a single tooth. Baseline mineral concentration at each of 12 points per slab was obtained using Fourier transform (FT)-Raman spectroscopy. Surface demineralization was subsequently promoted by subjecting all samples to an S. mutans acidic biofilm for 6 d. Half of the samples were then exposed to high-frequency ME, and the other half were used as controls. All samples were next subjected to a remineralization protocol consisting of two 45-min exposures per 24-h period in tryptic soy broth followed by immersion in a remineralizing solution for the remaining period. After 10 d, samples were removed and cleaned. FT-Raman spectra were again obtained at the same 12 points per sample, and the mineral concentration was determined. The effect of the remineralization protocol on the demineralized slabs was expressed as a percentage of mineral loss or gain relative to baseline. The mineral concentration of the microwave-exposed group collectively approached 100% of baseline values, while that of the control group was in the order of 40%. Differences between groups were significant (P = 0.001, Mann-Whitney U test). We concluded that killing of S. mutans by ME promotes effective remineralization of S. mutans-demineralized enamel compared with controls. © International & American Associations for Dental Research 2015.
Shear wave splitting and shear wave splitting tomography of the southern Puna plateau
NASA Astrophysics Data System (ADS)
Calixto, Frank J.; Robinson, Danielle; Sandvol, Eric; Kay, Suzanne; Abt, David; Fischer, Karen; Heit, Ben; Yuan, Xiaohui; Comte, Diana; Alvarado, Patricia
2014-11-01
We have investigated the seismic anisotropy beneath the Central Andean southern Puna plateau by applying shear wave splitting analysis and shear wave splitting tomography to local S waves and teleseismic SKS, SKKS and PKS phases. Overall, a very complex pattern of fast directions throughout the southern Puna plateau region and a circular pattern of fast directions around the region of the giant Cerro Galan ignimbrite complex are observed. In general, teleseismic lag times are much greater than those for local events which are interpreted to reflect a significant amount of sub and inner slab anisotropy. The complex pattern observed from shear wave splitting analysis alone is the result of a complex 3-D anisotropic structure under the southern Puna plateau. Our application of shear wave splitting tomography provides a 3-D model of anisotropy in the southern Puna plateau that shows different patterns depending on the driving mechanism of upper-mantle flow and seismic anisotropy. The trench parallel a-axes in the continental lithosphere above the slab east of 68W may be related to deformation of the overriding continental lithosphere since it is under compressive stresses which are orthogonal to the trench. The more complex pattern below the Cerro Galan ignimbrite complex and above the slab is interpreted to reflect delamination of continental lithosphere and upwelling of hot asthenosphere. The a-axes beneath the Cerro Galan, Cerro Blanco and Carachi Pampa volcanic centres at 100 km depth show some weak evidence for vertically orientated fast directions, which could be due to vertical asthenospheric flow around a delaminated block. Additionally, our splitting tomographic model shows that there is a significant amount of seismic anisotropy beneath the slab. The subslab mantle west of 68W shows roughly trench parallel horizontal a-axes that are probably driven by slab roll back and the relatively small coupling between the Nazca slab and the underlying mantle. In contrast, the subslab region (i.e. depths greater than 200 km) east of 68W shows a circular pattern of a-axes centred on a region with small strength of anisotropy (Cerro Galan and its eastern edge) which suggest the dominant mechanism is a combination of slab roll back and flow driven by an overlying abnormally heated slab or possibly a slab gap. There seems to be some evidence for vertical flow below the slab at depths of 200-400 km driven by the abnormally heated slab or slab gap. This cannot be resolved by the tomographic inversion due to the lack of ray crossings in the subslab mantle.
NASA Astrophysics Data System (ADS)
Barbulescu, M.; Erdélyi, R.
2018-06-01
Recent observations have shown that bulk flow motions in structured solar plasmas, most evidently in coronal mass ejections (CMEs), may lead to the formation of Kelvin-Helmholtz instabilities (KHIs). Analytical models are thus essential in understanding both how the flows affect the propagation of magnetohydrodynamic (MHD) waves, and what the critical flow speed is for the formation of the KHI. We investigate both these aspects in a novel way: in a steady magnetic slab embedded in an asymmetric environment. The exterior of the slab is defined as having different equilibrium values of the background density, pressure, and temperature on either side. A steady flow and constant magnetic field are present in the slab interior. Approximate solutions to the dispersion relation are obtained analytically and classified with respect to mode and speed. General solutions and the KHI thresholds are obtained numerically. It is shown that, generally, both the KHI critical value and the cut-off speeds for magnetoacoustic waves are lowered by the external asymmetry.
S-wave tomography of the Cascadia Subduction Zone
NASA Astrophysics Data System (ADS)
Hawley, W. B.; Allen, R. M.
2017-12-01
We present an S-wave tomographic model of the Pacific Northwestern United States using regional seismic arrays, including the amphibious Cascadia Initiative. Offshore, our model shows a rapid transition from slow velocities beneath the ridge to fast velocities under the central Juan de Fuca plate, as seen in previous studies of the region (c.f., Bell et al., 2016; Byrnes et al., 2017). Our model also shows an elongated low-velocity feature beneath the hinge of the Juan de Fuca slab, similar to that observed in a P-wave study (Hawley et al., 2016). The addition of offshore data also allows us to investigate along-strike variations in the structure of the subducting slab. Of particular note is a `gap' in the high velocity slab between 44N and 46N, beginning around 100km depth. There exist a number of explanations for this section of lower velocities, ranging from a change in minerology along strike, to a true tear in the subducting slab.
Prasad, Tushar; Colvin, Vicki L; Mittleman, Daniel M
2007-12-10
We measure the normal-incidence transmission coefficient of photonic crystal slabs with hexagonal arrays of air holes in silicon. The transmission spectra exhibit sharp resonant features with Fano line shapes. They are produced due to the coupling of the leaky photonic crystal modes, called guided resonances, to the continuum of free-space modes. We investigate the effects of several types of structural disorder on the spectra of these resonances. Our results indicate that guided resonances are very tolerant to disorder in the hole diameter and to interface roughness, but very sensitive to disorder in the lattice periodicity.
A fluid model simulation of a simplified plasma limiter based on spectral-element time-domain method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Cheng; Ding, Dazhi, E-mail: dzding@njust.edu.cn; Fan, Zhenhong
2015-03-15
A simplified plasma limiter prototype is proposed and the fluid model coupled with Maxwell's equations is established to describe the operating mechanism of plasma limiter. A three-dimensional (3-D) simplified sandwich structure plasma limiter model is analyzed with the spectral-element time-domain (SETD) method. The field breakdown threshold of air and argon at different frequency is predicted and compared with the experimental data and there is a good agreement between them for gas microwave breakdown discharge problems. Numerical results demonstrate that the two-layer plasma limiter (plasma-slab-plasma) has better protective characteristics than a one-layer plasma limiter (slab-plasma-slab) with the same length of gasmore » chamber.« less
Dynamic Linkages Between the Transition Zone & Surface Plate Motions in 2D Models of Subduction
NASA Astrophysics Data System (ADS)
Arredondo, K.; Billen, M. I.
2013-12-01
While slab pull is considered the dominant force controlling plate motion and speed, its magnitude is controlled by slab behavior in the mantle, where tomographic studies show a wide range of possibilities from direct penetration to folding, or stagnation directly above the lower mantle (e.g. Fukao et al., 2009). Geodynamic studies have investigated various parameters, such as plate age and two phase transitions, to recreate observed behavior (e.g. Běhounková and Cízková, 2008). However, past geodynamic models have left out known slab characteristics that may have a large impact on slab behavior and our understanding of subduction processes. Mineral experiments and seismic observations have indicated the existence of additional phase transitions in the mantle transition zone that may produce buoyancy forces large enough to affect the descent of a subducting slab (e.g. Ricard et al., 2005). The current study systematically tests different common assumptions used in geodynamic models: kinematic versus free-slip boundary conditions, the effects of adiabatic heating, viscous dissipation and latent heat, compositional layering and a more complete suite of phase transitions. Final models have a complete energy equation, with eclogite, harzburgite and pyrolite lithosphere compositional layers, and seven composition-dependent phase transitions within the olivine, pyroxene and garnet polymorph minerals. Results show important feedback loops between different assumptions and new behavior from the most complete models. Kinematic models show slab weakening or breaking above the 660 km boundary and between compositional layers. The behavior in dynamic models with a free-moving trench and overriding plate is compared to the more commonly found kinematic models. The new behavior may have important implications for the depth distribution of deep earthquakes within the slab. Though the thermodynamic parameters of certain phase transitions may be uncertain, their presence and feedback to other added processes remain important, which could encourage mineralogical research into multiphase systems. Feedback from the compositionally complex slab to the dynamic trench may improve understanding on the mechanics of slab behavior in the upper and lower mantle and surface behavior of the subducting and overriding plates. Běhounková, M., and H. Cízková, Long-wavelength character of subducted slabs in the lower mantle, Earth and Planetary Science Letters, 275, 43-53, 2008. Fukao, Y., M. Obayashi, T. Nakakuki, and the Deep Slab Project Group, Stagnant slab: A review, Annual Reviews of Earth and Planetary Science, 37, 19-46, 2009. Ricard, Y., E. Mattern, and J. Matas, Synthetic tomographic images of slabs from mineral physics, in Earth's Deep Mantle: Structure, Composition, and Evolution, Geophysical Monograph Series, vol. 160, American Geophysical Union, 2005.
Experimental study on beam for composite CES structural system
NASA Astrophysics Data System (ADS)
Matsui, Tomoya
2017-10-01
Development study on Concrete Encase Steel (CES) composite structure system has been continuously conducted toward the practical use. CES structure is composed of steel and fiber reinforced concrete. In previous study, it was found that CES structure has good seismic performance from experimental study of columns, beam - column joints, shear walls and a two story two span frame. However, as fundamental study on CES beam could be lacking, it is necessary to understand the structural performance of CES beam. In this study, static loading tests of CES beams were conducted with experimental valuable of steel size, the presence or absence of slab and thickness of slab. And restoring characteristics, failure behavior, deformation behavior, and strength evaluation method of CES beam were investigated. As the results, it was found that CES beam showed stable hysteresis behavior. Furthermore it was found that the flexural strength of the CES beam could be evaluated by superposition strength theory.
Gohn, G.S.; Powars, D.S.; Dypvik, H.; Edwards, L.E.
2009-01-01
An unusually thick section of sedimentary breccias dominated by target-sediment clasts is a distinctive feature of the late Eocene Chesapeake Bay impact structure. A cored 1766-m-deep section recovered from the central part of this marine-target structure by the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) drilling project contains 678 m of these breccias and associated sediments and an intervening 275-m-thick granite slab. Two sedimentary breccia units consist almost entirely of Cretaceous nonmarine sediments derived from the lower part of the target sediment layer. These sediments are present as coherent clasts and as autoclastic matrix between the clasts. Primary (Cretaceous) sedimentary structures are well preserved in some clasts, and liquefaction and fluidization structures produced at the site of deposition occur in the clasts and matrix. These sedimentary breccias are interpreted as one or more rock avalanches from the upper part of the transient-cavity wall. The little-deformed, unshocked granite slab probably was transported as part of an extremely large slide or avalanche. Water-saturated Cretaceous quartz sand below the slab was transported into the seafloor crater prior to, or concurrently with, the granite slab. Two sedimentary breccia units consist of polymict diamictons that contain cobbles, boulders, and blocks of Cretaceous nonmarine target sediments and less common shocked-rock and melt ejecta in an unsorted, unstratified, muddy, fossiliferous, glauconitic quartz matrix. Much of the matrix material was derived from Upper Cretaceous and Paleogene marine target sediments. These units are interpreted as the deposits of debris flows initiated by the resurge of ocean water into the seafloor crater. Interlayering of avalanche and debris-flow units indicates a partial temporal overlap of the earlier avalanche and later resurge processes. A thin unit of stratified turbidite deposits and overlying laminated fine-grained deposits at the top of the section represents the transition to normal shelf sedimentation. ?? 2009 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Rashidi, Azida; Majid, Taksiah A.; Fadzli, M. N.; Faisal, Ade; Noor, Suhaila M.
2017-10-01
All buildings are subjected to some degree of torsion which in turn changes the member torsional demands from that of translation only. Torsional effects on buildings subjected to earthquakes are not found directly in structural analysis unless full three-dimensional inelastic dynamic time history analysis is conducted. Since design is often conducted using two-dimensional analysis, these effects are not directly considered. There is currently an understanding on how different factors may influence torsion, however, the degree to which these factors influence torsion is relatively unknown. Slab rotation effect is considered a major response parameter to represent the severity of the torsional response of eccentric systems; hence, it is considered in this study. The centre of strength (CR) and centre of stiffness (CS) are the two main factors under considerations. A comprehensive analysis on eighty different CR and CS conditions are applied to a three-dimensional, asymmetric building and their influences to slab rotation are observed. The CR/CS conditions are applied by varying strength eccentricities (er) and stiffness eccentricities (es) using two condition models. Then, earthquake ground motions are applied in z-direction under elastic and inelastic conditions. The results interpreted using a simple approach shows important slab rotation behaviour that forms interesting findings from this study. The slab rotation demand is found to reduce as strength eccentricity moves away from the Centre of Mass (CoM) but is independent of the stiffness eccentricity. The study also confirms finding of previous works which states that stiffness eccentricity plays a minor role when assessing the torsional behaviour of a ductile systems. Results from inelastic analysis shows slab rotation demand increases as strength eccentricity is closer to the CoM but it remains constant for elastic analysis.
Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.
1984-02-07
Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.
Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.
1985-03-12
Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.
NASA Technical Reports Server (NTRS)
Spurrier, Francis R. (Inventor); DeZubay, Egon A. (Inventor); Murray, Alexander P. (Inventor); Vidt, Edward J. (Inventor)
1984-01-01
Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.
NASA Technical Reports Server (NTRS)
Spurrier, Francis R. (Inventor); DeZubay, Egon A. (Inventor); Murray, Alexander P. (Inventor); Vidt, Edward J. (Inventor)
1985-01-01
Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.
Marinho, Belisa A; Cristóvão, Raquel O; Djellabi, Ridha; Caseiro, Ana; Miranda, Sandra M; Loureiro, José M; Boaventura, Rui A R; Dias, Madalena M; Lopes, José Carlos B; Vilar, Vítor J P
2018-07-01
The current work presents different approaches to overcome mass and photon transfer limitations in heterogeneous photocatalytic processes applied to the reduction of hexavalent chromium to its trivalent form in the presence of a sacrificial agent. Two reactor designs were tested, a monolithic tubular photoreactor (MTP) and a micro-meso-structured photoreactor (NETmix), both presenting a high catalyst surface area per reaction liquid volume. In order to reduce photon transfer limitations, the tubular photoreactor was packed with transparent cellulose acetate monolithic structures (CAM) coated with the catalyst by a dip-coating method. For the NETmix reactor, a thin film of photocatalyst was uniformly deposited on the front glass slab (GS) or on the network of channels and chambers imprinted in the back stainless steel slab (SSS) using a spray system. The reaction rate for the NETmix photoreactor was evaluated for two illumination sources, solar light or UVA-LEDs, using the NETmix with the front glass slab or/and back stainless steel slab coated with TiO 2 -P25. The reusability of the photocatalytic films on the NETmix walls was also evaluated for three consecutive cycles using fresh Cr(VI) solutions. The catalyst reactivity in combination with the NETmix-SSS photoreactor is almost 70 times superior to one obtained with the MTP. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tian, You; Zhao, Dapeng
2012-06-01
We used 190,947 high-quality P-wave arrival times from 8421 local earthquakes and 1,098,022 precise travel-time residuals from 6470 teleseismic events recorded by the EarthScope/USArray transportable array to determine a detailed three-dimensional P-wave velocity model of the crust and mantle down to 1000 km depth under the western United States (US). Our tomography revealed strong heterogeneities in the crust and upper mantle under the western US. Prominent high-velocity anomalies are imaged beneath Idaho Batholith, central Colorado Plateau, Cascadian subduction zone, stable North American Craton, Transverse Ranges, and Southern Sierra Nevada. Prominent low-velocity anomalies are imaged at depths of 0-200 km beneath Snake River Plain, which may represent a small-scale convection beneath the western US. The low-velocity structure deviates variably from a narrow vertical plume conduit extending down to ˜1000 km depth, suggesting that the Yellowstone hotspot may have a lower-mantle origin. The Juan de Fuca slab is imaged as a dipping high-velocity anomaly under the western US. The slab geometry and its subducted depth vary in the north-south direction. In the southern parts the slab may have subducted down to >600 km depth. A "slab hole" is revealed beneath Oregon, which shows up as a low-velocity anomaly at depths of ˜100 to 300 km. The formation of the slab hole may be related to the Newberry magmatism. The removal of flat subducted Farallon slab may have triggered the vigorous magmatism in the Basin and Range and southern part of Rocky Mountains and also resulted in the uplift of the Colorado Plateau and Rocky Mountains.
NASA Astrophysics Data System (ADS)
Jadamec, M. A.; MacDougall, J.; Fischer, K. M.
2017-12-01
The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear-wave splitting observed in real subduction zones.
NASA Astrophysics Data System (ADS)
Evangelidis, C. P.
2017-12-01
The segmentation and differentiation of subducting slabs have considerable effects on mantle convection and tectonics. The Hellenic subduction zone is a complex convergent margin with strong curvature and fast slab rollback. The upper mantle seismic anisotropy in the region is studied focusing at its western and eastern edges in order to explore the effects of possible slab segmentation on mantle flow and fabrics. Complementary to new SKS shear-wave splitting measurements in regions not adequately sampled so far, the source-side splitting technique is applied to constrain the depth of anisotropy and to densify measurements. In the western Hellenic arc, a trench-normal subslab anisotropy is observed near the trench. In the forearc domain, source-side and SKS measurements reveal a trench-parallel pattern. This indicates subslab trench-parallel mantle flow, associated with return flow due to the fast slab rollback. The passage from continental to oceanic subduction in the western Hellenic zone is illustrated by a forearc transitional anisotropy pattern. This indicates subslab mantle flow parallel to a NE-SW smooth ramp that possibly connects the two subducted slabs. A young tear fault initiated at the Kefalonia Transform Fault is likely not entirely developed, as this trench-parallel anisotropy pattern is observed along the entire western Hellenic subduction system, even following this horizontal offset between the two slabs. At the eastern side of the Hellenic subduction zone, subslab source-side anisotropy measurements show a general trench-normal pattern. These are associated with mantle flow through a possible ongoing tearing of the oceanic lithosphere in the area. Although the exact geometry of this slab tear is relatively unknown, SKS trench-parallel measurements imply that the tear has not reached the surface yet. Further exploration of the Hellenic subduction system is necessary; denser seismic networks should be deployed at both its edges in order to achieve a more definite image of the structure and geodynamics of this area.
NASA Technical Reports Server (NTRS)
Zhang, D.; Anthes, R. A.
1982-01-01
A one-dimensional, planetary boundary layer (PBL) model is presented and verified using April 10, 1979 SESAME data. The model contains two modules to account for two different regimes of turbulent mixing. Separate parameterizations are made for stable and unstable conditions, with a predictive slab model for surface temperature. Atmospheric variables in the surface layer are calculated with a prognostic model, with moisture included in the coupled surface/PBL modeling. Sensitivity tests are performed for factors such as moisture availability, albedo, surface roughness, and thermal capacity, and a 24 hr simulation is summarized for day and night conditions. The comparison with the SESAME data comprises three hour intervals, using a time-dependent geostrophic wind. Close correlations were found with daytime conditions, but not in nighttime thermal structure, while the turbulence was faithfully predicted. Both geostrophic flow and surface characteristics were shown to have significant effects on the model predictions
Electrically tunable robust edge states in graphene-based topological photonic crystal slabs
NASA Astrophysics Data System (ADS)
Song, Zidong; Liu, HongJun; Huang, Nan; Wang, ZhaoLu
2018-03-01
Topological photonic crystals are optical structures supporting topologically protected unidirectional edge states that exhibit robustness against defects. Here, we propose a graphene-based all-dielectric photonic crystal slab structure that supports two-dimensionally confined topological edge states. These topological edge states can be confined in the out-of-plane direction by two parallel graphene sheets. In the structure, the excitation frequency range of topological edge states can be dynamically and continuously tuned by varying bias voltage across the two parallel graphene sheets. Utilizing this kind of architecture, we construct Z-shaped channels to realize topological edge transmission with diffrerent frequencies. The proposal provides a new degree of freedom to dynamically control topological edge states and potential applications for robust integrated photonic devices and optical communication systems.
Seismic imaging of slab metamorphism and genesis of intermediate-depth intraslab earthquakes
NASA Astrophysics Data System (ADS)
Hasegawa, Akira; Nakajima, Junichi
2017-12-01
We review studies of intermediate-depth seismicity and seismic imaging of the interior of subducting slabs in relation to slab metamorphism and their implications for the genesis of intermediate-depth earthquakes. Intermediate-depth events form a double seismic zone in the depth range of c. 40-180 km, which occur only at locations where hydrous minerals are present, and are particularly concentrated along dehydration reaction boundaries. Recent studies have revealed detailed spatial distributions of these events and a close relationship with slab metamorphism. Pressure-temperature paths of the crust for cold slabs encounter facies boundaries with large H2O production rates and positive total volume change, which are expected to cause highly active seismicity near the facies boundaries. A belt of upper-plane seismicity in the crust nearly parallel to 80-90 km depth contours of the slab surface has been detected in the cold Pacific slab beneath eastern Japan, and is probably caused by slab crust dehydration with a large H2O production rate. A seismic low-velocity layer in the slab crust persists down to the depth of this upper-plane seismic belt, which provides evidence for phase transformation of dehydration at this depth. Similar low-velocity subducting crust closely related with intraslab seismicity has been detected in several other subduction zones. Seismic tomography studies in NE Japan and northern Chile also revealed the presence of a P-wave low-velocity layer along the lower plane of a double seismic zone. However, in contrast to predictions based on the serpentinized mantle, S-wave velocity along this layer is not low. Seismic anisotropy and pore aspect ratio may play a role in generating this unique structure. Although further validation is required, observations of these distinct low P-wave velocities along the lower seismic plane suggest the presence of hydrated rocks or fluids within that layer. These observations support the hypothesis that dehydration-derived H2O causes intermediate-depth intraslab earthquakes. However, it is possible that dual mechanisms generate these earthquakes; the initiation of earthquake rupture may be caused by local excess pore pressure from H2O, and subsequent ruptures may propagate through thermal shear instability. In either case, slab-derived H2O plays an important role in generating intermediate-depth events.
Subduction and dehydration of slow-spread oceanic lithosphere
NASA Astrophysics Data System (ADS)
Paulatto, M.; Laigle, M.; Galve, A.; Charvis, P.
2016-12-01
Water transported by subducting slabs affects the dynamics of subduction zones and is a major gateway in the global geochemical water cycle. During subduction much of the water stored in the slab is released via pore fluid escape and through metamorphic reactions that depend on the thermal regime. The most notable are eclogitization of hydrated basalt and gabbro and breakdown of serpentinite. Most constraints to date have been obtained at Pacific subduction zones, and have contributed to a model of slab dehydration applicable to normal fast-spread oceanic lithosphere with a mafic crust. Slow-spread crust however, is heterogeneous in thickness and composition and has a different water distribution than fast-spread crust. We use P-wave traveltimes from several active source seismic experiments and P- and S-wave traveltimes from shallow and intermediate depth (< 160 km) local earthquakes recorded on a vast amphibious array of OBSs and land seismometers to recover the 3D Vp and Vp/Vs structure of the central Lesser Antilles subduction zone from the surface to 160 km depth. This slab was formed by slow accretion at the Mid-Atlantic ridge and represents the global slow accretion rate end-member. We image the dipping low-Vp layer at the top of the slab corresponding to the hydrated slab crust penetrating to about 100 km depth. High Vp/Vs ratio on the slab top and in the forearc crust is interpreted as evidence of elevated fluid content either as free fluids or as bound water in hydrated minerals. A local minimum in Vp is observed on the slab top at 50 km depth, and forms an elongated trench-parallel anomaly. This anomaly is interrupted at the projection of the Marathon fracture zone. We suggest that this is the result of lateral variations in slab crust composition from normal mafic oceanic crust to tectonized oceanic crust consisting to a large extent of serpentinized peridotite near the fracture zone. Slab regions with normal mafic oceanic crust likely undergo eclogitization, resulting in voluminous water release over a narrow depth range. Serpentinized ultramafic crust, in contrast, may release water at a more constant rate. We infer that subduction of slow-spread lithosphere may result in heterogeneous water transport and release at subduction zones with implications for seismicity, magma generation and the geochemical budget.
Optical isolation based on space-time engineered asymmetric photonic band gaps
NASA Astrophysics Data System (ADS)
Chamanara, Nima; Taravati, Sajjad; Deck-Léger, Zoé-Lise; Caloz, Christophe
2017-10-01
Nonreciprocal electromagnetic devices play a crucial role in modern microwave and optical technologies. Conventional methods for realizing such systems are incompatible with integrated circuits. With recent advances in integrated photonics, the need for efficient on-chip magnetless nonreciprocal devices has become more pressing than ever. This paper leverages space-time engineered asymmetric photonic band gaps to generate optical isolation. It shows that a properly designed space-time modulated slab is highly reflective/transparent for opposite directions of propagation. The corresponding design is magnetless, accommodates low modulation frequencies, and can achieve very high isolation levels. An experimental proof of concept at microwave frequencies is provided.
NASA Astrophysics Data System (ADS)
Sachpazi, M.; Laigle, M.; Diaz, J.; Gesret, A.; Charalampakis, M.; Kissling, E. H.; Hirn, A.
2010-12-01
Observations from teleseismic converted waves recorded at 100 sites in Greece from Crete to North Aegean in a 500 km swath along the slab strike during the EU project “Thales was right” allow imaging its top in 3D. Multiscale analysis brings high-resolution to interface imaging at depth which resolved for the first time a thin, oceanic, crust for the slab under southern Greece. This first indication of its large negative buoyancy suggests its roll-back and is consistent with the upper plate trenchward motion with the highest velocities there, as shown by GPS. With respect to up to now subduction zone surveys with receivers deployed along the presumed dip to get a cross-section of the downgoing slab, our swath was instead perpendicular, that is along strike. This was in order to track down lateral changes in slab attitude along the subduction zone, that is a possible segmentation. The expected subduction strike at shallow depth, as approximated by a line from SW of Crete to W of the Ionian Islands is about N 135°E. Instead, the slab top is found along an almost N-S line at several places, at 60-70 km depth. However the slab depth contours deviate from it in-between. Their broad correspondance with the Aegean coastline or extensional domain suggests a possible control on surface morphology, and on upper plate deformation as mirrored in the topography of its crust-mantle boundary. Indeed, this first image recovered with such a high lateral resolution reveals that several slab segments can be defined dipping N 60°E, that is with a N 160 °E strike, and that these are juxtaposed through domains of strong localized variations along-strike that suggest warping or tearing of the slab. Apart their strong bearing on geodynamic reconstructions, and the continental/oceanic nature of the slab fragments, these 3D images reach the high-resolution for their discussion with respect to major earthquakes. The attitude of the slab, the dip of its upper part and its buoyancy force enter the balance controlling the degree of seismic coupling, of the seismogenic interplate fault, as well as its along dip extent as discussed earlier for the Ionian Islands. The segmented nature revealed at depth suggests a possible segmentation of the shallower interplate seismogenic zone. The precise location of the stronger intermediate-depth earthquakes occurred during the deployment appears also related to this deep structural and tectonic control.
Two algorithms for neural-network design and training with application to channel equalization.
Sweatman, C Z; Mulgrew, B; Gibson, G J
1998-01-01
We describe two algorithms for designing and training neural-network classifiers. The first, the linear programming slab algorithm (LPSA), is motivated by the problem of reconstructing digital signals corrupted by passage through a dispersive channel and by additive noise. It constructs a multilayer perceptron (MLP) to separate two disjoint sets by using linear programming methods to identify network parameters. The second, the perceptron learning slab algorithm (PLSA), avoids the computational costs of linear programming by using an error-correction approach to identify parameters. Both algorithms operate in highly constrained parameter spaces and are able to exploit symmetry in the classification problem. Using these algorithms, we develop a number of procedures for the adaptive equalization of a complex linear 4-quadrature amplitude modulation (QAM) channel, and compare their performance in a simulation study. Results are given for both stationary and time-varying channels, the latter based on the COST 207 GSM propagation model.
Earthquake location in island arcs
Engdahl, E.R.; Dewey, J.W.; Fujita, K.
1982-01-01
A comprehensive data set of selected teleseismic P-wave arrivals and local-network P- and S-wave arrivals from large earthquakes occurring at all depths within a small section of the central Aleutians is used to examine the general problem of earthquake location in island arcs. Reference hypocenters for this special data set are determined for shallow earthquakes from local-network data and for deep earthquakes from combined local and teleseismic data by joint inversion for structure and location. The high-velocity lithospheric slab beneath the central Aleutians may displace hypocenters that are located using spherically symmetric Earth models; the amount of displacement depends on the position of the earthquakes with respect to the slab and on whether local or teleseismic data are used to locate the earthquakes. Hypocenters for trench and intermediate-depth events appear to be minimally biased by the effects of slab structure on rays to teleseismic stations. However, locations of intermediate-depth events based on only local data are systematically displaced southwards, the magnitude of the displacement being proportional to depth. Shallow-focus events along the main thrust zone, although well located using only local-network data, are severely shifted northwards and deeper, with displacements as large as 50 km, by slab effects on teleseismic travel times. Hypocenters determined by a method that utilizes seismic ray tracing through a three-dimensional velocity model of the subduction zone, derived by thermal modeling, are compared to results obtained by the method of joint hypocenter determination (JHD) that formally assumes a laterally homogeneous velocity model over the source region and treats all raypath anomalies as constant station corrections to the travel-time curve. The ray-tracing method has the theoretical advantage that it accounts for variations in travel-time anomalies within a group of events distributed over a sizable region of a dipping, high-velocity lithospheric slab. In application, JHD has the practical advantage that it does not require the specification of a theoretical velocity model for the slab. Considering earthquakes within a 260 km long by 60 km wide section of the Aleutian main thrust zone, our results suggest that the theoretical velocity structure of the slab is presently not sufficiently well known that accurate locations can be obtained independently of locally recorded data. Using a locally recorded earthquake as a calibration event, JHD gave excellent results over the entire section of the main thrust zone here studied, without showing a strong effect that might be attributed to spatially varying source-station anomalies. We also calibrated the ray-tracing method using locally recorded data and obtained results generally similar to those obtained by JHD. ?? 1982.
Tomographic imaging of subducted lithosphere below northwest Pacific island arcs
Van Der Hilst, R.; Engdahl, R.; Spakman, W.; Nolet, G.
1991-01-01
The seismic tomography problem does not have a unique solution, and published tomographic images have been equivocal with regard to the deep structure of subducting slabs. An improved tomographic method, using a more realistic background Earth model and surf ace-reflected as well as direct seismic phases, shows that slabs beneath the Japan and Izu Bonin island arcs are deflected at the boundary between upper and lower mantle, whereas those beneath the northern Kuril and Mariana arcs sink into the lower mantle.
A-3 Test Stand construction update
NASA Technical Reports Server (NTRS)
2007-01-01
The concrete foundation placed Dec. 18 (foreground) for Stennis Space Center's future A-3 Test Stand has almost completely cured by early January, according to Bo Clarke, NASA's contracting officer technical representative for the foundation contract. By late December, construction on foundations for many of the test stand's support structures - diffuser, liquid oxygen, isopropyl alcohol and water tanks and gaseous nitrogen bottle battery - had begun with the installation of (background) `mud slabs.' The slabs provide a working surface for the reinforcing steel and foundation forms.
Spurrier, F.R.; DeZubay, E.A.; Murray, A.P.; Vidt, E.J.
1984-02-07
Slab-shaped high efficiency catalytic reformer configurations are disclosed particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant. 14 figs.
Light-assisted, templated self-assembly using a photonic-crystal slab.
Jaquay, Eric; Martínez, Luis Javier; Mejia, Camilo A; Povinelli, Michelle L
2013-05-08
We experimentally demonstrate the technique of light-assisted, templated self-assembly (LATS). We excite a guided-resonance mode of a photonic-crystal slab with 1.55 μm laser light to create an array of optical traps. We demonstrate assembly of a square lattice of 520 nm diameter polystyrene particles spaced by 860 nm. Our results demonstrate how LATS can be used to fabricate reconfigurable structures with symmetries different from traditional colloidal self-assembly, which is limited by free energetic constraints.
A-3 Test Stand construction update
2007-12-18
The concrete foundation placed Dec. 18 (foreground) for Stennis Space Center's future A-3 Test Stand has almost completely cured by early January, according to Bo Clarke, NASA's contracting officer technical representative for the foundation contract. By late December, construction on foundations for many of the test stand's support structures - diffuser, liquid oxygen, isopropyl alcohol and water tanks and gaseous nitrogen bottle battery - had begun with the installation of (background) `mud slabs.' The slabs provide a working surface for the reinforcing steel and foundation forms.
Smart concrete slabs with embedded tubular PZT transducers for damage detection
NASA Astrophysics Data System (ADS)
Gao, Weihang; Huo, Linsheng; Li, Hongnan; Song, Gangbing
2018-02-01
The objective of this study is to develop a new concept and methodology of smart concrete slab (SCS) with embedded tubular lead zirconate titanate transducer array for image based damage detection. Stress waves, as the detecting signals, are generated by the embedded tubular piezoceramic transducers in the SCS. Tubular piezoceramic transducers are used due to their capacity of generating radially uniform stress waves in a two-dimensional concrete slab (such as bridge decks and walls), increasing the monitoring range. A circular type delay-and-sum (DAS) imaging algorithm is developed to image the active acoustic sources based on the direct response received by each sensor. After the scattering signals from the damage are obtained by subtracting the baseline response of the concrete structures from those of the defective ones, the elliptical type DAS imaging algorithm is employed to process the scattering signals and reconstruct the image of the damage. Finally, two experiments, including active acoustic source monitoring and damage imaging for concrete structures, are carried out to illustrate and demonstrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Hilyati, S.; Nizam, Z. M.; Zurisman, M. A. A.; Azhar, A. T. S.
2017-06-01
During the last two decades, reinforced concrete (RC) has been extensively used in most of the world as one of the common construction material due to its advantages and durability. However, RC structures exposed to marine environments are subjected to chloride attack. Chlorides from seawater penetrate into RC structures are not only causing severe corrosion problems but also affect the durability and serviceability of such structures. This paper investigates the influence of transverse reinforcement and spacing of reinforcing bars on concrete cover cracking of two-way RC slab specimens using accelerated corrosion tests. The experimental program involved the testing of four RC slab specimens and was generally designed to observe the crack width and the time of crack to propagate. An improved model for predicting the timing of crack propagation based on the experimental data was then developed.
Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.; Reardon, Blase
2010-01-01
Wet slab and glide slab snow avalanches are dangerous and yet can be particularly difficult to predict. Both wet slab and glide slab avalanches are thought to depend upon free water moving through the snowpack but are driven by different processes. In Glacier National Park, Montana, both types of avalanches can occur in the same year and affect the Going-to-the-Sun Road (GTSR). Both wet slab and glide slab avalanches along the GTSR from 2003-2010 are investigated. Meteorological data from two high-elevation weather stations and one SNOTEL site are used in conjunction with an avalanche database and snowpit profiles. These data were used to characterize years when only glide slab avalanches occurred and those years when both glide slab and wet slab avalanches occurred. Results of 168 glide slab and 57 wet slab avalanches along the GTSR suggest both types of avalanche occurrence depend on sustained warming periods with intense solar radiation (or rain on snow) to produce free water in the snowpack. Differences in temperature and net radiation metrics between wet slab and glide slab avalanches emerge as one moves from one day to seven days prior to avalanche occurrence. On average, a more rapid warming precedes wet slab avalanche occurrence. Glide slab and wet slab avalanches require a similar amount of net radiation. Wet slab avalanches do not occur every year, while glide slab avalanches occur annually. These results aim to enhance understanding of the required meteorological conditions for wet slab and glide slab avalanches and aid in improved wet snow avalanche forecasting.
NASA Astrophysics Data System (ADS)
Song, Xiaoxia; Tang, Wei; Gregurec, Danijela; Yate, Luis; Moya, Sergio Enrique; Wang, Guocheng
2018-04-01
In this study, an osteogenic environment was constructed on Ti alloy implants by in-situ formation of nanosized fibrous titanate, Na2Ti6O13, loaded with bioactive ions, i.e. Sr, Mg and Zn, to enhance surface bioactivity. The bioactive ions were loaded by ion exchange with sodium located at inter-layer positions between the TiO6 slabs, and their release was not associated with the degradation of the structural unit of the titanate. In-vitro cell culture experiments using MC3T3-E1 cells proved that both bioactive ions and nanotopographic features are critical in promoting osteogenic differentiation of the cells. It was found that the osteogenic functions of the titanate can be modulated by the type and amount of ions incorporated. This study points out that nanosized fibrous titanate formed on the Ti alloy can be a promising reservoir for bioactive ions. The major advantage of this approach over other alternatives for bioactive ion delivery using degradable bioceramic coatings is its capacity of maintaining the structural integrity of the coating and thus avoiding structural deterioration and potential mechanical failure.
NASA Astrophysics Data System (ADS)
Bedrosian, P.; Peacock, J.; Bowles-martinez, E.; Schultz, A.; Hill, G.
2017-12-01
Worldwide, arc volcanism occurs along relatively narrow magmatic arcs, the locations of which are considered to mark the onset of dehydration reactions within the subducting slab. This `bottom-up' approach, in which the location of arc volcanism reflects where fluids and melt are generated, explains first-order differences in trench-to-arc distance and is consistent with known variations in the thermal structure and geometry of subducting slabs. At a finer scale, arc segmentation, magmatic gaps, and anomalous forearc and backarc magmatism are also frequently interpreted in terms of variations in slab geometry, composition, or thermal structure.The role of inherited crustal structure in controlling faulting and deformation is well documented; less well examined is the role of crustal structure in controlling magmatism. While the source distribution of melt and subduction fluids is critical to determining the location of arc magmatism, we argue that crustal structure provides `top-down' control on patterns or seismicity and deformation as well as the channeling and ascent of arc magmas. We present evidence within the Washington Cascades based upon correlation between a new three-dimensional resistivity model, potential-field data, seismicity, and Quaternary volcanism. We image a mid-Tertiary batholith, intruded within an Eocene crustal suture zone, and extending throughout much of the crustal column. This and neighboring plutons are interpreted to channel crustal fluids and melt along their margins within steeply dipping zones of marine to transitional metasedimentary rock. Mount St. Helens is interpreted to be fed by fluids and melt generated further east at greater slab depths, migrating laterally (underplating?) beneath the Spirit Lake batholith, and ascending through metasedimentary rocks within the brittle crust. At a regional scale, we argue that this concealed suture zone controls present-day deformation and seismicity as well as the distribution of forearc magmatism. More generally, our results highlight the control that inherited crustal structure has on both the location and style of arc magmatism. We also address divergent interpretations of the Southern Washington Cascades Conductor, which we show results from limited data density and modeling assumptions in previous studies.
Three-dimensional thermal structure and seismogenesis in the Tohoku and Hokkaido subduction system
NASA Astrophysics Data System (ADS)
van Keken, P. E.; Kita, S.; Nakajima, J.; Bengtson, A. K.; Hacker, B. R.; Abers, G. A.
2010-12-01
The Northern Japan arc is characterized by fast subduction of old oceanic lithosphere. The high density instrumentation and high seismicity make this an ideal natural laboratory to study the interplay between subduction zone dynamics, dehydration, migration of fluids, and seismogenesis. In this study we use high resolution finite element models to predict the thermal structure of the subduction slab below Tohoku (Northern Honshu) and Hokkaido. These models allow us to predict the pressure, temperature and mineralogy of the subducted crust and mantle. We use these models to predict the (p,T) conditions of earthquakes that are relocated with a precision of around 1 km by double difference techniques. Below Northern Hokkaido and Tohoku we find that the earthquake activity is strong in crust and the uppermost mantle for temperatures < 450 C. Above this temperature earthquakes occur more sporadically and have significantly reduced integrated seismic moment. The strongest 3D variations in this arc occur below southern Hokkaido. This 200 km wide region is characterized by a change in trench geometry, anomalously low heatflow and an anomalous velocity structure in the mantle wedge. Tomographic imaging suggest that continental crust is subducted to significant depth, thereby insulating the subducting slab from the hot mantle wedge at least at intermediate depths. The thermal insulation is also suggested by the deepening of the earthquakes in the slab (Kita et al., EPSL, 2010). This region may be characterized by active crustal erosion which would lead to a further blanketing of the crust by a sedimentary layer. Further modifications in thermal structure are possible due to the 3D wedge flow that is generated by the along-arc variations in trench geometry. We quantitatively verify the relative importance of these processes using 2D and 3D dynamical models. Without the seismically imaged crustal structure the earthquake temperatures are significantly elevated compared to the Tohoku and (northern) Hokkaido sections. If we take the modified crustal structure into account we find a (p,T) pattern that is quite similar to that in the other sections, suggesting that the processes that lead to earthquakes in crust and uppermost mantle of the downgoing slab are similar across the northern Japan arc.
Fiber based photonic-crystal acoustic sensor
NASA Astrophysics Data System (ADS)
Kilic, Onur
Photonic-crystal slabs are two-dimensional photonic crystals etched into a dielectric layer such as silicon. Standard micro fabrication techniques can be employed to manufacture these structures, which makes it feasible to produce them in large areas, usually an important criterion for practical applications. An appealing feature of these structures is that they can be employed as free-space optical devices such as broadband reflectors. The small thickness of the slab (usually in the vicinity of half a micron) also makes it deflectable. These combined optical and mechanical properties make it possible to employ photonic-crystal slabs in a range of practical applications, including displacement sensors, which in turn can be used for example to detect acoustic waves. An additional benefit of employing a photonic-crystal slab is that it is possible to tailor its optical and mechanical properties by adjusting the geometrical parameters of the structure such as hole radius or shape, pitch, and the slab thickness. By altering the hole radius and pitch, it is possible to make broadband reflectors or sharp transmission filters out of these structures. Adjusting the thickness also affects its deformability, making it possible to make broadband mirrors compliant to acoustic waves. Altering the hole shape, for example by introducing an asymmetry, extends the functionalities of photonic-crystal slabs even further. Breaking the symmetry by introducing asymmetric holes enables polarization-sensitive devices such as retarders, polarization beam splitters, and photonic crystals with additional non-degenerate resonances useful for increased sensitivity in sensors. All these practical advantages of photonic-crystal slabs makes them suitable as key components in micromachined sensor applications. We report one such example of an application of photonic-crystal slabs in the form of a micromachined acoustic sensor. It consists of a Fabry-Perot interferometer made of a photonic-crystal reflector embedded in a compliant silicon diaphragm placed at the tip of a single-mode fiber. Measurements in air indicate that this sensor has a relatively uniform frequency response up to at least 50 kHz, which is at least one order of magnitude higher than existing all-fiber acoustic sensors. This sensor was also shown to be able to detect pressures as low as 18 muPa/Hz 1/2. This limit is four orders of magnitude lower than in similar types of acoustic fiber sensors that are based on a deflectable diaphragm at the fiber end. This significant improvement is to a large extent due to the higher reflectivity of the reflectors, which is itself due to the use of a photonic crystal. Through a modification in the design, such a sensor can also be used in water. In addition to the high compliance of the diaphragm, the advantage for using the photonic-crystal slab is that the holes provide a venting channel for pressure equalization. As a result, the hydrophone can be employed in deep-sea applications without suffering from the high static pressure. Measurements in water over the range of 10 kHz-50 kHz show that this hydrophone has a minimum detectable pressure of only 10 muPa/Hz1/2, close to the ambient thermal-noise level. A model was developed to show that after optimization to ocean acoustics, the sensor has a theoretical minimum detectable pressure that follows the minimum ambient noise spectrum of the ocean in the bandwidth of 1 Hz-100 kHz. This makes this sensor extremely broadband compared to commercial fiber hydrophones, which are bulky and poorly responsive to frequencies above a few hundred Hz, since they require a long length of fiber. By placing several such sensors with different acoustic power ranges within a single sensor chip, this hydrophone is capable of exhibiting a dynamic range in the excess of 200 dB (1010).
Analysis of Fan Waves in a Laboratory Model Simulating the Propagation of Shear Ruptures in Rocks
NASA Astrophysics Data System (ADS)
Tarasov, B. G.; Sadovskii, V. M.; Sadovskaya, O. V.
2017-12-01
The fan-shaped mechanism of rotational motion transmission in a system of elastically bonded slabs on flat surface, simulating the propagation of shear ruptures in super brittle rocks, is analyzed. Such ruptures appear in the Earth's crust at seismogenic depths. They propagate due to the nucleation of oblique tensile microcracks, leading to the formation of a fan domino-structure in the rupture head. A laboratory physical model was created which demonstrates the process of fan-structure wave propagation. Equations of the dynamics of rotational motion of slabs as a mechanical system with a finite number of degrees of freedom are obtained. Based on the Merson method of solving the Cauchy problem for systems of ordinary differential equations, the computational algorithm taking into account contact interaction of slabs is developed. Within the framework of a simplified mathematical model of dynamic behavior of a fan-shaped system in the approximation of a continuous medium, the approximate estimates of the length of a fan depending on the velocity of its motion are obtained. It is shown that in the absence of friction a fan can move with any velocity that does not exceed the critical value, which depends on the size, the moment of inertia of slabs, the initial angle and the elasticity coefficient of bonds. In the presence of friction a fan stops. On the basis of discrete and continuous models, the main qualitative features of the behavior of a fan-structure moving under the action of applied tangential forces, whose values in a laboratory physical model are regulated by a change in the inclination angle of the rupture plane, are analyzed. Comparison of computations and laboratory measurements and observations shows good correspondence between the results.
NASA Astrophysics Data System (ADS)
Zhang, K.; Wei, D.
2009-12-01
Within the core of a colder slab (e.g., the Tonga slab), the existence of metastable olivine (MO), extending deeper than the 410 km, has several important implications for understanding both the mechanism of deep earthquakes (>300 km) and the slab dynamics. The effect of subduction kinematics on the slab thermal structure has been widely investigated by prescribing Constant Velocity field for the subducting Slab (CVS-model), which may result in artificial computational interferences along the slab interfaces by accelerating the heating of subducting slabs. For the purpose of moderating the CVS effect and investigating the influence of metastable phase transformations on deep seismicity, we construct a 2-dimensional finite element thermal model for a 120 Ma-old 50° dipping oceanic lithosphere descending at 10 cm/yr with Velocity Boundary Layers (VBL-model), within which the velocities decrease from v to zero with the distance to the interface. The density anomalies for the VBL-model show significant variations (~100 kg/m3) at depths of both ~230 and ~410 km, whereas CVS-model shows anomalies above ~410 km. Thus, the VBL-model result is in better agreement with our knowledge of the subducting evolution that the density anomalies are primarily controlled by the conductive cooling and the phase transitions for the shallow depths of the slab and the transition zone, respectively. The VBL-model pressure anomalies also indicate that the negative buoyancy force causes the downdip tensional (DDT) earthquakes occurring above depth of ~230 km. At depths >410 km, the zonal distributed pressures of the VBL-model show negative and positive anomalies within the core and the outermost portion of slab, respectively, whereas the CVS-model produces negative pressure anomalies. The seismicity shows that down-dip compressional (DDC) and DDT deep earthquakes occur along the lower and upper interfaces of Tonga slab, whereas the P- and T-axes for the earthquakes in-between portion are interchangeable. The VBL model rather than CVS model produces MO wedge extending to depth as the deepest (>660 km) earthquakes. If there really exists MO at depths >660 km, these deepest earthquakes will be in agreement with the suggestion that the MO associated transformational faulting can occur for the exothermic Ol-Sp transition but not for the endothermic Sp-Pv+Mw change (Green, 2007), otherwise, other mechanisms should be responsible for them. Therefore, the phase boundaries are important for the buoyancy and stresses within slabs (e.g. Bina, 2001) and the VBL-model is more credible. Moreover, VBL-model results also indicate that MO within the transition zone in Tonga increases the positive buoyancy force acting on the slab and facilitates slab stagnation at 660 km depth, in agreement with the tomographic (van der Hilst et al., 1995) and seismological observations (Chen and Brudzinski, 2001). As the subducting materials accumulated over 660 km, the MO begins to transform to Sp and deepest earthquakes occur. If Sp further transforms to Pv+Mw, the flattened ‘slab’ would penetrate the 660 km due to the density increment of Sp transformation.
Quasi-CW 110 kW AlGaAs Laser Diode Array Module for Inertial Fusion Energy Laser Driver
NASA Astrophysics Data System (ADS)
Kawashima, Toshiyuki; Kanzaki, Takeshi; Matsui, Ken; Kato, Yoshinori; Matsui, Hiroki; Kanabe, Tadashi; Yamanaka, Masanobu; Nakatsuka, Masahiro; Izawa, Yasukazu; Nakai, Sadao; Miyamoto, Masahiro; Kan, Hirofumi; Hiruma, Teruo
2001-12-01
We have successfully demonstrated a large aperture 803 nm AlGaAs diode laser module as a pump source for a 1053 nm, 10 J output Nd:glass slab laser amplifier for diode-pumped solid-state laser (DPSSL) fusion driver. Detailed performance results of the laser diode module are presented, including bar package and stack configuration, and their thermal design and analysis. A sufficiently low thermal impedance of the stack was realized by combining backplane liquid cooling configuration with modular bar package architecture. Total peak power of 110 kW and electrical to optical conversion efficiency of 46% were obtained from the module consisting of a total of 1000 laser diode bars. A peak intensity of 2.6 kW/cm2 was accomplished across an emitting area of 418 mm× 10 mm. Currently, this laser diode array module with a large two-dimensional aperture is, to our knowledge, the only operational pump source for the high output energy DPSSL.
A proposal of a perfect graphene absorber with enhanced design and fabrication tolerance.
Lee, Sangjun; Tran, Thang Q; Heo, Hyungjun; Kim, Myunghwan; Kim, Sangin
2017-07-06
We propose a novel device structure for the perfect absorption of a one-sided lightwavve illumination, which consists of a high-contrast grating (HCG) and an evanescently coupled slab with an absorbing medium (graphene). The operation principle and design process of the proposed structure are analyzed using the coupled mode theory (CMT), which is confirmed by the rigorous coupled wave analysis (RCWA). According to the CMT analysis, in the design of the proposed perfect absorber, the HCG, functioning as a broadband reflector, and the lossy slab structure can be optimized separately. In addition, we have more design parameters than conditions to satisfy; that is, we have more than enough degrees of freedom in the device design. This significantly relieves the complexity of the perfect absorber design. Moreover, in the proposed perfect absorber, most of the incident wave is confined in the slab region with strong field enhancement, so that the absorption performance is very tolerant to the variation of the design parameters near the optimal values for the perfect absorption. It has been demonstrated numerically that absorption spectrum tuning over a wider wavelength range of ~300 nm is possible, keeping significantly high maximum absorption (>95%). It is also shown that the proposed perfect absorber outperforms the previously proposed scheme in all aspects.
Magnetotelluric imaging of the subducting slab in Cascadia with constraints from seismology
NASA Astrophysics Data System (ADS)
Yang, B.; Egbert, G. D.; Kelbert, A.; Humphreys, E.
2015-12-01
We present results from three-dimensional (3D) inversion of long-period magnetotelluric (MT) data from Cascadia, using seismological constraints on plate geometry and back-arc structure, to refine 3D images of electrical resistivity across this subduction zone. For this study we employed the impedances and vertical transfer functions from 144 sites from the EarthScope Transportable Array, along with data from previous higher density MT profiles from Cascadia (EMSLAB, CAFE-MT etc.). Morphological parameters for the subducting Juan de Fuca and Gorda plates (e.g. upper boundary and thickness) were extracted from McCrory et al (2012) and Schmandt and Humphreys (2010) seismological models and used to define a resistive subducting slab structure in 3D. This was then either used as a prior model, or fixed (both resistivity and geometry) during the MT inversion. By imposing constraints on the geometry of the slab (which is otherwise imaged as an amorphous broad resistive zone) we improve recovery and resolution of subduction related conductivity features. The constrained inversions also allowed us to test sensitivity of the MT data to variants on slab geometry, such as the proposed slab "tear" near the Oregon-Washington border suggested by some seismic tomography models, and to explore consistency of the MT data with seismic models, which suggest segmentation of back-arc upwelling. Three zones of substantially reduced resistivity were found, all exhibiting significant along-strike variability. In the forearc, an N-S stripe of high conductivity (10 ohm-m or less) was found just above the plate interface, near the tip of the mantle wedge. This conductive feature is spatially coincident with mapped locations of episodic tremor and slip, and likely represents aqueous fluids associated with slab dehydration. To the east, a second, clearly separated, N-S elongate zone of similarly high conductivity occurs in the mid-lower crust and upper mantle beneath the modern arc, again likely representing fluids, and in some cases melt. Finally, in the back-arc a broader, and generally more subdued (20-30 ohm-m), zone of reduced resistivity occurs in the North American mantle above the plate interface.
NASA Astrophysics Data System (ADS)
Haney, M. M.; Tsai, V. C.; Ward, K. M.
2016-12-01
Recently, Haney and Tsai (2015) developed a new approach to Rayleigh-wave inversion based on assumptions that are similar to those used in the formulation of the Dix equation in reflection seismology. Here we apply the Dix technique to Rayleigh-wave phase-velocity maps by Ekstrom (2013) and Ward (2015) of the contiguous US and Alaska, respectively, at periods between 12 and 45 s. We refine the initial Dix result with subsequent nonlinear inversion to estimate Moho depth together with shear-wave velocity of the lower crust and upper mantle. In the contiguous US, the Moho we image agrees well with recent receiver function studies. There is an apparent deepening of the Moho to the west of the Cascades volcanic chain that we interpret as the waveguide interface transitioning to the slab due to the continental Moho becoming transparent above the mantle forearc. This feature abruptly terminates at the southern extent of the Cascadia subduction zone. We compare the depths of this "apparent Moho" with published estimates of the depth to the Juan de Fuca Plate since, owing to the paucity of tectonic earthquakes, the Slab1.0 model is not defined in Cascadia. Our result in Alaska is the first regional Moho map derived explicitly from seismic waves. We find that crustal thickness is generally correlated with topography, with thicker crust beneath mountain ranges in southern Alaska. North of the Denali Fault, the Moho is smoother than to the south and located at typical depths of 30-35 km. There are also indications that the waveguide interface we solve for beneath Prince William Sound is actually the subducting slab instead of the continental Moho. The slab structure beneath Prince William Sound extends further east than the Pacific slab represented in the Slab1.0 model. Using the limited number of broadband seismometers in the Aleutian Islands, we obtain preliminary estimates for the crustal structure beneath the western portion of the Aleutian-Alaska subduction zone.
Surface correlation effects in two-band strongly correlated slabs.
Esfahani, D Nasr; Covaci, L; Peeters, F M
2014-02-19
Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/center to center/surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.
Slab dehydration in Cascadia and its relationship to volcanism, seismicity, and non-volcanic tremor
NASA Astrophysics Data System (ADS)
Delph, J. R.; Levander, A.; Niu, F.
2017-12-01
The characteristics of subduction beneath the Pacific Northwest (Cascadia) are variable along strike, leading to the segmentation of Cascadia into 3 general zones: Klamath, Siletzia, and Wrangelia. These zones show marked differences in tremor density, earthquake density, seismicity rates, and the locus and amount of volcanism in the subduction-related volcanic arc. To better understand what controls these variations, we have constructed a 3D shear-wave velocity model of the upper 80 km along the Cascadia margin from the joint inversion of CCP-derived receiver functions and ambient noise surface wave data using 900 temporary and permanent broadband seismic stations. With this model, we can investigate variations in the seismic structure of the downgoing oceanic lithosphere and overlying mantle wedge, the character of the crust-mantle transition beneath the volcanic arc, and local to regional variations in crustal structure. From these results, we infer the presence and distribution of fluids released from the subducting slab and how they affect the seismic structure of the overriding lithosphere. In the Klamath and Wrangelia zones, high seismicity rates in the subducting plate and high tremor density correlate with low shear velocities in the overriding plate's forearc and relatively little arc volcanism. While the cause of tremor is debated, intermediate depth earthquakes are generally thought to be due to metamorphic dehydration reactions resulting from the dewatering of the downgoing slab. Thus, the seismic characteristics of these zones combined with rather sparse arc volcanism may indicate that the slab has largely dewatered by the time it reaches sub-arc depths. Some of the water released during earthquakes (and possibly tremor) may percolate into the overriding plate, leading to slow seismic velocities in the forearc. In contrast, Siletzia shows relatively low seismicity rates and tremor density, with relatively higher shear velocities in the forearc. Siletzia also contains most of the young arc volcanoes in the Cascades, indicating that water is retained in the slab to depths where it can feed arc volcanism. Thus, the along strike variations in volcanic activity and seismic activity in Cascadia appear to be related to variations in depth of dewatering of the downgoing oceanic lithosphere.
NASA Astrophysics Data System (ADS)
Ishise, M.; Koketsu, K.; Miyake, H.; Oda, H.
2006-12-01
The Japan islands arc is located in the convergence zone of the North American (NA), Amurian (AM), Pacific (PAC) and Philippine Sea (PHS) plates, and its parts are exposed to various tectonic settings. For example, at the Kanto district in its central part, these four plates directly interact with each, so that disastrous future earthquakes are expected along the plate boundaries and within the inland areas. In order to understand this sort of complex tectonic setting, it is necessary to know the seismological structure in various perspectives. We investigate the seismic velocity structure beneath the Japan islands in view of P-wave anisotropy. We improved a hitherto-known P-wave tomography technique so that the 3-D structure of isotropic and anisotropic velocities and earthquake hypocenter locations are determined from P-wave arrival times of local earthquakes [Ishise and Oda, 2005]. In the tomography technique, P-wave anisotropy is assumed to hold hexagonal symmetry with horizontal symmetry axis. The P-wave arrival times used in this study are complied in the Japan University Network Earthquake Catalog. The results obtained are summarized as follows; (1) the upper crust anisotropy is governed by the present-day stress field arising from the interaction between the plates surrounding the Japan islands arc, (2) the mantle anisotropy is caused by the present-day mantle flow induced by slab subduction and continental plate motion, (3) the old PAC slab keeps its original slab anisotropy which was captured when the plate was formed, while the youngest part of the PHS slab has lost the original anisotropy during its subduction and has gained new anisotropy which is controlled by the present-day stress field. We also carried out a further study on high-resolution seismic tomography for understanding the specific characteristics of the Kanto district. We mostly focused on the elucidation of the dual subduction formed by the PHS and PAC slabs using seismological data compiled by the Natural Research Institute for Earth Science and Japan Meteorological Agency. This will lead to more accurate source modeling of future plate- boundary earthquakes.
Slab Penetration vs. Slab Stagnation: Mantle Reflectors as an Indicator
NASA Astrophysics Data System (ADS)
Okeler, A.; Gu, Y. J.; Schultz, R.; Contenti, S. M.
2011-12-01
Subducting oceanic lithosphere along convergent margins may stagnate near the base of the upper mantle or penetrate into the lower mantle. These dynamic processes cause extensive thermal and compositional variations, which can be observed in terms of impedance contrast (reflectivity) and topography of mantle transition zone (MTZ) discontinuities, i.e., 410- and 660-km discontinuities. In this study, we utilize ~ 15000 surface-reflected shear waves (SS) and their precursory arrivals (S410S and S660S) to analyze subduction related deformations on mantle reflectivity structure. We apply pre-stack, time-to-depth migration technique to SS precursors, and move weak underside reflections using PREM-predicted travel-time curves. Common Mid-point gathers are formed to investigate structure under the western Pacific, south America, and Mediterranean convergent boundaries. In general, mantle reflectivity structures are consistent with previous seismic tomography models. In regions of slab penetration (e.g., southern Kurile arc, Aegean Sea), our results show 1) a substantial decrease in S660S amplitude, and 2) strong lower mantle reflector(s) at ~ 900 km depth. These reflective structures are supported by zones of high P and S velocities extending into the lower mantle. Our 1-D synthetic simulations suggest that the decreasing S660S amplitudes are, at least partially, associated with shear wave defocusing due to changes in reflector depth (by ±20 km) within averaging bin. Assuming a ~500 km wide averaging area, a dipping reflector with 6-8 % slope can reduce the amplitude of a SS precursor by ~50%. On the other hand, broad depressions with strong impedance contrast at the base of the MTZ characterize the regions of slab stagnation, such as beneath the Tyrrhenian Sea and northeastern China. For the latter region, substantial topography on the 660-km discontinuity west of the Wadati-Benioff zone suggests that the stagnant part of the Pacific plate across Honshu arc is not nearly as flat as previously suggested.
Dry Juan de Fuca slab revealed by quantification of water entering Cascadia subduction zone
NASA Astrophysics Data System (ADS)
Canales, J. P.; Carbotte, S. M.; Nedimovic, M. R.; Carton, H. D.
2017-12-01
Water is carried by subducting slabs as a pore fluid and in structurally bound minerals, yet no comprehensive quantification of water content and how it is stored and distributed at depth within incoming plates exists for any segment of the global subduction system. Here we use controlled-source seismic data collected in 2012 as part of the Ridge-to-Trench seismic experiment to quantify the amount of pore and structurally bound water in the Juan de Fuca plate entering the Cascadia subduction zone. We use wide-angle OBS seismic data along a 400-km-long margin-parallel profile 10-15 km seaward from the Cascadia deformation front to obtain P-wave tomography models of the sediments, crust, and uppermost mantle, and effective medium theory combined with a stochastic description of crustal properties (e.g., temperature, alteration assemblages, porosity, pore aspect ratio), to analyze the pore fluid and structurally bound water reservoirs in the sediments, crust and lithospheric mantle, and their variations along the Cascadia margin. Our results demonstrate that the Juan de Fuca lower crust and mantle are much drier than at any other subducting plate, with most of the water stored in the sediments and upper crust. Previously documented, variable but limited bend faulting along the margin, which correlates with degree of plate locking, limits slab access to water, and a warm thermal structure resulting from a thick sediment cover and young plate age prevents significant serpentinization of the mantle. Our results have important implications for a number of subduction processes at Cascadia, such as: (1) the dryness of the lower crust and mantle indicates that fluids that facilitate episodic tremor and slip must be sourced from the subducted upper crust; (2) decompression rather than hydrous melting must dominate arc magmatism in northern-central Cascadia; and (3) dry subducted lower crust and mantle can explain the low levels of intermediate-depth seismicity in the Juan de Fuca slab.
Problem of image superresolution with a negative-refractive-index slab.
Nieto-Vesperinas, Manuel
2004-04-01
By means of the angular spectrum representation of wave fields, a discussion is given on the propagation and restoration of the wave-front structure in a slab of a left-handed medium (or negative-index medium) whose surface impedance matches that of vacuum, namely, one whose effective optical parameters are n = epsilon = mu = -1. This restoration was previously discussed [Phys. Rev. Lett. 85, 3866 (2000)] in regard to whether it may yield superresolved images. The divergence of the wave field in the slab, and its equivalence with that of the inverse diffraction propagator in free space, is addressed. Further, the existence of absorption, its regularization of this divergence, and the trade-off of a resulting limited superresolution are analyzed in detail in terms of its effect on the evanescent components of the wave field and hence on the transfer function width.
Resolving mantle structure beneath the Pacific Northwest
NASA Astrophysics Data System (ADS)
Darold, A. P.; Humphreys, E.; Schmandt, B.; Gao, H.
2011-12-01
Cenozoic tectonics of the Pacific Northwest (PNW) and the associated mantle structures are remarkable, the latter revealed only recently by EarthScope seismic data. Over the last ~66 Ma this region experienced a wide range of tectonic and magmatic conditions: Laramide compression, ~75-53 Ma, involving Farallon flat-slab subduction, regional uplift, and magmatic quiescence. With the ~53 Ma accretion of Siletzia ocean lithosphere within the Columbia Embayment, westward migration of subduction beginning Cascadia, along with initiation of the Cascade volcanic arc. Within the continental interior the Laramide orogeny was quickly followed by a period of extension involving metamorphic core complexes and the associated initial ignimbrite flare-up (both in northern Washington, Idaho, and western Montana); interior magmo-tectonic activity is attributed to flat-slab removal and (to the south) slab rollback. Rotation of Siletzia created new crust on SE Oregon and, at ~16 Ma, the Columbia River Flood Basalt (CRB) eruptions renewed vigorous magmatism. We have united several EarthScope studies in the Pacific Northwest and have focused on better resolving the major mantle structures that have been discovered. We have tomographically modeled the body waves with teleseismic, finite-frequency code under the constraints of ambient noise tomography and teleseismic receiver function models of Gao et al. (2011), and teleseismic anisotropy models of Long et al. (2009) in order to resolve structures continuously from the surface to the base of the upper mantle. We now have clear imaging of two episodes of subduction: Juan De Fuca slab deeper than ~250 km is absent across much of the PNW, and it has an E-W tear located beneath northern Oregon; Farallon slab (the "Siletzia curtain") is still present, hanging vertically just inboard of the core complexes, and with a basal tear causing the structure to extend deeper (~600 km) beneath north-central Idaho than beneath south-central Idaho and northern Washington (~300 km). Lying just west of the Siletzia curtain, beneath NE Oregon, is a prominent high-velocity body centered on 250 km depth. Its nearly circular plan view corresponds with the area of intense Columbia River Basalt eruptions and with the circular topographic bull's eye centered on the recently uplifted (post CRB) Wallowa Mountains. Finally, we are investigating a very low-velocity volume of mantle present between the E-W Juan de Fuca tear and the high-velocity body beneath the Wallowa Mountains. At 250 km depth this is the strongest low-velocity anomaly beneath the western U.S. Presently we are completing resolution testing on the structures revealed through our imaging in order to resolve their structural details. These synthetic resolution tests along with the high resolution imaging of the crust and upper mantle will clarify several previously cited structures as well as strengthen our conclusions on the tectonic history and geodynamical evolution of the mantle while aiding in putting together a comprehensive story for the area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkel, M. van; Fellow of the Japan Society for the Promotion of Science; FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Association EURATOM- FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein
2014-11-15
In this paper, a number of new approximations are introduced to estimate the perturbative diffusivity (χ), convectivity (V), and damping (τ) in cylindrical geometry. For this purpose, the harmonic components of heat waves induced by localized deposition of modulated power are used. The approximations are based on semi-infinite slab approximations of the heat equation. The main result is the approximation of χ under the influence of V and τ based on the phase of two harmonics making the estimate less sensitive to calibration errors. To understand why the slab approximations can estimate χ well in cylindrical geometry, the relationships betweenmore » heat transport models in slab and cylindrical geometry are studied. In addition, the relationship between amplitude and phase with respect to their derivatives, used to estimate χ, is discussed. The results are presented in terms of the relative error for the different derived approximations for different values of frequency, transport coefficients, and dimensionless radius. The approximations show a significant region in which χ, V, and τ can be estimated well, but also regions in which the error is large. Also, it is shown that some compensation is necessary to estimate V and τ in a cylindrical geometry. On the other hand, errors resulting from the simplified assumptions are also discussed showing that estimating realistic values for V and τ based on infinite domains will be difficult in practice. This paper is the first part (Part I) of a series of three papers. In Part II and Part III, cylindrical approximations based directly on semi-infinite cylindrical domain (outward propagating heat pulses) and inward propagating heat pulses in a cylindrical domain, respectively, will be treated.« less
Tomography and Dynamics of Western-Pacific Subduction Zones
NASA Astrophysics Data System (ADS)
Zhao, D.
2012-01-01
We review the significant recent results of multiscale seismic tomography of the Western-Pacific subduction zones and discuss their implications for seismotectonics, magmatism, and subduction dynamics, with an emphasis on the Japan Islands. Many important new findings are obtained due to technical advances in tomography, such as the handling of complex-shaped velocity discontinuities, the use of various later phases, the joint inversion of local and teleseismic data, tomographic imaging outside a seismic network, and P-wave anisotropy tomography. Prominent low-velocity (low-V) and high-attenuation (low-Q) zones are revealed in the crust and uppermost mantle beneath active arc and back-arc volcanoes and they extend to the deeper portion of the mantle wedge, indicating that the low-V/low-Q zones form the sources of arc magmatism and volcanism, and the arc magmatic system is related to deep processes such as convective circulation in the mantle wedge and dehydration reactions in the subducting slab. Seismic anisotropy seems to exist in all portions of the Northeast Japan subduction zone, including the upper and lower crust, the mantle wedge and the subducting Pacific slab. Multilayer anisotropies with different orientations may have caused the apparently weak shear-wave splitting observed so far, whereas recent results show a greater effect of crustal anisotropy than previously thought. Deep subduction of the Philippine Sea slab and deep dehydration of the Pacific slab are revealed beneath Southwest Japan. Significant structural heterogeneities are imaged in the source areas of large earthquakes in the crust, subducting slab and interplate megathrust zone, which may reflect fluids and/or magma originating from slab dehydration that affected the rupture nucleation of large earthquakes. These results suggest that large earthquakes do not strike anywhere, but in only anomalous areas that may be detected with geophysical methods. The occurrence of deep earthquakes under the Japan Sea and the East Asia margin may be related to a metastable olivine wedge in the subducting Pacific slab. The Pacific slab becomes stagnant in the mantle transition zone under East Asia, and a big mantle wedge (BMW) has formed above the stagnant slab. Convective circulations and fluid and magmatic processes in the BMW may have caused intraplate volcanism (e.g., Changbai and Wudalianchi), reactivation of the North China craton, large earthquakes, and other active tectonics in East Asia. Deep subduction and dehydration of continental plates (such as the Eurasian plate, Indian plate and Burma microplate) are also found, which have caused intraplate magmatism (e.g., Tengchong) and geothermal anomalies above the subducted continental plates. Under Kamchatka, the subducting Pacific slab shortens toward the north and terminates near the Aleutian-Kamchatka junction. The slab loss was induced by friction with the surrounding asthenosphere, as the Pacific plate rotated clockwise 30 Ma ago, and then it was enlarged by the slab-edge pinch-off by the asthenospheric flow. The stagnant slab finally collapses down to the bottom of the mantle, which may trigger upwelling of hot mantle materials from the lower mantle to the shallow mantle. Suggestions are also made for future directions of the seismological research of subduction zones.
Structure of the Sumatra-Andaman subduction zone
NASA Astrophysics Data System (ADS)
Pesicek, Jeremy Dale
We have conducted studies of the Sumatra-Andaman subduction zone using newly available teleseismic data resulting from the aftershock sequences of the 2004, 2005, and 2007 great earthquakes that occurred offshore of the island of Sumatra. In order to better exploit the new data, existing methodologies have been adapted and advanced in several ways to obtain results at a level of precision not previously possible from teleseismic data. Seismic tomography studies of the mantle were conducted using an improved iterative technique that accounts for fine-scale three-dimensional (3-D) velocity variations inside the study region and coarser global velocity variations outside the region. More precise earthquake locations were determined using a double-difference technique that has been extended to teleseismic distances using spherical ray tracing through the nested 3-D regional-global velocity models. Earthquake relocation was included in the iterative tomography scheme and was found to significantly enhance the recovery of slab velocity anomalies. Finally, because crustal structure is poorly constrained by the teleseismic data, 3-D density modeling of the crust was conducted using newly available satellite gravity data and a spherical prism gravity algorithm. The results of these studies better constrain the structure of the Sumatra-Andaman subduction zone, including the geometry of the mantle slab, position of the megathrust, and structural features of the downgoing plate. Tomography results reveal continuous upper mantle slab anomalies with significant variations in dip throughout the region. Broad curvature of the fast anomalies beneath northern Sumatra, similar to curvature of the trench and volcanic arc at the surface, is interpreted as folding of the upper mantle slab. Earthquake relocations show systematic shifts of the hypocenters to the northeast and to shallower depths, each with average changes of 5 km. Reduced scatter in the relocations better constrain the megathrust plate boundary and the regions of coseismic slip during the 2004 and 2005 great earthquakes. In addition, the relocations reveal discrete seismic features on the downgoing plate not previously visible in teleseismic catalogs. The new velocity model and earthquake locations provide the most comprehensive view of the deep structure of the Sumatra-Andaman subduction zone yet available.
NASA Astrophysics Data System (ADS)
Wu, J. E.; Suppe, J.; Renqi, L.; Lin, C.; Kanda, R. V.
2013-12-01
The past locations, shapes and polarity of subduction trenches provide first-order constraints for plate tectonic reconstructions. Analogue and numerical models of subduction zones suggest that relative subducting (Vs) and overriding (Vor) plate velocities may strongly influence final subducted slab geometries. Here we have mapped the 3D geometries of subducted slabs in the upper and lower mantle of Asia from global seismic tomography. We have incorporated these slabs into plate tectonic models, which allows us to infer the subducting and overriding plate velocities. We describe two distinct slab geometry styles, ';flat slabs' and ';slab curtains', and show their implications for paleo-trench positions and subduction geometries in plate tectonic reconstructions. When compared to analogue and numerical models, the mapped slab styles show similarities to modeled slabs that occupy very different locations within Vs:Vor parameter space. ';Flat slabs' include large swaths of sub-horizontal slabs in the lower mantle that underlie the well-known northward paths of India and Australia from Eastern Gondwana, viewed in a moving hotspot reference. At India the flat slabs account for a significant proportion of the predicted lost Ceno-Tethys Ocean since ~100 Ma, whereas at Australia they record the existence of a major 8000km by 2500-3000km ocean that existed at ~43 Ma between East Asia, the Pacific and Australia. Plate reconstructions incorporating the slab constraints imply these flat slab geometries were generated when continent overran oceanic lithosphere to produce rapid trench retreat, or in other words, when subducting and overriding velocities were equal (i.e. Vs ~ Vor). ';Slab curtains' include subvertical Pacific slabs near the Izu-Bonin and Marianas trenches that extend from the surface down to 1500 km in the lower mantle and are 400 to 500 km thick. Reconstructed slab lengths were assessed from tomographic volumes calculated at serial cross-sections. The ';slab curtain' geometry and restored slab lengths indicate a nearly stationary Pacific trench since ~43 Ma. In contrast to the flat slabs, here the reconstructed subduction zone had large subducting plate velocities relative to very small overriding plate velocities (i.e. Vs >> Vor). In addition to flat slabs and slab curtains, we also find other less widespread local subduction settings that lie at other locations in Vs:Vor parameter space or involved other processes. Slabs were mapped using Gocad software. Mapped slabs were restored to a spherical model Earth surface by two approaches: unfolding (i.e. piecewise flattening) to minimize shape and area distortions, and by evaluated mapped slab volumes. Gplates software was used to integrate the mapped slabs with plate tectonic reconstructions.
NASA Astrophysics Data System (ADS)
Nghia, N. C.; Huang, B. S.; Chen, P. F.
2017-12-01
The subduction of South China Sea beneath the Luzon Island has caused a complex setting of seismicity and magmatism because of the proposed ridge subduction and slab tearing. To constrain the validity of slab tearing induced by ridge subduction and their effect, we performed a P and S wave seismic tomography travel time inversion using LOTOS code. The dataset has been retrieved from International Seismological Centre from 1960 to 2008. A 1D velocity inverted by using VELEST with a Vp/Vs ratio of 1.74 is used as the starting input velocity for tomographic inversion. Total of 20905 P readings and 8126 S readings from 2355 earthquakes events were used to invert for velocity structure beneath Luzon Island. The horizontal tomographic results show low-velocity, high Vp/Vs regions at the shallow depth less than 50 km which are interpreted as the magmatic chambers of the volcanic system in Luzon. At the suspected region of slab tearing at 16oN to 18oN, two sources of magma have been indentified: slab window magma at shallow depth (< 50 km) and magma induced by mantle wedge partial melting from higher depth. This slab melting may have changed the composition of magmatic to become more silicic with high viscosity, which explains the volcanic gap in this region. At the region of 14oN to 15oN, large magma chambers under active volcanos are identified which explain the active volcanism in this region. Contrast to the region of slab tearing, in this region, the magma chambers are fed by only magma from partial melting of mantle wedge from the depth higher than 100 km. These observations are consistent with previous work on the slab tearing of South China Sea and the activities of volcanism in the Luzon Island.
Interaction of the Cyprus/Tethys Slab With the Mantle Transition Zone Beneath Anatolia
NASA Astrophysics Data System (ADS)
Thompson, D. A.; Rost, S.; Taylor, G.; Cornwell, D. G.
2017-12-01
The geodynamics of the eastern Mediterranean are dominated by northward motion of the Arabian/African continents and subduction of the oldest oceanic crust on the planet along the Aegean and Cyprean trenches. These slabs have previously been imaged using seismic tomography on a continental scale, but detailed information regarding their descent from upper to lower mantle and how they interact with the mantle transition zone have been severely lacking. The Dense Array for North Anatolia (DANA) was a 73 station passive seismic deployment active between 2012-2013 with the primary aim of imaging shallow structure beneath the North Anatolian Fault. However, we exploit the exceptional dataset recorded by DANA to characterise a region where the Cyprus Slab impinges upon the mantle transition zone beneath northern Turkey, providing arguably the most detailed view of a slab as it transits from the upper to lower mantle. We map varying depths and amplitudes of the transition zone seismic discontinuities (`410', `520' and `660') in 3D using over 1500 high quality receiver functions over an area of approximately 200km x 300km. The `410' is observed close to its predicted depth, but the `660' is depressed to >670 km across the entirety of the study region. This is consistent with an accumulation of cold subducted material at the base of the upper mantle, and the presence of a `520' discontinuity in the vicinity of the slab surface also suggests that the slab is present deep within the transition zone. Anomalous low velocity layers above and within the transition zone are constrained and may indicate hydration and ongoing mass/fluid flux between upper and lower mantle in the presence of subduction. The results of the study have implications not only for the regional geodynamics of Anatolia, but also for slab dynamics globally.
NASA Astrophysics Data System (ADS)
Porritt, R. W.; Allen, R. M.; Pollitz, F. F.; Hung, S.
2012-12-01
The 150 million year history of subduction of the Farallon plate is being well elucidated by the passage of USArray. In this study, we use body wave relative delay times to generate independent P, SV, and SH relative velocity models for the USArray footprint. In addition, we use Rayleigh wave phase velocities derived from teleseismic earthquakes and ambient seismic noise to constrain the lithospheric structure where body waves have limited crossing ray information to form the SV-joint velocity model. The model volume contains a complex series of high velocities mostly along a planar front representing the remnants of the Farallon plate system. This feature has significant lateral and radial extent; beginning off the western coast of the US and terminating east of the model resolution, which goes to the Mississippi river. The bottom of the slab is well imaged through the mantle transition zone to at least 1000km. However, low velocity anomalies within this plane show the slab is far from a continuous sheet. Low velocities break up the slab into several major provinces, relating to different ages of orogens and an episode of flat slab subduction. Additionally, high velocities are often imaged well above the trace of the top of the slab with similar anomaly amplitude and dip as the main slab. While many of these anomalies have been interpreted as mantle drips, the similarity to the slab suggests a possible subduction origin for the features. However, the relatively shallow depths of these features require some mechanism of differentiation to develop neutral buoyancy. The prevalence of these high velocities, such as the Siletzia Curtain, Isabella Anomaly, Nevada Anomaly, and a newly imaged feature under southwest Texas, suggests a differentiation mechanism is fairly common among plates subducting under North America allowing for the observation of widespread shallow high velocity anomalies.
NASA Astrophysics Data System (ADS)
Malusa', Marco Giovanni; Salimbeni, Simone; Zhao, Liang; Guillot, Stéphane; Pondrelli, Silvia; Margheriti, Lucia; Paul, Anne; Solarino, Stefano; Aubert, Coralie; Dumont, Thierry; Schwartz, Stéphane; Wang, Qingchen; Xu, Xiaobing; Zheng, Tianyu; Zhu, Rixiang
2017-04-01
The role of surface and deep-seated processes in controlling the topography of complex plate-boundary areas is a highly debated issue. In the Western Alps, which include the highest summits in Europe, factors controlling topographic uplift still remain poorly understood. In the absence of active convergence, recent works have suggested a potential linkage between slab breakoff and fast uplift, but this hypothesis is ruled out by the down-dip continuity of the Alpine slab documented by recent tomographic images of the upper mantle beneath the Alpine region (Zhao et al. 2016). In order to shed light on this issue, we use a densely spaced array of temporary broadband seismic stations and previously published observations to analyze the seismic anisotropy pattern along the transition zone between the Alps and the Apennines, within the framework of the upper mantle structure unveiled by P wave tomography. Our results show a continuous trend of anisotropy fast axes near-parallel to the western alpine arc, possibly due to an asthenospheric counterflow triggered by the eastward retreat of the Apenninic slab. This trend is located in correspondence of a low velocity anomaly in the European upper mantle, and beneath the Western Alps region characterized by the highest uplift rates, which may suggest a potential impact of mantle dynamics on Alpine topography. We propose that the progressive rollback of the Apenninic slab induced a suction effect and an asthenospheric counterflow at the rear of the unbroken Alpine slab and around its southern tip, as well as an asthenospheric upwelling, mirrored by low P wave velocities, which may have favored the topographic uplift of the Alpine belt from the Mt Blanc to the Ligurian coast. Zhao L. et al., 2016. Continuity of the Alpine slab unraveled by high-resolution P wave tomography. J. Geophys. Res., doi:10.1002/2016JB013310.
Slab geometry of the South American margin from joint inversion of body waves and surface waves
NASA Astrophysics Data System (ADS)
Porritt, R. W.; Ward, K. M.; Porter, R. C.; Portner, D. E.; Lynner, C.; Beck, S. L.; Zandt, G.
2016-12-01
The western margin of South America is a long subduction zone with a complex, highly three -dimensional geometry. The first order structure of the slab has previously been inferred from seismicity patterns and locations of volcanoes, but confirmation of the slab geometry by seismic imaging for the entire margin has been limited by either shallow, lithospheric scale models or broader, upper mantle images, often defined on a limited spatial footprint. Here, we present new teleseismic tomographic SV seismic models of the upper mantle from 10°S to 40°S along the South American subduction zone with resolution to a depth of 1000 km as inferred from checkerboard tests. In regions near the Peru Bolivia border (12°S to 18°S) and near central Chile and western Argentina (29.5°S to 33°S) we jointly invert the multi-band direct S and SKS relative delay times with Rayleigh wave phase velocities from ambient noise and teleseismic surface wave tomography. This self-consistent model provides information from the upper crust to below the mantle transition zone along the western margin in these two regions. This consistency allows tracing the slab from the South American coastline to the sub-transition zone upper mantle. From this model we image several features, but most notable is a significant eastward step near the southern edge of the margin (24°-30° S). West of this step, a large high shear velocity body is imaged in the base of and below the transition zone. We suggest this may be a stagnant slab, which is descending into the lower mantle now that it is no longer attached to the surface. This suggests a new component to the subduction history of western South America when an older slab lead the convergence before anchoring in the transition zone, breaking off from the surface, and being overtaken by the modern, actively subducting slab now located further east.
NASA Astrophysics Data System (ADS)
Chen, Yi-Wei; Wu, Jonny; Suppe, John; Liu, Han-Fang
2016-04-01
Our understanding of the global plate tectonics is based mainly on seafloor spreading and hotspot data obtained from the present earth surface, which records the growth of present ocean basins. However, in convergent tectonic settings vast amounts of lithosphere has been lost to subduction, contributing to increasing uncertainty in plate reconstruction with age. However, subducted lithosphere imaged in seismic tomography provides important information. By analyzing subducted slabs we identify the loci of subduction and assess the size and shape of subducted slabs, giving better constrained global plate tectonic models. The Andean margin of South America is a classic example of continuous subduction up to the present day, providing an opportunity to test the global plate prediction that ~24×10e6 km2 (4.7% of earth surface) lithosphere has been subducted since ~80 Ma. In this study, we used 10 different global seismic tomographies and Benioff zone seismicity under South America. To identify slabs, we first compared all data sets in horizontal slices and found the subducted Nazca slab is the most obvious structure between the surface and 750 km depth, well imaged between 10°N and 30°S. The bottom of the subducted Nazca slab reaches its greatest depth at 1400 km at 3°N (Carnegie Andes) and gradually shallows towards the south with 900 km minimum depth at 30°S (Pampean Andes). To assess the undeformed length of subducted slab, we used a refined cross-sectional area unfolding method from Wu et al. (in prep.) in the MITP08 seismic tomography (Li et al., 2008). Having cut spherical-Earth tomographic profiles that parallel to the Nazca-South America convergence direction, we measured slab areas as a function of depth based on edges defined by steep velocity gradients, calculating the raw length of the slab by the area and dividing an assumed initial thickness of oceanic lithosphere of 100km. Slab areas were corrected for density based on the PREM Earth model (Dziewonski and Anderson, 1981). We found the unfolded length of the Nazca slab is 7000km at 5°N and gradually decreases to 4700 km at 30°S, with total area of ~24×10e6 km2. Finally, we imported our unfolded Nazca slab into Gplates software to reconstruct its tectonic evolution, using the Seton et al. (2012) and Gibbons et al. (2015) global plate model. We find that our unfolded base of the Nazca slab fits tightly against South America at ~80 Ma if the pre-deformed South America margin of McQuarrie (2002) is used. This close fit implies a plate reorganization at the South American margin, marking the beginning of Nazca subduction at ~80 Ma. This observation is in agreement with a beginning of Andian magmatism ~80 Ma, following a 80-100 Ma hiatus in magmatism (Haschke et al., 2002). This result illustrates the importance of subducted-slab constraints in convergent plate-tectonic reconstruction. Our study also provides tracers for mantle flow yielding Nazca slab sinking rates between 1.2 cm/yr and 1.6 cm/yr, which are similar to other global results.
NASA Astrophysics Data System (ADS)
Ibañes, Oscar Damián; Sruoga, Patricia; Japas, María Silvia; Urbina, y. Nilda Esther
2017-07-01
The Neogene Tiporco Volcanic Complex (TVC) is located in the Sierras Pampeanas of San Luis, Argentina, at the southeast of the Pampean flat-slab segment. Based on the comprehensive study of lithofacies and structures, the reconstruction of the volcanic architecture has been carried out. The TVC has been modeled in three subsequent stages: 1) initial updoming, 2) ignimbritic eruptive activity and 3) lava dome emplacement. Interplay of magma injection and transtensional tectonic deformation has been invoked to reproduce TVC evolution.
Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs
NASA Astrophysics Data System (ADS)
Iwanaga, Masanobu
2010-02-01
It has been experimentally and numerically shown that transmission at near infrared wavelengths is selectively controlled by polarizations in two-dimensional complementary plasmonic crystal slabs (2D c-PlCSs) of stacked unit cell. This feature is naturally derived by taking account of Babinet's principle. Moreover, the slight structural modification of the unit cell has been found to result in a drastic change in linear optical responses of stacked 2D c-PlCSs. These results substantiate the feasibility of 2D c-PlCSs for producing efficient polarizers with subwavelength thickness.
The dynamics of double slab subduction
NASA Astrophysics Data System (ADS)
Holt, A. F.; Royden, L. H.; Becker, T. W.
2017-04-01
We use numerical models to investigate the dynamics of two interacting slabs with parallel trenches. Cases considered are: a single slab reference, outward dipping slabs (out-dip), inward dipping slabs (in-dip) and slabs dipping in the same direction (same-dip). Where trenches converge over time (same-dip and out-dip systems), large positive dynamic pressures in the asthenosphere are generated beneath the middle plate and large trench-normal extensional forces are transmitted through the middle plate. This results in slabs that dip away from the middle plate at depth, independent of trench geometry. The single slab, the front slab in the same-dip case and both out-dip slabs undergo trench retreat and exhibit stable subduction. However, slabs within the other double subduction systems tend to completely overturn at the base of the upper mantle, and exhibit either trench advance (rear slab in same-dip), or near-stationary trenches (in-dip). For all slabs, the net slab-normal dynamic pressure at 330 km depth is nearly equal to the slab-normal force induced by slab buoyancy. For double subduction, the net outward force on the slabs due to dynamic pressure from the asthenosphere is effectively counterbalanced by the net extensional force transmitted through the middle plate. Thus, dynamic pressure at depth, interplate coupling and lithospheric stresses are closely linked and their effects cannot be isolated. Our results provide insights into both the temporal evolution of double slab systems on Earth and, more generally, how the various components of subduction systems, from mantle flow/pressure to interplate coupling, are dynamically linked.
Hydrogen bonding in goldichite, KFe(SO4)2ṡ4H2O: structure refinement
NASA Astrophysics Data System (ADS)
Yang, Zhuming; Giester, Gerald
2018-02-01
The crystal structure of goldichite KFe(SO4)2ṡ4H2O was determined on a single crystal from the Baiyinchang copper deposit, Gansu, China. [ P121/ c1, a = 10.395(2), b = 10.475(2), c = 9.0875(18) Å, β = 101.65(3)°, V = 969.1(3) Å3, Z = 4]. All non-H atoms were refined with anisotropic displacement parameters and positions of H-atoms were determined by difference Fourier methods and refined from X-ray diffraction data. The crystal structure of goldichite consists of corrugated sheets parallel to the (100) plane by sharing corners between FeO6 octahedra and SO4 tetrahedra. The interstitial potassium atom exhibits a [KO7(H2O)2] nine-fold coordination, which shares edges to form a column parallel to the c-axis and to build a slab with the corrugated sheet. These slabs are linked in the [100] direction through a network of hydrogen bonds. Three types of hydrogen bonds involve links of slabs: Ow(3)-H(3B)···O(1), Ow(6)-H(6B)···O(11) and Ow(9)-H(9B)···O(11). The FTIR spectrum of goldichite shows a strong absorption between 3384 cm-1 and 3592 cm-1, which is in accordance with the O-H···O distances derived from structure data.
NASA Astrophysics Data System (ADS)
Williams, Gabriel J.
2015-03-01
The effects of vortex translation and radial vortex structure in the distribution of boundary layer winds in the inner core of mature tropical cyclones are examined using a high-resolution slab model and a multilevel model. It is shown that the structure and magnitude of the wind field (and the corresponding secondary circulation) depends sensitively on the radial gradient of the gradient wind field above the boundary layer. Furthermore, it is shown that vortex translation creates low wave number asymmetries in the wind field that rotate anticyclonically with height. A budget analysis of the steady state wind field for both models was also performed in this study. Although the agradient force drives the evolution of the boundary layer wind field for both models, it is shown that the manner in which the boundary layer flow responds to this force differs between the two model representations. In particular, the inner core boundary layer flow in the slab model is dominated by the effects of horizontal advection and horizontal diffusion, leading to the development of shock structures in the model. Conversely, the inner core boundary layer flow in the multilevel model is primarily influenced by the effects of vertical advection and vertical diffusion, which eliminates shock structures in this model. These results further indicate that special care is required to ensure that qualitative applications from slab models are not unduly affected by the neglect of vertical advection. This article was corrected on 31 MAR 2015. See the end of the full text for details.
NASA Astrophysics Data System (ADS)
Stern, R. J.; Ribeiro, J. M.; Martinez, F.; Ohara, Y.
2017-12-01
The Challenger Deep (CD) is the deepest spot on Earth's solid surface and the reasons for its great depth are controversial. In general, trench depths (without sediments) are thought to reflect slab age; old oceanic lithosphere arrives at the trench deeper so similar downbending makes deeper trenches than young oceanic lithosphere. Slab tears and edges and short slabs also may help trenches deepen by making it easier to roll back. In the case of the CD, we are unsure of subducted oceanic lithosphere age because this lies near the juncture of Jurassic and Oligocene crusts. A slab edge to the west and a slab tear to the east may also help the Pacific plate roll back and contribute to its depth. A possible unexamined reason for CD's great depth may be strong extension of the overlying plate associated with opening of the Mariana Trough backarc basin (MT-BAB). GPS on islands indicate southward-increasing extension rates of at least 45mm/yr at the latitude of Guam (Kato et al. 2003 GRL; see Martinez et al. T037 for more info); extension rates are likely to be greater in the MT-BAB north of CD. There are few convergent margins where strong extension affects the overriding plate. Overriding plate extension may help deepen trenches by narrowing the plate coupling zone (Gvirtzman and Stern 2003 Tectonics). Asthenosphere outflow from the shrinking Philippine Sea plate could also push against the slab to depress it. The region around the CD is very deep water, presenting major challenges for future study. The combined deepwater assets and brainpower of the US, Japan, and China are needed to do this work. Both subducting and overriding plates need study. For the downgoing plate, we need IODP drilling and refraction studies to determine its age and crustal and lithospheric structure; electromagnetic sounding would also help reveal upper plate structure. We need passive OBS studies to map slab tears and edges. We need to better understand the tectonic evolution of the MT-BAB-CD region over the last few Ma. To do this, we need better sampling of seafloor basalts to determine their composition and age. Further exploration is needed to find more forearc seeps such as Shinkai Seep Field (Okumura et al. 2016, G3). Understanding the CD and surrounding region provides a natural focus for joint US-Japan-China marine geoscientific research in the 21st Century.
NASA Astrophysics Data System (ADS)
Linkimer, L.; Beck, S. L.; Zandt, G.; Alvarado, P. M.; Anderson, M. L.; Gilbert, H. J.; Zhang, H.
2011-12-01
We obtain earthquake locations and a detailed three-dimensional model of the subduction zone velocity structure in west-central Argentina by applying a regional-scale double-difference tomography algorithm to earthquake data recorded by the SIEMBRA (2007-2009) and ESP (2008-2010) broadband seismic networks. In this region, the flat subduction of the Nazca Plate including the Juan Fernandez Ridge is spatially correlated in the overriding South America Plate with a gap in the arc volcanism and the thick-skinned, basement-cored uplifts of the Sierras Pampeanas. Our model shows the subducting Nazca Plate as a mostly continuous band of increased (2-6%) P- and S- wave velocities (Vp and Vs). The lithospheric mantle of the South America Plate appears to be heterogeneous but mostly characterized by Vp of 8.0-8.2 km/s, Vs of 4.5-4.7 km/s, and Vp/Vs ratio of 1.75-1.78, which is consistent with either a depleted lherzolite or harzburgite. We observe a region of higher Vp/Vs ratio (1.78-1.80) that we correlated with up to 10% hydration of mantle peridotites above the flat slab. In addition, we observe localized regions of lower Vp/Vs ratio (1.71-1.73) in the mantle above the westernmost part of the flat slab, suggesting orthopyroxene enrichment. Our velocity observations are consistent with the presence of Paleozoic carbonate rocks in the Precordillera and the differences in composition for the Sierras Pampeanas basement: a more mafic composition for Cuyania Terrane in the west and a more felsic composition for the Pampia Terrane in the east. Additionally, we present new contours for the Wadati-Benioff Zone (WBZ). The top of the WBZ of the Nazca Plate is nearly flat at ~100 km depth approximately within the region of latitude 28-32°S and longitude 70-68.5°W. We determined that WBZ is a single layer of seismicity with thickness of 10-15 km, which may correspond to the dehydration of the subducting oceanic mantle. We found that the flat slab region is wider (~240 km) than the Juan Fernandez Ridge offshore (~100 km), and together with the shape of the slab contours may reflect the response of the geometry of the slab to the southward migration of the buoyant ridge. The non-uniform spatial distribution of the slab seismicity may reflect the variability in the hydration state of the subducting Nazca Plate with greater release of water from the subducted ridge region.
NASA Astrophysics Data System (ADS)
Linkimer, L.; Beck, S. L.; Zandt, G.; Alvarado, P. M.; Anderson, M. L.; Gilbert, H. J.; Zhang, H.
2013-05-01
We obtain earthquake locations and a detailed three-dimensional model of the subduction zone velocity structure in west-central Argentina by applying a regional-scale double-difference tomography algorithm to earthquake data recorded by the SIEMBRA (2007-2009) and ESP (2008-2010) broadband seismic networks. In this region, the flat subduction of the Nazca Plate including the Juan Fernandez Ridge is spatially correlated in the overriding South America Plate with a gap in the arc volcanism and the thick-skinned, basement-cored uplifts of the Sierras Pampeanas. Our model shows the subducting Nazca Plate as a mostly continuous band of increased (2-6%) P- and S- wave velocities (Vp and Vs). The lithospheric mantle of the South America Plate appears to be heterogeneous but mostly characterized by Vp of 8.0-8.2 km/s, Vs of 4.5-4.7 km/s, and Vp/Vs ratio of 1.75-1.78, which is consistent with either a depleted lherzolite or harzburgite. We observe a region of higher Vp/Vs ratio (1.78-1.80) that we correlated with up to 10% hydration of mantle peridotites above the flat slab. In addition, we observe localized regions of lower Vp/Vs ratio (1.71-1.73) in the mantle above the westernmost part of the flat slab, suggesting orthopyroxene enrichment. Our velocity observations are consistent with the presence of Paleozoic carbonate rocks in the Precordillera and the differences in composition for the Sierras Pampeanas basement: a more mafic composition for Cuyania Terrane in the west and a more felsic composition for the Pampia Terrane in the east. Additionally, we present new contours for the Wadati-Benioff Zone (WBZ). The top of the WBZ of the Nazca Plate is nearly flat at ~100 km depth approximately within the region of latitude 28-32°S and longitude 70-68.5°W. We determined that WBZ is a single layer of seismicity with thickness of 10-15 km, which may correspond to the dehydration of the subducting oceanic mantle. We found that the flat slab region is wider (~240 km) than the Juan Fernandez Ridge offshore (~100 km), and together with the shape of the slab contours may reflect the response of the geometry of the slab to the southward migration of the buoyant ridge. The non-uniform spatial distribution of the slab seismicity may reflect the variability in the hydration state of the subducting Nazca Plate with greater release of water from the subducted ridge region.
Generating Atomistic Slab Surfaces with Adsorbates
2017-12-01
OTHER DEALINGS IN THE SOFTWARE. from six.moves import range import os import sys import math import copy import numpy as np from...import StructureMatcher from math import acos from mpinterfaces.utils import align_axis, add_vacuum from pymatgen.analysis.structure_matcher import
NASA Astrophysics Data System (ADS)
Laurencin, Muriel; Marcaillou, Boris; Klingelhoefer, Frauke; Graindorge, David; Lebrun, Jean-Frédéric; Laigle, Mireille; Lallemand, Serge
2017-04-01
Marine geophysical cruises Antithesis (2013-2016) investigate the impact of the variations in interplate geometry onto margin tectonic deformation along the strongly oblique Lesser Antilles subduction zone. A striking features of this margin is the drastic increase in earthquake number from the quiet Barbuda-St Martin segment to the Virgin Islands platform. Wide-angle seismic data highlight a northward shallowing of the downgoing plate: in a 150 km distance from the deformation front, the slab dipping angle in the convergence direction decreases from 12° offshore of Antigua Island to 7° offshore of Virgin Islands. North-South wide-angle seismic line substantiates a drastic slab-dip change that likely causes this northward shallowing. This dip change is located beneath the southern tip of the Virgin Islands platform where the Anegada Passage entails the upper plate. Based on deep seismic lines and bathymetric data, the Anegada Passage is a 450 km long W-E trending set of pull-apart basins and strike-slip faults that extends from the Lesser Antilles accretionary prism to Puerto Rico. The newly observed sedimentary architecture within pull-apart Sombrero and Malliwana basins indicates a polyphased tectonic history. A past prominent NW-SE extensive to transtensive phase, possibly related to the Bahamas Bank collision, opened the Anegada Passage as previously published. Transpressive tectonic evidences indicate that these structures have been recently reactivated in an en-echelon sinistral strike-slip system. The interpreted strain ellipsoid is consistent with deformation partitioning. We propose that the slab northward shallowing increases the interplate coupling and the seismic activity beneath the Virgin Islands platform comparatively to the quiet Barbuda-St Martin segment. It is noteworthy that the major tectonic partitioning structure in the Lesser Antilles forearc is located above the slab dip change where the interplate seismic coupling increases.
Putting the slab back: First steps of creating a synthetic seismic section of subducted lithosphere
NASA Astrophysics Data System (ADS)
Zertani, S.; John, T.; Tilmann, F. J.; Leiss, B.; Labrousse, L.; Andersen, T. B.
2016-12-01
Imaging subducted lithosphere is a difficult task which is usually tackled with geophysical methods. To date, the most promising method is receiver function imaging (RF), which concentrates on first order conversions from p- to s-waves at boundaries (e.g. lithological and structural) with contrasting seismic velocities. The resolution is high for the upper parts of the subducting material. However, in greater depths (40-80 km) the visualization of the subducted slab becomes increasingly blurry, until the slab cannot be distinguished from Earth's mantle anymore, rendering a visualization impossible. This blurry zone is thought to occur due to advancing eclogitization of the subducting slab. However, it is not well understood how micro- to macro-scale structures related to progressive eclogitization affect RF signals. The island of Holsnoy in the Bergen Arcs of western Norway represents a partially eclogitized formerly subducted block of lower crust and serves as an analogue to the aforementioned blurry zone in RF images. This eclogitization can be observed in static fluid induced eclogitization patches or fingers, but is mainly present in localized shear zones of variable sizes (mm to 100s of meters). We mapped the area to gain a better understanding of the geometries of such shear zones, which could possibly function as seismic reflectors. Further, we calculated seismic velocities from thermodynamic modelling on the basis of XRF whole rock analysis and compared these results to velocities calculated from a combination of thin section information, EMPA and physical mineral properties (Voigt-Reuss-Hill averaging). Both methods yield consistent results for p- and s-wave velocities of eclogites and granulites from Holsnoy. In combination with X-ray measurements to identify the microtextures of the characteristic samples to incorporate seismic anisotropy caused by e.g. foliation or lineation, these seismic velocities are used as an input for seismic models to reconstruct the progressive eclogitization of a subducting slab as seen in many RF-images (i.e. blurry zone).
XAS Study at Mo and Co K-Edges of the Sulfidation of a CoMo / Al2O3 Hydrotreating Catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pichon, C.; Gandubert, A. D.; Legens, C.
2007-02-02
Because of its impact on environment, the removal of sulfur is an indispensable step, called hydrotreatment, in the refining of petroleum. One of the most commonly used hydrotreating catalysts is CoMo-type catalyst which is composed of molybdenum disulfide slabs promoted by cobalt atoms (CoMoS phase) and well dispersed on a high specific area alumina. As far as the highest sulfur content allowed in gasoline and diesel is continually decreasing, more and more efficient and active hydrotreating catalysts are required. In order to optimize the reactivity of the CoMo-type catalyst in hydrotreatment, a better understanding of the processes used to producemore » the active phase (CoMoS slabs) of the catalyst is necessary. The study reported here deals with the sulfiding mechanism of the slabs and the influence of temperature on the phenomenon. Ex situ X-ray absorption spectroscopy (XANES and EXAFS) was used to study the evolution of the structure of CoMo-type catalyst sulfided at various temperatures (from 293 to 873 K). XAS analysis was performed at both molybdenum and cobalt K-edges to obtain a cross-characterization of the sulfidation of the slabs. It evidenced the formation of various compounds, including two molybdenum oxides, MoS3 (or MoS3-like compound) and Co9S8, at specific steps of the sulfiding process. It showed the role of intermediate played by MoS3 (or MoS3-like compound) during the formation of the slabs and the competition between the appearance of promoted slabs (CoMoS phase) and Co9S8. At last, it leaded to the proposal of a mechanism for the sulfidation of the catalyst.« less
Seismicity Structure of the Downgoing Nazca Slab in Northern Chile
NASA Astrophysics Data System (ADS)
Sippl, C.; Schurr, B.
2017-12-01
We applied an automatized earthquake detection and location algorithm to 8 years of continuous seismic data from the IPOC network in Northern Chile, located in the forearc between about 18.5°S and 24°S. The resulting seismicity catalog contains more than 113k double-difference relocated earthquake hypocenters and features a completeness magnitude around 2.8. Despite the occurrence of two megathrust earthquakes with vigorous aftershock seismicity in the studied time period (the 2007 Tocopilla and the 2014 Iquique earthquakes), >60% of the retrieved seismicity is located in a highly active band of intermediate-depth earthquakes (80-120 km deep) within the downgoing Nazca slab.We obtain a triple seismic zone in the updip part of the slab, with the three parallel dipping planes corresponding to the plate interface, the oceanic Moho (ca. 8 km below the interface) and a third band in the mantle lithosphere 26-28 km beneath the slab top. The plate interface seismicity terminates abruptly at a depth of 55 km. At about 80-90 km depth, the remaining two planes of seismicity then merge into the single, 20 km thick cluster of vigorous seismicity mentioned above, which terminates at 120 km depth. This cluster is located directly beneath the volcanic arc and shows a pronounced kink in the slab dipping angle. Intra-slab seismicity is most likely related to metamorphic dehydration reactions, hence our high-resolution earthquake distribution can be considered a map of metamorphic reactions (although a possibly incomplete one, since not all reactions necessarily invoke seismicity). By correlating this distribution with isotherms from thermal models as well as geophysical imaging results from previous studies, we attempt to get a glimpse at the processes that produce the different patches of intraslab seismicity at intermediate depths.
A field experiment on the controls of sediment transport on bedrock erosion
NASA Astrophysics Data System (ADS)
Beer, A. R.; Turowski, J. M.; Fritschi, B.; Rieke-Zapp, D.; Campana, L.; Lavé, J.
2012-12-01
The earth`s surface is naturally shaped by interactions of physical and chemical processes. In mountainous regions with steep topography river incision fundamentally controls the geomorphic evolution of the whole landscape. There, erosion of exposed bedrock sections by fluvial sediment transport is an important mechanism forming mountain river channels. The links between bedload transport and bedrock erosion has been firmly established using laboratory experiments. However, there are only few field datasets linking discharge, sediment transport, impact energy and erosion that can be used for process understanding and model evaluation. To fill this gap, a new measuring setup has been commissioned to raise an appropriate simultaneous dataset of hydraulics, sediment transport and bedrock erosion at high temporal and spatial resolution. Two natural stone slabs were installed flush with the streambed of the Erlenbach, a gauged stream in the Swiss Pre-Alps. They are mounted upon force sensors recording vertical pressure und downstream shear caused by passing sediment particles. The sediment transport rates can be assessed using geophone plates and an automated moving basket system taking short-term sediment samples. These devices are located directly downstream of the stone slabs. Bedrock erosion rates are measured continuously with erosion sensors at sub-millimeter accuracy at three points on each slab. In addition, the whole slab topography is surveyed with photogrammetry and a structured-light 3D scanner after individual flood events. Since the installation in 2011, slab bedrock erosion has been observed during several transport events. We discuss the relation between hydraulics, bedload transport, resulting pressure forces on the stone slabs and erosion rates. The aim of the study is the derivation of an empirical process law for fluvial bedrock erosion driven by moving sediment particles.
NASA Astrophysics Data System (ADS)
Laurencin, M.; Graindorge, D.; Klingelhoefer, F.; Marcaillou, B.; Evain, M.
2018-06-01
In subduction zones, the 3D geometry of the plate interface is one of the key parameters that controls margin tectonic deformation, interplate coupling and seismogenic behavior. The North American plate subducts beneath the convex Northern Lesser Antilles margin. This convergent plate boundary, with a northward increasing convergence obliquity, turns into a sinistral strike-slip limit at the northwestern end of the system. This geodynamic context suggests a complex slab geometry, which has never been imaged before. Moreover, the seismic activity and particularly the number of events with thrust focal mechanism compatible with subduction earthquakes, increases northward from the Barbuda-Anguilla segment to the Anguilla-Virgin Islands segment. One of the major questions in this area is thus to analyze the influence of the increasing convergence obliquity and the slab geometry onto tectonic deformation and seismogenic behavior of the subduction zone. Based on wide-angle and multichannel reflection seismic data acquired during the Antithesis cruises (2013-2016), we decipher the deep structure of this subduction zone. Velocity models derived from wide-angle data acquired across the Anegada Passage are consistent with the presence of a crust of oceanic affinity thickened by hotspot magmatism and probably affected by the Upper Cretaceous-Eocene arc magmatism forming the 'Great Arc of the Caribbean'. The slab is shallower beneath the Anguilla-Virgin Islands margin segment than beneath the Anguilla-Barbuda segment which is likely to be directly related to the convex geometry of the upper plate. This shallower slab is located under the forearc where earthquakes and partitioning deformations increase locally. Thus, the shallowing slab might result in local greater interplate coupling and basal friction favoring seismic activity and tectonic partitioning beneath the Virgin Islands platform.
The formation of blobs from a pure interchange process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, P., E-mail: pzhu@ustc.edu.cn; Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706; Sovinec, C. R.
2015-02-15
In this work, we focus on examining a pure interchange process in a shear-less slab configuration as a prototype mechanism for blob formation. We employ full magnetohydrodynamic simulations to demonstrate that the blob-like structures can emerge through the nonlinear development of a pure interchange instability originating from a pedestal-like transition region. In the early nonlinear stage, filamentary structures develop and extend in the direction of the effective gravity. The blob-like structures appear when the radially extending filaments break off and disconnect from the core plasma. The morphology and the dynamics of these filaments and blobs vary dramatically with a sensitivemore » dependence on the dissipation mechanisms in the system and the initial perturbation. Despite the complexity in morphology and dynamics, the nature of the entire blob formation process in the shear-less slab configuration remains strictly interchange without involving any change in magnetic topology.« less
Digital Image Correlation of Concrete Slab at University of Tennessee, Knoxville
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Sankaran; Agarwal, Vivek; Pham, Binh T.
Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Some degradation mechanisms of concrete manifest themselves via swelling or by other shape deformation of the concrete. Specifically, degradation of concrete structure damaged by ASR is viewed as one of the dominant factors impacting the structural integrity of aging nuclear power plants. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenancemore » decisions. Number of nondestructive examination techniques (i.e., thermography, digital image correlation, mechanical deformation measurements, nonlinear impact resonance (DIC) acoustic spectroscopy, and vibro-acoustic modulation) is used to detect the damage caused by ASR. DIC techniques have been increasing in popularity, especially in micro- and nano-scale mechanical testing applications due to its relative ease of implementation and use. Advances in computer technology and digital cameras help this method moving forward. To ensure the best outcome of the DIC system, important factors in the experiment are identified. They include standoff distance, speckle size, speckle pattern, and durable paint. These optimal experimental options are selected basing on a thorough investigation. The resulting DIC deformation map indicates that this technique can be used to generate data related to degradation assessment of concrete structure damaged by the impact of ASR.« less
Slab-pull and slab-push earthquakes in the Mexican, Chilean and Peruvian subduction zones
NASA Astrophysics Data System (ADS)
Lemoine, A.; Madariaga, R.; Campos, J.
2002-09-01
We studied intermediate depth earthquakes in the Chile, Peru and Mexican subduction zones, paying special attention to slab-push (down-dip compression) and slab-pull (down-dip extension) mechanisms. Although, slab-push events are relatively rare in comparison with slab-pull earthquakes, quite a few have occurred recently. In Peru, a couple slab-push events occurred in 1991 and one slab-pull together with several slab-push events occurred in 1970 near Chimbote. In Mexico, several slab-push and slab-pull events occurred near Zihuatanejo below the fault zone of the 1985 Michoacan event. In central Chile, a large M=7.1 slab-push event occurred in October 1997 that followed a series of four shallow Mw>6 thrust earthquakes on the plate interface. We used teleseismic body waveform inversion of a number of Mw>5.9 slab-push and slab-pull earthquakes in order to obtain accurate mechanisms, depths and source time functions. We used a master event method in order to get relative locations. We discussed the occurrence of the relatively rare slab-push events in the three subduction zones. Were they due to the geometry of the subduction that produces flexure inside the downgoing slab, or were they produced by stress transfer during the earthquake cycle? Stress transfer can not explain the occurence of several compressional and extensional intraplate intermediate depth earthquakes in central Chile, central Mexico and central Peru. It seemed that the heterogeneity of the stress field produced by complex slab geometry has an important influence on intraplate intermediate depth earthquakes.
NASA Astrophysics Data System (ADS)
Jankowiak, Iwona; Madaj, Arkadiusz
2017-12-01
One of the methods to increase the load carrying capacity of the reinforced concrete (RC) structure is its strengthening by using carbon fiber (CFRP) strips. There are two methods of strengthening using CFRP strips - passive method and active method. In the passive method a strip is applied to the concrete surface without initial strains, unlike in the active method a strip is initially pretensioned before its application. In the case of a steel-concrete composite beam, strips may be used to strengthen the concrete slab located in the tension zone (in the parts of beams with negative bending moments). The finite element model has been developed and validated by experimental tests to evaluate the strengthening efficiency of the composite girder with pretensioned CFRP strips applied to concrete slab in its tension zone.
Imaging the Peruvian flat slab with Rayliegh wave tomography
NASA Astrophysics Data System (ADS)
Knezevic Antonijevic, Sanja
In subduction zones the oceanic plates descend at a broad range of dip angles. A "flat slab" is an oceanic plate that starts to subduct steeply, but bends at 100 km depth and continues almost horizontally for several hundred kilometers. This unusual slab geometry has been linked to various geologic features, including the cessation of arc volcanism, basement core uplifts removed far from subducting margins, and the formation of high plateaus. Despite the prevalence of flat slabs worldwide since the Proterozoic, questions on how flat slabs form, persist, and re-steepen remains a topic of ongoing research. Even less clear is how this phenomenon relates to unusual features observed at the surface. To better understand the causes and consequences of slab flattening I focus on the Peruvian flat slab. This is not only the biggest flat slab region today, but due to the oblique angle at which the Nazca Plate subducts under the South American Plate, it also provides unique opportunity to get insights into the temporal evolution of the flat slab. Using ambient noise and earthquake-generated Rayleigh waves recorded at several contemporary dense seismic networks, I was able to perform unprecedentedly high resolution imaging of the subduction zone in southern Peru. Surprisingly, instead of imaging a vast flat slab region as expected, I found that the flat slab tears and re-steepens north of the subducting Nazca Ridge. The change in slab geometry is associated with variations in the slab's internal strain along strike, as inferred from slab-related anisotropy. Based on newly-discovered features I discuss the critical role of the subducting ridges in the formation and longevity of flat slabs. The slab tear created a new mantle pathway between the torn slab and the flat slab remnant to the east, and is possibly linked to the profound low velocity anomaly located under the eastern corner of the flat slab. Finally, I re-evaluate the connection between slab flattening and volcanic patterns at the surface. These findings have important implications for all present-day and paleo-flat slab regions, such as the one proposed for the western United States during the Laramide orogeny 80-55 Ma.
NASA Astrophysics Data System (ADS)
Pusok, Adina E.; Kaus, Boris; Popov, Anton
2017-04-01
It is commonly accepted that slab detachment results from the development of extensional stresses within the subducting slab. Subduction slowdown due to arrival of buoyant continental material at the trench is considered to cause such stress build up in the slab. Following slab detachment, slab pull partially or completely loses its strength and hot asthenosphere may flow through the slab window, which can have major consequences for continental collision. The dynamics of slab detachment has been extensively studied in 2D (i.e. analytical and numerical), but 3D models of slab detachment during continental collision remain largely unexplored. Some of the previous 3D models have investigated the role of an asymmetric margin on the propagation of slab detachment (van Hunen and Allen, 2011), the impact of slab detachment on the curvature of orogenic belts (Capitanio and Replumaz, 2013), the role of the collision rate on slab detachment depth (Li et al., 2013) or the effect of along-trench variations on slab detachment (Duretz et al., 2014). However, rheology of mantle and lithosphere is known to have a major influence on the dynamics of subduction. Here, we explore a range of different rheological approximations to understand their sensitivity on the possible scenarios. We employ the code LaMEM (Kaus et al., 2016) to perform 3D simulations of subduction/continental collision in an integrated lithospheric and upper-mantle scale model. The models exhibit a wide range of behaviours depending on the rheological law employed: from linear, to temperature-dependent visco-elasto-plastic rheology that takes into account both diffusion and dislocation creep. For example, we find that slab dynamics varies drastically between end member models: in viscous approximations, slab detachment is slow, dominated by viscous thinning, while for a non-linear visco-elasto-plastic rheology, slab detachment is relatively fast, dominated by plastic breaking and inducing strong mantle flow in the slab window. Moreover, in models of viscous approximation, slab break-off starts in the slab interior due tot the nature of slab necking, while in models of non-linear visco-elasto-plastic rheology, slab tear will first occur at the edges of the continental collision.
Mantle shear-wave tomography and the fate of subducted slabs.
Grand, Steven P
2002-11-15
A new seismic model of the three-dimensional variation in shear velocity throughout the Earth's mantle is presented. The model is derived entirely from shear bodywave travel times. Multibounce shear waves, core-reflected waves and SKS and SKKS waves that travel through the core are used in the analysis. A unique aspect of the dataset used in this study is the use of bodywaves that turn at shallow depths in the mantle, some of which are triplicated. The new model is compared with other global shear models. Although competing models show significant variations, several large-scale structures are common to most of the models. The high-velocity anomalies are mostly associated with subduction zones. In some regions the anomalies only extend into the shallow lower mantle, whereas in other regions tabular high-velocity structures seem to extend to the deepest mantle. The base of the mantle shows long-wavelength high-velocity zones also associated with subduction zones. The heterogeneity seen in global tomography models is difficult to interpret in terms of mantle flow due to variations in structure from one subduction zone to another. The simplest interpretation of the seismic images is that slabs in general penetrate to the deepest mantle, although the flow is likely to be sporadic. The interruption in slab sinking is likely to be associated with the 660 km discontinuity.
Seismic attenuation structure beneath Nazca Plate subduction zone in southern Peru
NASA Astrophysics Data System (ADS)
Jang, H.; Kim, Y.; Clayton, R. W.
2017-12-01
We estimate seismic attenuation in terms of quality factors, QP and QS using P and S phases, respectively, beneath Nazca Plate subduction zone between 10°S and 18.5°S latitude in southern Peru. We first relocate 298 earthquakes with magnitude ranges of 4.0-6.5 and depth ranges of 20-280 km. We measure t*, which is an integrated attenuation through the seismic raypath between the regional earthquakes and stations. The measured t* are inverted to construct three-dimensional attenuation structures of southern Peru. Checkerboard test results for both QP and QS structures ensure good resolution in the slab-dip transition zone between flat and normal slab subduction down to a depth of 200 km. Both QP and QS results show higher attenuation continued down to a depth of 50 km beneath volcanic arc and also beneath the Quimsachata volcano, the northernmost young volcano, located far east of the main volcanic front. We also observe high attenuation in mantle wedge especially beneath the normal subduction region in both QP and QS (100-130 in QP and 100-125 in QS) and slightly higher QP and QS beneath the flat-subduction and slab-dip transition regions. We plan to relate measured attenuation in the mantle wedge to material properties such as viscosity to understand the subduction zone dynamics.
Anomalous mantle transition zone beneath the Yellowstone hotspot track
NASA Astrophysics Data System (ADS)
Zhou, Ying
2018-06-01
The origin of the Yellowstone and Snake River Plain volcanism has been strongly debated. The mantle plume model successfully explains the age-progressive volcanic track, but a deep plume structure has been absent in seismic imaging. Here I apply diffractional tomography to receiver functions recorded at USArray stations to map high-resolution topography of mantle transition-zone discontinuities. The images reveal a trail of anomalies that closely follow the surface hotspot track and correlate well with a seismic wave-speed gap in the subducting Farallon slab. This observation contradicts the plume model, which requires anomalies in the mid mantle to be confined in a narrow region directly beneath the present-day Yellowstone caldera. I propose an alternative interpretation of the Yellowstone volcanism. About 16 million years ago, a section of young slab that had broken off from a subducted spreading centre in the mantle first penetrated the 660 km discontinuity beneath Oregon and Idaho, and pulled down older stagnant slab. Slab tearing occurred along pre-existing fracture zones and propagated northeastward. This reversed-polarity subduction generated passive upwellings from the lower mantle, which ascended through a water-rich mantle transition zone to produce melting and age-progressive volcanism.
Use of Terrestrial Laser Scanner for Rigid Airport Pavement Management.
Barbarella, Maurizio; D'Amico, Fabrizio; De Blasiis, Maria Rosaria; Di Benedetto, Alessandro; Fiani, Margherita
2017-12-26
The evaluation of the structural efficiency of airport infrastructures is a complex task. Faulting is one of the most important indicators of rigid pavement performance. The aim of our study is to provide a new method for faulting detection and computation on jointed concrete pavements. Nowadays, the assessment of faulting is performed with the use of laborious and time-consuming measurements that strongly hinder aircraft traffic. We proposed a field procedure for Terrestrial Laser Scanner data acquisition and a computation flow chart in order to identify and quantify the fault size at each joint of apron slabs. The total point cloud has been used to compute the least square plane fitting those points. The best-fit plane for each slab has been computed too. The attitude of each slab plane with respect to both the adjacent ones and the apron reference plane has been determined by the normal vectors to the surfaces. Faulting has been evaluated as the difference in elevation between the slab planes along chosen sections. For a more accurate evaluation of the faulting value, we have then considered a few strips of data covering rectangular areas of different sizes across the joints. The accuracy of the estimated quantities has been computed too.
DOT National Transportation Integrated Search
2009-01-01
In the literature survey of fiber reinforced polymer (FRP) grid reinforced concrete : structures, a limited number of studies were found on FRP grid stiffened concrete slabs : in bridge deck applications and other non-structural applications in build...
Performance evaluation of bridges with structural bridge deck overlays (SBDO).
DOT National Transportation Integrated Search
2006-03-01
Structural Bridge Deck Overlay (SBDO) involves applying 6 to 10 inches (150 to 200 mm) of normal weight, class AA, reinforced concrete directly to a bridges original slab. The overlay is designed to increase the deck elevation to an extent that st...
Slab interactions in 3-D subduction settings: The Philippine Sea Plate region
NASA Astrophysics Data System (ADS)
Holt, Adam F.; Royden, Leigh H.; Becker, Thorsten W.; Faccenna, Claudio
2018-05-01
The importance of slab-slab interactions is manifested in the kinematics and geometry of the Philippine Sea Plate and western Pacific subduction zones, and such interactions offer a dynamic basis for the first-order observations in this complex subduction setting. The westward subduction of the Pacific Sea Plate changes, along-strike, from single slab subduction beneath Japan, to a double-subduction setting where Pacific subduction beneath the Philippine Sea Plate occurs in tandem with westward subduction of the Philippine Sea Plate beneath Eurasia. Our 3-D numerical models show that there are fundamental differences between single slab systems and double slab systems where both subduction systems have the same vergence. We find that the observed kinematics and slab geometry of the Pacific-Philippine subduction can be understood by considering an along-strike transition from single to double subduction, and is largely independent from the detailed geometry of the Philippine Sea Plate. Important first order features include the relatively shallow slab dip, retreating/stationary trenches, and rapid subduction for single slab systems (Pacific Plate subducting under Japan), and front slabs within a double slab system (Philippine Sea Plate subducting at Ryukyu). In contrast, steep to overturned slab dips, advancing trench motion, and slower subduction occurs for rear slabs in a double slab setting (Pacific subducting at the Izu-Bonin-Mariana). This happens because of a relative build-up of pressure in the asthenosphere beneath the Philippine Sea Plate, where the asthenosphere is constrained between the converging Ryukyu and Izu-Bonin-Mariana slabs. When weak back-arc regions are included, slab-slab convergence rates slow and the middle (Philippine) plate extends, which leads to reduced pressure build up and reduced slab-slab coupling. Models without back-arcs, or with back-arc viscosities that are reduced by a factor of five, produce kinematics compatible with present-day observations.
NASA Astrophysics Data System (ADS)
Zeng, Zhi-Ping; Zhao, Yan-Gang; Xu, Wen-Tao; Yu, Zhi-Wu; Chen, Ling-Kun; Lou, Ping
2015-04-01
The frequent use of bridges in high-speed railway lines greatly increases the probability that trains are running on bridges when earthquakes occur. This paper investigates the random vibrations of a high-speed train traversing a slab track on a continuous girder bridge subjected to track irregularities and traveling seismic waves by the pseudo-excitation method (PEM). To derive the equations of motion of the train-slab track-bridge interaction system, the multibody dynamics and finite element method models are used for the train and the track and bridge, respectively. By assuming track irregularities to be fully coherent random excitations with time lags between different wheels and seismic accelerations to be uniformly modulated, non-stationary random excitations with time lags between different foundations, the random load vectors of the equations of motion are transformed into a series of deterministic pseudo-excitations based on PEM and the wheel-rail contact relationship. A computer code is developed to obtain the time-dependent random responses of the entire system. As a case study, the random vibration characteristics of an ICE-3 high-speed train traversing a seven-span continuous girder bridge simultaneously excited by track irregularities and traveling seismic waves are analyzed. The influence of train speed and seismic wave propagation velocity on the random vibration characteristics of the bridge and train are discussed.
Design and dynamic analysis of a piezoelectric linear stage for pipetting liquid samples
NASA Astrophysics Data System (ADS)
Yu-Jen, Wang; Chien, Lee; Yi-Bin, Jiang; Kuo-Chieh, Fu
2017-06-01
Piezoelectric actuators have been widely used in positioning stages because of their compact size, stepping controllability, and holding force. This study proposes a piezoelectric-driven stage composed of a bi-electrode piezoelectric slab, capacitive position sensor, and capillary filling detector for filling liquid samples into nanopipettes using capillary flow. This automatic sample-filling device is suitable for transmission electron microscopy image-based quantitative analysis of aqueous products with added nanoparticles. The step length of the actuator is adjusted by a pulse width modulation signal that depends on the stage position; the actuator stops moving once the capillary filling has been detected. A novel dynamic model of the piezoelectric-driven stage based on collision interactions between the piezoelectric actuator and the sliding clipper is presented. Unknown model parameters are derived from the steady state solution of the equivalent steady phase angle. The output force of the piezoelectric actuator is formulated using the impulse and momentum principle. Considering the applied forces and related velocity between the sliding clipper and the piezoelectric slab, the stage dynamic response is confirmed with the experimental results. Moreover, the model can be used to explain the in-phase slanted trajectories of piezoelectric slab to drive sliders, but not elliptical trajectories. The maximum velocity and minimum step length of the piezoelectric-driven stage are 130 mm s-1 and 1 μm respectively.
Mojżeszek, N; Farah, J; Kłodowska, M; Ploc, O; Stolarczyk, L; Waligórski, M P R; Olko, P
2017-02-01
To measure the environmental doses from stray neutrons in the vicinity of a solid slab phantom as a function of beam energy, field size and modulation width, using the proton pencil beam scanning (PBS) technique. Measurements were carried out using two extended range WENDI-II rem-counters and three tissue equivalent proportional counters. Detectors were suitably placed at different distances around the RW3 slab phantom. Beam irradiation parameters were varied to cover the clinical ranges of proton beam energies (100-220MeV), field sizes ((2×2)-(20×20)cm 2 ) and modulation widths (0-15cm). For pristine proton peak irradiations, large variations of neutron H ∗ (10)/D were observed with changes in beam energy and field size, while these were less dependent on modulation widths. H ∗ (10)/D for pristine proton pencil beams varied between 0.04μSvGy -1 at beam energy 100MeV and a (2×2)cm 2 field at 2.25m distance and 90° angle with respect to the beam axis, and 72.3μSvGy -1 at beam energy 200MeV and a (20×20) cm 2 field at 1m distance along the beam axis. The obtained results will be useful in benchmarking Monte Carlo calculations of proton radiotherapy in PBS mode and in estimating the exposure to stray radiation of the patient. Such estimates may be facilitated by the obtained best-fitted simple analytical formulae relating the stray neutron doses at points of interest with beam irradiation parameters. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
3-D S-velocity structure in the lowermost mantle beneath the Northern Pacific
NASA Astrophysics Data System (ADS)
Suzuki, Y.; Kawai, K.; Geller, R. J.; Borgeaud, A. F. E.; Konishi, K.
2017-12-01
We previously (Suzuki et al., EPS, 2016) reported the results of waveform inversion to infer the three-dimensional (3-D) S-velocity structure in the lowermost 400 km of the mantle (the Dʺ region) beneath the Northern Pacific region. Our dataset consists of about 20,000 transverse component broadband body-wave seismograms observed at North American stations (mainly USArray) for 131 intermediate and deep earthquakes which occurred beneath the western Pacific subduction region. Synthetic resolution tests indicate that our methods and dataset can resolve the velocity structure in the target region with a horizontal scale of about 150 km and a vertical scale of about 50 km. The 3-D S-velocity model obtained in that study shows three prominent features: (i) horizontal high-velocity anomalies up to about 3 per cent faster than the Preliminary Reference Earth Model (PREM) with a thickness of a few hundred km and a lower boundary which is at most about 150 km above the core-mantle boundary (CMB), (ii) low-velocity anomalies about 2.5 per cent slower than PREM beneath the high-velocity anomalies at the base of the lower mantle, (iii) a thin (about 150 km) low-velocity structure continuous from the base of the low-velocity zone to at least 400 km above the CMB. We interpret these features respectively as: (i) remnants of slab material where the Mg-perovskite to Mg-post-perovskite phase transition could have occurred within the slab, (ii, iii) large amounts of hot and less dense materials beneath the cold Kula or Pacific slab remnants immediately above the CMB which ascend and form a passive plume upwelling at the edge of the slab remnants. Since our initial work we subsequently conducted waveform inversion using both the transverse- and radial-component horizontal waveform data to infer the isotropic shear velocity structure in the lowermost mantle beneath the Northern Pacific in more detail. We also compute partial derivatives with respect to the 5 independent elastic constants (A, C, F, L, N) of a transversely isotropy (TI) medium, and conduct a synthetic resolution test to examine the ability of our methods and dataset to resolve the anisotropic structure in this region using two-component waveform data.
NASA Astrophysics Data System (ADS)
Masy, J.; Levander, A.; Niu, F.
2010-12-01
We have analyzed teleseismic S-wave data recorded by the permanent national seismic network of Venezuela and the BOLIVAR broadband array (Broadband Onshore-offshore Lithospheric Investigation of Venezuela and the Antilles arc Region) deployed from 2003 to 2005. A total of 28 events with Mw > 5.7 occurring at epicentral distances from 55° to 85° were used. We made Sp receiver functions to estimate the rapid variations of lithospheric structure in the southern Caribbean plate boundary region to try to better understand the complicated tectonic history of the region. Estimated Moho depth ranges from ~20 km beneath the Caribbean Large Igneous Provinces to ~50 km beneath the Mérida Andes in western Venezuela and the Sierra del Interior in northeastern Venezuela. These results are consistent with previous receiver functions studies (Niu et al., 2007) and active source profiles (Schmitz et al., 2001; Bezada et al., 2007; Clark et al., 2008; Guedez, 2008; Magnani et al., 2009). Beneath the Maracaibo Block we observe a signal at a depth of 100 km dipping ~24° towards the continent, which we interpret as the top of the oceanic Caribbean slab that is subducting beneath South America from the west. The deeper part of the slab was previously imaged using P-wave tomography (Bezada et al, 2010), and the upper part inferred from intermediate depth seismicity (Malavé and Suarez, 1995). These studies indicate flat slab subduction beneath northern Colombia and northwestern Venezuela with the slab dipping between 20° - 30° beneath Lake Maracaibo. Like others we attribute the flat slab subduction to the uplift of the Mérida Andes (for example Kellogg and Bonini, 1982). In eastern Venezuela beneath the Sierra del Interior we also observe a deep signal that we interpret as deep South American lithosphere that is detaching from the overriding plate as the Atlantic subducts and tears away from SA (Bezada et al., 2010; Clark et al, 2008). The lithosphere-asthenosphere boundary (LAB) is not a continuous feature under the entire region, instead it is seen beneath the Cordillera de la Costa in central Venezuela at ~130 km, also under the Perijá Range and the Sierra del Interior. Under the Guayana Shield we observe two distinct regions with LAB depths at ~150 km depth. We also see the LAB at this depth in places north of the Orinoco River, suggesting the presence of cratonic structures north of the river. These results are in good agreement with the structures observed by Miller et al. (2009) in Rayleigh wave tomography images.
NASA Astrophysics Data System (ADS)
Amooshahi, Majid; Shoughi, Ali
2018-05-01
A fully canonical quantization of electromagnetic field in the presence of a bi-anisotropic absorbing magneto-dielectric slab is demonstrated. The electric and the magnetic polarization densities of the magneto-dielectric slab are defined in terms of the dynamical variables modeling the slab and the coupling tensors that couple the electromagnetic field to the slab. The four susceptibility tensors of the bi-anisotropic magneto-dielectric slab are expressed in terms of the coupling tensors that couple an electromagnetic field to the slab. It is shown that the four susceptibility tensors of the bi-anisotropic magneto-dielectric slab satisfy Kramers-Kronig relations. The Maxwell’s equations are exactly solved in the presence of the bi-anisotropic magneto-dielectric slab. The tangential and the normal components of the Casimir forces exerted on the bi-anisotropic magnet-dielectric slab exactly are calculated in the vacuum state and thermal state of the total system. It is shown that the tangential components of the Casimir forces vanish when the bi-anisotropic slab is converted to an isotropic slab.
The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godfrey, Devon J.; Page McAdams, H.; Dobbins, James T. III
2013-02-15
Purpose: Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Methods: Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes,more » three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. Results: For scan angles of 20 Degree-Sign and 5 mm plane separation, seven MITS planes must be averaged to sufficiently remove partial-pixel artifacts. MITSa7 does appear to subtly reduce the contrast of high-frequency 'edge' information, but the removal of partial-pixel artifacts makes the appearance of low-contrast, fine-detail anatomy even more conspicuous in MITSa7 slices. MITSa7 also appears to render simulated subtle 5 mm pulmonary nodules with greater visibility than MITS alone, in both the open lung and regions overlying the mediastinum. Finally, the MITSa7 technique reduces stochastic image variance, though the in-plane stochastic SNR (for very thin objects which do not span multiple MITS planes) is only improved at spatial frequencies between 0.05 and 0.20 cycles/mm. Conclusions: The MITSa7 method is an improvement over traditional single-plane MITS for thoracic imaging and the pulmonary nodule detection task, and thus the authors plan to use the MITSa7 approach for all future MITS research at the authors' institution.« less
The effect of averaging adjacent planes for artifact reduction in matrix inversion tomosynthesis.
Godfrey, Devon J; McAdams, H Page; Dobbins, James T
2013-02-01
Matrix inversion tomosynthesis (MITS) uses linear systems theory and knowledge of the imaging geometry to remove tomographic blur that is present in conventional backprojection tomosynthesis reconstructions, leaving in-plane detail rendered clearly. The use of partial-pixel interpolation during the backprojection process introduces imprecision in the MITS modeling of tomographic blur, and creates low-contrast artifacts in some MITS planes. This paper examines the use of MITS slabs, created by averaging several adjacent MITS planes, as a method for suppressing partial-pixel artifacts. Human chest tomosynthesis projection data, acquired as part of an IRB-approved pilot study, were used to generate MITS planes, three-plane MITS slabs (MITSa3), five-plane MITS slabs (MITSa5), and seven-plane MITS slabs (MITSa7). These were qualitatively examined for partial-pixel artifacts and the visibility of normal and abnormal anatomy. Additionally, small (5 mm) subtle pulmonary nodules were simulated and digitally superimposed upon human chest tomosynthesis projection images, and their visibility was qualitatively assessed in the different reconstruction techniques. Simulated images of a thin wire were used to generate modulation transfer function (MTF) and slice-sensitivity profile curves for the different MITS and MITS slab techniques, and these were examined for indications of partial-pixel artifacts and frequency response uniformity. Finally, mean-subtracted, exposure-normalized noise power spectra (ENNPS) estimates were computed and compared for MITS and MITS slab reconstructions, generated from 10 sets of tomosynthesis projection data of an acrylic slab. The simulated in-plane MTF response of each technique was also combined with the square root of the ENNPS estimate to yield stochastic signal-to-noise ratio (SNR) information about the different reconstruction techniques. For scan angles of 20° and 5 mm plane separation, seven MITS planes must be averaged to sufficiently remove partial-pixel artifacts. MITSa7 does appear to subtly reduce the contrast of high-frequency "edge" information, but the removal of partial-pixel artifacts makes the appearance of low-contrast, fine-detail anatomy even more conspicuous in MITSa7 slices. MITSa7 also appears to render simulated subtle 5 mm pulmonary nodules with greater visibility than MITS alone, in both the open lung and regions overlying the mediastinum. Finally, the MITSa7 technique reduces stochastic image variance, though the in-plane stochastic SNR (for very thin objects which do not span multiple MITS planes) is only improved at spatial frequencies between 0.05 and 0.20 cycles∕mm. The MITSa7 method is an improvement over traditional single-plane MITS for thoracic imaging and the pulmonary nodule detection task, and thus the authors plan to use the MITSa7 approach for all future MITS research at the authors' institution.
Hydration-reduced lattice thermal conductivity of olivine in Earth's upper mantle.
Chang, Yun-Yuan; Hsieh, Wen-Pin; Tan, Eh; Chen, Jiuhua
2017-04-18
Earth's water cycle enables the incorporation of water (hydration) in mantle minerals that can influence the physical properties of the mantle. Lattice thermal conductivity of mantle minerals is critical for controlling the temperature profile and dynamics of the mantle and subducting slabs. However, the effect of hydration on lattice thermal conductivity remains poorly understood and has often been assumed to be negligible. Here we have precisely measured the lattice thermal conductivity of hydrous San Carlos olivine (Mg 0.9 Fe 0.1 ) 2 SiO 4 (Fo90) up to 15 gigapascals using an ultrafast optical pump-probe technique. The thermal conductivity of hydrous Fo90 with ∼7,000 wt ppm water is significantly suppressed at pressures above ∼5 gigapascals, and is approximately 2 times smaller than the nominally anhydrous Fo90 at mantle transition zone pressures, demonstrating the critical influence of hydration on the lattice thermal conductivity of olivine in this region. Modeling the thermal structure of a subducting slab with our results shows that the hydration-reduced thermal conductivity in hydrated oceanic crust further decreases the temperature at the cold, dry center of the subducting slab. Therefore, the olivine-wadsleyite transformation rate in the slab with hydrated oceanic crust is much slower than that with dry oceanic crust after the slab sinks into the transition zone, extending the metastable olivine to a greater depth. The hydration-reduced thermal conductivity could enable hydrous minerals to survive in deeper mantle and enhance water transportation to the transition zone.
NASA Astrophysics Data System (ADS)
Spakman, W.; Van Hinsbergen, D. J.; Vissers, R.
2012-12-01
Geological studies have shown that Eo-Oligocene subduction related high-pressure, low-temperature metasediments and peridotites of the Alboran region (Spain, Morocco) and the Kabylides (Algeria) experienced a major Early Miocene (~21 Ma) thermal pulse requiring asthenospheric temperatures at ~60 km depth. Despite earlier propositions, the cause of this thermal pulse is still controversial while also the paleogeographic origin of the Alboran and Kabylides units is debated. Here, we relate the thermal pulse to segmentation of the West Alpine-Tethyan slab under the SE Iberian margin (Baleares-Sardinia). We restore the Alboran rocks farther east than previously assumed, to close to the Balearic Islands, adjacent to Sardinia. We identify three major lithosphere faults, the NW-SE trending North Balearic Transform Zone (NBTZ) and the ~W-E trending Emile Baudot and North African transforms that accommodated the Miocene subduction evolution of slab segmentation, rollback, and migration of Alboran and Kabylides rocks to their current positions. The heat pulse occurred S-SE of the Baleares where slab segmentation along the NBTZ triggered radially outgrowing S-SW rollback opening a slab window that facilitated local ascent of asthenosphere below the rapidly extending Alboran-Kabylides accretionary prism. Subsequent slab rollback carried the Kabylides and Alboran domains to their present positions. Our new reconstruction is in line with tomographically imaged mantle structure and focuses attention on the crucial role of evolving subduction segmentation driving HT-metamorphism and subsequent extension, fragmentation, and dispersion of geological terrains.
Noble Gases Trace Earth's Subducted Water Flux
NASA Astrophysics Data System (ADS)
Smye, A.; Jackson, C.; Konrad-Schmolke, M.; Parman, S. W.; Ballentine, C. J.
2016-12-01
Volatile elements are transported from Earth's surface reservoirs back into the mantle during subduction of oceanic lithosphere [e.g. 1]. Here, we investigate the degree to which the fate of slab-bound noble gases and water are linked through the subduction process. Both water and noble gases are soluble in ring-structured minerals, such as amphibole, that are common constituents of subducted oceanic lithosphere. Heating and burial during subduction liberates noble gases and water from minerals through a combination of diffusion and dissolution. Combining a kinetic model, parameterized for noble gas fractionation in amphibole [2], with thermodynamic phase equilibria calculations, we quantify the effect of subduction dehydration on the elemental composition of slab-bound noble gases. Results show that post-arc slab water and noble gas fluxes are highly correlated. Hot subduction zones, which likely dominate over geologic history, efficiently remove noble gases and water from the down-going slab; furthermore, kinetic fractionation of noble gases is predicted to occur beneath the forearc. Conversely, hydrated portions of slab mantle in cold subduction zones transport noble gases and water to depths exceeding 200 km. Preservation of seawater-like abundances of Ar, Kr and Xe in the convecting mantle [1] implies that recycling of noble gases and water occurred during cold subduction and that the subduction efficiency of these volatile elements has increased over geological time, driven by secular cooling of the mantle. [1] Holland, G. and Ballentine, C. (2006). Nature 441, 186-191. [2] Jackson et al. (2013). Nat.Geosci. 6, 562-565.
Upper mantle seismic anisotropy beneath Northern Peru from shear wave splitting analysis.
NASA Astrophysics Data System (ADS)
Franca, G. S.; Condori, C.; Tavera, H.; Eakin, C. M.; Beck, S. L.
2017-12-01
Beneath much of Peru lies the largest region of flat-slab subduction in the world today. The origins and dynamics of the Peruvian flat-slab however remain elusive, particularly in the north away from the Nazca Ridge. Studies of seismic anisotropy can potentially provide us with insight into the dynamics of recent and past deformational processes in the upper mantle. In this study, we conduct shear wave splitting to investigate seismic anisotropy across the northern extent of the Peruvian flat-slab for the first time. For the analysis, we used arrivals of SKS, SKKS and PKS phases from teleseismic events (88° > Δ < 150°) recorded at 30 broadband seismic stations from the Peruvian permanent and portable seismic networks, and international networks (CTBTO and RSBR-Brazil). The preliminary results reveal a complex anisotropy pattern with variations along strike. In the northernmost region, the average delay times range between 1.0 s and 1.2 s, with fast directions predominantly ENE-WSW oriented in a direction approximately perpendicular to the trench, parallel with subduction of the Nazca plate. Meanwhile towards the central region of Peru, the predominant fast direction changes to SE-NW oblique with the trench, but consistent with the pattern seen previously over the southern extent of the flat-slab by Eakin et al. (2013, 2015). These characteristics suggest a fundamental difference between the anisotropic structures, and therefore underlying mantle processes, beneath the northern and central portions of the Peruvian flat-slab.
Role of rheology in reconstructing slab morphology in global mantle models
NASA Astrophysics Data System (ADS)
Bello, Léa; Coltice, Nicolas; Tackley, Paul; Müller, Dietmar
2015-04-01
Reconstructing the 3D structure of the Earth's mantle has been a challenge for geodynamicists for about 40 years. Although numerical models and computational capabilities have incredibly progressed, parameterizations used for modeling convection forced by plate motions are far from being Earth-like. Among the set of parameters, rheology is fundamental because it defines in a non-linear way the dynamics of slabs and plumes, and the organization of the lithosphere. Previous studies have employed diverse viscosity laws, most of them being temperature and depth dependent with relatively small viscosity contrasts. In this study, we evaluate the role of the temperature dependence of viscosity (variations up to 6 orders of magnitude) on reconstructing slab evolution in 3D spherical models of convection driven by plate history models. We also investigate the importance of pseudo-plasticity in such models. We show that strong temperature dependence of viscosity combined with pseudo-plasticity produce laterally and vertically continuous slabs, and flat subduction where trench retreat is fast (North, Central and South America). Moreover, pseudo-plasticity allows a consistent coupling between imposed plate motions and global convection, which is not possible with temperature-dependent viscosity only. However, even our most sophisticated model is not able to reproduce unambiguously stagnant slabs probably because of the simplicity of material properties we use here. The differences between models employing different viscosity laws are very large, larger than the differences between two models with the same rheology but using two different plate reconstructions or initial conditions.
Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9).
Zhao, Dapeng; Fujisawa, Moeto; Toyokuni, Genti
2017-03-15
On 30 May 2015 an isolated deep earthquake (~670 km, Mw 7.9) occurred to the west of the Bonin Islands. To clarify its causal mechanism and its relationship to the subducting Pacific slab, we determined a detailed P-wave tomography of the deep earthquake source zone using a large number of arrival-time data. Our results show that this large deep event occurred within the subducting Pacific slab which is penetrating into the lower mantle. In the Izu-Bonin region, the Pacific slab is split at ~28° north latitude, i.e., slightly north of the 2015 deep event hypocenter. In the north the slab becomes stagnant in the mantle transition zone, whereas in the south the slab is directly penetrating into the lower mantle. This deep earthquake was caused by joint effects of several factors, including the Pacific slab's fast deep subduction, slab tearing, slab thermal variation, stress changes and phase transformations in the slab, and complex interactions between the slab and the ambient mantle.
Geodynamic models of the Wilson Cycle: From rifts to mountains to rifts
NASA Astrophysics Data System (ADS)
Buiter, Susanne; Tetreault, Joya; Torsvik, Trond
2015-04-01
The Wilson Cycle theory that oceans close and reopen along the former suture is a fundamental concept in plate tectonics. The theory suggests that subduction initiates at a passive margin, closing the ocean, and that future continental extension localises at the ensuing collision zone. Each stage of the Wilson Cycle will therefore be characterised by inherited structural and thermal heterogeneities. Here we investigate the role of Wilson Cycle inheritance by considering the influence of (1) passive margin structure on continental collision and (2) collision zones on passive margin formation. Passive margins may be preferred locations for subduction initiation because inherited faults and areas of exhumed serpentinized mantle may weaken a margin enough to localise shortening. If subduction initiates at a passive margin, the shape and structure of the passive margins will affect future continental collision. Our review of present-day passive margins along the Atlantic and Indian Oceans reveals that most passive margins are located on former collision zones. Continental break-up occurs on relatively young sutures, such as Morocco-Nova Scotia, and on very old sutures, such as the Greenland-Labrador and East Antarctica-Australia systems. This implies that it is not always post-collisional collapse that initiates the extensional phase of a Wilson Cycle. We highlight the impact of collision zone inheritance on continental extension and rifted margin architecture. We show numerical experiments of one Wilson Cycle of subduction, collision, and extension. Subduction initiates at a tapered passive margin. Closure of a 60 Ma ocean leads to continental collision and slab break-off, followed by some tens of kilometres of slab eduction. Mantle flow above the sinking detached slab enhances deformation in the rift area. The resulting rift exposes not only continental crust, but also subduction-related sediments and oceanic crust remnants. Renewed subduction in the post-collision phase is enabled by lithosphere delamination and slab rollback, leading to back-arc extension in a style similar to the Tyrrhenian Sea.
NASA Astrophysics Data System (ADS)
Haberland, Christian; Rietbrock, Andreas
2001-06-01
High-quality data from 1498 local earthquakes recorded by the PISCO '94 (Proyecto de Investigatión Sismológica de la Cordillera Occidental, 1994) and ANCORP '96 (Andean Continental Research Project, 1996) temporary seismological networks allowed the detailed determination of the three-dimensional (3-D) attenuation structure (Qp-1) beneath the recent magmatic arc in the western central Andes (20° to 24°S). Assuming a frequency-independent Qp-1 in a frequency band between 1 and 30 Hz, whole path attenuation (t*) was estimated from the amplitude spectra of the P waves using spectral ratios and a spectral inversion technique. The damped least squares inversion (tomography) of the data reveals a complex attenuation structure. Crust and mantle of the forearc and subducting slab are generally characterized by low attenuation (Qp > 1000). Crust and mantle beneath the magmatic arc show elevated attenuation. The strongest anomaly of extremely low Qp is found in the crust between 22° and 23°S beneath the recent volcanic arc (Qp < 100). N-S variations can be observed: The western flank of the crustal attenuation anomaly follows the curved course of the volcanic front. North of 21°S the attenuation is less developed. In the northern part of the study area the low-Qp zone penetrates in the forearc mantle down to the subducting slab. In the south a deeper zone of high attenuation is resolved between 23° and 24°S directly above the subducting slab. Low Qp in the mantle correlates with earthquake clusters. The strong crustal attenuation is confined to the distribution of young ignimbrites and silicic volcanism and is interpreted as a thermally weakened zone with partial melts. The attenuation pattern in the upper mantle might reflect the variable extent of the asthenosphere and maps variations of subduction-related hydration processes in the mantle wedge from slab-derived fluids.
Boundary element analysis of post-tensioned slabs
NASA Astrophysics Data System (ADS)
Rashed, Youssef F.
2015-06-01
In this paper, the boundary element method is applied to carry out the structural analysis of post-tensioned flat slabs. The shear-deformable plate-bending model is employed. The effect of the pre-stressing cables is taken into account via the equivalent load method. The formulation is automated using a computer program, which uses quadratic boundary elements. Verification samples are presented, and finally a practical application is analyzed where results are compared against those obtained from the finite element method. The proposed method is efficient in terms of computer storage and processing time as well as the ease in data input and modifications.
NASA Astrophysics Data System (ADS)
Scire, A. C.; Zandt, G.; Beck, S. L.; Bishop, B.; Biryol, C. B.; Wagner, L. S.; Long, M. D.; Minaya, E.; Tavera, H.
2014-12-01
The modern central Peruvian Andes are dominated by a laterally extensive region of flat slab subduction. The Peruvian flat slab extends for ~1500 km along the strike of the Andes, correlating with the subduction of the Nazca Ridge in the south and the theorized Inca Plateau in the north. We have used data from the CAUGHT and PULSE experiments for finite frequency teleseismic P- and S-wave tomography to image the Nazca slab in the upper mantle below 95 km depth under central Peru between 10°S and 18°S as well as the surrounding mantle. Since the slab inboard of the subducting Nazca Ridge is mostly aseismic, our results provide important constraints on the geometry of the subducting Nazca slab in this region. Our images of the Nazca slab suggest that steepening of the slab inboard of the subducting Nazca Ridge locally occurs ~100 km further inland than was indicated in previous studies. The region where we have imaged the steepening of the Nazca slab inboard of the Nazca Ridge correlates with the location of the Fitzcarrald Arch, a long wavelength upper plate topographic feature which has been suggested to be a consequence of ridge subduction. When the slab steepens inboard of the flat slab region, it does so at a very steep (~70°) angle. The transition from the Peruvian flat slab to the more normally dipping slab south of 16°S below Bolivia is characterized by an abrupt bending of the slab anomaly in the mantle in response to the shift from flat to normal subduction. The slab anomaly appears to be intact south of the Nazca Ridge with no evidence for tearing of the slab in response to the abrupt change in slab dip. A potential tear in the slab is inferred from an observed offset in the slab anomaly north of the Nazca Ridge extending subparallel to the ridge axis between 130 and 300 km depth. A high amplitude (-5-6%) slow S-wave velocity anomaly is observed below the projection of the Nazca Ridge. This anomaly appears to be laterally confined to the mantle directly below projection of the Nazca Ridge but descends to ~300 km depth in the mantle. This sub-slab slow anomaly may correlate with vertical mantle flow induced by movement of material through the inferred tear in the slab north of the Nazca Ridge or alternately may represent a long-lived feature of the sub-slab mantle possibly associated with the development of the Nazca Ridge at the Easter Island hot spot.
Photocapacitive MIS infrared detectors
NASA Technical Reports Server (NTRS)
Sher, A.; Lu, S. S.-M.; Moriarty, J. A.; Crouch, R. K.; Miller, W. E.
1978-01-01
A new class of room-temperature infrared detectors has been developed through use of metal-insulator-semiconductor (MIS) or metal-insulator-semiconductor-insulator-metal (MISIM) slabs. The detectors, which have been fabricated from Si, Ge and GaAs, rely for operation on the electrical capacitance variations induced by modulated incident radiation. The peak detectivity for a 1000-A Si MISIM detector is comparable to that of a conventional Si detector functioning in the photovoltaic mode. Optimization of the photocapacitive-mode detection sensitivity is discussed.
Crustal structure across the lateral edge of the Southern Tyrrhenian slab
NASA Astrophysics Data System (ADS)
Pio Lucente, Francesco; Piana Agostinetti, Nicola; Di Bona, Massimo; Govoni, Aladino; Bianchi, Irene
2015-04-01
In the southeastern corner of the Tyrrhenian basin, in the central Mediterranean Sea, a tight alignment of earthquakes along a well-defined Benioff zone reveals the presence of one of the narrowest active trenches worldwide, where one of the last fragments of the former Tethys ocean is consumed. Seismic tomography furnishes snapshot images of the present-day position and shape of this slab. Through receiver function analysis we investigate the layered structures overlying the slab. We compute receiver functions from the P-coda of teleseismic events at 13 temporary station deployed during the "Messina 1908-2008" research project (Margheriti, 2008), and operating for an average period of 15 months each. The crustal and uppermost mantle structure has been investigated using a trans-dimensional McMC algorithm developed by Piana Agostinetti and Malinverno (2010), obtaining a 1D S-wave velocity profile for each station. At three of the stations, operating for a longer period of time, the number and the azimuthal distribution of teleseisms allowed us to stack the RF data-set with back azimuth and to compute the harmonic expansion. The analysis of the back-azimuthal harmonics gave us insight on the presence of dipping interfaces and anisotropic layers at depth. The strike and the dip of interfaces and the anisotropic parameters have been quantified using the Neighbourhood Algorithm (Sambridge, 1999). Preliminary results highlight: (1) a neat differentiation of the isotropic S-wave velocity structure passing through the slab edge, from the tip of the Calabrian arc to the Peloritani Range, and (2) the presence of crustal complexities, such as dipping interfaces and anisotropic layers, both in the upper and lower crust. Margheriti, L. (2008), Understanding Crust Dynamics and Subduction in Southern Italy, Eos Trans. AGU, 89(25), 225-226, doi:10.1029/2008EO250002. Piana Agostinetti, N. and A. Malinverno (2010) Receiver Function inversion by trans-dimensional Monte Carlo sampling, Geophys. J. Int., 181(2) 858-872, doi: 10.1111/j.1365-246X.2010.04530.x Sambridge, M. (1999), Geophysical inversion with a neighbourhood algorithm-I. Searching a parameter space, Geophys. J. Int., 138, 479-494, doi:10.1046/j.1365-246X.1999.00876.x.
Dispersive Evolution of Nonlinear Fast Magnetoacoustic Wave Trains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M., E-mail: D.J.Pascoe@warwick.ac.uk
2017-10-01
Quasi-periodic rapidly propagating wave trains are frequently observed in extreme ultraviolet observations of the solar corona, or are inferred by the quasi-periodic modulation of radio emission. The dispersive nature of fast magnetohydrodynamic waves in coronal structures provides a robust mechanism to explain the detected quasi-periodic patterns. We perform 2D numerical simulations of impulsively generated wave trains in coronal plasma slabs and investigate how the behavior of the trapped and leaky components depend on the properties of the initial perturbation. For large amplitude compressive perturbations, the geometrical dispersion associated with the waveguide suppresses the nonlinear steepening for the trapped wave train.more » The wave train formed by the leaky components does not experience dispersion once it leaves the waveguide and so can steepen and form shocks. The mechanism we consider can lead to the formation of multiple shock fronts by a single, large amplitude, impulsive event and so can account for quasi-periodic features observed in radio spectra.« less
NASA Astrophysics Data System (ADS)
Laigle, M.; Hirn, A.; Sapin, M.; Bécel, A.; Charvis, P.; Flueh, E.; Diaz, J.; Lebrun, J.-F.; Gesret, A.; Raffaele, R.; Galvé, A.; Evain, M.; Ruiz, M.; Kopp, H.; Bayrakci, G.; Weinzierl, W.; Hello, Y.; Lépine, J.-C.; Viodé, J.-P.; Sachpazi, M.; Gallart, J.; Kissling, E.; Nicolich, R.
2013-09-01
The 300-km-long north-central segment of the Lesser Antilles subduction zone, including Martinique and Guadeloupe islands has been the target of a specific approach to the seismic structure and activity by a cluster of active and passive offshore-onshore seismic experiments. The top of the subducting plate can be followed under the wide accretionary wedge by multichannel reflection seismics. This reveals the hidden updip limit of the contact of the upper plate crustal backstop onto the slab. Two OBS refraction seismic profiles from the volcanic arc throughout the forearc domain constrain a 26-km-large crustal thickness all along. In the common assumption that the upper plate Moho contact on the slab is a proxy of its downdip limit these new observations imply a three times larger width of the potential interplate seismogenic zone under the marine domain of the Caribbean plate with respect to a regular intra-oceanic subduction zone. Towards larger depth under the mantle corner, the top of the slab imaged from the conversions of teleseismic body-waves and the locations of earthquakes appears with kinks which increase the dip to 10-20° under the forearc domain, and then to 60° from 70 km depth. At 145 km depth under the volcanic arc just north of Martinique, the 2007 M 7.4 earthquake, largest for half a century in the region, allows to document a deep slab deformation consistent with segmentation into slab panels. In relation with this occurrence, an increased seismic activity over the whole depth range provides a new focussed image thanks to the OBS and land deployments. A double-planed dipping slab seismicity is thus now resolved, as originally discovered in Tohoku (NE Japan) and since in other subduction zones. Two other types of seismic activity uniquely observed in Tohoku, are now resolved here: "supraslab" earthquakes with normal-faulting focal mechanisms reliably located in the mantle corner and "deep flat-thrust" earthquakes at 45 km depth on the interplate fault under the Caribbean plate forearc mantle. None such types of seismicity should occur under the paradigm of a regular peridotitic mantle of the upper plate which is expected to be serpentinized by the fluids provided from the dehydrating slab beneath. This process is commonly considered as limiting the downward extent of the interplate coupling. Interpretations are not readily available either for the large crustal thickness of this shallow water marine upper plate, except when remarking its likeness to oceanic plateaus formed above hotspots. The Caribbean Oceanic Plateau of the upper plate has been formed earlier by the material advection from a mantle plume. It could then be underlain by a correspondingly modified, heterogeneous mantle, which may include pyroxenitic material among peridotites. Such heterogeneity in the mantle corner of the present subduction zone may account for the notable peculiarities in seismic structure and activity and impose regions of stick-slip behavior on the interplate among stable-gliding areas.
How mantle slabs drive plate tectonics.
Conrad, Clinton P; Lithgow-Bertelloni, Carolina
2002-10-04
The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction.
NASA Astrophysics Data System (ADS)
Wu, J. E.; Suppe, J.; Chen, Y. W.
2016-12-01
Seismic tomographic studies have revealed a swath of flat slab anomalies in the mantle transition zone at 410 to 660 km depths under Japan, Korea and NE China that continue northwards at deeper depths under the Russian Far East. These slab anomalies are remarkable because they appear to be continuous from their western edge far inland (>2000 km) under the NE Eurasian margin to the present-day NW Pacific subduction zones, which suggests they are Pacific slabs that were subducted in the Cenozoic. Other studies have proposed that some of these slabs were subducted at an ancient subduction zone during the Mesozoic or earlier. Here we discuss the fate of these slabs and their implications for the plate tectonic reconstruction of the NW Pacific margin along NE Asia and Alaska. We present both new and recently published slab mapping (Wu et al., 2016; JGR Solid Earth) including 30 major and minor slabs mapped in 3D from MITP08 global seismic tomography. We unfolded our mapped slabs to a spherical Earth model to estimate their pre-subduction size, shape and locations. The slab constraints were input into GPlates software to constrain a new regional NW Pacific plate tectonic reconstruction in the Cenozoic. Mapped slabs included the Marianas, Izu-Bonin, Japan and Kuril slabs, the Philippine Sea slabs and Aleutian slabs under the Bering Sea. Our mapped western Pacific slabs between the southernmost Izu-Bonin trench and the western Aleutians had unfolded E-W lengths of 3400 to 4900 km. Our plate model shows that these slabs are best reconstructed as Pacific slabs that were subducted in the Cenozoic and account for fast Pacific subduction along the NE Eurasian margin since plate reorganization at 50 Ma. Our mapped northern Kuril slab edge near the western Aleutians and a southern edge at the southernmost Izu-Bonin trench are roughly east-west and consistent with the orientations of Pacific absolute motions since 50 Ma. We interpret these long E-W slab edges as STEP fault-type transforms (i.e. lithospheric tears that progressively formed during subduction). We further discuss our plate model against the opening of the NW Pacific marginal basins in the Cenozoic, including the Japan Sea, Kuril Basin and Okhotsk Sea.
NASA Astrophysics Data System (ADS)
Chen, Y. W.; Wu, J.; Suppe, J.
2017-12-01
Global seismic tomography has provided new and increasingly higher resolution constraints on subducted lithospheric remnants in terms of their position, depth, and volumes. In this study we aim to link tomographic slab anomalies in the mantle under South America to Andean geology using methods to unfold (i.e. structurally restore) slabs back to earth surface and input them to globally consistent plate reconstructions (Wu et al., 2016). The Andean margin of South America has long been interpreted as a classic example of a continuous subduction system since early Jurassic or later. However, significant gaps in Andean plate tectonic reconstructions exist due to missing or incomplete geology from extensive Nazca-South America plate convergence (i.e. >5000 km since 80 Ma). We mapped and unfolded the Nazca slab from global seismic tomography to produce a quantitative plate reconstruction of the Andes back to the late Cretaceous 80 Ma. Our plate model predicts the latest phase of Nazca subduction began in the late Cretaceous subduction after a 100 to 80 Ma plate reorganization, which is supported by Andean geology that indicates a margin-wide compressional event at the mid-late Cretaceous (Tunik et al., 2010). Our Andean plate tectonic reconstructions predict the Andean margin experienced periods of strike-slip/transtensional and even divergent plate tectonics between 80 to 55 Ma. This prediction is roughly consistent with the arc magmatism from northern Chile between 20 to 36°S that resumed at 80 Ma after a magmatic gap. Our model indicates the Andean margin only became fully convergent after 55 Ma. We provide additional constraints on pre-subduction Nazca plate paleogeography by extracting P-wave velocity perturbations within our mapped slab surfaces following Wu et al. (2016). We identified localized slow anomalies within our mapped Nazca slab that apparently show the size and position of the subducted Nazca ridge, Carnegie ridge and the hypothesized Inca plateau within the Nazca slab. These intra-slab velocity anomalies provide the most complete tomographic evidence to date in support the classic, but still controversial hypothesis of subducted, relatively buoyant oceanic lithosphere features along the Andean margin.
NASA Astrophysics Data System (ADS)
Ishiyama, T.; Sato, H.; Van Horne, A.
2015-12-01
We present detailed geologic evidence linking changes over time in Philippine Sea plate (PHS) motion and intracontinental deformation in central and southwest (SW) Japan during the Pliocene and after. In the early Pliocene, subduction of the PHS plate under SW Japan restarted in a northerly direction after period of deceleration or cessation. Later, motion changed to a more westerly direction. Corresponding geological changes found in the overriding plate include unconformities in the forearc basins, changes in slip sense on faults, depocenter migration, re-organization of drainage systems and volcanism. Quaternary intraplate deformation is prominent north of the Median Tectonic Line (MTL) inactive segment, above a shallow flat slab. In contrast, less Quaternary tectonic activity is found north of the MTL active segment which lies over a steadily-slipping portion of the subducting slab that behaves as a less-deformed rigid block. Depocenters and active thrusting have migrated north/northwestward over the past 5 My above the shallow flat slab segment of the PHS. We reconstructed the Plio-Pleistocene migration history using Neogene stratigraphy and shallow seismic reflection profiles. We see shallow PHS slab contact with the lower continental crust in our deep seismic reflection profiles, which may explain its enhanced downward drag of the overriding plate and synchronous strong compression in the crust. We find evidence of more westerly PHS plate subduction since the middle Pleistocene in (1) unconformities in the Kumano forearc basin deposits in SW Japan, (2) drastic stream captures in Shikoku, and (3) concordant changes in fault slip sense from thrust to dextral slip along the MTL. Oblique subduction could have induced stronger horizontal stress in the overriding plate above the shallow flat slab which could account for the increasing geologic slip rate observed on active structures. During four repetitions of megathrust earthquake sequences since the 17th century, ca. 65 % of all intraplate M>6.5 earthquakes have been concentrated in the area above the PHS flat slab. This also suggests that mechanical interaction between the slab and the overriding plate plays an important role in intraplate seismicity over shorter timescales as well.
NASA Astrophysics Data System (ADS)
Soto Castaneda, R. A.; Abers, G. A.; Eilon, Z.; Christensen, D. H.
2017-12-01
Recent broadband deployments in Alaska provide an excellent opportunity to advance our understanding of the Alaska-Aleutians subduction system, with implications for subduction processes worldwide. Seismic attenuation, measured from teleseismic body waves, provides a strong constraint on thermal structure as well as an indirect indication of ground shaking expected from large intermediate-depth earthquakes. We measure P and S wave attenuation from pairwise amplitude and phase spectral ratios for teleseisms recorded at 204 Transportable Array, Alaska Regional, and Alaska Volcano Observatory, SALMON (Southern Alaska Lithosphere & Mantle Observation Network) and WVLF (Wrangell Volcanics & subducting Lithosphere Fate) stations in central Alaska. The spectral ratios are inverted in a least squares sense for differential t* (path-averaged attenuation operator) and travel time anomalies at every station. Our preliminary results indicate a zone of low attenuation across the forearc and strong attenuation beneath arc and backarc in the Cook Inlet-Kenai region where the Aleutian-Yakutat slab subducts, similar to other subduction zones. This attenuation differential is observed in both the volcanic Cook Inlet segment and amagmatic Denali segments of the Aleutian subduction zone. By comparison, preliminary results for the Wrangell-St. Elias region past the eastern edge of the Aleutian slab show strong attenuation beneath the Wrangell Volcanic Field, as well as much further south than in the Cook Inlet-Kenai region. This pattern of attenuation seems to indicate a short slab fragment in the east of the subduction zone, though the picture is complex. Results also suggest the slab may focus or transmit energy with minimal attenuation, adding to the complexity. To image the critical transition between the Alaska-Aleutian slab and the region to its east, we plan to incorporate new broadband data from the WVLF array, an ongoing deployment of 37 PASSCAL instruments installed in 2016. These stations have 10-20 km spacing, spanning the edge of the subducting slab, and so will provide a zone of increased resolution in the region where slab behavior is poorly understood. We will discuss these data in the context of enigmatic Wrangell volcanism and its relationship to the eastern end of the Alaska-Aleutian Wadati-Benioff zone.
Stress regime in the Philippine Sea slab beneath Kanto, Japan
NASA Astrophysics Data System (ADS)
Nakajima, Junichi; Hasegawa, Akira; Hirose, Fuyuki
2011-08-01
We determine the focal mechanisms of earthquakes within the Philippine Sea slab beneath the Tokyo metropolitan area, and perform stress tensor inversions to investigate the detailed stress field within the slab. The results show a characteristic spatial variation in earthquake-generating stress. Slab stress in northeastern part of the PHS slab is characterized by down-dip tension (DDT), except for the uppermost tip of the seismic portion of the slab where down-dip compression (DDC) stress is dominant. We interpret that DDT is caused by the net slab pull and DDC is attributable to local resistance to subduction at the tip of the slab. In southwestern part of the PHS slab, σ1 and σ3 are generally rotated oblique to the dip of the slab, suggesting that earthquakes occur under stress conditions of neither DDC nor DDT. The rotations in σ1 and σ3 may be related to stress accumulation by the slip deficit along the asperity of the 1923 Kanto earthquake (M7.9).
Use of Terrestrial Laser Scanner for Rigid Airport Pavement Management
Di Benedetto, Alessandro; Fiani, Margherita
2017-01-01
The evaluation of the structural efficiency of airport infrastructures is a complex task. Faulting is one of the most important indicators of rigid pavement performance. The aim of our study is to provide a new method for faulting detection and computation on jointed concrete pavements. Nowadays, the assessment of faulting is performed with the use of laborious and time-consuming measurements that strongly hinder aircraft traffic. We proposed a field procedure for Terrestrial Laser Scanner data acquisition and a computation flow chart in order to identify and quantify the fault size at each joint of apron slabs. The total point cloud has been used to compute the least square plane fitting those points. The best-fit plane for each slab has been computed too. The attitude of each slab plane with respect to both the adjacent ones and the apron reference plane has been determined by the normal vectors to the surfaces. Faulting has been evaluated as the difference in elevation between the slab planes along chosen sections. For a more accurate evaluation of the faulting value, we have then considered a few strips of data covering rectangular areas of different sizes across the joints. The accuracy of the estimated quantities has been computed too. PMID:29278386
Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode.
Kim, Guk-Hyun; Lee, Yong-Hee; Shinya, Akihiko; Notomi, Masaya
2004-12-27
Coupling characteristics between the single-cell hexapole mode and the triangular-lattice photonic crystal slab waveguide mode is studied by the finite-difference time-domain method. The single-cell hexapole mode has a high quality factor (Q) of 3.3Chi106 and a small modal volume of 1.18(lambda/n)3. Based on the symmetry, three representative types of coupling geometries (shoulder-couple, butt-couple and side-couple structures) are selected and tested. The coupling efficiency shows strong dependence on the transverse overlap of the cavity mode and the waveguide mode over the region of the waveguide. The shoulder-couple structure shows best coupling characteristics among three tested structures. For example, two shouldercouple waveguides and a hexapole cavity result in a high performance resonant-tunneling-filter with Q of 9.7Chi105 and transmittance of 0.48. In the side-couple structure, the coupling strength is much weaker than that of the shoulder-couple structure because of the poor spatial overlap between the mode profiles. In the direct-couple structure, the energy transfer from the cavity to the waveguide is prohibited because of the symmetry mismatch and no coupling is observed.
DOT National Transportation Integrated Search
2013-05-01
Based on a recent study on cost efficient alternative bridge approach slab (BAS) designs (Thiagarajan et : al. 2010) has recommended three new BAS designs for possible implementation by MoDOT namely a) 20 feet cast-inplace : slab with sleeper slab (C...
NASA Astrophysics Data System (ADS)
Palomeras, I.; Villaseñor, A.; Thurner, S.; Levander, A.; Gallart, J.; Harnafi, M.
2017-05-01
We present a new 3-D shear velocity model of the western Mediterranean from the Pyrenees, Spain, to the Atlas Mountains, Morocco, and the estimated crustal and lithospheric thickness. The velocity model shows different crustal and lithospheric velocities for the Variscan provinces, those which have been affected by Alpine deformation, and those which are actively deforming. The Iberian Massif has detectable differences in crustal thickness that can be related to the evolution of the Variscan orogen in Iberia. Areas affected by Alpine deformation have generally lower velocities in the upper and lower crust than the Iberian Massif. Beneath the Gibraltar Strait and surrounding areas, the crustal thickness is greater than 50 km, below which a high-velocity anomaly (>4.5 km/s) is mapped to depths greater than 200 km. We identify this as a subducted remnant of the NeoTethys plate referred to as the Alboran and western Mediterranean slab. Beneath the adjacent Betic and Rif Mountains, the Alboran slab is still attached to the base of the crust, depressing it, and ultimately delaminating the lower crust and mantle lithosphere as the slab sinks. Under the adjacent continents, the Alboran slab is surrounded by low upper mantle shear wave velocities (Vs < 4.3) that we interpret as asthenosphere that has replaced the continental margin lithosphere which was viscously removed by Alboran plate subduction. The southernmost part of the model features an anomalously thin lithosphere beneath the Atlas Mountains that could be related to lateral flow induced by the Alboran slab.
Hydration-reduced lattice thermal conductivity of olivine in Earth’s upper mantle
Chang, Yun-Yuan; Hsieh, Wen-Pin; Tan, Eh; Chen, Jiuhua
2017-01-01
Earth’s water cycle enables the incorporation of water (hydration) in mantle minerals that can influence the physical properties of the mantle. Lattice thermal conductivity of mantle minerals is critical for controlling the temperature profile and dynamics of the mantle and subducting slabs. However, the effect of hydration on lattice thermal conductivity remains poorly understood and has often been assumed to be negligible. Here we have precisely measured the lattice thermal conductivity of hydrous San Carlos olivine (Mg0.9Fe0.1)2SiO4 (Fo90) up to 15 gigapascals using an ultrafast optical pump−probe technique. The thermal conductivity of hydrous Fo90 with ∼7,000 wt ppm water is significantly suppressed at pressures above ∼5 gigapascals, and is approximately 2 times smaller than the nominally anhydrous Fo90 at mantle transition zone pressures, demonstrating the critical influence of hydration on the lattice thermal conductivity of olivine in this region. Modeling the thermal structure of a subducting slab with our results shows that the hydration-reduced thermal conductivity in hydrated oceanic crust further decreases the temperature at the cold, dry center of the subducting slab. Therefore, the olivine−wadsleyite transformation rate in the slab with hydrated oceanic crust is much slower than that with dry oceanic crust after the slab sinks into the transition zone, extending the metastable olivine to a greater depth. The hydration-reduced thermal conductivity could enable hydrous minerals to survive in deeper mantle and enhance water transportation to the transition zone. PMID:28377520
Surface Luminescence Dating Of 'Dragon Houses' And Armena Gate At Styra (Euboea, Greece)
NASA Astrophysics Data System (ADS)
Liritzis, I.; Polymeris, G. S.; Zacharias, N.
The Optical Stimulated Luminescence (OSL) surface dating employing the singlealiquot regenerative (SAR) technique on quartz was applied to some small enigmatic buildings made of large marble schist slabs in a skillful corbelling technique, and a fortified megalithic gate, at Styra, Kapsala, Laka Palli and Kastro Armena in southern Euboea. The function and origins of the structures have created a puzzle that has fed the imagination and lead to various interpretations by many scholars. No archaeological excavations or methods of dating have been available for the megalithic-like structures. The dates reported suggest the earliest construction to have taken place during the Classical period. Re-use of these structures has occurred during Hellenistic and Roman times (the latter associated with the large scale quarrying of marbles), as well as, in Medieval times (found in agreement with the historical literature) and the contemporary period (as reported by shepherds). In all cases the datable slabs were rather reset as repairs.
NASA Astrophysics Data System (ADS)
Biryol, C. Berk; Lee, Stephen J.; Lees, Jonathan M.; Shore, Michael J.
2018-06-01
Bransfield Basin (BB), located northwest of the Antarctic Peninsula (AP) and southeast of the South Shetland Islands (SSI), is the most active section of the Antarctic continental margin. The region has long been (50 Ma) a convergent plate boundary where the Phoenix plate was subducting beneath the Antarctic Plate and is characterized by long-lived arc magmatism and accretion. However, the collision of the Antarctic-Phoenix spreading center with the subduction front near SSI (ca. 4 Ma) gave way to the opening of slab windows and dramatic decrease in the subduction rate of the Phoenix plate beneath AP and SSI. Consequently, the Phoenix slab began to rollback slowly along the South Shetland Trench (SST), giving way to slow extension in the back-arc region and rifting along the BB. Although there is consensus on the factors that control the current deformation and extension of the BB, the origin of the BB and the tectonic configuration of the basin are still unclear. Most of the controversy stems from uncertainties regarding the crustal thickness of the BB. Hence, we computed teleseismic receiver functions for 10 broadband stations in the region that belong to existing permanent and temporary deployments in order obtain robust constraints on the lithospheric structure and crustal thickness of the BB, as well as the AP and SSI. Our results indicate that the crust is thinning from 30 km to 26 km from the AP towards the South Shetland trench and Central BB showing the asymmetrical character of the rift basin. The crustal thickness and Vp/Vs variations are less pronounced along the AP but very significant across the SSB indicating the lithospheric scale segmentation of the South Shetland Block (SSB) and the incipient rift basin under the control of the opening of slab window and the roll-back of stalled Phoenix slab. High Vp/Vs ratios (∼1.9) beneath BB and SSI, agree well with the nascent rift character of BB, the presence of a steep Phoenix slab and consequently a wider mantle wedge characterized by the presence of underplating partial melts beneath SSI and BB.
NASA Astrophysics Data System (ADS)
Bartol, J.; Govers, R. M. A.; Wortel, M. J. R.
2015-12-01
Central Anatolia (Central Turkey) possesses all the characteristics of a plateau. It experienced a period of rapid and substantial uplift (late Miocene, ˜8 Ma) while significant crustal shortening did not occur. Similar to other plateaus, the presence of volcanic ash and tuff within the sediments suggest that uplift was preceded by widespread volcanism (˜14-9Ma). The lithospheric context of these events is, however, unknown. For the Eastern Anatolian plateau, similar events have been attributed to southward retread followed by slab break-off of the northern Neotethys slab. Recent tomographic results indicate that this northern Neotethys slab extended beneath both the Eastern and Central Anatolian plateau prior to late Miocene delamination and possibly even beneath western Anatolia prior to the Eocene (?). We propose a new lithospheric scenario for the regional evolution for the Aegean-Anatolia-Near East region that combines a recent compilation of surface geology data with the structure of the upper mantle imaged with tomography. In our new scenario for the evolution of the Aegean-Anatolia-Near East region, a single continuous subduction zone south of the Pontides (Izmir - Ankara - Erzincan crustal suture zone) accommodated the Africa - Eurasia convergence until the end of the late Cretaceous. In the Late Cretaceous - Eocene the northern Neotethys Ocean closed followed by Anatolide - Taurides (south) and Pontides (north) continental collision along the Izmir - Ankara - Erzincan crustal suture zone. While the trench jumped to the south of Anatolide - Taurides terrane, subduction continued beneath the Izmir-Ankara-Erzincan suture where the northern Neotethys slab continued to sink into the deeper mantle. In the early Miocene (˜20-15Ma), the northern Neotethys slab started to retreat southward towards the trench, resulting in delamination of the lithospheric mantle. The last part of (early Miocene - recent) our scenario is testable. We use a coupled thermal-flexural model of the lithosphere. Model results show that delamination can explain the average present-day long-wavelength topography of the Central Anatolian plateau. For the Eastern Anatolian plateau, delamination explains half the present-day elevation: the other half resulted from crustal thickening.
3D Seismic Velocity Structure Around Philippine Sea Slab Subducting Beneath Kii Peninsula, Japan
NASA Astrophysics Data System (ADS)
Shibutani, T.; Imai, M.; Hirahara, K.; Nakao, S.
2013-12-01
Kii Peninsula is a part of the source area of Nankai Trough megaquakes and the region through which the strong seismic waves propagate to big cities in Kansai such as Osaka, Kyoto, Nara, Kobe, and so on. Moreover, the rupture starting point is thought to be possibly at off the peninsula. Therefore, it is important for simulations of the megaquakes and the strong motions to estimate accurately the configuration of the Philippine Sea slab and the seismic velocity structure around the slab and to investigate properties and conditions of the plate boundary surface. Deep low frequency events (DLFEs) are widely distributed from western Shikoku to central Tokai at 30 - 40 km depths on the plate boundary (Obara, 2002). Results from seismic tomography and receiver function analyses revealed that the oceanic crust of the Philippine Sea plate had a low velocity and a high Vp/Vs ratio (Hirose et al., 2007; Ueno et al., 2008). Hot springs with high 3He/4He ratios are found in an area between central Kinki and Kii Peninsula despite in the forearc region (Sano and Wakita, 1985). These phenomena suggest the process that H2O subducting with the oceanic crust dehydrates at the depths, causes the DLFEs, and moves to shallower depths. We carried out linear array seismic observations in the Kii Peninsula since 2004 in order to estimate the structure of the Philippine Sea slab and the surrounding area. We have performed receiver function analyses for four profile lines in the dipping direction of the slab and two lines in the perpendicular direction so far. We estimated three dimensional shapes of seismic velocity discontinuities such as the continental Moho, the upper surface of the oceanic crust and the oceanic Moho (Imai et al., 2013, this session). In addition, we performed seismic tomography with a velocity model embedded the discontinuities and observed travel times at stations in the linear arrays, and successfully estimated 3D seismic velocity structure around the Philippine Sea slab beneath the Kii Peninsula in higher resolutions. The results show that in the vicinity of the areas of the DLFEs low velocity anomalies (LVAs) are distributed from the oceanic crust to the mantle wedge. These LVAs are thought to be due to fluids discharged from hydrous minerals in the oceanic crust by dehydration that occurs at 30 - 40 km depths on the plate boundary. Other strong LVAs (with 5 % velocity perturbation or more) are widely distributed in the lower crust beneath northern Wakayama Prefecture where the seismicity in the upper crust is high. Since the latter LVAs continue to deeper in the mantle wedge than the former LVAs, the origin of the LVAs in the two regions might be different. No matter what the origin is, the latter LVAs beneath the northern Wakayama area are probably due to fluids too. Then the high seismicity in the area can be explained by the reduction of the effective normal stress on the fault planes due to the increase of the pore pressure in the micro cracks caused by the fluids from the LVAs.
NASA Astrophysics Data System (ADS)
James, D. E.; Fouch, M. J.; Long, M. D.; Druken, K. A.; Wagner, L. S.; Chen, C.; Carlson, R. W.
2012-12-01
We interpret post-20 Ma tectonomagmatism across the U.S. Pacific Northwest in the context of subduction related processes. While mantle plume models have long enjoyed favor as an explanation for the post 20-Ma magmatism in the region, conceptually their support has hinged almost entirely on two major features: (1) Steens/Columbia River flood basalt volcanism (plume head); and (2) The Snake River Plain/Yellowstone hotspot track (plume tail). Recent work, synthesized in this presentation, suggests that these features are more plausibly the result of mantle dynamical processes driven by southerly truncation of the Farallon/Juan de Fuca subduction zone and slab detachment along the evolving margin of western North America (Long et al., 2012; James et al., 2011). Plate reconstructions indicate that shortening of the subduction zone by the northward migration of the Mendocino triple junction resulted in a significant increase in the rate of trench retreat and slab rollback ca 20 Ma. Both numerical modeling and physical tank experiments in turn predict large-scale mantle upwelling and flow around the southern edge of the rapidly retreating slab, consistent both with the observed Steens/Columbia River flood volcanism and with the strong E-W mantle fabric observed beneath the region of the High Lava Plains of central and eastern Oregon. The High Lava Plains and Snake River Plain time-progressive volcanism began concurrently about 12 Ma, but along highly divergent tracks and characterized by strikingly different upper mantle structure. Crustal and upper mantle structure beneath the High Lava Plains exhibits evidence typical of regional extension; i.e. thin crust, flat and sharp Moho, and an uppermost mantle with low velocities but otherwise largely devoid of significant vertical structure. In contrast, the Snake River Plain exhibits ultra-low mantle velocities to depths of about 180 km along the length of the hotspot track. Seismic images of the upper mantle in the depth range 300-600 km show that a northern segment of the orphaned Farallon plate lies sub-horizontally in the mantle transition zone parallel to and along the length of the SRP. The images also provide evidence for present-day upwelling from the deep upper mantle around the northern edge of the remnant slab beneath SRP as well as around its leading tip beneath Yellowstone. These results, coupled with petrologic and geochemical constraints, provide compelling support for a subduction model that accounts for virtually all post-20 Ma Cenozoic volcanism and structural deformation in the Cascadian back arc. James, D.E., Fouch, M.J., Carlson, R.W., Roth, J.B., 2011. Slab fragmentation, edge flow, and the origin of the Yellowstone hotspot track. Earth and Planetary Science Letters 311, 124-135. Long, M.D., Till, C.B., Druken, K.A., Carlson, R.W., Wagner, L.S., Fouch, M.J., James, D.E., Grove, T.L., Schmerr, N., Kincaid, C., 2012. Mantle dynamics beneath the Pacific Northwest and generation of voluminous back-arc volcanism. G-cubed in press.
SNR-optimized phase-sensitive dual-acquisition turbo spin echo imaging: a fast alternative to FLAIR.
Lee, Hyunyeol; Park, Jaeseok
2013-07-01
Phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo imaging was recently introduced, producing high-resolution isotropic cerebrospinal fluid attenuated brain images without long inversion recovery preparation. Despite the advantages, the weighted-averaging-based technique suffers from noise amplification resulting from different levels of cerebrospinal fluid signal modulations over the two acquisitions. The purpose of this work is to develop a signal-to-noise ratio-optimized version of the phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo. Variable refocusing flip angles in the first acquisition are calculated using a three-step prescribed signal evolution while those in the second acquisition are calculated using a two-step pseudo-steady state signal transition with a high flip-angle pseudo-steady state at a later portion of the echo train, balancing the levels of cerebrospinal fluid signals in both the acquisitions. Low spatial frequency signals are sampled during the high flip-angle pseudo-steady state to further suppress noise. Numerical simulations of the Bloch equations were performed to evaluate signal evolutions of brain tissues along the echo train and optimize imaging parameters. In vivo studies demonstrate that compared with conventional phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo, the proposed optimization yields 74% increase in apparent signal-to-noise ratio for gray matter and 32% decrease in imaging time. The proposed method can be a potential alternative to conventional fluid-attenuated imaging. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sun, M.; Bezada, M.
2017-12-01
Intermediate-depth seismicity outside active subduction zones is rare. However, there is a well-known occurrence of such events in a N-S elongated volume between Spain and Morocco, within what most researchers consider to be the relic Alboran slab. Partial subduction of, and tearing from the adjoining continental lithosphere have been suggested in this area. We investigate whether dehydration embrittlement or shear instability is more consistent with the Alboran intermediate depth seismicity by considering their location relative to the expected thermal structure and expected areas of high strain rate associated with thinning or tearing of the slab. We use a dense temporary seismograph deployment in Spain and Morocco to relocate 65 intermediate-depth events occurring between 2010 and 2013 in this region. The relocation procedure is realized by a grid-search approach that minimizes the normalized misfit between the picked times and travel times calculated using a regional 3D velocity model. Results indicate that, compared with catalog results, hypocenters after relocation are more concentrated in space; they tend to shift southward and eastward while no systematic shift in depth is observed. Relocated hypocenters concentrate at a depth range between 50-100 km and along a narrow longitude range around 4.5W. Investigation of the earthquake density distribution indicates these earthquakes concentrate into several clusters. One such cluster sits above the spain-arm of the Alboran slab and beneath the Spain continental lithosphere, indicating that it is likely associated to the thinning process of the Alboran slab. The other four clusters all lie within the interior of the slab. Interestingly, two of them are near the middle of the subducted lithosphere and the other two lie near its base. This observation seems at odds with expectations based on the two leading hypotheses for enabling brittle failure at intermediate depths.
Detecting lower-mantle slabs beneath Asia and the Aleutians
NASA Astrophysics Data System (ADS)
Schumacher, L.; Thomas, C.
2016-06-01
To investigate the descend of subducted slabs we search for and analyse seismic arrivals that reflected off the surface of the slab. In order to distinguish between such arrivals and other seismic phases, we search for waves that reach a seismic array with a backazimuth deviating from the theoretical backazimuth of the earthquake. Source-receiver combinations are chosen in a way that their great circle paths do not intersect the slab region, hence the direct arrivals can serve as reference. We focus on the North and Northwest Pacific region by using earthquakes from Japan, the Philippines and the Hindu Kush area recorded at North American networks (e.g. USArray, Alaska and Canada). Using seismic array techniques for analysing the data and record information on slowness, backazimuth and traveltime of the observed out-of-plane arrivals we use these measurements to trace the wave back through a 1-D velocity model to its scattering/reflection location. We find a number of out-of-plane reflections. Assuming only single scattering, most out-of-plane signals have to travel as P-to-P phases and only a few as S-to-P phases, due to the length of the seismograms we processed. The located reflection points present a view of the 3-D structures within the mantle. In the upper mantle and the transition zone they correlate well with the edges of fast velocity regions in tomographic images. We also find reflection points in the mid- and lower mantle and their locations generally agree with fast velocities mapped by seismic tomography models suggesting that in the subduction regions we map, slabs enter the lower mantle. To validate our approach, we calculate and process synthetic seismograms for 3-D wave field propagation through a model containing a slab-like heterogeneity. We show, that depending on the source-receiver geometry relative to the reflection plane, it is indeed possible to observe and back-trace out-of-plane signals.
Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9)
Zhao, Dapeng; Fujisawa, Moeto; Toyokuni, Genti
2017-01-01
On 30 May 2015 an isolated deep earthquake (~670 km, Mw 7.9) occurred to the west of the Bonin Islands. To clarify its causal mechanism and its relationship to the subducting Pacific slab, we determined a detailed P-wave tomography of the deep earthquake source zone using a large number of arrival-time data. Our results show that this large deep event occurred within the subducting Pacific slab which is penetrating into the lower mantle. In the Izu-Bonin region, the Pacific slab is split at ~28° north latitude, i.e., slightly north of the 2015 deep event hypocenter. In the north the slab becomes stagnant in the mantle transition zone, whereas in the south the slab is directly penetrating into the lower mantle. This deep earthquake was caused by joint effects of several factors, including the Pacific slab’s fast deep subduction, slab tearing, slab thermal variation, stress changes and phase transformations in the slab, and complex interactions between the slab and the ambient mantle. PMID:28295018
Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9)
NASA Astrophysics Data System (ADS)
Zhao, Dapeng; Fujisawa, Moeto; Toyokuni, Genti
2017-03-01
On 30 May 2015 an isolated deep earthquake (~670 km, Mw 7.9) occurred to the west of the Bonin Islands. To clarify its causal mechanism and its relationship to the subducting Pacific slab, we determined a detailed P-wave tomography of the deep earthquake source zone using a large number of arrival-time data. Our results show that this large deep event occurred within the subducting Pacific slab which is penetrating into the lower mantle. In the Izu-Bonin region, the Pacific slab is split at ~28° north latitude, i.e., slightly north of the 2015 deep event hypocenter. In the north the slab becomes stagnant in the mantle transition zone, whereas in the south the slab is directly penetrating into the lower mantle. This deep earthquake was caused by joint effects of several factors, including the Pacific slab’s fast deep subduction, slab tearing, slab thermal variation, stress changes and phase transformations in the slab, and complex interactions between the slab and the ambient mantle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goto, R.; Hatori, T.; Miura, H., E-mail: miura.hideaki@nifs.ac.jp
Two-fluid and the finite Larmor effects on linear and nonlinear growth of the Rayleigh-Taylor instability in a two-dimensional slab are studied numerically with special attention to high-wave-number dynamics and nonlinear structure formation at a low β-value. The two effects stabilize the unstable high wave number modes for a certain range of the β-value. In nonlinear simulations, the absence of the high wave number modes in the linear stage leads to the formation of the density field structure much larger than that in the single-fluid magnetohydrodynamic simulation, together with a sharp density gradient as well as a large velocity difference. Themore » formation of the sharp velocity difference leads to a subsequent Kelvin-Helmholtz-type instability only when both the two-fluid and finite Larmor radius terms are incorporated, whereas it is not observed otherwise. It is shown that the emergence of the secondary instability can modify the outline of the turbulent structures associated with the primary Rayleigh-Taylor instability.« less
Jiang, Baofeng; Jia, Pengjiao; Zhao, Wen; Wang, Wentao
2018-01-01
This paper explores a new method for rapid structural damage inspection of steel tube slab (STS) structures along randomly measured paths based on a combination of compressive sampling (CS) and ultrasonic computerized tomography (UCT). In the measurement stage, using fewer randomly selected paths rather than the whole measurement net is proposed to detect the underlying damage of a concrete-filled steel tube. In the imaging stage, the ℓ1-minimization algorithm is employed to recover the information of the microstructures based on the measurement data related to the internal situation of the STS structure. A numerical concrete tube model, with the various level of damage, was studied to demonstrate the performance of the rapid UCT technique. Real-world concrete-filled steel tubes in the Shenyang Metro stations were detected using the proposed UCT technique in a CS framework. Both the numerical and experimental results show the rapid UCT technique has the capability of damage detection in an STS structure with a high level of accuracy and with fewer required measurements, which is more convenient and efficient than the traditional UCT technique.
NASA Astrophysics Data System (ADS)
Novitskaya, Mariya; Makhnach, Leonid; Ivashkevich, Ludmila; Pankov, Vladimir; Klein, Holger; Rageau, Amélie; David, Jérémy; Gemmi, Mauro; Hadermann, Joke; Strobel, Pierre
2011-12-01
A new black quaternary oxide Sr 5BiNi 2O 9.6 was synthesized by solid state reaction at 1200 °C. Its structure was solved by electron crystallography and X-ray powder refinement, yielding a tetragonal structure with space group I4/ mmm, a=5.3637 (2) Å, c=17.5541(5) Å, Z=4. The structure can be described as a stacking of (Bi,Sr)-O rocksalt slabs and SrNiO 3- δ perovskite slabs. The initial nickel valence is close to +3.1. Thermogravimetry and high-temperature oxygen coulometry showed that this compound has variable oxygen content as a function of temperature and oxygen pressure, and ultimately decomposes when heated in low oxygen pressure above 800 °C. It is a metallic conductor with n-type conduction. Its thermoelectric power was determined and found to be -20 and -38 μV/K at 300 and 650 °C, respectively. Magnetic measurements confirm the nickel valence close to +3 and show evidence of magnetic ordering at 20 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, R.X.; Yang, H.X., E-mail: hxyang@iphy.ac.cn; Tian, H.F.
2015-12-15
Experimental measurements clearly reveal the presence of bulk superconductivity in the CsPb{sub x}Bi{sub 4−x}Te{sub 6} (0.3≤x≤1.0) materials, i.e. the first member of the thermoelectric series of Cs[Pb{sub m}Bi{sub 3}Te{sub 5+m}], these materials have the layered orthorhombic structure containing infinite anionic [PbBi{sub 3}Te{sub 6}]{sup −} slabs separated with Cs{sup +} cations. Temperature dependences of electrical resistivity, magnetic susceptibility, and specific heat have consistently demonstrated that the superconducting transition in Cs{sub 0.96}Pb{sub 0.25}Bi{sub 3.75}Te{sub 6.04} occurs at T{sub c}=3.1 K, with a superconducting volume fraction close to 100% at 1.8 K. Structural study using aberration-corrected STEM/TEM reveals a rich variety of microstructuralmore » phenomena in correlation with the Pb-ordering and chemical inhomogeneity. The superconducting material Cs{sub 0.96}Pb{sub 0.25}Bi{sub 3.75}Te{sub 6.04} with the highest T{sub c} shows a clear ordered structure with a modulation wave vector of q≈a*/2+c*/1.35 on the a–c plane. Our study evidently demonstrates that superconductivity deriving upon doping of narrow-gap semiconductor is a viable approach for exploration of novel superconductors. - Graphical abstract: Bulk superconductivity is discovered in the orthorhombic Cs{sub 0.96}Pb{sub 0.22}Bi{sub 3.80}Te{sub 6.02} materials with the superconducting transition T{sub c}=3.1 K. The compound shows a clear ordered structure with a modulation wave vector of q≈a*/2+c*/1.35 on the a–c plane. - Highlights: • Bulk superconductivity is discovered in the orthorhombic CsPb{sub x}Bi{sub 4−x}Te{sub 6} materials. • The superconducting transition in Cs{sub 0.96}Pb{sub 0.22}Bi{sub 3.80}Te{sub 6.02} occurs at T{sub c}=3.1 K. • Physical property measurements concerning the bulk superconductivity were present. • Structural modulation due to Pb-ordering was observed.« less
High-order harmonic generation in solid slabs beyond the single-active-electron approximation
NASA Astrophysics Data System (ADS)
Hansen, Kenneth K.; Deffge, Tobias; Bauer, Dieter
2017-11-01
High-harmonic generation by a laser-driven solid slab is simulated using time-dependent density functional theory. Multiple harmonic plateaus up to very high harmonic orders are observed already at surprisingly low field strengths. The full all-electron harmonic spectra are, in general, very different from those of any individual Kohn-Sham orbital. Freezing the Kohn-Sham potential instead is found to be a good approximation for the laser intensities and harmonic orders considered. The origins of the plateau cutoffs are explained in terms of band gaps that can be reached by Kohn-Sham electrons and holes moving through the band structure.
NASA Astrophysics Data System (ADS)
Lin, Y. A.; Wu, J.
2017-12-01
A number of northern Cordillera plate reconstructions have predicted subduction of the Kula-Farallon ridge and possibly other ridges along western North America after the late Mesozoic. The timing and location of these predicted ridge subduction events have been controversial, with implications for rapid northward terrane motions (i.e. the Baja-British Columbia hypothesis). In contrast, Sigloch and Mihalynuk (2013) proposed an archipelago-style plate model that placed one or several Jurassic-Cretaceous ocean basins between the Farallon plate and western North America, which apparently would preclude any sustained Kula-Farallon ridge subduction along western North America. In this study we test the viability of these models by mapping and unfolding subducted slabs from MITP08 tomography (Li et al., 2008) between Alaska and California within the upper 1500 km mantle. Our aim was to locate significant slab gaps that might be related to ancient ridge subduction `slab windows'. Tomographic velocities were extracted and displayed on our mapped slabs following the methods of Wu et al. (2016) to assist with the identification of slab gaps or windows. Near Alaska, we mapped the Aleutian slab and a detached slab that was previously identified as the `K slab' by Sigloch and Mihalynuk (2013). When unfolded these slabs apparently account for Pacific-Kula convergence towards Alaska since the late Cretaceous. We did not find evidence for a ridge subduction-related slab gap under the Alaskan region. Between northern Canada to California, we mapped the Juan de Fuca slab and several detached slabs at 1000 to 1500 km depths that were previously identified by Sigloch and Mihalynuk (2013). The velocity perturbations within our mapped slabs revealed slower P-wavespeed `slab gaps' under southernmost Alaska, Yukon, and British Columbia between the mapped Kula and Juan de Fuca plate. We did not find evidence of the hypothesized Resurrection plate. We compare our mapped slab gaps to predicted slab window geometries from previous studies and discuss their implications for plate tectonic reconstructions of the northern Cordillera and surrounding area.
NASA Astrophysics Data System (ADS)
Comte, D.; Farías, M.; Roecker, S. W.; Brandon, M. T.
2017-12-01
The 2015 Illapel interplate earthquake Mw 8.4 generated a large amount of aftershocks that was recorded by the Chile-Illapel Aftershock Experiment (CHILLAX) during a year after the mainshock. Using this database, along with previous seismological campaigns, an improved 3D body wave tomographic image was obtained, allowing us to visualize first-order lithospheric discontinuities. This new analysis confirms not only the presence of this dense block, but also that the Benioff zone extends with a 30° dip even below the 100 km depth, where the Nazca plate has been interpreted to be flat. Recent results of seismic anisotropy show that the oceanic plate has been detached at depths greater than 300 km. We propose that: i) The dry, cold mantle beneath the continental crust is an entrapped mantle, cooled by the slab flattening, while the western part would be hydrated by slab-derived fluid; ii) The Nazca plate would be faulted and is now subducting with a normal dip beneath the flattened slab segment. Considering that the slab segment is detached from deeper part of the subducted plate, slab pull on the flat segment would be reduced, decreasing its eastward advance. In the western side, the flat segment of the slab has been observed to be slightly folded. We propose that the current normal subduction is related to the slab break-off resulting from the loss of a slab-pull force, producing the accretion of the slab beneath the dry and cold mantle. Considering that the flat slab segment does not occur at depths shallower than 100 km, rollback of the slab is not expected. In turn, suction forces would have induced the shortening in the flat segment considering its eastward slowing down due to slab break-off, thus producing a breakthrough faulting. This proposition implies that the underplated flat slab segment, along with the overlying dense and dry mantle may be delaminated by gravitional instabilities and ablative subduction effects.
Anelastic Mantle Structure beneath the Northern Philippine Sea from Phase Pair Method
NASA Astrophysics Data System (ADS)
Shito, A.; Shibutani, T.
2001-12-01
Anelasticity of the mantle provides important constraints on its dynamics, in complement to elasticity, however, studies of lateral variation in attenuation are few, especially at short periods. In this study, we determine the body wave attenuation structure of the mantle beneath the northern part of the Philippine Sea. Elastic tomography studies [e.g. van der Hilst et al., 1991; Fukao et al., 1992] show a stagnant Pacific lithosphere just above the 660 km discontinuity in this region. This stagnation was caused by the trench retreat due to the back arc spreading during the past 17 - 30 Ma [Seno et al., 1993; van der Hilst, 1995; Shito and Shibutani, 2001]. Anelastic properties of the mantle and lithosphere may play important roles in the interaction of the slab and mantle of this area. To study the attenuation structure, we examine the difference of the observed attenuation between P and S waves. The S-P phase pair method measures δ t* using the differential spectral decay between S and P waves arriving at the same station, assuming a constant Qα }/Q{β over the frequency band of 0.5 to 1.25 Hz. We use 20 earthquakes in the Izu-Bonin slab which were recorded at 43 broad-band stations of the J-array and FREESIA networks in Japan. About 700 phase pairs are used to invert for the 2-D attenuation structure. The resultant preliminary Q model shows the local variations of attenuation in the subduction zone. The slab is imaged as a low attenuation area (Qα > 1000), while Qα values in the range of 100 - 350 are found in the mantle wedge.
P-wave tomography of the Chile Triple Junction region
NASA Astrophysics Data System (ADS)
Miller, M. R.; Priestley, K. F.; Tilmann, F. J.; Iwamori, H.; Bataille, K.
2010-12-01
We investigate the crustal and upper mantle structure of the Aysén region of Chile. This region is situated from 44 to 49oS, a place where the diverging oceanic Nazca and Antarctic plates subduct beneath the South American continent. The Seismic Experiment in the Aysén Region of CHile (SEARCH) project operated a network of up to 60 land-based seismometers in this region between 2004 and 2006, centred over a 6 Ma subducted spreading centre between the oceanic plates. The data is used to examine the P-wave velocity structure beneath the region using relative-arrival teleseismic travel time tomography, using 2534 P-wave residuals from 173 teleseismic earthquakes. It is possible to image the velocity structure beneath the seismic network down to ˜300 km depth. The velocity structure has a maximum resolution of ˜60 km and shows a large difference between the northern and southern parts of the region. To the north, a ˜100 km thick fast anomaly exists which dips away from the subduction trench; this is likely to be related to the subducting Nazca plate. Going to the south, as the age of this plate at the subduction trench decreases, the fast anomaly migrates further from the trench suggesting that the Nazca plate subducts at a low angle over a larger distance before the subduction angle steepens and hence slab tears exist across the fracture zones between parts of the slab of different age. Where the 6 Ma subducted ridge segment is predicted to lie there is a region of lower velocities between ˜200 and ˜100 km depth, and no fast region associated with a subducting slab is present. Instead, the lower velocities indicate the presence of an asthenospheric window between the subducted Nazca and Antarctic plate.
Long-life slab replacement concrete.
DOT National Transportation Integrated Search
2015-03-01
This research was initiated following reports of high incidence of cracking on FDOT concrete pavement replacement : slab projects. Field slabs were instrumented for data acquisition from high-early-strength concrete pavement : replacement slabs place...
Structural analysis for a 40-story building
NASA Technical Reports Server (NTRS)
Hua, L.
1972-01-01
NASTRAN was chosen as the principal analytical tool for structural analysis of the Illinois Center Plaza Hotel Building in Chicago, Illinois. The building is a 40-story, reinforced concrete structure utilizing a monolithic slab-column system. The displacements, member stresses, and foundation loads due to wind load, live load, and dead load were obtained through a series of NASTRAN runs. These analyses and the input technique are described.
Kim, Sang-Hyo; Kim, Kun-Soo; Lee, Do-Hoon; Park, Jun-Seung; Han, Oneil
2017-11-22
Shear connectors are used in steel beam-concrete slabs of composite frame and bridge structures to transfer shear force according to design loads. The existing Y-type perfobond rib shear connectors are designed for girder slabs of composite bridges. Therefore, the rib and transverse rebars of the conventional Y-type perfobond rib shear connectors are extremely large for the composite frames of building structures. Thus, this paper proposes stubby Y-type perfobond rib shear connectors, redefining the existing connectors, for composite frames of building structures; these were used to perform push-out tests. These shear connectors have relatively small ribs compared to the conventional Y-type perfobond rib shear connectors. To confirm the shear resistance of these stubby shear connectors, we performed an experiment by using transverse rebars D13 and D16. The results indicate that these shear connectors have suitable shear strength and ductility for application in composite frame structures. The shear strengths obtained using D13 and D16 were not significantly different. However, the ductility of the shear connectors with D16 was 45.1% higher than that of the shear connectors with D13.
Effective Process Design for the Production of HIC-Resistant Linepipe Steels
NASA Astrophysics Data System (ADS)
Nieto, J.; Elías, T.; López, G.; Campos, G.; López, F.; Garcia, R.; De, Amar K.
2013-09-01
Production of slabs for sour service applications requires stringent control in slab internal quality and secondary processing so as to guarantee resistance against hydrogen-induced cracking (HIC). ArcelorMittal Steelmaking facility at Lazaro Cardenas, Mexico had recently implemented key steelmaking and casting processing technologies for production of sound, centerline free slabs for catering to the growing API Linepipe and off-shore market for sour service applications. State-of-the-art steelmaking with use of residual-free Direct-reduced Iron and continuous casting facilities with dynamic soft reduction were introduced for the production of slabs with ultra clean centerline. Introduction of controlled cooling of slabs for atomic hydrogen control well below 2 ppm has enabled production of slabs suitable for excellent HIC-resistant plate processing. Substantial tonnages of slabs were produced for production of API X52-X65 grade plates and pipes for sour service. Stringent quality control at each stage of steelmaking, casting, and slab inspection ensured slabs with excellent internal quality suitable for HIC resistance to be guaranteed in final product (Plates & Pipes). Details of production steps which resulted in successful HIC-resistant slab production have been described in this article.
Investigation of negative permeability metamaterials for wireless power transfer
NASA Astrophysics Data System (ADS)
Xin, Wenhui; Mi, Chunting Chris; He, Fei; Jiang, Meng; Hua, Dengxin
2017-11-01
In order to enhance the transmission efficiency of wireless power transfer (WPT), a negative permeability metamaterials (NPM) with a structure of honeycomb composed by units of hexagon-shaped spirals copper is proposed in this paper. The unit parameters of the NPM are optimized, to make sure the negative permeability at the special frequency. The S-parameters of the designed NPM are measured by a network analyzer and the permeability is extracted, it shows the honeycomb NPM has a negative permeability at 6.43 MHz. A two-coil WPT is setup and the transmission efficiency of WPT embedded with NPM at the different position and with different structure are investigated. The measured results show that the 2-slab honeycomb NPM have a good perform compared with the 1-slab NPM, and the efficiency can be increased up to 51%. The results show that honeycomb NPM embedded in the WPT help to improve the transmission efficiency remarkable.
Non-intrusive high voltage measurement using slab coupled optical sensors
NASA Astrophysics Data System (ADS)
Stan, Nikola; Chadderdon, Spencer; Selfridge, Richard H.; Schultz, Stephen M.
2014-03-01
We present an optical fiber non-intrusive sensor for measuring high voltage transients. The sensor converts the unknown voltage to electric field, which is then measured using slab-coupled optical fiber sensor (SCOS). Since everything in the sensor except the electrodes is made of dielectric materials and due to the small field sensor size, the sensor is minimally perturbing to the measured voltage. We present the details of the sensor design, which eliminates arcing and minimizes local dielectric breakdown using Teflon blocks and insulation of the whole structure with transformer oil. The structure has a capacitance of less than 3pF and resistance greater than 10 GΩ. We show the measurement of 66.5 kV pulse with a 32.6μs time constant. The measurement matches the expected value of 67.8 kV with less than 2% error.
0-6722 : spread prestressed concrete slab beam bridges.
DOT National Transportation Integrated Search
2014-08-01
The Texas Department of Transportation uses : precast prestressed concrete slab beam bridges for : shorter-span bridges of approximately 3050 ft in : length. Conventional slab beam bridges have slab : beams placed immediately adjacent to one anoth...
Flowing Air-Water Cooled Slab Nd: Glass Laser
NASA Astrophysics Data System (ADS)
Lu, Baida; Cai, Bangwei; Liao, Y.; Xu, Shifa; Xin, Z.
1989-03-01
A zig-zag optical path slab geometry Nd: glass laser cooled through flowing air-water is developed by us. Theoretical studies on temperature distribution of slab and rod configurations in the unsteady state clarify the advantages of the slab geometry laser. The slab design and processing are also reported. In our experiments main laser output characteristics, e. g. laser efficiency, polarization, far-field divergence angle as well as resonator misalignment are investigated. The slab phosphate glass laser in combination with a crossed Porro-prism resonator demonstrates a good laser performance.
NASA Astrophysics Data System (ADS)
Nakamura, Hitomi; Iwamori, Hikaru; Ishizuka, Osamu; Nishizawa, Tatsuji
2018-01-01
Marginal parts of a plate and subducting slab can play important roles in geodynamics. This is because in areas where a plate interacts with other plates or with the mantle thermal, geochemical, and mechanical interactions are expected. The Philippine Sea (PHS) slab that subducts beneath the Japan arcs has such an edge. To examine the relationship between arc magmatism and the slab edge in the transition zone from Northeast Japan to Central Japan, we investigated isotopic systematics of the regional volcanic rocks, incorporating data from literature and new data for five isotopic ratios of Sr, Nd, and Pb. The new data included major element compositions of 22 samples from the back-arc area, and 5 isotopic ratios for 6 samples selected from Pleistocene to early Quaternary epochs. Consequently, several findings were determined based on the spatial variation of the isotopic ratios and the estimated amount of slab-derived fluid: (1) the amount of fluid derived from the two subducting slabs (i.e., the Pacific slab and the PHS slab) decreases northward from a significantly high value ( 5 wt% fluid added to the source mantle), away from the seismically determined edge of the PHS slab; (2) the proportion of the PHS component in the total slab-derived fluid also decays northward; and (3) the PHS component spreads to the north beyond the seismically determined edge of the PHS slab. These observations strongly suggest that the existence of an aseismic PHS slab beneath southernmost parts of Northeast Japan delivers the PHS component to the arc magmatism. As was indicated by previous geodynamical studies, subduction of the PHS and PAC slabs may generate suction force towards the corner of mantle wedge, which might account for the large amount of fluid near the seismically determined slab edge as described in (1) above.
Investigating Different Patterns of Slab Deformation in the Lower Mantle
NASA Astrophysics Data System (ADS)
Zhang, J.; McNamara, A. K.
2017-12-01
The geometry of slabs within the upper mantle have been relatively well-imaged by tomography and regional seismic studies; however, the style of slab deformation in the lower mantle remains poorly understood. Although tomography models reveal that the lower mantle beneath paleo-subduction regions are faster-than-average, the resolution is not high enough to resolve how slabs are actually deforming there. Slabs have long been hypothesized as viscous, tabular sheets that subduct at the surface, descend through the mantle, and impinge on the core-mantle boundary (CMB). Geodynamical studies have shown a wide range of possible deformational behaviors, ranging from stiff, buckling slabs to more-ductile masses of accumulating slab material undergoing pure shear. Of particular interest is how rheology and 3D spherical geometry control the shape and deformational style of slabs as they descend deeper into the mantle. We performed high resolution 3D spherical calculations to explore slab deformation in deep mantle as a function of slab strength. In our model, kinematic velocity boundary conditions are imposed on the surface to simulate a moving plate which guides the formation of a subducting slab. In addition, a viscosity jump at the transition zone is applied. We find that although a slab subducts as a large tabular sheet from the surface, it doesn't always maintain such geometry. Instead, it typically breaks apart into a few smaller and narrower sheets which can even turn into cylindrical-shaped downwelling after subducting into deep mantle. Since seismic anisotropy is hypothesized to originate from crystal preferred orientation (CPO) in a slab when it impinges on the CMB and is predicted with significant help of time-dependent deformation information from the geodynamic models, our findings on lower mantle slab deformation patterns may enhance the understanding towards the cause of characteristic patterns of predicted seismic anisotropy.
Preface: Deep Slab and Mantle Dynamics
NASA Astrophysics Data System (ADS)
Suetsugu, Daisuke; Bina, Craig R.; Inoue, Toru; Wiens, Douglas A.
2010-11-01
We are pleased to publish this special issue of the journal Physics of the Earth and Planetary Interiors entitled "Deep Slab and Mantle Dynamics". This issue is an outgrowth of the international symposium "Deep Slab and Mantle Dynamics", which was held on February 25-27, 2009, in Kyoto, Japan. This symposium was organized by the "Stagnant Slab Project" (SSP) research group to present the results of the 5-year project and to facilitate intensive discussion with well-known international researchers in related fields. The SSP and the symposium were supported by a Grant-in-Aid for Scientific Research (16075101) from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government. In the symposium, key issues discussed by participants included: transportation of water into the deep mantle and its role in slab-related dynamics; observational and experimental constraints on deep slab properties and the slab environment; modeling of slab stagnation to constrain its mechanisms in comparison with observational and experimental data; observational, experimental and modeling constraints on the fate of stagnant slabs; eventual accumulation of stagnant slabs on the core-mantle boundary and its geodynamic implications. This special issue is a collection of papers presented in the symposium and other papers related to the subject of the symposium. The collected papers provide an overview of the wide range of multidisciplinary studies of mantle dynamics, particularly in the context of subduction, stagnation, and the fate of deep slabs.
Spread prestressed concrete slab beam bridges.
DOT National Transportation Integrated Search
2015-04-01
TxDOT uses prestressed slab beam bridges for short-span bridges ranging from approximately 3050 ft in : length. These bridges have precast, pretensioned slab beams placed immediately adjacent to one another : with a cast-in-place slab made composi...
NASA Astrophysics Data System (ADS)
Shirko, A. V.; Kamlyuk, A. N.; Drobysh, A. S.; Spiglazov, A. V.
2017-05-01
A strength and stiffness comparative analysis has been made of a concrete slab reinforced with composite-reinforcement rods and a slab reinforced with steel rods. The stress-strain state has been assessed for both versions of reinforcement of the slab. The stress-strain state was determined under the action of only static load and with subsequent application of temperature fields, i.e., under standard-fire conditions. It has been shown that the fire resistance of the slab with a composite reinforcement turns out to be 1.6 higher as far as the bearing capacity is concerned, than the fire resistance of the slab with a steel reinforcement, although the initial deflection due to the action of only static load for the slab reinforced with composite rods exceeds six to seven times the deflection of the slab reinforced with steel rods.
SMALL-SCALE SOLAR WIND TURBULENCE DUE TO NONLINEAR ALFVÉN WAVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sanjay; Moon, Y.-J.; Sharma, R. P., E-mail: sanjaykumar@khu.ac.kr
We present an evolution of wave localization and magnetic power spectra in solar wind plasma using kinetic Alfvén waves (AWs) and fast AWs. We use a two-fluid model to derive the dynamical equations of these wave modes and then numerically solve these nonlinear dynamical equations to analyze the power spectra and wave localization at different times. The ponderomotive force associated with the kinetic AW (or pump) is responsible for the wave localization, and these thin slabs (or sheets) become more chaotic as the system evolves with time until the modulational instability (or oscillating two-stream instability) saturates. From our numerical results,more » we notice a steepening of the spectra from the inertial range (k{sup −1.67}) to the dispersion range (k{sup −3.0}). The steepening of the spectra could be described as the energy transference from longer to smaller scales. The formation of complex magnetic thin slabs and the change of the spectral index may be considered to be the main reason for the charged particles acceleration in solar wind plasma.« less
Development of a Cost-Effective Modular Pixelated NaI(Tl) Detector for Clinical SPECT Applications
Rozler, Mike; Liang, Haoning; Chang, Wei
2013-01-01
A new pixelated detector for high-resolution clinical SPECT applications was designed and tested. The modular detector is based on a scintillator block comprised of 2.75×2.75×10 mm3 NaI(Tl) pixels and decoded by an array of 51 mm diameter single-anode PMTs. Several configurations, utilizing two types of PMTs, were evaluated using a collimated beam source to measure positioning accuracy directly. Good pixel separation was observed, with correct pixel identification ranging from 60 to 72% averaged over the entire area of the modules, depending on the PMT type and configuration. This translates to a significant improvement in positioning accuracy compared to continuous slab detectors of the same thickness, along with effective reduction of “dead” space at the edges. The observed 10% average energy resolution compares well to continuous slab detectors. The combined performance demonstrates the suitability of pixelated detectors decoded with a relatively small number of medium-sized PMTs as a cost-effective approach for high resolution clinical SPECT applications, in particular those involving curved detector geometries. PMID:24146436
Modeling Slab-Slab Interactions: Dynamics of Outward Dipping Double-Sided Subduction Systems
NASA Astrophysics Data System (ADS)
Király, Ágnes; Holt, Adam F.; Funiciello, Francesca; Faccenna, Claudio; Capitanio, Fabio A.
2018-03-01
Slab-slab interaction is a characteristic feature of tectonically complex areas. Outward dipping double-sided subduction is one of these complex cases, which has several examples on Earth, most notably the Molucca Sea and Adriatic Sea. This study focuses on developing a framework for linking plate kinematics and slab interactions in an outward dipping subduction geometry. We used analog and numerical models to better understand the underlying subduction dynamics. Compared to a single subduction model, double-sided subduction exhibits more time-dependent and vigorous toroidal flow cells that are elongated (i.e., not circular). Because both the Molucca and Adriatic Sea exhibit an asymmetric subduction configuration, we also examine the role that asymmetry plays in the dynamics of outward dipping double-sided subduction. We introduce asymmetry in two ways; with variable initial depths for the two slabs ("geometric" asymmetry), and with variable buoyancy within the subducting plate ("mechanical" asymmetry). Relative to the symmetric case, we probe how asymmetry affects the overall slab kinematics, whether asymmetric behavior intensifies or equilibrates as subduction proceeds. While initial geometric asymmetry disappears once the slabs are anchored to the 660 km discontinuity, the mechanical asymmetry can cause more permanent differences between the two subduction zones. In the most extreme case, the partly continental slab stops subducting due to the unequal slab pull force. The results show that the slab-slab interaction is most effective when the two trenches are closer than 10-8 cm in the laboratory, which is 600-480 km when scaled to the Earth.
NASA Astrophysics Data System (ADS)
Gholamhoseini, Alireza
2018-03-01
Composite one-way concrete slabs with profiled steel decking as permanent formwork are commonly used in the construction industry. The steel decking supports the wet concrete of a cast in situ reinforced or post-tensioned concrete slab and, after the concrete sets, acts as external reinforcement. In this type of slab, longitudinal shear failure between the concrete and the steel decking is the most common type of failure at the ultimate load stage. Design codes require the experimental evaluation of the ultimate load capacity and longitudinal shear strength of each type of steel decking using full-scale tests on simple-span slabs. There is also no procedure in current design codes to evaluate the ultimate load capacity and longitudinal shear strength of continuous composite slabs and this is often assessed experimentally by full-scale tests. This paper presents the results of three full-scale tests up to failure on continuous composite concrete slabs cast with trapezoidal steel decking profile (KF70) that is widely used in Australia. Slab specimens were tested in four-point bending at each span with shear spans of span/4. The longitudinal shear failure of each slab is evaluated and the measured mid-span deflection, the end slip and the mid-span steel and concrete strains are also presented and discussed. Redistribution of bending moment in each slab is presented and discussed. A finite element model is proposed and verified by experimental data using interface element to model the bond properties between steel decking and concrete slab and investigate the ultimate strength of continuous composite concrete slabs.
NASA Astrophysics Data System (ADS)
Ribeiro, Julia M.; Lee, Cin-Ty A.
2017-12-01
The depth of slab dehydration is thought to be controlled by the thermal state of the downgoing slab: cold slabs are thought to mostly dehydrate beneath the arc front while warmer slabs should mostly dehydrate beneath the fore-arc. Cold subduction zone lavas are thus predicted to have interacted with greater extent of water-rich fluids released from the downgoing slab, and should thus display higher water content and be elevated in slab-fluid proxies (i.e., high Ba/Th, H2O/Ce, Rb/Th, etc.) compared to hot subduction zone lavas. Arc lavas, however, display similar slab-fluid signatures regardless of the thermal state of the slab, suggesting more complexity to volatile cycling in subduction zones. Here, we explore whether the serpentinized fore-arc mantle may be an important fluid reservoir in subduction zones and whether it can contribute to arc magma generation by being dragged down with the slab. Using simple mass balance and fluid dynamics calculations, we show that the dragged-down fore-arc mantle could provide enough water (∼7-78% of the total water injected at the trenches) to account for the water outfluxes released beneath the volcanic arc. Hence, we propose that the water captured by arc magmas may not all derive directly from the slab, but a significant component may be indirectly slab-derived via dehydration of dragged-down fore-arc serpentinites. Fore-arc serpentinite dehydration, if universal, could be a process that explains the similar geochemical fingerprint (i.e., in slab fluid proxies) of arc magmas.
Cretaceous subduction in the Pyrenees: Iberian plate-kinematics in a mantle reference frame
NASA Astrophysics Data System (ADS)
Vissers, Reinoud; van Hinsbergen, Douwe; van der Meer, Douwe; Spakman, Wim
2016-04-01
During the Cretaceous, Iberia was a microplate separated from Laurasia and Gondwana by ridges and transforms, and by a convergent margin to its northeast along which the Pyrenean fold-thrust belt developed. As a microplate, Iberia underwent a well-defined but ill-understood Albian-Aptian ~ 35° counterclockwise rotation relative to Eurasia. Three competing kinematic scenarios for Iberian motion in the late Mesozoic are all compatible with the Pyrenean geological record and comprise (1) transtensional eastward motion of Iberia versus Eurasia, (2) strike-slip motion followed by orthogonal extension and (3) scissor-style opening of the Bay of Biscay coupled with subduction in the Pyrenean realm. The last scenario is the only one consistent with paleomagnetic and ocean floor anomaly constraints showing Iberia's rotation, but is criticized because the upper mantle below the Pyrenees contains no evidence for a subducted slab. Here we show that when taking absolute plate motions into account, Aptian oceanic subduction in the Pyrenees followed by Albian slab break-off should leave a slab remnant in the present-day mid-mantle below NW Africa instead of below the Pyrenees. Mantle tomography shows a positive seismic velocity anomaly that matches the predicted position and dimension of such a slab remnant between 1900 and 1500 km depth below Reggane in Southern Algeria. Seismic tomographic imaging of the mantle structure therefore does not falsify the Pyrenean subduction hypothesis, and provides no basis to discard marine magnetic and paleomagnetic constraints on Iberia's kinematic history. Slab break-off explains the well-dated Albian-Cenomanian high-temperature metamorphism in the Pyrenees that hitherto has been interpreted as an expression of continental break-up and hyperextension. We suspect that subduction in the Pyrenees may have played a key role in driving the rapid Aptian rotation of the Iberian microplate.
Experimental study on lateral strength of wall-slab joint subjected to lateral cyclic load
NASA Astrophysics Data System (ADS)
Masrom, Mohd Asha'ari; Mohamad, Mohd Elfie; Hamid, Nor Hayati Abdul; Yusuff, Amer
2017-10-01
Tunnel form building has been utilised in building construction since 1960 in Malaysia. This method of construction has been applied extensively in the construction of high rise residential house (multistory building) such as condominium and apartment. Most of the tunnel form buildings have been designed according to British standard (BS) whereby there is no provision for seismic loading. The high-rise tunnel form buildings are vulnerable to seismic loading. The connections between slab and shear walls in the tunnel-form building constitute an essential link in the lateral load resisting mechanism. Malaysia is undergoing a shifting process from BS code to Eurocode (EC) for building construction since the country has realised the safety threats of earthquake. Hence, this study is intended to compare the performance of the interior wall slab joint for a tunnel form structure designed based on Euro and British codes. The experiment included a full scale test of the wall slab joint sub-assemblages under reversible lateral cyclic loading. Two sub-assemblage specimens of the wall slab joint were designed and constructed based on both codes. Each specimen was tested using lateral displacement control (drift control). The specimen designed by using Eurocode was found could survive up to 3.0% drift while BS specimen could last to 1.5% drift. The analysis results indicated that the BS specimen was governed by brittle failure modes with Ductility Class Low (DCL) while the EC specimen behaved in a ductile manner with Ductility Class Medium (DCM). The low ductility recorded in BS specimen was resulted from insufficient reinforcement provided in the BS code specimen. Consequently, the BS specimen could not absorb energy efficiently (low energy dissipation) and further sustain under inelastic deformation.
NASA Astrophysics Data System (ADS)
Ma, Jincheng; Tian, You; Liu, Cai; Zhao, Dapeng; Feng, Xuan; Zhu, Hongxiang
2018-01-01
A high-resolution model of 3-D P-wave velocity structure beneath Northeast Asia and adjacent regions is determined by using 244,180 arrival times of 14,163 local and regional earthquakes and 319,857 relative travel-time residuals of 9988 teleseismic events recorded at ∼2100 seismic stations in the study region. Our tomographic results reveal the subducting Pacific slab clearly as a prominent high-velocity anomaly from the Japan Trench to the North-South Gravity lineament (NSGL) in East China. The NSGL is roughly coincident with the western edge of the stagnant Pacific slab in the mantle transition zone (MTZ). The subducting Pacific slab has partly sunk into the lower mantle beneath Northeast China, but under the Sino-Korean Craton the slab lies horizontally in the MTZ. The NSGL, as an important tectonic line in Mainland China, is marked by sharp differences in the surface topography, gravity anomaly, crustal and lithospheric thickness and mantle seismic velocity from the east to the west. These features of the NSGL and large-scale hot and wet upwelling in the big mantle wedge (BMW) in the east of the NSGL are all related to the subduction processes of the Western Pacific plate. The Changbai intraplate volcanic group is underlain by a striking low-velocity anomaly from the upper MTZ and the BMW up to the surface, and deep earthquakes (410-650 km depths) occur actively in the subducting Pacific slab to the east of the Changbai volcano. We propose that the Changbai volcanic group is caused by upwelling of hot and wet asthenospheric materials and active convection in the BMW. The formation of other volcanic groups in the east of the NSGL is also associated with the subduction-driven corner flow in the BMW.
NASA Astrophysics Data System (ADS)
Wang, Xin; Li, Juan; Chen, Qi-Fu
2017-02-01
The northwest Pacific subduction region is an ideal location to study the interaction between the subducting slab and upper mantle discontinuities. Due to the sparse distribution of seismic stations in the sea, previous studies mostly focus on mantle transition zone (MTZ) structures beneath continents or island arcs, leaving the vast area of the Japan Sea and Okhotsk Sea untouched. In this study, we analyzed multiple-ScS reverberation waves, and a common-reflection-point stacking technique was applied to enhance consistent signals beneath reflection points. A topographic image of the 410 km and 660 km discontinuities is obtained beneath the Japan Sea and adjacent regions. One-dimensional and 3-D velocity models are adapted to obtain the "apparent" and "true" depth. We observe a systematic pattern of depression ( 10-20 km) and elevation ( 5-10 km) of the 660, with the topography being roughly consistent with the shift of the olivine-phase transition boundary caused by the subducting Pacific plate. The behavior of the 410 is more complex. It is generally 5-15 km shallower at the location where the slab penetrates and deepened by 5-10 km oceanward of the slab where a low-velocity anomaly is observed in tomography images. Moreover, we observe a wide distribution of depressed 410 beneath the southern Okhotsk Sea and western Japan Sea. The hydrous wadsleyite boundary caused by the high water content at the top of the MTZ could explain the depression. The long-history trench rollback motion of Pacific slab might be responsible for the widely distributed depression of the 410 ranging upward and landward from the slab.
Conceptual design of new metrology laboratories for the National Physical Laboratory, United Kingdom
NASA Astrophysics Data System (ADS)
Manning, Christopher J.
1994-10-01
The National Physical Laboratory is planning to house the Division of Mechanical and Optical Metrology and the Division of Material Metrology in a new purpose built laboratory building on its site at Teddington, London, England. The scientific staff were involved in identifying and agreeing the vibration performance requirements of the conceptual design. This was complemented by an extensive surgery of vibration levels within the existing facilities and ambient vibration studies at the proposed site. At one end of the site there is significant vibration input from road traffic. Some of the test equipment is also in itself a source of vibration input. These factors, together with normal occupancy inputs, footfalls and door slams, and a highly serviced building led to vibration being dominant in influencing the structural form. The resulting structural concept comprises three separate structural elements for vibration and geotechnical reasons. The laboratories most sensitive to disturbance by vibration are located at the end of the site farthest from local roads on a massive ground bearing slab. Less sensitive laboratories and those containing vibration sources are located on a massive slab in deep, piled foundations. A common central plant area is located alongside on its own massive slab. Medium sensitivity laboratories and offices are located at first floor level on a reinforced concrete suspended floor of maximum stiffness per unit mass. The whole design has been such as to permit upgrading of areas, eg office to laboratory; laboratory to `high sensitivity' laboratory, to cater for changes in future use of the building.
Instrumentation by distributed optical fiber sensors of a new ballastless track structure
NASA Astrophysics Data System (ADS)
Chapeleau, Xavier; Cottineau, Louis-Marie; Sedran, Thierry; Gueguen, Ivan; Cailliau, Joël
2013-04-01
While relatively expensive to build, ballastless track structures are presently seen as an attractive alternative to conventional ballast. With its service life of at least 60 years, they require little maintenance and hence they offer great availability. Other reasons for using ballastless tracks instead of ballasted tracks are the lack of suitable ballast material and the need of less noise and vibration for high-speed, in particularly. A new ballastless track structure has been designed to be circulated up to 300km/h, with a target life of 100 years. It is an interoperable way on concrete slabs that are cast-in-place and slip formed. This structure has been built and tested at the scale one in our laboratory. Indeed, ten millions cyclic loads were applied at 2.5Hz to evaluate the fatigue behaviour under selected mechanical and thermal conditions. To monitor the thermo-mechanical behavior of this new structure and to verify the numerical simulations used for its design, a lot of sensors have been embedded. In particularly, we have tested an optical fiber as distributed sensors to measure strain distribution in the railway model. This sensor can also be used to detect, localize and monitor cracks in concrete slabs. The optical fiber sensing technique ("Rayleigh technique") used in this experimentation has a centimetric spatial resolution which allows to measure complex strain profiles unlike electrical strain gauges which only give local information. Firstly, optical cables used as sensors have been successfully embedded and attached to the reinforcing steel bars in the structure. We have noted that they are resistant enough to resist concrete pouring and working activities. Secondly, strains measured by conventional strain gauges has confirmed the quality of the strain profiles measurements obtained by optical fiber sensors. Moreover, we have found a good agreement between experimental profiles measurements and those obtained by numerical simulations. Early during the fatigue test, some cracks have been observed. It is a current phenomenon in concrete slab which is due to drying shrinkage, load action, environmental factors and creep of concrete. Cracks can reduce the durability of the tract structure. So, it is important to be able to monitor them during the service of ballastless track line. We have demonstrated that cracks can detect, localized and monitor by a judicious placement of optical fibers. A crack corresponds to the appearance of a narrow peak on the strain profile. This peak can be detected and localized thanks to the very high spatial resolution of the optical Rayleigh sensing technique. Thus, we have noted that the cracks remain localized in slab edge without affecting the mechanical performances of the ballastless track structure. In conclusion, distributed sensing based on optical fiber sensor is a promising technique to monitor ballastless track structures and more generally, civil engineering structures. Some tests on a portion of a ballastless track line (still under construction) are planned in the next month.
NASA Astrophysics Data System (ADS)
Billen, M. I.; Bikoba, J. Z.; Tarlow, S.
2015-12-01
Magali I. Billen and John Z. BikobaThe Tonga Slab is the most seismically active subduction zone providing a uniquely detailed picture of the internal deformation of the slab, with apparent warping and folding, from the surface through the transition zone. Here, we investigate the dynamical origin of a irregular feature in the seismicity within the transition zone located at 21-28oS, using 3D visualization and analysis of the seismicity and compression/tension (P/T) axis from the moment tensor solutions to characterize the geometry of, and the orientation of forces acting on, the slab. This irregular feature can be described as narrow region of upward deflection of the slab, with a gap in seismicity beyond (down-dip of) the deflected region, and flanked by two narrow V-shaped gaps in seismicity suggestive of tearing of the slab. The P/T axis show a dominate down-dip orientation of the P axis above the deflection point, which rotate to a nearly vertical orientation within the central region of the deflected slab. The adjacent attached regions (down-dip of the two flanking slab gaps) also have rotated and more heterogeneous P/T axis orientations. In contrast, the adjacent section of the slab to the north of 21oS has continuous seismicity throughout the transition zone, with a roughly uniform planar shape, and generally down-dip orientation of the P axis. We explore three possible hypothesis for the observed deformation including: 1) deflection due to a buoyant metastable olivine wedge, 2) a buckling feature in the slab as previously proposed by Myhill (GJI., 2013), and interaction with a small-scale, secondary plume upwelling below the slab. If the newly-observed gaps in seismicity indicate physical gaps or significant thinning of the slab, then these observations are not consistent with the buckling hypothesis. The lack of significant along-strike variation in slab age or subduction rate also suggests that a localized region of metastable olivine is unlikely. Therefore, we test the third hypothesis using a simple 3D geodynamical model of a planar dipping slab overlying a localized buoyant upwelling (radius < 150 km). We present comparisons of the observations to the model predictions for the subsequent deformation of the slab and orientations of principal stress axis within the slab.
NASA Astrophysics Data System (ADS)
Rahman, Fadhillah Abdul; Bakar, Afidah Abu; Hashim, Mohd Hisbany Mohd; Ahmad, Hazrina
2017-11-01
Ribbed slab provides lighter slab than an equivalent solid slab which helps in reducing the weight with its voids. However, in order to overcome the drawbacks in the construction process, the application of steel fibre reinforcement concrete (SFRC) is seen as an alternative material to be used in the slab. This study is performed to investigate the behaviour of SFRC as the main material in ribbed slab, omitting the conventional reinforcements, under four-point bending test. Three equivalent samples of ribbed slabs were prepared for this study with variations in the topping thickness of 100, 75 and 50 mm. The flexural strength of ribbed slab with 100 mm topping shows similar loading carrying capacity with the 75mm topping while 50 mm gave the lowest ultimate loading. First cracks for all slabs occurred at the topping. The cracks began from the external ribs and propagates toward the internal rib. Incorporation of steel fibres help in giving a longer deflection softening than a sudden brittle failure, thus proves its ability to increase energy absorption capacity and improving cracking behaviour.
Schepers, Gerben; van Hinsbergen, Douwe J J; Spakman, Wim; Kosters, Martha E; Boschman, Lydian M; McQuarrie, Nadine
2017-05-16
At two trench segments below the Andes, the Nazca Plate is subducting sub-horizontally over ∼200-300 km, thought to result from a combination of buoyant oceanic-plateau subduction and hydrodynamic mantle-wedge suction. Whether the actual conditions for both processes to work in concert existed is uncertain. Here we infer from a tectonic reconstruction of the Andes constructed in a mantle reference frame that the Nazca slab has retreated at ∼2 cm per year since ∼50 Ma. In the flat slab portions, no rollback has occurred since their formation at ∼12 Ma, generating 'horse-shoe' slab geometries. We propose that, in concert with other drivers, an overpressured sub-slab mantle supporting the weight of the slab in an advancing upper plate-motion setting can locally impede rollback and maintain flat slabs until slab tearing releases the overpressure. Tear subduction re-establishes a continuous slab and allows the process to recur, providing a mechanism for the transient character of flat slabs.
How to measure slab-off and reverse slab prism in spectacle lenses.
Christoff, Alexander; Guyton, David L
2007-08-01
It is well known that new spectacle lenses for the correction of anisometropia can induce diplopia with reading. The difference in the powers of the lenses induces a net prismatic effect that can cause double vision through off-center areas of the lenses. This is particularly bothersome when patients try to read, often noting vertical double vision in attempted downgaze, especially through multifocal add segments. This induced prismatic effect can be compensated at one level of downgaze by the use of slab-off or reverse slab prism. Typically the slab-off correction is ground into the stronger minus, or weaker plus lens. Reverse slab is ground into the weaker minus, or stronger plus, lens. Unfortunately, determining the amount of slab-off prism already incorporated into spectacle lenses is nonintuitive and inconvenient. This usually requires the use of a lens clock, which is not widely accessible to many ophthalmology practices. A simple technique, described in the past but poorly known, is illustrated here for quickly measuring slab-off and reverse slab prism prescription lenses in the clinic with a common manual lens meter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esposito, R.A.; Castleman, S.P.; King, D.T. Jr.
X-radiography has been useful in studying biogenic sedimentary structures in unconsolidated sediments but the technique has not been applied often to the study of hard carbonate rock. The authors have applied x-radiography to the study of the lower part of the Smackover to enhance the complete petrologic description of the rock. The lower Smackover has many dense micrite intervals and intervals of monotonous, thin graded beds. Parts of the lower Smackover is also dolomitized. None of the above rocks contains significant amount of skeletal debris and trace fossils are not generally obvious in an etched slab of core. In limestone,more » they have detected well-preserved trace fossils by x-radiography, however. The dolostones show no traces using our method. In limestones, the traces are marked by minute amounts of finely divided iron sulfides. This causes a slight density difference resulting in greater x-ray absorption. They recognize two main trace-fossil types: a Thalassinoides best seen in slabs cut parallel to bedding and a Zoophycos best seen in slabs cut perpendicular to bedding. The technique requires a slab cut 8 mm thick with parallel flat surfaces and a medical x-ray unit using accelerating voltages of 66 kV and 10 mas. Traces are most successfully imaged on industrial-quality films.« less
NASA Astrophysics Data System (ADS)
Castillo, J.; Clayton, R. W.
2017-12-01
The Trans-Mexican Volcanic Belt (TMVB) is a prominent and enigmatic feature of the subduction system in Mexico. Its volcanic style diversity and oblique orientation to the trench are explained by the large along-strike variations in the subduction parameters of the Rivera and Cocos plates. However, the abrupt termination of the TMVB on its eastern end with the Pico de Orizaba volcano is puzzling as the current slab model suggests that the transition of the Cocos flat-slab geometry to normal subduction is smooth through this region. There is evidence that suggests that a tear in the slab might be developing, but it is unclear how this feature can support the unusually large topographic gradient that connects the volcanic high peaks with the Veracruz basin just south of the volcanic front. To provide further insight into the transition anatomy of this portion of the slab, and its relation with surface topography, we present a detailed and unified model of the structure of the crust and uppermost mantle built from fundamental-mode Rayleigh and Love surface waves, and high-quality arrival-time data of regional and teleseismic earthquakes. The anisotropic behavior of the subsurface of this region and its relation with present and past flow of material is also quantified and integrated into the model to explain the tectonic evolution of this area.
Seismic constraints of thinning and fragmenting continental lithosphere beneath the Korean Peninsula
NASA Astrophysics Data System (ADS)
Kim, S.; Tauzin, B.; Tkalcic, H.; Rhie, J.
2017-12-01
Modification of the continental lithosphere is still an enigmatic process. The Korean Peninsula (KP) is one of ideal place to depict the process by interactions with subducting oceanic slabs. We detect a significant thickness change (>50 km) of the continental lithosphere beneath the KP that is confirmed by two independent approaches: (1) 3D imaging using ambient noise analysis and (2) receiver function CCP stacking. A series of transdimensional and hierarchical Bayesian joint inversions is performed to obtain a high-resolution 3D model from different types of surface wave dispersion data. For the stacking of receiver function waveforms, the coda waveforms of crustal multi-modes (PpPs and PpSs) are combined together to better image the lithosphere-asthenosphere boundary. We estimate the relatively deeper rooted lithosphere (>100 km) in the southwestern part of the KP compared to shallower surrounding regions. The lithospheric structure is underlain by lower velocity anomalies (Vs<4.1 km/s), which extends from back-arc regions near subducting slabs horizontally and connects to low velocity anomalies in the deeper upper mantle vertically. The imaged features clearly show that the effect of the oceanic slab subduction is a key factor controlling the modification process. We further examine the implication for the occurrence of intraplate volcanoes and the relationship to the mantle transition zone heterogeneities due to stagnant slabs in the northeast Asia.
NASA Astrophysics Data System (ADS)
Maru, Koichi; Abe, Yukio; Uetsuka, Hisato
2008-10-01
We demonstrated a compact and low-loss athermal arrayed-waveguide grating (AWG) module utilizing silica-based planar lightwave circuit (PLC) technology. Spot-size converters based on a vertical ridge-waveguide taper were integrated with a 2.5%-Δ athermal AWG to reduce the loss at chip-to-fiber interface. Spot-size converters based on a segmented core were formed around resin-filled trenches for athermalization formed in the slab to reduce the diffraction loss at the trenches. A 16-channel athermal AWG module with 100-GHz channel spacing was fabricated. The use of a 2.5%-Δ athermal chip with a single-side fiber array enabled a compact package of the size of 41.6×16.6×4.5 mm3. Athermal characteristics and a small insertion loss of 3.5-3.8 dB were obtained by virtue of low fiber-to-chip coupling loss and athermalization with low excess loss.
Flat slabs seen from above: aeromagnetic data in Central Mexico
NASA Astrophysics Data System (ADS)
Manea, M.; Manea, V. C.
2006-12-01
The aeromagnetic map of Mexico shows a magnetic "quiet zone" in Guerrero and Oaxaca (Central Mexico), characterized by a general lack of short-wavelength magnetic anomalies. In order to investigate the magnetic quiet zone in relation with the thermal sources, spectral analysis has been applied to the aeromagnetic data. The results show the existence of deep magnetic sources (30-40 km) which we consider to be the Currie depth (corresponding to a temperature of 575-600°). Above the Curie temperature spontaneous magnetization vanishes and the minerals exhibit only a small paramagnetic susceptibility. Our estimates of magnetic basal depth are consistent with the heat flow measurements in the area (20-30 mW/m2). In order to explain such deep magnetic source and small heat flow estimates, we infer the thermal structure associated with the subduction of the Cocos plate beneath Central Mexico, using a finite element approach. The modeling results show that the 575-600°C isotherm is subhorisontal due to the flat slab regime in the area. Also, the heat flow estimates from thermal models and spectral analysis of aeromagnetic anomalies are in good agreement. We conclude that the magnetic quiet zone is associated with a flat slab subduction regime in Central Mexico, and proved to be an important constraint for the thermal structure associated with subduction zones.
Reduction of Bridge Deck Cracking through Alternative Material Usage
DOT National Transportation Integrated Search
2017-12-01
ODOT routinely deploys a large number of continuous span structural slab bridges. Despite being designed to strictly satisfy all the relevant AASHTO and ODOT BDM requirements, many such bridge decks show transverse cracks, with widths greater than th...
Performance assessment of Wisconsin's whitetopping and ultra thin whitetopping projects.
DOT National Transportation Integrated Search
2010-03-01
Whitetopping overlay is a concrete overlay on the prepared existing hot mix asphalt (HMA) pavement to : improve both the structural and functional capability. Its a relatively new rehabilitation technology for : deteriorated HMA. If the slab thick...
Evaluation of joint sealant materials : interim report No. 1.
DOT National Transportation Integrated Search
1972-03-01
This report illustrates some of the problems caused by ineffectively sealed joints and points to the great need for properly sealing joints in both concrete pavements and structures. : The principles of design including slab lengths, joint dimensions...
Dimensional stability of concrete slabs on grade.
DOT National Transportation Integrated Search
2012-10-01
Drying shrinkage is one of the major causes of cracking in concrete slabs on grade. The moisture : difference between the top and bottom surface of the slabs causes a dimensional or shrinkage gradient : to develop through the depth of the slabs...
NASA Astrophysics Data System (ADS)
Pardo, M.; Monfret, T.; Vera, E.; Yañez, G.; Eisenberg, A.
2007-12-01
Based on data from a dense local temporary seismological network, crustal seismicity is characterized, and a 3- D body wave velocity structure is obtained by tomographic inversion down to the subducted slab. In the framework of Fondecyt 1050758, GeoAzur-IRD and ACT-18 projects, 35 broadband and short period instruments, were deployed in the studied zone for 135 days recording in continuous mode. At this zone the Andean active volcanism reappears after a gap of volcanic activity since late Miocene occurring north of 33 S due to the Central Chile flat slab subduction zone. Crustal seismicity in the depth range 0-30 km is well correlated with known geological faults that become now important in the assessment of the regional seismic hazard. This seismicity also clusters around the giant porphyry cooper deposits in the region (Rio Blanco, El Teniente), and are neither related to mine-blasts nor induced by mining activity. Moreover, the local 3-D velocity structure shows that the zone surrounding each deposit is characterized by high Vp/Vs greater than 1.8, which may indicate fluid phases located in the weakest and more fractured zone of the crust. The body wave velocity pattern shown at depth by the local tomography indicates channels of high Vp/Vs connecting the subducted slab with the surface at places where active volcanism is present, suggesting upward migration of hydrous or melted rocks. This pattern agrees with the one observed with a previous regional tomography that includes this zone, while this Vp/Vs pattern tends to be horizontal at the flat slab zone. At depths of 20-25 km, a layer of high Vp/Vs is observed beneath the Andes Cordillera that could be associated to changes in the rheological properties between the upper and lower crust, or to accumulation of magma. The average stress tensor, derived from focal mechanisms, indicate that the Andean zone is under compression in the plate convergence direction.
NASA Astrophysics Data System (ADS)
Abers, G. A.; Janiszewski, H. A.; Keranen, K. M.; Li, J.; Saffer, D. M.; Shillington, D. J.; Schindler, K.
2016-12-01
The subduction plate interface as been variably described as a narrow discontinuity, a decoupling layer, a viscous channel, or an intensely deformed mixing zone. The 1994 Subduction Conference depicted this ambiguity with the parable of the blind men and the elephant, as participants struggled to rationalize dissimilar observations with an integrated view of subduction. We illustrate here how different seismological tools reveal contradictory natures to the slab surface at 30-80 km depth, highlighting new examples from Alaska and Cascadia. At the km scale and 0.05-0.5 Hz, the teleseismic scattered wavefield that generates receiver functions shows strong consistent patterns. It indicates a uniformly layered plate interface structure with a low-velocity channel along the thrust zone where earthquakes and slow slip events occur. These channels appear homogeneous and 1-4 km thick over wide areas, with hints of strong anisotropy. By contrast, reflection seismology shows complex discontinuous reflectivity packages at the tens of m scale and 5-20 Hz that imply much greater heterogeneity, in both in normal-incidence and wide-angle reflections. To span the intervening frequency band we analyze P-S conversions from in-slab earthquakes recorded nearby, in southern Alaska. These 1-10 Hz signals arrive between P and S and have comparable amplitude, indicating sharp or complex boundaries near the slab surface at 30-50 km depth. However the signals are not uniformly observed and indicate significant heterogeneity in the causative structure. The conversion points lie within those sampled by receiver functions so the differences are not due to geographic variations, and can be analyzed jointly. Taken together, these observations suggest that the same boundary is continuous and relatively homogenous, or highly heterogeneous and laminated, depending on its sampling. They can be reconciled if the structure at km-scale is relatively simple, while it is complex and highly heterogeneous at shorter wavelengths. A complex but sharply bounded low-velocity shear zone best explains these observations, indicating that most deformation is highly localized rather than forming broadly-distributed ductile flow features even well into the aseismic region.
NASA Astrophysics Data System (ADS)
Chen, Ling; Wen, Lianxing; Zheng, Tianyu
2005-11-01
The newly developed wave equation poststack depth migration method for receiver function imaging is applied to study the subsurface structures of the Japan subduction zone using the Fundamental Research on Earthquakes and Earth's Interior Anomalies (FREESIA) broadband data. Three profiles are chosen in the subsurface imaging, two in northeast (NE) Japan to study the subducting Pacific plate and one in southwest (SW) Japan to study the Philippine Sea plate. The descending Pacific plate in NE Japan is well imaged within a depth range of 50-150 km. The slab image exhibits a little more steeply dipping angle (˜32°) in the south than in the north (˜27°), although the general characteristics between the two profiles in NE Japan are similar. The imaged Philippine Sea plate in eastern SW Japan, in contrast, exhibits a much shallower subduction angle (˜19°) and is only identifiable at the uppermost depths of no more than 60 km. Synthetic tests indicate that the top 150 km of the migrated images of the Pacific plate is well resolved by our seismic data, but the resolution of deep part of the slab images becomes poor due to the limited data coverage. Synthetic tests also suggest that the breakdown of the Philippine Sea plate at shallow depths reflects the real structural features of the subduction zone, rather than caused by insufficient coverage of data. Comparative studies on both synthetics and real data images show the possibility of retrieval of fine-scale structures from high-frequency contributions if high-frequency noise can be effectively suppressed and a small bin size can be used in future studies. The derived slab geometry and image feature also appear to have relatively weak dependence on overlying velocity structure. The observed seismicity in the region confirms the geometries inferred from the migrated images for both subducting plates. Moreover, the deep extent of the Pacific plate image and the shallow breakdown of the Philippine Sea plate image are observed to correlate well with the depth extent of the seismicity beneath NE and SW Japan. Such a correlation supports the inference that the specific appearance of slabs and intermediate-depth earthquakes are a consequence of temperature-dependent dehydration induced metamorphism occurring in the hydrated descending oceanic crust.
Thermal buoyancy on Venus - Underthrusting vs subduction
NASA Technical Reports Server (NTRS)
Burt, Jeffrey D.; Head, James W.
1992-01-01
The thermal and buoyancy consequences of the subduction endmember are modeled in an attempt to evaluate the conditions distinguishing underthrusting and subduction. Thermal changes in slabs subducting into the Venusian mantle with a range of initial geotherms are used to predict density changes and, thus, slab buoyancy. Based on a model for subduction-induced mantle flow, it is then argued that the angle of the slab dip helps differentiate between underthrusting and subduction. Mantle flow applies torques to the slab which, in combination with torques due to slab buoyancy, act to change the angle of slab dip.
NASA Astrophysics Data System (ADS)
Paulatto, M.; Laigle, M.; Charvis, P.; Galve, A.
2015-12-01
The degree of coupling and the seismogenic properties of the plate interface at subduction zones are affected by the abundance of slab fluids and subducted sediments. High fluid input can cause high pore-fluid pressures in the subduction channel and decrease coupling leading to aseismic behaviour. Constraining fluid input and transfer is therefore important for understanding plate coupling and large earthquake hazard, particularly in places where geodetic and seismological constraints are scarce. We use P-wave traveltimes from several active source seismic experiments and P- and S-wave traveltimes from shallow and intermediate depth (< 150 km) local earthquakes recorded on a vast amphibious array of OBSs and land stations to recover the Vp and Vp/Vs structure of the central Lesser Antilles subduction zone. Our model extends between Martinique and Antigua from the prism to the arc and from the surface to a depth of 160 km. We find low Vp and high Vp/Vs ratio (> 1.80) on the top of the slab, at depths of up to 100 km. We interpret this high Vp/Vs ratio anomaly as evidence of elevated fluid content either as free fluids or as bound fluids in hydrated minerals (e.g. serpentinite). The strength and depth extent of the anomaly varies strongly from south to north along the subduction zone and correlates with variations in forearc morphology and with sediment input constrained by multi-channel seismic reflection profiles. The anomaly is stronger and extends to greater depth in the south, offshore Martinique, where sediment input is elevated due to the vicinity of the Orinoco delta. The gently dipping forearc slope observed in this region may be the result of weak coupling of the plate interface. A high Vp/Vs ratio is also observed in the forearc likely indicating a fractured and water-saturated overriding plate. On the other hand the anomaly is weaker and shallower offshore Guadeloupe, where sediment input is low due to subduction of the Barracuda ridge. Here a strong plate coupling is likely responsible for uplifting the inner forearc and formation of the Karukera spur. We infer that variations in plate coupling modulated by slab fluid transport and release are a major factor in determining the distribution of seismic slip in the Lesser Antilles subduction zone.
NASA Astrophysics Data System (ADS)
Glotzbach, Christoph; Büttner, Lukas; Ehlers, Todd
2017-04-01
Tomographic analyses of the lithosphere structure underneath the Alps suggest a complex geodynamic history (e.g. Lippitsch et al. 2003), indicating, among other things, switches in the direction of subduction. A subduction polarity switch is proposed to have occurred in Miocene times between the Central and Eastern Alps (e.g. Lippitsch et al. 2003; Handy et al. 2015). In the Western and Central Alps SE-directed subduction of European continental lithosphere occurs, whereas NW-directed subduction of Adriatic lithosphere occurs further east (e.g. Kissling et al. 2006). The subducted slab steepens at the transition to the Eastern Alps, roughly at the position of the TRANSALP geophysical profile (S. Germany to N. Italy). This lithospheric reorientation was pre-dated by slab breakoff and also involves the delamination of the lower lithosphere, both processes producing distinct long-wavelength deformation (e.g. Gerya et al. 2004). Thermochronological data can be used to study the surface response to such a long-wavelength deformation. We present new apatite and zircon (U-Th)/He ages of 23 samples collected along 210 km of the TRANSALP profile. The samples were collected along a balanced cross section the TRANSALP profile (e.g. Lüschen et al. 2004) across individual structures that can be tied to deeper, seismically imaged, structures. The thermochronometer ages provide a record of exhumation related to both crustal shortening and post deformation erosional exhumation. Interpretation of the data is in progress and being used to discriminate between competing kinematic/geometric models, and the timing of major fault activity. Variations in exhumation along the section will also unravel the timing and shape of possible long-wavelength rock uplift event(s). References Gerya, T.V., Yuen, D.A., Maresch, W.V. 2004. Thermomechanical modelling of slab detachment. Earth Planet. Sci. Lett. 226, 101-116. Handy, M.R., Ustaszewski, K., Kissling, E. 2015. Reconstructing the Alps-Carpathians-Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion. Int. J. Earth Sci. 104, 1-26. Kissling, E., Schmid, S.M., Lippitsch, R., Ansorge, J., Fügenschuh, B. 2006. Lithosphere structure and tectonic evolution of the Alpine arc: new evidence from high-resolution teleseismic tomography. In: Gee, D.G., Stephenson, R.A. (eds) European Lithosphere Dynamics. Geol. Soc. London Mem. 32, 129-145. Lippitsch, R., Kissling, E., Ansorge, J. 2003. Upper mantle structure beneath the Alpine orogen from high-resolution teleseismic tomography. J. Geophys. Res. 108, 2376, doi:10.1029/2002JB002016. Lüschen, E., Lammerer, B., Gebrande, H., Millahn, K., Nicolich, R., TRANSALP Working Group 2004. Orogenic structure of the Eastern Alps, Europe, from TRANSALP deep seismic reflection profiling. Tectonophysics 388, 85-102.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kłos, J. W., E-mail: klos@amu.edu.pl; Krawczyk, M.; Dadoenkova, Yu. S.
2014-05-07
We investigate the properties of a photonic-magnonic crystal, a complex multifunctional one-dimensional structure with magnonic and photonic band gaps in the GHz and PHz frequency ranges for spin waves and light, respectively. The system consists of periodically distributed dielectric magnetic slabs of yttrium iron garnet and nonmagnetic spacers with an internal structure of alternating TiO{sub 2} and SiO{sub 2} layers which form finite-size dielectric photonic crystals. We show that the spin-wave coupling between the magnetic layers, and thus the formation of the magnonic band structure, necessitates a nonzero in-plane component of the spin-wave wave vector. A more complex structure perceivedmore » by light is evidenced by the photonic miniband structure and the transmission spectra in which we have observed transmission peaks related to the repetition of the magnetic slabs in the frequency ranges corresponding to the photonic band gaps of the TiO{sub 2}/SiO{sub 2} stack. Moreover, we show that these modes split to very high sharp (a few THz wide) subpeaks in the transmittance spectra. The proposed novel multifunctional artificial crystals can have interesting applications and be used for creating common resonant cavities for spin waves and light to enhance the mutual influence between them.« less
Field evaluation of alternative and cost efficient bridge approach slabs.
DOT National Transportation Integrated Search
2013-11-01
Based on a recent study on cost efficient alternative bridge approach slab (BAS) designs (Thiagarajan et al. 2010) has recommended : three new BAS designs for possible implementation by MoDOT namely a) 20 feet cast-inplace slab with sleeper slab (CIP...
Cenozoic tectonics of western North America controlled by evolving width of Farallon slab.
Schellart, W P; Stegman, D R; Farrington, R J; Freeman, J; Moresi, L
2010-07-16
Subduction of oceanic lithosphere occurs through two modes: subducting plate motion and trench migration. Using a global subduction zone data set and three-dimensional numerical subduction models, we show that slab width (W) controls these modes and the partitioning of subduction between them. Subducting plate velocity scales with W(2/3), whereas trench velocity scales with 1/W. These findings explain the Cenozoic slowdown of the Farallon plate and the decrease in subduction partitioning by its decreasing slab width. The change from Sevier-Laramide orogenesis to Basin and Range extension in North America is also explained by slab width; shortening occurred during wide-slab subduction and overriding-plate-driven trench retreat, whereas extension occurred during intermediate to narrow-slab subduction and slab-driven trench retreat.
Subducting Slabs: Jellyfishes in the Earth's Mantle
NASA Astrophysics Data System (ADS)
Loiselet, C.; Braun, J.; Husson, L.; Le Carlier de Veslud, C.; Thieulot, C.; Yamato, P.; Grujic, D.
2010-12-01
The constantly improving resolution of geophysical data, seismic tomography and seismicity in particular, shows that the lithosphere does not subduct as a slab of uniform thickness but is rather thinned in the upper mantle and thickened around the transition zone between the upper and lower mantle. This observation has traditionally been interpreted as evidence for the buckling and piling of slabs at the boundary between the upper and lower mantle, where a strong contrast in viscosity may exist and cause resistance to the penetration of slabs into the lower mantle. The distribution and character of seismicity reveal, however, that slabs undergo vertical extension in the upper mantle and compression near the transition zone. In this paper, we demonstrate that during the subduction process, the shape of low viscosity slabs (1 to 100 times more viscous than the surrounding mantle) evolves toward an inverted plume shape that we coin jellyfish. Results of a 3D numerical model show that the leading tip of slabs deform toward a rounded head skirted by lateral tentacles that emerge from the sides of the jellyfish head. The head is linked to the body of the subducting slab by a thin tail. A complete parametric study reveals that subducting slabs may achieve a variety of shapes, in good agreement with the diversity of natural slab shapes evidenced by seismic tomography. Our work also suggests that the slab to mantle viscosity ratio in the Earth is most likely to be lower than 100. However, the sensitivity of slab shapes to upper and lower mantle viscosities and densities, which remain poorly constrained by independent evidence, precludes any systematic deciphering of the observations.
Subducting slabs: Jellyfishes in the Earth's mantle
NASA Astrophysics Data System (ADS)
Loiselet, Christelle; Braun, Jean; Husson, Laurent; Le Carlier de Veslud, Christian; Thieulot, Cedric; Yamato, Philippe; Grujic, Djordje
2010-08-01
The constantly improving resolution of geophysical data, seismic tomography and seismicity in particular, shows that the lithosphere does not subduct as a slab of uniform thickness but is rather thinned in the upper mantle and thickened around the transition zone between the upper and lower mantle. This observation has traditionally been interpreted as evidence for the buckling and piling of slabs at the boundary between the upper and lower mantle, where a strong contrast in viscosity may exist and cause resistance to the penetration of slabs into the lower mantle. The distribution and character of seismicity reveal, however, that slabs undergo vertical extension in the upper mantle and compression near the transition zone. In this paper, we demonstrate that during the subduction process, the shape of low viscosity slabs (1 to 100 times more viscous than the surrounding mantle) evolves toward an inverted plume shape that we coin jellyfish. Results of a 3D numerical model show that the leading tip of slabs deform toward a rounded head skirted by lateral tentacles that emerge from the sides of the jellyfish head. The head is linked to the body of the subducting slab by a thin tail. A complete parametric study reveals that subducting slabs may achieve a variety of shapes, in good agreement with the diversity of natural slab shapes evidenced by seismic tomography. Our work also suggests that the slab to mantle viscosity ratio in the Earth is most likely to be lower than 100. However, the sensitivity of slab shapes to upper and lower mantle viscosities and densities, which remain poorly constrained by independent evidence, precludes any systematic deciphering of the observations.
NASA Astrophysics Data System (ADS)
McLean, K. A.; Jadamec, M.; Durance-Sie, P. M.; Moresi, L. N.
2011-12-01
The Vanuatu area of the south-west Pacific is a dynamic region of high heat-flow and strain-rate, dominated by ongoing plate boundary processes. At the southern termination of the Vanuatu arc the curved geometry of the New Hebrides trench juxtaposes the slab edge perpendicular to its back-arc spreading center. While existing 3D subduction models have demonstrated the importance of mantle flow around a slab edge, the nature of interaction between back-arc upwelling and circum-slab edge mantle flow is not well understood. We use 3D instantaneous numerical models of a Newtonian mantle rheology to test the effect of the slab edge and back-arc upwelling on the mantle flow vector field beneath southern Vanuatu. These high-resolution models simulate temperature-dependent buoyancy-driven deformation of the lithosphere and mantle for a realistic slab geometry. Model results show a small but significant component of vertical mantle flow velocity associated with the slab edge and back-arc spreading center. We also see strain-rate and dynamic topography commensurate with surface observations. Mantle flow by toroidal-type motion brings hotter mantle material from behind the slab into the mantle wedge, elevating geothermal gradients in the slab edge vicinity. The implications of moderate vertical displacement of this hot mantle material at the slab edge are wide-ranging, and such a tectonic framework might aid interpretation of a number of surface observations. For example, induced decompression partial-melting in the mantle wedge and/or slab, and thermal erosion of the slab may contribute to the diverse magma compositions from this region.
Aseismic deep subduction of the Philippine Sea plate and slab window
NASA Astrophysics Data System (ADS)
Huang, Zhouchuan; Zhao, Dapeng; Hasegawa, Akira; Umino, Norihito; Park, Jung-Ho; Kang, Ik-Bum
2013-10-01
We have made great efforts to collect and combine a large number of high-quality data from local earthquakes and teleseismic events recorded by the dense seismic networks in both South Korea and West Japan. This is the first time that a large number of Korean and Japanese seismic data sets are analyzed jointly. As a result, a high-resolution 3-D P-wave velocity model down to 700-km depth is determined, which clearly shows that the Philippine Sea (PHS) plate has subducted aseismically down to ˜460 km depth under the Japan Sea, Tsushima Strait and East China Sea. The aseismic PHS slab is visible in two areas: one is under the Japan Sea off western Honshu, and the other is under East China Sea off western Kyushu. However, the aseismic PHS slab is not visible between the two areas, where a slab window has formed. The slab window is located beneath the center of the present study region where many teleseismic rays crisscross. Detailed synthetic tests were conducted, which indicate that both the aseismic PHS slab and the slab window are robust features. Using the teleseismic data recorded by the Japanese stations alone, the aseismic PHS slab and the slab window were also revealed (Zhao et al., 2012), though the ray paths in the Japanese data set crisscross less well offshore. The slab window may be caused by the subducted Kyushu-Palau Ridge and Kinan Seamount Chain where the PHS slab may be segmented. Hot mantle upwelling is revealed in the big mantle wedge above the Pacific slab under the present study region, which may have facilitated the formation of the PHS slab window. These novel findings may shed new light on the subduction history of the PHS plate and the dynamic evolution of the Japan subduction zone.
DOT National Transportation Integrated Search
2016-06-01
Researchers at Florida State University demonstrated the feasibility of using precast reinforced concrete panels to temporarily fill slab removal pits. The precast slabs can be driven on so traffic lanes can be open during the day, and new slab casti...
Age of the Subducting Philippine Sea Slab and Mechanism of Low-Frequency Earthquakes
NASA Astrophysics Data System (ADS)
Hua, Yuanyuan; Zhao, Dapeng; Xu, Yixian; Liu, Xin
2018-03-01
Nonvolcanic low-frequency earthquakes (LFEs) usually occur in young and warm subduction zones under condition of near-lithostatic pore fluid pressure. However, the relation between the LFEs and the subducting slab age has never been documented so far. Here we estimate the lithospheric age of the subducting Philippine Sea (PHS) slab beneath the Nankai arc by linking seismic tomography and a plate reconstruction model. Our results show that the LFEs in SW Japan take place in young parts ( 17-26 Myr) of the PHS slab. However, no LFE occurs beneath the Kii channel where the PHS slab is very young ( 15 Myr) and thin ( 29 km), forming an LFE gap there. According to the present results and previous works, we think that the LFE gap at the Kii channel is caused by joint effects of several factors, including the youngest slab age, high temperature, low fluid content, high permeability of the overlying plate, a slab tear, and hot upwelling flow below the PHS slab.
Analysis and design of on-grade reinforced concrete track support structures
NASA Technical Reports Server (NTRS)
Mclean, F. G.; Williams, R. D.; Greening, L. R.
1972-01-01
For the improvement of rail service, the Department of Transportation, Federal Rail Administration, is sponsoring a test track on the Atchison, Topeka, and Santa Fe Railway. The test track will contain nine separate rail support structures, including one conventional section for control and three reinforced concrete structures on grade, one slab and two beam sections. The analysis and design of these latter structures was accomplished by means of the finite element method, NASTRAN, and is presented.
DEVELOPMENT OF INTERATOMIC POTENTIALS IN TUNGSTEN-RHENIUM SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setyawan, Wahyu; Nandipati, Giridhar; Kurtz, Richard J.
2016-09-01
Reference data are generated using the ab initio method to fit interatomic potentials for the W-Re system. The reference data include single phases of W and Re, strained structures, slabs, systems containing several concentrations of vacancies, systems containing various types of interstitial defects, melt structures, structures in the σ and χ phases, and structures containing several concentrations of solid solutions of Re in bcc W and W in hcp Re. Future work will start the fitting iterations.
NASA Astrophysics Data System (ADS)
van der Meer, Douwe G.; van Hinsbergen, Douwe J. J.; Spakman, Wim
2018-01-01
Across the entire mantle we interpret 94 positive seismic wave-speed anomalies as subducted lithosphere and associate these slabs with their geological record. We document this as the Atlas of the Underworld, also accessible online at www.atlas-of-the-underworld.org, a compilation comprising subduction systems active in the past 300 Myr. Deeper slabs are correlated to older geological records, assuming no relative horizontal motions between adjacent slabs following break-off, using knowledge of global plate circuits, but without assuming a mantle reference frame. The longest actively subducting slabs identified reach the depth of 2500 km and some slabs have impinged on Large Low Shear Velocity Provinces in the deepest mantle. Anomously fast sinking of some slabs occurs in regions affected by long-term plume rising. We conclude that slab remnants eventually sink from the upper mantle to the core-mantle boundary. The range in subduction-age versus - depth in the lower mantle is largely inherited from the upper mantle history of subduction. We find a significant depth variation in average sinking speed of slabs. At the top of the lower mantle average slab sinking speeds are between 10 and 40 mm/yr, followed by a deceleration to 10-15 mm/yr down to depths around 1600-1700 km. In this interval, in situ time-stationary sinking rates suggest deceleration from 20 to 30 mm/yr to 4-8 mm/yr, increasing to 12-15 mm/yr below 2000 km. This corroborates the existence of a slab deceleration zone but we do not observe long-term (> 60 My) slab stagnation, excluding long-term stagnation due to compositional effects. Conversion of slab sinking profiles to viscosity profiles shows the general trend that mantle viscosity increases in the slab deceleration zone below which viscosity slowly decreases in the deep mantle. This is at variance with most published viscosity profiles that are derived from different observations, but agrees qualitatively with recent viscosity profiles suggested from material experiments.
The atomic arrangement of iimoriite-(Y), Y2(SiO4)(CO3)
Hughes, J.M.; Foord, E.E.; Jai-Nhuknan, J.; Bell, J.M.
1996-01-01
Iimoriite-(Y) from Bokan Mountain, Prince of Wales Island, Alaska has been studied using single-crystal X-ray-diffraction techniques. The mineral, ideally Y2(SiO4)(CO3), crystallizes in space group P1, with a 6.5495(13), b 6.6291(14), c 6.4395(11)A??, ?? 116.364(15), ?? 92.556(15) and ?? 95.506(17)??. The atomic arrangement has been solved and refined to an R value of 0.019. The arrangement of atoms consists of alternating (011) slabs of orthosilicate groups and carbonate groups, with no sharing of oxygen atoms between anionic complexes in adjacent slabs. Y1 atoms separate adjacent tetrahedra along [100] within the orthosilicate slab, and Y2 atoms separate adjacent carbonate groups along [100] within the carbonate slab. Adjacent orthosilicate and carbonate slabs are linked in (100) by bonding Y atoms from each slab to oxygen atoms of adjacent slabs, in the form of YO8 polyhedra. The Y1 atoms exist in Y12O14 dimers in the orthosilicate slab, and the Y2 atoms exist in continuous [011] ribbons of edge-sharing Y2O8 polyhedra in the carbonate slab.
NASA Astrophysics Data System (ADS)
Gauthier, D.; Hutchinson, D. J.
2012-04-01
We present simple estimates of the maximum possible critical length of damage or fracture in a weak snowpack layer required to maintain the propagation that leads to avalanche release, based on observations of 'en-echelon' slab fractures during avalanche release. These slab fractures may be preserved in situ if the slab does not slide down slope. The en-echelon fractures are spaced evenly, normally with one every one to ten metres or more. We consider a simple two-dimensional model of a slab and weak layer, with upslope fracture propagating the weak layer, and examine the relationship between the weak layer and en-echelon slab fractures. We assume that the slab fracture occurs in tension, and initiates at either the base or surface of the slab in the area of peak tensile stress at the tip of the weak layer fracture. We also assume that if at the time the slab is completely bisected by fracture the propagation in the weak layer will arrest spontaneously if it has not advanced beyond the critical length. In this scenario, en-echelon slab fractures may only form when the weak layer fracture repeatedly exceeds the critical length; otherwise, there could be only a single slab fracture. We estimate the position of the weak layer fracture at the time of slab bisection using the slab thickness and ratio between the fracture speeds in the weak layer and slab. We show that in the simple model en-echelon fractures only form if the slab thickness multiplied by the velocity ratio is greater than the critical length. Of course, the critical length must also be less than the en-echelon spacing. It follows that the first relationship must be valid independent of the occurrence of en-echelon fractures, although the speed ratio may be process-dependent and difficult to estimate. We use this method to calculate maximum critical lengths for propagation in actual avalanches with and without en echelon fractures, and discuss the implications for comparing competing propagation models. Furthermore, we discuss the possible applications to other cases of progressive basal failure and en-echelon fracturing, e.g. the ribbed flow bowls or so-called 'thumbprint' morphology which sometimes develops during landsliding in sensitive clay soils.
Field Testing of Energy-Efficient Flood-Damage-Resistant Residential Envelope Systems Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aglan, H.
2005-08-04
The primary purpose of the project was to identify materials and methods that will make the envelope of a house flood damage resistant. Flood damage resistant materials and systems are intended to be used to repair houses subsequent to flooding. This project was also intended to develop methods of restoring the envelopes of houses that have been flooded but are repairable and may be subject to future flooding. Then if the house floods again, damage will not be as extensive as in previous flood events and restoration costs and efforts will be minimized. The purpose of the first pair ofmore » field tests was to establish a baseline for typical current residential construction practice. The first test modules used materials and systems that were commonly found in residential envelopes throughout the U.S. The purpose of the second pair of field tests was to begin evaluating potential residential envelope materials and systems that were projected to be more flood-damage resistant and restorable than the conventional materials and systems tested in the first pair of tests. The purpose of testing the third slab-on-grade module was to attempt to dry flood proof the module (no floodwater within the structure). If the module could be sealed well enough to prevent water from entering, then this would be an effective method of making the interior materials and systems flood damage resistant. The third crawl space module was tested in the same manner as the previous modules and provided an opportunity to do flood tests of additional residential materials and systems. Another purpose of the project was to develop the methodology to collect representative, measured, reproducible (i.e. scientific) data on how various residential materials and systems respond to flooding conditions so that future recommendations for repairing flood damaged houses could be based on scientific data. An additional benefit of collecting this data is that it will be used in the development of a standard test procedure which could lead to the certification of building materials and systems as flood damage resistant.« less
Structural vulnerability assessment using reliability of slabs in avalanche area
NASA Astrophysics Data System (ADS)
Favier, Philomène; Bertrand, David; Eckert, Nicolas; Naaim, Mohamed
2013-04-01
Improvement of risk assessment or hazard zoning requires a better understanding of the physical vulnerability of structures. To consider natural hazard issue such as snow avalanches, once the flow is characterized, highlight on the mechanical behaviour of the structure is a decisive step. A challenging approach is to quantify the physical vulnerability of impacted structures according to various avalanche loadings. The main objective of this presentation is to introduce methodology and outcomes regarding the assessment of vulnerability of reinforced concrete buildings using reliability methods. Reinforced concrete has been chosen as it is one of the usual material used to build structures exposed to potential avalanche loadings. In avalanche blue zones, structures have to resist to a pressure up to 30kPa. Thus, by providing systematic fragility relations linked to the global failure of the structure, this method may serve the avalanche risk assessment. To do so, a slab was numerically designed. It represented the avalanche facing wall of a house. Different configuration cases of the element in stake have been treated to quantify numerical aspects of the problem, such as the boundary conditions or the mechanical behaviour of the structure. The structure is analysed according to four different limit states, semi-local and global failures are considered to describe the slab behaviour. The first state is attained when cracks appear in the tensile zone, then the two next states are described consistent with the Eurocode, the final state is the total collapse of the structure characterized by the yield line theory. Failure probability is estimated in accordance to the reliability framework. Monte Carlo simulations were conducted to quantify the fragility to different loadings. Sensitivity of models in terms of input distributions were defined with statistical tools such as confidence intervals and Sobol's indexes. Conclusion and discussion of this work are established to well determine contributions, limits and future needs or developments of the research. First of all, this study provides spectrum of fragility curves of reinforced concrete structures which could be used to improve risk assessment. Second, the influence of the failure criterion picked up in this survey are discussed. Then, the weight of the statistical distribution choice is analysed. Finally, the limit between vulnerability and fragility relations is set up to establish the boundary use of our approach.
Performance determination of precast concrete slabs used for the repair of rigid pavements.
DOT National Transportation Integrated Search
2014-10-01
The safety of civilians is of paramount importance during the construction and repair of concrete pavements. : A complete understanding of the pavement distresses that compromise the structural stability and performance : of rigid pavements are requi...
Assessment of mitigating embankment settlement with pile-supported approach slabs : final report.
DOT National Transportation Integrated Search
1999-12-01
Problems involving highway bridge approach settlement have been observed at many sites in Louisiana. In southeastern Louisiana, where subsoil settlement potential is the greatest, the bridge structures are usually lengthened in order to reduce the he...
Assessment of mitigating embankment settlement with pile-supported approach slabs : summary report.
DOT National Transportation Integrated Search
1999-12-01
Problems involving highway bridge approach settlement have been observed at many sites in Louisiana. In southeastern Louisiana, where subsoil settlement potential is the greatest, the bridge structures are usually lengthened in order to reduce the he...
Developing short-span alternatives to reinforced concrete box culvert structures in Kansas.
DOT National Transportation Integrated Search
2014-07-01
Concrete box culvert floor slabs are known to have detrimental effects on river and stream hydraulics. : Consequences include an aquatic environment less friendly to the passage of fish and other organisms. This has : prompted environmental regulatio...
A slab expression in the Gibraltar arc?
NASA Astrophysics Data System (ADS)
Nijholt, Nicolai; Govers, Rob; Wortel, Rinus
2017-04-01
The present-day geodynamic setting of the Gibraltar arc region results from several Myrs of subduction rollback in the overall (oblique) convergence of Africa and Iberia. As for most rollback settings in a convergence zone, the interaction of these two components is complex and distinctly non-stationary. Gibraltar slab rollback is considered to have stalled, or at least diminished largely in magnitude, since the late Miocene/early Pliocene, suggesting that the effect of the slab on present-day surface motions is negligible. However, GPS measurements indicate that the Gibraltar arc region has an anomalous motion with respect to both Iberia and Africa, i.e., the Gibraltar arc region does not move as part of the rigid Iberian, or the rigid African plate. A key question is whether this surface motion is an expression of the Gibraltar slab. Seismic activity in the Gibraltar region is diffuse and considerable in magnitude, making it a region of high seismic risk. Unlike the North African margin to the east, where thrust earthquakes dominate the focal mechanism tables, a complex pattern is observed with thrust, normal and strike-slip earthquakes in a region stretching between the northern Moroccan Atlas across the Gibraltar arc and Alboran Sea (with the Trans-Alboran Shear Zone) to the Betics of southern Spain. Even though no large mega-thrust earthquakes have been observed in recent history, slab rollback may not have completely ceased. However, since no activity has been observed in the accretionary wedge, probably since the Pliocene, it is likely that the subduction interface is locked. In this study, we perform a series of numerical models in which we combine the relative plate convergence, variable magnitude of friction on fault segments, regional variations in gravitational potential energy and slab pull of the Gibraltar slab. We seek to reproduce the GPS velocities and slip sense on regional faults and thereby determine whether the Gibraltar slab has an effect on surface motion. Slab shape and slab continuity to the surface, allowing slab pull to be transfered to the surface lithosphere, are key factors controlling the force balance in the region. We explore slab geometries with or without continuity at the Betics (with a slab window between the known subduction interface and a possible Betics connection) and/or continental material attached to the slab (which lowers the slab pull magnitude). Through our methodology, we are able to study which slab shape of those proposed in the literature best fits the surface data.
Haeussler, Peter J.; Saltus, Richard W.
2011-01-01
Subduction of the buoyant Yakutat microplate likely caused deformation to be focused preferentially in upper Cook Inlet. The upper Cook Inlet region has both the highest degree of shortening and the deepest part of the Neogene basin. This forearc region has a long-wavelength magnetic high, a large isostatic gravity low, high conductivity in the lower mantle, low p-wave velocity (Vp), and a high p-wave to shear-wave velocity ratio (Vp/Vs). These data suggest that fluids in the mantle wedge caused serpentinization of mafic rocks, which may, at least in part, contribute to the long-wavelength magnetic anomaly. This area lies adjacent to the subducting and buoyant Yakutat microplate slab. We suggest the buoyant Yakutat slab acts much like a squeegee to focus mantle-wedge fluid flow at the margins of the buoyant slab. Such lateral flow is consistent with observed shear-wave splitting directions. The additional fluid in the adjacent mantle wedge reduces the wedge viscosity and allows greater corner flow. This results in focused subsidence, deformation, and gravity anomalies in the forearc region.
Implications of slab mineralogy for subduction dynamics
NASA Astrophysics Data System (ADS)
Bina, Craig R.; Stein, Seth; Marton, Frederic C.; Van Ark, Emily M.
2001-12-01
Phase relations among mantle minerals are perturbed by the thermal environment of subducting slabs, both under equilibrium and disequilibrium (metastable) conditions. Such perturbations yield anomalies not only in seismic velocities but also in density. The buoyancy forces arising from these density anomalies may exert several important effects. They contribute to the stress field within the slab, in a fashion consistent with observed patterns of seismicity. They may affect subduction rates, both by inducing time-dependent velocity changes under equilibrium conditions and by imposing velocity limits through a thermal feedback loop under disequilibrium conditions. They may affect slab morphology, possibly inhibiting penetration of slabs into the lower mantle and allowing temporary stagnation of deflected or detached slabs. Latent heat release from phase transitions under disequilibrium conditions in slabs can yield isobaric superheating, which may generate adiabatic shear instabilities capable of triggering deep seismicity.
Image transfer properties by photonic crystal slab with negative refractive index
NASA Astrophysics Data System (ADS)
Chen, Hongbo; Chen, Xiaoshuang; Zhou, Renlong; Lu, Wei
2008-04-01
We have studied the properties of image transferred by photonic crystal (PhC) slab with negative refractive index n=-1 and confirmed the negative refractive phonomenon, but not found the saturated image properties as expected. It is found that real images will not be formed when the source distance larger than the thickness of PhC, and the transferred images are virtual images. Furthermore, comparing the quality of images transferred by a PhC slab and a cascaded stack of photonic crystal slab (CSPS), we found that the transferred images are distorted in both situations. The image resolution is good along the direction parallel to the slab interface, but bad along the direction normal to the slab interface. Simulation results show that the image formed by a CSPS is no better than a PhC slab.
NASA Astrophysics Data System (ADS)
Newman, A. V.; Yao, D.; Kyriakopoulos, C.; Moore-Driskell, M. M.; Hobbs, T. E.; Peng, Z.; Schwartz, S. Y.; Protti, M.; Gonzalez, V.
2016-12-01
We normally view the subduction megathrust surface as a constant structure throughout the seismic cycle, with the elastic loading, microseismicity, and slip occurring along it. However, using small events recorded from a uniquely dense seismic network directly over the active megathrust below Nicoya, Costa Rica, we find two different seismogenic structures with near exclusive time-dependent behavior immediately in the region of maximum coseismic slip. Microseismicity recorded at intervals between 1999 and 2009 showed an elevated topographic indenter beneath central Nicoya, and associated with a suture marking transition between Cocos-Nazca Spreading Center and East-Pacific Rise crusts [Kyriakopoulos et al., JGR 2015]. This indenter is located as a focus of interseismic locking and coseismic rupture [Feng et al., JGR 2012; Yue et al., JGR 2013; Protti et al., Nat. Geosc. 2014; Xue et al., JGR 2015; Kyriakopoulos & Newman, JGR 2016]. However, aftershocks recorded in the months following an MW 7.6 earthquake in 2012 define an entirely different structure about 5 km deeper and differing only in the area of maximum coseismic slip. The location of seismicity switches entirely between these faults from the shallow indenter structure beforehand to the deeper and near-linear feature after. To improve our imaging of the behavior and associated slab structure, we perform a detailed joint seismic relocation and tomographic inversion using TomoDD [Zhang and Thurber, PAGEOPH 2003]. We analyze the new locations relative to the imaged slab geometry, and compare automated formulations of the interfaces using the Maximum Seismicity Method [Kyriakopoulos et al., 2015], with data existing before and after the earthquake. Lastly, we show the sensitivity of using either surface in models for fault slip from regional GPS. We hypothesize that the bifurcated fault structure signifies either active decapitation of the indenter, possibly along the crust-mantle interface of the downgoing slab, or aftershock activity represents the true plate interface, with prior seismic activity dominantly in the hanging wall along a well-defined fault. Either case has implications for understanding the relationship between interseismic and coseismic fault behavior through the seismic cycle.
NASA Astrophysics Data System (ADS)
Varga, P.; Krumm, F.; Riguzzi, F.; Doglioni, C.; Süle, B.; Wang, K.; Panza, G. F.
2012-03-01
In this paper, we analyse the distributions of number of events (N) and seismic energy (E) on the Earth's surface and along its radius as obtained from the global declustered catalogue of large independent events (M ≥ 7.0), dissipating about 95% of the Earth's elastic budget. The latitude distribution of the seismic event density is almost symmetric with respect to the equator and the seismic energy flux distribution is bimodal; both have their medians near the equator so that they are equally distributed in the two hemispheres. This symmetry with respect to the equator suggests that the Earth's rotational dynamics contributes to modulate the long-term tectonic processes. The distributions of number and energy of earthquakes versus depth are not uniform as well: 76% of the total earthquakes dissipates about 60% of the total energy in the first ~ 50 km; only 6% of events dissipates about 20% of the total amount of energy in a narrow depth interval, at the lower boundary of the upper mantle (550-680 km). Therefore, only the remaining 20% of energy is released along most of the depth extent of subduction zones (50-550 km). Since the energetic release along slabs is a minor fraction of the total seismic budget, the role of the slab pull appears as ancillary, if any, in driving plate tectonics. Moreover the concentration of seismic release in the not yet subducted lithosphere suggests that the force moving the plates acts on the uppermost lithosphere and contemporaneously all over the Earth's outer shell, again supporting a rotational/tidal modulation.
Novel Layered Supercell Structure from Bi 2AlMnO 6 for Multifunctionalities
Li, Leigang; Boullay, Philippe; Lu, Ping; ...
2017-10-02
Layered materials, e.g., graphene and transition metal (di)chalcogenides, holding great promises in nanoscale device applications have been extensively studied in fundamental chemistry, solid state physics and materials research areas. In parallel, layered oxides (e.g., Aurivillius and Ruddlesden–Popper phases) present an attractive class of materials both because of their rich physics behind and potential device applications. In this work, we report a novel layered oxide material with self-assembled layered supercell structure consisting of two mismatch-layered sublattices of [Bi 3O 3+δ] and [MO 2] 1.84 (M = Al/Mn, simply named BAMO), i.e., alternative layered stacking of two mutually incommensurate sublattices made ofmore » a three-layer-thick Bi–O slab and a one-layer-thick Al/Mn–O octahedra slab in the out-of-plane direction. Strong room-temperature ferromagnetic and piezoelectric responses as well as anisotropic optical property have been demonstrated with great potentials in various device applications. Furthermore, the realization of the novel BAMO layered supercell structure in this work has paved an avenue toward exploring and designing new materials with multifunctionalities.« less
Jiang, Baofeng; Jia, Pengjiao; Zhao, Wen; Wang, Wentao
2018-01-01
This paper explores a new method for rapid structural damage inspection of steel tube slab (STS) structures along randomly measured paths based on a combination of compressive sampling (CS) and ultrasonic computerized tomography (UCT). In the measurement stage, using fewer randomly selected paths rather than the whole measurement net is proposed to detect the underlying damage of a concrete-filled steel tube. In the imaging stage, the ℓ1-minimization algorithm is employed to recover the information of the microstructures based on the measurement data related to the internal situation of the STS structure. A numerical concrete tube model, with the various level of damage, was studied to demonstrate the performance of the rapid UCT technique. Real-world concrete-filled steel tubes in the Shenyang Metro stations were detected using the proposed UCT technique in a CS framework. Both the numerical and experimental results show the rapid UCT technique has the capability of damage detection in an STS structure with a high level of accuracy and with fewer required measurements, which is more convenient and efficient than the traditional UCT technique. PMID:29293593
Sadowski, Lukasz
2013-01-01
In recent years, the corrosion of steel reinforcement has become a major problem in the construction industry. Therefore, much attention has been given to developing methods of predicting the service life of reinforced concrete structures. The progress of corrosion cannot be visually assessed until a crack or a delamination appears. The corrosion process can be tracked using several electrochemical techniques. Most commonly the half-cell potential measurement technique is used for this purpose. However, it is generally accepted that it should be supplemented with other techniques. Hence, a methodology for assessing the probability of corrosion in concrete slabs by means of a combination of two methods, that is, the half-cell potential method and the concrete resistivity method, is proposed. An assessment of the probability of corrosion in reinforced concrete structures carried out using the proposed methodology is presented. 200 mm thick 750 mm × 750 mm reinforced concrete slab specimens were investigated. Potential E corr and concrete resistivity ρ in each point of the applied grid were measured. The experimental results indicate that the proposed methodology can be successfully used to assess the probability of corrosion in concrete structures.
Geometry of slab, intraslab stress field and its tectonic implication in the Nankai trough, Japan
NASA Astrophysics Data System (ADS)
Xu, J.; Kono, Y.
2002-07-01
The characteristics of geometry of slabs and the intraslab stress field in the Nankai subduction zone, Japan, were analyzed based on highly accurate hypocentral data and focal mechanism solutions. The results suggest that the shallow seismic zone of the Philippine Sea slab subducts with dip angels between 10 and 22 degrees beneath Shikoku and the Kii peninsula, and between 11 and 40 degrees beneath Kyushu. Two types of seismogenic stress field exist within the slab. The stress field of down-dip compression type can be seen in the slab beneath Shikoku and the Kii peninsula, where the horizontal component of regional compression stress is NNW. On the other hand the stress field of down-dip extension type within the slab is dominant in the region from western Shikoku to Kyushu, where the direction of horizontal compressive stress is near WWN. The existence of the two types of stress field is related to the differences of slab geometry and slab age of the subduciton zone. These properties imply that slab beneath Kyushu (40 Ma) probably is older than that beneath Shikoku and the Kii peninsula (11-20 Ma). The young slab of the oceanic Philippine Sea plate subducts with a shallow angle beneath the Eurasian plate in Shikoku and the Kii peninsula. The subduction has encountered strong resistance there, resulting in a down-dip compression stress field. The down-dip extension stress field may be related to the older slab of the Philippine Sea plate which subducts beneath Kyushu with a steeper dip angle.
Water-induced convection in the Earth's mantle transition zone
NASA Astrophysics Data System (ADS)
Richard, Guillaume C.; Bercovici, David
2009-01-01
Water enters the Earth's mantle by subduction of oceanic lithosphere. Most of this water immediately returns to the atmosphere through arc volcanism, but a part of it is expected as deep as the mantle transition zone (410-660 km depth). There, slabs can be deflected and linger before sinking into the lower mantle. Because it lowers the density and viscosity of the transition zone minerals (i.e., wadsleyite and ringwoodite), water is likely to affect the dynamics of the transition zone mantle overlying stagnant slabs. The consequences of water exchange between a floating slab and the transition zone are investigated. In particular, we focus on the possible onset of small-scale convection despite the adverse thermal gradient (i.e., mantle is cooled from below by the slab). The competition between thermal and hydrous effects on the density and thus on the convective stability of the top layer of the slab is examined numerically, including water-dependent density and viscosity and temperature-dependent water solubility. For plausible initial water content in a slab (≥0.5 wt %), an episode of convection is likely to occur after a relatively short time delay (5-20 Ma) after the slab enters the transition zone. However, water induced rheological weakening is seen to be a controlling parameter for the onset time of convection. Moreover, small-scale convection above a stagnant slab greatly enhances the rate of slab dehydration. Small-scale convection also facilitates heating of the slab, which in itself may prolong the residence time of the slab in the transition zone.
DOT National Transportation Integrated Search
1983-01-01
The condition of six concrete bridge slabs that had been in service for three years was evaluated. The top 2 in. of the four slabs that had been impregnated to a depth of about 1 in. with a methyl methacrylate and trimethylolpropane trimethacrylate m...
Nonimaging concentrators for diode-pumped slab lasers
NASA Astrophysics Data System (ADS)
Lacovara, Philip; Gleckman, Philip L.; Holman, Robert L.; Winston, Roland
1991-10-01
Diode-pumped slab lasers require concentrators for high-average power operation. We detail the properties of diode lasers and slab lasers which set the concentration requirements and the concentrator design methodologies that are used, and describe some concentrator designs used in high-average power slab lasers at Lincoln Laboratory.
DOT National Transportation Integrated Search
2008-10-01
A normal bridge approach slab in Louisiana is a reinforced concrete slab. It connects : the bridge deck to the adjacent paved roadway. Its intended functions are: : 1. To span the void that may develop below the slab due to soil erosion or : embankme...
NASA Astrophysics Data System (ADS)
Grose, C. J.
2007-12-01
The Trans-Mexican Volcanic Belt (TMVB) is a system where the age range of subducting plates is typically thought of as critical in their relation to lithospheric thermal structure (~10-20 Ma). I refer to this age range as "critical" because it is in this range where thermal lithospheres begin to rapidly decrease their correlative influence on the thermal state of the subduction system above the crust/mantle wedge interface for most systems. After ~20 Ma the cool upper portion of downgoing lithosphere becomes sufficiently thick so that crustal reheating and corresponding heat flow in the time between trench subduction and the zone of melt generation, due to the accumulation of conductive and frictional heating, behaves somewhat similarly with little regard to age. Typical slab travel times are on the order of 1.5-2.5 My. However, low dip angles and flat-slab behavior in the Eastern end of the TMVB facilitates anomalously long travel times exceeding 6.5 My! Here I show that while the influence of plate age is clearly significant in determining the holistic thermal geodynamics of subduction systems, the influence can be dampened or enhanced by auxiliary factors. I present thermal modeling cases using a solution for the conduction of heat into an evolving semi-infinite half-space with variable boundary conditions. Preliminary results indicate that extraordinary slab travel times and flat-slab behavior, mantle wedge advection regimes, and plate age thermally enhance and dampen each other. Geochemically, the TMVB shows consistent along-arc changes in light element abundance systematics (B/Be, Li/Yb, Be/Zr). Moderately elevated B/Be (Easterly increases from ~4 to ~12 ppm B/Be) observed in the eastern shallow subduction region is thought to correlate with subduction of an older, cooler portion of the slab. However, greater slab travel times in the Eastern TVMB should simultaneously act to warm the slab and depreciate these values which may partly explain the minimal consistency and magnitude of the TMVB along-arc variations. Li/Yb has a more impressive range of correlative along-arc variation, argued to be the result of greater extents of melting in the east. This can be explained by increased dehydration melting (due to a cooler slab and longer H20 residence times in the slab), a warmer slab affect, or changes in the mean depth of amphibole and garnet crystallization. While elevated B and B/Be values in the eastern TMVB correlate with increased hydration melting, it is likely that the affect is dampened by the positive thermal affects of greater travel times. Comparison to arc rocks in subduction further to the east in Central America, particularly Guatemala, whose B abundance and B/Be ratios are much more elevated (20-70 ppm B/Be) and show convergence on those in the Eastern TMVB. I suggest that the minimal range of B/Be variation seen in the TMVB arc is a result of the extraordinary slab travel times associated with shallow subduction in the eastern TMVB. Furthermore, similar to the B/Be data, the depleted Li/Yb (relative to the rifting region encompassing the Jalisco block) of the Eastern end also continues to converge on values represented in the Central American arc, indicating that the strong variations seen in the TMVB are primarily due to crystallization instead of extents of melting. Thermal modeling results presented here show that sources aside from plate age are capable and likely have influenced the systematic correlations observed in the TMVB and this hypothesis is consistent with the LREE data.
Tunneling through superlattices: the effect of anisotropy and kinematic coupling.
Halilov, S V; Huang, X Y; Hytha, M; Stephenson, R; Yiptong, A; Takeuchi, H; Cody, N; Mears, R J
2012-12-12
The tunneling of carriers in stratified superlattice systems is analyzed in terms of the constituent effective mass tensor. The focus is on the effects on the tunneling which are caused by the side regions of an intervening barrier. Depending on the covalency and work function in the constituent layers of a superlattice, it is concluded that the kinematics in the regions on either side determined by the effective carrier mass and its interference with the band offset at heterojunctions leads to either a constructive or a destructive effect on the tunneling current. As an example, Si(1-x)Ge(x)/Si and Al(x)Ga(1-x)As/GaAs superlattices are demonstrated to reduce the tunneling current at certain fractional thicknesses and stoichiometries of the constituent slabs without affecting the lateral mobility. The findings show, in general, how manipulation of the carrier's effective mass tensor through stoichiometric/structural modulation of the heterostructure may be used to control the tunneling current through a given potential barrier, given that the characteristic de Broglie wavelength exceeds all the constituent dimensions, thus offering a method complementary to high-k technologies.
Textural domain walls in superfluid 3He-B
NASA Astrophysics Data System (ADS)
Mizushima, Takeshi
Owing to the richness of symmetry, the superfluid 3He serves as a rich repository of topological quantum phenomena. This includes the emergence of surface Majorana fermions and their quantum mass acquisition at the topological critical point. Furthermore, the marriage of the prototype topological superfluid with nanofabrication techniques brings about a rich variety of spontaneous symmetry breaking, such as the formation of the stripe order and nontrivial domain walls. In this work, we examine the possible formation of textural domain walls in the superfluid 3He-B confined to a thin slab with a sub-micron thickness. When an applied magnetic field is much higher than the dipolar field, two nearly degenerate ground states appear, which are characterized by the Ising order associated with the spontaneous breaking of a magnetic order-two symmetry, lcirc;z = + 1 and - 1 . We here discuss the structure of the textural domain wall formed by the spatial modulation of the Ising order, such as low-lying quasiparticle excitations and spontaneous spin current. We also report bosonic modes bound to the textural domain wall.
NASA Astrophysics Data System (ADS)
Cerpa, N. G.; Wada, I.; Wilson, C. R.; Spiegelman, M. W.
2016-12-01
We develop a 2D numerical porous flow model that incorporates both grain size distribution and matrix compaction to explore the fluid migration (FM) pathways in the mantle wedge. Melt generation for arc volcanism is thought to be triggered by slab-derived fluids that migrate into the hot overlying mantle and reduce its melting temperature. While the narrow location of the arcs relative to the top of the slab ( 100±30 km) is a robust observation, the release of fluids is predicted to occur over a wide range of depth. Reconciling such observations and predictions remains a challenge for the geodynamic community. Fluid transport by porous flow depends on the permeability of the medium which in turn depends on fluid fraction and mineral grain size. The grain size distribution in the mantle wedge predicted by laboratory derived laws was found to be a possible mechanism to focusing of fluids beneath the arcs [Wada and Behn, 2015]. The viscous resistance of the matrix to the volumetric strain generates compaction pressure that affects fluid flow and can also focus fluids towards the arc [Wilson et al, 2014]. We thus have developed a 2D one-way coupled Darcy's-Stokes flow model (solid flow independent of fluid flow) for the mantle wedge that combines both effects. For the solid flow calculation, we use a kinematic-dynamic approach where the system is driven by the prescribed slab velocity. The solid rheology accounts for both dislocation and diffusion creep and we calculate the grain size distribution following Wada and Behn [2015]. In our fluid flow model, the permeability of the medium is grain size dependent and the matrix bulk viscosity depends on solid shear viscosity and fluid fraction. The fluid influx from the slab is imposed as a boundary condition at the base of the mantle wedge. We solve the discretized governing equations using the software package TerraFERMA. Applying a range of model parameter values, including slab age, slab dip, subduction rate, and fluid influx, we quantify the combined effects of grain size and compaction on fluid flow paths.
High-resolution Imaging of the Philippine Sea Plate subducting beneath Central Japan
NASA Astrophysics Data System (ADS)
Padhy, S.; Furumura, T.
2016-12-01
Thermal models predict that the oceanic crust of the young (<20 Ma) and warmer Philippine-sea plate (PHP) is more prone to melting. Deriving a high-resolution image of the PHP, including slab melting and other features of the subduction zone, is a key to understand the basics of earthquake occurrence and origin of magma in complex subduction zone like central Japan, where both the PHP and Pacific (PAC) Plates subduct. To this purpose, we analyzed high-resolution waveforms of moderate sized (M 4-6), intermediate-to-deep (>150 km) PAC earthquakes occurring in central Japan and conducted numerical simulation to derive a fine-scale PHP model, which is not constrained in earlier studies. Observations show spindle-shaped seismograms with strong converted phases and extended coda with very slow decay from a group of PAC events occurring in northern part of central Japan and recorded by high-sensitivity seismograph network (Hi-net) stations in the region. We investigate the mechanism of propagation of these anomalous waveforms using the finite difference method (FDM) simulation of wave propagation through the subduction zone. We examine the effects on waveform changes of major subduction zone features, such as the melting of oceanic crust in PHP, serpentinized mantle wedge, hydrated layer on the PAC due to slab dehydration, and anomaly in upper mantle between the PAC and PHP. Simulation results show that the waveform anomaly is primarily explained by strong scattering and absorption of high-frequency energy by the low-velocity anomalous mantle structure, with a strong coda excitation yielding spindle-shaped waveforms. The data are secondarily explained by melting of PHP in the basaltic crust. The location of the mantle anomaly is tightly constrained by the observation and evidence of PAC thinning in the region; these localized low-velocity structures aid in ascending the slab-derived fluids around the slab thinning. We expect that the results of this study will enhance our present understanding on the mechanism of intermediate to deep earthquakes in the region.
Regional P wave velocity structure of the Northern Cascadia Subduction Zone
Ramachandran, K.; Hyndman, R.D.; Brocher, T.M.
2006-01-01
This paper presents the first regional three-dimensional, P wave velocity model for the Northern Cascadia Subduction. Zone (SW British Columbia and NW Washington State) constructed through tomographic inversion of first-arrival traveltime data from active source experiments together with earthquake traveltime data recorded at permanent stations. The velocity model images the structure of the subducting Juan de Fuca plate, megathrust, and the fore-arc crust and upper mantle. Beneath southern Vancouver Island the megathrust above the Juan de Fuca plate is characterized by a broad zone (25-35 km depth) having relatively low velocities of 6.4-6.6 km/s. This relative low velocity zone coincides with the location of most of the episodic tremors recently mapped beneath Vancouver Island, and its low velocity may also partially reflect the presence of trapped fluids and sheared lower crustal rocks. The rocks of the Olympic Subduction Complex are inferred to deform aseismically as evidenced by the lack of earthquakes withi the low-velocity rocks. The fore-arc upper mantle beneath the Strait of Georgia and Puget Sound is characterized by velocities of 7.2-7.6 km/s. Such low velocities represent regional serpentinization of the upper fore-arc mantle and provide evidence for slab dewatering and densification. Tertiary sedimentary basins in the Strait of Georgia and Puget Lowland imaged by the velocity model lie above the inferred region of slab dewatering and densification and may therefore partly result from a higher rate of slab sinking. In contrast, sedimentary basins in the Strait of Juan de Fuca lie in a synclinal depression in the Crescent Terrane. The correlation of in-slab earthquake hypocenters M>4 with P wave velocities greater than 7.8 km/s at the hypocenters suggests that they originate near the oceanic Moho of the subducting Juan de Fuca plate. Copyright 2006 by the American Geophysical Union.
Horton, J. Wright; Kunk, Michael J.; Belkin, Harvey E.; Aleinikoff, John N.; Jackson, John C.; Chou, I.-Ming
2009-01-01
The 1766-m-deep Eyreville B core from the late Eocene Chesapeake Bay impact structure includes, in ascending order, a lower basement-derived section of schist and pegmatitic granite with impact breccia dikes, polymict impact breccias, and cataclas tic gneiss blocks overlain by suevites and clast-rich impact melt rocks, sand with an amphibolite block and lithic boulders, and a 275-m-thick granite slab overlain by crater-fill sediments and postimpact strata. Graphite-rich cataclasite marks a detachment fault atop the lower basement-derived section. Overlying impactites consist mainly of basement-derived clasts and impact melt particles, and coastal-plain sediment clasts are underrepresented. Shocked quartz is common, and coesite and reidite are confirmed by Raman spectra. Silicate glasses have textures indicating immiscible melts at quench, and they are partly altered to smectite. Chrome spinel, baddeleyite, and corundum in silicate glass indicate high-temperature crystallization under silica undersaturation. Clast-rich impact melt rocks contain α-cristobalite and monoclinic tridymite. The impactites record an upward transition from slumped ground surge to melt-rich fallback from the ejecta plume. Basement-derived rocks include amphibolite-facies schists, greenschist(?)-facies quartz-feldspar gneiss blocks and subgreenschist-facies shale and siltstone clasts in polymict impact breccias, the amphibolite block, and the granite slab. The granite slab, underlying sand, and amphibolite block represent rock avalanches from inward collapse of unshocked bedrock around the transient crater rim. Gneissic and massive granites in the slab yield U-Pb sensitive high-resolution ion microprobe (SHRIMP) zircon dates of 615 ± 7 Ma and 254 ± 3 Ma, respectively. Postimpact heating was <~350 °C in the lower basement-derived section based on undisturbed 40Ar/39Ar plateau ages of muscovite and <~150 °C in sand above the suevite based on 40Ar/39Ar age spectra of detrital microcline.
Adakitic-like volcanism in Southern Mexico and subduction of the Tehuantepec Ridge
NASA Astrophysics Data System (ADS)
Manea, M.; Manea, V. C.
2007-05-01
The origin of El Chichón volcano is poorly understood, and our attempt in this study is to demonstrate that Tehuantepec Ridge, a major tectonic discontinuity on the Cocos plate, plays a key role in the slab dehydration budget and therefore in partial melting of the mantle beneath El Chichón. Using marine magnetic anomalies we show that the upper mantle beneath TR undergo partial serpentinization, a 5-7 km thick serpentinized root extending along TR and below the oceanic crust. Another key aspect of the magnetic anomaly over southern México is a long-wavelength (~150 km) high amplitude (~500 nT) magnetic anomaly located between the trench and the coast. Using a 2D joint magnetic-gravity forward model, constrained by the subduction P-T structure, slab geometry and seismicity, we find a highly magnetic and low-density source located at 40-130 km depth. We interpret this result as a serpentinized mantle wedge by fluids expelled from the subducting Cocos plate beneath southern Mexico. Such a deep hydrated mantle requires a low temperature wedge (T<600° C) because serpentine is stable below this temperature and also the magnetic properties are preserved for temperature less than the Currie point for magnetite (~580° C). This result explains the lack of volcanism in southern México where the slab depth is ~ 100 km. Using phase diagrams for sediments, basalt and peridotite, and the subduction P-T structure beneath El Chichón we find that sediments and basalt dehydrate ~ 50% at depths corresponding with the location of serpentinized mantle wedge, whereas the serpentinized root beneath TR strongly dehydrates (60-80%) at higher depths (170-180 km) comparable with the slab depth beneath El Chichón. We conclude that this strong deserpentinization pulse of mantle lithosphere beneath TR at great depths triggers arc melting, explaining the unusual location and probably the adakitic signature of El Chichón.
Review on antibacterial biocomposites of structural laminated veneer lumber
Chen, Zi-xiang; Lei, Qiong; He, Rui-lin; Zhang, Zhong-feng; Chowdhury, Ahmed Jalal Khan
2015-01-01
In this review, the characteristics and applications of structural laminated veneer lumber made from planted forest wood is introduced, and its preparation is explained, including various tree species and slab qualities, treatments for multiple effects and reinforced composites. The relevant factors in the bonding technology and pressing processes as well as the mechanical properties, research direction and application prospects of structural laminated veneer lumber made from planted forest wood are discussed. PMID:26858559
INTERIOR OVERVIEW OF CONTINUOUS CASTER WITH NO. 12 LADLE. MOLTEN ...
INTERIOR OVERVIEW OF CONTINUOUS CASTER WITH NO. 12 LADLE. MOLTEN STEEL IS POURED FROM LADLE THROUGH SHROUD TO TUNDISH. FROM TUNDISH STEEL ENTERS MOLD THROUGH SHROUD AND FORMATION OF SLAB SHELL BEGINS. AS SLAB PROGRESSES THROUGH CONTAINMENT SECTION IT IS COOLED WITH AIR MIST SPRAYS AND CONTINUES SOLIDIFICATION. UPON EXITING THE MACHINE THE SLABS ARE CUT TO DESIRED LENGTH AND IDENTIFIED. THE SLABS ARE STACKED, REMOVED FROM MACHINE AND PREPARED FOR SHIPMENT TO HOT STRIP MILL. CASTER HAS ABILITY TO PRODUCE SINGLE OR TWIN CASTS. SINGLE SLABS PRODUCED MAY BE UP TO 102 INCHES; DOUBLE SLABS UP TO 49 INCHES. - U.S. Steel, Fairfield Works, Continuous Caster, Fairfield, Jefferson County, AL
Flexural strength and behaviour of SFRSCC ribbed slab under four point bending
NASA Astrophysics Data System (ADS)
Ahmad, Hazrina; Hashim, Mohd Hisbany Mohd; Bakar, Afidah Abu; Hamzah, Siti Hawa; Rahman, Fadhillah Abdul
2017-11-01
An experimental investigation was carried out to study the ultimate strength and behaviour of SFRSCC ribbed slab under four point bending. Comparison was been made between ribbed slab that was fully reinforced with steel fibres (SFWS) with conventionally reinforced concrete ribbed slab (CS and CRC). The volume fraction of the 35 mm hooked end steel fibres used in the mix was 1% (80 kg/m3) with the aspect ratio of 65. Three full scale slab samples with the dimension of 2.8 x 1.2 m with 0.2 m thickness was constructed for the purpose of this study. The slab samples was loaded until failure in a four point bending test. As a whole, based on the results, it can be concluded that the performance of the steel fiber reinforced samples (SFWS) was found to be almost equivalent to the conventionally reinforced concrete ribbed slab sample (CRC).
DOT National Transportation Integrated Search
2014-07-01
Concrete box culvert floor slabs are known to have detrimental effects on river and stream hydraulics. Consequences include an aquatic environment less friendly to the passage of fish and other organisms. This has prompted environmental regulations r...
Stainless steel prestressing strands and bars for use in prestressed concrete girders and slabs.
DOT National Transportation Integrated Search
2015-08-01
Corrosion decay on structures has continued to be a challenge in the scientific and engineering : communities, where significant federal and state funds have been spent towards replacement or rehabilitation : of bridges that were damaged by corrosion...
4. VAL PARTIAL ELEVATION SHOWING LAUNCHER BRIDGE ON SUPPORTS, LAUNCHER ...
4. VAL PARTIAL ELEVATION SHOWING LAUNCHER BRIDGE ON SUPPORTS, LAUNCHER SLAB, SUPPORT CARRIAGE, CONCRETE 'A' FRAME STRUCTURE AND CAMERA TOWER LOOKING SOUTHEAST. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
TESTING OF INDOOR RADON REDUCTION TECHNIQUES IN CENTRAL OHIO HOUSES: PHASE 2 (WINTER 1988-1989)
The report gives results of tests of developmental indoor radon reduction techniques in nine slab-on-grade and four crawl-space houses near Dayton. Ohio. he slab-on-grade tests indicated that, when there is a good layer of aggregate under the slab, the sub-slab ventilation (SSV) ...
NASA Astrophysics Data System (ADS)
Jang, J. Y.; Lee, Y. W.; Lin, C. N.; Wang, C. H.
2016-05-01
A three-dimensional mathematical transient heat transfer model for the prediction of temperature distribution within the slab has been developed by considering the thermal radiation in the walking-beam-type reheating furnace chamber. The steel slabs are heated up through the non-firing, preheating, 1st-heating, 2nd-heating, and soaking zones in the furnace, respectively, where the furnace wall temperature is function of time. Comparison with the in-situ experimental data from Steel Company in Taiwan shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace. The effects of different skid button height (H=60mm, 90mm, and 120mm) and different gap distance between two slabs (S=50mm, 75mm, and 100mm) on the slab skid mark formation and temperature profiles are investigated. It is found that the skid mark severity decreases with an increase in the skid button height. The effect of gap distance is important only for the slab edge planes, while it is insignificant for the slab central planes.
Closure behavior of spherical void in slab during hot rolling process
NASA Astrophysics Data System (ADS)
Cheng, Rong; Zhang, Jiongming; Wang, Bo
2018-04-01
The mechanical properties of steels are heavily deteriorated by voids. The influence of voids on the product quality should be eliminated through rolling processes. The study on the void closure during hot rolling processes is necessary. In present work, the closure behavior of voids at the center of a slab at 800 °C during hot rolling processes has been simulated with a 3D finite element model. The shape of the void and the plastic strain distribution of the slab are obtained by this model. The void decreases along the slab thickness direction and spreads along the rolling direction but hardly changes along the strip width direction. The relationship between closure behavior of voids and the plastic strain at the center of the slab is analyzed. The effects of rolling reduction, slab thickness and roller diameter on the closure behavior of voids are discussed. The larger reduction, thinner slab and larger roller diameter all improve the closure of voids during hot rolling processes. Experimental results of the closure behavior of a void in the slab during hot rolling process mostly agree with the simulation results..
Numerical Analyses of Subsoil-structure Interaction in Original Non-commercial Software based on FEM
NASA Astrophysics Data System (ADS)
Cajka, R.; Vaskova, J.; Vasek, J.
2018-04-01
For decades attention has been paid to interaction of foundation structures and subsoil and development of interaction models. Given that analytical solutions of subsoil-structure interaction could be deduced only for some simple shapes of load, analytical solutions are increasingly being replaced by numerical solutions (eg. FEM – Finite element method). Numerical analyses provides greater possibilities for taking into account the real factors involved in the subsoil-structure interaction and was also used in this article. This makes it possible to design the foundation structures more efficiently and still reliably and securely. Currently there are several software that, can deal with the interaction of foundations and subsoil. It has been demonstrated that non-commercial software called MKPINTER (created by Cajka) provides appropriately results close to actual measured values. In MKPINTER software stress-strain analysis of elastic half-space by means of Gauss numerical integration and Jacobean of transformation is done. Input data for numerical analysis were observed by experimental loading test of concrete slab. The loading was performed using unique experimental equipment which was constructed in the area Faculty of Civil Engineering, VŠB-TU Ostrava. The purpose of this paper is to compare resulting deformation of the slab with values observed during experimental loading test.
NASA Astrophysics Data System (ADS)
Agrusta, R.; Van Hunen, J.
2016-12-01
At present day, the Earth's mantle exhibits a combination of stagnant and penetrating slabs within the transition zone, indicating a intermittent convection mode between layered and whole-mantle convection. Isoviscous thermal convection calculations show that in a hotter Earth, the natural mode of convection was dominated by double-layered convection, which may imply that slabs were more prone to stagnate in the transition zone. Today, slab penetration is to a large extent controlled by trench mobility for a plausible range of lower mantle viscosity and Clapeyron slope of the mantle phase transitions. Trench mobility is, in turn, governed by slab strength and density and upper plate forcing. In this study, we systematically investigate the slab-transition zone internation in the Early Earth, using 2D self-consistent numerical subduction models. Early Earth's higher mantle temperature facilitates decoupling between the plates and the underlying asthenosphere, and may result in slab sinking almost without trench retreat. Such behaviour together with a low resistance of a weak lower mantle may allow slabs to penetrate. The ability of slab to sink into the lower mantle throughout Earth's history may have important implications for Earth's evolution: it would provide efficient mass and heat flux through the transition zone therefore provide an efficient way to cool and mix the Earth's mantle.
NASA Astrophysics Data System (ADS)
Grevemeyer, Ingo; Ranero, Cesar; Sallares, Valenti; Prada, Manel; Booth-Rea, Guillermo; Gallart, Josep; Zitellini, Nevio
2017-04-01
The Western Mediterranean Sea is a natural laboratory to study the processes of continental extension, rifting and back-arc spreading in a convergent setting caused by rollback of fragmented subducting oceanic slabs during the latest phase of consumption of the Tethys ocean, leading to rapid extension in areas characterized by a constant convergence of the African and European Plates since Cretaceous time. Opening of the Algerian-Balearic Basin was governed by a southward and westward retreating slab 21 to 18 Myr and 18 to15 Myr ago, respectively. Opening of the Tyrrhenian Basin was controlled by the retreating Calabrian slab 6 to 2 Myr ago. Yet, little is known about the structure of the rifted margins, back-arc extension and spreading. Here we present results from three onshore/offshore seismic refraction and wide-angle lines and two offshore lines sampling passive continental margins of southeastern Spain and to the south of the Balearic promontory and the structure of the Tyrrhenian Basin to the north of Sicily. Seismic refraction and wide-angle data were acquired in the Algerian-Balearc Basin during a cruise of the German research vessel Meteor in September of 2006 and in the Tyrrhenian Sea aboard the Spanish research vessel Sarmiento de Gamboa in July of 2015. All profiles sampled both continental crust of the margins surrounding the basins and extend roughly 100 km into the Algerian-Balearic and the Tyrrhenian Basins, yielding constraints on the nature of the crust covering the seafloor in the basins and adjacent margins. Crust in the Algerian-Balearic basin is roughly 5-6 km thick and the seismic velocity structure mimics normal oceanic crust with the exception that lower crustal velocity is <6.8 km/s, clearly slower than lower crust sampled in the Pacific Basin. The seismic Moho in the Algerian-Balearic Basin occurs at 11 km below sea level, reaching >24 km under SE Spain and the Balearic Islands, displaying typical features and structure of continental crust. Offshore Sicily, continental crust reaches 22 km. However, the Tyrrhenian Basin indicates a lithosphere with velocities increasing continuously from 3 km/s to 7.5 km/s, mimicking features attributed to un-roofed and hence serpentinized mantle. Therefore, even though the opening of both basins was controlled by slab rollback, the resulting structures of the basins indicate striking differences. It is interesting to note that the continent/ocean transition zone of the margins did not show any evidence for high velocity lower crustal rocks, in contrast to what has been sampled in Western Pacific arc/back-arc systems.
Meteorological variables to aid forecasting deep slab avalanches on persistent weak layers
Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.
2015-01-01
Deep slab avalanches are particularly challenging to forecast. These avalanches are difficult to trigger, yet when they release they tend to propagate far and can result in large and destructive avalanches. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl ski area in southwest Montana to test the usefulness of meteorological variables for predicting seasons and days with deep slab avalanches. We defined deep slab avalanches as those that failed on persistent weak layers deeper than 0.9 m, and that occurred after February 1st. Previous studies often used meteorological variables from days prior to avalanches, but we also considered meteorological variables over the early months of the season. We used classification trees and random forests for our analyses. Our results showed seasons with either dry or wet deep slabs on persistent weak layers typically had less precipitation from November through January than seasons without deep slabs on persistent weak layers. Days with deep slab avalanches on persistent weak layers often had warmer minimum 24-hour air temperatures, and more precipitation over the prior seven days, than days without deep slabs on persistent weak layers. Days with deep wet slab avalanches on persistent weak layers were typically preceded by three days of above freezing air temperatures. Seasonal and daily meteorological variables were found useful to aid forecasting dry and wet deep slab avalanches on persistent weak layers, and should be used in combination with continuous observation of the snowpack and avalanche activity.
Earthquakes and strain in subhorizontal slabs
NASA Astrophysics Data System (ADS)
Brudzinski, Michael R.; Chen, Wang-Ping
2005-08-01
Using an extensive database of fault plane solutions and precise locations of hypocenters, we show that the classic patterns of downdip extension (DDE) or downdip compression (DDC) in subduction zones deteriorate when the dip of the slab is less than about 20°. This result is depth-independent, demonstrated by both intermediate-focus (depths from 70 to 300 km) and deep-focus (depths greater than 300 km) earthquakes. The absence of pattern in seismic strain in subhorizontal slabs also occurs locally over scales of about 10 km, as evident from a detailed analysis of a large (Mw 7.1) earthquake sequence beneath Fiji. Following the paradigm that a uniform strain of DDE/DDC results from sinking of the cold, dense slab as it encounters resistance from the highly viscous mantle at depth, breakdown of DDE/DDC in subhorizontal slabs reflects waning negative buoyancy ("slab pull") in the downdip direction. Our results place a constraint on the magnitude of slab pull that is required to dominate over localized sources of stress and to align seismic strain release in dipping slabs. Under the condition of a vanishing slab pull, eliminating the only obvious source of regional stress, the abundance of earthquakes in subhorizontal slabs indicates that a locally variable source of stress is both necessary and sufficient to sustain the accumulation of elastic strain required to generate intermediate- and deep-focus seismicity. Evidence is growing that the process of seismogenesis under high pressures, including localized sources of stress, is tied to the presence of petrologic anomalies.
McCrory, Patricia A.; Blair, J. Luke; Oppenheimer, David H.; Walter, Stephen R.
2004-01-01
We present an updated model of the Juan de Fuca slab beneath southern British Columbia, Washington, Oregon, and northern California, and use this model to separate earthquakes occurring above and below the slab surface. The model is based on depth contours previously published by Fluck and others (1997). Our model attempts to rectify a number of shortcomings in the original model and update it with new work. The most significant improvements include (1) a gridded slab surface in geo-referenced (ArcGIS) format, (2) continuation of the slab surface to its full northern and southern edges, (3) extension of the slab surface from 50-km depth down to 110-km beneath the Cascade arc volcanoes, and (4) revision of the slab shape based on new seismic-reflection and seismic-refraction studies. We have used this surface to sort earthquakes and present some general observations and interpretations of seismicity patterns revealed by our analysis. For example, deep earthquakes within the Juan de Fuca Plate beneath western Washington define a linear trend that may mark a tear within the subducting plate Also earthquakes associated with the northern stands of the San Andreas Fault abruptly terminate at the inferred southern boundary of the Juan de Fuca slab. In addition, we provide files of earthquakes above and below the slab surface and a 3-D animation or fly-through showing a shaded-relief map with plate boundaries, the slab surface, and hypocenters for use as a visualization tool.
Unusually deep Bonin earthquake of 30 May 2015: A precursory signal to slab penetration?
NASA Astrophysics Data System (ADS)
Obayashi, Masayuki; Fukao, Yoshio; Yoshimitsu, Junko
2017-02-01
An M7.9 earthquake occurred on 30 May 2015 at an unusual depth of 680 km downward and away from the well-defined Wadati-Benioff (WB) zone of the southern Bonin arc. To the north (northern Bonin), the subducted slab is stagnant above the upper-lower mantle boundary at 660-km depth, where the WB zone bends forward to sub-horizontal. To the south (northern Mariana), it penetrates the boundary, where the WB zone extends near-vertically down to the boundary. Thus, the southern Bonin slab can be regarded as being in a transitional state from slab stagnation to penetration. The transition is shown to happen rapidly within the northern half of the southern Bonin slab where the heel part of the shoe-like configured stagnant slab hits the significantly depressed 660-km discontinuity. The mainshock and aftershocks took place in this heel part where they are sub-vertically aligned in approximate parallel to their maximum compressional axes. Here, the dips of the compressional axes of WB zone earthquakes change rapidly across the thickness of the slab from the eastern to western side and along the strike of the slab from the northern to southern side, suggesting rapid switching of the downdip compression axis in the shoe-shaped slab. Elastic deformation associated with the WB zone seismicity is calculated by viewing it as an integral part of the slab deformation process. With this deformation, the heel part is deepened relative to the arch part and is compressed sub-vertically and stretched sub-horizontally, a tendency consistent with the idea of progressive decent of the heel part in which near-vertical compressional stress is progressively accumulated to generate isolated shocks like the 2015 event and eventually to initiate slab penetration.
Slab stagnation and detachment under northeast China
NASA Astrophysics Data System (ADS)
Honda, Satoru
2016-03-01
Results of tomography models around the Japanese Islands show the existence of a gap between the horizontally lying (stagnant) slab extending under northeastern China and the fast seismic velocity anomaly in the lower mantle. A simple conversion from the fast velocity anomaly to the low-temperature anomaly shows a similar feature. This feature appears to be inconsistent with the results of numerical simulations on the interaction between the slab and phase transitions with temperature-dependent viscosity. Such numerical models predict a continuous slab throughout the mantle. I extend previous analyses of the tomography model and model calculations to infer the origins of the gap beneath northeastern China. Results of numerical simulations that take the geologic history of the subduction zone into account suggest two possible origins for the gap: (1) the opening of the Japan Sea led to a breaking off of the otherwise continuous subducting slab, or (2) the western edge of the stagnant slab is the previous subducted ridge, which was the plate boundary between the extinct Izanagi and the Pacific plates. Origin (2) suggesting the present horizontally lying slab has accumulated since the ridge subduction, is preferable for explaining the present length of the horizontally lying slab in the upper mantle. Numerical models of origin (1) predict a stagnant slab in the upper mantle that is too short, and a narrow or non-existent gap. Preferred models require rather stronger flow resistance of the 660-km phase change than expected from current estimates of the phase transition property. Future detailed estimates of the amount of the subducted Izanagi plate and the present stagnant slab would be useful to constrain models. A systematic along-arc variation of the slab morphology from the northeast Japan to Kurile arcs is also recognized, and its understanding may constrain the 3D mantle flow there.
The 2017 Mw = 8.2 Tehuantepec earthquake: a slab bending or slab pull rupture?
NASA Astrophysics Data System (ADS)
Duputel, Z.; Gombert, B.; Simons, M.; Fielding, E. J.; Rivera, L. A.; Bekaert, D. P.; Jiang, J.; Liang, C.; Moore, A. W.; Liu, Z.
2017-12-01
On September 8th 2017, a regionally destructive Mw 8.2 intra-slab earthquake struck Mexico in the Gulf of Tehuantepec. While large intermediate depth intra-slab earthquakes are a major hazard, we have only a limited knowledge of the strain budgets within subducting slabs. Several mechanisms have been proposed to explain intraplate earthquakes in subduction zones. Bending stresses might cause the occurrence of seismic events located at depths where the slab dip changes abruptly. However, an alternative explanation is needed if the ruptures are found to propagate through the entire lithosphere. Depending on the coupling of the subduction interface, intraplate earthquakes occurring updip or downdip of the locked zone could also be caused by the negative buoyancy of the sinking slab (i.e., slab pull). The increasing availability of near-fault data provides a unique opportunity to better constrain the seismogenic behavior of large intra-slab earthquakes. Teleseismic analyses of the 2017 Tehuantepec earthquake lead to contrasting statements about the depth extent of the rupture: while most of long period centroid moment tensor inversions yield fairly large centroid depths (>40 km), some finite-fault models suggest much shallower slip concentrated at depths less than 30 km. In this study, we analyze GPS, InSAR, tsunami and seismological data to constrain the earthquake location, fault geometry and slip distribution. We use a Bayesian approach devoid of significant spatial smoothing to characterize the range of allowable rupture depths. In addition, to cope with potential artifacts in centroid depth estimates due to unmodeled lateral heterogeneities, we also analyze long-period seismological data using a full 3D Earth model. Preliminary results suggest a fairly deep rupture consistent with a slab-pull process breaking a significant proportion of the lithosphere and potentially reflecting at least local detachment of the slab.
Untangling Slab Dynamics Using 3-D Numerical and Analytical Models
NASA Astrophysics Data System (ADS)
Holt, A. F.; Royden, L.; Becker, T. W.
2016-12-01
Increasingly sophisticated numerical models have enabled us to make significant strides in identifying the key controls on how subducting slabs deform. For example, 3-D models have demonstrated that subducting plate width, and the related strength of toroidal flow around the plate edge, exerts a strong control on both the curvature and the rate of migration of the trench. However, the results of numerical subduction models can be difficult to interpret, and many first order dynamics issues remain at least partially unresolved. Such issues include the dominant controls on trench migration, the interdependence of asthenospheric pressure and slab dynamics, and how nearby slabs influence each other's dynamics. We augment 3-D, dynamically evolving finite element models with simple, analytical force-balance models to distill the physics associated with subduction into more manageable parts. We demonstrate that for single, isolated subducting slabs much of the complexity of our fully numerical models can be encapsulated by simple analytical expressions. Rates of subduction and slab dip correlate strongly with the asthenospheric pressure difference across the subducting slab. For double subduction, an additional slab gives rise to more complex mantle pressure and flow fields, and significantly extends the range of plate kinematics (e.g., convergence rate, trench migration rate) beyond those present in single slab models. Despite these additional complexities, we show that much of the dynamics of such multi-slab systems can be understood using the physics illuminated by our single slab study, and that a force-balance method can be used to relate intra-plate stress to viscous pressure in the asthenosphere and coupling forces at plate boundaries. This method has promise for rapid modeling of large systems of subduction zones on a global scale.
Equilibrium properties of simple metal thin films in the self-compressed stabilized jellium model.
Mahmoodi, T; Payami, M
2009-07-01
In this work, we have applied the self-compressed stabilized jellium model to predict the equilibrium properties of isolated thin Al, Na and Cs slabs. To make a direct correspondence to atomic slabs, we have considered only those L values that correspond to n-layered atomic slabs with 2≤n≤20, for surface indices (100), (110), and (111). The calculations are based on the density functional theory and self-consistent solution of the Kohn-Sham equations in the local density approximation. Our results show that firstly, the quantum size effects are significant for slabs with sizes smaller than or near to the Fermi wavelength of the valence electrons λ(F), and secondly, some slabs expand while others contract with respect to the bulk spacings. Based on the results, we propose a criterion for realization of significant quantum size effects that lead to expansion of some thin slabs. For more justification of the criterion, we have tested it on Li slabs for 2≤n≤6. We have compared our Al results with those obtained from using all-electron or pseudo-potential first-principles calculations. This comparison shows excellent agreements for Al(100) work functions, and qualitatively good agreements for the other work functions and surface energies. These agreements justify the way we have used the self-compressed stabilized jellium model for the correct description of the properties of simple metal slab systems. On the other hand, our results for the work functions and surface energies of large- n slabs are in good agreement with those obtained from applying the stabilized jellium model for semi-infinite systems. In addition, we have performed the slab calculations in the presence of surface corrugation for selected Al slabs and have shown that the results are worsened.
Mantle flow influence on subduction evolution
NASA Astrophysics Data System (ADS)
Chertova, Maria V.; Spakman, Wim; Steinberger, Bernhard
2018-05-01
The impact of remotely forced mantle flow on regional subduction evolution is largely unexplored. Here we investigate this by means of 3D thermo-mechanical numerical modeling using a regional modeling domain. We start with simplified models consisting of a 600 km (or 1400 km) wide subducting plate surrounded by other plates. Mantle inflow of ∼3 cm/yr is prescribed during 25 Myr of slab evolution on a subset of the domain boundaries while the other side boundaries are open. Our experiments show that the influence of imposed mantle flow on subduction evolution is the least for trench-perpendicular mantle inflow from either the back or front of the slab leading to 10-50 km changes in slab morphology and trench position while no strong slab dip changes were observed, as compared to a reference model with no imposed mantle inflow. In experiments with trench-oblique mantle inflow we notice larger effects of slab bending and slab translation of the order of 100-200 km. Lastly, we investigate how subduction in the western Mediterranean region is influenced by remotely excited mantle flow that is computed by back-advection of a temperature and density model scaled from a global seismic tomography model. After 35 Myr of subduction evolution we find 10-50 km changes in slab position and slab morphology and a slight change in overall slab tilt. Our study shows that remotely forced mantle flow leads to secondary effects on slab evolution as compared to slab buoyancy and plate motion. Still these secondary effects occur on scales, 10-50 km, typical for the large-scale deformation of the overlying crust and thus may still be of large importance for understanding geological evolution.
Howard, Keith A.
2005-01-01
Tilted slabs expose as much as the top 8–15 km of the upper crust in many parts of the Basin and Range province. Exposures of now-recumbent crustal sections in these slabs allow analysis of pre-tilt depth variations in dike swarms, plutons, and thermal history. Before tilting the slabs were panels between moderately dipping, active Tertiary normal faults. The slabs and their bounding normal faults were tilted to piggyback positions on deeper footwalls that warped up isostatically beneath them during tectonic unloading. Stratal dips within the slabs are commonly tilted to vertical or even slightly overturned, especially in the southern Basin and Range where the thin stratified cover overlies similarly tilted basement granite and gneiss. Some homoclinal recumbent slabs of basement rock display faults that splay upward into forced folds in overlying cover sequences, which thereby exhibit shallower dips. The 15-km maximum exposed paleodepth for the slabs represents the base of the brittle upper crust, as it coincides with the depth of the modern base of the seismogenic zone and the maximum focal depths of large normal-fault earthquakes in the Basin and Range. Many upended slabs accompany metamorphic core complexes, but not all core complexes have corresponding thick recumbent hanging-wall slabs. The Ruby Mountains core complex, for example, preserves only scraps of upper-plate rocks as domed-up extensional klippen, and most of the thick crustal section that originally overlay the uplifted metamorphic core now must reside below little-tilted hanging-wall blocks in the Elko-Carlin area to the west. The Whipple and Catalina Mountains core complexes in contrast are footwall to large recumbent hanging-wall slabs of basement rock exposing 8-15 km paleodepths that originally roofed the metamorphic cores; the exposed paleodepths require that a footwall rolled up beneath the slabs.
Near-field heat transfer between graphene/hBN multilayers
NASA Astrophysics Data System (ADS)
Zhao, Bo; Guizal, Brahim; Zhang, Zhuomin M.; Fan, Shanhui; Antezza, Mauro
2017-06-01
We study the radiative heat transfer between multilayer structures made by a periodic repetition of a graphene sheet and a hexagonal boron nitride (hBN) slab. Surface plasmons in a monolayer graphene can couple with hyperbolic phonon polaritons in a single hBN film to form hybrid polaritons that can assist photon tunneling. For periodic multilayer graphene/hBN structures, the stacked metallic/dielectric array can give rise to a further effective hyperbolic behavior, in addition to the intrinsic natural hyperbolic behavior of hBN. The effective hyperbolicity can enable more hyperbolic polaritons that enhance the photon tunneling and hence the near-field heat transfer. However, the hybrid polaritons on the surface, i.e., surface plasmon-phonon polaritons, dominate the near-field heat transfer between multilayer structures when the topmost layer is graphene. The effective hyperbolic regions can be well predicted by the effective medium theory (EMT), thought EMT fails to capture the hybrid surface polaritons and results in a heat transfer rate much lower compared to the exact calculation. The chemical potential of the graphene sheets can be tuned through electrical gating and results in an additional modulation of the heat transfer. We found that the near-field heat transfer between multilayer structures does not increase monotonously with the number of layers in the stack, which provides a way to control the heat transfer rate by the number of graphene layers in the multilayer structure. The results may benefit the applications of near-field energy harvesting and radiative cooling based on hybrid polaritons in two-dimensional materials.
Focusing Fluids towards the Arc: the Role of Rehydration Reactions and Rheology
NASA Astrophysics Data System (ADS)
Wilson, C. R.; Spiegelman, M. W.; Van Keken, P. E.; Hacker, B. R.
2015-12-01
Aqueous fluids released from the down-going slab in subduction zones are generally thought to be the cause of arc volcanism. However there is a significant discrepancy between the consistent location of the volcanic front with respect to intermediate depth earthquakes (e.g. 100+/-40 km; England et al., GJI, 2004, Syracuse & Abers, G-cubed, 2006) and the large depth range over which dehydration reactions are predicted to occur in the slab (e.g. 80-250 km; van Keken et al., JGR, 2011).By coupling the fluid flow to the solid rheology through compaction pressure, recent numerical models (Wilson et al., EPSL, 2014) demonstrated a number of focusing mechanisms that can be invoked to explain this apparent discrepancy. Most notable among these were permeability channels within the slab. These were shown to be highly effective in transporting fluid from deeper fluid sources along the slab towards the shallowest source. In the presence of these channels the majority of the fluid is released into the mantle wedge far shallower and closer to the arc than it was originally generated.While observations consistent with free fluids in the slab have been reported (e.g. Shiina et al., GRL, 2013), it is possible that changing the reactivity and rheology of the slab can change the efficiency of in-slab transport (e.g. Wada et al., EPSL, 2012, Faccenda et al., G3, 2012). We present a series of simplified model problems of fluid flow within the slab and mantle wedge demonstrating the potential effect of these processes on fluid flux. In particular, pseudo-1D models show that if fluids can efficiently rehydrate slab minerals, then these reactions can shut down fluid pathways within the slab, resulting in deeper release of fluid into the mantle wedge. We will expand these results to consider the effects of rehydration in 2-D calculations. In addition, our previous models have considered only the simplest rheologies and geometries for the slab. We will also discuss new results that investigate simple visco-plastic models for the slab that limit the stresses and maximum viscosities in the slab for more realistic slab geometries. Despite these additional complexities, the robust observation of the location of the volcanic front with respect to intermediate depth earthquakes provides a clear test for evaluating subduction zone models.
Cation deficient layered Ruddlesden-Popper-related oxysulfides La2LnMS2O5 (Ln=La, Y; M=Nb, Ta).
Cario, Laurent; Popa, Aurelian Florin; Lafond, Alain; Guillot-Deudon, Catherine; Kabbour, Houria; Meerschaut, A; Clarke, Simon J; Adamson, Paul
2007-11-12
The structures of the new oxysulfide Ruddlesden-Popper phases La2LnMS2O5 (Ln=La, Y; M=Nb, Ta) are reported together with an iodide-containing variant: La3-xNb1+xS2O5I2x (0
Role of H2O in Generating Subduction Zone Earthquakes
NASA Astrophysics Data System (ADS)
Hasegawa, A.
2017-03-01
A dense nationwide seismic network and high seismic activity in Japan have provided a large volume of high-quality data, enabling high-resolution imaging of the seismic structures defining the Japanese subduction zones. Here, the role of H2O in generating earthquakes in subduction zones is discussed based mainly on recent seismic studies in Japan using these high-quality data. Locations of intermediate-depth intraslab earthquakes and seismic velocity and attenuation structures within the subducted slab provide evidence that strongly supports intermediate-depth intraslab earthquakes, although the details leading to the earthquake rupture are still poorly understood. Coseismic rotations of the principal stress axes observed after great megathrust earthquakes demonstrate that the plate interface is very weak, which is probably caused by overpressured fluids. Detailed tomographic imaging of the seismic velocity structure in and around plate boundary zones suggests that interplate coupling is affected by local fluid overpressure. Seismic tomography studies also show the presence of inclined sheet-like seismic low-velocity, high-attenuation zones in the mantle wedge. These may correspond to the upwelling flow portion of subduction-induced secondary convection in the mantle wedge. The upwelling flows reach the arc Moho directly beneath the volcanic areas, suggesting a direct relationship. H2O originally liberated from the subducted slab is transported by this upwelling flow to the arc crust. The H2O that reaches the crust is overpressured above hydrostatic values, weakening the surrounding crustal rocks and decreasing the shear strength of faults, thereby inducing shallow inland earthquakes. These observations suggest that H2O expelled from the subducting slab plays an important role in generating subduction zone earthquakes both within the subduction zone itself and within the magmatic arc occupying its hanging wall.
Lithospheric Structure and Isostasy of Central Andes: Implication for plate Coupling
NASA Astrophysics Data System (ADS)
Mahatsente, R.; Rutledge, S.
2017-12-01
A significant section of the Peru-Chile convergent zone is building up stresses. The interseismic coupling in northern and southern Peru is significantly high indicating, elastic energy accumulation since the 1746 and 1868 earthquakes of magnitude 8.6 and 8.8 , respectively. Similar seismic patterns have also been observed in Central Chile. The plate interface beneath Central Chile is highly coupled, and the narrow zones of low coupling separate seismic gaps. The reasons for the seismic gaps and plate coupling are yet unknown, but the configuration of the slab is thought to be the main factor. Here, we assessed the locking mechanism and isostatic state of the Central Andes based on gravity models of the crust and upper mantle structure. The density models are based on satellite gravity data and are constrained by velocity models and earthquake hypocenters. The gravity models indicate a high-density batholithic structure in the fore-arc, overlying the subducting Nazca plate. This high-density body pushes downward on the slab, causing the slab to lock with the overlying continental plate. The increased compressive stress closer to the trench, due to the increased contact area between the subducting and overriding plates, may have increased the plate coupling in the Central Andes. Thus, trench parallel crustal thickness and density variations along the Central Andes and buoyancy force on the subducting Nazca plate may control plate coupling and asperity generation. The western part of the Central Andes may be undercompensated. There is a residual topography of 800 m in the western part of the Central Andes that cannot be explained by the observed crustal thicknesses. Thus, part of the observed topography in the western part of the Central Andes may be dynamically supported by mantle wedge flow below the overriding plate.
NASA Astrophysics Data System (ADS)
Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Yury O.
2018-01-01
Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) at the cyclotron frequency instead of the reduced cyclotron frequency has been experimentally demonstrated using narrow aperture detection electrode (NADEL) ICR cells. Here, based on the results of SIMION simulations, we provide the initial mechanistic insights into the cyclotron frequency regime generation in FT-ICR MS. The reason for cyclotron frequency regime is found to be a new type of a collective motion of ions with a certain dispersion in the initial characteristics, such as pre-excitation ion velocities, in a highly non-quadratic trapping potential as realized in NADEL ICR cells. During ion detection, ions of the same m/z move in phase for cyclotron ion motion but out of phase for magnetron (drift) ion motion destroying signals at the fundamental and high order harmonics that comprise reduced cyclotron frequency components. After an initial magnetron motion period, ion clouds distribute into a novel type of structures - ion slabs, elliptical cylinders, or star-like structures. These structures rotate at the Larmor (half-cyclotron) frequency on a plane orthogonal to the magnetic field, inducing signals at the true cyclotron frequency on each of the narrow aperture detection electrodes. To eliminate the reduced cyclotron frequency peak upon dipolar ion detection, a number of slabs or elliptical cylinders organizing a star-like configuration are formed. In a NADEL ICR cell with quadrupolar ion detection, a single slab or an elliptical cylinder is sufficient to minimize the intensity of the reduced cyclotron frequency components, particularly the second harmonic. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Kamimura, A.; Kasahara, J.
2003-12-01
At the Izu-Bonin subduction zone (IBSZ), there is a chain of serpentine seamounts at the forearc slope of trench axis, and few large earthquakes occurred at shallow depth (<100km) in spite of many large ones at greater depth (>400km). To elucidate these characteristics we carried out a seismic refraction-reflection study at the forearc slope of the IBSZ around 31N using 22 OBSs and chemical explosives and airguns as seismic sources in 1998. As the results of forward and travel-time inversion modeling of the study, P-wave velocity structures were obtained along E-W and N-S survey lines which is perpendicular to and parallel to the trench axis, respectively (Kamimura et al., 2002). The result of E-W line (transect a summit of serpentine seamount) suggests presence of a low velocity zone just above the subducting Pacific plate, and this zone connects to the Torishima Serpentine Forearc Seamount. The interpretation of the result was: dehydration of hydrated oceanic crust supplies water to the mantle wedge, and peridotites of the mantle wedge were serpentinized. The serpentinized peridotites have moved between the oceanic slab and the overriding island arc crust and were diapiring into the serpentine seamount. The serpentine on the plate boundary might act as a lubricant and decrease seismic activity along the subduction zone, and this can explain the characteristics of seismicity of IBSZ. In order to evaluate Q structures of the above low velocity zone on the subducting slab, we calculated synthetic waveforms using FDM (Finite Difference Method) with elastodynamic formulation (E3D code, developed by Dr. Shawn Larsen) and the P-wave velocity 2D structure of Kamimura et al. (2002). The E3D uses staggered grid, and 2nd order and 4th order approximation in time and space, respectively. Grid spacing of the calculation is 30 m in x and z, and 1.5 msec in time. Five-Hz and 0-phase Ricker wavelet_@pressure source was used. Several structure models are used for comparison. One model has no low-Q zone, another one has low-Q zone only just below the serpentine seamount. Other models have low-Q zones just below the serpentine seamount and above the subducting slab, horizontal width of the low-Q zone are different one another. Comparing synthetic waveforms and observed data, we can conclude that there must be a low-Q zone just below the serpentine seamount and on the subducting oceanic slab. The low-Q zone on the slab has ca. 80 km wide east to west and connects to the serpentine seamount. It is very important to understand where serpentinites of the seamounts came from to explain the characteristics of seismicity at the IBSZ. In this presentation we are going to explain an interpretation that serpentine moved through the plate boundary and reached just below the serpentine seamount, using an existence of the low-Q zone. Kamimura, A., Kasahara, J., Masanao S., Hino, R., Shiobara, H., Fujie, G., Kanazawa, T., 2002. Crustal structure study at the Izu-Bonin subduction zone around 31° N: implications of serpentinized materials along the subduction plate boundary, Physics of the Earth and Planetary Interiors, 132, 105-129.
Vertical slab sinking and westward subduction offshore of Mesozoic North America
NASA Astrophysics Data System (ADS)
Sigloch, Karin; Mihalynuk, Mitchell G.
2013-04-01
Subducted slabs in the mantle, as imaged by seismic tomography, preserve a record of ancient subduction zones. Ongoing debate concerns how direct this link is. How long ago did each parcel of slab subduct, and where was the trench located relative to the imaged slab position? Resolving these questions will benefit paleogeographic reconstructions, and restrict the range of plausible rheologies for mantle convection simulations. We investigate one of the largest and best-constrained Mesozoic slab complexes, the "Farallon" in the transition zone and lower mantle beneath North America. We quantitatively integrate observations from whole-mantle P-wave tomography, global plate reconstructions, and land geological evidence from the North American Cordillera. These three data sets permit us to test the simplest conceivable hypothesis for linking slabs to paleo-trenches: that each parcel of slab sank only vertically shortly after entering the trench That is, we test whether within the limits of tomographic resolution, all slab material lies directly below the location where it subducted beneath its corresponding arc. Crucially and in contrast to previous studies, we do not accept or impose an Andean-style west coast trench (Farallon-beneath-continent subduction) since Jurassic times, as this scenario is inconsistent with many geological observations. Slab geometry alone suggests that trenches started out as intra-oceanic because tomography images massive, linear slab "walls" in the lower mantle, extending almost vertically from about 800 km to 2000+ km depth. Such steep geometries would be expected from slabs sinking vertically beneath trenches that were quasi-stationary over many tens of millions of years. Intra-oceanic trenches west of Mesozoic North America could have been stationary, whereas a coastal Farallon trench could not, because the continent moved westward continuously as the Atlantic opened. Overlap of North American west-coast positions, as reconstructed in a hotspot reference frame, with elongate slab walls predicts where and when the intra-oceanic trenches would have been overridden by the westward-moving continent. Land geology plays the role of a validating data set: trench override is predicted to coincide with accretion of buoyant arc terranes, deformation of the continental margin and slab window volcanism. We find excellent agreement between predicted and observed accretion episodes, validating both vertical sinking (within observational uncertainties of a few hundred kilometers laterally), and westward subduction beneath an archipelago of island arcs west of Jura-Cretaceous North America. Amalgamation of the arcs with North America occurred as the intervening ocean crust was consumed. Implied slab sinking rates are of 10±2 mm/a, uniformly for three different slab walls. We conclude that the hypothesis of essentially vertical slab sinking produces a self-consistent model that explains first-order observations of 200 Ma - 50 Ma Cordilleran geology. By contrast, the standard scenario of a continental Farallon trench requires massive amounts of slab to be laterally displaced by 1000+ km after subduction, and offers no explanation for a long series of Cretaceous terrane accretions.
NASA Astrophysics Data System (ADS)
Ko, Justin Yen-Ting; Hung, Shu-Huei; Kuo, Ban-Yuan; Zhao, Li
2017-06-01
The lowermost 100-300 km of the Earth's mantle commonly regarded as the thermal boundary layer (TBL) of mantle circulation is characterized by its complex physical properties. Beneath the Caribbean this so-called D″ layer features relatively high velocities and abrupt impedance increase at the top (designated as the D″ discontinuity). These seismic characteristics have been attributed to the accumulation of ancient subducted slab material and the phase transition in the major lower mantle mineral of pervoskite. Geodynamic models predict that the blanketing cold slabs may trap enough heat from core to be buoyantly destabilized, and eventually broken apart and entrained into the bottom of the convection cell. Here we explore the D″ structure with unprecedented resolution through modeling traveltimes, amplitudes, and waveform shapes from the USArray. We find an east-to-west asymmetrical undulation of the D″ discontinuity with a V-shaped depression of ∼70-160 km over a lateral distance of 600 km beneath northern South America. The shear velocity perturbations vary in the same trend showing the most pronounced reduction of ∼3-4% below the thinnest D″ layer in close proximity to an intermittently undetected discontinuity. The strong correlation between the D″ topography and velocity variations indicates the phase transition boundary has been perturbed or even disrupted by the large lateral temperature gradient of slab material which has been reheated from the core over extended periods of time.