NASA Astrophysics Data System (ADS)
Goldsmith, Paul F.; Pineda, Jorge L.; Neufeld, David A.; Wolfire, Mark G.; Risacher, Christophe; Simon, Robert
2018-04-01
We have combined emission from the 158 μm fine structure transition of C+ observed with the GREAT and upGREAT instruments on SOFIA with 21 cm absorption spectra and visual extinction to characterize the diffuse interstellar clouds found along the lines of sight. The weak [C II] emission is consistent in velocity and line width with the strongest H I component produced by the cold neutral medium. The H I column density and kinetic temperature are known from the 21 cm data and, assuming a fractional abundance of ionized carbon, we calculate the volume density and thermal pressure of each source, which vary considerably, with 27 {cm}}-3≤slant n({{{H}}}0) ≤slant 210 cm‑3 considering only the atomic hydrogen along the lines of sight to be responsible for the C+, while 13 {cm}}-3≤slant n({{{H}}}0+{{{H}}}2)≤slant 190 cm‑3 including the hydrogen in both forms. The thermal pressure varies widely with 1970 cm‑3 K ≤slant {P}th}/k≤slant 10,440 cm‑3 K for H0 alone and 750 cm‑3 K ≤ P th/k ≤ 9360 cm‑3 K including both H0 and H2. The molecular hydrogen fraction varies between 0.10 and 0.67. Photoelectric heating is the dominant heating source, supplemented by a moderately enhanced cosmic ray ionization rate, constrained by the relatively low 45 K to 73 K gas temperatures of the clouds. The resulting thermal balance for the two lower-density clouds is satisfactory, but for the two higher-density clouds, the combined heating rate is insufficient to balance the observed C+ cooling.
Optical and structural properties of cobalt-permalloy slanted columnar heterostructure thin films
NASA Astrophysics Data System (ADS)
Sekora, Derek; Briley, Chad; Schubert, Mathias; Schubert, Eva
2017-11-01
Optical and structural properties of sequential Co-column-NiFe-column slanted columnar heterostructure thin films with an Al2O3 passivation coating are reported. Electron-beam evaporated glancing angle deposition is utilized to deposit the sequential multiple-material slanted columnar heterostructure thin films. Mueller matrix generalized spectroscopic ellipsometry data is analyzed with a best-match model approach employing the anisotropic Bruggeman effective medium approximation formalism to determine bulk-like and anisotropic optical and structural properties of the individual Co and NiFe slanted columnar material sub-layers. Scanning electron microscopy is applied to image the Co-NiFe sequential growth properties and to verify the results of the ellipsometric analysis. Comparisons to single-material slanted columnar thin films and optically bulk solid thin films are presented and discussed. We find that the optical and structural properties of each material sub-layer of the sequential slanted columnar heterostructure film are distinct from each other and resemble those of their respective single-material counterparts.
NASA Astrophysics Data System (ADS)
Wagner, Thomas
2017-04-01
Measurements of the oxygen dimer O4 are often used in remote sensing applications to infer information on the atmospheric light path distribution. Such information is interesting in itself, but can also be used to retrieve properties of clouds and aerosols, e.g. from ground based Multi-AXis-Differential Optical Absorption Spectroscopy (MAX-DOAS) observations. In recent years, a scaling factor (between about 0.7 and 1) was applied by several groups to the retrieved O4 slant column densities in order to obtain meaningful aerosol profiles from MAX-DOAS observations. However, other groups did not report the need for such a scaling factor. Up to now, this discrepancy is neither understood nor resolved. Here we compare measured and modelled O4 slant column densities for two days during the MADCAT campaign (http://joseba.mpch-mainz.mpg.de/mad_cat.htm). Clouds were mostly absent during both days, and the aerosol profiles are constrained by simultaneous sun photometer and ceilometer measurements. One important difference between both days is the amount of aerosol in the lowest atmospheric layer. Our comparison study addresses several important steps of the O4 data analysis, such as the spectral retrieval and the radiative transfer simulations. We also investigate the effects of temperature and pressure variations on the calculation of the O4 vertical column density. Preliminary results are are not conclusive but indicate that a scaling factor is needed to bring measurements and simulations into agreement at least for one of the two selected days.
NASA Astrophysics Data System (ADS)
Elias, Thierry; Ramon, Didier; Garnero, Marie-Agnès; Dubus, Laurent; Bourdil, Charles
2017-06-01
By scattering and absorbing solar radiation, aerosols generate production losses in solar plants. Due to the specific design of solar tower plants, solar radiation is attenuated not only in the atmospheric column but also in the slant path between the heliostats and the receiver. Broadband attenuation by aerosols is estimated in both the column and the slant path for Ouarzazate, Morocco, using spectral measurements of aerosol optical thickness (AOT) collected by AERONET. The proportion of AOT below the tower's height is computed assuming a single uniform aerosol layer of height equal to the boundary layer height computed by ECMWF for the Operational Analysis. The monthly average of the broadband attenuation by aerosols in the slant path was 6.9±3.0% in August 2012 at Ouarzazate, for 1-km distance between the heliostat and the receiver. The slant path attenuation should be added to almost 40% attenuation along the atmospheric column, with aerosols in an approximate 4.7-km aerosol layer. Also, around 1.5% attenuation is caused by Rayleigh and water vapour in the slant path. The monochromatic-broadband extrapolation is validated by comparing computed and observed direct normal irradiance (DNI). DNI observed around noon varied from more than 1000 W/m2 to around 400 W/m2 at Ouarzazate in 2012 because of desert dust plumes transported from North African desert areas.
NASA Astrophysics Data System (ADS)
Pinardi, Gaia; Hendrick, François; Gielen, Clio; Van Roozendael, Michel; De Smedt, Isabelle; Lambert, Jean-Christopher; Granville, José; Compernolle, Steven; Richter, Andreas; Peters, Enno; Piters, Ankie; Wagner, Thomas; Wang, Yang; Drosoglou, Theano; Bais, Alkis; Wang, Shanshan; Saiz-Lopez, Alfonso
2017-04-01
During the last decade, the MAXDOAS technique has been increasingly recognized as a source of Fiducial Reference Measurements (FRM) suitable for the validation of satellite nadir observations of species relevant for climate and air quality like NO2 and HCHO. As part of the EU FP7 QA4ECV (Quality Assurance for Essential Climate Variables; see http://www.qa4ecv.eu/) project, efforts have been recently made to harmonize a network of a dozen of MAXDOAS spectrometers in view of their use to assess the quality of satellite climate data records generated within the same project. Harmonization tasks have addressed both retrieval steps involved in MAXDOAS retrievals, i.e. the DOAS spectral fit providing the differential slant column densities (DSCDs) and the conversion of the retrieved DSCDs into vertical profiles and/or vertical column densities (VCDs). In this work, we illustrate the successive harmonization steps and present the resulting QA4ECV MAXDOAS database v2. The approach adopted for the conversion of slant to vertical columns is based on a simplified look-up-table approach. The strength and limitation of this approach are discussed using reference data retrieved using an optimal estimation scheme. The QA4ECV MAXDOAS database is then used to validate satellite data sets of NO2 and HCHO columns derived from the Aura/OMI and MetOp/GOME-2 sensors. The methodology of comparison, which is also a subject of the QA4ECV project, is reviewed with respect to co-location criteria, impact of vertical and horizontal smoothing and representativeness of validation sites. We conclude by assessing the current strengths and limitations of the existing MAXDOAS datasets for NO2 and HCHO satellite validation.
Nitrogen Dioxide Total Column Over Terra Nova Bay Station - Antarctica - During 2001
NASA Astrophysics Data System (ADS)
Bortoli, D.; Ravegnani, F.; Giovanelli, G.; Petritoli, A.; Kostadinov, I.
GASCOD (Gas Analyzer Spectrometer Correlating Optical Differences), installed at the Italian Antarctic Station of Terra Nova Bay (TNB) - 74.69S, 164.12E - since 1995, carried out a full dataset of zenith scattered light measurements for the year 2001. The application of DOAS methodology to the collected data gave as final results, the slant column values for nitrogen dioxide. The seasonal variation shows a maxi- mum in the summer and it is in good agreement with the results obtained by other authors. The data analysis is performed by using different parameters like the po- tential vorticity (PV) at 500 K and the atmospheric temperatures at the same level. After the verification of the linear dependency between the NO2 slant column values and the temperature of NO2 cross section utilized in the DOAS algorithm, the actual stratospheric temperatures (from ECMWF) over TNB are applied to the results. The sensible changes in the nitrogen dioxide slant column values allow to highlight the good matching between the NO2 AM/PM ratio and the potential vorticity at 500 K. The NO2 slant column values follow the variations of the stratospheric temperature mainly during the spring season, when the lowest temperatures are observed and the ozone-hole phenomena mainly occur. ACKNOWLEDGMENTS: The author Daniele Bortoli was financially supported by the "Subprograma Ciência e Tecnologia do Ter- ceiro Quadro Comunitário de Apoio". The National Program for Antarctic Research (PNRA) supported this research.
MAESTRO Measurements of Atmospheric Aerosol
NASA Astrophysics Data System (ADS)
McElroy, Tom; Drummond, James; Zou, Jason
2014-05-01
MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) is now in its 11th year on orbit as part of the Atmospheric Chemistry Experiment on the Canadian Space Agency's SCISAT satellite. MAESTRO data analysis has been dogged by a deficiency in accurate timing between the measurements made by the partner instrument, the ACE-FTS (Atmospheric Chemistry Experiment, Fourier Transform Spectrometer), that provides the atmospheric pressure-temperature profile and observation tangent altitudes used in the MAESTRO data analysis. Attempts have been made to use apparent air column density and oxygen A-band absorption as a mechanism to line up the tangent heights, but to no avail. A new product is now being produced, based on matching the modeled ozone slant columns from the ACE-FTS retrievals with the MAESTRO slant column measurements. The approach is very promising and indicates that a valuable product from the MAESTRO wavelength-dependent aerosol extinction likely result. The usefulness of the profile matching technique will be demonstrated and some aerosol absorption profiles will be presented in comparison with measurements made by the ACE Imager aerosol profile results. While the process optimizes the comparison between ACE-FTS ozone profile data and that from MAESTRO, it does not detract from the higher vertical resolution information provided by MAESTRO.
NASA Astrophysics Data System (ADS)
Park, S. S.; Kim, J.; Lee, H.; Torres, O.; Lee, K.-M.; Lee, S. D.
2015-03-01
The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using simulated radiances by a radiative transfer model, Linearized Discrete Ordinate Radiative Transfer (LIDORT), and Differential Optical Absorption Spectroscopy (DOAS) technique. The sensitivities of the O4 SCDs to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4 SCD at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 414 m (16.5%), 564 m (22.4%), and 1343 m (52.5%) for absorbing, dust, and non-absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution type. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). The retrieved aerosol effective heights are lower by approximately 300 m (27 %) compared to those obtained from the ground-based LIDAR measurements.
Nitrogen dioxide observations from the Geostationary Trace ...
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm−2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with prelim
High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)
NASA Astrophysics Data System (ADS)
Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.
2015-06-01
Nitrogen Dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging (UV)-vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK. Retrieved NO2 columns at a surface resolution of 80 m x 20 m revealed hot spots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hot spots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.
NASA Technical Reports Server (NTRS)
Palmer, Paul I.; Jacob, Daniel J.; Chance, Kelly; Martin, Randall V.; Spurr, Robert J. D.; Kurosu, Thomas P.; Bey, Isabelle; Yantosca, Robert; Fiore, Arlene; Li, Qinbin
2004-01-01
We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitude-dependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are cumputed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40% less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be approximately 10%. The GEOS-CHEM model captures 50% and 60% of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias.
NO2 and HCHO variability in Mexico City from MAX-DOAS measurements
NASA Astrophysics Data System (ADS)
Grutter, M.; Friedrich, M. M.; Rivera, C. I.; Arellano, E. J.; Stremme, W.
2015-12-01
Atmospheric studies in large cities are of great relevance since pollution affects air quality and human health. A network of Multi Axis Differential Optical Absorption Spectrometers (MAX-DOAS) has been established in strategic sites within the Mexico City metropolitan area. Four instruments are now in operation with the aim to study the variability and spatial distribution of key pollutants, providing results of O4, NO2 and HCHO slant column densities (SCD). A numerical code has been written to retrieve gas profiles of NO2 and HCHO using radiative transfer simulations. We present the first results of the variability of these trace gases which will bring new insight in the current knowledge of transport patterns, emissions as well as frequency and origin of extraordinary events. Results of the vertical column densities (VCD) valiability of NO2 and HCHO in Mexico City are presented. These studies are useful to validate current and future satellite observatopns such as OMI, TROPOMI and TEMPO.
Phase and vacancy behaviour of hard "slanted" cubes
NASA Astrophysics Data System (ADS)
van Damme, R.; van der Meer, B.; van den Broeke, J. J.; Smallenburg, F.; Filion, L.
2017-09-01
We use computer simulations to study the phase behaviour for hard, right rhombic prisms as a function of the angle of their rhombic face (the "slant" angle). More specifically, using a combination of event-driven molecular dynamics simulations, Monte Carlo simulations, and free-energy calculations, we determine and characterize the equilibrium phases formed by these particles for various slant angles and densities. Surprisingly, we find that the equilibrium crystal structure for a large range of slant angles and densities is the simple cubic crystal—despite the fact that the particles do not have cubic symmetry. Moreover, we find that the equilibrium vacancy concentration in this simple cubic phase is extremely high and depends only on the packing fraction and not the particle shape. At higher densities, a rhombic crystal appears as the equilibrium phase. We summarize the phase behaviour of this system by drawing a phase diagram in the slant angle-packing fraction plane.
NASA Astrophysics Data System (ADS)
Pinardi, Gaia; Peters, Enno; Hendrick, François; Gielen, Clio; Van Roozendael, Michel; Richter, Andreas; Piters, Ankie; Wagner, Thomas; Wang, Yang; Drosoglou, Theano; Bais, Alkis; Wang, Shanshan; Saiz-Lopez, Alfonso
2016-04-01
During the last decade, it has been extensively demonstrated that MAXDOAS is a useful and reliable technique to retrieve integrated column amounts of tropospheric trace gases and aerosols, as well as information on their vertical distributions. Since it is based on optical remote-sensing in the UV-visible region like nadir backscatter space-borne sensors, MAXDOAS is also increasingly recognized as a reference technique for validating satellite nadir observations of air quality species like NO2 and HCHO. However, building up an harmonized network of MAXDOAS spectrometers requires significant efforts in terms of common retrieval strategies and best-practices definitions. Within the EU FP7 project QA4ECV (Quality Assurance for Essential Climate Variables; see http://www.qa4ecv.eu/), harmonization activities have been initiated focusing on the two main steps of the MAXDOAS retrieval, i.e. the DOAS spectral fit providing the so-called differential slant column densities (DSCDs) and the conversion of the retrieved DSCDs to vertical profiles and/or vertical column densities (VCDs). Regarding the first step, the DOAS settings for HCHO and NO2 are optimized through an intercomparison exercise of slant column retrievals involving 15 groups of the MAXDOAS community including the QA4ECV partners, and based on the radiance spectra acquired during the MAD-CAT campaign held in Mainz (Germany) in June-July 2013 (see http://joseba.mpch-mainz.mpg.de/mad_cat.htm). The harmonization of the second step is done through the application of an AMF (aim mass factor) look-up table (LUT) approach on the optimized NO2 and HCHO DSCDs. The AMF LUTs depend on entry parameters like SZA, elevation and relative azimuth angles, wavelength, boundary layer height, AOD, and surface albedo. The advantages and drawbacks of the LUT approach are illustrated at several stations through comparison of the derived VCDs with those retrieved using the more sophisticated Optimal-Estimation-based profiling method. Recommendations for both MAXDOAS retrieval steps will be given in conclusion.
NASA Technical Reports Server (NTRS)
Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; Abad, Gonzalo Gonzalez; Liu, Xiaojun; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William;
2016-01-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m x 250 m spatial resolution with a fitting precision of 2.2 x 10(exp 15) molecules/sq cm. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.
High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)
NASA Astrophysics Data System (ADS)
Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; White, J.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.
2015-11-01
Nitrogen dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging UV/Vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK on a cloud-free winter day in February 2013. Retrieved NO2 columns gridded to a surface resolution of 80 m × 20 m revealed hotspots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hotspots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.
DOAS-based total column ozone retrieval from Phaethon system
NASA Astrophysics Data System (ADS)
Gkertsi, F.; Bais, A. F.; Kouremeti, N.; Drosoglou, Th; Fountoulakis, I.; Fragkos, K.
2018-05-01
This study introduces the measurement of the total ozone column using Differential Optical Absorption Spectroscopy (DOAS) analysis of direct-sun spectra recorded by the Phaethon system. This methodology is based on the analysis of spectra relative to a reference spectrum that has been recorded by the same instrument. The slant column density of ozone associated with the reference spectrum is derived by Langley extrapolation. Total ozone data derived by Phaethon over two years in Thessaloniki are compared with those of a collocated, well-maintained and calibrated, Brewer spectrophotometer. When the retrieval of total ozone is based on the absorption cross sections of (Paur and Bass, 1984) at 228 K, Phaethon shows an average overestimation of 1.85 ± 1.86%. Taking into account the effect of the day-to-day variability of stratospheric temperature on total ozone derived by both systems, the bias is reduced to 0.94 ± 1.26%. The sensitivity of the total ozone retrieval to changes in temperature is larger for Phaethon than for Brewer.
NASA Astrophysics Data System (ADS)
Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok
2016-02-01
The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 1040 molecules2 cm-5, to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 % of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.
High-redshift Extremely Red Quasars in X-Rays
NASA Astrophysics Data System (ADS)
Goulding, Andy D.; Zakamska, Nadia L.; Alexandroff, Rachael M.; Assef, Roberto J.; Banerji, Manda; Hamann, Fred; Wylezalek, Dominika; Brandt, William N.; Greene, Jenny E.; Lansbury, George B.; Pâris, Isabelle; Richards, Gordon; Stern, Daniel; Strauss, Michael A.
2018-03-01
Quasars may have played a key role in limiting the stellar mass of massive galaxies. Identifying those quasars in the process of removing star formation fuel from their hosts is an exciting ongoing challenge in extragalactic astronomy. In this paper, we present X-ray observations of 11 extremely red quasars (ERQs) with L bol ∼ 1047 erg s‑1 at z = 1.5–3.2 with evidence for high-velocity (v ≥slant 1000 km s‑1) [O III] λ5007 outflows. X-rays allow us to directly probe circumnuclear obscuration and to measure the instantaneous accretion luminosity. We detect 10 out of 11 ERQs available in targeted and archival data. Using a combination of X-ray spectral fitting and hardness ratios, we find that all of the ERQs show signs of absorption in the X-rays with inferred column densities of N H ≈ 1023 cm‑2, including four Compton-thick candidates (N H ≥slant 1024 cm‑2). We stack the X-ray emission of the seven weakly detected sources, measuring an average column density of N H ∼ 8 × 1023 cm‑2. The absorption-corrected (intrinsic) 2–10 keV X-ray luminosity of the stack is 2.7 × 1045 erg s‑1, consistent with X-ray luminosities of type 1 quasars of the same infrared luminosity. Thus, we find that ERQs are a highly obscured, borderline Compton-thick population, and based on optical and infrared data we suggest that these objects are partially hidden by their own equatorial outflows. However, unlike some quasars with known outflows, ERQs do not appear to be intrinsically underluminous in X-rays for their bolometric luminosity. Our observations indicate that low X-rays are not necessary to enable some types of radiatively driven winds.
NASA Technical Reports Server (NTRS)
Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok
2016-01-01
The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(sup 40) molecules (sup 2) per centimeters(sup -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nanometers, the O4 absorption band at 477 nanometers is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nanometers is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 meters for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 percent of retrieved aerosol effective heights are within the error range of 1 kilometer compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.
NASA Technical Reports Server (NTRS)
Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok
2016-01-01
The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the Differential Optical Absorption Spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(exp 40) sq molecules cm(exp -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80% of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.
NASA Astrophysics Data System (ADS)
Schreier, Stefan F.; Richter, Andreas; Wittrock, Folkard; Burrows, John P.
2015-04-01
Spectral measurements at two mountain sites were performed with a MAX-DOAS (Multi AXis Differential Optical Absorption Spectroscopy) instrument from February to July 2003 (Zugspitze, Germany) and from March 2004 to November 2008 (Pico Espejo, Venezuela). Here, these measurements are used for the retrieval of slant column densities (SCDs) of nitrogen dioxide (NO2). While at the altitude of observations the NO2 levels are usually small, uplifting of anthropogenic emissions from the valley and in Venezuela also transport of emissions from biomass burning can lead to significant enhancements. Daily, weekly, and seasonal cycles of NO2 SCDs are shown for the two stations, linked to different meteorological conditions and compared between the two sites. In a next step, a preliminary approach to derive vertical column densities (VCDs) is presented. VCDs of NO2 from ground-based MAX-DOAS instruments provide useful information for the validation of satellite instruments such as SCIAMACHY, OMI, and GOME-2. Comparisons between ground-based and satellite-based NO2 VCDs are shown for selected periods.
NASA Astrophysics Data System (ADS)
Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; González Abad, Gonzalo; Liu, Cheng; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; Murcray, Frank; Ruppert, Lyle; Soo, Daniel; Follette-Cook, Melanie B.; Janz, Scott J.; Kowalewski, Matthew G.; Loughner, Christopher P.; Pickering, Kenneth E.; Herman, Jay R.; Beaver, Melinda R.; Long, Russell W.; Szykman, James J.; Judd, Laura M.; Kelley, Paul; Luke, Winston T.; Ren, Xinrong; Al-Saadi, Jassim A.
2016-06-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 molecules
Improvement and validation of trace gas retrieval from ACAM aircraft observation
NASA Astrophysics Data System (ADS)
Liu, C.; Liu, X.; Kowalewski, M. G.; Janz, S. J.; Gonzalez Abad, G.; Pickering, K. E.; Chance, K.; Lamsal, L. N.
2014-12-01
The ACAM (Airborne Compact Atmospheric Mapper) instrument, flown on board the NASA UC-12 aircraft during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) campaigns, was designed to provide remote sensing observations of tropospheric and boundary layer pollutants and help understand some of the most important pollutants that directly affect the health of the population. In this study, slant column densities (SCD) of trace gases (O3, NO2, HCHO) are retrieved from ACAM measurements during the Baltimore-Washington D.C. 2011 campaign by the Basic Optical Absorption Spectroscopy (BOAS) trace gas fitting algorithm using a nonlinear least-squares (NLLS) inversion technique, and then are converted to vertical column densities (VCDs) using the Air Mass Factors (AMF) calculated with the VLIDORT (Vector Linearized Discrete Ordinate Radiative Transfer) model and CMAQ (Community Multi-scale Air Quality) model simulations of trace gas profiles. For surface treatment in the AMF, we use high-resolution MODIS climatological BRDF product (Bidirectional Reflectance Distribution Function) at 470 nm for NO2, and use high-resolution surface albedo derived by combining MODIS and OMI albedo databases for HCHO and O3. We validate ACAM results with coincident ground-based PANDORA, aircraft (P3B) spiral and satellite (OMI) measurements and find out generally good agreement especially for NO2 and O3
Validation of Smithsonian Astrophysical Observatory's OMI Water Vapor Product
NASA Astrophysics Data System (ADS)
Wang, H.; Gonzalez Abad, G.; Liu, X.; Chance, K.
2015-12-01
We perform a comprehensive validation of SAO's OMI water vapor product. The SAO OMI water vapor slant column is retrieved using the 430 - 480 nm wavelength range. In addition to water vapor, the retrieval considers O3, NO2, liquid water, O4, C2H2O2, the Ring effect, water ring, 3rd order polynomial, common mode and under-sampling. The slant column is converted to vertical column using AMF. AMF is calculated using GEOS-Chem water vapor profile shape, OMCLDO2 cloud information and OMLER surface albedo information. We validate our product using NCAR's GPS network data over the world and RSS's gridded microwave data over the ocean. We also compare our product with the total precipitable water derived from the AERONET ground-based sun photometer data, the GlobVapour gridded product, and other datasets. We investigate the influence of sub-grid scale variability and filtering criteria on the comparison. We study the influence of clouds, aerosols and a priori profiles on the retrieval. We also assess the long-term performance and stability of our product and seek ways to improve it.
NASA Astrophysics Data System (ADS)
Liu, X.; Kowalewski, M. G.; Janz, S. J.; Bhartia, P. K.; Chance, K.; Krotkov, N. A.; Pickering, K. E.; Crawford, J. H.
2011-12-01
The DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) mission has just finished its first flight campaign in the Baltimore-Washington D.C. area in July 2011. The ACAM, flown on board the NASA UC-12 aircraft, includes two spectrographs covering the spectral region 304-900 nm and a high-definition video camera, and is expected to provide column measurements of several important air quality trace gases and aerosols for the DISCOVER-AQ mission. The quick look results for NO2 have been shown to very useful in capturing the strong spatiotemporal variability of NO2. Preliminary fitting of UV/Visible spectra has shown that ACAM measurements have adequate signal to noise ratio to measure the trace gases O2, NO2, HCHO, and maybe SO2 and CHOCHO, at individual pixel resolution, although a great deal of effort is needed to improve the instrument calibration and derive proper reference spectrum for retrieving absolute trace gas column densities. In this study, we present analysis of ACAM instrument calibration including slit function, wavelength registration, and radiometric calibration for both nadir-viewing and zenith-sky measurements. Based on this analysis, an irradiance reference spectrum at ACAM resolution will be derived from a high-resolution reference spectrum with additional correction to account for instrument calibration. Using the derived reference spectrum and/or the measured zenith sky measurements, we will perform non-linear least squares fitting to investigate the retrievals of slant column densities of these trace gases from ACAM measurements, and also use an optimal estimation based algorithm including full radiative transfer calculations to derive the vertical column densities of these trace gases. The initial results will be compared with available in-situ and ground-based measurements taken during the DISCOVER-AQ campaign.
Detection of BrO plumes over various sources using OMI and GOME-2 measurements
NASA Astrophysics Data System (ADS)
Seo, Sora; Richter, Andreas; Blechschmidt, Anne-Marlene; Burrows, John P.
2017-04-01
Reactive halogen species (RHS) play important roles in the chemistry of the stratosphere and troposphere. They are responsible for ozone depletion through catalytic reaction cycles, changes in the OH/HO2 and NO/NO2 ratios, and oxidation of compounds such as gaseous elemental mercury (GEM) and dimethyl sulphide (DMS). Thus, monitoring of halogen oxides is important for understanding global atmospheric oxidation capacity and climate change. Bromine monoxide (BrO) is one of the most common active halogen oxides. In the troposphere, large amounts of bromine are detected in Polar Regions in spring, over salt lakes, and in volcanic plumes. In this study, we analyse BrO column densities using OMI and GOME-2 observations. The measured spectra from both UV-visible nadir satellites were analyzed using the differential optical absorption spectroscopy (DOAS) method with different settings depending on the instrumental characteristics. Large amounts of volcanic BrO from the Kasatochi eruption in 2008 were detected for 6 days from August 8 to August 13. Especially large BrO amounts were found in the plume center for 3 days from August 9 to 11 with slant column densities (SCD) of up to ˜1.6x1015 molecules cm-2 and ˜5.5x1014 molecules cm-2 in OMI and GOME-2 measurements, respectively. In addition to the volcanic sources, events of widespread BrO enhancements were also observed over the Arctic and Antarctic coastal regions during the spring time by both satellites. As the overpass time of the two instruments is not the same, differences between the two data sets are expected. In this study, the agreement between OMI and GOME-2 BrO data is investigated using both the operational products and different DOAS fits. Systematic differences are found in BrO slant columns and fitting residuals, both being larger in the case of OMI data. In addition, results are sensitive to the choice of fitting window. From a monitoring point of view, due to the higher spatial resolution of OMI compared to GOME-2, OMI results are better suited for observing the shape variation and transport pattern of volcanic BrO. This will be further improved with upcoming the European Sentinel 5 Precursor satellite which has an even higher spatial resolution (3.5 / 7x7 km2).
NASA Astrophysics Data System (ADS)
Lerot, C.; Stavrakou, T.; de Smedt, I.; Muller, J. J.; van Roozendael, M.
2010-12-01
Glyoxal is mostly formed in our atmosphere as an intermediate product in the oxidation of non-methane volatile organic compounds (NMVOC). To a lesser extent, it is also directly emitted from biomass burning events and from fossil- and bio-fuel combustion processes. Several studies have estimated its atmospheric lifetime to 2-3 hours, which makes of glyoxal a good indicator for short-lived NMVOC emissions. Glyoxal is also known to be a precursor for secondary organic aerosols and could help to reduce the gap between observations and models for organic aerosol abundances. The three absorption bands of glyoxal in the visible region allow applying the DOAS (Differential Optical Absorption Spectroscopy) technique to retrieve its vertical column densities from the nadir backscattered light measurements performed by the GOME-2 satellite sensor. This instrument has been launched in October 2006 on board of the METOP-A platform and is characterized by a spatial resolution of 80 km x 40 km and by a large scan-width (1920 km) leading to a global coverage reached in 1.5 day. The GOME-2 glyoxal retrieval algorithm developed at BIRA-IASB accounts for the liquid water absorption and provides geophysically sound column measurements not only over lands but also over oceanic regions where spectral interferences between glyoxal and liquid water have been shown to be significant. The a-priori glyoxal vertical distribution required for the slant to vertical column conversion is provided by the global chemical transport model IMAGESv2. The highest glyoxal vertical column densities are mainly observed in continental tropical regions, while the mid-latitude columns strongly depend on the season with maximum values during warm months. An anthropogenic signature is also observed in highly populated regions of Asia. Comparisons with glyoxal columns simulated with IMAGESv2 in different regions of the world generally point to a missing glyoxal source in current models. As already reported from previous analysis with the SCIAMACHY instrument, significant glyoxal columns are also observed over tropical oceans, which remains unexplained so far.
Eleven years of tropospheric NO2 measured by GOME, SCIAMACHY and OMI
NASA Astrophysics Data System (ADS)
Eskes, H.; Boersma, F.; Dirksen, R.; van der A, R.; Veefkind, P.; Levelt, P.; Brinksma, E.; van Roozendael, M.; de Smedt, I.; Gleason, J.
2006-12-01
Based on measurements of GOME on ESA ERS-2, SCIAMACHY on ESA-ENVISAT, and Ozone Monitoring Instrument (OMI) on the NASA EOS-Aura satellite there is now a unique 11-year dataset of global tropospheric nitrogen dioxide measurements from space. The retrieval approach consists of two steps. The first step is an application of the DOAS (Differential Optical Absorption Spectroscopy) approach which delivers the total absorption optical thickness along the light path (the slant column). For GOME and SCIAMACHY this is based on the DOAS implementation developed by BIRA/IASB. For OMI the DOAS implementation was developed in a collaboration between KNMI and NASA. The second retrieval step, developed at KNMI, estimates the tropospheric vertical column of NO2 based on the slant column, cloud fraction and cloud top height retrieval, stratospheric column estimates derived from a data assimilation approach and vertical profile estimates from space-time collocated profiles from the TM chemistry-transport model. The second step was applied with only minor modifications to all three instruments to generate a uniform 11-year data set. In our talk we will address the following topics: - A short summary of the retrieval approach and results - Comparisons with other retrievals - Comparisons with global and regional-scale models - OMI-SCIAMACHY and SCIAMACHY-GOME comparisons - Validation with independent measurements - Trend studies of NO2 for the past 11 years
NASA Astrophysics Data System (ADS)
Eskes, H.; Boersma, F.; Dirksen, R.; van der A, R.; Veefkind, P.; Levelt, P.; Brinksma, E.; van Roozendael, M.; de Smedt, I.; Gleason, J.
2005-05-01
Based on measurements of GOME on ESA ERS-2, SCIAMACHY on ESA-ENVISAT, and Ozone Monitoring Instrument (OMI) on the NASA EOS-Aura satellite there is now a unique 11-year dataset of global tropospheric nitrogen dioxide measurements from space. The retrieval approach consists of two steps. The first step is an application of the DOAS (Differential Optical Absorption Spectroscopy) approach which delivers the total absorption optical thickness along the light path (the slant column). For GOME and SCIAMACHY this is based on the DOAS implementation developed by BIRA/IASB. For OMI the DOAS implementation was developed in a collaboration between KNMI and NASA. The second retrieval step, developed at KNMI, estimates the tropospheric vertical column of NO2 based on the slant column, cloud fraction and cloud top height retrieval, stratospheric column estimates derived from a data assimilation approach and vertical profile estimates from space-time collocated profiles from the TM chemistry-transport model. The second step was applied with only minor modifications to all three instruments to generate a uniform 11-year data set. In our talk we will address the following topics: - A short summary of the retrieval approach and results - Comparisons with other retrievals - Comparisons with global and regional-scale models - OMI-SCIAMACHY and SCIAMACHY-GOME comparisons - Validation with independent measurements - Trend studies of NO2 for the past 11 years
NASA Technical Reports Server (NTRS)
Eparvier, F. G.; Barth, C. A.
1992-01-01
Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.
Liu, Rui; Feng, Tao; Wang, Shanshan; Shi, Chanzhen; Guo, Yanlin; Nan, Jialiang; Deng, Yun; Zhou, Bin
2018-02-01
Formaldehyde (HCHO) provides a proxy to reveal the isoprene and biogenic volatile organic compounds emission which plays important roles in atmospheric chemical process and climate change. The ground-based observation with zenith-sky DOAS is carried out in order to validate the HCHO columns from OMI. It has a good correlation of 0.71678 between the HCHO columns from two sources. Then we use the OMI HCHO columns from January 2006 to December 2015 to indicate the interannual variation and spatial distribution in Xishuangbanna. The HCHO concentration peaks appeared in March or April for each year significantly corresponding to the intensive fire counts at the same time, which illustrate that the high HCHO columns are strongly influenced by the biomass burning in spring. Temperature and precipitation are also the important influence factors in the seasonal variation when there is nearly no biomass burning. The spatial patterns over the past ten years strengthen the deduction from the temporal variation and show the relationship with land cover and land use, elevation and population density. It is concluded that the biogenic activity plays a role in controlling the background level of HCHO in Xishuangbanna, while biomass burning is the main driving force of high HCHO concentration. And forests are greater contributor to HCHO rather than rubber trees which cover over 20% of the land in the region. Moreover, uncertainties from HCHO slant column retrieval and AMFs calculation are discussed in detail. Copyright © 2017. Published by Elsevier B.V.
CSO and CARMA Observations of L1157. I. A Deep Search for Hydroxylamine (NH2OH)
NASA Astrophysics Data System (ADS)
McGuire, Brett A.; Carroll, P. Brandon; Dollhopf, Niklaus M.; Crockett, Nathan R.; Corby, Joanna F.; Loomis, Ryan A.; Burkhardt, Andrew M.; Shingledecker, Christopher; Blake, Geoffrey A.; Remijan, Anthony J.
2015-10-01
A deep search for the potential glycine precursor hydroxylamine (NH2OH) using the Caltech Submillimeter Observatory (CSO) at λ = 1.3 mm and the Combined Array for Research in Millimeter-wave Astronomy at λ = 3 mm is presented toward the molecular outflow L1157, targeting the B1 and B2 shocked regions. We report non-detections of NH2OH in both sources. We perform a non-LTE analysis of CH3OH observed in our CSO spectra to derive the kinetic temperatures and densities in the shocked regions. Using these parameters, we derive upper limit column densities of NH2OH of ≤1.4 × 1013 cm-2 and ≤1.5 × 1013 cm-2 toward the B1 and B2 shocks, respectively, and upper limit relative abundances of {N}{{NH}2{OH}}/{N}{{{H}}2}≤slant 1.4× {10}-8 and ≤1.5 × 10-8, respectively.
Intercomparison of daytime stratospheric NO2 satellite retrievals and model simulations
NASA Astrophysics Data System (ADS)
Belmonte Rivas, M.; Veefkind, P.; Boersma, F.; Levelt, P.; Eskes, H.; Gille, J.
2014-01-01
This paper evaluates the agreement between stratospheric NO2 retrievals from infrared limb sounders (MIPAS and HIRDLS) and solar UV/VIS backscatter sensors (OMI, SCIAMACHY limb and nadir) over the 2005-2007 period and across the seasons. The observational agreement is contrasted with the representation of NO2 profiles in 3-D chemical transport models such as the Whole Atmosphere Community Climate Model (SD-WACCM) and TM4. A conclusion central to this work is that the definition of a reference for stratospheric NO2 columns formed by consistent agreement among SCIAMACHY, MIPAS and HIRDLS limb records (all of which agree to within 0.25 × 1015 molecules cm-2 or better than 10%) allows us to draw attention to relative errors in other datasets, e.g.: (1) the WACCM model overestimates NO2 densities in the extratropical lower stratosphere, particularly over northern latitudes by up to 35% relative to limb observations, and (2) there are remarkable discrepancies between stratospheric NO2 column estimates from limb and nadir techniques, with a characteristic seasonal and latitude dependent pattern. We find that SCIAMACHY nadir and OMI stratospheric columns show overall biases of -0.6 × 1015 molecules cm-2 (-20%) and +0.6 × 10 15 molecules cm-2 (+20%) relative to limb observations. It is highlighted that biases in nadir stratospheric columns are not expected to affect tropospheric retrievals significantly, and that they can be attributed to errors in the total slant column density, either related to algorithmic or instrumental effects. In order to obtain accurate and long time series of stratospheric NO2, a critical evaluation of the currently used Differential Optical Absorption Spectroscopy (DOAS) approaches to nadir retrievals becomes essential, as well as their agreement to limb and ground-based observations, particularly now that limb techniques are giving way to nadir observations as the next generation of climate and air quality monitoring instruments pushes forth.
Tropospheric nitrogen dioxide column retrieval from ground-based zenith-sky DOAS observations
NASA Astrophysics Data System (ADS)
Tack, F.; Hendrick, F.; Goutail, F.; Fayt, C.; Merlaud, A.; Pinardi, G.; Hermans, C.; Pommereau, J.-P.; Van Roozendael, M.
2015-01-01
We present an algorithm for retrieving tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) from ground-based zenith-sky (ZS) measurements of scattered sunlight. The method is based on a four-step approach consisting of (1) the Differential Optical Absorption Spectroscopy (DOAS) analysis of ZS radiance spectra using a fixed reference spectrum corresponding to low NO2 absorption, (2) the determination of the residual amount in the reference spectrum using a Langley-plot-type method, (3) the removal of the stratospheric content from the daytime total measured slant column based on stratospheric VCDs measured at sunrise and sunset, and simulation of the rapid NO2 diurnal variation, (4) the retrieval of tropospheric VCDs by dividing the resulting tropospheric slant columns by appropriate air mass factors (AMFs). These steps are fully characterized and recommendations are given for each of them. The retrieval algorithm is applied on a ZS dataset acquired with a Multi-AXis (MAX-) DOAS instrument during the Cabauw (51.97° N, 4.93° E, sea level) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) held from the 10 June to the 21 July 2009 in the Netherlands. A median value of 7.9 × 1015 molec cm-2 is found for the retrieved tropospheric NO2 VCDs, with maxima up to 6.0 × 1016 molec cm-2. The error budget assessment indicates that the overall error σTVCD on the column values is less than 28%. In case of low tropospheric contribution, σTVCD is estimated to be around 39% and is dominated by uncertainties in the determination of the residual amount in the reference spectrum. For strong tropospheric pollution events, σTVCD drops to approximately 22% with the largest uncertainties on the determination of the stratospheric NO2 abundance and tropospheric AMFs. The tropospheric VCD amounts derived from ZS observations are compared to VCDs retrieved from off-axis and direct-sun measurements of the same MAX-DOAS instrument as well as to data from a co-located Système d'Analyse par Observations Zénithales (SAOZ) spectrometer. The retrieved tropospheric VCDs are in good agreement with the different datasets with correlation coefficients and slopes close to or larger than 0.9. The potential of the presented ZS retrieval algorithm is further demonstrated by its successful application on a 2 year dataset, acquired at the NDACC (Network for the Detection of Atmospheric Composition Change) station Observatoire de Haute Provence (OHP; Southern France).
Tropospheric nitrogen dioxide column retrieval from ground-based zenith-sky DOAS observations
NASA Astrophysics Data System (ADS)
Tack, F.; Hendrick, F.; Goutail, F.; Fayt, C.; Merlaud, A.; Pinardi, G.; Hermans, C.; Pommereau, J.-P.; Van Roozendael, M.
2015-06-01
We present an algorithm for retrieving tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) from ground-based zenith-sky (ZS) measurements of scattered sunlight. The method is based on a four-step approach consisting of (1) the differential optical absorption spectroscopy (DOAS) analysis of ZS radiance spectra using a fixed reference spectrum corresponding to low NO2 absorption, (2) the determination of the residual amount in the reference spectrum using a Langley-plot-type method, (3) the removal of the stratospheric content from the daytime total measured slant column based on stratospheric VCDs measured at sunrise and sunset, and simulation of the rapid NO2 diurnal variation, (4) the retrieval of tropospheric VCDs by dividing the resulting tropospheric slant columns by appropriate air mass factors (AMFs). These steps are fully characterized and recommendations are given for each of them. The retrieval algorithm is applied on a ZS data set acquired with a multi-axis (MAX-) DOAS instrument during the Cabauw (51.97° N, 4.93° E, sea level) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) held from 10 June to 21 July 2009 in the Netherlands. A median value of 7.9 × 1015 molec cm-2 is found for the retrieved tropospheric NO2 VCDs, with maxima up to 6.0 × 1016 molec cm-2. The error budget assessment indicates that the overall error σTVCD on the column values is less than 28%. In the case of low tropospheric contribution, σTVCD is estimated to be around 39% and is dominated by uncertainties in the determination of the residual amount in the reference spectrum. For strong tropospheric pollution events, σTVCD drops to approximately 22% with the largest uncertainties on the determination of the stratospheric NO2 abundance and tropospheric AMFs. The tropospheric VCD amounts derived from ZS observations are compared to VCDs retrieved from off-axis and direct-sun measurements of the same MAX-DOAS instrument as well as to data from a co-located Système d'Analyse par Observations Zénithales (SAOZ) spectrometer. The retrieved tropospheric VCDs are in good agreement with the different data sets with correlation coefficients and slopes close to or larger than 0.9. The potential of the presented ZS retrieval algorithm is further demonstrated by its successful application on a 2-year data set, acquired at the NDACC (Network for the Detection of Atmospheric Composition Change) station Observatoire de Haute Provence (OHP; Southern France).
The version 3 OMI NO2 standard product
NASA Astrophysics Data System (ADS)
Krotkov, Nickolay A.; Lamsal, Lok N.; Celarier, Edward A.; Swartz, William H.; Marchenko, Sergey V.; Bucsela, Eric J.; Chan, Ka Lok; Wenig, Mark; Zara, Marina
2017-09-01
We describe the new version 3.0 NASA Ozone Monitoring Instrument (OMI) standard nitrogen dioxide (NO2) products (SPv3). The products and documentation are publicly available from the NASA Goddard Earth Sciences Data and Information Services Center (https://disc.gsfc.nasa.gov/datasets/OMNO2_V003/summary/). The major improvements include (1) a new spectral fitting algorithm for NO2 slant column density (SCD) retrieval and (2) higher-resolution (1° latitude and 1.25° longitude) a priori NO2 and temperature profiles from the Global Modeling Initiative (GMI) chemistry-transport model with yearly varying emissions to calculate air mass factors (AMFs) required to convert SCDs into vertical column densities (VCDs). The new SCDs are systematically lower (by ˜ 10-40 %) than previous, version 2, estimates. Most of this reduction in SCDs is propagated into stratospheric VCDs. Tropospheric NO2 VCDs are also reduced over polluted areas, especially over western Europe, the eastern US, and eastern China. Initial evaluation over unpolluted areas shows that the new SPv3 products agree better with independent satellite- and ground-based Fourier transform infrared (FTIR) measurements. However, further evaluation of tropospheric VCDs is needed over polluted areas, where the increased spatial resolution and more refined AMF estimates may lead to better characterization of pollution hot spots.
NASA Astrophysics Data System (ADS)
Stark, C. P.; Rudd, S.; Lall, U.; Hovius, N.; Dadson, S.; Chen, M.-C.
Off-Axis DOAS measurements with non-artificial scattered light, based upon the renowned DOAS technique, allow to optimize the sensitivity of the technique for the trace gas profile in question by strongly increasing the light's path through the relevant atmosphere layers. Multi-Axis-(MAX) DOAS probe several directions simultaneously or sequentially to increase the spatial resolution. Several devices (ground based, air- borne and ship-built) are operated by our group in the framework of the SCIAMACHY validation. Radiative transfer models are an essential requirement for the interpretation of these measurements and their conversion into detailed profile data. Apart from some existing Monte Carlo Models most codes use analytical algorithms to solve the radia- tive transfer equation for given atmospheric conditions. For specific circumstances, e.g. photon scattering within clouds, these approaches are not efficient enough to pro- vide sufficient accuracy. Also horizontal gradients in atmospheric parameters have to be taken into account. To meet the needs of measurement situations for all kinds of scattered light DOAS platforms, a three dimensional full spherical Monte Carlo model was devised. Here we present Air Mass Factors (AMF) to calculate vertical column densities (VCD) from measured slant column densities (SCD). Sensitivity studies on the influence of the wavelength and telescope direction used, of the altitude of profile layers, albedo, refraction and basic aerosols are shown. Also modelled intensity series are compared with radiometer data.
Data-Intensive Scientific Management, Analysis and Visualization
NASA Astrophysics Data System (ADS)
Goranova, Mariana; Shishedjiev, Bogdan; Juliana Georgieva, Juliana
2012-11-01
The proposed integrated system provides a suite of services for data-intensive sciences that enables scientists to describe, manage, analyze and visualize data from experiments and numerical simulations in distributed and heterogeneous environment. This paper describes the advisor and the converter services and presents an example from the monitoring of the slant column content of atmospheric minor gases.
Nitrogen oxides in the arctic stratosphere: Implications for ozone abundances. Ph.D. Thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slusser, J.R.
1994-01-01
In the high latitude winter stratosphere, NO2 sequesters chlorine compounds which are extremely efficient at destroying ozone. During the nighttime, NO2 reacts with ozone to form N2O5 which acts as a reservoir of NO2. Under heavy aerosol loading, N2O5 may react with water on aerosol surfaces to form HNO3, a reservoir more resistant to photolysis. This heterogeneous reaction results in reduced NO2 concentration when the sun returns at the end of the winter. A spectrograph system has been developed to measure scattered zenith skylight and thereby determine stratospheric NO2 slant column abundance. Conversion of the measured slant column abundance tomore » vertical column abundance requires dividing by the air mass. The air mass is the enhancement in the optical path for the scattered twilight as compared to a vertical path. Air mass values determined using a multiple scattering radiative transfer code have been compared to those derived using a Monte Carlo code and were found to agree to within 6% at a 90 deg solar zenith angle for a stratospheric absorber. Six months of NO2 vertical column abundance measured over Fairbanks during the winter 1992-93 exhibited the daylight diminished and increased as the sunlight hours lengthened. The overall seasonal behavior was similar to high-latitude measurements made in the Southern Hemisphere. The ratios of morning to evening column abundance were consistent with predictions based on gas-phase chemistry. The possible heterogeneous reaction of N2O5 on sulfate aerosols was investigated using FTIR Spectrometer measurements of HNO3 column abundance and lidar determinations of the aerosol profile. Using an estimated N2O5 column abundance and aerosol profile as input to a simple model, significant HNO3 production was expected. No increase in HNO3 column abundance was measured. From this set of data, it was not possible to determine whether significant amounts of N2O5 were converted to HNO3 by this heterogeneous reaction.« less
Use of Total Electron Content data to analyze ionosphere electron density gradients
NASA Astrophysics Data System (ADS)
Nava, B.; Radicella, S. M.; Leitinger, R.; Coisson, P.
In presence of electron density gradients the thin shell approximation for the ionosphere used together with a simple mapping function to convert slant Total Electron Content TEC to vertical TEC could lead to TEC conversion errors Therefore these mapping function errors can be used to identify the effects of the electron density gradients in the ionosphere In the present work high precision GPS derived slant TEC data have been used to investigate the effects of the electron density gradients in the middle and low latitude ionosphere under geomagnetic quiet and disturbed conditions In particular the data corresponding to the geographic area of the American sector for the days 5-7 April 2000 have been used to perform a complete analysis of mapping function errors based on the coinciding pierce point technique The results clearly illustrate the electron density gradient effects according to the locations considered and to the actual levels of disturbance of the ionosphere
A High Resolution Survey of the Galactic Plane at 408 MHz
NASA Astrophysics Data System (ADS)
Tung, A. K.; Kothes, R.; Landecker, T. L.; Geisbüsch, J.; Del Rizzo, D.; Taylor, A. R.; Brunt, C. M.; Gray, A. D.; Dougherty, S. M.
2017-10-01
The interstellar medium is a complex “ecosystem” with gas constituents in the atomic, molecular and ionized states, dust, magnetic fields, and relativistic particles. The Canadian Galactic Plane Survey has imaged these constituents at multiple radio and infrared frequencies with angular resolution of the order of arcminutes. This paper presents radio continuum data at 408 MHz over the area of 52^\\circ ≤slant {\\ell }≤slant 193^\\circ , -6\\buildrel{\\circ}\\over{.} 5≤slant b≤slant 8\\buildrel{\\circ}\\over{.} 5, with an extension to b=21^\\circ in the range of 97^\\circ ≤slant {\\ell }≤slant 120^\\circ , with angular resolution 2\\buildrel{ \\prime}\\over{.} 8× 2\\buildrel{ \\prime}\\over{.} 8 cosecδ. Observations were made with the Synthesis Telescope at the Dominion Radio Astrophysical Observatory as part of the Canadian Galactic Plane Survey. The calibration of the survey using existing radio source catalogs is described. The accuracy of 408 MHz flux densities from the data is 6%. Information on large structures has been incorporated into the data using the single-antenna survey of Haslam et al. The paper presents the data, describes how it can be accessed electronically, and gives examples of applications of the data to ISM research.
NASA Astrophysics Data System (ADS)
Volkamer, Rainer; Coburn, Sean; Dix, Barbara; Sinreich, Roman
2009-08-01
Multi AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) instruments, as solar straylight satellites, require an accurate characterization and elimination of Fraunhofer lines from solar straylight spectra to measure the atmospheric column abundance of reactive gases that destroy toxic and heat trapping ozone and form climate cooling aerosols, like glyoxal (CHOCHO), iodine oxide (IO), or bromine oxide (BrO). The currently achievable noise levels with state-of-the-art DOAS instruments are limited to δ'DL ~ 10-4 (noise equivalent differential optical density, δ') further noise reductions are typically not straightforward, and the reason for this barrier is not well understood. Here we demonstrate that the nonlinearity of state-of-the-art CCD detectors poses a limitation to accurately characterize Fraunhofer lines; the incomplete elimination of Fraunhofer lines is found to cause residual structures of δ' ~ 10-4, and only partially accounted by fitting of an "offset" spectrum. We have developed a novel software tool, the CU Data Acquisition Code that overcomes this barrier by actively controlling the CCD saturation level, and demonstrates that δ'DL on the order of 10-5 are possible without apparent limitations from the presence of Fraunhofer lines. The software also implements active control of the elevation angle (angle with respect to the horizon) by means of a Motion Compensation System for use with mobile MAX-DOAS deployments from ships and aircraft. Finally, a novel approach to convert slant column densities into line-of-sight averaged concentrations is discussed.
NASA Astrophysics Data System (ADS)
Chong, H.; Lee, S.; Jeong, U.; Kim, J.; Li, C.; Krotkov, N. A.; Al-Saadi, J. A.; Janz, S. J.; Kowalewski, M. G.; Nowlan, C. R.; Kang, M.; Joiner, J.; Haffner, D. P.; Koo, J. H.; Hong, H.; Lee, H.
2017-12-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) is an airborne instrument measuring backscattered radiance with a spectrometer covering the spectral range between 290-695 nm. GeoTASO flew on the B-200 (UC-12B) - LARC aircraft during the KORUS-AQ campaign, of which the spatial resolution is about 250 nm x 250 m. Principal component analysis (PCA) technique is used to retrieve slant column densities (SCD) of sulfur dioxide (SO2), nitrogen dioxide (NO2), and formaldehyde (HCHO). The fitting windows of SO2, NO2, and HCHO are 310-325 nm, 350-380 nm, and 335-357 nm respectively. The clear PCs of each species are collected from rural areas where are found to have less SCDs of each species from prior iteration step. Using the clear sector PCs and the cross section of each species, SCDs of each trace gas are obtained using the multiple linear regression method. Air mass factors (AMF) of each species are obtained using the atmospheric profiles from chemical transport model calculations during the campaign to convert SCDs to vertical column densities (VCD). The retrieved VCDs of each species well capture small point sources on the flight paths and their plumes propagating downwind areas, which was not available from the ground-based in-situ measurements. The retrieved VCDs will be compared and/or validated against other benchmark measurements during the campaign.
Intercomparison of daytime stratospheric NO2 satellite retrievals and model simulations
NASA Astrophysics Data System (ADS)
Belmonte Rivas, M.; Veefkind, P.; Boersma, F.; Levelt, P.; Eskes, H.; Gille, J.
2014-07-01
This paper evaluates the agreement between stratospheric NO2 retrievals from infrared limb sounders (Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and High Resolution Dynamics Limb Sounder (HIRDLS)) and solar UV/VIS backscatter sensors (Ozone Monitoring Instrument (OMI), Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) limb and nadir) over the 2005-2007 period and across the seasons. The observational agreement is contrasted with the representation of NO2 profiles in 3-D chemical transport models such as the Whole Atmosphere Community Climate Model (WACCM) and TM4. A conclusion central to this work is that the definition of a reference for stratospheric NO2 columns formed by consistent agreement among SCIAMACHY, MIPAS and HIRDLS limb records (all of which agree to within 0.25 × 1015 molecules cm-2 or better than 10%) allows us to draw attention to relative errors in other data sets, e.g., (1) WACCM overestimates NO2 densities in the extratropical lower stratosphere, particularly in the springtime and over northern latitudes by up to 35% relative to limb observations, and (2) there are remarkable discrepancies between stratospheric NO2 column estimates from limb and nadir techniques, with a characteristic seasonally and latitudinally dependent pattern. We find that SCIAMACHY nadir and OMI stratospheric columns show overall biases of -0.5 × 1015 molecules cm-2 (-20%) and +0.6 × 1015 molecules cm-2 (+20%) relative to limb observations, respectively. It is argued that additive biases in nadir stratospheric columns are not expected to affect tropospheric retrievals significantly, and that they can be attributed to errors in the total slant column density, related either to algorithmic or instrumental effects. In order to obtain accurate and long-term time series of stratospheric NO2, an effort towards the harmonization of currently used differential optical absorption spectroscopy (DOAS) approaches to nadir retrievals becomes essential, as well as their agreement to limb and ground-based observations, particularly now that limb techniques are giving way to nadir observations as the next generation of climate and air quality monitoring instruments pushes forth.
Recessed Slant Gate AlGaN/GaN High Electron Mobility Transistors with 20.9 W/mm at 10 GHz
NASA Astrophysics Data System (ADS)
Pei, Yi; Chu, Rongming; Fichtenbaum, Nicholas A.; Chen, Zhen; Brown, David; Shen, Likun; Keller, Stacia; DenBaars, Steven P.; Mishra, Umesh K.
2007-12-01
A recessed slant gate processing has been used in AlGaN/GaN high electron mobility transistors (HEMTs) to mitigate the electric field, minimize the dispersion and increase the breakdown voltage. More than one order of magnitude of decrease in gate leakage has been observed by recessing the slant gate. For a 0.65 μm gate-length device, an extrinsic fT of 18 GHz and extrinsic fMAX of 52 GHz at a drain bias of 25 V were achieved. At 10 GHz, a state-of-the-art power density of 20.9 W/mm, with a power-added efficiency (PAE) of 40% at a drain bias of 83 V, was demonstrated.
Use of total electron content data to analyze ionosphere electron density gradients
NASA Astrophysics Data System (ADS)
Nava, B.; Radicella, S. M.; Leitinger, R.; Coïsson, P.
In the presence of electron density gradients the thin shell approximation for the ionosphere, used together with a simple mapping function to convert slant total electron content (TEC) to vertical TEC, could lead to TEC conversion errors. These "mapping function errors" can therefore be used to detect the electron density gradients in the ionosphere. In the present work GPS derived slant TEC data have been used to investigate the effects of the electron density gradients in the middle and low latitude ionosphere under geomagnetic quiet and disturbed conditions. In particular the data corresponding to the geographic area of the American Sector for the days 5-7 April 2000 have been used to perform a complete analysis of mapping function errors based on the "coinciding pierce point technique". The results clearly illustrate the electron density gradient effects according to the locations considered and to the actual levels of disturbance of the ionosphere. In addition, the possibility to assess an ionospheric shell height able to minimize the mapping function errors has been verified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolbert, Leon M; Lee, Seong T
2010-01-01
This paper shows how to maximize the effect of the slanted air-gap structure of an interior permanent magnet synchronous motor with brushless field excitation (BFE) for application in a hybrid electric vehicle. The BFE structure offers high torque density at low speed and weakened flux at high speed. The unique slanted air-gap is intended to increase the output torque of the machine as well as to maximize the ratio of the back-emf of a machine that is controllable by BFE. This irregularly shaped air-gap makes a flux barrier along the d-axis flux path and decreases the d-axis inductance; as amore » result, the reluctance torque of the machine is much higher than a uniform air-gap machine, and so is the output torque. Also, the machine achieves a higher ratio of the magnitude of controllable back-emf. The determination of the slanted shape was performed by using magnetic equivalent circuit analysis and finite element analysis (FEA).« less
NASA Astrophysics Data System (ADS)
Folkert Boersma, K.
2017-04-01
One of the prime targets of the EU-project Quality Assurance for Essential Climate Variables (QA4ECV, www.qa4ecv.eu) is the generation and subsequent quality assurance of harmonized, long-term data records of ECVs or precursors thereof. Here we report on a new harmonized and improved retrieval algorithm for NO2 columns and its application to spectra measured by the GOME, SCIAMACHY, OMI, and GOME-2(A) sensors over the period 1996-2016. Our community 'best practices' algorithm is based on the classical 3-step DOAS method. It benefits from a thorough comparison and iteration of spectral fitting and air mass factor calculation approaches between IUP Bremen, BIRA, Max Planck Institute for Chemistry, KNMI, WUR, and a number of external partners. For step 1 of the retrieval, we show that improved spectral calibration and the inclusion of liquid water and intensity-offset correction terms in the fitting procedure, lead to 10-30% smaller NO2 slant columns, in better agreement with independent measurements. Moreover, the QA4ECV NO2 slant columns show 15-35% lower uncertainties relative to earlier versions of the spectral fitting algorithm. For step 2, the stratospheric correction, the algorithm relies on the assimilation of NO2 slant columns over remote regions in the Tracer Model 5 (TM5-MP) chemistry transport model. The representation of stratospheric NOy in the model is improved by nudging towards ODIN HNO3:O3 ratios, leading to more realistic NO2 concentrations in the free-running mode, which is relevant at high latitudes near the terminator. The coupling to TM5-Mass Parallel also allows the calculation of air mass factors (AMFs, step 3) from a priori NO2 vertical profiles simulated at a spatial resolution of 1°×1°, so that hotspot gradients are better resolved in the a priori profile shapes. Other AMF improvements include the use of improved cloud information, and a correction for photon scattering in a spherical atmosphere. Preliminary comparisons indicate that the new QA4ECV tropospheric NO2 columns are ±10% lower than operational products, and provide more spatial detail on the horizontal distribution of NO2 in the troposphere. Our comparisons provide more insight in the origin and nature of the retrieval uncertainties. The final QAECV NO2 product therefore contains overall uncertainty estimates for every measurement, but also information on the contribution of uncertainties of each retrieval sub-step to the overall uncertainty budget. We conclude with a presentation of the data format and a verification of the QA4ECV NO2 columns using the traceable quality assurance methodologies developed in the QA4ECV-project, and via validation against independent measurements (using the online QA4ECV Atmospheric Validation Server tool).
NASA Astrophysics Data System (ADS)
Souri, Amir H.; Choi, Yunsoo; Pan, Shuai; Curci, Gabriele; Nowlan, Caroline R.; Janz, Scott J.; Kowalewski, Matthew G.; Liu, Junjie; Herman, Jay R.; Weinheimer, Andrew J.
2018-03-01
A number of satellite-based instruments have become an essential part of monitoring emissions. Despite sound theoretical inversion techniques, the insufficient samples and the footprint size of current observations have introduced an obstacle to narrow the inversion window for regional models. These key limitations can be partially resolved by a set of modest high-quality measurements from airborne remote sensing. This study illustrates the feasibility of nitrogen dioxide (NO2) columns from the Geostationary Coastal and Air Pollution Events Airborne Simulator (GCAS) to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. We convert slant column densities to vertical columns using a radiative transfer model with (i) NO2 profiles from a high-resolution regional model (1 × 1 km2) constrained by P-3B aircraft measurements, (ii) the consideration of aerosol optical thickness impacts on radiance at NO2 absorption line, and (iii) high-resolution surface albedo constrained by ground-based spectrometers. We characterize errors in the GCAS NO2 columns by comparing them to Pandora measurements and find a striking correlation (r > 0.74) with an uncertainty of 3.5 × 1015 molecules cm-2. On 9 of 10 total days, the constrained anthropogenic emissions by a Kalman filter yield an overall 2-50% reduction in polluted areas, partly counterbalancing the well-documented positive bias of the model. The inversion, however, boosts emissions by 94% in the same areas on a day when an unprecedented local emissions event potentially occurred, significantly mitigating the bias of the model. The capability of GCAS at detecting such an event ensures the significance of forthcoming geostationary satellites for timely estimates of top-down emissions.
Different phases of a system of hard rods on three dimensional cubic lattice
NASA Astrophysics Data System (ADS)
Vigneshwar, N.; Dhar, Deepak; Rajesh, R.
2017-11-01
We study the different phases of a system of monodispersed hard rods of length k on a cubic lattice, using an efficient cluster algorithm able to simulate densities close to the fully-packed limit. For k≤slant 4 , the system is disordered at all densities. For k=5, 6 , we find a single density-driven transition, from a disordered phase to high density layered-disordered phase, in which the density of rods of one orientation is strongly suppressed, breaking the system into weakly coupled layers. Within a layer, the system is disordered. For k ≥slant 7 , three density-driven transitions are observed numerically: isotropic to nematic to layered-nematic to layered-disordered. In the layered-nematic phase, the system breaks up into layers, with nematic order in each layer, but very weak correlation between the ordering directions of different layers. We argue that the layered-nematic phase is a finite-size effect, and in the thermodynamic limit, the nematic phase will have higher entropy per site. We expect the systems of rods in four and higher dimensions will have a qualitatively similar phase diagram.
NASA Astrophysics Data System (ADS)
Judd, L. M.; Al-Saadi, J. A.; Janz, S. J.; Kowalewski, M. G.; Szykman, J.; Swap, R.; Abuhassan, N.; Cede, A.; Valin, L.; Williams, D.; Stanier, C. O.
2017-12-01
The airborne Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) UV/VIS mapping spectrometer was used to make measurements for the Lake Michigan Ozone Study (LMOS) along the western shore of Lake Michigan and for the Student Airborne Research Program (SARP) in the Los Angeles Basin during May and June 2017. This instrument has the capability of retrieving NO2 column densities at sub-urban spatial scales (nominally 250 m x 250 m) and is being used as a testbed for future geostationary air quality retrievals. LMOS was a multi-agency collaborative observational effort to better understand ozone pollution along Lake Michigan's western shore, where coastal monitors exceed current ozone standards. With 21 science flights during the 5-week campaign period, GeoTASO acquired data for constraining emissions along the western coast of Lake Michigan and observed how these emissions dispersed and influenced the local air quality. During SARP flights, GeoTASO was used to map the Los Angeles Basin five times over two days, observing NO2 Differential Slant Column densities (DSCs) ranging from over 50x1015 molecules cm-2 down to GeoTASO's detection limit ( 1.5x1015 molecules cm-2 at 250 m x 250 m). This work presents the spatial distribution of preliminary NO2 DSCs observations over both research areas, and shows how this it changed at hourly to multi-day timescales under varying meteorological conditions. Both LMOS and SARP included coincident column NO2 measurements from networks of ground-based Pandora spectrometers specifically set up for these campaigns, and a comparison of coincident observations will be shown. Consistent features were observed throughout these flights, including continual emission `hot-spots' and the redistribution of NO2 plumes by land-water circulations. One goal of this work is to investigate how the fine spatial features observed (e.g. power plant plumes) will be depicted in satellite observations at coarser spatial resolutions. These results will help the community understand how to interpret space-based observations in areas subject to large NO2 spatial heterogeneity, as well as what we can expect to detect with future geostationary air quality sensors over a range of pollution environments.
NASA Astrophysics Data System (ADS)
Meier, Andreas Carlos; Schönhardt, Anja; Richter, Andreas; Bösch, Tim; Seyler, André; Constantin, Daniel Eduard; Shaiganfar, Reza; Merlaud, Alexis; Ruhtz, Thomas; Wagner, Thomas; van Roozendael, Michel; Burrows, John. P.
2016-04-01
Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In the late summers of 2014 and 2015, two extensive measurement campaigns were conducted in Romania by several European research institutes, with financial support from ESA. The AROMAT / AROMAT-2 campaigns (Airborne ROmanian Measurements of Aerosols and Trace gases) were dedicated to measurements of air quality parameters utilizing newly developed instrumentation at state-of-the-art. The experiences gained will help to calibrate and validate the measurements taken by the upcoming Sentinel-S5p mission scheduled for launch in 2016. The IUP Bremen contributed to these campaigns with its airborne imaging DOAS (Differential Optical Absorption Spectroscopy) instrument AirMAP (Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution). AirMAP allows retrieving spatial distributions of trace gas columns densities in a stripe below the aircraft. The measurements have a high spatial resolution of approximately 30 x 80 m2 (along x across track) at a typical flight altitude of 3000 m. Supported by the instrumental setup and the large swath, gapless maps of trace gas distributions above a large city, like Bucharest or Berlin, can be acquired within a time window of approximately two hours. These properties make AirMAP a valuable tool for the validation of trace gas measurements from space. DOAS retrievals yield the density of absorbers integrated along the light path of the measurement. The light path is altered with a changing surface reflectance, leading to enhanced / reduced slant column densities of NO2 depending on surface properties. This effect must be considered in the derivation of air mass factors used to convert the measurements into vertical columns. Due to the high-resolution measurements, no data product of surface reflectance with sufficient spatial resolution is available. Thus the surface reflectance is estimated from AirMAP's own spectra. In this work the results of the research flights will be presented. The study focuses on the validation of AirMAP's measurements by comparison to other ground-based platforms like (mobile) MAX-DOAS measurements. Conclusions will be drawn on the quality of the measurements, their applicability for satellite data validation and possible improvements for future measurements.
High-resolution airborne imaging DOAS measurements of NO2 above Bucharest during AROMAT
NASA Astrophysics Data System (ADS)
Meier, Andreas Carlos; Schönhardt, Anja; Bösch, Tim; Richter, Andreas; Seyler, André; Ruhtz, Thomas; Constantin, Daniel-Eduard; Shaiganfar, Reza; Wagner, Thomas; Merlaud, Alexis; Van Roozendael, Michel; Belegante, Livio; Nicolae, Doina; Georgescu, Lucian; Burrows, John Philip
2017-05-01
In this study we report on airborne imaging DOAS measurements of NO2 from two flights performed in Bucharest during the AROMAT campaign (Airborne ROmanian Measurements of Aerosols and Trace gases) in September 2014. These measurements were performed with the Airborne imaging Differential Optical Absorption Spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP) and provide nearly gapless maps of column densities of NO2 below the aircraft with a high spatial resolution of better than 100 m. The air mass factors, which are needed to convert the measured differential slant column densities (dSCDs) to vertical column densities (VCDs), have a strong dependence on the surface reflectance, which has to be accounted for in the retrieval. This is especially important for measurements above urban areas, where the surface properties vary strongly. As the instrument is not radiometrically calibrated, we have developed a method to derive the surface reflectance from intensities measured by AirMAP. This method is based on radiative transfer calculation with SCIATRAN and a reference area for which the surface reflectance is known. While surface properties are clearly apparent in the NO2 dSCD results, this effect is successfully corrected for in the VCD results. Furthermore, we investigate the influence of aerosols on the retrieval for a variety of aerosol profiles that were measured in the context of the AROMAT campaigns. The results of two research flights are presented, which reveal distinct horizontal distribution patterns and strong spatial gradients of NO2 across the city. Pollution levels range from background values in the outskirts located upwind of the city to about 4 × 1016 molec cm-2 in the polluted city center. Validation against two co-located mobile car-DOAS measurements yields good agreement between the datasets, with correlation coefficients of R = 0.94 and R = 0.85, respectively. Estimations on the NOx emission rate of Bucharest for the two flights yield emission rates of 15.1 ± 9.4 and 13.6 ± 8.4 mol s-1, respectively.
NASA Technical Reports Server (NTRS)
Adams, Cristen; Normand, Elise N.; Mclinden, Chris A.; Bourassa, Adam E.; Lloyd, Nicholas D.; Degenstein, Douglas A.; Krotkov, Nickolay A.; Rivas, Maria Belmonte; Boersma, K. Folkert; Eskes, Henk
2016-01-01
A variant of the limb-nadir matching technique for deriving tropospheric NO2 columns is presented in which the stratospheric component of the NO2 slant column density (SCD) measured by the Ozone Monitoring Instrument (OMI) is removed using non-coincident profiles from the Optical Spectrograph and InfraRed Imaging System (OSIRIS). In order to correct their mismatch in local time and the diurnal variation of stratospheric NO2, OSIRIS profiles, which were measured just after sunrise, were mapped to the local time of OMI observations using a photochemical boxmodel. Following the profile time adjustment, OSIRIS NO2 stratospheric vertical column densities (VCDs) were calculated. For profiles that did not reach down to the tropopause, VCDs were adjusted using the photochemical model. Using air mass factors from the OMI Standard Product (SP), a new tropospheric NO2 VCD product - referred to as OMI-minus-OSIRIS (OmO) - was generated through limb-nadir matching. To accomplish this, the OMI total SCDs were scaled using correction factors derived from the next-generation SCDs that improve upon the spectral fitting used for the current operational products. One year, 2008, of OmO was generated for 60 deg S to 60 deg N and a cursory evaluation was performed. The OmO product was found to capture the main features of tropospheric NO2, including a background value of about 0.3 x 10(exp 15) molecules per sq cm over the tropical Pacific and values comparable to the OMI operational products over anthropogenic source areas. While additional study is required, these results suggest that a limb-nadir matching approach is feasible for the removal of stratospheric NO2 measured by a polar orbiter from a nadir-viewing instrument in a geostationary orbit such as Tropospheric Emissions: Monitoring of Pollution (TEMPO) or Sentinel-4.
First Observations of Iodine Oxide from Space
NASA Technical Reports Server (NTRS)
Saiz-Lopez, Alfonso; Chance, Kelly; Liu, Xiong; Kurosu, Thomas P.; Sander, Stanley P.
2007-01-01
We present retrievals of IO total columns from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite instrument. We analyze data for October 2005 in the polar regions to demonstrate for the first time the capability to measure IO column abundances from space. During the period of analysis (i.e. Southern Hemisphere springtime), enhanced IO vertical columns over 3 x 10(exp 13) molecules cm(exp -2) are observed around coastal Antarctica; by contrast during that time in the Arctic region IO is consistently below the calculated instrumental detection limit for individual radiance spectra (2-4 x 10(exp 12) molecules cm(exp -2) for slant columns). The levels reported here are in reasonably good agreement with previous ground-based measurements at coastal Antarctica. These results also demonstrate that IO is widespread over sea-ice covered areas in the Southern Ocean. The occurrence of elevated IO and its hitherto unrecognized spatial distribution suggest an efficient iodine activation mechanism at a synoptic scale over coastal Antarctica.
Estimates of Lightning NOx Production Based on OMI NO2 Observations Over the Gulf of Mexico
NASA Technical Reports Server (NTRS)
Pickering, Kenneth E.; Bucsela, Eric; Allen, Dale; Ring, Allison; Holzworth, Robert; Krotkov, Nickolay
2016-01-01
We evaluate nitrogen oxide (NO(sub x) NO + NO2) production from lightning over the Gulf of Mexico region using data from the Ozone Monitoring Instrument (OMI) aboard NASAs Aura satellite along with detection efficiency-adjusted lightning data from the World Wide Lightning Location Network (WWLLN). A special algorithm was developed to retrieve the lightning NOx [(LNO(sub x)] signal from OMI. The algorithm in its general form takes the total slant column NO2 from OMI and removes the stratospheric contribution and tropospheric background and includes an air mass factor appropriate for the profile of lightning NO(sub x) to convert the slant column LNO2 to a vertical column of LNO(sub x). WWLLN flashes are totaled over a period of 3 h prior to OMI overpass, which is the time an air parcel is expected to remain in a 1 deg. x 1 deg. grid box. The analysis is conducted for grid cells containing flash counts greater than a threshold value of 3000 flashes that yields an expected LNO(sub x) signal greater than the background. Pixels with cloud radiance fraction greater than a criterion value (0.9) indicative of highly reflective clouds are used. Results for the summer seasons during 2007-2011 yield mean LNO(sub x) production of approximately 80 +/- 45 mol per flash over the region for the two analysis methods after accounting for biases and uncertainties in the estimation method. These results are consistent with literature estimates and more robust than many prior estimates due to the large number of storms considered but are sensitive to several substantial sources of uncertainty.
Development of a digital mobile solar tracker
NASA Astrophysics Data System (ADS)
Baidar, S.; Kille, N.; Ortega, I.; Sinreich, R.; Thomson, D.; Hannigan, J.; Volkamer, R.
2015-11-01
We have constructed and deployed a fast digital solar tracker aboard a moving ground-based platform. The tracker consists of two rotating mirrors, a lens, an imaging camera, and a motion compensation system that provides the Euler angles of the mobile platform in real time. The tracker can be simultaneously coupled to UV-Vis and FTIR spectrometers making it a versatile tool to measure the absorption of trace gases using solar incoming radiation. The integrated system allows the tracker to operate autonomously while the mobile laboratory is in motion. Mobile direct sun Differential Optical Absorption Spectroscopy (mobile DS-DOAS) observations using this tracker were conducted during summer 2014 as part of the Front Range Photochemistry and Pollution Experiment (FRAPPE) in Colorado, USA. We demonstrate an angular precision of 0.052° (about 1/10 of the solar disk diameter) during research drives, and verify this tracking precision from measurements of the center to limb darkening (CLD, the changing appearance of Fraunhofer lines) in the mobile DS-DOAS spectra. The high photon flux from direct sun observation enables measurements of nitrogen dioxide (NO2) slant columns with high temporal resolution, and reveals spatial detail in the variations of NO2 vertical column densities (VCDs). The NO2 VCD from DS-DOAS is compared with a co-located MAX-DOAS instrument. Overall good agreement is observed amid a highly heterogeneous air mass.
Development of a digital mobile solar tracker
NASA Astrophysics Data System (ADS)
Baidar, Sunil; Kille, Natalie; Ortega, Ivan; Sinreich, Roman; Thomson, David; Hannigan, James; Volkamer, Rainer
2016-03-01
We have constructed and deployed a fast digital solar tracker aboard a moving ground-based platform. The tracker consists of two rotating mirrors, a lens, an imaging camera, and a motion compensation system that provides the Euler angles of the mobile platform in real time. The tracker can be simultaneously coupled to UV-Vis and Fourier transform infrared spectrometers, making it a versatile tool to measure the absorption of trace gases using solar incoming radiation. The integrated system allows the tracker to operate autonomously while the mobile laboratory is in motion. Mobile direct sun differential optical absorption spectroscopy (mobile DS-DOAS) observations using this tracker were conducted during summer 2014 as part of the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) in Colorado, USA. We demonstrate an angular precision of 0.052° (about 1/10 of the solar disk diameter) during research drives and verify this tracking precision from measurements of the center to limb darkening (CLD, the changing appearance of Fraunhofer lines) in the mobile DS-DOAS spectra. The high photon flux from direct sun observation enables measurements of nitrogen dioxide (NO2) slant columns with high temporal resolution and reveals spatial detail in the variations of NO2 vertical column densities (VCDs). The NO2 VCD from DS-DOAS is compared with a co-located MAX-DOAS instrument. Overall good agreement is observed amid a highly heterogeneous air mass.
Elevated aerosol layers modify the O2–O2 absorption measured by ground-based MAX-DOAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortega, Ivan; Berg, Larry K.; Ferrare, Richard A.
2016-06-01
The oxygen collisional complex (O2-O2, or O4) is a greenhouse gas, and a calibration trace gas used to infer aerosol and cloud properties by Differential Optical Absorption Spectroscopy (DOAS). Recent reports suggest the need for an O4 correction factor (CFO4) when comparing simulated and measured O4 differential slant column densities (dSCD) by passive DOAS. We investigate the sensitivity of O4 dSCD simulations at ultraviolet (360 nm) and visible (477 nm) wavelengths towards separately measured aerosol extinction profiles. Measurements were conducted by the University of Colorado 2D-MAX-DOAS instrument and NASA’s multispectral High Spectral Resolution Lidar (HSRL-2) during the Two Column Aerosolmore » Project (TCAP) at Cape Cod, MA in July 2012. During two case study days with (1) high aerosol load (17 July, AOD ~ 0.35 at 477 nm), and (2) near molecular scattering conditions (22 July, AOD < 0.10 at 477 nm) the measured and calculated O4 dSCDs agreed within 6.4±0.4% (360 nm) and 4.7±0.6% (477 nm) if the HSRL-2 profiles were used as input to the calculations. However, if in the calculations the aerosol is confined to the surface layer (while keeping AOD constant) we find 0.53« less
The influence of polarization on box air mass factors for UV/vis nadir satellite observations
NASA Astrophysics Data System (ADS)
Hilboll, Andreas; Richter, Andreas; Rozanov, Vladimir V.; Burrows, John P.
2015-04-01
Tropospheric abundances of pollutant trace gases like, e.g., NO2, are often derived by applying the differential optical absorption spectroscopy (DOAS) method to space-borne measurements of back-scattered and reflected solar radiation. The resulting quantity, the slant column density (SCD), subsequently has to be converted to more easily interpretable vertical column densities by means of the so-called box air mass factor (BAMF). The BAMF describes the ratio of SCD and VCD within one atmospheric layer and is calculated by a radiative transfer model. Current operational and scientific data products of satellite-derived trace gas VCDs do not include the effect of polarization in their radiative transfer models. However, the various scattering processes in the atmosphere do lead to a distinctive polarization pattern of the observed Earthshine spectra. This study investigates the influence of these polarization patterns on box air mass factors for satellite nadir DOAS measurements of NO2 in the UV/vis wavelength region. NO2 BAMFs have been simulated for a multitude of viewing geometries, surface albedos, and surface altitudes, using the radiative transfer model SCIATRAN. The results show a potentially large influence of polarization on the BAMF, which can reach 10% and more close to the surface. A simple correction for this effect seems not to be feasible, as it strongly depends on the specific measurement scenario and can lead to both high and low biases of the resulting NO2 VCD. We therefore conclude that all data products of NO2 VCDs derived from space-borne DOAS measurements should include polarization effects in their radiative transfer model calculations, or at least include the errors introduced by using linear models in their uncertainty estimates.
NASA Astrophysics Data System (ADS)
Chaverra, Eliana; Mach, Patryk; Sarbach, Olivier
2016-05-01
We analyze the properties of a polytropic fluid that is radially accreted into a Schwarzschild black hole. The case where the adiabatic index γ lies in the range of 1\\lt γ ≤slant 5/3 has been treated in previous work. In this article, we analyze the complementary range of 5/3\\lt γ ≤slant 2. To this purpose, the problem is cast into an appropriate Hamiltonian dynamical system, whose phase flow is analyzed. While, for 1\\lt γ ≤slant 5/3, the solutions are always characterized by the presence of a unique critical saddle point, we show that, when 5/3\\lt γ ≤slant 2, an additional critical point might appear, which is a center point. For the parametrization used in this paper, we prove that, whenever this additional critical point appears, there is a homoclinic orbit. Solutions corresponding to homoclinic orbits differ from standard transonic solutions with vanishing asymptotic velocities in two aspects: they are local (i.e., they cannot be continued to arbitrarily large radii); the dependence of the density or the value of the velocity on the radius is not monotonic.
Parameterization retrieval of trace gas volume mixing ratios from Airborne MAX-DOAS
NASA Astrophysics Data System (ADS)
Dix, Barbara; Koenig, Theodore K.; Volkamer, Rainer
2016-11-01
We present a parameterization retrieval of volume mixing ratios (VMRs) from differential slant column density (dSCD) measurements by Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS). The method makes use of the fact that horizontally recorded limb spectra (elevation angle 0°) are strongly sensitive to the atmospheric layer at instrument altitude. These limb spectra are analyzed using reference spectra that largely cancel out column contributions from above and below the instrument, so that the resulting limb dSCDs, i.e., the column integrated concentration with respect to a reference spectrum, are almost exclusively sensitive to the atmospheric layers around instrument altitude. The conversion of limb dSCDs into VMRs is then realized by calculating box air mass factors (Box-AMFs) for a Rayleigh atmosphere and applying a scaling factor constrained by O4 dSCDs to account for aerosol extinction. An iterative VMR retrieval scheme corrects for trace gas profile shape effects. Benefits of this method are (1) a fast conversion that only requires the computation of Box-AMFs in a Rayleigh atmosphere; (2) neither local aerosol extinction nor the slant column density in the DOAS reference (SCDref) needs to be known; and (3) VMRs can be retrieved for every measurement point along a flight track, thus increasing statistics and adding flexibility to capture concentration gradients. Sensitivity studies are performed for bromine monoxide (BrO), iodine monoxide (IO) and nitrogen dioxide (NO2), using (1) simulated dSCD data for different trace gas and aerosol profiles and (2) field measurements from the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment. For simulated data in a Rayleigh atmosphere, the agreement between the VMR from the parameterization method (VMRpara) and the true VMR (VMRtrue) is excellent for all trace gases. Offsets, slopes and R2 values for the linear fit of VMRpara over VMRtrue are, respectively (0.008 ± 0.001) pptv, 0.988 ± 0.001, 0.987 for BrO; (-0.0066 ± 0.0001) pptv, 1.0021 ± 0.0003, 0.9979 for IO; (-0.17 ± 0.03) pptv, 1.0036 ± 0.0001, 0.9997 for NO2. The agreement for atmospheres with aerosol shows comparable R2 values to the Rayleigh case, but slopes deviate a bit more from one: (0.093 ± 0.002) pptv, 0.933 ± 0.002, 0.907 for BrO; (0.0021 ± 0.0004) pptv, 0.887 ± 0.001, 0.973 for IO; (8.5 ± 0.1) pptv, 0.8302 ± 0.0006, 0.9923 for NO2. VMRpara from field data are further compared with optimal estimation retrievals (VMROE). Least orthogonal distance fit of the data give the following equations: BrOpara = (0.1 ± 0.2) pptv + (0.95 ± 0.14) × BrOOE; IOpara = (0.01 ± 0.02) pptv + (1.00 ± 0.12) × IOOE; NO2para = (3.9 ± 2.5) pptv + (0.87 ± 0.15) × NO2OE. Overall, we conclude that the parameterization retrieval is accurate with an uncertainty of 20 % for IO, 30 % for BrO and NO2, but not better than 0.05 pptv IO, 0.5 pptv BrO and 10 pptv NO2. The retrieval is applicable over a wide range of atmospheric conditions and measurement geometries and not limited to the interpretation of vertical profile measurements in the remote troposphere.
Improved OSIRIS NO2 retrieval algorithm: description and validation
NASA Astrophysics Data System (ADS)
Sioris, Christopher E.; Rieger, Landon A.; Lloyd, Nicholas D.; Bourassa, Adam E.; Roth, Chris Z.; Degenstein, Douglas A.; Camy-Peyret, Claude; Pfeilsticker, Klaus; Berthet, Gwenaël; Catoire, Valéry; Goutail, Florence; Pommereau, Jean-Pierre; McLinden, Chris A.
2017-03-01
A new retrieval algorithm for OSIRIS (Optical Spectrograph and Infrared Imager System) nitrogen dioxide (NO2) profiles is described and validated. The algorithm relies on spectral fitting to obtain slant column densities of NO2, followed by inversion using an algebraic reconstruction technique and the SaskTran spherical radiative transfer model (RTM) to obtain vertical profiles of local number density. The validation covers different latitudes (tropical to polar), years (2002-2012), all seasons (winter, spring, summer, and autumn), different concentrations of nitrogen dioxide (from denoxified polar vortex to polar summer), a range of solar zenith angles (68.6-90.5°), and altitudes between 10.5 and 39 km, thereby covering the full retrieval range of a typical OSIRIS NO2 profile. The use of a larger spectral fitting window than used in previous retrievals reduces retrieval uncertainties and the scatter in the retrieved profiles due to noisy radiances. Improvements are also demonstrated through the validation in terms of bias reduction at 15-17 km relative to the OSIRIS operational v3.0 algorithm. The diurnal variation of NO2 along the line of sight is included in a fully spherical multiple scattering RTM for the first time. Using this forward model with built-in photochemistry, the scatter of the differences relative to the correlative balloon NO2 profile data is reduced.
Application of High Resolution Air-Borne Remote Sensing Observations for Monitoring NOx Emissions
NASA Astrophysics Data System (ADS)
Souri, A.; Choi, Y.; Pan, S.; Curci, G.; Janz, S. J.; Kowalewski, M. G.; Liu, J.; Herman, J. R.; Weinheimer, A. J.
2017-12-01
Nitrogen oxides (NOx=NO+NO2) are one of the air pollutants, responsible for the formation of tropospheric ozone, acid rain and particulate nitrate. The anthropogenic NOx emissions are commonly estimated based on bottom-up inventories which are complicated by many potential sources of error. One way to improve the emission inventories is to use relevant observations to constrain them. Fortunately, Nitrogen dioxide (NO2) is one of the most successful detected species from remote sensing. Although many studies have shown the capability of using space-borne remote sensing observations for monitoring emissions, the insufficient sample number and footprint of current measurements have introduced a burden to constrain emissions at fine scales. Promisingly, there are several air-borne sensors collected for NASA's campaigns providing high spatial resolution of NO2 columns. Here, we use the well-characterized NO2 columns from the Airborne Compact Atmospheric Mapper (ACAM) onboard NASA's B200 aircraft into a 1×1 km regional model to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. Firstly, in order to incorporate the data, we convert the NO2 slant column densities to vertical ones using a joint of a radiative transfer model and the 1x1 km regional model constrained by P3-B aircraft measurements. After conducting an inverse modeling method using the Kalman filter, we find the ACAM observations are resourceful at mitigating the overprediction of model in reproducing NO2 on regular days. Moreover, the ACAM provides a unique opportunity to detect an anomaly in emissions leading to strong air quality degradation that is lacking in previous works. Our study provides convincing evidence that future geostationary satellites with high spatial and temporal resolutions will give us insights into uncertainties associated with the emissions at regional scales.
Energy Budget of Forming Clumps in Numerical Simulations of Collapsing Clouds
NASA Astrophysics Data System (ADS)
Camacho, Vianey; Vázquez-Semadeni, Enrique; Ballesteros-Paredes, Javier; Gómez, Gilberto C.; Fall, S. Michael; Mata-Chávez, M. Dolores
2016-12-01
We analyze the physical properties and energy balance of density enhancements in two SPH simulations of the formation, evolution, and collapse of giant molecular clouds. In the simulations, no feedback is included, so all motions are due either to the initial decaying turbulence or to gravitational contraction. We define clumps as connected regions above a series of density thresholds. The resulting full set of clumps follows the generalized energy equipartition relation, {σ }v/{R}1/2\\propto {{{Σ }}}1/2, where {σ }v is the velocity dispersion, R is the “radius,” and Σ is the column density. We interpret this as a natural consequence of gravitational contraction at all scales rather than virial equilibrium. Nevertheless, clumps with low Σ tend to show a large scatter around equipartition. In more than half of the cases, this scatter is dominated by external turbulent compressions that assemble the clumps rather than by small-scale random motions that would disperse them. The other half does actually disperse. Moreover, clump sub-samples selected by means of different criteria exhibit different scalings. Sub-samples with narrow Σ ranges follow Larson-like relations, although characterized by their respective values of Σ. Finally, we find that (I) clumps lying in filaments tend to appear sub-virial, (II) high-density cores (n≥slant {10}5 cm3) that exhibit moderate kinetic energy excesses often contain sink (“stellar”) particles and the excess disappears when the stellar mass is taken into account in the energy balance, and (III) cores with kinetic energy excess but no stellar particles are truly in a state of dispersal.
NASA Astrophysics Data System (ADS)
Marais, Eloise A.; Jacob, Daniel J.; Choi, Sungyeon; Joiner, Joanna; Belmonte-Rivas, Maria; Cohen, Ronald C.; Ryerson, Thomas B.; Weinheimer, Andrew J.; Volz-Thomas, Andreas
2017-04-01
Nitrogen oxides (NOx ≡ NO + NO2) are long lived in the upper troposphere (UT), and so have a large impact on ozone formation where ozone is a powerful greenhouse gas. Measurements of UT NOx are limited to summertime aircraft campaigns predominantly in North America. There are year-round NOx measurements from instruments onboard commercial aircraft, but NO2 measurements are susceptible to large interferences. Satellites provide global coverage, but traditional space-based NO2 observations only provide one piece of vertical information in the troposphere. New cloud-sliced satellite NO2 products offer additional vertical information by retrieving partial NO2 columns above clouds and further exploit differences in cloud heights to calculate UT NO2 mixing ratios. Two new cloud-sliced NO2 products from the Ozone Monitoring Instrument (OMI; 2004 launch) provide seasonal UT NO2 data centered at 350 hPa for 2005-2007 (NASA product) and 380 hPa for 2006 only (KNMI). Differences between the products include spectral fitting to obtain NO2 along the viewing path (slant column), the air mass factor calculation to convert slant columns to true vertical columns, treatment of the stratospheric NO2 component, and the choice of cloud products. The resultant NASA NO2 mixing ratios are 30% higher than KNMI NO2 and are consistent with summertime aircraft NO2 observations over North America. Comparison between NASA NO2 and the GEOS-Chem chemical transport model exposes glaring inadequacies in the model. In summer in the eastern US lightning NOx emissions are overestimated by at least a factor of 2, corroborated by comparison of GEOS-Chem and MOZAIC aircraft observations of reactive nitrogen (NOy). Too fast heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) leads to an underestimate in UT NO2 in winter across the northern hemisphere. Absence of interannual variability in lightning flashes in the lightning NOx parameterization induces biases in UT NO2 in the tropics due to anomalous lightning activity linked to the El Niño Southern Oscillation. Ongoing work is to use GEOS-Chem to investigate the implications of updated representation of UT NOx on ozone.
Ionosphere Profile Estimation Using Ionosonde & GPS Data in an Inverse Refraction Calculation
NASA Astrophysics Data System (ADS)
Psiaki, M. L.
2014-12-01
A method has been developed to assimilate ionosonde virtual heights and GPS slant TEC data to estimate the parameters of a local ionosphere model, including estimates of the topside and of latitude and longitude variations. This effort seeks to better assimilate a variety of remote sensing data in order to characterize local (and eventually regional and global) ionosphere electron density profiles. The core calculations involve a forward refractive ray-tracing solution and a nonlinear optimal estimation algorithm that inverts the forward model. The ray-tracing calculations solve a nonlinear two-point boundary value problem for the curved ionosonde or GPS ray path through a parameterized electron density profile. It implements a full 3D solution that can handle the case of a tilted ionosphere. These calculations use Hamiltonian equivalents of the Appleton-Hartree magneto-plasma refraction index model. The current ionosphere parameterization is a modified Booker profile. It has been augmented to include latitude and longitude dependencies. The forward ray-tracing solution yields a given signal's group delay and beat carrier phase observables. An auxiliary set of boundary value problem solutions determine the sensitivities of the ray paths and observables with respect to the parameters of the augmented Booker profile. The nonlinear estimation algorithm compares the measured ionosonde virtual-altitude observables and GPS slant-TEC observables to the corresponding values from the forward refraction model. It uses the parameter sensitivities of the model to iteratively improve its parameter estimates in a way the reduces the residual errors between the measurements and their modeled values. This method has been applied to data from HAARP in Gakona, AK and has produced good TEC and virtual height fits. It has been extended to characterize electron density perturbations caused by HAARP heating experiments through the use of GPS slant TEC data for an LOS through the heated zone. The next planned extension of the method is to estimate the parameters of a regional ionosphere profile. The input observables will be slant TEC from an array of GPS receivers and group delay and carrier phase observables from an array of high-frequency beacons. The beacon array will function as a sort of multi-static ionosonde.
NO2 column changes induced by volcanic eruptions
NASA Technical Reports Server (NTRS)
Johnston, Paul V.; Keys, J. Gordon; Mckenzie, Richard L.
1994-01-01
Nitrogen dioxide slant column amounts measured by ground-based remote sensing from Lauder, New Zealand (45 deg S) and Campbell Island (53 deg S) during the second half of 1991 and early 1992 show anomalously low values that are attributed to the effects of volcanic eruptions. It is believed that the eruptions of Mount Pinatubo in the Philippines in June 1991 and possibly Mount Hudson in Chile in August 1991 are responsible for the stratospheric changes, which first became apparent in July 1991. The effects in the spring of 1991 are manifested as a reduction in the retrieved NO2 column amounts from normal levels by 35 to 45 percent, and an accompanying increase in the overnight decay of NO2. The existence of an accurate long-term record of column NO2 from the Lauder site enables us to quantify departures from the normal seasonal behavior with some confidence. Simultaneous retrievals of column ozone agree well with Dobson measurements, confirming that only part of the NO2 changes can be attributed to a modification of the scattering geometry by volcanic aerosols. Other reasons for the observed behavior are explored, including the effects of stratospheric temperature increases resulting from the aerosol loading and the possible involvement of heterogeneous chemical processes.
NASA Astrophysics Data System (ADS)
Iyorzor, B. E.; Babalola, M. I.; Adetunji, B. I.; Bakare, F. O.
2018-05-01
The structural, electronic and mechanical properties of Be{S}1-xT{e}x are studied within the concentration range of 0≤slant x≤slant 1 using first-principles plane–wave Pseudopotential density functional theory (DFT) approach. We have used generalized gradient approximation (GGA) to treat the exchange-correlation potentials. The elastic constants, bulk, shear and Young’s moduli, Poisson’s ratio, and Zener’s anisotropic factors are calculated. The results were found to be in agreement with other available theoretical and experimental values. It was also observed that the existence and increase of Tellurium concentration decreases the hardness of the alloy.
The spectrum of the Jovian Aurora 1150-1700 A
NASA Technical Reports Server (NTRS)
Durrance, S. T.; Feldman, P. D.; Moos, H. W.
1982-01-01
A series of observations of the northern hemisphere of Jupiter was made in January 1981 using the International Ultraviolet Explorer short-wavelength spectrograph. Exposures of 15 minutes each were made at regular intervals of about 45 minutes around the time when Jupiter's north magnetic pole was tilted toward the earth. The auroral emissions of H Lyman-alpha, and the H2 Lyman- and Werner-bands are seen to emanate from a localized region near the north pole. Their intensity increases and decreases in a periodic way as the planet rotates with the maximum occurring at lambda sub III approximately equal to 185 deg. Using the three observations nearest the observed maximum, a composite spectrum of the aurora is obtained with about 8 A resolution and high signal-to-noise ratio, and many of the H2 Lyman- and Werner-bands in this spectral region (1150-1700 A) are identified. This spectrum is compared with a laboratory H2 spectrum and with photoabsorption cross sections for CH4 and C2H6. An upper limit to the slant column density of these hydrocarbons above the auroral emissions is found to be approximately 2 x 10 to the 17th/sq cm.
On the Origin of the High Column Density Turnover in the HI Column Density Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.
We study the high column density regime of the HI column density distribution function and argue that there are two distinct features: a turnover at NHI ~ 10^21 cm^-2 which is present at both z=0 and z ~ 3, and a lack of systems above NHI ~ 10^22 cm^-2 at z=0. Using observations of the column density distribution, we argue that the HI-H2 transition does not cause the turnover at NHI ~ 10^21 cm^-2, but can plausibly explain the turnover at NHI > 10^22 cm^-2. We compute the HI column density distribution of individual galaxies in the THINGS sample andmore » show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the HI map or to averaging in radial shells. Our results indicate that the similarity of HI column density distributions at z=3 and z=0 is due to the similarity of the maximum HI surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within GMCs cannot affect the DLA column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over ~ kpc scales with those estimated from quasar spectra which probe sub-pc scales due to the steep power spectrum of HI column density fluctuations observed in nearby galaxies.« less
Slant correction for handwritten English documents
NASA Astrophysics Data System (ADS)
Shridhar, Malayappan; Kimura, Fumitaka; Ding, Yimei; Miller, John W. V.
2004-12-01
Optical character recognition of machine-printed documents is an effective means for extracting textural material. While the level of effectiveness for handwritten documents is much poorer, progress is being made in more constrained applications such as personal checks and postal addresses. In these applications a series of steps is performed for recognition beginning with removal of skew and slant. Slant is a characteristic unique to the writer and varies from writer to writer in which characters are tilted some amount from vertical. The second attribute is the skew that arises from the inability of the writer to write on a horizontal line. Several methods have been proposed and discussed for average slant estimation and correction in the earlier papers. However, analysis of many handwritten documents reveals that slant is a local property and slant varies even within a word. The use of an average slant for the entire word often results in overestimation or underestimation of the local slant. This paper describes three methods for local slant estimation, namely the simple iterative method, high-speed iterative method, and the 8-directional chain code method. The experimental results show that the proposed methods can estimate and correct local slant more effectively than the average slant correction.
Development of an OClO Slant Column Product for the GOME-2 Sensors
NASA Astrophysics Data System (ADS)
Richter, Andreas; Wittrock, Folkard; Burrows, John P.
2016-04-01
Stratospheric ozone depletion by catalytic reactions involving halogens is one of the most prominent examples of anthropogenic impacts on the atmosphere. In spite of the rapid and successful international action to reduce emissions of CFCs and other ozone depleting substances leading to the Montreal Protocol and its amendments, ozone depletion in polar spring is still observed in both hemispheres on a regular basis. For the coming years, slow ozone recovery is expected but individual years will still see very low ozone columns depending on meteorology and possible interactions with climate change. Monitoring of both ozone and ozone depleting substances in the stratosphere remains a priority to ensure that the predicted reduction in halogen levels and recovery of ozone columns is taking place as predicted. One way to observe stratospheric chlorine activation is by measurements of OClO which can be detected by UV/visible remote sensing from the ground and from satellite. While the link between OClO levels and chlorine activation is complicated by the fact that a) OClO is not directly involved in ozone depletion but is produced by reaction of BrO and ClO and b) is rapidly photolysed at daylight, the long existing data series from both ground-based and satellite observations makes it an interesting tracer of chlorine activation. The GOME-2 instruments on the MetOp series of satellites are nadir viewing UV/vis spectrometers having the spectral coverage and resolution needed for Differential Optical Absorption Spectroscopy retrievals of OClO. With their combined lifetime of more than 15 years, they can provide a long-term data set. However, previous attempts to create an OClO product for GOME-2 suffered from large scatter in the OClO data and time-dependent offsets. Here we present an improved OClO slant column retrieval for the two instruments GOME2-A and GOME2-B. The data is shown to be of similar quality as for earlier instruments such as SCIAMACHY, and is consistent between the instruments. The time series from the two instruments nicely reproduces the large interannual variability in chlorine activation in both hemispheres. Validation with ground-based DOAS zenith-sky observations in Ny-Ålesund shows very good agreement in NH spring. Some baseline drift remains in the GOME2-A data which could be further reduced by application of an offset correction.
NASA Technical Reports Server (NTRS)
McLinden, C. A.; Fioletov, V.; Boersma, K. F.; Kharol, S. K.; Krotkov, N.; Lamsal, L.; Makar, P. A.; Martin, R. V.; Veefkind, J. P.; Yang, K.
2014-01-01
Satellite remote sensing is increasingly being used to monitor air quality over localized sources such as the Canadian oil sands. Following an initial study, significantly low biases have been identified in current NO2 and SO2 retrieval products from the Ozone Monitoring Instrument (OMI) satellite sensor over this location resulting from a combination of its rapid development and small spatial scale. Air mass factors (AMFs) used to convert line-of-sight "slant" columns to vertical columns were re-calculated for this region based on updated and higher resolution input information including absorber profiles from a regional-scale (15 km × 15 km resolution) air quality model, higher spatial and temporal resolution surface reflectivity, and an improved treatment of snow. The overall impact of these new Environment Canada (EC) AMFs led to substantial increases in the peak NO2 and SO2 average vertical column density (VCD), occurring over an area of intensive surface mining, by factors of 2 and 1.4, respectively, relative to estimates made with previous AMFs. Comparisons are made with long-term averages of NO2 and SO2 (2005-2011) from in situ surface monitors by using the air quality model to map the OMI VCDs to surface concentrations. This new OMI-EC product is able to capture the spatial distribution of the in situ instruments (slopes of 0.65 to 1.0, correlation coefficients of greater than 0.9). The concentration absolute values from surface network observations were in reasonable agreement, with OMI-EC NO2 and SO2 biased low by roughly 30%. Several complications were addressed including correction for the interference effect in the surface NO2 instruments and smoothing and clear-sky biases in the OMI measurements. Overall these results highlight the importance of using input information that accounts for the spatial and temporal variability of the location of interest when performing retrievals.
Parameterization retrieval of trace gas volume mixing ratios from Airborne MAX-DOAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dix, Barbara; Koenig, Theodore K.; Volkamer, Rainer
We present a parameterization retrieval of volume mixing ratios (VMRs) from differential slant column density (dSCD) measurements by Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS). The method makes use of the fact that horizontally recorded limb spectra (elevation angle 0°) are strongly sensitive to the atmospheric layer at instrument altitude. These limb spectra are analyzed using reference spectra that largely cancel out column contributions from above and below the instrument, so that the resulting limb dSCDs, i.e., the column integrated concentration with respect to a reference spectrum, are almost exclusively sensitive to the atmospheric layers around instrument altitude. The conversionmore » of limb dSCDs into VMRs is then realized by calculating box air mass factors (Box-AMFs) for a Rayleigh atmosphere and applying a scaling factor constrained by O 4 dSCDs to account for aerosol extinction. An iterative VMR retrieval scheme corrects for trace gas profile shape effects. Benefits of this method are (1) a fast conversion that only requires the computation of Box-AMFs in a Rayleigh atmosphere; (2) neither local aerosol extinction nor the slant column density in the DOAS reference (SCD ref) needs to be known; and (3) VMRs can be retrieved for every measurement point along a flight track, thus increasing statistics and adding flexibility to capture concentration gradients. Sensitivity studies are performed for bromine monoxide (BrO), iodine monoxide (IO) and nitrogen dioxide (NO 2), using (1) simulated dSCD data for different trace gas and aerosol profiles and (2) field measurements from the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment. For simulated data in a Rayleigh atmosphere, the agreement between the VMR from the parameterization method (VMR para) and the true VMR (VMR true) is excellent for all trace gases. Offsets, slopes and R 2 values for the linear fit of VMR para over VMR true are, respectively (0.008 ± 0.001) pptv, 0.988 ± 0.001, 0.987 for BrO; (-0.0066 ± 0.0001) pptv, 1.0021 ± 0.0003, 0.9979 for IO; (-0.17 ± 0.03) pptv, 1.0036 ± 0.0001, 0.9997 for NO 2. The agreement for atmospheres with aerosol shows comparable R 2 values to the Rayleigh case, but slopes deviate a bit more from one: (0.093 ± 0.002) pptv, 0.933 ± 0.002, 0.907 for BrO; (0.0021 ± 0.0004) pptv, 0.887 ± 0.001, 0.973 for IO; (8.5 ± 0.1) pptv, 0.8302 ± 0.0006, 0.9923 for NO 2. VMR para from field data are further compared with optimal estimation retrievals (VMR OE). Least orthogonal distance fit of the data give the following equations: BrO para = (0.1 ± 0.2) pptv + (0.95 ± 0.14) × BrO OE; IO para = (0.01 ± 0.02) pptv + (1.00 ± 0.12) × IO OE; NO 2para = (3.9 ± 2.5) pptv + (0.87 ± 0.15) × NO 2OE. Overall, we conclude that the parameterization retrieval is accurate with an uncertainty of 20 % for IO, 30 % for BrO and NO 2, but not better than 0.05 pptv IO, 0.5 pptv BrO and 10 pptv NO 2. Finally, the retrieval is applicable over a wide range of atmospheric conditions and measurement geometries and not limited to the interpretation of vertical profile measurements in the remote troposphere.« less
Parameterization retrieval of trace gas volume mixing ratios from Airborne MAX-DOAS
Dix, Barbara; Koenig, Theodore K.; Volkamer, Rainer
2016-11-28
We present a parameterization retrieval of volume mixing ratios (VMRs) from differential slant column density (dSCD) measurements by Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS). The method makes use of the fact that horizontally recorded limb spectra (elevation angle 0°) are strongly sensitive to the atmospheric layer at instrument altitude. These limb spectra are analyzed using reference spectra that largely cancel out column contributions from above and below the instrument, so that the resulting limb dSCDs, i.e., the column integrated concentration with respect to a reference spectrum, are almost exclusively sensitive to the atmospheric layers around instrument altitude. The conversionmore » of limb dSCDs into VMRs is then realized by calculating box air mass factors (Box-AMFs) for a Rayleigh atmosphere and applying a scaling factor constrained by O 4 dSCDs to account for aerosol extinction. An iterative VMR retrieval scheme corrects for trace gas profile shape effects. Benefits of this method are (1) a fast conversion that only requires the computation of Box-AMFs in a Rayleigh atmosphere; (2) neither local aerosol extinction nor the slant column density in the DOAS reference (SCD ref) needs to be known; and (3) VMRs can be retrieved for every measurement point along a flight track, thus increasing statistics and adding flexibility to capture concentration gradients. Sensitivity studies are performed for bromine monoxide (BrO), iodine monoxide (IO) and nitrogen dioxide (NO 2), using (1) simulated dSCD data for different trace gas and aerosol profiles and (2) field measurements from the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment. For simulated data in a Rayleigh atmosphere, the agreement between the VMR from the parameterization method (VMR para) and the true VMR (VMR true) is excellent for all trace gases. Offsets, slopes and R 2 values for the linear fit of VMR para over VMR true are, respectively (0.008 ± 0.001) pptv, 0.988 ± 0.001, 0.987 for BrO; (-0.0066 ± 0.0001) pptv, 1.0021 ± 0.0003, 0.9979 for IO; (-0.17 ± 0.03) pptv, 1.0036 ± 0.0001, 0.9997 for NO 2. The agreement for atmospheres with aerosol shows comparable R 2 values to the Rayleigh case, but slopes deviate a bit more from one: (0.093 ± 0.002) pptv, 0.933 ± 0.002, 0.907 for BrO; (0.0021 ± 0.0004) pptv, 0.887 ± 0.001, 0.973 for IO; (8.5 ± 0.1) pptv, 0.8302 ± 0.0006, 0.9923 for NO 2. VMR para from field data are further compared with optimal estimation retrievals (VMR OE). Least orthogonal distance fit of the data give the following equations: BrO para = (0.1 ± 0.2) pptv + (0.95 ± 0.14) × BrO OE; IO para = (0.01 ± 0.02) pptv + (1.00 ± 0.12) × IO OE; NO 2para = (3.9 ± 2.5) pptv + (0.87 ± 0.15) × NO 2OE. Overall, we conclude that the parameterization retrieval is accurate with an uncertainty of 20 % for IO, 30 % for BrO and NO 2, but not better than 0.05 pptv IO, 0.5 pptv BrO and 10 pptv NO 2. Finally, the retrieval is applicable over a wide range of atmospheric conditions and measurement geometries and not limited to the interpretation of vertical profile measurements in the remote troposphere.« less
What drives observed space-borne variations of formaldehyde columns over the Indian subcontinent?
NASA Astrophysics Data System (ADS)
Surl, Luke; Palmer, Paul
2017-04-01
Oxidation of volatile organic compounds (VOCs) leads to the formation of secondary air pollutants (e.g. formaldehyde, HCHO) and secondary organic aerosol linked with deleterious impacts on human health. Our focus in this study is the Indian subcontinent where there is a range of chemical environments that span forest ecosystems (dominated by biogenic VOCs) to megacities that are sometimes influenced by upwind sources (e.g. agricultural burning), both with and without some marine influence. To understand this range of environments we use space-borne column observations of HCHO from the Ozone Monitoring Instrument (OMI), in coordination with the GEOS-Chem atmospheric chemistry transport model, to provide insight into the emissions and photochemical processes in the atmosphere. As part of this work we have developed a HCHO vertical column product using slant column retrievals from the NASA OMHCHO v003 product combined with air-mass factors determined by a high-resolution (c25 km), nested run of the GEOS-Chem model. We report our analysis for a calendar year, studying in particular seasonal cycles associated with biogenic emissions, agricultural burning, and meteorology (most notably monsoon dynamics). We also consider the extent to which these satellite data can provide information on city-sized spatial scales, and investigate such an approach for some of India's megacities.
Single fiber lignin distributions based on the density gradient column method
Brian Boyer; Alan W. Rudie
2007-01-01
The density gradient column method was used to determine the effects of uniform and non-uniform pulping processes on variation in individual fiber lignin concentrations of the resulting pulps. A density gradient column uses solvents of different densities and a mixing process to produce a column of liquid with a smooth transition from higher density at the bottom to...
NASA Astrophysics Data System (ADS)
Soler, J. D.; Ade, P. A. R.; Angilè, F. E.; Ashton, P.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Galitzki, N.; Gandilo, N. N.; Hennebelle, P.; Klein, J.; Li, Z.-Y.; Korotkov, A. L.; Martin, P. G.; Matthews, T. G.; Moncelsi, L.; Netterfield, C. B.; Novak, G.; Pascale, E.; Poidevin, F.; Santos, F. P.; Savini, G.; Scott, D.; Shariff, J. A.; Thomas, N. E.; Tucker, C. E.; Tucker, G. S.; Ward-Thompson, D.
2017-07-01
We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.´0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondencebetween (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region.
Analysis of FORTE data to extract ionospheric parameters
NASA Astrophysics Data System (ADS)
Roussel-Dupré, Robert A.; Jacobson, Abram R.; Triplett, Laurie A.
2001-01-01
The ionospheric transfer function is derived for a spherically symmetric ionosphere with an arbitrary radial electron density profile in the limit where the radio frequencies of interest ω are much larger than the plasma frequency ωpe. An expansion of the transfer function to second order in the parameter X (= ω2pe/ω2) is carried out. In this limit the dispersive properties of the ionosphere are manifested as a frequency-dependent time of arrival that includes quadratic, cubic, and quartic terms in 1/ω. The coefficients of these terms are related to the total electron content (TEC) along the slant path from transmitter to receiver, the product of TEC and the longitudinal magnetic field strength along the slant path, and refractive bending and higher-order electron density profile effects, respectively. By fitting the time of arrival versus frequency of a transionospheric signal to a polynomial in 1/ω it is possible to extract the TEC, the longitudinal magnetic field strength, the peak electron density, and an effective thickness for the ionosphere. This exercise was carried out for a number of transionospheric pulses measured in the VHF by the FORTE satellite receiver and generated by the Los Alamos Portable Pulser. The results are compared with predictions derived from the International Reference Ionosphere and the United States Geological Survey geomagnetic field model.
Space-based retrieval of NO2 over biomass burning regions: quantifying and reducing uncertainties
NASA Astrophysics Data System (ADS)
Bousserez, N.
2014-10-01
The accuracy of space-based nitrogen dioxide (NO2) retrievals from solar backscatter radiances critically depends on a priori knowledge of the vertical profiles of NO2 and aerosol optical properties. This information is used to calculate an air mass factor (AMF), which accounts for atmospheric scattering and is used to convert the measured line-of-sight "slant" columns into vertical columns. In this study we investigate the impact of biomass burning emissions on the AMF in order to quantify NO2 retrieval errors in the Ozone Monitoring Instrument (OMI) products over these sources. Sensitivity analyses are conducted using the Linearized Discrete Ordinate Radiative Transfer (LIDORT) model. The NO2 and aerosol profiles are obtained from a 3-D chemistry-transport model (GEOS-Chem), which uses the Fire Locating and Monitoring of Burning Emissions (FLAMBE) daily biomass burning emission inventory. Aircraft in situ data collected during two field campaigns, the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) and the Dust and Biomass-burning Experiment (DABEX), are used to evaluate the modeled aerosol optical properties and NO2 profiles over Canadian boreal fires and West African savanna fires, respectively. Over both domains, the effect of biomass burning emissions on the AMF through the modified NO2 shape factor can be as high as -60%. A sensitivity analysis also revealed that the effect of aerosol and shape factor perturbations on the AMF is very sensitive to surface reflectance and clouds. As an illustration, the aerosol correction can range from -20 to +100% for different surface reflectances, while the shape factor correction varies from -70 to -20%. Although previous studies have shown that in clear-sky conditions the effect of aerosols on the AMF was in part implicitly accounted for by the modified cloud parameters, here it is suggested that when clouds are present above a surface layer of scattering aerosols, an explicit aerosol correction would be beneficial to the NO2 retrieval. Finally, a new method that uses slant column information to correct for shape-factor-related AMF error over NOx emission sources is proposed, with possible application to near-real-time OMI retrievals.
Simple design of slanted grating with simplified modal method.
Li, Shubin; Zhou, Changhe; Cao, Hongchao; Wu, Jun
2014-02-15
A simplified modal method (SMM) is presented that offers a clear physical image for subwavelength slanted grating. The diffraction characteristic of the slanted grating under Littrow configuration is revealed by the SMM as an equivalent rectangular grating, which is in good agreement with rigorous coupled-wave analysis. Based on the equivalence, we obtained an effective analytic solution for simplifying the design and optimization of a slanted grating. It offers a new approach for design of the slanted grating, e.g., a 1×2 beam splitter can be easily designed. This method should be helpful for designing various new slanted grating devices.
Slant Perception Under Stereomicroscopy.
Horvath, Samantha; Macdonald, Kori; Galeotti, John; Klatzky, Roberta L
2017-11-01
Objective These studies used threshold and slant-matching tasks to assess and quantitatively measure human perception of 3-D planar images viewed through a stereomicroscope. The results are intended for use in developing augmented-reality surgical aids. Background Substantial research demonstrates that slant perception is performed with high accuracy from monocular and binocular cues, but less research concerns the effects of magnification. Viewing through a microscope affects the utility of monocular and stereo slant cues, but its impact is as yet unknown. Method Participants performed in a threshold slant-detection task and matched the slant of a tool to a surface. Different stimuli and monocular versus binocular viewing conditions were implemented to isolate stereo cues alone, stereo with perspective cues, accommodation cue only, and cues intrinsic to optical-coherence-tomography images. Results At magnification of 5x, slant thresholds with stimuli providing stereo cues approximated those reported for direct viewing, about 12°. Most participants (75%) who passed a stereoacuity pretest could match a tool to the slant of a surface viewed with stereo at 5x magnification, with mean compressive error of about 20% for optimized surfaces. Slant matching to optical coherence tomography images of the cornea viewed under the microscope was also demonstrated. Conclusion Despite the distortions and cue loss introduced by viewing under the stereomicroscope, most participants were able to detect and interact with slanted surfaces. Application The experiments demonstrated sensitivity to surface slant that supports the development of augmented-reality systems to aid microscope-aided surgery.
Intensity Mapping of Hα, Hβ, [OII], and [OIII] Lines at z < 5
NASA Astrophysics Data System (ADS)
Gong, Yan; Cooray, Asantha; Silva, Marta B.; Zemcov, Michael; Feng, Chang; Santos, Mario G.; Dore, Olivier; Chen, Xuelei
2017-02-01
Intensity mapping is becoming a useful tool to study the large-scale structure of the universe through spatial variations in the integrated emission from galaxies and the intergalactic medium. We study intensity mapping of the {{H}}α 6563 \\mathringA , [O III] 5007 Å, [O II] 3727 Å, and {{H}}β 4861 \\mathringA lines at 0.8≤slant z≤slant 5.2. The mean intensities of these four emission lines are estimated using the observed luminosity functions (LFs), cosmological simulations, and the star formation rate density (SFRD) derived from observations at z≲ 5. We calculate the intensity power spectra and consider the foreground contamination of other lines at lower redshifts. We use the proposed NASA small explorer SPHEREx (the Spectro-Photometer for the History of the universe, Epoch of Reionization, and Ices Explorer) as a case study for the detectability of the intensity power spectra of the four emission lines. We also investigate the cross-correlation with the 21 cm line probed by the Canadian Hydrogen Intensity Mapping Experiment (CHIME), Tianlai experiment and the Square Kilometer Array (SKA) at 0.8≤slant z≤slant 2.4. We find both the auto and cross power spectra can be well measured for the Hα, [O III] and [O II] lines at z≲ 3, while it is more challenging for the Hβ line. Finally, we estimate the constraint on the SFRD from intensity mapping, and find we can reach an accuracy higher than 7% at z≲ 4, which is better than with the usual method of measurements using the LFs of galaxies.
Barra, Julien; Laou, Laetitia; Poline, Jean-Baptiste; Lebihan, Denis; Berthoz, Alain
2012-01-01
Perspective (route or survey) during the encoding of spatial information can influence recall and navigation performance. In our experiment we investigated a third type of perspective, which is a slanted view. This slanted perspective is a compromise between route and survey perspectives, offering both information about landmarks as in route perspective and geometric information as in survey perspective. We hypothesized that the use of slanted perspective would allow the brain to use either egocentric or allocentric strategies during storage and recall. Twenty-six subjects were scanned (3-Tesla fMRI) during the encoding of a path (40-s navigation movie within a virtual city). They were given the task of encoding a segment of travel in the virtual city and of subsequent shortcut-finding for each perspective: route, slanted and survey. The analysis of the behavioral data revealed that perspective influenced response accuracy, with significantly more correct responses for slanted and survey perspectives than for route perspective. Comparisons of brain activation with route, slanted, and survey perspectives suggested that slanted and survey perspectives share common brain activity in the left lingual and fusiform gyri and lead to very similar behavioral performance. Slanted perspective was also associated with similar activation to route perspective during encoding in the right middle occipital gyrus. Furthermore, slanted perspective induced intermediate patterns of activation (in between route and survey) in some brain areas, such as the right lingual and fusiform gyri. Our results suggest that the slanted perspective may be considered as a hybrid perspective. This result offers the first empirical support for the choice to present the slanted perspective in many navigational aids. PMID:23209583
NASA Technical Reports Server (NTRS)
Cede, Alexander; Herman, Jay; Richter, Andreas; Krotkov, Nickolay; Burrows, John
2006-01-01
NO2 column amounts were measured for the past 2 years at Goddard Space Flight Center, Greenbelt, Maryland, using a Brewer spectrometer in direct Sun mode. A new bootstrap method to calibrate the instrument is introduced and described. This technique selects the cleanest days from the database to obtain the solar reference spectrum. The main advantage for direct Sun measurements is that the conversion uncertainty from slant column to vertical column is negligible compared to the standard scattered light observations where it is typically on the order of 100% (2sigma) at polluted sites. The total 2sigma errors of the direct Sun retrieved column amounts decrease with solar zenith angle and are estimated at 0.2 to 0.6 Dobson units (DU, 1 DU approx. equal to 2.7 10(exp 16) molecules cm(exp -2)), which is more accurate than scattered light measurements for high NO2 amounts. Measured NO2 column amounts, ranging from 0 to 3 DU with a mean of 0.7 DU, show a pronounced daily course and a strong variability from day to day. The NO2 concentration typically increases from sunrise to noon. In the afternoon it decreases in summer and stays constant in winter. As expected from the anthropogenic nature of its source, NO2 amounts on weekends are significantly reduced. The measurements were compared to satellite retrievals from Scanning Image Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). Satellite data give the same average NO2 column and show a seasonal cycle that is similar to the ground data in the afternoon. We show that NO2 must be considered when retrieving aerosol absorption properties, especially for situations with low aerosol optical depth.
Intercomparison of 4 Years of Global Formaldehyde Observations from the GOME-2 and OMI Sensors
NASA Astrophysics Data System (ADS)
De Smedt, Isabelle; Van Roozendael, Michel; Stravrakou, Trissevgeni; Muller, Jean-Francois; Chance, Kelly; Kurosu, Thomas
2012-11-01
Formaldehyde (H2CO) tropospheric columns have been retrieved since 2007 from backscattered UV radiance measurements performed by the GOME-2 instrument on the EUMETSAT METOP-A platform. This data set extends the successful time-series of global H2CO observations established with GOME/ ERS-2 (1996-2003), SCIAMACHY/ ENVISAT (2003-2012), and OMI on the NASA AURA platform (2005-now). In this work, we perform an intercomparison of the H2CO tropospheric columns retrieved from GOME-2 and OMI between 2007 and 2010, respectively at BIRA-IASB and at Harvard SAO. We first compare the global formaldehyde data products that are provided by each retrieval group. We then investigate each step of the retrieval procedure: the slant column fitting, the reference sector correction and the air mass factor calculation. New air mass factors are computed for OMI using external parameters consistent with those used for GOME-2. By doing so, the impacts of the different a priori profiles and aerosol corrections are quantified. The remaining differences are evaluated in view of the expected diurnal variations of the formaldehyde concentrations, based on ground-based measurements performed in the Beijing area.
Must Star-forming Galaxies Rapidly Get Denser before They Quench?
NASA Astrophysics Data System (ADS)
Abramson, L. E.; Morishita, T.
2018-05-01
Using the deepest data yet obtained, we find no evidence preferring compaction-triggered quenching—where rapid increases in galaxy density truncate star formation—over a null hypothesis in which galaxies age at constant surface density ({{{Σ }}}e\\equiv {M}* /2π {r}e2). Results from two fully empirical analyses and one quenching-free model calculation support this claim at all z ≤ 3: (1) qualitatively, galaxies’ mean U–V colors at 6.5 ≲ {log}{{{Σ }}}e/{\\text{}}{M}ȯ {kpc}}-2≲ 10 have reddened at rates/times correlated with {{{Σ }}}e, implying that there is no density threshold at which galaxies turn red but that {{{Σ }}}e sets the pace of maturation; (2) quantitatively, the abundance of {log}{M}* /{\\text{}}{M}ȯ ≥slant 9.4 red galaxies never exceeds that of the total population a quenching time earlier at any {{{Σ }}}e, implying that galaxies need not transit from low to high densities before quenching; (3) applying d{log}{r}e/{dt}=1/2 d{log}{M}* /{dt} to a suite of lognormal star formation histories reproduces the evolution of the size–mass relation at {log}{M}* /{\\text{}}{M}ȯ ≥slant 10. All results are consistent with evolutionary rates being set ab initio by global densities, with denser objects evolving faster than less-dense ones toward a terminal quiescence induced by gas depletion or other ∼Hubble-timescale phenomena. Unless stellar ages demand otherwise, observed {{{Σ }}}e thresholds need not bear any physical relation to quenching beyond this intrinsic density–formation epoch correlation, adding to Lilly & Carollo’s arguments to that effect.
On the Anomalously Large Extension of the Pulsar Wind Nebula HESS J1825-137
NASA Astrophysics Data System (ADS)
Khangulyan, Dmitry; Koldoba, Alexander V.; Ustyugova, Galina V.; Bogovalov, Sergey V.; Aharonian, Felix
2018-06-01
The very high energy gamma-ray emission reported from a number of pulsar wind nebulae (PWNe) is naturally explained by the inverse Compton scattering of multi-TeV electrons. However, the physical dimensions of some gamma-ray-emitting PWNe significantly exceed the scales anticipated by the standard hydrodynamical paradigm of PWN formation. The most “disturbing” case in this regard is HESS J1825-137, which extends to distances of r ≈ 70 pc from the central pulsar PSR J1826‑1334. If the gamma-ray emission is indeed produced inside the PWN, but not by electrons that escaped the nebula and diffuse in the interstellar medium (ISM), the formation of such an anomalously extended plerion could be realized, in a diluted environment with the hydrogen number density {n}{{ISM}}≤slant {10}-2 {cm}}-3. In this paper, we explore an alternative scenario assuming that the pulsar responsible for the formation of the nebula initially had a very short rotation period. In this case, the sizes of both the PWN and the surrounding supernova remnant depend on the initial pulsar period, the braking index, and the ISM density. To check the feasibility of this scenario, we study the parameter space that would reproduce the size of HESS J1825-137. We show that this demand can be achieved if the braking index is small, n≤slant 2, and the pulsar birth period is short, {P}{{b}}≃ 1 {ms}. This scenario can reproduce the wind termination position, which is expected at {R}{{TS}}≃ 0.03 {pc}, only in a dense environment with {n}{{ISM}}≥slant 1 {cm}}-3. The requirement of the dense surrounding gas is supported by the presence of molecular clouds found in the source vicinity.
NASA Astrophysics Data System (ADS)
Jackson-Booth, N.; Parker, J.; Pryse, S. E.; Buckland, R.
2017-12-01
The Electron Density Assimilative Model (EDAM) is an ionospheric model that assimilates data sources into a background model, currently provided by IRI2007, to generate a global, or regional, 3D representation of the ionospheric electron density. In this study, slant total electron content (sTEC) between GPS satellites and 43 ground receivers in Europe were assimilated into EDAM to model the ionospheric electron density over western Europe. For the evaluation of the model an additional ground receiver (the truth station) was considered, which was not used in the assimilation process. Slant total electron contents for this station were calculated through the EDAM model along satellite-to-receiver paths corresponding to those of the observations made by the receiver. The modelled and observed sTEC were compared for each satellite and every day, between September 2002 and August 2003. For the comparison standard deviations of the modelled and observed sTEC were determined. These were used in modified Taylor Diagrams to display the mean-removed rms difference between the model and observations, the correlation between the two data sets and the bias of the modelled data. Taylor diagrams were obtained for the entire year, and each season and month. Results of the comparisons are presented and discussed, with a specific interest in times that show increased rms differences and decreased correlations between the data sets. The effect of the satellite calibration biases on the results are also considered.
NASA Astrophysics Data System (ADS)
Tanimoto, Atsushi; Ueda, Yoshihiro; Kawamuro, Taiki; Ricci, Claudio; Awaki, Hisamitsu; Terashima, Yuichi
2018-02-01
We present a uniform broadband X-ray (0.5–100.0 keV) spectral analysis of 12 Swift/Burst Alert Telescope selected Compton-thick ({log}{N}{{H}}/{{cm}}-2≥slant 24) active galactic nuclei (CTAGNs) observed with Suzaku. The Suzaku data of three objects are published here for the first time. We fit the Suzaku and Swift spectra with models utilizing an analytic reflection code and those utilizing the Monte-Carlo-based model from an AGN torus by Ikeda et al. The main results are as follows: (1) The estimated intrinsic luminosity of a CTAGN strongly depends on the model; applying Compton scattering to the transmitted component in an analytic model may largely overestimate the intrinsic luminosity at large column densities. (2) Unabsorbed reflection components are commonly observed, suggesting that the tori are clumpy. (3) Most of CTAGNs show small scattering fractions (<0.5%), implying a buried AGN nature. (4) Comparison with the results obtained for Compton-thin AGNs suggests that the properties of these CTAGNs can be understood as a smooth extension from Compton-thin AGNs with heavier obscuration; we find no evidence that the bulk of the population of hard-X-ray-selected CTAGNs are different from less obscured objects.
NASA Astrophysics Data System (ADS)
Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.
2013-01-01
Tropospheric NO2 vertical column densities were retrieved for the first time in Toronto, Canada using three methods of differing spatial scales. Remotely-sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities derived using a pair of chemiluminescence monitors situated 0.01 and 0.5 km above ground level. The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson R ranging from 0.68 to 0.79), but the in situ vertical column densities were 27% to 55% greater than the remotely-sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely-sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely-sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each of the methods.
NASA Astrophysics Data System (ADS)
Berdanier, Reid A.; Key, Nicole L.
2016-03-01
The single slanted hot-wire technique has been used extensively as a method for measuring three velocity components in turbomachinery applications. The cross-flow orientation of probes with respect to the mean flow in rotating machinery results in detrimental prong interference effects when using multi-wire probes. As a result, the single slanted hot-wire technique is often preferred. Typical data reduction techniques solve a set of nonlinear equations determined by curve fits to calibration data. A new method is proposed which utilizes a look-up table method applied to a simulated triple-wire sensor with application to turbomachinery environments having subsonic, incompressible flows. Specific discussion regarding corrections for temperature and density changes present in a multistage compressor application is included, and additional consideration is given to the experimental error which accompanies each data reduction process. Hot-wire data collected from a three-stage research compressor with two rotor tip clearances are used to compare the look-up table technique with the traditional nonlinear equation method. The look-up table approach yields velocity errors of less than 5 % for test conditions deviating by more than 20 °C from calibration conditions (on par with the nonlinear solver method), while requiring less than 10 % of the computational processing time.
NASA Astrophysics Data System (ADS)
Schneider, N.; Ossenkopf, V.; Csengeri, T.; Klessen, R. S.; Federrath, C.; Tremblin, P.; Girichidis, P.; Bontemps, S.; André, Ph.
2015-03-01
Column-density maps of molecular clouds are one of the most important observables in the context of molecular cloud- and star-formation (SF) studies. With the Herschel satellite it is now possible to precisely determine the column density from dust emission, which is the best tracer of the bulk of material in molecular clouds. However, line-of-sight (LOS) contamination from fore- or background clouds can lead to overestimating the dust emission of molecular clouds, in particular for distant clouds. This implies values that are too high for column density and mass, which can potentially lead to an incorrect physical interpretation of the column density probability distribution function (PDF). In this paper, we use observations and simulations to demonstrate how LOS contamination affects the PDF. We apply a first-order approximation (removing a constant level) to the molecular clouds of Auriga and Maddalena (low-mass star-forming), and Carina and NGC 3603 (both high-mass SF regions). In perfect agreement with the simulations, we find that the PDFs become broader, the peak shifts to lower column densities, and the power-law tail of the PDF for higher column densities flattens after correction. All corrected PDFs have a lognormal part for low column densities with a peak at Av ~ 2 mag, a deviation point (DP) from the lognormal at Av(DP) ~ 4-5 mag, and a power-law tail for higher column densities. Assuming an equivalent spherical density distribution ρ ∝ r- α, the slopes of the power-law tails correspond to αPDF = 1.8, 1.75, and 2.5 for Auriga, Carina, and NGC 3603. These numbers agree within the uncertainties with the values of α ≈ 1.5,1.8, and 2.5 determined from the slope γ (with α = 1-γ) obtained from the radial column density profiles (N ∝ rγ). While α ~ 1.5-2 is consistent with a structure dominated by collapse (local free-fall collapse of individual cores and clumps and global collapse), the higher value of α > 2 for NGC 3603 requires a physical process that leads to additional compression (e.g., expanding ionization fronts). From the small sample of our study, we find that clouds forming only low-mass stars and those also forming high-mass stars have slightly different values for their average column density (1.8 × 1021 cm-2 vs. 3.0 × 1021 cm-2), and they display differences in the overall column density structure. Massive clouds assemble more gas in smaller cloud volumes than low-mass SF ones. However, for both cloud types, the transition of the PDF from lognormal shape into power-law tail is found at the same column density (at Av ~ 4-5 mag). Low-mass and high-mass SF clouds then have the same low column density distribution, most likely dominated by supersonic turbulence. At higher column densities, collapse and external pressure can form the power-law tail. The relative importance of the twoprocesses can vary between clouds and thus lead to the observed differences in PDF and column density structure. Appendices are available in electronic form at http://www.aanda.orgHerschel maps as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A79
Lindeberg theorem for Gibbs-Markov dynamics
NASA Astrophysics Data System (ADS)
Denker, Manfred; Senti, Samuel; Zhang, Xuan
2017-12-01
A dynamical array consists of a family of functions \\{ fn, i: 1≤slant i≤slant k_n, n≥slant 1\\} and a family of initial times \\{τn, i: 1≤slant i≤slant k_n, n≥slant 1\\} . For a dynamical system (X, T) we identify distributional limits for sums of the form for suitable (non-random) constants s_n>0 and an, i\\in { R} . We derive a Lindeberg-type central limit theorem for dynamical arrays. Applications include new central limit theorems for functions which are not locally Lipschitz continuous and central limit theorems for statistical functions of time series obtained from Gibbs-Markov systems. Our results, which hold for more general dynamics, are stated in the context of Gibbs-Markov dynamical systems for convenience.
Processing Satellite Data for Slant Total Electron Content Measurements
NASA Technical Reports Server (NTRS)
Stephens, Philip John (Inventor); Komjathy, Attila (Inventor); Wilson, Brian D. (Inventor); Mannucci, Anthony J. (Inventor)
2016-01-01
A method, system, and apparatus provide the ability to estimate ionospheric observables using space-borne observations. Space-borne global positioning system (GPS) data of ionospheric delay are obtained from a satellite. The space-borne GPS data are combined with ground-based GPS observations. The combination is utilized in a model to estimate a global three-dimensional (3D) electron density field.
NASA Astrophysics Data System (ADS)
Hordyniec, Paweł; Rohm, Witold; Kapłon, Jan
2017-04-01
Post-fit residuals from Precise Point Positioning (PPP) carry the troposphere information except of multipath and residual antenna Phase Centre Variations (PCVs), when precise satellite orbits and clocks were introduced. Slant total delay (STD) of GNSS signal is a sum of a priori slant hydrostatic delay, estimated wet delay, asymetry introduced by the estimated zenith total delay (ZTD) horizontal gradients and a post-fit residual reduced by the systematic (site-dependant) effect. It was revealed, that application of reduced post-fit residuls to the slant total delays obtained from GNSS data processing increases the discrepancy with slant delays from raytracing (RT) through the Numerical Weather Model (NWM). One of the possible sources of that effect is neglected influence of hydrometeors in raytracing procedures. If the assumption of hydrometeor information existence in the PPP post-fit residuals is correct, we expect the diversity of slant delay discrepancies for satellite-receiver rays pointing or not the hydrometeors. Paper presents the spatial and temporal correlation analysis of the slant delay residuals (GNSS - RT) with hydrometeor phenomena recorded during the COST ES1206 GNSS4SWEC benchmark period (May 5th - June 29th, 2013). It presents the discussion of the results from different GNSS PPP slant delay estimation approaches including coordinates unconstraining or heavy constraining, and the calculation of slant delays with and without ZTD horizontal gradients estimation.
NASA Astrophysics Data System (ADS)
Briley, Chad; Mock, Alyssa; Korlacki, Rafał; Hofmann, Tino; Schubert, Eva; Schubert, Mathias
2017-11-01
We present magneto-optical dielectric tensor data of cobalt and cobalt oxide slanted columnar thin films obtained by vector magneto-optical generalized ellipsometry. Room-temperature hysteresis magnetization measurements were performed in longitudinal and polar Kerr geometries on samples prior to and after a heat treatment process with and without a conformal Al2O3 passivation coating. The samples have been characterized by generalized ellipsometry, scanning electron microscopy, and Raman spectroscopy in conjuncture with density functional theory. We observe strongly anisotropic hysteresis behaviors, which depend on the nanocolumn and magnetizing field orientations. We find that deposited cobalt films that have been exposed to heat treatment and subsequent atmospheric oxidation into Co3O4, when not conformally passivated, reveal no measurable magneto-optical properties while cobalt films with passivation coatings retain highly anisotropic magneto-optical properties.
NASA Astrophysics Data System (ADS)
Garcia Payne, D. G.; Grutter, M.; Melamed, M. L.
2010-12-01
The differential optical absorption spectroscopy method (DOAS) was used to get column densities of nitrogen dioxide (NO2) from the analysis of zenith sky UV/visible spectra. Since the optical path length provides critical information in interpreting NO2 column densities, in conjunction with NO2 column densities, the oxygen dimer (O4) column density was retrieved to give insight into the optical path length. We report observations of year round NO2 and O4 column densities (from august 2009 to september 2010) from which the mean seasonal levels and the daily evolution, as well as the occurrence of elevated pollution episodes are examined. Surface nitric oxide (NO) and NO2 from the local monitoring network, as well as wind data and the vertical aerosol density from continuous Lidar measurements are used in the analysis to investigate specific events in the context of local emissions from vehicular traffic, photochemical production and transport from industrial emissions. The NO2 column density measurements will enhance the understanding Mexico City urban air pollution. Recent research has begun to unravel the complexity of the air pollution problem in Mexico City and its effects not only locally but on a regional and global scale as well.
Processing techniques for digital sonar images from GLORIA.
Chavez, P.S.
1986-01-01
Image processing techniques have been developed to handle data from one of the newest members of the remote sensing family of digital imaging systems. This paper discusses software to process data collected by the GLORIA (Geological Long Range Inclined Asdic) sonar imaging system, designed and built by the Institute of Oceanographic Sciences (IOS) in England, to correct for both geometric and radiometric distortions that exist in the original 'raw' data. Preprocessing algorithms that are GLORIA-specific include corrections for slant-range geometry, water column offset, aspect ratio distortion, changes in the ship's velocity, speckle noise, and shading problems caused by the power drop-off which occurs as a function of range.-from Author
Thermal Behaviour of Beams with Slant End-Plate Connection Subjected to Nonsymmetric Gravity Load
Osman, Mohd Hanim; Talebi, Elnaz
2014-01-01
Research on the steel structures with confining of axial expansion in fixed beams has been quite intensive in the past decade. It is well established that the thermal behaviour has a key influence on steel structural behaviours. This paper describes mechanical behaviour of beams with bolted slant end-plate connection with nonsymmetric gravity load, subjected to temperature increase. Furthermore, the performance of slant connections of beams in steel moment frame structures in the elastic field is investigated. The proposed model proved that this flexible connection system could successfully decrease the extra thermal induced axial force by both of the friction force dissipation among two faces of slant connection and a small upward movement on the slant plane. The applicability of primary assumption is illustrated. The results from the proposed model are examined within various slant angles, thermal and friction factors. It can be concluded that higher thermal conditions are tolerable when slanting connection is used. PMID:24587720
Thermal behaviour of beams with slant end-plate connection subjected to nonsymmetric gravity load.
Zahmatkesh, Farshad; Osman, Mohd Hanim; Talebi, Elnaz
2014-01-01
Research on the steel structures with confining of axial expansion in fixed beams has been quite intensive in the past decade. It is well established that the thermal behaviour has a key influence on steel structural behaviours. This paper describes mechanical behaviour of beams with bolted slant end-plate connection with nonsymmetric gravity load, subjected to temperature increase. Furthermore, the performance of slant connections of beams in steel moment frame structures in the elastic field is investigated. The proposed model proved that this flexible connection system could successfully decrease the extra thermal induced axial force by both of the friction force dissipation among two faces of slant connection and a small upward movement on the slant plane. The applicability of primary assumption is illustrated. The results from the proposed model are examined within various slant angles, thermal and friction factors. It can be concluded that higher thermal conditions are tolerable when slanting connection is used.
NASA Astrophysics Data System (ADS)
Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Georgescu, Lucian; Maes, Jeroen; Fayt, Caroline; Mingireanu, Florin; Schuettemeyer, Dirk; Meier, Andreas Carlos; Schönardt, Anja; Ruhtz, Thomas; Bellegante, Livio; Nicolae, Doina; Den Hoed, Mirjam; Allaart, Marc; Van Roozendael, Michel
2018-01-01
The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is a compact remote sensing instrument dedicated to mapping trace gases from an unmanned aerial vehicle (UAV). SWING is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27 cm × 12 cm × 8 cm, and 6 W. SWING was developed in parallel with a 2.5 m flying-wing UAV. This unmanned aircraft is electrically powered, has a typical airspeed of 100 km h-1, and can operate at a maximum altitude of 3 km. We present SWING-UAV experiments performed in Romania on 11 September 2014 during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign, which was dedicated to test newly developed instruments in the context of air quality satellite validation. The UAV was operated up to 700 m above ground, in the vicinity of the large power plant of Turceni (44.67° N, 23.41° E; 116 m a. s. l. ). These SWING-UAV flights were coincident with another airborne experiment using the Airborne imaging differential optical absorption spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP), and with ground-based DOAS, lidar, and balloon-borne in situ observations. The spectra recorded during the SWING-UAV flights are analysed with the DOAS technique. This analysis reveals NO2 differential slant column densities (DSCDs) up to 13±0.6×1016 molec cm-2. These NO2 DSCDs are converted to vertical column densities (VCDs) by estimating air mass factors. The resulting NO2 VCDs are up to 4.7±0.4×1016 molec cm-2. The water vapour DSCD measurements, up to 8±0.15×1022 molec cm-2, are used to estimate a volume mixing ratio of water vapour in the boundary layer of 0.013±0.002 mol mol-1. These geophysical quantities are validated with the coincident measurements.
The X-Ray and Mid-infrared Luminosities in Luminous Type 1 Quasars
NASA Astrophysics Data System (ADS)
Chen, Chien-Ting J.; Hickox, Ryan C.; Goulding, Andrew D.; Stern, Daniel; Assef, Roberto; Kochanek, Christopher S.; Brown, Michael J. I.; Harrison, Chris M.; Hainline, Kevin N.; Alberts, Stacey; Alexander, David M.; Brodwin, Mark; Del Moro, Agnese; Forman, William R.; Gorjian, Varoujan; Jones, Christine; Murray, Stephen S.; Pope, Alexandra; Rovilos, Emmanouel
2017-03-01
Several recent studies have reported different intrinsic correlations between the active galactic nucleus (AGN) mid-IR luminosity ({L}MIR}) and the rest-frame 2–10 keV luminosity (L X) for luminous quasars. To understand the origin of the difference in the observed {L}{{X}}{--}{L}MIR} relations, we study a sample of 3247 spectroscopically confirmed type 1 AGNs collected from Boötes, XMM-COSMOS, XMM-XXL-North, and the Sloan Digital Sky Survey quasars in the Swift/XRT footprint spanning over four orders of magnitude in luminosity. We carefully examine how different observational constraints impact the observed {L}{{X}}{--}{L}MIR} relations, including the inclusion of X-ray-nondetected objects, possible X-ray absorption in type 1 AGNs, X-ray flux limits, and star formation contamination. We find that the primary factor driving the different {L}{{X}}{--}{L}MIR} relations reported in the literature is the X-ray flux limits for different studies. When taking these effects into account, we find that the X-ray luminosity and mid-IR luminosity (measured at rest-frame 6 μ {{m}}, or {L}6μ {{m}}) of our sample of type 1 AGNs follow a bilinear relation in the log–log plane: {log}{L}{{X}}=(0.84+/- 0.03)× {log}{L}6μ {{m}}/{10}45 erg s‑1 + (44.60 ± 0.01) for {L}6μ {{m}}< {10}44.79 erg s‑1, and {log}{L}{{X}}=(0.40+/- 0.03)× {log}{L}6μ {{m}}/{10}45 erg s‑1 + (44.51 ± 0.01) for {L}6μ {{m}} ≥slant {10}44.79 erg s‑1. This suggests that the luminous type 1 quasars have a shallower {L}{{X}}{--}{L}6μ {{m}} correlation than the approximately linear relations found in local Seyfert galaxies. This result is consistent with previous studies reporting a luminosity-dependent {L}{{X}}{--}{L}MIR} relation and implies that assuming a linear {L}{{X}}{--}{L}6μ {{m}} relation to infer the neutral gas column density for X-ray absorption might overestimate the column densities in luminous quasars.
New H-band Stellar Spectral Libraries for the SDSS-III/APOGEE Survey
NASA Astrophysics Data System (ADS)
Zamora, O.; García-Hernández, D. A.; Allende Prieto, C.; Carrera, R.; Koesterke, L.; Edvardsson, B.; Castelli, F.; Plez, B.; Bizyaev, D.; Cunha, K.; García Pérez, A. E.; Gustafsson, B.; Holtzman, J. A.; Lawler, J. E.; Majewski, S. R.; Manchado, A.; Mészáros, Sz.; Shane, N.; Shetrone, M.; Smith, V. V.; Zasowski, G.
2015-06-01
The Sloan Digital Sky Survey-III (SDSS-III) Apache Point Observatory Galactic Evolution Experiment (APOGEE) has obtained high-resolution (R ˜ 22,500), high signal-to-noise ratio (\\gt 100) spectra in the H-band (˜1.5-1.7 μm) for about 146,000 stars in the Milky Way galaxy. We have computed spectral libraries with effective temperature ({{T}eff}) ranging from 3500 to 8000 K for the automated chemical analysis of the survey data. The libraries, used to derive stellar parameters and abundances from the APOGEE spectra in the SDSS-III data release 12 (DR12), are based on ATLAS9 model atmospheres and the ASSɛT spectral synthesis code. We present a second set of libraries based on MARCS model atmospheres and the spectral synthesis code Turbospectrum. The ATLAS9/ASSɛT ({{T}eff} = 3500-8000 K) and MARCS/Turbospectrum ({{T}eff} = 3500-5500 K) grids cover a wide range of metallicity (-2.5 ≤slant [M/H] ≤slant +0.5 dex), surface gravity (0 ≤ log g ≤slant 5 dex), microturbulence (0.5 ≤slant ξ ≤slant 8 km s-1), carbon (-1 ≤slant [C/M] ≤slant +1 dex), nitrogen (-1 ≤slant [N/M] ≤slant +1 dex), and α-element (-1 ≤slant [α/M] ≤slant +1 dex) variations, having thus seven dimensions. We compare the ATLAS9/ASSɛT and MARCS/Turbospectrum libraries and apply both of them to the analysis of the observed H-band spectra of the Sun and the K2 giant Arcturus, as well as to a selected sample of well-known giant stars observed at very high resolution. The new APOGEE libraries are publicly available and can be employed for chemical studies in the H-band using other high-resolution spectrographs.
NASA Astrophysics Data System (ADS)
Zappacosta, L.; Comastri, A.; Civano, F.; Puccetti, S.; Fiore, F.; Aird, J.; Del Moro, A.; Lansbury, G. B.; Lanzuisi, G.; Goulding, A.; Mullaney, J. R.; Stern, D.; Ajello, M.; Alexander, D. M.; Ballantyne, D. R.; Bauer, F. E.; Brandt, W. N.; Chen, C.-T. J.; Farrah, D.; Harrison, F. A.; Gandhi, P.; Lanz, L.; Masini, A.; Marchesi, S.; Ricci, C.; Treister, E.
2018-02-01
We discuss the spectral analysis of a sample of 63 active galactic nuclei (AGN) detected above a limiting flux of S(8{--}24 {keV})=7× {10}-14 {erg} {{{s}}}-1 {{cm}}-2 in the multi-tiered NuSTAR extragalactic survey program. The sources span a redshift range z=0{--}2.1 (median < z> =0.58). The spectral analysis is performed over the broad 0.5–24 keV energy range, combining NuSTAR with Chandra and/or XMM-Newton data and employing empirical and physically motivated models. This constitutes the largest sample of AGN selected at > 10 {keV} to be homogeneously spectrally analyzed at these flux levels. We study the distribution of spectral parameters such as photon index, column density ({N}{{H}}), reflection parameter ({\\boldsymbol{R}}), and 10–40 keV luminosity ({L}{{X}}). Heavily obscured ({log}[{N}{{H}}/{{cm}}-2]≥slant 23) and Compton-thick (CT; {log}[{N}{{H}}/{{cm}}-2]≥slant 24) AGN constitute ∼25% (15–17 sources) and ∼2–3% (1–2 sources) of the sample, respectively. The observed {N}{{H}} distribution agrees fairly well with predictions of cosmic X-ray background population-synthesis models (CXBPSM). We estimate the intrinsic fraction of AGN as a function of {N}{{H}}, accounting for the bias against obscured AGN in a flux-selected sample. The fraction of CT AGN relative to {log}[{N}{{H}}/{{cm}}-2]=20{--}24 AGN is poorly constrained, formally in the range 2–56% (90% upper limit of 66%). We derived a fraction (f abs) of obscured AGN ({log}[{N}{{H}}/{{cm}}-2]=22{--}24) as a function of {L}{{X}} in agreement with CXBPSM and previous z< 1 X-ray determinations. Furthermore, f abs at z=0.1{--}0.5 and {log}({L}{{x}}/{erg} {{{s}}}-1)≈ 43.6{--}44.3 agrees with observational measurements/trends obtained over larger redshift intervals. We report a significant anti-correlation of R with {L}{{X}} (confirmed by our companion paper on stacked spectra) with considerable scatter around the median R values.
Dynamic analysis of a geared rotor system considering a slant crack on the shaft
NASA Astrophysics Data System (ADS)
Han, Qinkai; Zhao, Jingshan; Chu, Fulei
2012-12-01
The vibration problems associated with geared systems have been the focus of research in recent years. As the torque is mainly transmitted by the geared system, a slant crack is more likely to appear on the gear shaft. Due to the slant crack and its breathing mechanism, the dynamic behavior of cracked geared system would differ distinctly with that of uncracked system. Relatively less work is reported on slant crack in the geared rotor system during the past research. Thus, the dynamic analysis of a geared rotor-bearing system with a breathing slant crack is performed in the paper. The finite element model of a geared rotor with slant crack is presented. Based on fracture mechanics, the flexibility matrix for the slant crack is derived that accounts for the additional stress intensity factors. Three methods for whirling analysis, parametric instability analysis and steady-state response analysis are introduced. Then, by taking a widely used one-stage geared rotor-bearing system as an example, the whirling frequencies of the equivalent time-invariant system, two types of instability regions and steady-state response under the excitations of unbalance forces and tooth transmission errors, are computed numerically. The effects of crack depth, position and type (transverse or slant) on the system dynamic behaviors are considered in the discussion. The comparative study with slant cracked geared rotor is carried out to explore distinctive features in their modal, parametric instability and frequency response behaviors.
Combined mode I stress intensity factors of slanted cracks
NASA Astrophysics Data System (ADS)
Ismail, A. E.; Rahman, M. Q. Abdul; Ghazali, M. Z. Mohd; Zulafif Rahim, M.; Rasidi Ibrahim, M.; Fahrul Hassan, Mohd; Nor, Nik Hisyamudin Muhd; Ariffin, A. M. T.; Zaini Yunos, Muhamad
2017-08-01
The solutions of stress intensity factors (SIFs) for slanted cracks in plain strain plate are hard to find in open literature. There are some previous solutions of SIFs available, however the studies are not completed except for the case of plain stress. The slanted cracks are modelled numerically using ANSYS finite element program. There are ten slanted angles and seven relative crack depths are used and the plate contains cracks which is assumed to fulfil the plain strain condition. The plate is then stressed under tension and bending loading and the SIFs are determined according to the displacement extrapolation method. Based on the numerical analysis, both slanted angles and relative crack length, a/L played an important role in determining the modes I and II SIFs. As expected the SIFs increased when a/L is increased. Under tension force, the introduction of slanted angles increased the SIFs. Further increment of angles reduced the SIFs however they are still higher than the SIFs obtained using normal cracks. Under bending moment, the present of slanted angles are significantly reduced the SIFs compared with the normal cracks. Under similar loading, mode II SIFs increased as function of a/L and slanted angles where increasing such parameters increasing the mode II SIFs.
NASA Technical Reports Server (NTRS)
Duncan, Bryan
2012-01-01
There is now a wealth of satellite data products available with which to evaluate a model fs simulation of tropospheric composition and other model processes. All of these data products have their strengths and limitations that need to be considered for this purpose. For example, uncertainties are introduced into a data product when 1) converting a slant column to a vertical column and 2) estimating the amount of a total column of a trace gas (e.g., ozone, nitrogen dioxide) that resides in the troposphere. Oftentimes, these uncertainties are not well quantified and the satellite data products are not well evaluated against in situ observations. However, these limitations do not preclude us from using these data products to evaluate our model processes if we understand these strengths and limitations when developing diagnostics. I will show several examples of how satellite data products are being used to evaluate particular model processes with a focus on the strengths and limitations of these data products. In addition, I will introduce the goals of a newly formed team to address issues on the topic of "satellite data for improved model evaluation and process studies" that is established in support of the IGAC/SPARC Global Chemistry ]Climate Modeling and Evaluation Workshop.
Stress Intensity Factors of Slanted Cracks in Bi-Material Plates
NASA Astrophysics Data System (ADS)
Ismail, Al Emran; Azhar Kamarudin, Kamarul; Nor, Nik Hisyamudin Muhd
2017-10-01
In this study, the stress intensity factors (SIF) of slanted cracks in bi-material plates subjected to mode I loading is numerically solved. Based on the literature survey, tremendous amount of research works are available studying the normal cracks in both similar and dissimilar plates. However, lack of SIF behavior for slanted cracks especially when it is embedded in bi-material plates. The slanted cracks are then modelled numerically using ANSYS finite element program. Two plates of different in mechanical properties are firmly bonded obliquely and then slanted edge cracks are introduced at the lower inclined edge. Isoparametric singular element is used to model the crack tip and the SIF is determined which is based on the domain integral method. Three mechanical mismatched and four slanted angles are used to model the cracks. According to the present results, the effects of mechanical mismatch on the SIF for normal cracks are not significant. However, it is played an important role when slanted angles are introduced. It is suggested that higher SIF can be obtained when the cracks are inclined comparing with the normal cracks. Consequently, accelerating the crack growth at the interface between two distinct materials.
The venetian-blind effect: a preference for zero disparity or zero slant?
Vlaskamp, Björn N. S.; Guan, Phillip; Banks, Martin S.
2013-01-01
When periodic stimuli such as vertical sinewave gratings are presented to the two eyes, the initial stage of disparity estimation yields multiple solutions at multiple depths. The solutions are all frontoparallel when the sinewaves have the same spatial frequency; they are all slanted when the sinewaves have quite different frequencies. Despite multiple solutions, humans perceive only one depth in each visual direction: a single frontoparallel plane when the frequencies are the same and a series of small slanted planes—Venetian blinds—when the frequencies are quite different. These percepts are consistent with a preference for solutions that minimize absolute disparity or overall slant. The preference for minimum disparity and minimum slant are identical for gaze at zero eccentricity; we dissociated the predictions of the two by measuring the occurrence of Venetian blinds when the stimuli were viewed in eccentric gaze. The results were generally quite consistent with a zero-disparity preference (Experiment 1), but we also observed a shift toward a zero-slant preference when the edges of the stimulus had zero slant (Experiment 2). These observations provide useful insights into how the visual system constructs depth percepts from a multitude of possible depths. PMID:24273523
The venetian-blind effect: a preference for zero disparity or zero slant?
Vlaskamp, Björn N S; Guan, Phillip; Banks, Martin S
2013-01-01
When periodic stimuli such as vertical sinewave gratings are presented to the two eyes, the initial stage of disparity estimation yields multiple solutions at multiple depths. The solutions are all frontoparallel when the sinewaves have the same spatial frequency; they are all slanted when the sinewaves have quite different frequencies. Despite multiple solutions, humans perceive only one depth in each visual direction: a single frontoparallel plane when the frequencies are the same and a series of small slanted planes-Venetian blinds-when the frequencies are quite different. These percepts are consistent with a preference for solutions that minimize absolute disparity or overall slant. The preference for minimum disparity and minimum slant are identical for gaze at zero eccentricity; we dissociated the predictions of the two by measuring the occurrence of Venetian blinds when the stimuli were viewed in eccentric gaze. The results were generally quite consistent with a zero-disparity preference (Experiment 1), but we also observed a shift toward a zero-slant preference when the edges of the stimulus had zero slant (Experiment 2). These observations provide useful insights into how the visual system constructs depth percepts from a multitude of possible depths.
Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled Models
NASA Astrophysics Data System (ADS)
Choi, Jieun; Dotter, Aaron; Conroy, Charlie; Cantiello, Matteo; Paxton, Bill; Johnson, Benjamin D.
2016-06-01
This is the first of a series of papers presenting the Modules for Experiments in Stellar Astrophysics (MESA) Isochrones and Stellar Tracks (MIST) project, a new comprehensive set of stellar evolutionary tracks and isochrones computed using MESA, a state-of-the-art open-source 1D stellar evolution package. In this work, we present models with solar-scaled abundance ratios covering a wide range of ages (5≤slant {log}({Age}) [{year}]≤slant 10.3), masses (0.1≤slant M/{M}⊙ ≤slant 300), and metallicities (-2.0≤slant [{{Z}}/{{H}}]≤slant 0.5). The models are self-consistently and continuously evolved from the pre-main sequence (PMS) to the end of hydrogen burning, the white dwarf cooling sequence, or the end of carbon burning, depending on the initial mass. We also provide a grid of models evolved from the PMS to the end of core helium burning for -4.0≤slant [{{Z}}/{{H}}]\\lt -2.0. We showcase extensive comparisons with observational constraints as well as with some of the most widely used existing models in the literature. The evolutionary tracks and isochrones can be downloaded from the project website at http://waps.cfa.harvard.edu/MIST/.
NASA Astrophysics Data System (ADS)
Hüneke, Tilman; Gentry, Eric; Kenntner, Mareike; Ludmann, Sabrina; Raecke, Rasmus; Pfeilsticker, Klaus
2013-02-01
A novel 6-channel mini-DOAS optical spectrometer has been deployed on the novel HALO research aircraft. It is aiming at high sensitive measurements of profiles of O3, NO2, CH2O, C2H2O2, BrO, OClO, IO, gaseous, liquid and solid H2O around flight altitude. The Nadir observation also allows to measure the total tropospheric column of these gases. Upon the retrieval of slant column amounts of the targeted gases, the data reduction involves forward radiative transfer modelling of the observations and standard mathematical inversion technique. For the first time, the novel spectrometer has been deployed on the HALO research aircraft during TACTS (Transport And Composition in the UT/LMS) and ESMVal (Earth System Model Validation) measurement campaigns which took place in summer 2012. The present contribution reports on technical features of the novel instrument, the feasibility of the method together with some first sample results for major absorbers.
Retrieval and Validation of Zenith and Slant Path Delays From the Irish GPS Network
NASA Astrophysics Data System (ADS)
Hanafin, Jennifer; Jennings, S. Gerard; O'Dowd, Colin; McGrath, Ray; Whelan, Eoin
2010-05-01
Retrieval of atmospheric integrated water vapour (IWV) from ground-based GPS receivers and provision of this data product for meteorological applications has been the focus of a number of Europe-wide networks and projects, most recently the EUMETNET GPS water vapour programme. The results presented here are from a project to provide such information about the state of the atmosphere around Ireland for climate monitoring and improved numerical weather prediction. Two geodetic reference GPS receivers have been deployed at Valentia Observatory in Co. Kerry and Mace Head Atmospheric Research Station in Co. Galway, Ireland. These two receivers supplement the existing Ordnance Survey Ireland active network of 17 permanent ground-based receivers. A system to retrieve column-integrated atmospheric water vapour from the data provided by this network has been developed, based on the GPS Analysis at MIT (GAMIT) software package. The data quality of the zenith retrievals has been assessed using co-located radiosondes at the Valentia site and observations from a microwave profiling radiometer at the Mace Head site. Validation of the slant path retrievals requires a numerical weather prediction model and HIRLAM (High-Resolution Limited Area Model) version 7.2, the current operational forecast model in use at Met Éireann for the region, has been used for this validation work. Results from the data processing and comparisons with the independent observations and model will be presented.
NASA Astrophysics Data System (ADS)
Li, Liyi; Zhang, Cheng; Tuan, Chia-Chi; Chen, Yun; Wong, C.-P.
2018-05-01
High-aspect-ratio (HAR) microstructures on silicon (Si) play key roles in photonics and electromechanical devices. However, it has been challenging to fabricate HAR microstructures with slanting profiles. Here we report successful fabrication of uniform HAR microstructures with controllable slanting angles on (1 0 0)-Si by slanted uniform metal-assisted chemical etching (SUMaCE). The trenches have width of 2 µm, aspect ratio greater than 20:1 and high geometric uniformity. The slanting angles can be adjusted between 2-70° with respect to the Si surface normal. The results support a fundamental hypothesis that under the UMaCE condition, the preferred etching direction is along the normal of the thin film catalysts, regardless of the relative orientation of the catalyst to Si substrates or the crystalline orientation of the substrates. The SUMaCE method paves the way to HAR 3D microfabrication with arbitrary slanting profiles inside Si.
Bayesian modeling of cue interaction: bistability in stereoscopic slant perception.
van Ee, Raymond; Adams, Wendy J; Mamassian, Pascal
2003-07-01
Our two eyes receive different views of a visual scene, and the resulting binocular disparities enable us to reconstruct its three-dimensional layout. However, the visual environment is also rich in monocular depth cues. We examined the resulting percept when observers view a scene in which there are large conflicts between the surface slant signaled by binocular disparities and the slant signaled by monocular perspective. For a range of disparity-perspective cue conflicts, many observers experience bistability: They are able to perceive two distinct slants and to flip between the two percepts in a controlled way. We present a Bayesian model that describes the quantitative aspects of perceived slant on the basis of the likelihoods of both perspective and disparity slant information combined with prior assumptions about the shape and orientation of objects in the scene. Our Bayesian approach can be regarded as an overarching framework that allows researchers to study all cue integration aspects-including perceptual decisions--in a unified manner.
NASA Astrophysics Data System (ADS)
Duan, Yaxuan; Xu, Songbo; Yuan, Suochao; Chen, Yongquan; Li, Hongguang; Da, Zhengshang; Gao, Limin
2018-01-01
ISO 12233 slanted-edge method experiences errors using fast Fourier transform (FFT) in the camera modulation transfer function (MTF) measurement due to tilt angle errors in the knife-edge resulting in nonuniform sampling of the edge spread function (ESF). In order to resolve this problem, a modified slanted-edge method using nonuniform fast Fourier transform (NUFFT) for camera MTF measurement is proposed. Theoretical simulations for images with noise at a different nonuniform sampling rate of ESF are performed using the proposed modified slanted-edge method. It is shown that the proposed method successfully eliminates the error due to the nonuniform sampling of the ESF. An experimental setup for camera MTF measurement is established to verify the accuracy of the proposed method. The experiment results show that under different nonuniform sampling rates of ESF, the proposed modified slanted-edge method has improved accuracy for the camera MTF measurement compared to the ISO 12233 slanted-edge method.
The shapes of column density PDFs. The importance of the last closed contour
NASA Astrophysics Data System (ADS)
Alves, João; Lombardi, Marco; Lada, Charles J.
2017-10-01
The probability distribution function of column density (PDF) has become the tool of choice for cloud structure analysis and star formation studies. Its simplicity is attractive, and the PDF could offer access to cloud physical parameters otherwise difficult to measure, but there has been some confusion in the literature on the definition of its completeness limit and shape at the low column density end. In this letter we use the natural definition of the completeness limit of a column density PDF, the last closed column density contour inside a surveyed region, and apply it to a set of large-scale maps of nearby molecular clouds. We conclude that there is no observational evidence for log-normal PDFs in these objects. We find that all studied molecular clouds have PDFs well described by power laws, including the diffuse cloud Polaris. Our results call for a new physical interpretation of the shape of the column density PDFs. We find that the slope of a cloud PDF is invariant to distance but not to the spatial arrangement of cloud material, and as such it is still a useful tool for investigating cloud structure.
NASA Astrophysics Data System (ADS)
Dekemper, E.; Fussen, D.; Vanhellemont, F.; Vanhamel, J.; Pieroux, D.; Berkenbosch, S.
2017-12-01
In an urban environment, nitrogen dioxide is emitted by a multitude of static and moving point sources (cars, industry, power plants, heating systems,…). Air quality models generally rely on a limited number of monitoring stations which do not capture the whole pattern, neither allow for full validation. So far, there has been a lack of instrument capable of measuring NO2 fields with the necessary spatio-temporal resolution above major point sources (power plants), or more extended ones (cities). We have developed a new type of passive remote sensing instrument aiming at the measurement of 2-D distributions of NO2 slant column densities (SCDs) with a high spatial (meters) and temporal (minutes) resolution. The measurement principle has some similarities with the popular filter-based SO2 camera (used in volcanic and industrial sulfur emissions monitoring) as it relies on spectral images taken at wavelengths where the molecule absorption cross section is different. But contrary to the SO2 camera, the spectral selection is performed by an acousto-optical tunable filter (AOTF) capable of resolving the target molecule's spectral features. A first prototype was successfully tested with the plume of a coal-firing power plant in Romania, revealing the dynamics of the formation of NO2 in the early plume. A lighter version of the NO2 camera is now being tested on other targets, such as oil refineries and urban air masses.
Humans Have Precise Knowledge of Familiar Geographical Slants
ERIC Educational Resources Information Center
Stigliani, Anthony; Li, Zhi; Durgin, Frank H.
2013-01-01
Whereas maps primarily represent the 2-dimensional layout of the environment, people are also aware of the 3-dimensional layout of their environment. An experiment conducted on a small college campus tested whether the remembered slants of familiar paths were precisely represented. Three measures of slant (verbal, manual, and pictorial) were…
Mode I stress intensity factors of slanted cracks in plates
NASA Astrophysics Data System (ADS)
Ismail, Al Emran; Ghazali, Mohd Zubir Mohd; Nor, Nik Hisyamudin Muhd
2017-01-01
This paper presents the roles of slanted cracks on the stress intensity factors (SIF) under mode I tension and bending loading. Based on the literature survey, lack of solution of SIFs of slanted cracks in plain strain plates are available. In this work, the cracks are modelled numerically using ANSYS finite element program. There are two important parameters such as slanted angles and relative crack length. SIFs at the crack tips are calculated according to domain integral method. Before the model is further used, it is validated with the existing model. It is found that the present model is well agreed with the previous model. According to finite element analysis, there are not only mode I SIFs produced but also mode II. As expected the SIFs increased as the relative crack length increased. However, when slanted angles are introduced (slightly higher than normal crack), the SIFs increased. Once the angles are further increased, the SIFs decreased gradually however they are still higher than the SIFs of normal cracks. For mode II SIFs, higher the slanted angels higher the SIFs. This is due to the fact that when the cracks are slanted, the cracked plates are not only failed due to mode I but a combination between both modes I and II.
Hu, Boyi; Ning, Xiaopeng; Dai, Fei; Almuhaidib, Ibrahim
2016-09-01
Uneven ground surface is a common occupational injury risk factor in industries such as agriculture, fishing, transportation and construction. Studies have shown that antero-posteriorly slanted ground surfaces could reduce spinal stability and increase the risk of falling. In this study, the influence of antero-posteriorly slanted ground surfaces on lumbar flexion-relaxation responses was investigated. Fourteen healthy participants performed sagittally symmetric and asymmetric trunk bending motions on one flat and two antero-posteriorly slanted surfaces (-15° (uphill facing) and 15° (downhill facing)), while lumbar muscle electromyography and trunk kinematics were recorded. Results showed that standing on a downhill facing slanted surface delays the onset of lumbar muscle flexion-relaxation phenomenon (FRP), while standing on an uphill facing ground causes lumbar muscle FRP to occur earlier. In addition, compared to symmetric bending, when performing asymmetric bending, FRP occurred earlier on the contralateral side of lumbar muscles and significantly smaller maximum lumbar flexion and trunk inclination angles were observed. Practitioner Summary: Uneven ground surface is a common risk factor among a number of industries. In this study, we investigated the influence of antero-posteriorly slanted ground surface on trunk biomechanics during trunk bending. Results showed the slanted surface alters the lumbar tissue load-sharing mechanism in both sagittally symmetric and asymmetric bending.
NASA Astrophysics Data System (ADS)
Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.
2013-10-01
Tropospheric NO2 vertical column densities have been retrieved and compared for the first time in Toronto, Canada, using three methods of differing spatial scales. Remotely sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities estimated using a pair of chemiluminescence monitors situated 0.01 and 0.5 km a.g.l. (above ground level). The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by an average of 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. The monthly averaged ratio of the NO2 concentration at 0.5 to 0.01 km varied seasonally, and exhibited a negative linear dependence on the monthly average temperature, with Pearson's R = 0.83. During the coldest month, February, this ratio was 0.52 ± 0.04, while during the warmest month, July, this ratio was 0.34 ± 0.04, illustrating that NO2 is not well mixed within 0.5 km above ground level. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson's R value ranging from 0.72 to 0.81), but the in situ vertical column densities were 52 to 58% greater than the remotely sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each measurement technique.
On the ground state energy of the δ-function Bose gas
NASA Astrophysics Data System (ADS)
Tracy, Craig A.; Widom, Harold
2016-07-01
The weak coupling asymptotics, to order {(c/ρ )}2, of the ground state energy of the delta-function Bose gas is derived. Here 2c≥slant 0 is the delta-function potential amplitude and ρ the density of the gas in the thermodynamic limit. The analysis uses the electrostatic interpretation of the Lieb-Liniger integral equation. Dedicated to Professor Tony Guttmann on the occasion of his 70th birthday.
NASA Astrophysics Data System (ADS)
Wang, Yang; Beirle, Steffen; Hendrick, Francois; Hilboll, Andreas; Jin, Junli; Kyuberis, Aleksandra A.; Lampel, Johannes; Li, Ang; Luo, Yuhan; Lodi, Lorenzo; Ma, Jianzhong; Navarro, Monica; Ortega, Ivan; Peters, Enno; Polyansky, Oleg L.; Remmers, Julia; Richter, Andreas; Puentedura, Olga; Van Roozendael, Michel; Seyler, André; Tennyson, Jonathan; Volkamer, Rainer; Xie, Pinhua; Zobov, Nikolai F.; Wagner, Thomas
2017-10-01
In order to promote the development of the passive DOAS technique the Multi Axis DOAS - Comparison campaign for Aerosols and Trace gases (MAD-CAT) was held at the Max Planck Institute for Chemistry in Mainz, Germany, from June to October 2013. Here, we systematically compare the differential slant column densities (dSCDs) of nitrous acid (HONO) derived from measurements of seven different instruments. We also compare the tropospheric difference of SCDs (delta SCD) of HONO, namely the difference of the SCDs for the non-zenith observations and the zenith observation of the same elevation sequence. Different research groups analysed the spectra from their own instruments using their individual fit software. All the fit errors of HONO dSCDs from the instruments with cooled large-size detectors are mostly in the range of 0.1 to 0.3 × 1015 molecules cm-2 for an integration time of 1 min. The fit error for the mini MAX-DOAS is around 0.7 × 1015 molecules cm-2. Although the HONO delta SCDs are normally smaller than 6 × 1015 molecules cm-2, consistent time series of HONO delta SCDs are retrieved from the measurements of different instruments. Both fits with a sequential Fraunhofer reference spectrum (FRS) and a daily noon FRS lead to similar consistency. Apart from the mini-MAX-DOAS, the systematic absolute differences of HONO delta SCDs between the instruments are smaller than 0.63 × 1015 molecules cm-2. The correlation coefficients are higher than 0.7 and the slopes of linear regressions deviate from unity by less than 16 % for the elevation angle of 1°. The correlations decrease with an increase in elevation angle. All the participants also analysed synthetic spectra using the same baseline DOAS settings to evaluate the systematic errors of HONO results from their respective fit programs. In general the errors are smaller than 0.3 × 1015 molecules cm-2, which is about half of the systematic difference between the real measurements.The differences of HONO delta SCDs retrieved in the selected three spectral ranges 335-361, 335-373 and 335-390 nm are considerable (up to 0.57 × 1015 molecules cm-2) for both real measurements and synthetic spectra. We performed sensitivity studies to quantify the dominant systematic error sources and to find a recommended DOAS setting in the three spectral ranges. The results show that water vapour absorption, temperature and wavelength dependence of O4 absorption, temperature dependence of Ring spectrum, and polynomial and intensity offset correction all together dominate the systematic errors. We recommend a fit range of 335-373 nm for HONO retrievals. In such fit range the overall systematic uncertainty is about 0.87 × 1015 molecules cm-2, much smaller than those in the other two ranges. The typical random uncertainty is estimated to be about 0.16 × 1015 molecules cm-2, which is only 25 % of the total systematic uncertainty for most of the instruments in the MAD-CAT campaign. In summary for most of the MAX-DOAS instruments for elevation angle below 5°, half daytime measurements (usually in the morning) of HONO delta SCD can be over the detection limit of 0.2 × 1015 molecules cm-2 with an uncertainty of ˜ 0.9 × 1015 molecules cm-2.
Interstellar C2, CH, and CN in translucent molecular clouds
NASA Technical Reports Server (NTRS)
Black, John H.; Van Dishoeck, Ewine F.
1989-01-01
Optical absorption-line techniques have been applied to the study of a number of translucent molecular clouds in which the total column densities are large enough that substantial molecular abundances can be maintained. Results are presented for a survey of absorption lines of interstellar C2, CH, and CN. Detections of CN through the A 2Pi-X 2Sigma(+) (1,O) and (2,O) bands of the red system are reported and compared with observations of the violet system for one line of sight. The population distributions in C2 provide diagnostic information on temperature and density. The measured column densities of the three species can be used to test details of the theory of molecule formation in clouds where photoprocesses still play a significant role. The C2 and CH column densities are strongly correlated with each other and probably also with the H2 column density. In contrast, the CN column densities are found to vary greatly from cloud to cloud. The observations are discussed with reference to detailed theoretical models.
Bai, Benfeng; Laukkanen, Janne; Kuittinen, Markku; Siitonen, Samuli
2010-10-01
We propose and investigate the use of slanted surface-relief gratings with nonbinary profiles as high-efficiency broadband couplers for light guides. First, a Chandezon-method-based rigorous numerical formulation is presented for modeling the slanted gratings with overhanging profiles. Then, two typical types of slanted grating couplers--a sinusoidal one and a trapezoidal one--are studied and optimized numerically, both exhibiting a high coupling efficiency of over 50% over the full band of white LED under the normal illumination of unpolarized light. Reasonable structural parameters with nice tolerance have been obtained for the optimized designs. It is found that the performance of the couplers depends little on the grating profile shape, but primarily on the grating period and the slant angle of the ridge. The underlying mechanism is analyzed by the equivalence rules of gratings, which provide useful guidelines for the design and fabrication of the couplers. Preliminary investigation has been performed on the fabrication and replication of the slanted overhanging grating couplers, which shows the feasibility of fabrication with mature microfabrication techniques and the perspective for mass production.
Aging and the perception of slant from optical texture, motion parallax, and binocular disparity.
Norman, J Farley; Crabtree, Charles E; Bartholomew, Ashley N; Ferrell, Elizabeth L
2009-01-01
The ability of younger and older observers to perceive surface slant was investigated in four experiments. The surfaces possessed slants of 20 degrees, 35 degrees, 50 degrees, and 65 degrees, relative to the frontoparallel plane. The observers judged the slants using either a palm board (Experiments 1, 3, and 4) or magnitude estimation (Experiment 2). In Experiments 1-3, physically slanted surfaces were used (the surfaces possessed marble, granite, pebble, and circle textures), whereas computer-generated 3-D surfaces (defined by motion parallax and binocular disparity) were utilized in Experiment 4. The results showed that the younger and older observers' performance was essentially identical with regard to accuracy. The younger and older age groups, however, differed in terms of precision in Experiments 1 and 2: The judgments of the older observers were more variable across repeated trials. When taken as a whole, the results demonstrate that older observers (at least through the age of 83 years) can effectively extract information about slant in depth from optical patterns containing texture, motion parallax, or binocular disparity.
NASA Astrophysics Data System (ADS)
Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris
2018-03-01
We measure the effect of high column density absorbing systems of neutral hydrogen (H I) on the one-dimensional (1D) Lyman α forest flux power spectrum using cosmological hydrodynamical simulations from the Illustris project. High column density absorbers (which we define to be those with H I column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}) cause broadened absorption lines with characteristic damping wings. These damping wings bias the 1D Lyman α forest flux power spectrum by causing absorption in quasar spectra away from the location of the absorber itself. We investigate the effect of high column density absorbers on the Lyman α forest using hydrodynamical simulations for the first time. We provide templates as a function of column density and redshift, allowing the flexibility to accurately model residual contamination, i.e. if an analysis selectively clips out the largest damping wings. This flexibility will improve cosmological parameter estimation, for example, allowing more accurate measurement of the shape of the power spectrum, with implications for cosmological models containing massive neutrinos or a running of the spectral index. We provide fitting functions to reproduce these results so that they can be incorporated straightforwardly into a data analysis pipeline.
Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges
2012-08-10
The pressure drop and temperature drop on columns packed with 3- and 5-micron particles were measured using neat CO(2) at a flow rate of 5 mL/min, at temperatures from 20°C to 100°C, and outlet pressures from 80 to 300 bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath either bare or covered with foam insulation. The results show that the pressure drop depends on the outlet pressure, the operating temperature, and the thermal environment. A temperature drop was observed for all conditions studied. The temperature drop was relatively small (less than 3°C) for combinations of low temperature and high pressure. Larger temperature drops and density drops occurred at higher temperatures and low to moderate pressures. Covering the column with thermal insulation resulted in larger temperature drops and corresponding smaller density drops. At 20°C the temperature drop was never more than a few degrees. The largest temperature drops occurred for both columns when insulated at 80°C and 80 bar, reaching a maximum value of 21°C for the 5-micron column, and 26°C for the 3-micron column. For an adiabatic column, the temperature drop depends on the pressure drop, the thermal expansion coefficient, and the density and the heat capacity of the mobile phase fluid, and can be described by a simple mathematical relationship. For a fixed operating temperature and outlet pressure, the temperature drop increases monotonically with the pressure drop. Copyright © 2012 Elsevier B.V. All rights reserved.
Density Gradient Columns for Chemical Displays.
ERIC Educational Resources Information Center
Guenther, William B.
1986-01-01
Procedures for preparing density gradient columns for chemical displays are presented. They include displays illustrating acid-base reactions, metal ion equilibria, and liquid density. The lifetime of these metastable displays is surprising, some lasting for months in display cabinets. (JN)
NASA Astrophysics Data System (ADS)
Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Fayt, Caroline; Maes, Jeroen; Mingireanu, Florin; Mocanu, Ionut; Georgescu, Lucian; Van Roozendael, Michel
2015-04-01
The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is an instrument dedicated to atmospheric trace gas retrieval from an Unmanned Aerial Vehicle (UAV). The payload is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27x12x12 cm3, and 6 W. The custom-built 2.5 m flying wing UAV is electrically powered, has a typical airspeed of 100 km/h, and can operate at a maximum altitude of 3 km. Both the payload and the UAV were developed in the framework of a collaboration between the Belgian Institute for Space Aeronomy (BIRA-IASB) and the Dunarea de Jos University of Galati, Romania. We present here SWING-UAV test flights dedicated to NO2 measurements and performed in Romania on 10 and 11 September 2014, during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign. The UAV performed 5 flights in the vicinity of the large thermal power station of Turceni (44.67° N, 23.4° E). The UAV was operated in visual range during the campaign, up to 900 m AGL , downwind of the plant and crossing its exhaust plume. The spectra recorded on flight are analyzed with the Differential Optical Absorption Spectroscopy (DOAS) method. The retrieved NO2 Differential Slant Column Densities (DSCDs) are up to 1.5e17 molec/cm2 and reveal the horizontal gradients around the plant. The DSCDs are converted to vertical columns and compared with coincident car-based DOAS measurements. We also present the near-future perspective of the SWING-UAV observation system, which includes flights in 2015 above the Black Sea to quantify ship emissions, the addition of SO2 as a target species, and autopilot flights at higher altitudes to cover a typical satellite pixel extent (10x10 km2).
Isoelectric focusing of red blood cells in a density gradient stabilized column
NASA Technical Reports Server (NTRS)
Smolka, A. J. K.; Miller, T. Y.
1980-01-01
The effects of Ficoll and cell application pH on red blood cell electrophoretic mobility and focusing pH were investigated by focusing cells in a density gradient stabilized column. Sample loading, cell dispersion, column conductivity, resolution of separation, and the effect of Ampholines were examined.
NASA Astrophysics Data System (ADS)
Barcos-Muñoz, L.; Leroy, A. K.; Evans, A. S.; Condon, J.; Privon, G. C.; Thompson, T. A.; Armus, L.; Díaz-Santos, T.; Mazzarella, J. M.; Meier, D. S.; Momjian, E.; Murphy, E. J.; Ott, J.; Sanders, D. B.; Schinnerer, E.; Stierwalt, S.; Surace, J. A.; Walter, F.
2017-07-01
We present Very Large Array observations of the 33 GHz radio continuum emission from 22 local ultraluminous and luminous infrared (IR) galaxies (U/LIRGs). These observations have spatial (angular) resolutions of 30-720 pc (0.″07-0.″67) in a part of the spectrum that is likely to be optically thin. This allows us to estimate the size of the energetically dominant regions. We find half-light radii from 30 pc to 1.7 kpc. The 33 GHz flux density correlates well with the IR emission, and we take these sizes as indicative of the size of the region that produces most of the energy. Combining our 33 GHz sizes with unresolved measurements, we estimate the IR luminosity and star formation rate per area and the molecular gas surface and volume densities. These quantities span a wide range (4 dex) and include some of the highest values measured for any galaxy (e.g., {{{Σ }}}{SFR}33 {GHz}≤slant {10}4.1 {M}⊙ {{yr}}-1 {{kpc}}-2). At least 13 sources appear Compton thick ({N}{{H}}33 {GHz}≥slant {10}24 {{cm}}-2). Consistent with previous work, contrasting these data with observations of normal disk galaxies suggests a nonlinear and likely multivalued relation between star formation rate and molecular gas surface density, though this result depends on the adopted CO-to-H2 conversion factor and the assumption that our 33 GHz sizes apply to the gas. Eleven sources appear to exceed the luminosity surface density predicted for starbursts supported by radiation pressure and supernova feedback; however, we note the need for more detailed observations of the inner disk structure. U/LIRGs with higher surface brightness exhibit stronger [C II] 158 μm deficits, consistent with the suggestion that high energy densities drive this phenomenon.
Caudek, Corrado; Fantoni, Carlo; Domini, Fulvio
2011-01-01
We measured perceived depth from the optic flow (a) when showing a stationary physical or virtual object to observers who moved their head at a normal or slower speed, and (b) when simulating the same optic flow on a computer and presenting it to stationary observers. Our results show that perceived surface slant is systematically distorted, for both the active and the passive viewing of physical or virtual surfaces. These distortions are modulated by head translation speed, with perceived slant increasing directly with the local velocity gradient of the optic flow. This empirical result allows us to determine the relative merits of two alternative approaches aimed at explaining perceived surface slant in active vision: an “inverse optics” model that takes head motion information into account, and a probabilistic model that ignores extra-retinal signals. We compare these two approaches within the framework of the Bayesian theory. The “inverse optics” Bayesian model produces veridical slant estimates if the optic flow and the head translation velocity are measured with no error; because of the influence of a “prior” for flatness, the slant estimates become systematically biased as the measurement errors increase. The Bayesian model, which ignores the observer's motion, always produces distorted estimates of surface slant. Interestingly, the predictions of this second model, not those of the first one, are consistent with our empirical findings. The present results suggest that (a) in active vision perceived surface slant may be the product of probabilistic processes which do not guarantee the correct solution, and (b) extra-retinal signals may be mainly used for a better measurement of retinal information. PMID:21533197
Monochromatic body waves excited by great subduction zone earthquakes
NASA Astrophysics Data System (ADS)
Ihmlé, Pierre F.; Madariaga, Raúl
Large quasi-monochromatic body waves were excited by the 1995 Chile Mw=8.1 and by the 1994 Kurile Mw=8.3 events. They are observed on vertical/radial component seismograms following the direct P and Pdiff arrivals, at all azimuths. We devise a slant stack algorithm to characterize the source of the oscillations. This technique aims at locating near-source isotropic scatterers using broadband data from global networks. For both events, we find that the oscillations emanate from the trench. We show that these monochromatic waves are due to localized oscillations of the water column. Their period corresponds to the gravest ID mode of a water layer for vertically traveling compressional waves. We suggest that these monochromatic body waves may yield additional constraints on the source process of great subduction zone earthquakes.
van den Bergh, F
2018-03-01
The slanted-edge method of spatial frequency response (SFR) measurement is usually applied to grayscale images under the assumption that any distortion of the expected straight edge is negligible. By decoupling the edge orientation and position estimation step from the edge spread function construction step, it is shown in this paper that the slanted-edge method can be extended to allow it to be applied to images suffering from significant geometric distortion, such as produced by equiangular fisheye lenses. This same decoupling also allows the slanted-edge method to be applied directly to Bayer-mosaicked images so that the SFR of the color filter array subsets can be measured directly without the unwanted influence of demosaicking artifacts. Numerical simulation results are presented to demonstrate the efficacy of the proposed deferred slanted-edge method in relation to existing methods.
Error Analysis and Validation for Insar Height Measurement Induced by Slant Range
NASA Astrophysics Data System (ADS)
Zhang, X.; Li, T.; Fan, W.; Geng, X.
2018-04-01
InSAR technique is an important method for large area DEM extraction. Several factors have significant influence on the accuracy of height measurement. In this research, the effect of slant range measurement for InSAR height measurement was analysis and discussed. Based on the theory of InSAR height measurement, the error propagation model was derived assuming no coupling among different factors, which directly characterise the relationship between slant range error and height measurement error. Then the theoretical-based analysis in combination with TanDEM-X parameters was implemented to quantitatively evaluate the influence of slant range error to height measurement. In addition, the simulation validation of InSAR error model induced by slant range was performed on the basis of SRTM DEM and TanDEM-X parameters. The spatial distribution characteristics and error propagation rule of InSAR height measurement were further discussed and evaluated.
The Effect of AGN Heating on the Low-redshift Lyα Forest
NASA Astrophysics Data System (ADS)
Gurvich, Alex; Burkhart, Blakesley; Bird, Simeon
2017-02-01
We investigate the effects of AGN heating and the ultraviolet background on the low-redshift Lyα forest column density distribution (CDD) using the Illustris simulation. We show that Illustris reproduces observations at z = 0.1 in the column density range {10}12.5{--}{10}13.5 cm-2, relevant for the “photon underproduction crisis.” We attribute this to the inclusion of AGN feedback, which changes the gas distribution so as to mimic the effect of extra photons, as well as the use of the Faucher-Giguère ultraviolet background, which is more ionizing at z = 0.1 than the Haardt & Madau background previously considered. We show that the difference between simulations run with smoothed particle hydrodynamics and simulations using a moving mesh is small in this column density range but can be more significant at larger column densities. We further consider the effect of supernova feedback, Voigt profile fitting, and finite resolution, all of which we show to have little influence on the CDD. Finally, we identify a discrepancy between our simulations and observations at column densities {10}14{--}{10}16 cm-2, where Illustris produces too few absorbers, which suggests the AGN feedback model should be further refined. Since the “photon underproduction crisis” primarily affects lower column density systems, we conclude that AGN feedback and standard ionizing background models can resolve the crisis.
MAVEN/IUVS Apoapse Observations of the Martian FUV Dayglow
NASA Astrophysics Data System (ADS)
Correira, J.; Evans, J. S.; Stevens, M. H.; Schneider, N. M.; Stewart, I. F.; Deighan, J.; Jain, S.; Chaffin, M.; Crismani, M. M. J.; McClintock, B.; Holsclaw, G.; Lefèvre, F.; Lo, D.; Stiepen, A.; Clarke, J. T.; Mahaffy, P. R.; Bougher, S. W.; Bell, J. M.; Jakosky, B. M.
2015-12-01
We present FUV data (115 - 190 nm) from MAVEN/IUVS apoapse mode observations for the Oct 2014 through Feb 2015 time period. During apoapse mode the highly elliptical orbit of MAVEN allows for up to four apoapse disk images by IUVS per day. Maps of FUV feature intensities and intensity ratios as well as derived CO/CO2 and O/CO2 column density ratios will be shown. Column density ratios are derived from lookup tables created using the Atmospheric Ultraviolet Radiance Integrated Code [Strickland et al., 1999] in conjunction with observed intensity ratios. Column density ratios provide a measure of composition changes in the Martian atmosphere. Due to MAVEN's orbital geometry the observations from this time period focus on the southern hemisphere. The broad view provided by apoapse observations allows for the investigation of spatial and temporal variations (both long term and local time) of the atmospheric composition (via the column density ratios). IUVS FUV intensities and derived column density ratios will also be compared with model results from Mars Global Ionosphere/Thermosphere Model (MGITM) and the Mars Climate Database (MCD).
Observations of circumstellar carbon monoxide and evidence for multiple ejections in red giants
NASA Technical Reports Server (NTRS)
Bernat, A. P.
1981-01-01
Observations of the fundamental 4.6 micron band of CO in nine red giants are presented. A common feature is multiple absorption lines which are identified as products of separate components or shells. Column densities are derived; the relative values should be free of the uncertainties inherent in determining the absolute scale. These column densities are well fitted by single excitation temperatures for each absorption component; these excitation temperatures are identified with the local kinetic temperatures. There is no correlation of CO column density with either gas or dust column density nor of the expansion velocity of the component with its distance from the star. The evidence is reviewed, and it is concluded that mass loss from red giants is most likely episodic in nature.
NASA Astrophysics Data System (ADS)
Kobayashi, N.; Inoue, G.; Kawasaki, M.; Yoshioka, H.; Minomura, M.; Murata, I.; Nagahama, T.; Matsumi, Y.; Tanaka, T.; Morino, I.; Ibuki, T.
2010-08-01
Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities were developed in two independent systems: one utilizing a grating-based desktop optical spectrum analyzer (OSA) with a resolution enough to resolve rotational lines of CO2 and CH4 in the regions of 1565-1585 and 1674-1682 nm, respectively; the other is an application of an optical fiber Fabry-Perot interferometer (FFPI) to obtain the CO2 column density. Direct sunlight was collimated via a small telescope installed on a portable sun tracker and then transmitted through an optical fiber into the OSA or the FFPI for optical analysis. The near infrared spectra of the OSA were retrieved by a least squares spectral fitting algorithm. The CO2 and CH4 column densities deduced were in excellent agreement with those measured by a Fourier transform spectrometer with high resolution. The rovibronic lines in the wavelength region of 1570-1575 nm were analyzed by the FFPI. The I0 and I values in the Beer-Lambert law equation to obtain CO2 column density were deduced by modulating temperature of the FFPI, which offered column CO2 with the statistical error less than 0.2% for six hours measurement.
Algorithms used in the Airborne Lidar Processing System (ALPS)
Nagle, David B.; Wright, C. Wayne
2016-05-23
The Airborne Lidar Processing System (ALPS) analyzes Experimental Advanced Airborne Research Lidar (EAARL) data—digitized laser-return waveforms, position, and attitude data—to derive point clouds of target surfaces. A full-waveform airborne lidar system, the EAARL seamlessly and simultaneously collects mixed environment data, including submerged, sub-aerial bare earth, and vegetation-covered topographies.ALPS uses three waveform target-detection algorithms to determine target positions within a given waveform: centroid analysis, leading edge detection, and bottom detection using water-column backscatter modeling. The centroid analysis algorithm detects opaque hard surfaces. The leading edge algorithm detects topography beneath vegetation and shallow, submerged topography. The bottom detection algorithm uses water-column backscatter modeling for deeper submerged topography in turbid water.The report describes slant range calculations and explains how ALPS uses laser range and orientation measurements to project measurement points into the Universal Transverse Mercator coordinate system. Parameters used for coordinate transformations in ALPS are described, as are Interactive Data Language-based methods for gridding EAARL point cloud data to derive digital elevation models. Noise reduction in point clouds through use of a random consensus filter is explained, and detailed pseudocode, mathematical equations, and Yorick source code accompany the report.
Understanding star formation in molecular clouds. II. Signatures of gravitational collapse of IRDCs
NASA Astrophysics Data System (ADS)
Schneider, N.; Csengeri, T.; Klessen, R. S.; Tremblin, P.; Ossenkopf, V.; Peretto, N.; Simon, R.; Bontemps, S.; Federrath, C.
2015-06-01
We analyse column density and temperature maps derived from Herschel dust continuum observations of a sample of prominent, massive infrared dark clouds (IRDCs) i.e. G11.11-0.12, G18.82-0.28, G28.37+0.07, and G28.53-0.25. We disentangle the velocity structure of the clouds using 13CO 1→0 and 12CO 3→2 data, showing that these IRDCs are the densest regions in massive giant molecular clouds (GMCs) and not isolated features. The probability distribution function (PDF) of column densities for all clouds have a power-law distribution over all (high) column densities, regardless of the evolutionary stage of the cloud: G11.11-0.12, G18.82-0.28, and G28.37+0.07 contain (proto)-stars, while G28.53-0.25 shows no signs of star formation. This is in contrast to the purely log-normal PDFs reported for near and/or mid-IR extinction maps. We only find a log-normal distribution for lower column densities, if we perform PDFs of the column density maps of the whole GMC in which the IRDCs are embedded. By comparing the PDF slope and the radial column density profile of three of our clouds, we attribute the power law to the effect of large-scale gravitational collapse and to local free-fall collapse of pre- and protostellar cores for the highest column densities. A significant impact on the cloud properties from radiative feedback is unlikely because the clouds are mostly devoid of star formation. Independent from the PDF analysis, we find infall signatures in the spectral profiles of 12CO for G28.37+0.07 and G11.11-0.12, supporting the scenario of gravitational collapse. Our results are in line with earlier interpretations that see massive IRDCs as the densest regions within GMCs, which may be the progenitors of massive stars or clusters. At least some of the IRDCs are probably the same features as ridges (high column density regions with N> 1023 cm-2 over small areas), which were defined for nearby IR-bright GMCs. Because IRDCs are only confined to the densest (gravity dominated) cloud regions, the PDF constructed from this kind of a clipped image does not represent the (turbulence dominated) low column density regime of the cloud. The column density maps (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A29
Segmented slant hole collimator for stationary cardiac SPECT: Monte Carlo simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Yanfei, E-mail: ymao@ucair.med.utah.edu; Yu, Zhicong; Zeng, Gengsheng L.
2015-09-15
Purpose: This work is a preliminary study of a stationary cardiac SPECT system. The goal of this research is to propose a stationary cardiac SPECT system using segmented slant-hole collimators and to perform computer simulations to test the feasibility. Compared to the rotational SPECT, a stationary system has a benefit of acquiring temporally consistent projections. The most challenging issue in building a stationary system is to provide sufficient projection view-angles. Methods: A GATE (GEANT4 application for tomographic emission) Monte Carlo model was developed to simulate a two-detector stationary cardiac SPECT that uses segmented slant-hole collimators. Each detector contains seven segmentedmore » slant-hole sections that slant to a common volume at the rotation center. Consequently, 14 view-angles over 180° were acquired without any gantry rotation. The NCAT phantom was used for data generation and a tailored maximum-likelihood expectation-maximization algorithm was used for image reconstruction. Effects of limited number of view-angles and data truncation were carefully evaluated in the paper. Results: Simulation results indicated that the proposed segmented slant-hole stationary cardiac SPECT system is able to acquire sufficient data for cardiac imaging without a loss of image quality, even when the uptakes in the liver and kidneys are high. Seven views are acquired simultaneously at each detector, leading to 5-fold sensitivity gain over the conventional dual-head system at the same total acquisition time, which in turn increases the signal-to-noise ratio by 19%. The segmented slant-hole SPECT system also showed a good performance in lesion detection. In our prototype system, a short hole-length was used to reduce the dead zone between neighboring collimator segments. The measured sensitivity gain is about 17-fold over the conventional dual-head system. Conclusions: The GATE Monte Carlo simulations confirm the feasibility of the proposed stationary cardiac SPECT system with segmented slant-hole collimators. The proposed collimator consists of combined parallel and slant holes, and the image on the detector is not reduced in size.« less
NASA Astrophysics Data System (ADS)
Gielen, Clio; Hendrick, Francois; Pinardi, Gaia; De Smedt, Isabelle; Stavrakou, Trissevgeni; Yu, Huan; Fayt, Caroline; Hermans, Christian; Bauwens, Maité; Ndenzako, Eugene; Nzohabonayo, Pierre; Akimana, Rachel; Niyonzima, Sébastien; Müller, Jean-Francois; Van Roozendael, Michel
2016-04-01
Central Africa is known for its strong biogenic, pyrogenic, and to a lesser extent anthropogenic emissions. Satellite observations of species like nitrogen dioxide (NO2) and formaldehyde (HCHO), as well as inverse modelling results have shown that there are large uncertainties associated with the emissions in this region. There is thus a need for additional measurements, especially from the ground, in order to better characterise the biomass-burning and biogenic products emitted in this area. We present MAX-DOAS measurements of NO2, HCHO, and aerosols performed in Central Africa, in the city of Bujumbura, Burundi (3°S, 29°E, 850m). A MAX-DOAS instrument has been operating at this location by BIRA-IASB since late 2013. Aerosol-extinction and trace-gases vertical profiles are retrieved by applying the optimal-estimation-based profiling tool bePRO to the measured O4, NO2 and HCHO slant-column densities. The MAX-DOAS vertical columns and profiles are used for investigating the diurnal and seasonal cycles of NO2, HCHO, and aerosols. Regarding the aerosols, the retrieved AODs are compared to co-located AERONET sun photometer measurements for verification purpose, while in the case of NO2 and HCHO, the MAX-DOAS vertical columns and profiles are used for validating GOME-2 and OMI satellite observations. To characterise the biomass-burning and biogenic emissions in the Bujumbura region, the trace gases and aerosol MAX-DOAS retrievals are used in combination to MODIS fire counts/radiative-power and GOME-2/OMI NO2 and HCHO satellite data, as well as simulations from the NOAA backward trajectory model HYSPLIT. First results show that HCHO seasonal variation around local noon is driven by the alternation of rain and dry periods, the latter being associated with intense biomass-burning agricultural activities and forest fires in the south/south-east and transport from this region to Bujumbura. In contrast, NO2 is seen to depend mainly on local emissions close to the city, due to the short lifetime of this species (typically 1-2 hours). Regarding the biogenic emissions, it is found that they play only a minor role in the observed HCHO seasonality. These results are further assessed using the tropospheric 3D-CTM IMAGES.
NASA Technical Reports Server (NTRS)
Alcorn, Charles W.; Britcher, Colin
1988-01-01
An experimental investigation is reported on slanted base ogive cylinders at zero incidence. The Mach number range is 0.05 to 0.3. All flow disturbances associated with wind tunnel supports are eliminated in this investigation by magnetically suspending the wind tunnel models. The sudden and drastic changes in the lift, pitching moment, and drag for a slight change in base slant angle are reported. Flow visualization with liquid crystals and oil is used to observe base flow patterns, which are responsible for the sudden changes in aerodynamic characteristics. Hysteretic effects in base flow pattern changes are present in this investigation and are reported. The effect of a wire support attachment on the 0 deg slanted base model is studied. Computational drag and transition location results using VSAERO and SANDRAG are presented and compared with experimental results. Base pressure measurements over the slanted bases are made with an onboard pressure transducer using remote data telemetry.
NASA Technical Reports Server (NTRS)
Bain, D. B.; Smith, C. E.; Holdeman, J. D.
1992-01-01
A CFD study was performed to analyze the mixing potential of opposed rows of staggered jets injected into confined crossflow in a rectangular duct. Three jet configurations were numerically tested: (1) straight (0 deg) slots; (2) perpendicular slanted (45 deg) slots angled in opposite directions on top and bottom walls; and (3) parallel slanted (45 deg) slots angled in the same direction on top and bottom walls. All three configurations were tested at slot spacing-to-duct height ratios (S/H) of 0.5, 0.75, and 1.0; a jet-to-mainstream momentum flux ratio (J) of 100; and a jet-to-mainstream mass flow ratio of 0.383. Each configuration had its best mixing performance at S/H of 0.75. Asymmetric flow patterns were expected and predicted for all slanted slot configurations. The parallel slanted slot configuration was the best overall configuration at x/H of 1.0 for S/H of 0.75.
Ground-Based Radiometric Measurements of Slant Path Attenuation in the V/W Bands
2016-04-01
GROUND-BASED RADIOMETRIC MEASUREMENTS OF SLANT PATH ATTENUATION IN THE V/W BANDS APRIL 2016 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...2. REPORT TYPE FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) OCT 2012 – SEP 2015 4. TITLE AND SUBTITLE GROUND-BASED RADIOMETRIC MEASUREMENTS ...SUPPLEMENTARY NOTES 14. ABSTRACT Ground-based radiometric techniques were applied to measure the slant path attenuation cumulative distribution function to
Design Alternatives to Improve Access Time Performance of Disk Drives Under DOS and UNIX
NASA Astrophysics Data System (ADS)
Hospodor, Andy
For the past 25 years, improvements in CPU performance have overshadowed improvements in the access time performance of disk drives. CPU performance has been slanted towards greater instruction execution rates, measured in millions of instructions per second (MIPS). However, the slant for performance of disk storage has been towards capacity and corresponding increased storage densities. The IBM PC, introduced in 1982, processed only a fraction of a MIP. Follow-on CPUs, such as the 80486 and 80586, sported 5-10 MIPS by 1992. Single user PCs and workstations, with one CPU and one disk drive, became the dominant application, as implied by their production volumes. However, disk drives did not enjoy a corresponding improvement in access time performance, although the potential still exists. The time to access a disk drive improves (decreases) in two ways: by altering the mechanical properties of the drive or by adding cache to the drive. This paper explores the improvement to access time performance of disk drives using cache, prefetch, faster rotation rates, and faster seek acceleration.
Evidence for Universality in the Initial Planetesimal Mass Function
NASA Astrophysics Data System (ADS)
Simon, Jacob B.; Armitage, Philip J.; Youdin, Andrew N.; Li, Rixin
2017-10-01
Planetesimals may form from the gravitational collapse of dense particle clumps initiated by the streaming instability. We use simulations of aerodynamically coupled gas-particle mixtures to investigate whether the properties of planetesimals formed in this way depend upon the sizes of the particles that participate in the instability. Based on three high-resolution simulations that span a range of dimensionless stopping times 6× {10}-3≤slant τ ≤slant 2, no statistically significant differences in the initial planetesimal mass function are found. The mass functions are fit by a power law, {dN}/{{dM}}p\\propto {M}p-p, with p = 1.5-1.7 and errors of {{Δ }}p≈ 0.1. Comparing the particle density fields prior to collapse, we find that the high-wavenumber power spectra are similarly indistinguishable, though the large-scale geometry of structures induced via the streaming instability is significantly different between all three cases. We interpret the results as evidence for a near-universal slope to the mass function, arising from the small-scale structure of streaming-induced turbulence.
Evaluation of a novel collimator for molecular breast tomosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilland, David R.; Welch, Benjamin L.; Lee, Seungjoon
Here, this study investigated a novel gamma camera for molecular breast tomosynthesis (MBT), which is a nuclear breast imaging method that uses limited angle tomography. The camera is equipped with a variable angle, slant-hole (VASH) collimator that allows the camera to remain close to the breast throughout the acquisition. The goal of this study was to evaluate the spatial resolution and count sensitivity of this camera and to compare contrast and contrast-to-noise ratio (CNR) with conventional planar imaging using an experimental breast phantom. Methods The VASH collimator mounts to a commercial gamma camera for breast imaging that uses a pixelatedmore » (3.2 mm), 15 × 20 cm NaI crystal. Spatial resolution was measured in planar images over a range of distances from the collimator (30-100 mm) and a range of slant angles (–25° to 25°) using 99mTc line sources. Spatial resolution was also measured in reconstructed MBT images including in the depth dimension. The images were reconstructed from data acquired over the -25° to 25° angular range using an iterative algorithm adapted to the slant-hole geometry. Sensitivity was measured over the range of slant angles using a disk source. Measured spatial resolution and sensitivity were compared to theoretical values. Contrast and CNR were measured using a breast phantom containing spherical lesions (6.2 mm and 7.8 mm diameter) and positioned over a range of depths in the phantom. The MBT and planar methods had equal scan time, and the count density in the breast phantom data was similar to that in clinical nuclear breast imaging. The MBT method used an iterative reconstruction algorithm combined with a postreconstruction Metz filter. Results The measured spatial resolution in planar images agreed well with theoretical calculations over the range of distances and slant angles. The measured FWHM was 9.7 mm at 50 mm distance. In reconstructed MBT images, the spatial resolution in the depth dimension was approximately 2.2 mm greater than the other two dimensions due to the limited angle data. The measured count sensitivity agreed closely with theory over all slant angles when using a wide energy window. At 0° slant angle, measured sensitivity was 19.7 counts sec -1 μCi -1 with the open energy window and 11.2 counts sec -1 μCi -1 with a 20% wide photopeak window (126 to 154 keV). The measured CNR in the MBT images was significantly greater than in the planar images for all but the lowest CNR cases where the lesion detectability was extremely low for both MBT and planar. The 7.8 mm lesion at 37 mm depth was marginally detectable in the planar image but easily visible in the MBT image. The improved CNR with MBT was due to a large improvement in contrast, which out-weighed the increase in image noise. Conclusion The spatial resolution and count sensitivity measurements with the prototype MBT system matched theoretical calculations, and the measured CNR in breast phantom images was generally greater with the MBT system compared to conventional planar imaging. These results demonstrate the potential of the proposed MBT system to improve lesion detection in nuclear breast imaging.« less
Evaluation of a novel collimator for molecular breast tomosynthesis.
Gilland, David R; Welch, Benjamin L; Lee, Seungjoon; Kross, Brian; Weisenberger, Andrew G
2017-11-01
This study investigated a novel gamma camera for molecular breast tomosynthesis (MBT), which is a nuclear breast imaging method that uses limited angle tomography. The camera is equipped with a variable angle, slant-hole (VASH) collimator that allows the camera to remain close to the breast throughout the acquisition. The goal of this study was to evaluate the spatial resolution and count sensitivity of this camera and to compare contrast and contrast-to-noise ratio (CNR) with conventional planar imaging using an experimental breast phantom. The VASH collimator mounts to a commercial gamma camera for breast imaging that uses a pixelated (3.2 mm), 15 × 20 cm NaI crystal. Spatial resolution was measured in planar images over a range of distances from the collimator (30-100 mm) and a range of slant angles (-25° to 25°) using 99m Tc line sources. Spatial resolution was also measured in reconstructed MBT images including in the depth dimension. The images were reconstructed from data acquired over the -25° to 25° angular range using an iterative algorithm adapted to the slant-hole geometry. Sensitivity was measured over the range of slant angles using a disk source. Measured spatial resolution and sensitivity were compared to theoretical values. Contrast and CNR were measured using a breast phantom containing spherical lesions (6.2 mm and 7.8 mm diameter) and positioned over a range of depths in the phantom. The MBT and planar methods had equal scan time, and the count density in the breast phantom data was similar to that in clinical nuclear breast imaging. The MBT method used an iterative reconstruction algorithm combined with a postreconstruction Metz filter. The measured spatial resolution in planar images agreed well with theoretical calculations over the range of distances and slant angles. The measured FWHM was 9.7 mm at 50 mm distance. In reconstructed MBT images, the spatial resolution in the depth dimension was approximately 2.2 mm greater than the other two dimensions due to the limited angle data. The measured count sensitivity agreed closely with theory over all slant angles when using a wide energy window. At 0° slant angle, measured sensitivity was 19.7 counts sec -1 μCi -1 with the open energy window and 11.2 counts sec -1 μCi -1 with a 20% wide photopeak window (126 to 154 keV). The measured CNR in the MBT images was significantly greater than in the planar images for all but the lowest CNR cases where the lesion detectability was extremely low for both MBT and planar. The 7.8 mm lesion at 37 mm depth was marginally detectable in the planar image but easily visible in the MBT image. The improved CNR with MBT was due to a large improvement in contrast, which out-weighed the increase in image noise. The spatial resolution and count sensitivity measurements with the prototype MBT system matched theoretical calculations, and the measured CNR in breast phantom images was generally greater with the MBT system compared to conventional planar imaging. These results demonstrate the potential of the proposed MBT system to improve lesion detection in nuclear breast imaging. © 2017 American Association of Physicists in Medicine.
Evaluation of a novel collimator for molecular breast tomosynthesis
Gilland, David R.; Welch, Benjamin L.; Lee, Seungjoon; ...
2017-09-06
Here, this study investigated a novel gamma camera for molecular breast tomosynthesis (MBT), which is a nuclear breast imaging method that uses limited angle tomography. The camera is equipped with a variable angle, slant-hole (VASH) collimator that allows the camera to remain close to the breast throughout the acquisition. The goal of this study was to evaluate the spatial resolution and count sensitivity of this camera and to compare contrast and contrast-to-noise ratio (CNR) with conventional planar imaging using an experimental breast phantom. Methods The VASH collimator mounts to a commercial gamma camera for breast imaging that uses a pixelatedmore » (3.2 mm), 15 × 20 cm NaI crystal. Spatial resolution was measured in planar images over a range of distances from the collimator (30-100 mm) and a range of slant angles (–25° to 25°) using 99mTc line sources. Spatial resolution was also measured in reconstructed MBT images including in the depth dimension. The images were reconstructed from data acquired over the -25° to 25° angular range using an iterative algorithm adapted to the slant-hole geometry. Sensitivity was measured over the range of slant angles using a disk source. Measured spatial resolution and sensitivity were compared to theoretical values. Contrast and CNR were measured using a breast phantom containing spherical lesions (6.2 mm and 7.8 mm diameter) and positioned over a range of depths in the phantom. The MBT and planar methods had equal scan time, and the count density in the breast phantom data was similar to that in clinical nuclear breast imaging. The MBT method used an iterative reconstruction algorithm combined with a postreconstruction Metz filter. Results The measured spatial resolution in planar images agreed well with theoretical calculations over the range of distances and slant angles. The measured FWHM was 9.7 mm at 50 mm distance. In reconstructed MBT images, the spatial resolution in the depth dimension was approximately 2.2 mm greater than the other two dimensions due to the limited angle data. The measured count sensitivity agreed closely with theory over all slant angles when using a wide energy window. At 0° slant angle, measured sensitivity was 19.7 counts sec -1 μCi -1 with the open energy window and 11.2 counts sec -1 μCi -1 with a 20% wide photopeak window (126 to 154 keV). The measured CNR in the MBT images was significantly greater than in the planar images for all but the lowest CNR cases where the lesion detectability was extremely low for both MBT and planar. The 7.8 mm lesion at 37 mm depth was marginally detectable in the planar image but easily visible in the MBT image. The improved CNR with MBT was due to a large improvement in contrast, which out-weighed the increase in image noise. Conclusion The spatial resolution and count sensitivity measurements with the prototype MBT system matched theoretical calculations, and the measured CNR in breast phantom images was generally greater with the MBT system compared to conventional planar imaging. These results demonstrate the potential of the proposed MBT system to improve lesion detection in nuclear breast imaging.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuravlev, B. V., E-mail: zhurav@ippe.ru; Lychagin, A. A., E-mail: Lychagin1@yandex.ru; Titarenko, N. N.
Level densities and their energy dependences for nuclei in the mass range of 47 {<=} A {<=} 59 were determined from the results obtained by measuring neutron-evaporation spectra in respective (p, n) reactions. The spectra of neutrons originating from the (p, n) reactions on {sup 47}Ti, {sup 48}Ti, {sup 49}Ti, {sup 53}Cr, {sup 54}Cr, {sup 57}Fe, and {sup 59}Co nuclei were measured in the proton-energy range of 7-11 MeV. These measurements were performed with the aid of a fast-neutron spectrometer by the time-of-flight method over the base of the EGP-15 pulsed tandem accelerator installed at the Institute for Physics andmore » Power Engineering (Obninsk, Russia). A high resolution of the spectrometer and its stability in the time of flight made it possible to identify reliably discrete low-lying levels along with the continuum part of neutron spectra. Our measured data were analyzed within the statistical equilibrium and preequilibrium models of nuclear reactions. The respective calculations were performed with the aid of the Hauser-Feshbach formalismof statistical theory supplemented with the generalized model of a superfluid nucleus, the back-shifted Fermi gas model, and the Gilbert-Cameron composite formula for nuclear level densities. Nuclear level densities for {sup 47}V, {sup 48}V, {sup 49}V, {sup 53}Mn, {sup 54}Mn, {sup 57}Co, and {sup 59}Ni and their energy dependences were determined. The results are discussed and compared with available experimental data and with recommendations of model-based systematics.« less
The SDSS-IV MaNGA Sample: Design, Optimization, and Usage Considerations
NASA Astrophysics Data System (ADS)
Wake, David A.; Bundy, Kevin; Diamond-Stanic, Aleksandar M.; Yan, Renbin; Blanton, Michael R.; Bershady, Matthew A.; Sánchez-Gallego, José R.; Drory, Niv; Jones, Amy; Kauffmann, Guinevere; Law, David R.; Li, Cheng; MacDonald, Nicholas; Masters, Karen; Thomas, Daniel; Tinker, Jeremy; Weijmans, Anne-Marie; Brownstein, Joel R.
2017-09-01
We describe the sample design for the SDSS-IV MaNGA survey and present the final properties of the main samples along with important considerations for using these samples for science. Our target selection criteria were developed while simultaneously optimizing the size distribution of the MaNGA integral field units (IFUs), the IFU allocation strategy, and the target density to produce a survey defined in terms of maximizing signal-to-noise ratio, spatial resolution, and sample size. Our selection strategy makes use of redshift limits that only depend on I-band absolute magnitude (M I ), or, for a small subset of our sample, M I and color (NUV - I). Such a strategy ensures that all galaxies span the same range in angular size irrespective of luminosity and are therefore covered evenly by the adopted range of IFU sizes. We define three samples: the Primary and Secondary samples are selected to have a flat number density with respect to M I and are targeted to have spectroscopic coverage to 1.5 and 2.5 effective radii (R e ), respectively. The Color-Enhanced supplement increases the number of galaxies in the low-density regions of color-magnitude space by extending the redshift limits of the Primary sample in the appropriate color bins. The samples cover the stellar mass range 5× {10}8≤slant {M}* ≤slant 3× {10}11 {M}⊙ {h}-2 and are sampled at median physical resolutions of 1.37 and 2.5 kpc for the Primary and Secondary samples, respectively. We provide weights that will statistically correct for our luminosity and color-dependent selection function and IFU allocation strategy, thus correcting the observed sample to a volume-limited sample.
NASA Astrophysics Data System (ADS)
Liu, Daizhong; Daddi, Emanuele; Dickinson, Mark; Owen, Frazer; Pannella, Maurilio; Sargent, Mark; Béthermin, Matthieu; Magdis, Georgios; Gao, Yu; Shu, Xinwen; Wang, Tao; Jin, Shuowen; Inami, Hanae
2018-02-01
We present a new technique to measure multi-wavelength “super-deblended” photometry from highly confused images, which we apply to Herschel and ground-based far-infrared (FIR) and (sub-)millimeter (mm) data in the northern field of the Great Observatories Origins Deep Survey. There are two key novelties. First, starting with a large database of deep Spitzer 24 μm and VLA 20 cm detections that are used to define prior positions for fitting the FIR/submm data, we perform an active selection of useful priors independently at each frequency band, moving from less to more confused bands. Exploiting knowledge of redshift and all available photometry, we identify hopelessly faint priors that we remove from the fitting pool. This approach significantly reduces blending degeneracies and allows reliable photometry to be obtained for galaxies in FIR+mm bands. Second, we obtain well-behaved, nearly Gaussian flux density uncertainties, individually tailored to all fitted priors for each band. This is done by exploiting extensive simulations that allow us to calibrate the conversion of formal fitting uncertainties to realistic uncertainties, depending on directly measurable quantities. We achieve deeper detection limits with high fidelity measurements and uncertainties at FIR+mm bands. As an illustration of the utility of these measurements, we identify 70 galaxies with z≥slant 3 and reliable FIR+mm detections. We present new constraints on the cosmic star formation rate density at 3< z< 6, finding a significant contribution from z≥slant 3 dusty galaxies that are missed by optical-to-near-infrared color selection. Photometric measurements for 3306 priors, including more than 1000 FIR+mm detections, are released publicly with our catalog.
Conical-Domain Model for Estimating GPS Ionospheric Delays
NASA Technical Reports Server (NTRS)
Sparks, Lawrence; Komjathy, Attila; Mannucci, Anthony
2009-01-01
The conical-domain model is a computational model, now undergoing development, for estimating ionospheric delays of Global Positioning System (GPS) signals. Relative to the standard ionospheric delay model described below, the conical-domain model offers improved accuracy. In the absence of selective availability, the ionosphere is the largest source of error for single-frequency users of GPS. Because ionospheric signal delays contribute to errors in GPS position and time measurements, satellite-based augmentation systems (SBASs) have been designed to estimate these delays and broadcast corrections. Several national and international SBASs are currently in various stages of development to enhance the integrity and accuracy of GPS measurements for airline navigation. In the Wide Area Augmentation System (WAAS) of the United States, slant ionospheric delay errors and confidence bounds are derived from estimates of vertical ionospheric delay modeled on a grid at regularly spaced intervals of latitude and longitude. The estimate of vertical delay at each ionospheric grid point (IGP) is calculated from a planar fit of neighboring slant delay measurements, projected to vertical using a standard, thin-shell model of the ionosphere. Interpolation on the WAAS grid enables estimation of the vertical delay at the ionospheric pierce point (IPP) corresponding to any arbitrary measurement of a user. (The IPP of a given user s measurement is the point where the GPS signal ray path intersects a reference ionospheric height.) The product of the interpolated value and the user s thin-shell obliquity factor provides an estimate of the user s ionospheric slant delay. Two types of error that restrict the accuracy of the thin-shell model are absent in the conical domain model: (1) error due to the implicit assumption that the electron density is independent of the azimuthal angle at the IPP and (2) error arising from the slant-to-vertical conversion. At low latitudes or at mid-latitudes under disturbed conditions, the accuracy of SBAS systems based upon the thin-shell model suffers due to the presence of complex ionospheric structure, high delay values, and large electron density gradients. Interpolation on the vertical delay grid serves as an additional source of delay error. The conical-domain model permits direct computation of the user s slant delay estimate without the intervening use of a vertical delay grid. The key is to restrict each fit of GPS measurements to a spatial domain encompassing signals from only one satellite. The conical domain model is so named because each fit involves a group of GPS receivers that all receive signals from the same GPS satellite (see figure); the receiver and satellite positions define a cone, the satellite position being the vertex. A user within a given cone evaluates the delay to the satellite directly, using (1) the IPP coordinates of the line of sight to the satellite and (2) broadcast fit parameters associated with the cone. The conical-domain model partly resembles the thin-shell model in that both models reduce an inherently four-dimensional problem to two dimensions. However, unlike the thin-shell model, the conical domain model does not involve any potentially erroneous simplifying assumptions about the structure of the ionosphere. In the conical domain model, the initially four-dimensional problem becomes truly two-dimensional in the sense that once a satellite location has been specified, any signal path emanating from a satellite can be identified by only two coordinates; for example, the IPP coordinates. As a consequence, a user s slant-delay estimate converges to the correct value in the limit that the receivers converge to the user s location (or, equivalently, in the limit that the measurement IPPs converge to the user s IPP).
Hydrodynamic flow in capillary-channel fiber columns for liquid chromatography.
Stanelle, Rayman D; Sander, Lane C; Marcus, R Kenneth
2005-12-23
The flow characteristics of capillary-channel polymer (C-CP) fiber liquid chromatographic (LC) columns have been investigated. The C-CP fibers are manufactured with eight longitudinal grooves (capillary channels) extending the length of the fibers. Three C-CP fiber examples were studied, with fiber dimensions ranging from approximately 35 microm to 65 microm, and capillary-channel dimensions ranging from approximately 6 microm to 35 microm. The influence of fiber packing density and column inner diameter on peak asymmetry, peak width, and run-to-run reproducibility have been studied for stainless steel LC columns packed with polyester (PET) and polypropylene (PP) C-CP fibers. The van Deemter A-term was evaluated as a function of fiber packing density (approximately 0.3 g/cm(3)-0.75 g/cm(3)) for columns of 4.6 mm inner diameter (i.d.) and at constant packing densities for 1.5 mm, 3.2 mm, 4.6 mm, and 7.7 mm i.d. columns. Although column diameter had little influence on the eluting peak widths, peak asymmetry increased with increasing column diameter. The A-terms for the C-CP fiber packed columns are somewhat larger than current commercial, microparticulate-packed columns, and means for improvement are discussed. Applications in the area of protein (macromolecule) separations appear the most promising at this stage of the system development.
Polynomial modal analysis of slanted lamellar gratings.
Granet, Gérard; Randriamihaja, Manjakavola Honore; Raniriharinosy, Karyl
2017-06-01
The problem of diffraction by slanted lamellar dielectric and metallic gratings in classical mounting is formulated as an eigenvalue eigenvector problem. The numerical solution is obtained by using the moment method with Legendre polynomials as expansion and test functions, which allows us to enforce in an exact manner the boundary conditions which determine the eigensolutions. Our method is successfully validated by comparison with other methods including in the case of highly slanted gratings.
Slant rectification in Russian passport OCR system using fast Hough transform
NASA Astrophysics Data System (ADS)
Limonova, Elena; Bezmaternykh, Pavel; Nikolaev, Dmitry; Arlazarov, Vladimir
2017-03-01
In this paper, we introduce slant detection method based on Fast Hough Transform calculation and demonstrate its application in industrial system for Russian passports recognition. About 1.5% of this kind of documents appear to be slant or italic. This fact reduces recognition rate, because Optical Recognition Systems are normally designed to process normal fonts. Our method uses Fast Hough Transform to analyse vertical strokes of characters extracted with the help of x-derivative of a text line image. To improve the quality of detector we also introduce field grouping rules. The resulting algorithm allowed to reach high detection quality. Almost all errors of considered approach happen on passports of nonstandard fonts, while slant detector works in appropriate way.
Visual discrimination of local surface structure: slant, tilt, and curvedness.
Norman, J Farley; Todd, James T; Norman, Hideko F; Clayton, Anna Marie; McBride, T Ryan
2006-03-01
In four experiments, observers were required to discriminate interval or ordinal differences in slant, tilt, or curvedness between designated probe points on randomly shaped curved surfaces defined by shading, texture, and binocular disparity. The results reveal that discrimination thresholds for judgments of slant or tilt typically range between 4 degrees and 10 degrees; that judgments of one component are unaffected by simultaneous variations in the other; and that the individual thresholds for either the slant or tilt components of orientation are approximately equal to those obtained for judgments of the total orientation difference between two probed regions. Performance was much worse, however, for judgments of curvedness, and these judgments were significantly impaired when there were simultaneous variations in the shape index parameter of curvature.
Separation of carbon nanotubes into chirally enriched fractions
Doorn, Stephen K [Los Alamos, NM; Niyogi, Sandip [Los Alamos, NM
2012-04-10
A mixture of single-walled carbon nanotubes ("SWNTs") is separated into fractions of enriched chirality by preparing an aqueous suspension of a mixture of SWNTs and a surfactant, injecting a portion of the suspension on a column of separation medium having a density gradient, and centrifuging the column. In some embodiments, salt is added prior to centrifugation. In other embodiments, the centrifugation is performed at a temperature below room temperature. Fractions separate as colored bands in the column. The diameter of the separated SWNTs decreases with increasing density along the gradient of the column. The colored bands can be withdrawn separately from the column.
Interstellar C IV and Si IV column densities toward early-type stars
NASA Technical Reports Server (NTRS)
Bruhweiler, F. C.; Kondo, Y.; Mccluskey, G. E.
1980-01-01
Equivalent widths and deduced column densities of Si IV and C IV are examined for 18 early-type close binaries, and physical processes responsible for the origin of these ions in the interstellar medium are investigated. The available C IV/Si IV column density ratios typically lie within a narrow range from 0.8 to 4.5, and there is evidence that the column density of C IV is higher than that of N V along most lines of sight, suggesting that C IV is not formed in the same hot region as O VI. In addition, the existence of regions with a narrowly defined new temperature range around 50,000 deg K is indicated. The detection of the semitorrid gas of Bruhweiler, Kondo, and McCluskey (1978, 1979) is substantiated, and the relation of this gas to the observations of coronal gas in the galactic halo is discussed.
Hybrid Parallel-Slant Hole Collimators for SPECT Imaging
NASA Astrophysics Data System (ADS)
Bai, Chuanyong; Shao, Ling; Ye, Jinghan; Durbin, M.; Petrillo, M.
2004-06-01
We propose a new collimator geometry, the hybrid parallel-slant (HPS) hole geometry, to improve sensitivity for SPECT imaging with large field of view (LFOV) gamma cameras. A HPS collimator has one segment with parallel holes and one or more segments with slant holes. The collimator can be mounted on a conventional SPECT LFOV system that uses parallel-beam collimators, and no additional detector or collimator motion is required for data acquisition. The parallel segment of the collimator allows for the acquisition of a complete data set of the organs-of-interest and the slant segments provide additional data. In this work, simulation studies of an MCAT phantom were performed with a HPS collimator with one slant segment. The slant direction points from patient head to patient feet with a slant angle of 30/spl deg/. We simulated 64 projection views over 180/spl deg/ with the modeling of nonuniform attenuation effect, and then reconstructed images using an MLEM algorithm that incorporated the hybrid geometry. It was shown that sensitivity to the cardiac region of the phantom was increased by approximately 50% when using the HPS collimator compared with a parallel-hole collimator. No visible artifacts were observed in the myocardium and the signal-to-noise ratio (SNR) of the myocardium walls was improved. Compared with collimators with other geometries, using a HPS collimator has the following advantages: (a) significant sensitivity increase; (b) a complete data set obtained from the parallel segment that allows for artifact-free image reconstruction; and (c) no additional collimator or detector motion. This work demonstrates the potential value of hybrid geometry in collimator design for LFOV SPECT imaging.
Results from EDGES High-band. I. Constraints on Phenomenological Models for the Global 21 cm Signal
NASA Astrophysics Data System (ADS)
Monsalve, Raul A.; Rogers, Alan E. E.; Bowman, Judd D.; Mozdzen, Thomas J.
2017-09-01
We report constraints on the global 21 cm signal due to neutral hydrogen at redshifts 14.8≥slant z≥slant 6.5. We derive our constraints from low-foreground observations of the average sky brightness spectrum conducted with the EDGES High-band instrument between 2015 September 7 and October 26. Observations were calibrated by accounting for the effects of antenna beam chromaticity, antenna and ground losses, signal reflections, and receiver parameters. We evaluate the consistency between the spectrum and phenomenological models for the global 21 cm signal. For tanh-based representations of the ionization history during the epoch of reionization, we rule out, at ≥slant 2σ significance, models with duration of up to {{Δ }}z=1 at z≈ 8.5 and higher than {{Δ }}z=0.4 across most of the observed redshift range under the usual assumption that the 21 cm spin temperature is much larger than the temperature of the cosmic microwave background during reionization. We also investigate a “cold” intergalactic medium (IGM) scenario that assumes perfect Lyα coupling of the 21 cm spin temperature to the temperature of the IGM, but that the latter is not heated by early stars or stellar remants. Under this assumption, we reject tanh-based reionization models of duration {{Δ }}z≲ 2 over most of the observed redshift range. Finally, we explore and reject a broad range of Gaussian models for the 21 cm absorption feature expected in the First Light era. As an example, we reject 100 mK Gaussians with duration (full width at half maximum) {{Δ }}z≤slant 4 over the range 14.2≥slant z≥slant 6.5 at ≥slant 2σ significance.
On site experiments of the slanted soil treatment systems for domestic gray water.
Itayama, Tomoaki; Kiji, Masato; Suetsugu, Aya; Tanaka, Nobuyuki; Saito, Takeshi; Iwami, Norio; Mizuochi, Motoyuki; Inamori, Yuhei
2006-01-01
In order to make a breakthrough for the acute problem of water shortage in the world, the key words "decentralization and re-use" are very important for new sustainable sanitation systems that will be developed. Therefore, we focused on a new treatments system called "a slanted soil treatment system" which combines a biotoilet system with a domestic grey water treatment system. Because this system is a low cost and compact system, the system can be easily introduced to homes in urban areas or in the suburbs of cities in many developing countries. In this study, we performed on site experiments carried out on Shikoku Island, Japan, for several years. We obtained the following results. The slanted soil treatment system could remove organic pollutants and total nitrogen and total phosphorus in grey water effectively. Furthermore, the system performance became high in the case of the high concentration of the influent water. The nitrification reaction and denitrification reaction were speculated to exist due to aerobic zones and anaerobic zones present in the slanted soil treatment system. The slanted soil treatment system could perform for approximately 3 years with zero maintenance. The plug flow model of 1st order reaction kinetics could describe the reaction in the slanted soil treatment system. However, it is necessary to improve the system to maintain the performance in all seasons.
Processing vertical size disparities in distinct depth planes.
Duke, Philip A; Howard, Ian P
2012-08-17
A textured surface appears slanted about a vertical axis when the image in one eye is horizontally enlarged relative to the image in the other eye. The surface appears slanted in the opposite direction when the same image is vertically enlarged. Two superimposed textured surfaces with different horizontal size disparities appear as two surfaces that differ in slant. Superimposed textured surfaces with equal and opposite vertical size disparities appear as a single frontal surface. The vertical disparities are averaged. We investigated whether vertical size disparities are averaged across two superimposed textured surfaces in different depth planes or whether they induce distinct slants in the two depth planes. In Experiment 1, two superimposed textured surfaces with different vertical size disparities were presented in two depth planes defined by horizontal disparity. The surfaces induced distinct slants when the horizontal disparity was more than ±5 arcmin. Thus, vertical size disparities are not averaged over surfaces with different horizontal disparities. In Experiment 2 we confirmed that vertical size disparities are processed in surfaces away from the horopter, so the results of Experiment 1 cannot be explained by the processing of vertical size disparities in a fixated surface only. Together, these results show that vertical size disparities are processed separately in distinct depth planes. The results also suggest that vertical size disparities are not used to register slant globally by their effect on the registration of binocular direction of gaze.
Highly-ionized metals as probes of the circumburst gas in the natal regions of gamma-ray bursts
NASA Astrophysics Data System (ADS)
Heintz, K. E.; Watson, D.; Jakobsson, P.; Fynbo, J. P. U.; Bolmer, J.; Arabsalmani, M.; Cano, Z.; Covino, S.; D'Elia, V.; Gomboc, A.; Japelj, J.; Kaper, L.; Krogager, J.-K.; Pugliese, G.; Sánchez-Ramírez, R.; Selsing, J.; Sparre, M.; Tanvir, N. R.; Thöne, C. C.; de Ugarte Postigo, A.; Vergani, S. D.
2018-06-01
We present here a survey of high-ionization absorption lines in the afterglow spectra of long-duration gamma-ray bursts (GRBs) obtained with the VLT/X-shooter spectrograph. Our main goal is to investigate the circumburst medium in the natal regions of GRBs. Our primary focus is on the N V λλ 1238,1242 line transitions, but we also discuss other high-ionization lines such as O VI, C IV and Si IV. We find no correlation between the column density of N V and the neutral gas properties such as metallicity, H I column density and dust depletion, however the relative velocity of N V, typically a blueshift with respect to the neutral gas, is found to be correlated with the column density of H I. This may be explained if the N V gas is part of an H II region hosting the GRB, where the region's expansion is confined by dense, neutral gas in the GRB's host galaxy. We find tentative evidence (at 2σ significance) that the X-ray derived column density, NH, X, may be correlated with the column density of N V, which would indicate that both measurements are sensitive to the column density of the gas located in the vicinity of the GRB. We investigate the scenario where N V (and also O VI) is produced by recombination after the corresponding atoms have been stripped entirely of their electrons by the initial prompt emission, in contrast to previous models where highly-ionized gas is produced by photoionization from the GRB afterglow.
Perceived Surface Slant Is Systematically Biased in the Actively-Generated Optic Flow
Fantoni, Carlo; Caudek, Corrado; Domini, Fulvio
2012-01-01
Humans make systematic errors in the 3D interpretation of the optic flow in both passive and active vision. These systematic distortions can be predicted by a biologically-inspired model which disregards self-motion information resulting from head movements (Caudek, Fantoni, & Domini 2011). Here, we tested two predictions of this model: (1) A plane that is stationary in an earth-fixed reference frame will be perceived as changing its slant if the movement of the observer's head causes a variation of the optic flow; (2) a surface that rotates in an earth-fixed reference frame will be perceived to be stationary, if the surface rotation is appropriately yoked to the head movement so as to generate a variation of the surface slant but not of the optic flow. Both predictions were corroborated by two experiments in which observers judged the perceived slant of a random-dot planar surface during egomotion. We found qualitatively similar biases for monocular and binocular viewing of the simulated surfaces, although, in principle, the simultaneous presence of disparity and motion cues allows for a veridical recovery of surface slant. PMID:22479473
Slanted snaking of localized Faraday waves
NASA Astrophysics Data System (ADS)
Pradenas, Bastián; Araya, Isidora; Clerc, Marcel G.; Falcón, Claudio; Gandhi, Punit; Knobloch, Edgar
2017-06-01
We report on an experimental, theoretical, and numerical study of slanted snaking of spatially localized parametrically excited waves on the surface of a water-surfactant mixture in a Hele-Shaw cell. We demonstrate experimentally the presence of a hysteretic transition to spatially extended parametrically excited surface waves when the acceleration amplitude is varied, as well as the presence of spatially localized waves exhibiting slanted snaking. The latter extend outside the hysteresis loop. We attribute this behavior to the presence of a conserved quantity, the liquid volume trapped within the meniscus, and introduce a universal model based on symmetry arguments, which couples the wave amplitude with such a conserved quantity. The model captures both the observed slanted snaking and the presence of localized waves outside the hysteresis loop, as demonstrated by numerical integration of the model equations.
Radiometric Measurements of Slant Path Attenuation in the V/W Bands
2014-09-01
AUTHOR(S) George Brost , Kevin Magde, William Cook 5d. PROJECT NUMBER T2WB 5e. TASK NUMBER IN 5f. WORK UNIT NUMBER HO 7. PERFORMING...Measurements of Slant-Path Attenuation in the V/W Bands G. Brost , K. Magde, and W. Cook Air Force Research Laboratory, 525 Brooks Rd, Rome, NY, USA...slant path statistics at frequencies above 50 GHz. REFERENCES [1] G. Brost , W. Cook, and W. Lipe,” On the modeling and prediction of
Determination of the line shapes of atomic nitrogen resonance lines by magnetic scans
NASA Technical Reports Server (NTRS)
Lawrence, G. M.; Stone, E. J.; Kley, D.
1976-01-01
A technique is given for calibrating an atomic nitrogen resonance lamp for use in determining column densities of atoms in specific states. A discharge lamp emitting the NI multiplets at 1200 A and 1493 A is studied by obtaining absorption by atoms in a magnetic field (0-2.5 T). This magnetic scanning technique enables the determination of the absorbing atom column density, and an empirical curve of growth is obtained because the atomic f-value is known. Thus, the calibrated lamp can be used in the determination of atomic column densities.
NASA Technical Reports Server (NTRS)
Goldsmith, Paul F.
2008-01-01
Viewgraph topics include: optical image of Taurus; dust extinction in IR has provided a new tool for probing cloud morphology; observations of the gas can contribute critical information on gas temperature, gas column density and distribution, mass, and kinematics; the Taurus molecular cloud complex; average spectra in each mask region; mas 2 data; dealing with mask 1 data; behavior of mask 1 pixels; distribution of CO column densities; conversion to H2 column density; variable CO/H2 ratio with values much less than 10(exp -4) at low N indicated by UV results; histogram of N(H2) distribution; H2 column density distribution in Taurus; cumulative distribution of mass and area; lower CO fractional abundance in mask 0 and 1 regions greatly increases mass determined in the analysis; masses determined with variable X(CO) and including diffuse regions agrees well with the found from L(CO); distribution of young stars as a function of molecular column density; star formation efficiency; star formation rate and gas depletion; and enlarged images of some of the regions with numerous young stars. Additional slides examine the origin of the Taurus molecular cloud, evolution from HI gas, kinematics as a clue to its origin, and its relationship to star formation.
Antibody-immobilized column for quick cell separation based on cell rolling.
Mahara, Atsushi; Yamaoka, Tetsuji
2010-01-01
Cell separation using methodological standards that ensure high purity is a very important step in cell transplantation for regenerative medicine and for stem cell research. A separation protocol using magnetic beads has been widely used for cell separation to isolate negative and positive cells. However, not only the surface marker pattern, e.g., negative or positive, but also the density of a cell depends on its developmental stage and differentiation ability. Rapid and label-free separation procedures based on surface marker density are the focus of our interest. In this study, we have successfully developed an antiCD34 antibody-immobilized cell-rolling column, that can separate cells depending on the CD34 density of the cell surfaces. Various conditions for the cell-rolling column were optimized including graft copolymerization, and adjustment of the column tilt angle, and medium flow rate. Using CD34-positive and -negative cell lines, the cell separation potential of the column was established. We observed a difference in the rolling velocities between CD34-positive and CD34-negative cells on antibody-immobilized microfluidic device. Cell separation was achieved by tilting the surface 20 degrees and the increasing medium flow. Surface marker characteristics of the isolated cells in each fraction were analyzed using a cell-sorting system, and it was found that populations containing high density of CD34 were eluted in the delayed fractions. These results demonstrate that cells with a given surface marker density can be continuously separated using the cell rolling column.
C+/H2 gas in star-forming clouds and galaxies
NASA Astrophysics Data System (ADS)
Nordon, Raanan; Sternberg, Amiel
2016-11-01
We present analytic theory for the total column density of singly ionized carbon (C+) in the optically thick photon dominated regions (PDRs) of far-UV irradiated (star-forming) molecular clouds. We derive a simple formula for the C+ column as a function of the cloud (hydrogen) density, the far-UV field intensity, and metallicity, encompassing the wide range of galaxy conditions. When assuming the typical relation between UV and density in the cold neutral medium, the C+ column becomes a function of the metallicity alone. We verify our analysis with detailed numerical PDR models. For optically thick gas, most of the C+ column is mixed with hydrogen that is primarily molecular (H2), and this `C+/H2' gas layer accounts for almost all of the `CO-dark' molecular gas in PDRs. The C+/H2 column density is limited by dust shielding and is inversely proportional to the metallicity down to ˜0.1 solar. At lower metallicities, H2 line blocking dominates and the C+/H2 column saturates. Applying our theory to CO surveys in low-redshift spirals, we estimate the fraction of C+/H2 gas out of the total molecular gas to be typically ˜0.4. At redshifts 1 < z < 3 in massive disc galaxies the C+/H2 gas represents a very small fraction of the total molecular gas (≲ 0.16). This small fraction at high redshifts is due to the high gas surface densities when compared to local galaxies.
VizieR Online Data Catalog: Gamma Ray Bursts detected by Swift (2004-2015) (Buchner+, 2017)
NASA Astrophysics Data System (ADS)
Buchner, J.; Schulze, S.; Bauer, F.
2016-04-01
Gamma Ray Bursts (GRB) typically show intrinsic LOS column densities of 1021-23cm2. We performed a thorough statistical analysis of all available X-ray spectra of Swift-detected GRBs. In the associated paper we use sub-samples to analyse the population properties of LGRB and concluded that the obscuration is due to large-scale gas inside the GRB host galaxy, due to the shape of the column density distribution and its correlation with host stellar mass. This catalogue presents X-ray spectral analysis of all Swift-detected GRBs. It includes information about the GRB (ID, Swift Trigger ID, duration, RA/Dec in J2000, galactic coordinates, Milky Way column density). Those properties are taken from the http://www.swift.ac.uk/ and http://gcn.gsfc.nasa.gov/ websites. We removed prompt emission and flares, leaving only a certain time interval for spectral extraction. We use two models to analyse X-ray spectra: TBABS and SPHERE. Both include updated abundances and cross-sections as compared to previous works. The latter includes the effects of Compton-scattering and FeKa fluorescence relevant at high column densities. Columns list the posterior mean, standard deviation, 10% and 90% quantiles. Note that the column densities are converted to hydrogen assuming local ISM abundances, but are derived primarily from photo-electric absorption of e.g. Fe and O, and therefore primarily measure metal gas. (2 data files).
NASA Astrophysics Data System (ADS)
Gruzdev, A.; Elokhov, A.
Since 1990, NO2 measurements are carried out at Zvenigorod Research Station (56°N, 37°E), Moscow region, with the help of zenith viewing spectrophotometer in spectral range 435-450 nm. The instrument and method of observations were verified in comparison campaigns within the framework of the Network for Detection of Stratospheric Change. Measurements are done during morning and evening twilight at solar zenith angles 84-96°. Slant column NO2 abundances are derived from observed spectra taking into account O3 and NO2 absorption, single molecular and aerosol scattering, and the Ring effect. The NO2 abundances in the vertical column as well as vertical NO2 profiles are derived as solution of inverse mathematical problem (with Chahine method) using a spherical single scattering model and a one-dimensional photochemical model. Derived quantities are (1) NO2 abundances within 5-km thick layers in the stratosphere and troposphere, (2) NO2 abundance in the thin atmospheric near-surface layer and (3) columnar NO2 abundances in the troposphere (0-10 km) and the stratosphere (10-50 km) as integrals over appropriate layers. Results of measurements show variability of stratospheric and tropospheric NO2 at different time scales from the diurnal to the interannual scale. Out of the period affected by the Pinatubo eruption (1992-1994), a general decline of the stratospheric column NO2 abundance is occurring, superimposed by interannual variations. A linear, statistically significant, negative annual trend of about 12% per decade has been detected for both morning and evening stratospheric column NO2 abundances. For interpretation of the observed trend, a simple photochemical model is used, which takes into account the observed changes in N2O and stratospheric ozone abundances, and in temperature. The estimated model trend of the stratospheric column NO2 abundance in the extratropical Northern Hemisphere is about -5% per decade, which is less than observed. Dynamical variability is supposed to be responsible, in particular, for the observed NO2 decline.
Evolution of HI from Z=5 to the present
NASA Technical Reports Server (NTRS)
Storrie-Lombardi, L. J.
2002-01-01
Studies of damped Lya systems provide us with a good measure of the evolution of the HI column density distribution function and the contribution to the comoving mass density in neutral gas out to redshifts of z = 5 . The column density distribution function at high redshift steepens for the highest column density HI absorbers, though the contribution to the comoving mass density of neutral gas remains fiat from 2 < z < 5 . Results from studies at z < 2 are finding substantial numbers of damped absorbers identified from MgII absorption, compared to previous blind surveys. These results indicate that the contribution to the comoving mass density in neutral gas may be constant from z 0 to z 5. Details of recent work in the redshift range z < 2 work is covered elsewhere in this volume (see D. Nestor). We review here recent results for the redshift range 2 < z < 5.
Sinking velocities of phytoplankton measured on a stable density gradient by laser scanning
Walsby, Anthony E; Holland, Daryl P
2005-01-01
Two particular difficulties in measuring the sinking velocities of phytoplankton cells are preventing convection within the sedimenting medium and determining the changing depth of the cells. These problems are overcome by using a density-stabilized sedimentation column scanned by a laser. For freshwater species, a suspension of phytoplankton is layered over a vertical density gradient of Percoll solution; as the cells sink down the column their relative concentration is measured by the forward scattering of light from a laser beam that repeatedly scans up and down the column. The Percoll gradient stabilizes the column, preventing vertical mixing by convection, radiation or perturbation of density by the descending cells. Measurements were made on suspensions of 15 μm polystyrene microspheres with a density of 1050 kg m−3; the mean velocity was 6.28 μm s−1, within 1.5% of that calculated by the Stokes equation, 6.36 μm s−1. Measurements made on the filamentous cyanobacterium Planktothrix rubescens gave mean velocities within the theoretical range of values based on the range of size, shape, orientation and density of the particles in a modified Stokes equation. Measurements on marine phytoplankton may require density gradients prepared with other substances. PMID:16849271
NASA Astrophysics Data System (ADS)
Senn, S.; Liewald, M.
2017-09-01
Deep drawn parts often do have complex designs and, therefore, must be trimmed or punched subsequently in a second stage. Due to the complex part geometry, most punching areas do reveal critical slant angle (angle between part surface and ram movement direction) different to perpendicular direction. Piercing within a critical range of slant angle may lead to severe damage of the cutting tool. Consequently, expensive cam units are required to transform the ram moving direction in order to perform the piercing process perpendicularly to the local part surface. For modern sheet metals, however, the described critical angle of attack has not been investigated adequately until now. Therefore, cam units are used in cases in which regular piercing with high slant angle wouldn’t be possible. Purpose of this study is to investigate influencing factors and their effect on punch damage during piercing of high strength steels with slant angles. Therefore, a modular shearing tool was designed, which allows to simply switch die parts to vary cutting clearance and cutting angle. The target size of the study is to measure the lateral deviation of the punch which is monitored by an eddy current sensor. The sensor is located in the downholder and measures the lateral punch deviation in-line during manufacturing. The deviation is mainly influenced by slant angle of workpiece surface. In relation to slang angle and sheet thickness the clearance has a small influence on the measured punch deflection.
HIDEEP - an extragalactic blind survey for very low column-density neutral hydrogen
NASA Astrophysics Data System (ADS)
Minchin, R. F.; Disney, M. J.; Boyce, P. J.; de Blok, W. J. G.; Parker, Q. A.; Banks, G. D.; Freeman, K. C.; Garcia, D. A.; Gibson, B. K.; Grossi, M.; Haynes, R. F.; Knezek, P. M.; Lang, R. H.; Malin, D. F.; Price, R. M.; Stewart, I. M.; Wright, A. E.
2003-12-01
We have carried out an extremely long integration time (9000 s beam-1) 21-cm blind survey of 60 deg2 in Centaurus using the Parkes multibeam system. We find that the noise continues to fall as throughout, enabling us to reach an HI column-density limit of 4.2 × 1018 cm-2 for galaxies with a velocity width of 200 km s-1 in the central 32 deg2 region, making this the deepest survey to date in terms of column density sensitivity. The HI data are complemented by very deep optical observations from digital stacking of multi-exposure UK Schmidt Telescope R-band films, which reach an isophotal level of 26.5 R mag arcsec-2 (~=27.5 B mag arcsec-2). 173 HI sources have been found, 96 of which have been uniquely identified with optical counterparts in the overlap area. There is not a single source without an optical counterpart. Although we have not measured the column densities directly, we have inferred them from the optical sizes of their counterparts. All appear to have a column density of NHI= 1020.65+/-0.38. This is at least an order of magnitude above our sensitivity limit, with a scatter only marginally larger than the errors on NHI. This needs explaining. If confirmed it means that HI surveys will only find low surface brightness (LSB) galaxies with high MHI/LB. Gas-rich LSB galaxies with lower HI mass to light ratios do not exist. The paucity of low column-density galaxies also implies that no significant population will be missed by the all-sky HI surveys being carried out at Parkes and Jodrell Bank.
Characterization and optimization of 3D-LCD module design
NASA Astrophysics Data System (ADS)
van Berkel, Cees; Clarke, John A.
1997-05-01
Autostereoscopic displays with flat panel liquid crystal display and lenticular sheets are receiving much attention. Multiview 3D-LCD is truly autostereoscopic because no head tracking is necessary and the technology is well poised to become a mass market consumer 3D display medium as the price of liquid crystal displays continues to drop. Making the viewing experience as natural as possible is of prime importance. The main challenges are to reduce the picket fence effect of the black mask and to try to get away with as few perspective views as possible. Our solution is to 'blur' the boundaries between the views. This hides the black mask image by spreading it out and softens the transition between one view and the next, encouraging the user to perceive 'solid objects' instead of a succession of flipping views. One way to achieve this is by introducing a new pixel design in which the pixels are slanted with respect to the column direction. Another way is to place the lenticular at a small (9.46 degree) angle with respect to the LCD columns. The effect of either method is that, as the observer moves sideways in front of the display, he always 'sees' a constant amount of black mask. This renders the black mask, in effect, invisible and eliminates the picket fence effect.
NASA Technical Reports Server (NTRS)
Biswas, Sayak K.; Jones, Linwood; Roberts, Jason; Ruf, Christopher; Ulhorn, Eric; Miller, Timothy
2012-01-01
The Hurricane Imaging Radiometer (HIRAD) is a new airborne synthetic aperture passive microwave radiometer capable of wide swath imaging of the ocean surface wind speed under heavy precipitation e.g. in tropical cyclones. It uses interferometric signal processing to produce upwelling brightness temperature (Tb) images at its four operating frequencies 4, 5, 6 and 6.6 GHz [1,2]. HIRAD participated in NASA s Genesis and Rapid Intensification Processes (GRIP) mission during 2010 as its first science field campaign. It produced Tb images with 70 km swath width and 3 km resolution from a 20 km altitude. From this, ocean surface wind speed and column averaged atmospheric liquid water content can be retrieved across the swath. The column averaged liquid water then could be related to an average rain rate. The retrieval algorithm (and the HIRAD instrument itself) is a direct descendant of the nadir-only Stepped Frequency Microwave Radiometer that is used operationally by the NOAA Hurricane Research Division to monitor tropical cyclones [3,4]. However, due to HIRAD s slant viewing geometry (compared to nadir viewing SFMR) a major modification is required in the algorithm. Results based on the modified algorithm from the GRIP campaign will be presented in the paper.
NASA Astrophysics Data System (ADS)
Perger, K.; Pinter, S.; Frey, S.; Tóth, L. V.
2018-05-01
One of the most certain ways to determine star formation rate in galaxies is based on far infrared (FIR) measurements. To decide the origin of the observed FIR emission, subtracting the Galactic foreground is a crucial step. We utilized Herschel photometric data to determine the hydrogen column densities in three galactic latitude regions, at b = 27°, 50° and -80°. We applied a pixel-by-pixel fit to the spectral energy distribution (SED) for the images aquired from parallel PACS-SPIRE observations in all three sky areas. We determined the column densities with resolutions 45'' and 6', and compared the results with values estimated from the IRAS dust maps. Column densities at 27° and 50° galactic latitudes determined from the Herschel data are in a good agreement with the literature values. However, at the highest galactic latitude we found that the column densities from the Herschel data exceed those derived from the IRAS dust map.
On the classification of scalar evolution equations with non-constant separant
NASA Astrophysics Data System (ADS)
Hümeyra Bilge, Ayşe; Mizrahi, Eti
2017-01-01
The ‘separant’ of the evolution equation u t = F, where F is some differentiable function of the derivatives of u up to order m, is the partial derivative \\partial F/\\partial {{u}m}, where {{u}m}={{\\partial}m}u/\\partial {{x}m} . As an integrability test, we use the formal symmetry method of Mikhailov-Shabat-Sokolov, which is based on the existence of a recursion operator as a formal series. The solvability of its coefficients in the class of local functions gives a sequence of conservation laws, called the ‘conserved densities’ {ρ(i)}, i=-1,1,2,3,\\ldots . We apply this method to the classification of scalar evolution equations of orders 3≤slant m≤slant 15 , for which {ρ(-1)}={≤ft[\\partial F/\\partial {{u}m}\\right]}-1/m} and {{ρ(1)} are non-trivial, i.e. they are not total derivatives and {ρ(-1)} is not linear in its highest order derivative. We obtain the ‘top level’ parts of these equations and their ‘top dependencies’ with respect to the ‘level grading’, that we defined in a previous paper, as a grading on the algebra of polynomials generated by the derivatives u b+i , over the ring of {{C}∞} functions of u,{{u}1},\\ldots,{{u}b} . In this setting b and i are called ‘base’ and ‘level’, respectively. We solve the conserved density conditions to show that if {ρ(-1)} depends on u,{{u}1},\\ldots,{{u}b}, then, these equations are level homogeneous polynomials in {{u}b+i},\\ldots,{{u}m} , i≥slant 1 . Furthermore, we prove that if {ρ(3)} is non-trivial, then {ρ(-1)}={≤ft(α ub2+β {{u}b}+γ \\right)}1/2} , with b≤slant 3 while if {{ρ(3)} is trivial, then {ρ(-1)}={≤ft(λ {{u}b}+μ \\right)}1/3} , where b≤slant 5 and α, β, γ, λ and μ are functions of u,\\ldots,{{u}b-1} . We show that the equations that we obtain form commuting flows and we construct their recursion operators that are respectively of orders 2 and 6 for non-trivial and trivial {{ρ(3)} respectively. Omitting lower order dependencies, we show that equations with non-trivial {ρ(3)} and b = 3 are symmetries of the ‘essentially non-linear third order equation’ for trivial {ρ(3)} , the equations with b = 5 are symmetries of a non-quasilinear fifth order equation obtained in previous work, while for b = 3, 4 they are symmetries of quasilinear fifth order equations.
NASA Astrophysics Data System (ADS)
Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris
2018-05-01
Correlations measured in three dimensions in the Lyman-alpha forest are contaminated by the presence of the damping wings of high column density (HCD) absorbing systems of neutral hydrogen (H I; having column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}), which extend significantly beyond the redshift-space location of the absorber. We measure this effect as a function of the column density of the HCD absorbers and redshift by measuring three-dimensional (3D) flux power spectra in cosmological hydrodynamical simulations from the Illustris project. Survey pipelines exclude regions containing the largest damping wings. We find that, even after this procedure, there is a scale-dependent correction to the 3D Lyman-alpha forest flux power spectrum from residual contamination. We model this residual using a simple physical model of the HCD absorbers as linearly biased tracers of the matter density distribution, convolved with their Voigt profiles and integrated over the column density distribution function. We recommend the use of this model over existing models used in data analysis, which approximate the damping wings as top-hats and so miss shape information in the extended wings. The simple `linear Voigt model' is statistically consistent with our simulation results for a mock residual contamination up to small scales (|k| < 1 h Mpc^{-1}). It does not account for the effect of the highest column density absorbers on the smallest scales (e.g. |k| > 0.4 h Mpc^{-1} for small damped Lyman-alpha absorbers; HCD absorbers with N(H I) ˜ 10^{21} atoms cm^{-2}). However, these systems are in any case preferentially removed from survey data. Our model is appropriate for an accurate analysis of the baryon acoustic oscillations feature. It is additionally essential for reconstructing the full shape of the 3D flux power spectrum.
Slant-hole collimator, dual mode sterotactic localization method
Weisenberger, Andrew G.
2002-01-01
The use of a slant-hole collimator in the gamma camera of dual mode stereotactic localization apparatus allows the acquisition of a stereo pair of scintimammographic images without repositioning of the gamma camera between image acquisitions.
NASA Astrophysics Data System (ADS)
Huang, Yuanfei; Yang, Weiling
2017-12-01
The minimal number of straight line segments required to construct a polygonal presentation of the knot K in the cubic lattice is called the lattice stick number of the knot K, denoted by S_L(K) . It is known that S_L(K)≥slant15 if the crossing number of K, C_r(K) , satisfies C_r(K)≥slant5 , and the main result of this paper is to improve this to S_L(K)≥slant16 if C_r(K)≥slant5 . Furthermore, we will show that S_L(K)=16 for K=51 and K=52 which implies that this lower bound cannot be improved except for knots with higher crossing numbers. Project supported by the NSFC grants 11531006, 11371367 and 11271290, and the Fundamental Research Funds for the Central Universities 20720160038 and Fujian Province young and middle-aged teacher education research project JA15016.
Inequalities for a polynomial and its derivative
NASA Astrophysics Data System (ADS)
Chanam, Barchand; Dewan, K. K.
2007-12-01
Let , 1[less-than-or-equals, slant][mu][less-than-or-equals, slant]n, be a polynomial of degree n such that p(z)[not equal to]0 in z
Moiré-reduction method for slanted-lenticular-based quasi-three-dimensional displays
NASA Astrophysics Data System (ADS)
Zhuang, Zhenfeng; Surman, Phil; Zhang, Lei; Rawat, Rahul; Wang, Shizheng; Zheng, Yuanjin; Sun, Xiao Wei
2016-12-01
In this paper we present a method for determining the preferred slanted angle for a lenticular film that minimizes moiré patterns in quasi-three-dimensional (Q3D) displays. We evaluate the preferred slanted angles of the lenticular film for the stripe-type sub-pixel structure liquid crystal display (LCD) panel. Additionally, the sub-pixels mapping algorithm of the specific angle is proposed to assign the images to either the right or left eye channel. A Q3D display prototype is built. Compared with the conventional SLF, this newly implemented Q3D display can not only eliminate moiré patterns but also provide 3D images in both portrait and landscape orientations. It is demonstrated that the developed slanted lenticular film (SLF) provides satisfactory 3D images by employing a compact structure, minimum moiré patterns and stabilized 3D contrast.
Error of the slanted edge method for measuring the modulation transfer function of imaging systems.
Xie, Xufen; Fan, Hongda; Wang, Hongyuan; Wang, Zebin; Zou, Nianyu
2018-03-01
The slanted edge method is a basic approach for measuring the modulation transfer function (MTF) of imaging systems; however, its measurement accuracy is limited in practice. Theoretical analysis of the slanted edge MTF measurement method performed in this paper reveals that inappropriate edge angles and random noise reduce this accuracy. The error caused by edge angles is analyzed using sampling and reconstruction theory. Furthermore, an error model combining noise and edge angles is proposed. We verify the analyses and model with respect to (i) the edge angle, (ii) a statistical analysis of the measurement error, (iii) the full width at half-maximum of a point spread function, and (iv) the error model. The experimental results verify the theoretical findings. This research can be referential for applications of the slanted edge MTF measurement method.
Cloudy Skies over AGN: Observations with Simbol-X
NASA Astrophysics Data System (ADS)
Salvati, M.; Risaliti, G.
2009-05-01
Recent time-resolved spectroscopic X-ray studies of bright obscured AGN show that column density variability on time scales of hours/days may be common, at least for sources with NH>1023 cm-2. This opens new oppurtunities in the analysis of the structure of the circumnuclear medium and of the X-ray source: resolving the variations due to single clouds covering/uncovering the X-ray source provides tight constraints on the source size, the clouds' size and distance, and their average number, density and column density. We show how Simbol-X will provide a breakthrough in this field, thanks to its broad band coverage, allowing (a) to precisely disentangle the continuum and NH variations, and (2) to extend the NH variability analysis to column densities >1023 cm-2.
NASA Astrophysics Data System (ADS)
González Abad, Gonzalo; Vasilkov, Alexander; Seftor, Colin; Liu, Xiong; Chance, Kelly
2016-07-01
This paper presents our new formaldehyde (H2CO) retrievals, obtained from spectra recorded by the nadir instrument of the Ozone Mapping and Profiler Suite (OMPS) flown on board NASA's Suomi National Polar-orbiting Partnership (SUOMI-NPP) satellite. Our algorithm is similar to the one currently in place for the production of NASA's Ozone Monitoring Instrument (OMI) operational H2CO product. We are now able to produce a set of long-term data from two different instruments that share a similar concept and a similar retrieval approach. The ongoing overlap period between OMI and OMPS offers a perfect opportunity to study the consistency between both data sets. The different spatial and spectral resolution of the instruments is a source of discrepancy in the retrievals despite the similarity of the physic assumptions of the algorithm. We have concluded that the reduced spectral resolution of OMPS in comparison with OMI is not a significant obstacle in obtaining good-quality retrievals. Indeed, the improved signal-to-noise ratio of OMPS with respect to OMI helps to reduce the noise of the retrievals performed using OMPS spectra. However, the size of OMPS spatial pixels imposes a limitation in the capability to distinguish particular features of H2CO that are discernible with OMI. With root mean square (RMS) residuals ˜ 5 × 10-4 for individual pixels we estimate the detection limit to be about 7.5 × 1015 molecules cm-2. Total vertical column density (VCD) errors for individual pixels range between 40 % for pixels with high concentrations to 100 % or more for pixels with concentrations at or below the detection limit. We compare different OMI products (SAO OMI v3.0.2 and BIRA OMI v14) with our OMPS product using 1 year of data, between September 2012 and September 2013. The seasonality of the retrieved slant columns is captured similarly by all products but there are discrepancies in the values of the VCDs. The mean biases among the two OMI products and our OMPS product are 23 % between OMI SAO and OMPS SAO and 28 % between OMI BIRA and OMPS SAO for eight selected regions.
Comparison of MAX-DOAS profiling algorithms during CINDI-2 - Part 1: aerosols
NASA Astrophysics Data System (ADS)
Friess, Udo; Hendrick, Francois; Tirpitz, Jan-Lukas; Apituley, Arnoud; van Roozendael, Michel; Kreher, Karin; Richter, Andreas; Wagner, Thomas
2017-04-01
The second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) took place at the Cabauw Experimental Site for Atmospheric Research (CESAR; Utrecht area, The Netherlands) from 25 August until 7 October 2016. CINDI-2 was aiming at assessing the consistency of MAX-DOAS slant column density measurements of tropospheric species (NO2, HCHO, O3, and O4) relevant for the validation of future ESA atmospheric Sentinel missions, through coordinated operation of a large number of DOAS and MAXDOAS instruments from all over the world. An important objective of the campaign was to study the relationship between remote-sensing column and profile measurements of the above species and collocated reference ancillary observations. For this purpose, the CINDI-2 Profiling Task Team (CPTT) was created, involving 22 groups performing aerosol and trace gas vertical profile inversion using dedicated MAX-DOAS profiling algorithms, as well as the teams responsible for ancillary profile and surface concentration measurements (NO2 analysers, NO2 sondes, NO2 and Raman LIDARs, CAPS, Long-Path DOAS, sun photometer, nephelometer, etc). The main purpose of the CPTT is to assess the consistency of the different profiling tools for retrieving aerosol extinction and trace gas vertical profiles through comparison exercises using commonly defined settings and to validate the retrievals with correlative observations. In this presentation, we give an overview of the MAX-DOAS vertical profile comparison results, focusing on the retrieval of aerosol extinction profiles, with the trace gas retrievals being presented in a companion abstract led by F. Hendrick. The performance of the different algorithms is investigated with respect to the variable visibility and cloud conditions encountered during the campaign. The consistency between optimal-estimation-based and parameterized profiling tools is also evaluated for these different conditions, together with the level of agreement with available ancillary aerosol observations, including sun photometer, nephelometer and LIDAR. This comparison study will be put in the perspective of the development of a centralized MAX-DOAS processing system within the framework of the ESA Fiducial Reference Measurements (FRM) project.
Comparison of MAX-DOAS profiling algorithms during CINDI-2 - Part 2: trace gases
NASA Astrophysics Data System (ADS)
Hendrick, Francois; Friess, Udo; Tirpitz, Lukas; Apituley, Arnoud; Van Roozendael, Michel; Kreher, Karin; Richter, Andreas; Wagner, Thomas
2017-04-01
The second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) took place at the Cabauw Experimental Site for Atmospheric Research (CESAR; Utrecht area, The Netherlands) from 25 August until 7 October 2016. CINDI-2 was aiming at assessing the consistency of MAX-DOAS slant column density measurements of tropospheric species (NO2, HCHO, O3, and O4) relevant for the validation of future ESA atmospheric Sentinel missions, through coordinated operation of a large number of DOAS and MAXDOAS instruments from all over the world. An important objective of the campaign was to study the relationship between remote-sensing column and profile measurements of the above species and collocated reference ancillary observations. For this purpose, the CINDI-2 Profiling Task Team (CPTT) was created, involving 22 groups performing aerosol and trace gas vertical profile inversion using dedicated MAX-DOAS profiling algorithms, as well as the teams responsible for ancillary profile and surface concentration measurements (NO2 analysers, NO2 sondes, NO2 and Raman LIDARs, CAPS, Long-Path DOAS, sunphotometer, nephelometer, etc). The main purpose of the CPTT is to assess the consistency of the different profiling tools for retrieving aerosol extinction and trace gas vertical profiles through comparison exercises using commonly defined settings and to validate the retrievals with correlative observations. In this presentation, we give an overview of the MAX-DOAS vertical profile comparison results, focusing on NO2 and HCHO, the aerosol retrievals being presented in a companion abstract led by U. Frieß. The performance of the different algorithms is investigated with respect to the various sky and weather conditions and aerosol loadings encountered during the campaign. The consistency between optimal-estimation-based and parameterized profiling tools is also evaluated for these different conditions, together with the level of agreement with available NO2 and HCHO ancillary observations. This comparison study will be put in the perspective of the development of a centralized MAX-DOAS processing system within the framework of the ESA Fiducial Reference Measurements (FRM) project.
NASA Astrophysics Data System (ADS)
Berthet, Gwenael; Renard, Jean-Baptiste; Catoire, Valery; Huret, Nathalie; Lefevre, Franck; Hauchecorne, Alain; Chartier, Michel; Robert, Claude
Remote-sensing balloon observations have recurrently revealed high concentrations of polar stratospheric NO2 in particular in the lower stratosphere as can be seen in various published vertical profiles. A balloon campaign dedicated to the investigation of this problem through comparisons between remote-sensing (SALOMON) and in situ (SPIRALE) measurements of NO2 inside the polar vortex was conducted in January 2006. The published results show unexpected strong enhancements in the slant column densities of NO2 with respect to the elevation angle and displacement of the balloon. These fluctuations result from NO2 spatial inhomogeneities located above the balloon float altitude resulting from mid-latitude air intrusion as revealed by Potential Vorticity (PV) maps. The retrieval of the NO2 vertical profile is subsequently biased in the form of artificial excesses of NO2 concentrations. A direct implication is that the differences previously observed between measurements of NO2 and OClO and model results are probably mostly due to the improper inversion of NO2 in presence of either perturbed dynamical conditions or when mesospheric production events occur as recently highlighted from ENVISAT data. Through the occurrence of such events, we propose to re-examine formerly published high-latitude profiles from the remote-sensing instruments AMON and SALOMON using in parallel PV maps from the MIMOSA advection contour model and the REPROBUS CTM outputs. Mid-latitude profiles of NO2 will also be investigated since they are likely to be biased if presence of air from other latitudes was present at the time of the observations.
NASA Astrophysics Data System (ADS)
Chong, Jihyo; Kim, Young J.; Baek, Jongho; Lee, Hanlim
2016-10-01
Major anthropogenic sources of sulphur dioxide in the troposphere include point sources such as power plants and combustion-derived industrial sources. Spatially resolved remote sensing of atmospheric trace gases is desirable for better estimation and validation of emission from those sources. It has been reported that Imaging Differential Optical Absorption Spectroscopy (I-DOAS) technique can provide the spatially resolved two-dimensional distribution measurement of atmospheric trace gases. This study presents the results of I-DOAS observations of SO2 from a large power plant. The stack plume from the Taean coal-fired power plant was remotely sensed with an I-DOAS instrument. The slant column density (SCD) of SO2 was derived by data analysis of the absorption spectra of the scattered sunlight measured by an I-DOAS over the power plant stacks. Two-dimensional distribution of SO2 SCD was obtained over the viewing window of the I-DOAS instrument. The measured SCDs were converted to mixing ratios in order to estimate the rate of SO2 emission from each stack. The maximum mixing ratio of SO2 was measured to be 28.1 ppm with a SCD value of 4.15×1017 molecules/cm2. Based on the exit velocity of the plume from the stack, the emission rate of SO2 was estimated to be 22.54 g/s. Remote sensing of SO2 with an I-DOAS instrument can be very useful for independent estimation and validation of the emission rates from major point sources as well as area sources.
The New MAX-DOAS Network in Mexico City for Trace Gas Detection
NASA Astrophysics Data System (ADS)
Arellano, E. J.; Krüger, A.; Rivera, C. I.; Stremme, W.; Friedrich, M. M.; Grutter, M.
2014-12-01
Atmospheric studies in large cities are of great relevance since pollution affects air quality and human health. We have designed and built instruments based on the Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) technique and established a network in strategic sites within the Mexico City metropolitan area. Four instruments are now in operation with the aim to study the variability and spatial distribution of key pollutants, which will bring new insight in the current knowledge of transport patterns, emissions as well as frequency and origin of extraordinary events. The instruments measure UV/visible spectra of the sky at different elevation angles in the 280 nm to 510 nm wavelength region along one axis. Currently, 36 measurements constitute a full scan performed from west until East direction (-90 to +90°). The scanning unit, which is installed outdoors, holds a small telescope and the motor control unit. Light is transmitted via an optical fiber to the main box, which holds a compact USB spectrometer and the main control electronics. The spectrometer is accurately temperature controlled and all the spectra of each scan, together with elevation angle and other parameters, are recorded on a compact PC. Post processing of these data with the QDOAS software results in slant column densities (SCD) of the atmospheric gases. This information is then converted to vertical profiles through a process described in a companion presentation. Preliminary results will be presented for formaldehyde, fitted in the region 324-360 nm. The data obtained is useful for the comparison with satellite data for example OMI.
NASA Astrophysics Data System (ADS)
Gu, Myojeong; Enell, Carl-Fredrik; Pukite, Janis; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas
2017-04-01
After to the Montreal protocol and amendments, the production of CFCs was strongly reduced. Since then scientists have steadily made efforts to monitor the amount of chlorine compounds which are responsible for the destruction of ozone in the stratosphere. Although very recent research of stratospheric ozone indicates an ozone recovery, ozone depletion is still observed in the polar spring and is expected to last for about another 70 years according to the WMO. Therefore, continuous observation and analysis of the stratospheric ozone as well as other stratospheric trace gases are highly demanded. Several previous studies have investigated OClO which is an indicator for stratospheric chlorine activation using satellite, ground-based, and balloon remote sensing measurements. In this work, we investigate long-term time series of OClO DSCDs (Differential Slant Column densities) above Kiruna, Sweden (67.84°N, 20.41°E) which is located inside the Arctic Circle by using the ground-based zenith sky DOAS measurements. Since our measurements are performed at the fixed site, for the interpretation also the relative position of the polar vortex has to be considered. Our long-term data obtained during about 15 years allows us to classify the dependence of the OClO amount on the various meteorological conditions. Our data show a large variability with high OClO SCDs in cold, and low OClO SCDs in warm winters. Our measurements also allow to investigate the effect of the chlorine activation and its duration on the strength of the ozone destruction.
NASA Astrophysics Data System (ADS)
Chen, Che-Yu; Li, Zhi-Yun; King, Patrick K.; Fissel, Laura M.
2017-10-01
Thin, magnetically aligned striations of relatively moderate contrast with the background are commonly observed in both atomic and molecular clouds. They are also prominent in MHD simulations with turbulent converging shocks. The simulated striations develop within a dense, stagnated sheet in the midplane of the post-shock region where magnetically induced converging flows collide. We show analytically that the secondary flows are an inevitable consequence of the jump conditions of oblique MHD shocks. They produce the stagnated, sheet-like sub-layer through a secondary shock when, roughly speaking, the Alfvénic speed in the primary converging flows is supersonic, a condition that is relatively easy to satisfy in interstellar clouds. The dense sub-layer is naturally threaded by a strong magnetic field that lies close to the plane of the sub-layer. The substantial magnetic field makes the sheet highly anisotropic, which is the key to the striation formation. Specifically, perturbations of the primary inflow that vary spatially perpendicular to the magnetic field can easily roll up the sheet around the field lines without bending them, creating corrugations that appear as magnetically aligned striations in column density maps. On the other hand, perturbations that vary spatially along the field lines curve the sub-layer and alter its orientation relative to the magnetic field locally, seeding special locations that become slanted overdense filaments and prestellar cores through enhanced mass accumulation along field lines. In our scenario, the dense sub-layer, which is unique to magnetized oblique shocks, is the birthplace for both magnetically aligned diffuse striations and massive star-forming structures.
Vertical distribution of ozone at the terminator on Mars
NASA Astrophysics Data System (ADS)
Maattanen, Anni; Lefevre, Franck; Guilbon, Sabrina; Listowski, Constantino; Montmessin, Franck
2016-10-01
The SPICAM/Mars Express UV solar occultation dataset gives access to the ozone vertical distribution via the ozone absorption in the Hartley band (220-280 nm). We present the retrieved ozone profiles and compare them to the LMD Mars Global Climate Model (LMD-MGCM) results.Due to the photochemical reactivity of ozone, a classical comparison of local density profiles is not appropriate for solar occultations that are acquired at the terminator, and we present here a method often used in the Earth community. The principal comparison is made via the slant profiles (integrated ozone concentration on the line-of-sight), since the spherical symmetry hypothesis made in the onion-peeling vertical inversion method is not valid for photochemically active species (e.g., ozone) around terminator. For each occultation, we model the ozone vertical and horizontal distribution with high solar zenith angle (or local time) resolution around the terminator and then integrate the model results following the lines-of-sight of the occultation to construct the modeled slant profile. We will also discuss the difference of results between the above comparison method and a comparison using the local density profiles, i.e., the observed ones inverted by using the spherical symmetry hypothesis and the modeled ones extracted from the LMD-MGCM exactly at the terminator. The method and the results will be presented together with the full dataset.SPICAM is funded by the French Space Agency CNES and this work has received funding from the European Union's Horizon 2020 Programme (H2020-Compet-08-2014) under grant agreement UPWARDS-633127.
Slanted baffle mist eliminator
Vance, Richard F.
1995-11-07
An apparatus for the elimination of mist from off-gas during vitrification f nuclear waste, where baffles are installed on a slant toward the flow of the off-gasses eliminating the need to expand the cross-sectional area of the duct size.
NASA Astrophysics Data System (ADS)
Kado, B.; Mohammad, S.; Lee, Y. H.; Shek, P. N.; Kadir, M. A. A.
2018-04-01
Standard fire test was carried out on 3 hollow steel tube and 6 foamed concrete filled steel tube columns. Temperature distribution on the columns was investigated. 1500 kg/m3 and 1800 kg/m3 foamed concrete density at 15%, 20% and 25% load level are the parameters considered. The columns investigated were 2400 mm long, 139.7 mm outer diameter and 6 mm steel tube thickness. The result shows that foamed concrete filled steel tube columns has the highest fire resistance of 43 minutes at 15% load level and low critical temperature of 671 ºC at 25% load level using 1500 kg/m3 foamed concrete density. Fire resistance of foamed concrete filled column increases with lower foamed concrete strength. Foamed concrete can be used to provide more fire resistance to hollow steel column or to replace normal weight concrete in concrete filled columns. Since filling hollow steel with foamed concrete produce column with high fire resistance than unfilled hollow steel column. Therefore normal weight concrete can be substituted with foamed concrete in concrete filled column, it will reduces the self-weight of the structure because of its light weight at the same time providing the desired fire resistance.
High discharge efficiency of (Sr, Pb, Bi) TiO3 relaxor ceramics for energy-storage application
NASA Astrophysics Data System (ADS)
Chao, Mingming; Liu, Jingsong; Zeng, Mengshi; Wang, Debin; Yu, Hongtao; Yuan, Ying; Zhang, Shuren
2018-05-01
We report herein on the energy storage and discharge properties of the relaxor ferroelectric ceramic Sr0.8Pb0.1Bi0.1TiO3 (SPBT). This material has a slanted hysteresis loop, and all samples show low remnant polarization and low coercive field, which leads to a high discharge efficiency. The maximum polarization is 10.1 μC/cm2, the minimum coercive field is 0.229 kV/cm, and the maximum efficiency is 94.2%. The discharge current waveforms are sinusoidal, the first discharge period is 140 ns, and the power density is approximately 4.2 × 107 W/kg. The high discharge speed and high discharge power density indicate that SPBT ceramics are very promising materials for energy storage applications.
Constraining the H2 column density distribution at z ˜ 3 from composite DLA spectra
NASA Astrophysics Data System (ADS)
Balashev, S. A.; Noterdaeme, P.
2018-07-01
We present the detection of the average H2 absorption signal in the overall population of neutral gas absorption systems at z˜ 3 using composite absorption spectra built from the Sloan Digital Sky Survey-III damped Lyman α catalogue. We present a new technique to directly measure the H2 column density distribution function f_H_2(N) from the average H2 absorption signal. Assuming a power-law column density distribution, we obtain a slope β = -1.29 ± 0.06(stat) ± 0.10 (sys) and an incidence rate of strong H2 absorptions [with N(H2) ≳ 1018 cm-2] to be 4.0 ± 0.5(stat) ± 1.0 (sys) per cent in H I absorption systems with N(H I) ≥1020 cm-2. Assuming the same inflexion point where f_H_2(N) steepens as at z = 0, we estimate that the cosmological density of H2 in the column density range log N(H_2) (cm^{-2})= 18{-}22 is {˜ } 15 per cent of the total. We find one order of magnitude higher H2 incident rate in a sub-sample of extremely strong damped Lyman α absorption systems (DLAs) [log N(H I) (cm^{-2}) ≥ 21.7], which, together with the derived shape of f_H_2(N), suggests that the typical H I-H2 transition column density in DLAs is log N(H)(cm-2) ≳ 22.3 in agreement with theoretical expectations for the average (low) metallicity of DLAs at high-z.
Constraining the H2 column density distribution at z˜3 from composite DLA spectra
NASA Astrophysics Data System (ADS)
Balashev, S. A.; Noterdaeme, P.
2018-04-01
We present the detection of the average H2 absorption signal in the overall population of neutral gas absorption systems at z ˜ 3 using composite absorption spectra built from the Sloan Digital Sky Survey-III damped Lyman-α catalogue. We present a new technique to directly measure the H2 column density distribution function f_H_2(N) from the average H2 absorption signal. Assuming a power-law column density distribution, we obtain a slope β = -1.29 ± 0.06(stat) ± 0.10 (sys) and an incidence rate of strong H2 absorptions (with N(H2) ≳ 1018 cm-2) to be 4.0 ± 0.5(stat) ± 1.0 (sys) % in H I absorption systems with N(H I)≥1020 cm-2. Assuming the same inflexion point where f_H_2(N) steepens as at z = 0, we estimate that the cosmological density of H2 in the column density range log N(H_2) (cm^{-2})= 18-22 is ˜15% of the total. We find one order of magnitude higher H2 incident rate in a sub-sample of extremely strong DLAs (log N(H I) (cm^{-2}) ≥ 21.7), which, together with the the derived shape of f_H_2(N), suggests that the typical H I-H2 transition column density in DLAs is log N(H)(cm-2) ≳ 22.3 in agreement with theoretical expectations for the average (low) metallicity of DLAs at high-z.
Ionosphere Threat Model Investigations by Using Turkish National Permanent GPS Network
NASA Astrophysics Data System (ADS)
Köroǧlu, Meltem; Arikan, Feza; Koroglu, Ozan
2016-07-01
Global Positioning System (GPS) signal realibity may decrease significantly due to the variable electron density structure of ionosphere. In the literature, ionospheric disturbance is modeled as a linear semi-definite wave which has width, gradient and a constant velocity. To provide precise positioning, Ground Based Augmentation Systems (GBAS) are used. GBAS collects all measurements from GPS network receivers and computes an integrity level for the measurement by comparing the network GPS receivers measurements with the threat models of ionosphere. Threat models are computed according to ionosphere gradient characteristics. Gradient is defined as the difference of slant delays between the receivers. Slant delays are estimated from the STEC (Slant Total Electron Content) values of the ionosphere that is given by the line integral of the electron density between the receiver and GPS satellite. STEC can be estimated over Global Navigation Satellite System (GNSS) signals by using IONOLAB-STEC and IONOLAB-BIAS algorithms. Since most of the ionospheric disturbance observed locally, threat models for the GBAS systems must be extracted as locally. In this study, an automated ionosphere gradient estimation algorithm was developed by using Turkish National Permanent GPS Network (TNPGN-Active) data for year 2011. The GPS receivers are grouped within 150 km radius. For each region, for each day and for each satellite all STEC values are estimated by using IONOLAB-STEC and IONOLAB-BIAS softwares (www.ionolab.org). In the gradient estimation, station-pair method is used. Statistical properties of the valid gradients are extracted as tables for each region, day and satellite. By observing the histograms of the maximum gradients and standard deviations of the gradients with respect to the elevation angle for each day, the anomalies and disturbances of the ionosphere can be detected. It is observed that, maximum gradient estimates are less than 40 mm/km and maximum standard deviation of the gradients are observed as 5 mm/km. In the stormy days, the level of gradients and the standard deviation values becomes larger than those of quiet days. These observations may also form a basis for the estimationof velocity and width of the traveling ionospheric disturbances. The study is supported by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.
Broeckhoven, Ken; Desmet, Gert
2012-10-05
The maximal gain in efficiency that can be expected from the use of the segmented column end fittings that were recently introduced to alleviate the effect of transcolumn packing density gradients has been quantified and generalized using numerical computations of the band broadening process. It was found that, for an unretained compound in a column with a parabolic packing density gradient, the use of a segmented inlet or a segmented outlet allows to eliminate about 60-100% of the plate height contribution (H(tc)) originating from a parabolic transcolumn velocity gradient in a d(c)=4.6 mm column. In a d(c)=2.1 mm column, these percentages change from 10 to 100%. Using a combined segmented in- and outlet, H(tc) can be reduced by about 90-100% (d(c)=4.6 mm column) or 20-100% (d(c)=2.1 mm column). The strong variation of these gain percentages is due to fact that they depend very strongly on the column length and the flow rate. Dimensionless graphs have been established that allow to directly quantify the effect for each specific case. It was also found that, in agreement with one's physical intuition, trans-column velocity profiles that are more flat in the central region benefit more from the concept than sharp, parabolic-like profiles. The gain margins furthermore tend to become smaller with increasing retention and increasing diffusion coefficient. Copyright © 2012 Elsevier B.V. All rights reserved.
Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges
2014-01-03
The pressure, temperature and density drops along SFC columns eluted with a CO2/methanol mobile phase were measured and compared with theoretical values. For columns packed with 3- and 5-μm particles the pressure and temperature drops were measured using a mobile phase of 95% CO2 and 5% methanol at a flow rate of 5mL/min, at temperatures from 20 to 100°C, and outlet pressures from 80 to 300bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath, either bare or covered with foam insulation. The experimental measurements were compared to theoretical results obtained by numerical simulation. For the convective air condition at outlet pressures above 100bar the average difference between the experimental and calculated temperature drops and pressure drops were 0.1°C and 0.7% for the bare 3-μm column, respectively, and were 0.6°C and 4.1% for the insulated column. The observed temperature drops for the insulated columns are consistent with those predicted by the Joule-Thomson coefficients for isenthalpic expansion. The dependence of the temperature and the pressure drops on the Joule-Thomson coefficient and kinematic viscosity are described for carbon dioxide mobile phases containing up to 20% methanol. Copyright © 2013 Elsevier B.V. All rights reserved.
Galactic cold cores. IX. Column density structures and radiative-transfer modelling
NASA Astrophysics Data System (ADS)
Juvela, M.; Malinen, J.; Montillaud, J.; Pelkonen, V.-M.; Ristorcelli, I.; Tóth, L. V.
2018-06-01
Context. The Galactic Cold Cores (GCC) project has made Herschel photometric observations of interstellar clouds where Planck detected compact sources of cold dust emission. The fields are in different environments and stages of star formation. Aims: Our aim is to characterise the structure of the clumps and their parent clouds, and to study the connections between the environment and the formation of gravitationally bound objects. We also examine the accuracy to which the structure of dense clumps can be determined from sub-millimetre data. Methods: We use standard statistical methods to characterise the GCC fields. Individual clumps are extracted using column density thresholding. Based on sub-millimetre measurements, we construct a three-dimensional radiative transfer (RT) model for each field. These are used to estimate the relative radiation field intensities, to probe the clump stability, and to examine the uncertainty of column density estimates. We examine the structural parameters of the clumps, including their radial column density profiles. Results: In the GCC fields, the structure noise follows the relations previously established at larger scales and in lower-density clouds. The fractal dimension has no significant dependence on column density and the values DP = 1.25 ± 0.07 are only slightly lower than in typical molecular clouds. The column density probability density functions (PDFs) exhibit large variations, for example, in the case of externally compressed clouds. At scales r > 0.1 pc, the radial column density distributions of the clouds follow an average relation of N r-1. In spite of a great variety of clump morphologies (and a typical aspect ratio of 1.5), clumps tend to follow a similar N r-1 relation below r 0.1 pc. RT calculations indicate only factor 2.5 variation in the local radiation field intensity. The fraction of gravitationally bound clumps increases significantly in regions with AV > 5 mag but most bound objects appear to be pressure-confined. Conclusions: The host clouds of the cold clumps in the GCC sample have statistical properties similar to general molecular clouds. The gravitational stability, peak column density, and clump orientation are connected to the cloud background while most other statistical clump properties (e.g. DP and radial profiles) are insensitive to the environment. The study of clump morphology should be continued with a comparison with numerical simulations. Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific consortium led and funded by Denmark.Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Maximizing performance in supercritical fluid chromatography using low-density mobile phases.
Gritti, Fabrice; Fogwill, Michael; Gilar, Martin; Jarrell, Joseph A
2016-10-14
The performance of a 3.0mm×150mm column packed with 1.8μm fully porous HSS-SB-C 18 particles was investigated in supercritical fluid chromatography (SFC) with low-density, highly expansible carbon dioxide. These conditions are selected for the analysis of semi-volatile compounds. Elevated temperatures (>100°C) were then combined with low column back pressures (<100bar). In this work, the inlet temperature of pure carbon dioxide was set at 107°C, the active back pressure regulator (ABPR) pressure was fixed at 100bar, and the flow rate was set at 2.1mL/min at 12°C (liquefied carbon dioxide) and at an inlet column pressure close to 300bar. Nine n-alkylbenzenes (from benzene to octadecylbenzene) were injected under linear (no sample overload) conditions. The severe steepness of the temperature gradients across the column diameter were predicted from a simplified heat transfer model. Such conditions dramatically lower the column performance by affecting the symmetry of the peak shape. In order to cope with this problem, three different approaches were experimentally tested. They include (1) the decoupling and the proper selection of the inlet eluent temperature with respect to the oven temperature, (2) the partial thermal insulation of the column using polyethylene aerogel, and (3) the application of a high vacuum (10 -5 Torr provided by a turbo-molecular pump) in a housing chamber surrounding the whole column body. The results reveal that (1) the column efficiency can be maximized by properly selecting the difference between the eluent and the oven temperatures, (2) the mere wrapping of the column with an excellent insulating material is insufficient to fully eliminate heat exchanges by conduction and the undesirable radial density gradients across the column i.d., and (3) the complete thermal insulation of the SFC column under high vacuum allows to maximize the column efficiency by maintaining the integrity of the peak shape. Copyright © 2016 Elsevier B.V. All rights reserved.
Molecular column densities in selected model atmospheres. [chemical analysis of carbon stars
NASA Technical Reports Server (NTRS)
Johnson, H. R.; Beebe, R. F.; Sneden, C.
1974-01-01
From an examination of predicted column densities, the following conclusions were drawn: (1) The SiO ought to be visible in carbon stars which were generated from triple alpha burning, but absent from carbon stars generated from the CNO bi-cycle. (2) Variation in the observed relative strengths of TiO and ZrO is indicative of real differences in the ratio Ti/Zr. (3) The TiO/ZrO ratio shows a small variation as C/O and effective temperature is changed. (4) Column density of silicon dicarbide (SiC2) is sensitive to abundance, temperature, and gravity; hence all relationships between the strength of SiC2 and other stellar parameters will show appreciable scatter. There is however, a substantial luminosity effect present in the SiC2 column densities. (5) Unexpectedly, SiC2 is anti-correlated with C2. (6) The presence of SiC2 in a carbon star eliminates the possibility of these stars having temperatures greater than or equal to 3000 K, or being produced through the CNO bi-cycle.
Multi-wavelength campaign on NGC 7469. II. Column densities and variability in the X-ray spectrum
NASA Astrophysics Data System (ADS)
Peretz, U.; Behar, E.; Kriss, G. A.; Kaastra, J.; Arav, N.; Bianchi, S.; Branduardi-Raymont, G.; Cappi, M.; Costantini, E.; De Marco, B.; Di Gesu, L.; Ebrero, J.; Kaspi, S.; Mehdipour, M.; Middei, R.; Paltani, S.; Petrucci, P. O.; Ponti, G.; Ursini, F.
2018-01-01
We have investigated the ionic column density variability of the ionized outflows associated with NGC 7469, to estimate their location and power. This could allow a better understanding of galactic feedback of AGNs to their host galaxies. Analysis of seven XMM-Newton grating observations from 2015 is reported. We used an individual-ion spectral fitting approach, and compared different epochs to accurately determine variability on timescales of years, months, and days. We find no significant column density variability in a ten-year period implying that the outflow is far from the ionizing source. The implied lower bound on the ionization equilibrium time, ten years, constrains the lower limit on the distance to be at least 12 pc, and up to 31 pc, much less but consistent with the 1 kpc wide starburst ring. The ionization distribution of column density is reconstructed from measured column densities, nicely matching results of two 2004 observations, with one large high ionization parameter (ξ) component at 2 < log ξ< 3.5, and one at 0.5 < log ξ< 1 in cgs units. The strong dependence of the expression for kinetic power, ∝ 1 /ξ, hampers tight constraints on the feedback mechanism of outflows with a large range in ionization parameter, which is often observed and indicates a non-conical outflow. The kinetic power of the outflow is estimated here to be within 0.4 and 60% of the Eddington luminosity, depending on the ion used to estimate ξ.
Gharabaghi, Davoud; Zanjani, Leila Kazemi
2006-01-01
According to the literature, accommodative esotropia has an unpredictable course when nonsurgical treatment is considered, especially in cases with a high accommodative convergence/accommodation ratio (AC/A). The aim of this study was to compare the results of augmented recession, slanted recession, and recession with posterior fixation suture of the medial rectus muscles in the treatment of high AC/A esotropia. Twenty-eight children (4 to 14 years old) with high AC/A esotropia with a near-distance disparity greater than 10 PD were included in a prospective, randomized, blinded clinical trial. Nine children underwent recession of both medial rectus muscles and posterior fixation suture (Faden procedure), 9 children underwent augmented recession of the medial rectus muscles, and 10 children underwent slanted recession of both medial rectus muscles. The amount of esodeviation was measured before strabismus surgery and at least 6 months postoperatively. In the augmented recession group, the mean near-distance disparity was reduced from 16.33 +/- 2.17 PD preoperatively to 7.55 +/- 3.87 PD postoperatively (54.21%; P = .056). In the Faden procedure group, it was reduced from 15.22 +/- 4.08 PD to 2.55 +/- 4.03 PD (80.7%; P = .056). In the slanted recession group, it was reduced from 15.50 +/- 4.30 PD to 4.10 +/- 4.80 PD (67.55%; P = .056). The Faden procedure had the best outcome, but slanted recession also was successful. Because of our good results and an easy, non-invasive approach without any additional complications, we recommend slanted recession to treat high AC/A esotropia.
NASA Astrophysics Data System (ADS)
Morishita, Takahiro; Abramson, Louis E.; Treu, Tommaso; Vulcani, Benedetta; Schmidt, Kasper B.; Dressler, Alan; Poggianti, Bianca M.; Malkan, Matthew A.; Wang, Xin; Huang, Kuang-Han; Trenti, Michele; Bradač, Maruša; Hoag, Austin
2017-02-01
Using deep Hubble Frontier Fields imaging and slitless spectroscopy from the Grism Survey from Space, we study 2200 cluster and 1748 field galaxies at 0.2≤slant z≤slant 0.7 to determine the impact of environment on galaxy size and structure at stellar masses {log}{M}* /{M}⊙ > 7.8, an unprecedented limit at these redshifts. Based on simple assumptions—{r}e=f({M}* )—we find no significant differences in half-light radii (re) between equal-mass cluster or field systems. More complex analyses—{r}e=f({M}* ,U-V,n,z,{{Σ }})—reveal local density (Σ) to induce only a 7% ± 3% (95% confidence) reduction in re beyond what can be accounted for by U - V color, Sérsic index (n), and redshift (z) effects. Almost any size difference between galaxies in high- and low-density regions is thus attributable to their different distributions in properties other than environment. Indeed, we find a clear color-re correlation in low-mass passive cluster galaxies ({log}{M}* /{M}⊙ < 9.8) such that bluer systems have larger radii, with the bluest having sizes consistent with equal-mass star-forming galaxies. We take this as evidence that large-re low-mass passive cluster galaxies are recently acquired systems that have been environmentally quenched without significant structural transformation (e.g., by ram pressure stripping or starvation). Conversely, ˜20% of small-re low-mass passive cluster galaxies appear to have been in place since z≳ 3. Given the consistency of the small-re galaxies’ stellar surface densities (and even colors) with those of systems more than ten times as massive, our findings suggest that clusters mark places where galaxy evolution is accelerated for an ancient base population spanning most masses, with late-time additions quenched by environment-specific mechanisms mainly restricted to the lowest masses.
Temperature And Bandwidth Effect in Brewer and Dobson Direct Sun Observations
NASA Astrophysics Data System (ADS)
Scarnato, B.; Staehelin, J.; Stuebi, R.
2007-12-01
Dobson and Brewer spectrophotometer are the main instruments to monitor the ozone shield by ground based observations, and they have an important role for validation of ozone satellite data. Ground based total ozone observations from Brewer and Dobson spectrophotometers, operated at mid-latitudes stations, typically show a seasonal bias in the residual with a amplitude of a few percent. Mid-latitude total ozone trends caused by ozone depleting substances are on the order of few percents per decade. Therefore, only a maximum instrumental shift of 1% over the measured period can be tolerated for measurements to derive reliable trends. At Arosa two Dobson and three Brewers instruments have been co-located since 1992, producing a unique data set of quasi-simultaneous observations that is valuable for the study of systematic differences within the measurements. The differences can be at least partially attributed to the different sensitivities of the wavelengths used in the retrieval algorithms. This might explain different column ozone as a consequence of seasonal variability, mainly, in temperature in the lower stratosphere and in ozone slant path. The temperature dependence has been calculated using three different absorption spectra (Bass and Paur, Daumont and those used in the GOME satellite), weighing of the slit functions for each operational Brewer and for the primary standard Dobson spectrophotometers. The seasonal bias between Dobson and Brewer total ozone measurements is reduced from 3% to 1%, if one takes into account the temperature dependence of the Bass and Paur absorptions spectra and the ozone slant path effect. The accuracy and the resolution step of the experimental data of ozone cross sections have an important role. The ozone cross section must be convoluted for the slits functions that can vary from one instrument to an other, therefore the different spectra yield different results.
Physical properties of Southern infrared dark clouds
NASA Astrophysics Data System (ADS)
Vasyunina, T.; Linz, H.; Henning, Th.; Stecklum, B.; Klose, S.; Nyman, L.-Å.
2009-05-01
Context: What are the mechanisms by which massive stars form? What are the initial conditions for these processes? It is commonly assumed that cold and dense Infrared Dark Clouds (IRDCs) represent the birth-sites of massive stars. Therefore, these clouds have been receiving an increasing amount of attention, and their analysis offers the opportunity to tackle the afore mentioned questions. Aims: To enlarge the sample of well-characterised IRDCs in the southern hemisphere, where ALMA will play a major role in the near future, we have developed a program to study the gas and dust of southern infrared dark clouds. The present paper attempts to characterize the continuum properties of this sample of IRDCs. Methods: We cross-correlated 1.2 mm continuum data from SIMBA bolometer array mounted on SEST telescope with Spitzer/GLIMPSE images to establish the connection between emission sources at millimeter wavelengths and the IRDCs that we observe at 8 μm in absorption against the bright PAH background. Analysing the dust emission and extinction enables us to determine the masses and column densities, which are important quantities in characterizing the initial conditions of massive star formation. We also evaluated the limitations of the emission and extinction methods. Results: The morphology of the 1.2 mm continuum emission is in all cases in close agreement with the mid-infrared extinction. The total masses of the IRDCs were found to range from 150 to 1150 M_⊙ (emission data) and from 300 to 1750 M_⊙ (extinction data). We derived peak column densities of between 0.9 and 4.6 × 1022 cm-2 (emission data) and 2.1 and 5.4 × 1022 cm-2 (extinction data). We demonstrate that the extinction method is unreliable at very high extinction values (and column densities) beyond AV values of roughly 75 mag according to the Weingartner & Draine (2001) extinction relation RV = 5.5 model B (around 200 mag when following the common Mathis (1990, ApJ, 548, 296) extinction calibration). By taking the spatial resolution effects into account and restoring the column densities derived from the dust emission to a linear resolution of 0.01 pc, peak column densities of 3-19 × 1023 cm-2 are obtained, which are much higher than typical values for low-mass cores. Conclusions: Taking into account the spatial resolution effects, the derived column densities are beyond the column density threshold of 3.0 × 1023 cm-2 required by theoretical considerations for massive star formation. We conclude that the values of column densities derived for the selected IRDC sample imply that these objects are excellent candidates for objects in the earliest stages of massive star formation.
Post, R.F.
1962-09-01
A method and means are described for injecting energetic neutral atoms or molecular ions into dense magnetically collimated plasma columns of stellarators and the like in such a manner that the atoms or ions are able to significantly penetrate the column before being ionized by collision with the plasma constituent particles. Penetration of the plasma column by the neutral atoms or molecular ions is facilitated by superposition of two closely spaced magnetic mirrors on the plasma confinement field. The mirrors are moved apart to magnetically sweep plasma from a region between the mirrors and establish a relatively low plasma density therein. By virture of the low density, neutral atoms or molecular ions injected into the region significantly penetrate the plasma column before being ionized. Thereafter, the mirrors are diminished to permit the injected material to admix with the plasma in the remainder of the column. (AEC)
Trial of a slant visual range measuring device
NASA Technical Reports Server (NTRS)
Streicher, J.; Muenkel, C.; Borchardt, H.
1992-01-01
Each year, fog at airports renders some landing operations either difficult or impossible. The visibility that a pilot of a landing aircraft can expect is in that case the most important information. It could happen that the visibility versus the altitude is constantly decreasing or increasing. However, it is not possible to distinguish this with the existing sensors at an airport. If the visibility is decreasing with the altitude, one has the worst case - ground fog. The standard visibility sensor, the transmissometer, determines only the horizontal visual range, which will be underestimated in comparison with the real visibility a pilot has on his landing approach. Described here is a new technique to measure the slant visual range, making use of a slant scanning device - an eye-safe laser radar. A comparison with commercial visibility sensors shows that it is possible to measure visibilities with the slant looking laser radar in the range from 50 meters up to 2000 meters and even distinguish inhomogenities like ground fog.
Spreadsheet Calculation of Jets in Crossflow: Opposed Rows of Slots Slanted at 45 Degrees
NASA Technical Reports Server (NTRS)
Holderman, James D.; Clisset, James R.; Moder, Jeffrey P.
2011-01-01
The purpose of this study was to extend a baseline empirical model to the case of jets entering the mainstream flow from opposed rows of 45 degrees slanted slots. The results in this report were obtained using a spreadsheet modified from the one posted with NASA/TM--2010-216100. The primary conclusion in this report is that the best mixing configuration for opposed rows of 45 degrees slanted slots at any down stream distance is a parallel staggered configuration where the slots are angled in the same direction on top and bottom walls and one side is shifted by half the orifice spacing. Although distributions from perpendicular slanted slots are similar to those from parallel staggered configurations at some downstream locations, results for perpendicular slots are highly dependent on downstream distance and are no better than parallel staggered slots at locations where they are similar and are worse than parallel ones at other distances.
NASA Astrophysics Data System (ADS)
Soltanmoradi, Elmira; Shokri, Babak
2017-05-01
In this article, the electromagnetic wave scattering from plasma columns with inhomogeneous electron density distribution is studied by the Green's function volume integral equation method. Due to the ready production of such plasmas in the laboratories and their practical application in various technological fields, this study tries to find the effects of plasma parameters such as the electron density, radius, and pressure on the scattering cross-section of a plasma column. Moreover, the incident wave frequency influence of the scattering pattern is demonstrated. Furthermore, the scattering cross-section of a plasma column with an inhomogeneous collision frequency profile is calculated and the effect of this inhomogeneity is discussed first in this article. These results are especially used to determine the appropriate conditions for radar cross-section reduction purposes. It is shown that the radar cross-section of a plasma column reduces more for a larger collision frequency, for a relatively lower plasma frequency, and also for a smaller radius. Furthermore, it is found that the effect of the electron density on the scattering cross-section is more obvious in comparison with the effect of other plasma parameters. Also, the plasma column with homogenous collision frequency can be used as a better shielding in contrast to its inhomogeneous counterpart.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glushkov, A. V., E-mail: a.v.glushkov@ikfia.ysn.ru
The results obtained by analyzing arrival directions for primary cosmic particles characterized by energies in the region E{sub 0} Greater-Than-Or-Slanted-Equal-To 10{sup 17} eV and zenith angles in the range {theta} Less-Than-Or-Slanted-Equal-To 60 Degree-Sign and detected at the Yakutsk array for studying extensive air showers (EASs) over the period spanning 1974 and 2009 are presented. It is shown that these events exhibit different anisotropies in different energy intervals.
Ionospheric Slant Total Electron Content Analysis Using Global Positioning System Based Estimation
NASA Technical Reports Server (NTRS)
Komjathy, Attila (Inventor); Mannucci, Anthony J. (Inventor); Sparks, Lawrence C. (Inventor)
2017-01-01
A method, system, apparatus, and computer program product provide the ability to analyze ionospheric slant total electron content (TEC) using global navigation satellite systems (GNSS)-based estimation. Slant TEC is estimated for a given set of raypath geometries by fitting historical GNSS data to a specified delay model. The accuracy of the specified delay model is estimated by computing delay estimate residuals and plotting a behavior of the delay estimate residuals. An ionospheric threat model is computed based on the specified delay model. Ionospheric grid delays (IGDs) and grid ionospheric vertical errors (GIVEs) are computed based on the ionospheric threat model.
Relation between textured surface and diffuse reflectance of Cu films
NASA Astrophysics Data System (ADS)
Shukla, Gaurav; Angappane, S.
2018-04-01
Cu nanostructures namely chevron, slanted and vertical posts deposited on Si substrate by glancing angle deposition (GLAD) technique using DC magnetron sputtering are studied to understand the optical reflectance properties of various textures. The X-ray diffraction analysis confirmed the crystalline nature of the different structures of deposited Cu films. The FESEM images confirmed the formation of chevron, slanted and vertical posts. From the optical reflectance spectra, we found that the reflectance is more for chevron than vertical and slanted posts which have almost the same reflectance over the entire wavelength. The films with chevron texture would find various applications, like, light detector, light trapping, sensors etc.
NASA Technical Reports Server (NTRS)
Colladay, R. S.; Russell, L. M.
1976-01-01
Film injection from discrete holes in a three-row, staggered array with five-diameter spacing was studied for three hole angles: (1) normal, (2) slanted 30 deg to the surface in the direction of the main stream, and (3) slanted 30 deg to the surface and 45 deg laterally to the main stream. The ratio of the boundary layer thickness-to-hole diameter and Reynolds number were typical of gas-turbine film-cooling applications. Detailed streaklines showing the turbulent motion of the injected air were obtained by photographing very small neutrally buoyant, helium-filled soap bubbles which follow the flow field.
Shift-bonded resonance-domain diffraction gratings.
Axelrod, Ramon; Shacham-Diamand, Yosi; Golub, Michael
2016-10-20
Resonance-domain-transmission diffractive optics with grating periods comparable to those of the illumination wavelength offers large angles of light deflection and nearly 100% Bragg diffraction efficiency. Optical design preferences for nearly normal incidence can be met by proper choice for the slant of the diffraction grooves relative to the substrate. However, straightforward fabrication of the slanted submicron high-aspect-ratio grooves is challenging. In this paper, optical performance comparable to that of the slanted grooves was achieved by an alternative solution of bonding two half-height symmetrical gratings with a lateral shift and an optional small longitudinal spacing. Results of design, nanofabrication, and optical testing are presented.
Temporal and spatial distribution of metallic species in the upper atmosphere
NASA Astrophysics Data System (ADS)
Correira, John Thomas
2009-06-01
Every day the Earth is bombarded by approximately 100 tons of meteoric material. Much of this material is completely ablated on atmospheric entry, resulting in a layer of atomic metals in the upper atmosphere between 70 km - 150 km. These neutral atoms are ionized by solar radiation and charge exchange. Metal ions have a long lifetime against recombination loss, allowing them to be redistributed globally by electromagnetic forces, especially when lifted to altitudes >150 km. UV radiances from the Global Ozone Monitoring Experiment (GOME) spectrometer are used to determine long-term dayside variations of the total vertical column density below 795 km of the meteoric metal species Mg and Mg + in the upper atmosphere. A retrieval algorithm developed to determine magnesium column densities was applied to all available data from the years 1996-2001. Long term results show middle latitude dayside Mg + peaks in vertical content during the summer, while neutral Mg demonstrates a much more subtle maximum in summer. Atmospheric metal concentrations do not correlate strongly solar activity. An analysis of spatial variations shows geospatial distributions are patchy, with local regions of increased column density. To study short term variations and the role of meteor showers a time dependent mass flux rate is calculated using published estimates of meteor stream mass densities and activity profiles. An average daily mass flux rate is also calculated and used as a baseline against which shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal column densities. There appears to be little correlation between modeled meteor shower mass flux rates and changes in the observed neutral magnesium and Mg + metal column densities.
NASA Astrophysics Data System (ADS)
Marsh, K. A.; Whitworth, A. P.; Lomax, O.
2015-12-01
We present point process mapping (
Coupled Leidenfrost states as a monodisperse granular clock
NASA Astrophysics Data System (ADS)
Liu, Rui; Yang, Mingcheng; Chen, Ke; Hou, Meiying; To, Kiwing
2016-08-01
Using an event-driven molecular dynamics simulation, we show that simple monodisperse granular beads confined in coupled columns may oscillate as a different type of granular clock. To trigger this oscillation, the system needs to be driven against gravity into a density-inverted state, with a high-density clustering phase supported from below by a gaslike low-density phase (Leidenfrost effect) in each column. Our analysis reveals that the density-inverted structure and the relaxation dynamics between the phases can amplify any small asymmetry between the columns, and lead to a giant oscillation. The oscillation occurs only for an intermediate range of the coupling strength, and the corresponding phase diagram can be universally described with a characteristic height of the density-inverted structure. A minimal two-phase model is proposed and a linear stability analysis shows that the triggering mechanism of the oscillation can be explained as a switchable two-parameter Andronov-Hopf bifurcation. Numerical solutions of the model also reproduce similar oscillatory dynamics to the simulation results.
Satellite Investigation of Atmospheric Metal Deposition During Meteor Showers
NASA Astrophysics Data System (ADS)
Correira, J.; Aikin, A. C.; Grebowsky, J. M.
2008-12-01
Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the magnesium column densities and any connection to possible enhanced mass deposition during a meteor shower. We derive a time dependent mass flux rate due to meteor showers using published estimates of mass density and activity profiles of meteor showers. An average daily mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal column densities from the years 1996 - 2001.There appears to be little correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.
Effects of Coulomb collisions on cyclotron maser and plasma wave growth in magnetic loops
NASA Technical Reports Server (NTRS)
Hamilton, Russell J.; Petrosian, Vahe
1990-01-01
The evolution of nonthermal electrons accelerated in magnetic loops is determined by solving the kinetic equation, including magnetic field convergence and Coulomb collisions in order to determine the effects of these interactions on the induced cyclotron maser and plasma wave growth. It is found that the growth rates are larger and the possibility of cyclotron maser action is stronger for smaller loop column density, for larger magnetic field convergence, for a more isotropic injected electron pitch angle distribution, and for more impulsive acceleration. For modest values of the column density in the coronal portion of a flaring loop, the growth rates of instabilities are significantly reduced, and the reduction is much larger for the cyclotron modes than for the plasma wave modes. The rapid decrease in the growth rates with increasing loop column density suggests that, in flare loops when such phenomena occur, the densities are lower than commonly accepted.
NASA Technical Reports Server (NTRS)
Livengood, T. A.; Strobel, D. F.; Moos, H. W.
1990-01-01
The wavelength-dependent absorption apparent in IUE spectra of the north Jovian aurora is analyzed to determine the column density of hydrocarbons above the altitude of the FUV auroral emission. Both the magnetotail and torus auroral zone models are considered in estimating zenith angles, with very similar results obtained for both models. It is found that the hydrocarbon column density above the FUV emission displays a consistent dependence on magnetic longitude, with the peak density occurring approximately coincident with the peak in the observed auroral intensity. Two distinct scenarios for the longitude dependence of the column density are discussed. In one, the Jovian upper atmosphere is longitudinally homogeneous, and the variation in optical depth is due to a variation in penetration, and thus energy, of the primary particles. In the other, the energy of the primaries is longitudinally homogeneous, and it is aeronomic properties which change, probably due to auroral heating.
NASA Astrophysics Data System (ADS)
Racz, I. I.; Bagoly, Z.; Tóth, L. V.; Balázs, L. G.; Horvath, I.; Zahorecz, S.
2018-05-01
Gamma-ray bursts (GRBs) are the most powerful explosive events in the Universe. The prompt gamma emission is followed by an X-ray afterglow that is also detected for over nine hundred GRBs by the Swift BAT and XRT detectors. The X-ray afterglow spectrum bears essential information about the burst, and the surrounding interstellar medium (ISM). Since the radiation travels through the line of sight intergalactic medium and the ISM in the Milky Way, the observed emission is influenced by extragalactic and galactic components. The column density of the Galactic foreground ranges several orders of magnitudes, due to both the large scale distribution of ISM and its small scale structures. We examined the effect of local HI column density on the penetrating X-ray emission, as the first step towards a precise modeling of the measured X-ray spectra. We fitted the X-ray spectra using the Xspec software, and checked how the shape of the initially power low spectrum changes with varying input Galactic HI column density. The total absorbing HI column is a sum of the intrinsic and Galactic component. We also investigated the model results for the intrinsic component varying the Galactic foreground. We found that such variations may alter the intrinsic hydrogen column density up to twenty-five percent. We will briefly discuss its consequences.
Physical conditions in CaFe interstellar clouds
NASA Astrophysics Data System (ADS)
Gnaciński, P.; Krogulec, M.
2008-01-01
Interstellar clouds that exhibit strong Ca I and Fe I lines are called CaFe clouds. Ionisation equilibrium equations were used to model the column densities of Ca II, Ca I, K I, Na I, Fe I and Ti II in CaFe clouds. We find that the chemical composition of CaFe clouds is solar and that there is no depletion into dust grains. CaFe clouds have high electron densities, n_e≈1 cm-3, that lead to high column densities of neutral Ca and Fe.
NASA Technical Reports Server (NTRS)
Tzortziou, Maria A.; Herman, Jay R.; Cede, Alexander; Abuhassan, Nader
2012-01-01
We present new, high precision, high temporal resolution measurements of total column ozone (TCO) amounts derived from ground-based direct-sun irradiance measurements using our recently deployed Pandora single-grating spectrometers. Pandora's small size and portability allow deployment at multiple sites within an urban air-shed and development of a ground-based monitoring network for studying small-scale atmospheric dynamics, spatial heterogeneities in trace gas distribution, local pollution conditions, photochemical processes and interdependencies of ozone and its major precursors. Results are shown for four mid- to high-latitude sites where different Pandora instruments were used. Comparisons with a well calibrated double-grating Brewer spectrometer over a period of more than a year in Greenbelt MD showed excellent agreement and a small bias of approximately 2 DU (or, 0.6%). This was constant with slant column ozone amount over the full range of observed solar zenith angles (15-80), indicating adequate Pandora stray light correction. A small (1-2%) seasonal difference was found, consistent with sensitivity studies showing that the Pandora spectral fitting TCO retrieval has a temperature dependence of 1% per 3K, with an underestimation in temperature (e.g., during summer) resulting in an underestimation of TCO. Pandora agreed well with Aura-OMI (Ozone Measuring Instrument) satellite data, with average residuals of <1% at the different sites when the OMI view was within 50 km from the Pandora location and OMI-measured cloud fraction was <0.2. The frequent and continuous measurements by Pandora revealed significant short-term (hourly) temporal changes in TCO, not possible to capture by sun-synchronous satellites, such as OMI, alone.
Impact of high-resolution a priori profiles on satellite-based formaldehyde retrievals
NASA Astrophysics Data System (ADS)
Kim, Si-Wan; Natraj, Vijay; Lee, Seoyoung; Kwon, Hyeong-Ahn; Park, Rokjin; de Gouw, Joost; Frost, Gregory; Kim, Jhoon; Stutz, Jochen; Trainer, Michael; Tsai, Catalina; Warneke, Carsten
2018-06-01
Formaldehyde (HCHO) is either directly emitted from sources or produced during the oxidation of volatile organic compounds (VOCs) in the troposphere. It is possible to infer atmospheric HCHO concentrations using space-based observations, which may be useful for studying emissions and tropospheric chemistry at urban to global scales depending on the quality of the retrievals. In the near future, an unprecedented volume of satellite-based HCHO measurement data will be available from both geostationary and polar-orbiting platforms. Therefore, it is essential to develop retrieval methods appropriate for the next-generation satellites that measure at higher spatial and temporal resolution than the current ones. In this study, we examine the importance of fine spatial and temporal resolution a priori profile information on the retrieval by conducting approximately 45 000 radiative transfer (RT) model calculations in the Los Angeles Basin (LA Basin) megacity. Our analyses suggest that an air mass factor (AMF, a factor converting observed slant columns to vertical columns) based on fine spatial and temporal resolution a priori profiles can better capture the spatial distributions of the enhanced HCHO plumes in an urban area than the nearly constant AMFs used for current operational products by increasing the columns by ˜ 50 % in the domain average and up to 100 % at a finer scale. For this urban area, the AMF values are inversely proportional to the magnitude of the HCHO mixing ratios in the boundary layer. Using our optimized model HCHO results in the Los Angeles Basin that mimic the HCHO retrievals from future geostationary satellites, we illustrate the effectiveness of HCHO data from geostationary measurements for understanding and predicting tropospheric ozone and its precursors.
The dependence of gamma-ray burst X-ray column densities on the model for Galactic hydrogen
NASA Astrophysics Data System (ADS)
Arcodia, R.; Campana, S.; Salvaterra, R.
2016-05-01
We study the X-ray absorption of a complete sample of 99 bright Swift gamma-ray bursts (GRBs). In recent years, a strong correlation has been found between the intrinsic X-ray absorbing column density (NH(z)) and the redshift. This absorption excess in high-z GRBs is now thought to be due to the overlooked contribution of the absorption along the intergalactic medium (IGM), by means of both intervening objects and the diffuse warm-hot intergalactic medium along the line of sight. In this work we neglect the absorption along the IGM, because our purpose is to study the eventual effect of a radical change in the Galactic absorption model on the NH(z) distribution. Therefore, we derive the intrinsic absorbing column densities using two different Galactic absorption models: the Leiden Argentine Bonn HI survey and the more recent model that includes molecular hydrogen. We find that if, on the one hand, the new Galactic model considerably affects the single column density values, on the other hand, there is no drastic change in the distribution as a whole. It becomes clear that the contribution of Galactic column densities alone, no matter how improved, is not sufficient to change the observed general trend and it has to be considered as a second order correction. The cosmological increase of NH(z) as a function of redshift persists and, to explain the observed distribution, it is necessary to include the contribution of both the diffuse intergalactic medium and the intervening systems along the line of sight of the GRBs.
NASA Astrophysics Data System (ADS)
Hozumi, Yuta; Saito, Akinori; Yoshikawa, Ichiro; Yamazaki, Atsushi; Murakami, Go; Yoshioka, Kazuo; Chen, Chia-Hung
2017-07-01
The global distribution of He+ in the topside ionosphere was investigated using data of the He+ resonant scattering emission at 30.4 nm obtained by the Extreme Ultra Violet Imager (EUVI) onboard the International Space Station. The optical observation by EUVI from the low-Earth orbit provides He+ column density data above the altitude of 400 km, presenting a unique opportunity to study the He+ distribution with a different perspective from that of past studies using data from in situ measurements. We analyzed data taken in 2013 and elucidated, for the first time, the seasonal, longitudinal, and latitudinal variations of the He+ column density in the dusk sector. It was found that the He+ column density in the winter hemisphere was about twice that in the summer hemisphere. In the December solstice season, the magnitude of this hemispheric asymmetry was large (small) in the longitudinal sector where the geomagnetic declination is eastward (westward). In the June solstice season, this relationship between the He+ distribution and the geomagnetic declination is reversed. In the equinox seasons, the He+ column densities in the two hemispheres are comparable at most longitudes. The seasonal and longitudinal dependence of the hemispheric asymmetry of the He+ distribution was attributed to the geomagnetic meridional neutral wind in the F region ionosphere. The neutral wind effect on the He+ distribution was examined with an empirical neutral wind model, and it was confirmed that the transport of ions in the topside ionosphere is predominantly affected by the F region neutral wind and the geomagnetic configuration.
NASA Astrophysics Data System (ADS)
Cao, Robin; Braun, Jochen; Mattia, Maurizio
2014-08-01
The timing of certain mental events is thought to reflect random walks performed by underlying neural dynamics. One class of such events—stochastic reversals of multistable perceptions—exhibits a unique scalar property: even though timing densities vary widely, higher moments stay in particular proportions to the mean. We show that stochastic accumulation of activity in a finite number of idealized cortical columns—realizing a generalized Ehrenfest urn model—may explain these observations. Modeling stochastic reversals as the first-passage time of a threshold number of active columns, we obtain higher moments of the first-passage time density. We derive analytical expressions for noninteracting columns and generalize the results to interacting columns in simulations. The scalar property of multistable perception is reproduced by a dynamic regime with a fixed, low threshold, in which the activation of a few additional columns suffices for a reversal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaczmarski, Krzysztof; Guiochon, Georges A
2011-01-01
In supercritical fluid chromatography (SFC), the significant expansion of the mobile phase along the column causes the formation of axial and radial gradients of temperature. Due to these gradients, the mobile phase density, its viscosity, its velocity, its diffusion coefficients, etc. are not constant throughout the column. This results in a nonuniform flow velocity distribution, itself causing a loss of column efficiency in certain cases, even at low flow rates, as they do in HPLC. At high flow rates, an important deformation of the elution profiles of the sample components may occur. The model previously used to account satisfactorily formore » the retention of an unsorbed solute in SFC is applied to the modeling of the elution peak profiles of retained compounds. The numerical solution of the combined heat and mass balance equations provides the temperature and the pressure profiles inside the column and values of the retention time and the band profiles of retained compounds that are in excellent agreement with independent experimental data for large value of mobile phase reduced density. At low reduced densities, the band profiles can strongly depend on the column axial distribution of porosity.« less
CO Column Density and Extinction in the Chamaeleon II--III Dark-Cloud Complex
NASA Astrophysics Data System (ADS)
Hayakawa, Takahiro; Cambrésy, Laurent; Onishi, Toshikazu; Mizuno, Akira; Fukui, Yasuo
2001-12-01
We carried out 13CO (J = 1 -- 0) and C18O (J = 1 -- 0) observations of the Chamaeleon II--III dark-cloud complex with the NANTEN radio telescope. The column densities of both molecular isotopes were derived assuming LTE. The AV values were obtained by scaling the AV values that were derived using an adaptive-grid star-count method applied to the DENIS J-band data. We established the AV--CO isotope column-density relations in Cha II and III, and compared them with those in Cha I. The slopes of the AV--13CO relations for Cha II and III are steeper than that for Cha I. Those of the AV -- C18O relations are similar among the three clouds. The total column density ratio, N(13O) / N(C18O, in Cha I tends to be small compared with those in Cha II or Cha III; the ratios range from ~ 5 to ~ 25 at low extinction in Cha II and III, but at most ~ 10 in Cha I. We suggest that the increase of N(13CO) due to the 13CO formation process causes cloud-to-cloud variations in the AV -- N(13CO) correlation.
Lab Experiments Probe Interactions Between Dilute Pyroclastic Density Currents and 3D Barriers
NASA Astrophysics Data System (ADS)
Fauria, K.; Andrews, B. J.; Manga, M.
2014-12-01
We conducted scaled laboratory experiments of unconfined dilute pyroclastic density currents (PDCs) to examine interactions between three - dimensional obstacles and dilute PDCs. While it is known that PDCs can surmount barriers by converting kinetic energy into potential energy, the signature of topography on PDC dynamics is unclear. To examine the interplay between PDCs and topography, we turbulently suspended heated and ambient-temperature 20 μm talc powder in air within an 8.5 x 6.1 x 2.6 m tank. Experimental parameters (Froude number, densimetric and thermal Richardson number, particle Stokes and Settling numbers) were scaled such that the experimental currents were dynamically similar to natural PCS. The Reynolds number, however, is much smaller than in natural currents, but still large enough for the flows to be turbulent. We placed cylindrical and ridge-like objects in the path of the currents, illuminated the currents with orthogonal laser sheets, and recorded each experiment with high definition cameras. We observed currents surmounting ridge-like barriers (barrier height = current height). Slanted ridges redirected the currents upward and parallel to the upstream face of the ridges (~45° from horizontal). Down stream of the slanted ridges, ambient-temperature currents reattached to the floor. By comparison, hot currents reversed buoyancy and lifted off. These observations suggest that obstacles enhance air entrainment, a process key to affecting runout distance and the depletion of fine particles in ignimbrites. Moreover, we observed vortex shedding in the wake of cylinders. Our experiments demonstrate that barriers of various shapes affect PDC dynamics and can shorten PDC runout distances. Understanding the effects of topography on PDCs is required for interpreting many deposits because processes such as vortex shedding and topographically-induced changes in turbulent length scales and entrainment likely leave depositional signatures.
Ultra high pressure liquid chromatography. Column permeability and changes of the eluent properties.
Gritti, Fabrice; Guiochon, Georges
2008-04-11
The behavior of four similar liquid chromatography columns (2.1mm i.d. x 30, 50, 100, and 150 mm, all packed with fine particles, average d(p) approximately 1.7 microm, of bridged ethylsiloxane/silica hybrid-C(18), named BEH-C(18)) was studied in wide ranges of temperature and pressure. The pressure and the temperature dependencies of the viscosity and the density of the eluent (pure acetonitrile) along the columns were also derived, using the column permeabilities and applying the Kozeny-Carman and the heat balance equations. The heat lost through the external surface area of the chromatographic column was directly derived from the wall temperature of the stainless steel tube measured with a precision of +/-0.2 degrees C in still air and +/-0.1 degrees C in the oven compartment. The variations of the density and viscosity of pure acetonitrile as a function of the temperature and pressure was derived from empirical correlations based on precise experimental data acquired between 298 and 373 K and at pressures up to 1.5 kbar. The measurements were made with the Acquity UPLC chromatograph that can deliver a maximum flow rate of 2 mL/min and apply a maximum column inlet pressure of 1038 bar. The average Kozeny-Carman permeability constant of the columns was 144+/-3.5%. The temperature hence the viscosity and the density profiles of the eluent along the column deviate significantly from linear behavior under high-pressure gradients. For a 1000 bar pressure drop, we measured DeltaT=25-30 K, (Deltaeta/eta) approximately 100%, and (Deltarho/rho) approximately 10%. These results show that the radial temperature profiles are never fully developed within 1% for any of the columns, even under still-air conditions. This represents a practical advantage regarding the apparent column efficiency at high flow rates, since the impact of the differential analyte velocity between the column center and the column wall is not maximum. The interpretation of the peak profiles recorded in UPLC is discussed.
Crystal, magnetic, calorimetric and electronic structure investigation of GdScGe1-x Sb x compounds
NASA Astrophysics Data System (ADS)
Guillou, F.; Pathak, A. K.; Hackett, T. A.; Paudyal, D.; Mudryk, Y.; Pecharsky, V. K.
2017-12-01
Experimental investigations of crystal structure, magnetism and heat capacity of compounds in the pseudoternary GdScGe-GdScSb system combined with density functional theory projections have been employed to clarify the interplay between the crystal structure and magnetism in this series of RTX materials (R = rare-earth, T = transition metal and X = p-block element). We demonstrate that the CeScSi-type structure adopted by GdScGe and CeFeSi-type structure adopted by GdScSb coexist over a limited range of compositions 0.65 ≤slant x ≤slant 0.9 . Antimony for Ge substitutions in GdScGe result in an anisotropic expansion of the unit cell of the parent that is most pronounced along the c axis. We believe that such expansion acts as the driving force for the instability of the double layer CeScSi-type structure of the parent germanide. Extensive, yet limited Sb substitutions 0 ≤slant x < 0.65 lead to a strong reduction of the Curie temperature compared to the GdScGe parent, but without affecting the saturation magnetization. With a further increase in Sb content, the first compositions showing the presence of the CeFeSi-type structure of the antimonide, x ≈ 0.7 , coincide with the appearance of an antiferromagnetic phase. The application of a finite magnetic field reveals a jump in magnetization toward a fully saturated ferromagnetic state. This antiferro-ferromagnetic transformation is not associated with a sizeable latent heat, as confirmed by heat capacity measurements. The electronic structure calculations for x = 0.75 indicate that the key factor in the conversion from the ferromagnetic CeScSi-type to the antiferromagnetic CeFeSi-type structure is the disappearance of the induced magnetic moments on Sc. For the parent antimonide, heat capacity measurements indicate an additional transition below the main antiferromagnetic transition.
Skating down a steeper slope: Fear influences the perception of geographical slant
Stefanucci, Jeanine K.; Proffitt, Dennis R.; Clore, Gerald L.; Parekh, Nazish
2008-01-01
Conscious awareness of hill slant is overestimated, but visually guided actions directed at hills are relatively accurate. Also, steep hills are consciously estimated to be steeper from the top as opposed to the bottom, possibly because they are dangerous to walk down. In the present study, participants stood at the top of a hill on either a skateboard or a wooden box of the same height. They gave three estimates of the slant of the hill: a verbal report, a visually matched estimate, and a visually guided action. Fear of descending the hill was also assessed. Those participants that were scared (by standing on the skateboard) consciously judged the hill to be steeper relative to participants who were unafraid. However, the visually guided action measure was accurate across conditions. These results suggest that our explicit awareness of slant is influenced by the fear associated with a potentially dangerous action. “[The phobic] reported that as he drove towards bridges, they appeared to be sloping at a dangerous angle.” (Rachman and Cuk 1992 p. 583). PMID:18414594
NASA Astrophysics Data System (ADS)
Ali, Akram; Ozel, Cenap
It is known from [K. Yano and M. Kon, Structures on Manifolds (World Scientific, 1984)] that the integration of the Laplacian of a smooth function defined on a compact orientable Riemannian manifold without boundary vanishes with respect to the volume element. In this paper, we find out the some potential applications of this notion, and study the concept of warped product pointwise semi-slant submanifolds in cosymplectic manifolds as a generalization of contact CR-warped product submanifolds. Then, we prove the existence of warped product pointwise semi-slant submanifolds by their characterizations, and give an example supporting to this idea. Further, we obtain an interesting inequality in terms of the second fundamental form and the scalar curvature using Gauss equation and then, derive some applications of it with considering the equality case. We provide many trivial results for the warped product pointwise semi-slant submanifolds in cosymplectic space forms in various mathematical and physical terms such as Hessian, Hamiltonian and kinetic energy, and generalize the triviality results for contact CR-warped products as well.
Direct Evidence for the Economy of Action: Glucose and the Perception of Geographical Slant
Schnall, Simone; Zadra, Jonathan R.; Proffitt, Dennis R.
2012-01-01
When locomoting in a physically challenging environment, the body draws upon available energy reserves to accommodate increased metabolic demand. Ingested glucose supplements the body’s energy resources, whereas non-caloric sweetener does not. Two experiments demonstrate that participants who had consumed a glucose-containing drink perceived a hills slant to be less steep than did participants who had consumed a drink containing non-caloric sweetener. The glucose manipulation influenced participants’ explicit awareness of hill slant but, as predicted, it did not affect a visually-guided action of orienting a tilting palmboard to be parallel to the hill. Measured individual differences in factors related to bioenergetic state such as fatigue, sleep quality, fitness, mood, and stress also affected perception such that lower energetic states were associated with steeper perceptions of hill slant. This research shows that the perception of the environment’s spatial layout is influenced by the energetic resources available for locomotion within it. Our findings are consistent with the view that spatial perceptions are influenced by bioenergetic factors. PMID:20514996
Eves, Frank F
2015-02-01
The paper by Shaffer, McManama, Swank, Williams & Durgin (2014) uses correlations between palm-board and verbal estimates of geographical slant to argue against dissociation of the two measures. This paper reports the correlations between the verbal, visual and palm-board measures of geographical slant used by Proffitt and co-workers as a counterpoint to the analyses presented by Shaffer and colleagues. The data are for slant perception of staircases in a station (N=269), a shopping mall (N=229) and a civic square (N=109). In all three studies, modest correlations between the palm-board matches and the verbal reports were obtained. Multiple-regression analyses of potential contributors to verbal reports, however, indicated no unique association between verbal and palm-board measures. Data from three further studies (combined N=528) also show no evidence of any relationship. Shared method variance between visual and palm-board matches could account for the modest association between palm-boards and verbal reports. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Abreu-Vicente, J.; Kainulainen, J.; Stutz, A.; Henning, Th.; Beuther, H.
2015-09-01
We present the first study of the relationship between the column density distribution of molecular clouds within nearby Galactic spiral arms and their evolutionary status as measured from their stellar content. We analyze a sample of 195 molecular clouds located at distances below 5.5 kpc, identified from the ATLASGAL 870 μm data. We define three evolutionary classes within this sample: starless clumps, star-forming clouds with associated young stellar objects, and clouds associated with H ii regions. We find that the N(H2) probability density functions (N-PDFs) of these three classes of objects are clearly different: the N-PDFs of starless clumps are narrowest and close to log-normal in shape, while star-forming clouds and H ii regions exhibit a power-law shape over a wide range of column densities and log-normal-like components only at low column densities. We use the N-PDFs to estimate the evolutionary time-scales of the three classes of objects based on a simple analytic model from literature. Finally, we show that the integral of the N-PDFs, the dense gas mass fraction, depends on the total mass of the regions as measured by ATLASGAL: more massive clouds contain greater relative amounts of dense gas across all evolutionary classes. Appendices are available in electronic form at http://www.aanda.org
A search for interstellar pyrrole - Evidence that rings are less abundant than chains
NASA Technical Reports Server (NTRS)
Myers, P. C.; Thaddeus, P.; Linke, R. A.
1980-01-01
Searches for three transitions of pyrrole (C4H5N) give maximum column density = 3-10 x 10 to the 13th per sq cm in Sgr B2. This limit is more than 10 times lower than previous ring molecule limits, and is slightly lower than column densities of known interstellar molecules with from four to six heavy atoms.
Helical patterns of magnetization and magnetic charge density in iron whiskers
NASA Astrophysics Data System (ADS)
Templeton, Terry L.; Hanham, Scott D.; Arrott, Anthony S.
2018-05-01
Studies with the (1 1 1) axis along the long axis of an iron whisker, 40 years ago, showed two phenomena that have remained unexplained: 1) In low fields, there are six peaks in the ac susceptibility, separated by 0.2 mT; 2) Bitter patterns showed striped domain patterns. Multipole columns of magnetic charge density distort to form helical patterns of the magnetization, accounting for the peaks in the susceptibility from the propagation of edge solitons along the intersections of the six sides of a (1 1 1) whisker. The stripes follow the helices. We report micromagnetic simulations in cylinders with various geometries for the cross-sections from rectangular, to hexagonal, to circular, with wide ranges of sizes and lengths, and different anisotropies, including (0 0 1) whiskers and the hypothetical case of no anisotropy. The helical patterns have been there in previous studies, but overlooked. The surface swirls and body helices are connected, but have their own individual behaviors. The magnetization patterns are more easily understood when viewed observing the scalar divergences of the magnetization as isosurfaces of magnetic charge density. The plus and minus charge densities form columns that interact with unlike charges attracting, but not annihilating as they are paid for by a decrease in exchange energy. Just as they start to form the helix, the columns are multipoles. If one could stretch the columns, the self-energy of the charges in a column would be diminished while making the attractive interactions of the unlike charges larger. The columns elongate by becoming helical. The visualization of 3-D magnetic charge distributions aids in the understanding of magnetization in soft magnetic materials.
NASA Astrophysics Data System (ADS)
Heine, Thomas R. P.; Moldwin, Mark B.; Zou, Shasha
2017-03-01
Kilometer-scale density irregularities in the ionosphere can cause ionospheric scintillation—a phenomenon that degrades space-based navigation and communication signals. During strong geomagnetic storms, the midlatitude ionosphere is primed to produce these ˜1-10 km small-scale irregularities along the steep gradients between midlatitude storm enhanced density (SED) plumes and the adjacent low-density trough. The length scales of irregularities on the order of 1-10 km are determined from a combination of spatial, temporal, and frequency analyses using single-station ground-based Global Positioning System total electron content (TEC) combined with radar plasma velocity measurements. Kilometer-scale irregularities are detected along the boundaries of the SED plume and depleted density trough during the 17 March 2015 geomagnetic storm, but not equatorward of the plume or within the plume itself. Analysis using the fast Fourier transform of high-pass filtered slant TEC suggests that the kilometer-scale irregularities formed near the poleward gradients of SED plumes can have similar intensity and length scales to those typically found in the aurora but are shown to be distinct phenomena in spacecraft electron precipitation measurements.
Following the Cosmic Evolution of Pristine Gas. II. The Search for Pop III–bright Galaxies
NASA Astrophysics Data System (ADS)
Sarmento, Richard; Scannapieco, Evan; Cohen, Seth
2018-02-01
Direct observational searches for Population III (Pop III) stars at high redshift are faced with the question of how to select the most promising targets for spectroscopic follow-up. To help answer this, we use a large-scale cosmological simulation, augmented with a new subgrid model that tracks the fraction of pristine gas, to follow the evolution of high-redshift galaxies and the Pop III stars they contain. We generate rest-frame ultraviolet (UV) luminosity functions for our galaxies and find that they are consistent with current z≥slant 7 observations. Throughout the redshift range 7≤slant z≤slant 15, we identify “Pop III–bright” galaxies as those with at least 75% of their flux coming from Pop III stars. While less than 1% of galaxies brighter than {m}UV,{AB}}=31.4 mag are Pop III–bright in the range 7≤slant z≤slant 8, roughly 17% of such galaxies are Pop III–bright at z = 9, immediately before reionization occurs in our simulation. Moving to z = 10, {m}UV,{AB}}=31.4 mag corresponds to larger, more luminous galaxies, and the Pop III–bright fraction falls off to 5%. Finally, at the highest redshifts, a large fraction (29% at z = 14 and 41% at z = 15) of all galaxies are Pop III–bright regardless of magnitude. While {m}UV,{AB}}=31.4 mag galaxies are extremely rare during this epoch, we find that 13% of galaxies at z = 14 are Pop III–bright with {m}UV,{AB}}≤slant 33 mag, a intrinsic magnitude within reach of the James Webb Space Telescope using lensing. Thus, we predict that the best redshift to search for luminous Pop III–bright galaxies is just before reionization, while lensing surveys for fainter galaxies should push to the highest redshifts possible.
NASA Astrophysics Data System (ADS)
Howk, J. Christopher; Wotta, Christopher B.; Berg, Michelle A.; Lehner, Nicolas; Lockman, Felix J.; Hafen, Zachary; Pisano, D. J.; Faucher-Giguère, Claude-André; Wakker, Bart P.; Prochaska, J. Xavier; Wolfe, Spencer A.; Ribaudo, Joseph; Barger, Kathleen A.; Corlies, Lauren; Fox, Andrew J.; Guhathakurta, Puragra; Jenkins, Edward B.; Kalirai, Jason; O'Meara, John M.; Peeples, Molly S.; Stewart, Kyle R.; Strader, Jay
2017-09-01
We present a deep search for {{H}} {{I}} 21 cm emission from the gaseous halo of Messier 31 as part of Project AMIGA, a large Hubble Space Telescope program to study the circumgalactic medium of the Andromeda galaxy. Our observations with the Robert C. Byrd Green Bank Telescope target sight lines to 48 background AGNs, more than half of which have been observed in the ultraviolet with the Cosmic Origins Spectrograph, with impact parameters 25≲ ρ ≲ 340 {kpc} (0.1≲ ρ /{R}{vir}≲ 1.1). We do not detect any 21 cm emission toward these AGNs to limits of N({{H}} {{I}})≈ 4× {10}17 cm-2 (5σ ; per 2 kpc-diameter beam). This column density corresponds to an optical depth of ˜2.5 at the Lyman limit; thus, our observations overlap with absorption line studies of Lyman limit systems at higher redshift. Our non-detections place a limit on the covering factor of such optically thick gas around M31 to {f}c< 0.051 (at 90% confidence) for ρ ≤slant {R}{vir}. Although individual clouds have previously been found in the region between M31 and M33, the covering factor of strongly optically thick gas is quite small. Our upper limits on the covering factor are consistent with expectations from recent cosmological “zoom” simulations. Recent COS-Halos ultraviolet measurements of {{H}} {{I}} absorption about an ensemble of galaxies at z≈ 0.2 show significantly higher covering factors within ρ ≲ 0.5{R}{vir} at the same N({{H}} {{I}}), although the metal ion-to-{{H}} {{I}} ratios appear to be consistent with those seen in M31.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Che-Yu; Li, Zhi-Yun; King, Patrick K.
2017-10-01
Thin, magnetically aligned striations of relatively moderate contrast with the background are commonly observed in both atomic and molecular clouds. They are also prominent in MHD simulations with turbulent converging shocks. The simulated striations develop within a dense, stagnated sheet in the midplane of the post-shock region where magnetically induced converging flows collide. We show analytically that the secondary flows are an inevitable consequence of the jump conditions of oblique MHD shocks. They produce the stagnated, sheet-like sub-layer through a secondary shock when, roughly speaking, the Alfvénic speed in the primary converging flows is supersonic, a condition that is relativelymore » easy to satisfy in interstellar clouds. The dense sub-layer is naturally threaded by a strong magnetic field that lies close to the plane of the sub-layer. The substantial magnetic field makes the sheet highly anisotropic, which is the key to the striation formation. Specifically, perturbations of the primary inflow that vary spatially perpendicular to the magnetic field can easily roll up the sheet around the field lines without bending them, creating corrugations that appear as magnetically aligned striations in column density maps. On the other hand, perturbations that vary spatially along the field lines curve the sub-layer and alter its orientation relative to the magnetic field locally, seeding special locations that become slanted overdense filaments and prestellar cores through enhanced mass accumulation along field lines. In our scenario, the dense sub-layer, which is unique to magnetized oblique shocks, is the birthplace for both magnetically aligned diffuse striations and massive star-forming structures.« less
3XMM J181923.7-170616: An X-Ray Binary with a 408 s Pulsar
NASA Astrophysics Data System (ADS)
Qiu, Hao; Zhou, Ping; Yu, Wenfei; Li, Xiangdong; Xu, Xiaojie
2017-09-01
We carry out a dedicated study of 3XMM J181923.7-170616 with an approximate pulsation period of 400 s using the XMM-Newton and Swift observations spanning across nine years. We have refined the period of the source to 407.904(7) s (at epoch MJD 57142) and constrained the 1σ upper limit on the period derivative \\dot{P}≤slant 1.1× {10}-8 {{s}} {{{s}}}-1. The source radiates hard, persistent X-ray emission during the observation epochs, which is best described by an absorbed power-law model (Γ ˜ 0.2-0.8) plus faint Fe lines at 6.4 and 6.7 keV. The X-ray flux revealed a variation within a factor of 2, along with a spectral hardening as the flux increased. The pulse shape is sinusoid-like and the spectral properties of different phases do not present significant variation. The absorption {N}{{H}} (˜ 1.3× {10}22 {{cm}}-2) is similar to the total Galactic hydrogen column density along the direction, indicating that it is a distant source. A search for the counterpart in optical and near-infrared surveys reveals a low-mass K-type giant, while the existence of a Galactic OB supergiant is excluded. A symbiotic X-ray binary (SyXB) is the favored nature of 3XMM J181923.7-170616 and can essentially explain the low luminosity of 2.78× {10}34{d}102 {erg} {{{s}}}-1, slow pulsation, hard X-ray spectrum, and possible K3 III companion. An alternative explanation of the source is a persistent Be X-ray binary (BeXB) with a companion star no earlier than B3-type.
Two new hot white dwarfs in a region of exceptionally low hi density
NASA Technical Reports Server (NTRS)
Barstow, M. A.; Wesemael, F.; Holberg, J. B.; Werner, K.; Buckley, D. A. H.; Stobie, R. S.; Fontaine, G.; Rosen, S. R.; Demers, S.; Lamontagne, R.
1993-01-01
We report the discovery of two hot white dwarfs which have the lowest line-of-sight neutral hydrogen column densities yet measured. The stars were found independently by the ROSAT EUV, Montreal-Cambridge-Tololo, and Edinburgh-Cape surveys. Follow-up observations made using the Voyager 2 ultraviolet spectrometer reveal strong continua shortward of the 912A Lyman limit from which we deduce that the neutral hydrogen column densities are 1.3 x 10(exp 17) and 2.0 x 10(exp 17) atoms/sq cm.
NASA Technical Reports Server (NTRS)
Flower, D. R.; Desforets, G. P.; Roueff, E.; Hartquist, T. W.
1986-01-01
Considerable effort in recent years has been devoted to the study of shocks in the diffuse interstellar medium. This work has been motivated partly by the observations of rotationally excited states of H2, and partly by the realization that species such as CH(+), OH and H2O might be formed preferentially in hot, post-shock gas. The problem of CH(+) and the difficulties encountered when trying to explain the high column densities, observed along lines of sight to certain hot stars, have been reviewed earlier. The importance of a transverse magnetic field on the structure of an interstellar shock was also demonstrated earlier. Transverse magnetic fields above a critical strength give rise to an acceleration zone or precursor, in which the parameters on the flow vary continuously. Chemical reactions, which change the degree of ionization of the gas, also modify the structure of the shock considerably. Recent work has shown that large column densities of CH(+) can be produced in magnetohydrodynamic shock models. Shock speeds U sub s approx. = 10 km/s and initial magnetic field strengths of a few micro G are sufficient to produce ion-neutral drift velocities which can drive the endothermic C(+)(H2,H)CH(+) reaction. It was also shown that single-fluid hydrodynamic models do not generate sufficiently large column densities of CH(+) unless unacceptably high shock velocities (u sub s approx. 20 km/s) are assumed in the models. Thus, the observed column densities of CH(+) provide a constraint on the mode of shock propagation in diffuse clouds. More precisely, they determine a lower limit to the ion-neutral drift velocity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... GREENHOUSE GAS REPORTING Suppliers of Petroleum Products § 98.398 Definitions. All terms used in this subpart... MM-1 Table MM-1 to Subpart MM of Part 98—Default Factors for Petroleum Products and Natural Gas Liquids 1 2 Products Column A: density(metric tons/bbl) Column B:carbon share (% of mass) Column C...
The Far-Infrared Spectrum of Arp 220
NASA Technical Reports Server (NTRS)
Gonzalez-Alfonso, Eduardo; Smith, Howard A.; Fischer, Jacqueline; Cernicharo, Jose
2004-01-01
ISO/LWS grating observations of the ultraluminous infrared galaxy Arp 220 shows absorption in molecular lines of OH, H 2 0 , CH, NH, and "3, well as in the [0 I] 63 pm line and emission in the [C 111 158 pm line. We have modeled the continuum and the emission/absorption of all observed features by means of a non-local radiative transfer code. The continuum from 25 to 1300 pm is modeled AS A WARM (106 K) NUCLEAR REGION THAT IS OPTICALLY THICK IN THE FAR-INFRARED, attenuated by an extended region (size 2") that is heated mainly through absorption of nuclear infrared radiation. The molecular absorption in the nuclear region is characterized by high excitation due to the high infrared radiation density. The OH column densities are high toward the nucleus and the extended region (about 2 x 10 sup 17 cm sup-2). The H2O column density is also high toward the nucleus (2 - 10 x 1017 cm-2) and lower in the extended region. The column densities in a halo that accounts for the absorption by the lowest lying levels are similar to what are found in the diffuse clouds toward the star forming regions in the Sgr B2 molecular cloud complex near the Galactic Center. Most notable are the high column densities found for NH and NH3 toward the nucleus, with values of about 1.5 x 10supl6 cmsup-2 and about 3 x 10supl6 cmsup-2, respectively, whereas the NH2 column density is lower than about 2 x 10sup15 cmsup-2. A combination of PDRs in the extended region and hot cores with enhanced H20 photodissociation and a possible shock contribution in the nuclei may explain the relative column densities of OH and H20, whereas the nitrogen chemistry may be strongly affected by cosmic ray ionization. The [C II] 158 pm line is well reproduced by our models and its "deficit" relative to the CII/FIR ratio in normal and starburst galaxies is suggested to be mainly a consequence of the dominant non-PDR component of far- infrared radiation, ALTHOUGH OUR MODELS ALONE CANNOT RULE OUT EXTINCTION EFFECTS IN THE NUCLEI.
The Far-Infrared Spectrum of Arp 220
NASA Technical Reports Server (NTRS)
Gonzalez-Alfonso, Eduardo; Smith, Howard A.; Fischer, Jacqueline; Cernicharo, Jose
2005-01-01
ISO/LWS grating observations of the ultraluminous infrared galaxy Arp 220 shows absorption in molecular lines of OH, H(sub 2)O, CH, NH, and NH(sub 3), as well as in the [O I] 63 micron line and emission in the [C II] 158 micron line. We have modeled the continuum and the emission/absorption of all observed features by means of a non-local radiative transfer code. The continuum from 25 to 1300 microns is modeled as a warm (106 K) nuclear region that is optically thick in the far-infrared, attenuated by an extended region (size 2") that is heated mainly through absorption of nuclear infrared radiation. The molecular absorption in the nuclear region is characterized by high excitation due to the high infrared radiation density. The OH column densities are high toward the nucleus (2 - 6 x 10(exp 17) cm(exp -2)) and the extended region (approximately 2 x 10(exp 17) cm(exp -2)). The H(sub 2)O column density is also high toward the nucleus (2 - 10 x 10(exp 17) cm(exp -2)) and lower in the extended region. The column densities in a halo that accounts for the absorption by the lowest lying levels are similar to what are found in the diffuse clouds toward the star forming regions in the Sgr B2 molecular cloud complex near the Galactic Center. Most notable are the high column densities found for NH and NH(sub 3) toward the nucleus, with values of approximately 1.5 x 10(exp 16) cm(exp -2) and approximately 3 x 10(exp 16) cm(exp -2), respectively, whereas the NH(sub 2) column density is lower than approximately 2 x 10(exp 15) cm(exp -2). A combination of PDRs in the extended region and hot cores with enhanced H(sub 2)O photodissociation and a possible shock contribution in the nuclei may explain the relative column densities of OH and H(sub 2)O, whereas the nitrogen chemistry may be strongly affected by cosmic ray ionization. The [C II] 158 micron line is well reproduced by our models and its deficit relative to the CII/FIR ratio in normal and starburst galaxies is suggested to be mainly a consequence of the dominant non-PDR component of far-infrared radiation, although our models alone cannot rule out extinction effects in the nuclei.
Metal concentrations in the upper atmosphere during meteor showers
NASA Astrophysics Data System (ADS)
Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.
2010-02-01
Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a meteor shower. Time-dependent mass influx rates are derived for all the major meteor showers using published estimates of mass density and temporal profiles of meteor showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.
Metal concentrations in the upper atmosphere during meteor showers
NASA Astrophysics Data System (ADS)
Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.
2009-09-01
Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a meteor shower. Time-dependent mass influx rates are derived for all the major meteor showers using published estimates of mass density and temporal profiles of meteor showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.
Ratios of molecular hydrogen line intensities in shocked gas - Evidence for cooling zones
NASA Technical Reports Server (NTRS)
Brand, P. W. J. L.; Moorhouse, A.; Bird, M.; Burton, M. G.; Geballe, T. R.
1988-01-01
Column densities of molecular hydrogen have been calculated from 19 infrared vibration-rotation and pure rotational line intensities measured at peak 1 of the Orion molecular outflow. The run of column density with energy level is similar to a simple coolng zone model of the line-emitting region, but is not well fitted by predictions of C-shock models current in the literature.
Non-detection of HC11N towards TMC-1: constraining the chemistry of large carbon-chain molecules
NASA Astrophysics Data System (ADS)
Loomis, Ryan A.; Shingledecker, Christopher N.; Langston, Glen; McGuire, Brett A.; Dollhopf, Niklaus M.; Burkhardt, Andrew M.; Corby, Joanna; Booth, Shawn T.; Carroll, P. Brandon; Turner, Barry; Remijan, Anthony J.
2016-12-01
Bell et al. reported the first detection of the cyanopolyyne HC11N towards the cold dark cloud TMC-1; no subsequent detections have been reported towards any source. Additional observations of cyanopolyynes and other carbon-chain molecules towards TMC-1 have shown a log-linear trend between molecule size and column density, and in an effort to further explore the underlying chemical processes driving this trend, we have analysed Green Bank Telescope observations of HC9N and HC11N towards TMC-1. Although we find an HC9N column density consistent with previous values, HC11N is not detected and we derive an upper limit column density significantly below that reported in Bell et al. Using a state-of-the-art chemical model, we have investigated possible explanations of non-linearity in the column density trend. Despite updating the chemical model to better account for ion-dipole interactions, we are not able to explain the non-detection of HC11N, and we interpret this as evidence of previously unknown carbon-chain chemistry. We propose that cyclization reactions may be responsible for the depleted HC11N abundance, and that products of these cyclization reactions should be investigated as candidate interstellar molecules.
NASA Astrophysics Data System (ADS)
Zhang, Zaiqin; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua
2018-04-01
The influence of the applied axial magnetic field on the current density distribution in the arc column and electrodes is intensively studied. However, the previous results only provide a qualitative explanation, which cannot quantitatively explain a recent experimental data on anode current density. The objective of this paper is to quantitatively determine the current constriction subjected to an axial magnetic field in high-current vacuum arcs according to the recent experimental data. A magnetohydrodynamic model is adopted to describe the high current vacuum arcs. The vacuum arc is in a diffuse arc mode with an arc current ranged from 6 kArms to 14 kArms and an axial magnetic field ranged from 20 mT to 110 mT. By a comparison of the recent experimental work of current density distribution on the anode, the modelling results show that there are two types of current constriction. On one hand, the current on the cathode shows a constriction, and this constriction is termed as the cathode-constriction. On the other hand, the current constricts in the arc column region, and this constriction is termed as the column-constriction. The cathode boundary is of vital importance in a quantitative model. An improved cathode constriction boundary is proposed. Under the improved boundary, the simulation results are in good agreement with the recent experimental data on the anode current density distribution. It is demonstrated that the current density distribution at the anode is sensitive to that at the cathode, so that measurements of the anode current density can be used, in combination with the vacuum arc model, to infer the cathode current density distribution.
NASA Technical Reports Server (NTRS)
Vennes, Stephane; Dupuis, Jean; Bowyer, Stuart; Fontaine, Gilles; Wiercigroch, Alexandria; Jelinsky, Patrick; Wesemael, Francois; Malina, Roger
1994-01-01
The first comprehensive sky survey of the extreme ultraviolet (EUV) spectral range performed by the Extreme Ultraviolet Explorer (EUVE) has uncovered a handful of very bright sources at wavelengths longer than the He I 504 A photoionization edge. Among these objects are four white dwarfs with exceptionally low interstellar medium (ISM) column densities along the line of sight. Analysis of EUV photometry of the He-rich DO white dwarf MCT 0501-2858 and the H-rich DA white dwarf MCT 0455-2812 along one line of sight and of the DA white dwarfs HZ 43 and GD 153 near the north Galactic pole indicates that the overall minimum column density of the neutral material centered on the Sun is N(H I) = 0.5-1.0 x 10(exp 18)/sq cm. In the case of MCT 0501-2858, EUV photometric measurements provide a clear constraint to the effective temperature (60,000-70,000 K). Given these neutral hydrogen columns, the actual contribution to the density of neutral species from the immediate solar environment (the 'local fluff') would only cover a distance of approximately equals 2-3 pc (assuming an average density n(H I) = 0.1/cu cm) leaving these lines of sight almost entirely within the hot phase of the ISM. A preliminary examination of the complete EUVE long-wavelength survey indicates that these lines of sight are exceptional and set a minimum column density in the solar environment.
The puzzling spectrum of HD 94509. Sounding out the extremes of Be shell star spectral morphology
NASA Astrophysics Data System (ADS)
Cowley, C. R.; Przybilla, N.; Hubrig, S.
2015-06-01
Context. The spectral features of HD 94509 are highly unusual, adding an extreme to the zoo of Be and shell stars. The shell dominates the spectrum, showing lines typical for spectral types mid-A to early-F, while the presence of a late/mid B-type central star is indicated by photospheric hydrogen line wings and helium lines. Numerous metallic absorption lines have broad wings but taper to narrow cores. They cannot be fit by Voigt profiles. Aims: We describe and illustrate unusual spectral features of this star, and make rough calculations to estimate physical conditions and abundances in the shell. Furthermore, the central star is characterized. Methods: We assume mean conditions for the shell. An electron density estimate is made from the Inglis-Teller formula. Excitation temperatures and column densities for Fe i and Fe ii are derived from curves of growth. The neutral H column density is estimated from high Paschen members. The column densities are compared with calculations made with the photoionization code Cloudy. Atmospheric parameters of the central star are constrained employing non-LTE spectrum synthesis. Results: Overall chemical abundances are close to solar. Column densities of the dominant ions of several elements, as well as excitation temperatures and the mean electron density are well accounted for by a simple model. Several features, including the degree of ionization, are less well described. Conclusions: HD 94509 is a Be star with a stable shell, close to the terminal-age main sequence. The dynamical state of the shell and the unusually shaped, but symmetric line profiles, require a separate study.
Mini-columns for Conducting Breakthrough Experiments. Design and Construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, Timothy M.; Reimus, Paul William; Ware, Stuart Douglas
Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or K d values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.
A logNHI = 22.6 Damped Lyα Absorber in a Dark Gamma-Ray Burst: The Environment of GRB 050401
NASA Astrophysics Data System (ADS)
Watson, D.; Fynbo, J. P. U.; Ledoux, C.; Vreeswijk, P.; Hjorth, J.; Smette, A.; Andersen, A. C.; Aoki, K.; Augusteijn, T.; Beardmore, A. P.; Bersier, D.; Castro Cerón, J. M.; D'Avanzo, P.; Diaz-Fraile, D.; Gorosabel, J.; Hirst, P.; Jakobsson, P.; Jensen, B. L.; Kawai, N.; Kosugi, G.; Laursen, P.; Levan, A.; Masegosa, J.; Näränen, J.; Page, K. L.; Pedersen, K.; Pozanenko, A.; Reeves, J. N.; Rumyantsev, V.; Shahbaz, T.; Sharapov, D.; Sollerman, J.; Starling, R. L. C.; Tanvir, N.; Torstensson, K.; Wiersema, K.
2006-12-01
The optical afterglow spectrum of GRB 050401 (at z=2.8992+/-0.0004) shows the presence of a damped Lyα absorber (DLA), with logNHI=22.6+/-0.3. This is the highest column density ever observed in a DLA and is about 5 times larger than the strongest DLA detected so far in any QSO spectrum. From the optical spectrum, we also find a very large Zn column density, implying an abundance of [Zn/H]=-1.0+/-0.4. These large columns are supported by the early X-ray spectrum from Swift XRT, which shows a column density (in excess of Galactic) of logNH=22.21+0.06-0.08 assuming solar abundances (at z=2.9). The comparison of this X-ray column density, which is dominated by absorption due to α-chain elements, and the H I column density derived from the Lyα absorption line allows us to derive a metallicity for the absorbing matter of [α/H]=-0.4+/-0.3. The optical spectrum is reddened and can be well reproduced with a power law with SMC extinction, where AV=0.62+/-0.06. But the total optical extinction can also be constrained independent of the shape of the extinction curve: from the optical to X-ray spectral energy distribution, we find 0.5<~AV<~4.5. However, even this upper limit, independent of the shape of the extinction curve, is still well below the dust column that is inferred from the X-ray column density, i.e., AV=9.1+1.4-1.5. This discrepancy might be explained by a small dust content with high metallicity (low dust-to-metals ratio). ``Gray'' extinction cannot explain the discrepancy, since we are comparing the metallicity to a measurement of the total extinction (without reference to the reddening). Little dust with high metallicity may be produced by sublimation of dust grains or may naturally exist in systems younger than a few hundred megayears. Based in part on observations made at the European Southern Observatory, Paranal, Chile under program 075.D-0270, with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, with the Wide Field Camera (WFCAM) on the United Kingdom Infrared Telescope, which is operated by the Joint Astronomy Centre on behalf of the UK Particle Physics and Astronomy Research Council, and on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
NASA Technical Reports Server (NTRS)
Naumann, R. J.
1973-01-01
The proposed disposal of H2O from the shuttle fuel cell operation by ejecting it in vapor form through a supersonic nozzle at the rate of 100 lb/day has been investigated from the point of view of the possible interference to astronomical experiments. If the nozzle is located at the tail and directed along the shuttle longitudinal axis, the resulting column density will be less than 10 to th 12th power molecules/sq cm at viewing angles larger than 48 deg above the longitudinal axis. The molecules in the trail will diffuse rapidly. The column density contribution from molecules expelled on the previous orbit is 1.3 x 10 to the 8th power molecules/sq cm. This contribution diminishes by the inverse square root of the number of orbits since the molecules were expelled. The molecular backscatter from atmospheric molecules is also calculated. If the plume is directed into the flight path, the column density along a perpendicular is found to be 1.5 x 10 to the 11th power molecules/sq cm. The return flux is estimated to be of the order of 10 to the 12th power molecules/sq cm/sec at the stagnation point. With reasonable care in design of experiments to protect them from the backscatter flux of water molecules, the expulsion of 100 lb/day does not appear to create an insurmountable difficulty for the shuttle experiments.
NASA Technical Reports Server (NTRS)
Drummond, R. W., Jr.; Shepard, N. F., Jr.
1984-01-01
Solar cells perform two functions: waterproofing roof and generating electricity. Sections through horizontal and slanting joints show overlapping modules sealed by L-section rubber strips and side-by-side modules sealed by P-section strips. Water seeping through seals of slanting joints drains along channels. Rooftop photovoltaic array used watertight south facing roof, replacing shingles, tar, and gravel. Concept reduces cost of residential solar-cell array.
Li, Lifeng
2015-10-01
An efficient modal method for numerically modeling slanted lamellar gratings of isotropic dielectric or metallic media in conical mounting is presented. No restrictions are imposed on the slant angle and the length of the lamellae. The end surface of the lamellae can be arbitrary, subject to certain restrictions. An oblique coordinate system that is adapted to the slanted lamella sidewalls allows the most efficient way of representing and manipulating the electromagnetic fields. A translational coordinate system that is based on the oblique Cartesian coordinate system adapts to the end-surface profile of the lamellae, so that the latter can be handled simply and easily. Moreover, two matrix eigenvalue problems of size 2N × 2N, one for each fundamental polarization of the electromagnetic fields in the periodic lamellar structure, where N is the matrix truncation number, are derived to replace the 4N × 4N eigenvalue problem that has been used in the literature. The core idea leading to this success is the polarization decomposition of the electromagnetic fields inside the periodic lamellar region when the fields are expressed in the oblique translational coordinate system.
Assessment of ground effects on the propagation of aircraft noise: The T-38A flight experiment
NASA Technical Reports Server (NTRS)
Willshire, W. L., Jr.
1980-01-01
A flight experiment was conducted to investigate air to ground propagation of sound at gazing angles of incidence. A turbojet powered airplane was flown at altitudes ranging from 10 to 160 m over a 20-microphone array positioned over grass and concrete. The dependence of ground effects on frequency, incidence angle, and slant range was determined using two analysis methods. In one method, a microphone close to the flight path is compared to down range microphones. In the other method, comparisons are made between two microphones which were equidistant from the flight path but positioned over the two surfaces. In both methods, source directivity angle was the criterion by which portions of the microphone signals were compared. The ground effects were largest in the frequency range of 200 to 400 Hz and were found to be dependent on incidence angle and slant range. Ground effects measured for angles of incidence greater than 10 deg to 15 deg were near zero. Measured attenuation increased with increasing slant range for slant ranges less than 750 m. Theoretical predictions were found to be in good agreement with the major details of the measured results.
Conville, P S; Witebsky, F G
1998-06-01
The sodium chloride tolerance test is often used in the identification of rapidly growing mycobacteria, particularly for distinguishing between Mycobacterium abscessus and Mycobacterium chelonae. This test, however, is frequently unreliable for the identification of some species. In this study we examined the following variables: medium manufacturer, inoculum concentration, and atmosphere and temperature of incubation. Results show that reliability is improved if the test and control slants are inoculated with an organism suspension spectrophotometrically equal to a 1 McFarland standard. Slants should be incubated at 35 degrees C in ambient air and checked weekly for 4 weeks. Growth on control slants should be critically evaluated to determine the adequacy of the inoculum; colonies should number greater than 50. Salt-containing media should be examined carefully to detect pinpoint or tiny colonies, and colonies should number greater than 50 for a positive reaction. Concurrent use of a citrate slant may be helpful for distinguishing between M. abscessus and M. chelonae. Molecular methodologies are probably the most reliable means for the identification of rapidly growing mycobacteria and should be used, if possible, when unequivocal species identification is of particular importance.
Lp-estimates on diffusion processes
NASA Astrophysics Data System (ADS)
Yan, Litan; Zhu, Bei
2005-03-01
Let be a diffusion process on given by where B=(Bt)t[greater-or-equal, slanted]0 is a standard Brownian motion starting at zero and [mu],[sigma] are two continuous functions on , and [sigma](x)>0 if x[not equal to]0. For a nonnegative continuous function [phi] we define the functional by , t[greater-or-equal, slanted]0. Then under suitable conditions we establish the relationship between Lp-norm of sup0[less-than-or-equals, slant]t[less-than-or-equals, slant][tau]Xt and Lp-norm of J[tau] for all stopping times [tau]. In particular, for a Bessel process Z of dimension [delta]>0 starting at zero, we show that the inequalities hold for all 0
0, where Cp and cp are some positive constants depending only on p, and H[mu],h[mu] are the inverses of x|->(e2[mu]x-2[mu]x-1)/2[mu]2 and x|->(e-2[mu]x+2[mu]x-1)/2[mu]2 on (0,[infinity]), respectively.
Conville, Patricia S.; Witebsky, Frank G.
1998-01-01
The sodium chloride tolerance test is often used in the identification of rapidly growing mycobacteria, particularly for distinguishing between Mycobacterium abscessus and Mycobacterium chelonae. This test, however, is frequently unreliable for the identification of some species. In this study we examined the following variables: medium manufacturer, inoculum concentration, and atmosphere and temperature of incubation. Results show that reliability is improved if the test and control slants are inoculated with an organism suspension spectrophotometrically equal to a 1 McFarland standard. Slants should be incubated at 35°C in ambient air and checked weekly for 4 weeks. Growth on control slants should be critically evaluated to determine the adequacy of the inoculum; colonies should number greater than 50. Salt-containing media should be examined carefully to detect pinpoint or tiny colonies, and colonies should number greater than 50 for a positive reaction. Concurrent use of a citrate slant may be helpful for distinguishing between M. abscessus and M. chelonae. Molecular methodologies are probably the most reliable means for the identification of rapidly growing mycobacteria and should be used, if possible, when unequivocal species identification is of particular importance. PMID:9620376
Arakawa, Tsutomu; Ejima, Daisuke; Akuta, Teruo
2017-02-01
Local transient high protein concentration or high density condition can occur during processing of protein solutions. Typical examples are saturated binding of proteins during column chromatography and high protein concentration on the semi-permeable membrane during ultrafiltration. Both column chromatography and ultrafiltration are fundamental technologies, specially for production of pharmaceutical proteins. We summarize here our experiences related to such high concentration conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
VOLATILE-RICH CIRCUMSTELLAR GAS IN THE UNUSUAL 49 CETI DEBRIS DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberge, Aki; Grady, Carol A.; Welsh, Barry Y.
2014-11-20
We present Hubble Space Telescope Space Telescope Imaging Spectrograph far-UV spectra of the edge-on disk around 49 Ceti, one of the very few debris disks showing submillimeter CO emission. Many atomic absorption lines are present in the spectra, most of which arise from circumstellar gas lying along the line-of-sight to the central star. We determined the line-of-sight C I column density, estimated the total carbon column density, and set limits on the O I column density. Surprisingly, no line-of-sight CO absorption was seen. We discuss possible explanations for this non-detection, and present preliminary estimates of the carbon abundances in themore » line-of-sight gas. The C/Fe ratio is much greater than the solar value, suggesting that 49 Cet harbors a volatile-rich gas disk similar to that of β Pictoris.« less
Carbon X-ray absorption in the local ISM: fingerprints in X-ray Novae spectra
NASA Astrophysics Data System (ADS)
Gatuzz, Efraín; Ness, J.-U.; Gorczyca, T. W.; Hasoglu, M. F.; Kallman, Timothy R.; García, Javier A.
2018-06-01
We present a study of the C K-edge using high-resolution LETGS Chandra spectra of four novae during their super-soft-source (SSS) phase. We identified absorption lines due to C II Kα, C III Kα and C III Kβ resonances. We used these astronomical observations to perform a benchmarking of the atomic data, which involves wavelength shifts of the resonances and photoionization cross-sections. We used improved atomic data to estimate the C II and C III column densities. The absence of physical shifts for the absorption lines, the consistence of the column densities between multiple observations and the high temperature required for the SSS nova atmosphere modeling support our conclusion about an ISM origin of the respective absorption lines. Assuming a collisional ionization equilibrium plasma the maximum temperature derived from the ratio of C II/C III column densities of the absorbers correspond to Tmax < 3.05 × 104 K.
Analysis of interstellar fragmentation structure based on IRAS images
NASA Technical Reports Server (NTRS)
Scalo, John M.
1989-01-01
The goal of this project was to develop new tools for the analysis of the structure of densely sampled maps of interstellar star-forming regions. A particular emphasis was on the recognition and characterization of nested hierarchical structure and fractal irregularity, and their relation to the level of star formation activity. The panoramic IRAS images provided data with the required range in spatial scale, greater than a factor of 100, and in column density, greater than a factor of 50. In order to construct a densely sampled column density map of a cloud complex which is both self-gravitating and not (yet?) stirred up much by star formation, a column density image of the Taurus region has been constructed from IRAS data. The primary drawback to using the IRAS data for this purpose is that it contains no velocity information, and the possible importance of projection effects must be kept in mind.
Chimpanzees know that others make inferences
Schmelz, Martin; Call, Josep; Tomasello, Michael
2011-01-01
If chimpanzees are faced with two opaque boards on a table, in the context of searching for a single piece of food, they do not choose the board lying flat (because if food was under there it would not be lying flat) but, rather, they choose the slanted one— presumably inferring that some unperceived food underneath is causing the slant. Here we demonstrate that chimpanzees know that other chimpanzees in the same situation will make a similar inference. In a back-and-forth foraging game, when their competitor had chosen before them, chimpanzees tended to avoid the slanted board on the assumption that the competitor had already chosen it. Chimpanzees can determine the inferences that a conspecific is likely to make and then adjust their competitive strategies accordingly. PMID:21282649
Seeing mountains in mole hills: geographical-slant perception
NASA Technical Reports Server (NTRS)
Proffitt, D. R.; Creem, S. H.; Zosh, W. D.; Kaiser, M. K. (Principal Investigator)
2001-01-01
When observers face directly toward the incline of a hill, their awareness of the slant of the hill is greatly overestimated, but motoric estimates are much more accurate. The present study examined whether similar results would be found when observers were allowed to view the side of a hill. Observers viewed the cross-sections of hills in real (Experiment 1) and virtual (Experiment 2) environments and estimated the inclines with verbal estimates, by adjusting the cross-section of a disk, and by adjusting a board with their unseen hand to match the inclines. We found that the results for cross-section viewing replicated those found when observers directly face the incline. Even though the angles of hills are directly evident when viewed from the side, slant perceptions are still grossly overestimated.
Density Gradients in Chemistry Teaching
ERIC Educational Resources Information Center
Miller, P. J.
1972-01-01
Outlines experiments in which a density gradient might be used to advantage. A density gradient consists of a column of liquid, the composition and density of which varies along its length. The procedure can be used in analysis of solutions and mixtures and in density measures of solids. (Author/TS)
NASA Astrophysics Data System (ADS)
Keppens, Arno; Lambert, Jean-Christopher; Hubert, Daan; Verhoelst, Tijl; Granville, José; Ancellet, Gérard; Balis, Dimitris; Delcloo, Andy; Duflot, Valentin; Godin-Beekmann, Sophie; Koukouli, Marilisa; Leblanc, Thierry; Stavrakou, Trissevgeni; Steinbrecht, Wolfgang; Stübi, Réné; Thompson, Anne
2017-04-01
Monitoring of and research on air quality, stratospheric ozone and climate change require global and long-term observation of the vertical distribution of atmospheric ozone, at ever-improving resolution and accuracy. Global tropospheric and stratospheric ozone profile measurement capabilities from space have therefore improved substantially over the last decades. Being a part of the space segment of the Copernicus Atmosphere and Climate Services that is currently under implementation, the upcoming Sentinel-5 Precursor (S5P) mission with its imaging spectrometer TROPOMI (Tropospheric Monitoring Instrument) is dedicated to the measurement of nadir atmospheric radiance and solar irradiance in the UV-VIS-NIR-SWIR spectral range. Ozone profile and tropospheric ozone column data will be retrieved from these measurements by use of several complementary retrieval methods. The geophysical validation of the enhanced height-resolved ozone data products, as well as support to the continuous evolution of the associated retrieval algorithms, is a key objective of the CHEOPS-5P project, a contributor to the ESA-led S5P Validation Team (S5PVT). This work describes the principles and implementation of the CHEOPS-5P quality assessment (QA) and validation system. The QA/validation methodology relies on the analysis of S5P retrieval diagnostics and on comparisons of S5P data with reference ozone profile measurements. The latter are collected from ozonesonde, stratospheric lidar and tropospheric lidar stations performing network operation in the context of WMO's Global Atmosphere Watch, including the NDACC global and SHADOZ tropical networks. After adaptation of the Multi-TASTE versatile satellite validation environment currently operational in the context of ESA's CCI, EUMETSAT O3M-SAF, and CEOS and SPARC initiatives, a list of S5P data Quality Indicators (QI) will be derived from complementary investigations: (1) data content and information content studies of the S5P data retrievals; (2) traceable preparation of the S5P data and correlative measurements in view of data comparisons (co-location studies, unit and representation conversions, handling of smoothing and sampling issues, independent estimate of tropopause altitude, (sub-)column integration...), with associated error propagation; (3) data comparisons leading to statistical estimates of the systematic bias and random difference between S5P and reference network data as a function of latitude, their cycles, their long-term evolution, and their dependences on influence quantities (e.g., clouds, solar zenith angle, and slant column density); (4) and finally the assessment of compliance with user requirements as formulated, e.g., by Copernicus Atmosphere and Climate services and by GCOS.
Detection of an Optical Counterpart to the ALFALFA Ultra-compact High-velocity Cloud AGC 249525
NASA Astrophysics Data System (ADS)
Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth A. K.; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.
2017-03-01
We report on the detection at >98% confidence of an optical counterpart to AGC 249525, an ultra-compact high-velocity cloud (UCHVC) discovered by the Arecibo Legacy Fast ALFA survey blind neutral hydrogen survey. UCHVCs are compact, isolated H I clouds with properties consistent with their being nearby low-mass galaxies, but without identified counterparts in extant optical surveys. Analysis of the resolved stellar sources in deep g- and I-band imaging from the WIYN pODI camera reveals a clustering of possible red giant branch stars associated with AGC 249525 at a distance of 1.64 ± 0.45 Mpc. Matching our optical detection with the H I synthesis map of AGC 249525 from Adams et al. shows that the stellar overdensity is exactly coincident with the highest-density H I contour from that study. Combining our optical photometry and the H I properties of this object yields an absolute magnitude of -7.1≤slant {M}V≤slant -4.5, a stellar mass between 2.2+/- 0.6× {10}4 {M}⊙ and 3.6+/- 1.0× {10}5 {M}⊙ , and an H I to stellar mass ratio between 9 and 144. This object has stellar properties within the observed range of gas-poor ultra-faint dwarfs in the Local Group, but is gas-dominated.
GRB 111005A at z = 0.0133 and the Prospect of Establishing Long-Short GRB/GW Association
NASA Astrophysics Data System (ADS)
Wang, Yuan-Zhu; Huang, Yong-Jia; Liang, Yun-Feng; Li, Xiang; Jin, Zhi-Ping; Zhang, Fu-Wen; Zou, Yuan-Chuan; Fan, Yi-Zhong; Wei, Da-Ming
2017-12-01
GRB 111005A, a long-duration gamma-ray burst (GRB) that occurred within a metal-rich environment that lacks massive stars with {M}{ZAMS}≥slant 15 {M}⊙ , is not coincident with supernova emission down to a stringent limit and thus should be classified as a “long-short” GRB (lsGRB; also known as an SN-less long GRB or hybrid GRB), like GRB 060505 and GRB 060614. In this work, we show that in the neutron star merger model the non-detection of the optical/infrared emission of GRB 111005A requires sub-relativistic neutron-rich ejecta with a mass of ≤slant 0.01 {M}⊙ , which is (significantly) less massive than that of GRB 130603B, GRB 060614, GRB 050709, and GRB 170817A. The lsGRBs are found to have a high rate density and the neutron star merger origin model can be unambiguously tested by the joint observations of the second-generation gravitational-wave (GW) detectors and the full-sky gamma-ray monitors such as Fermi-GBM and the proposed GECAM. If no lsGRB/GW association is observed in the 2020s, alternative scenarios have to be systematically investigated. With the detailed environmental information achievable for the nearby events, a novel kind of merger or explosion origin may be identified.
NASA Astrophysics Data System (ADS)
Montague, James A.; Pinder, George F.; Gonyea, Jay V.; Hipko, Scott; Watts, Richard
2018-05-01
Magnetic resonance imaging is used to observe solute transport in a 40 cm long, 26 cm diameter sand column that contained a central core of low permeability silica surrounded by higher permeability well-sorted sand. Low concentrations (2.9 g/L) of Magnevist, a gadolinium based contrast agent, produce density driven convection within the column when it starts in an unstable state. The unstable state, for this experiment, exists when higher density contrast agent is present above the lower density water. We implement a numerical model in OpenFOAM to reproduce the observed fluid flow and transport from a density difference of 0.3%. The experimental results demonstrate the usefulness of magnetic resonance imaging in observing three-dimensional gravity-driven convective-dispersive transport behaviors in medium scale experiments.
Properties of Two-Variety Natural Luffa Sponge Columns as Potential Mattress Filling Materials
Chen, Yuxia; Zhang, Kaiting; Yuan, Fangcheng; Zhang, Tingting; Weng, Beibei; Wu, Shanshan; Huang, Aiyue; Su, Na; Guo, Yong
2018-01-01
Luffa sponge (LS) is a resourceful material with fibro-vascular reticulated structure and extremely high porosity, which make it a potential candidate for manufacturing light mattress. In this study, two types of LS columns, namely high-density (HD) and low-density (LD) columns, were investigated as materials for filling the mattress. The results showed that the compressive strength of HD LS columns was significantly greater than that of LD LS columns. However, the densification strains of the two types of LS column were both in the range of 0.6 to 0.7. Besides, HD LS columns separately pressed to the smooth plateau region and the initial densification region exhibited a partial recovery of instant height when they were unloaded, and then both of them showed no more than 4.2% of height recovery after being allowed to rest at a constant temperature and humidity for 24 h. In contrast, when LD LS columns were compressed to the smooth plateau region, the height recovery was less than 1.62% compared to when they were pressed to the initial densification region, and that was more than 15.62%. Similar to other plant fibers used as mattress fillers, the two types of LS columns also showed good water absorption capacity—both of them could absorb water from as much as 2.07 to 3.45 times their own weight. At the same time, the two types of LS columns also showed good water desorption. The water desorption ratio of HD and LD LS columns separately reached 76.86 and 91.44%, respectively, after being let rest at a constant temperature and humidity for 13 h. PMID:29614744
Mitigation of Liquefaction in Sandy Soils Using Stone Columns
NASA Astrophysics Data System (ADS)
Selcuk, Levent; Kayabalı, Kamil
2010-05-01
Soil liquefaction is one of the leading causes of earthquake-induced damage to structures. Soil improvement methods provide effective solutions to reduce the risk of soil liquefaction. Thus, soil ground treatments are applied using various techniques. However, except for a few ground treatment methods, they generally require a high cost and a lot of time. Especially in order to prevent the risk of soil liquefaction, stone columns conctructed by vibro-systems (vibro-compaction, vibro-replacement) are one of the traditional geotechnical methods. The construction of stone columns not only enhances the ability of clean sand to drain excess pore water during an earthquake, but also increases the relative density of the soil. Thus, this application prevents the development of the excess pore water pressure in sand during earthquakes and keeps the pore pressure ratio below a certain value. This paper presents the stone column methods used against soil liquefaction in detail. At this stage, (a) the performances of the stone columns were investigated in different spacing and diameters of columns during past earthquakes, (b) recent studies about design and field applications of stone columns were presented, and (c) a new design method considering the relative density of soil and the capacity of drenage of columns were explained in sandy soil. Furthermore, with this new method, earthquake performances of the stone columns constructed at different areas were investigated before the 1989 Loma Prieta and the 1994 Northbridge earthquakes, as case histories of field applications, and design charts were compiled for suitable spacing and diameters of stone columns with consideration to the different sandy soil parameters and earhquake conditions. Key Words: Soil improvement, stone column, excess pore water pressure
NASA Astrophysics Data System (ADS)
Liu, Teng; Zhang, Baocheng; Yuan, Yunbin; Li, Min
2018-01-01
Precise Point Positioning (PPP) is an absolute positioning technology mainly used in post data processing. With the continuously increasing demand for real-time high-precision applications in positioning, timing, retrieval of atmospheric parameters, etc., Real-Time PPP (RTPPP) and its applications have drawn more and more research attention in recent years. This study focuses on the models, algorithms and ionospheric applications of RTPPP on the basis of raw observations, in which high-precision slant ionospheric delays are estimated among others in real time. For this purpose, a robust processing strategy for multi-station RTPPP with raw observations has been proposed and realized, in which real-time data streams and State-Space-Representative (SSR) satellite orbit and clock corrections are used. With the RTPPP-derived slant ionospheric delays from a regional network, a real-time regional ionospheric Vertical Total Electron Content (VTEC) modeling method is proposed based on Adjusted Spherical Harmonic Functions and a Moving-Window Filter. SSR satellite orbit and clock corrections from different IGS analysis centers are evaluated. Ten globally distributed real-time stations are used to evaluate the positioning performances of the proposed RTPPP algorithms in both static and kinematic modes. RMS values of positioning errors in static/kinematic mode are 5.2/15.5, 4.7/17.4 and 12.8/46.6 mm, for north, east and up components, respectively. Real-time slant ionospheric delays from RTPPP are compared with those from the traditional Carrier-to-Code Leveling (CCL) method, in terms of function model, formal precision and between-receiver differences of short baseline. Results show that slant ionospheric delays from RTPPP are more precise and have a much better convergence performance than those from the CCL method in real-time processing. 30 real-time stations from the Asia-Pacific Reference Frame network are used to model the ionospheric VTECs over Australia in real time, with slant ionospheric delays from both RTPPP and CCL methods for comparison. RMS of the VTEC differences between RTPPP/CCL method and CODE final products is 0.91/1.09 TECU, and RMS of the VTEC differences between RTPPP and CCL methods is 0.67 TECU. Slant Total Electron Contents retrieved from different VTEC models are also validated with epoch-differenced Geometry-Free combinations of dual-frequency phase observations, and mean RMS values are 2.14, 2.33 and 2.07 TECU for RTPPP method, CCL method and CODE final products, respectively. This shows the superiority of RTPPP-derived slant ionospheric delays in real-time ionospheric VTEC modeling.
Wang, An-Tai; Deng, Li; Liu, Hong-Tao
2012-12-01
A new species of genus Hydra (Cnidaria: Hydrozoa: Hydridae), Hydra shenzhensis sp. nov. from Guangdong Province, China, is described and illustrated. Most polyps have five tentacles. Column length reaches 11 mm when relaxed. Buds do not acquire tentacles synchronously. Stenotele is broad and pyriform in shape, 1.2 times as long as its width. Holotrichous isorhiza is asymmetrical and slender (more than 2.7 times as long as its width), with transverse and slanting coils. Atrichous isorhiza is long, resembling a melon-seed in shape. Desmoneme is asymmetrically pyriform in shape. The new species, belonging to the vulgaris group, is dioecious; sexual reproduction was found to occur mostly during November and December under conditions of dense culture or food shortage. Two to thirteen testes, cone-like shape with papilla, formed beneath the tentacles. One to three ovaries, with an egg cup, milky white in color, formed on body column. Ninety percent of individuals developed only one ovum. On a mother polyp, a fertilized ovum developed an embryonic theca covering its surface. The embryotheca is brown, with a spine-like structure, covering a layer of transparent, membrane-like material. For phylogenetic analysis, the mitochondrial cytochrome oxidase subunit I gene (COI) of six hydra species collected from China was amplified by polymerase chain reaction (PCR) and sequenced. Morphological characters in combination with molecular evidence support the hydra described here as a new species.
NASA Astrophysics Data System (ADS)
Tan, Jonathan
We describe a research plan to develop and extend the mid-infrared (MIR) extinction mapping technique presented by Butler & Tan (2009), who studied Infrared Dark Clouds (IRDCs) using Spitzer Space Telescope Infrared Array Camera (IRAC) 8 micron images. This method has the ability to probe the detailed spatial structure of very high column density regions, i.e. the gas clouds thought to represent the initial conditions for massive star and star cluster formation. We will analyze the data Spitzer obtained at other wavelengths, i.e. the IRAC bands at 3.6, 4.5 and 5.8 microns, and the Multiband Imaging Photometer (MIPS) bands, especially at 24 microns. This will allow us to measure the dust extinction law across the MIR and search for evidence of dust grain evolution, e.g. grain growth and ice mantle formation, as a function of gas density and column density. We will also study the detailed structure of the extinction features, including individual cores that may form single stars or close binaries, especially focusing on those cores that may form massive stars. By studying independent dark cores in a given IRDC, we will be able to test if they have a common minimum observed intensity, which we will then attribute to the foreground. This is a new method that should allow us to more accurately map distant, high column density IRDCs, probing more extreme regimes of star formation. We will combine MIR extinction mapping, which works best at high column densities, with near- IR mapping based on 2MASS images of star fields, which is most useful at lower columns that probe the extended giant molecular cloud structure. This information is crucial to help understand the formation process of IRDCs, which may be the rate limiting step for global galactic star formation rates. We will use our new extinction mapping methods to analyze large samples of IRDCs and thus search the Galaxy for the most extreme examples of high column density cores and assess the global star formation efficiency in dense gas. We will estimate the ability of future NASA missions, such as JWST, to carry out MIR extinction mapping science. We will develop the results of this research into an E/PO presentation to be included in the various public outreach events organized and courses taught by the PI.
Cosmic distribution of highly ionized metals and their physical conditions in the EAGLE simulations
NASA Astrophysics Data System (ADS)
Rahmati, Alireza; Schaye, Joop; Crain, Robert A.; Oppenheimer, Benjamin D.; Schaller, Matthieu; Theuns, Tom
2016-06-01
We study the distribution and evolution of highly ionized intergalactic metals in the Evolution and Assembly of Galaxies and their Environment (EAGLE) cosmological, hydrodynamical simulations. EAGLE has been shown to reproduce a wide range of galaxy properties while its subgrid feedback was calibrated without considering gas properties. We compare the predictions for the column density distribution functions (CDDFs) and cosmic densities of Si IV, C IV, N V, O VI and Ne VIII absorbers with observations at redshift z = 0 to ˜6 and find reasonable agreement, although there are some differences. We show that the typical physical densities of the absorbing gas increase with column density and redshift, but decrease with the ionization energy of the absorbing ion. The typical metallicity increases with both column density and time. The fraction of collisionally ionized metal absorbers increases with time and ionization energy. While our results show little sensitivity to the presence or absence of AGN feedback, increasing/decreasing the efficiency of stellar feedback by a factor of 2 substantially decreases/increases the CDDFs and the cosmic densities of the metal ions. We show that the impact of the efficiency of stellar feedback on the CDDFs and cosmic densities is largely due to its effect on the metal production rate. However, the temperatures of the metal absorbers, particularly those of strong O VI, are directly sensitive to the strength of the feedback.
An analysis of OH excited state absorption lines in DR 21 and K3-50
NASA Astrophysics Data System (ADS)
Jones, K. N.; Doel, R. C.; Field, D.; Gray, M. D.; Walker, R. N. F.
1992-10-01
We present an analysis of the OH absorption line zones observed toward the compact H II regions DR 21 and K3-50. Using as parameters the kinetic and dust temperatures, the H2 number density and the ratio of OH-H2 number densities to the velocity gradient, the model quantitatively reproduces the absorption line data for the six main line transitions in 2 Pi3/2 J = 5/2, 7/2, and 9/2. Observed upper limits for the absorption or emission in the satellite lines of 2 Pi3/2 J = 5/2 are crucial in constraining the range of derived parameters. Physical conditions derived for DR 21 show that the kinetic temperature centers around 140 K, the H2 number density around 10 exp 7/cu cm, and that the OH column density in the excited state absorption zone lies between 1 x 10 exp 15/sq cm and 2 x 10 exp 15/sq cm. Including contributions from a J = 3/2 absorption zone, the total OH column density is more than a factor of 2 lower than estimates based upon LTE (Walmsley et al., 1986). The OH absorption zone in K3-50 tends toward higher density and displays a larger column density, while the kinetic temperature is similar. For both sources, the dust temperature is found to be significantly lower than the kinetic temperature.
Slant Path Low Visibility Atmospheric Conditions.
1980-09-01
precipitation rate ; humidity; aerosol concentration; Particle spectrum; local aeiosol inhomogeneities; air * -Q.!ZIBS’IRACT: A slant path for...test path , of a length over which infrared transmissometer measurements can be made that are in a magnitude range permitting accurate measurements under...and therefore do not accurately relate to absolute transmissivity. A path which is too long will result in transmission measurements which are very low
Characterizing the plasma of the Rotating Wall Machine
NASA Astrophysics Data System (ADS)
Hannum, David A.
The Rotating Wall Machine (RoWM) is a line-tied linear screw pinch built to study current-driven external kink modes. The plasma column is formed by an array of seven electrostatic washer guns which can also be biased to drive plasma current. The array allows independent control over the electron density ne and current density Jz profiles of the column. Internal measurements of the plasma have been made with singletip Langmuir and magnetic induction ("B-dot") probes for a range of bias currents (Ib = 0, 300, 500 A/gun). Streams from the individual guns are seen to merge at a distance of z ≈ 36 cm from the guns; the exact distance depends on the value of Ib. The density of the column is directly proportional to the Ohmic dissipation power, but the temperature stays at a low, uniform value (Te ≈ 3.5 eV) for each bias level. Electron densities are on the order of ne ˜10 20 m-3. The electron density expands radially (across the Bz guide field) as the plasma moves along the column, though the current density Jz mainly stays parallel to the field lines. The singletip Langmuir probe diagnostic is difficult to analyze for Ib = 500 A/gun plasmas and fails as Ib is raised beyond this level. Spectrographic analysis of the Halpha line indicates that the hydrogen plasmas are nearly fully ionized at each bias level. Azimuthal E x B rotation is axially and radially sheared; rotation slows as the plasma reaches the anode. Perpendicular diffusivity is consistent with the classical value, D⊥ ≈ 5 m2/sec, while parallel resistivity is seen to be twice the classical Spitzer value, 2 x 10-4 O m.
The interaction of ozone and nitrogen dioxide in the stratosphere of East Antarctica
NASA Astrophysics Data System (ADS)
Bruchkouski, Ilya; Krasouski, Aliaksandr; Dziomin, Victar; Svetashev, Alexander
2016-04-01
At the Russian Antarctic station "Progress" (S69°23´, E76°23´) simultaneous measurements of trace gases using the MARS-B (Multi-Axis Recorder of Spectra) instrument and PION-UV spectro-radiometer for the time period from 05.01.2014 to 28.02.2014 have been performed. Both instruments were located outdoors. The aim of the measurements was to retrieve the vertical distribution of ozone and nitrogen dioxide in the atmosphere and to study their variability during the period of measurements. The MARS-B instrument, developed at the National Ozone Monitoring Research and Education Centre of the Belarusian State University (NOMREC BSU), successfully passed the procedure of international inter-comparison campaign MAD-CAT 2013 in Mainz, Germany. The instrument is able to record the spectra of scattered sunlight at different elevation angles within a maximum aperture of 1.3°. 12 elevation angles have been used in this study, including the zenith direction. Approximately 7000 spectra per day were registered in the range of 403-486 nm, which were then processed by DOAS technique aiming to retrieve differential slant columns of ozone, nitrogen dioxide and oxygen dimer. Furthermore, total nitrogen dioxide column values have been retrieved employing the Libradtran radiative transfer model. The PION-UV spectro-radiometer, also developed at NOMREC BSU, is able to record the spectra of scattered sunlight from the hemisphere in the range of 280-430 nm. The registered spectra have been used to retrieve the total ozone column values employing the Stamnes method. In this study observational data from both instruments is presented and analyzed. Furthermore, by combining analysis of this data with model simulations it is shown that decreases in nitrogen dioxide content in the upper atmosphere can be associated with increases in total ozone column values and rising of the ozone layer upper boundary. Finally, the time delay between changes in nitrogen dioxide and ozone values is calculated from the observed time series, demonstrating that changes in nitrogen dioxide content cause subsequent changes in the ozone layer. Attempt to explain this phenomenon as influence upper atmosphere on ozone layer is under discussed.
NASA Technical Reports Server (NTRS)
Kruk, J. W.; Howk, J. C.; Andre, M.; Moos, H. W.; Oegerle, William R.; Oliveira, C.; Sembach, K. R.; Chayer, P.; Linsky, J. L.; Wood, B. E.
2002-01-01
We present an analysis of interstellar absorption along the line of sight to the nearby white dwarf star HZ43A. The distance to this star is 68+/-13 pc, and the line of sight extends toward the north Galactic pole. Column densities of O(I), N(I), and N(II) were derived from spectra obtained by the Far Ultraviolet Spectroscopic Explorer (FUSE), the column density of D(I) was derived from a combination of our FUSE spectra and an archival HST GARDENS spectrum, and the column density of H(I) was derived from a combination of the GARDENS spectrum and values derived from EUVE data obtained from the literature. We find the following abundance ratios (with 2 sigma uncertainties): D(I)/H(I)=(1.66+/-0.28)x10(exp -5), O(I)/H(I)=(3.63+/-0.84)x10(exp -4), and N(I)/H(I)=(3.80+/-0.74)x10(exp -5). The N(II) column density was slightly greater than that of N(I), indicating that ionization corrections are important when deriving nitrogen abundances. Other interstellar species detected along the line of sight were C(II), C(III), O(VI), Si(II), Ar(I), Mg(II) and Fe(II); an upper limit was determined for N(III). No elements other than H(I) were detected in the stellar photosphere.
Probing the local environment of the supernova remnant HESS J1731-347 with CO and CS observations
NASA Astrophysics Data System (ADS)
Maxted, N.; Burton, M.; Braiding, C.; Rowell, G.; Sano, H.; Voisin, F.; Capasso, M.; Pühlhofer, G.; Fukui, Y.
2018-02-01
The shell-type supernova remnant HESS J1731 - 347 emits TeV gamma-rays, and is a key object for the study of the cosmic ray acceleration potential of supernova remnants. We use 0.5-1 arcmin Mopra CO/CS(1-0) data in conjunction with H I data to calculate column densities towards the HESS J1731 - 347 region. We trace gas within at least four Galactic arms, typically tracing total (atomic+molecular) line-of-sight H column densities of 2-3× 1022 cm-2. Assuming standard X-factor values and that most of the H I/CO emission seen towards HESS J1731 - 347 is on the near-side of the Galaxy, X-ray absorption column densities are consistent with H I+CO-derived column densities foreground to, but not beyond, the Scutum-Crux Galactic arm, suggesting a kinematic distance of ˜3.2 kpc for HESS J1731 - 347. At this kinematic distance, we also find dense, infrared-dark gas traced by CS(1-0) emission coincident with the north of HESS J1731 - 347, the nearby H II region G353.43-0.37 and the nearby unidentified gamma-ray source HESS J1729 - 345. This dense gas lends weight to the idea that HESS J1729 - 345 and HESS J1731 - 347 are connected, perhaps via escaping cosmic-rays.
NASA Astrophysics Data System (ADS)
Broccardo, Stephen; Heue, Klaus-Peter; Walter, David; Meyer, Christian; Kokhanovsky, Alexander; van der A, Ronald; Piketh, Stuart; Langerman, Kristy; Platt, Ulrich
2018-05-01
Aircraft measurements of NO2 using an imaging differential optical absorption spectrometer (iDOAS) instrument over the South African Highveld region in August 2007 are presented and compared to satellite measurements from OMI and SCIAMACHY. In situ aerosol and trace-gas vertical profile measurements, along with aerosol optical thickness and single-scattering albedo measurements from the Aerosol Robotic Network (AERONET), are used to devise scenarios for a radiative transfer modelling sensitivity study. Uncertainty in the air-mass factor due to variations in the aerosol and NO2 profile shape is constrained and used to calculate vertical column densities (VCDs), which are compared to co-located satellite measurements. The lower spatial resolution of the satellites cannot resolve the detailed plume structures revealed in the aircraft measurements. The airborne DOAS in general measured steeper horizontal gradients and higher peak NO2 vertical column density. Aircraft measurements close to major sources, spatially averaged to the satellite resolution, indicate NO2 column densities more than twice those measured by the satellite. The agreement between the high-resolution aircraft instrument and the satellite instrument improves with distance from the source, this is attributed to horizontal and vertical dispersion of NO2 in the boundary layer. Despite the low spatial resolution, satellite images reveal point sources and plumes that retain their structure for several hundred kilometres downwind.
Retrieval of tropospheric HCHO in El Salvador using ground based DOAS
NASA Astrophysics Data System (ADS)
Abarca, W.; Gamez, K.; Rudamas, C.
2017-12-01
Formaldehyde (HCHO) is the most abundant carbonyl in the atmosphere, being an intermediate product in the oxidation of most volatile organic compounds (VOCs). HCHO is carcinogenic, and highly water soluble [1]. HCHO can originate from biomass burning and fossil fuel combustion and has been observed from satellite and ground-based sensors by using the Differential Optical Absorption Spectroscopy (DOAS) technique [2].DOAS products can be used for air quality monitoring, validation of chemical transport models, validation of satellite tropospheric column density retrievals, among others [3]. In this study, we report on column density levels of HCHO measured by ground based Multi-Axis -DOAS in different locations of El Salvador in March, 2015. We have not observed large differences of the HCHO column density values at different viewing directions. This result points out a reasonably polluted and hazy atmosphere in the measuring sites, as reported by other authors [4]. Average values ranging from 1016 to 1017 molecules / cm2 has been obtained. The contribution of vehicular traffic and biomass burning to the column density levels in these sites of El Salvador will be discussed. [1] A. R. Garcia et al., Atmos. Chem. Phys. 6, 4545 (2006) [2] E. Peters et al., Atmos. Chem. Phys. 12, 11179 (2012) [3] T. Vlemmix, et al. Atmos. Meas. Tech., 8, 941-963, 2015 [4] A. Heckel et al., Atmos. Chem. Phys. 5, (2005)
Hot and cold gas toward young stellar objects
NASA Technical Reports Server (NTRS)
Mitchell, George F.; Maillard, Jean-Pierre; Allen, Mark; Beer, Reinhard; Belcourt, Kenneth
1990-01-01
High-resolution M band spectra are presented for the seven embedded IR sources W3 IRS 5, S140 IRS1, NGC 7538 IRS 1, NGC 7538 IRS 9, GL 2136, LkH-alpha 101, and MWC 349A, and the data are combined with previously published work for W33A and GL 2591. Cold CO is seen toward all nine sources, with temperatures from 11 K to 66 K. Column densities of cold CO are presented. Hot gas is seen toward eight of the nine objects with temperatures from 120 K to 1010 K. New lower limits to the hot gas density are obtained. The hot gas toward GL 2591, GL 2136, W3 IRS 5, and S140 IRS 1 is probably very near the central source and heated via gas-grain collisions. The optical depth in the silicate feature is strongly correlated with the (C-13)O column density, confirming that silicate optical depth is a useful measure of gas column density. The ratio of solid-to-gaseous CO is obtained for seven sources.
Characteristic Structure of Star-forming Clouds
NASA Astrophysics Data System (ADS)
Myers, Philip C.
2015-06-01
This paper presents a new method to diagnose the star-forming potential of a molecular cloud region from the probability density function of its column density (N-pdf). This method provides expressions for the column density and mass profiles of a symmetric filament having the same N-pdf as a filamentary region. The central concentration of this characteristic filament can distinguish regions and can quantify their fertility for star formation. Profiles are calculated for N-pdfs which are pure lognormal, pure power law, or a combination. In relation to models of singular polytropic cylinders, characteristic filaments can be unbound, bound, or collapsing depending on their central concentration. Such filamentary models of the dynamical state of N-pdf gas are more relevant to star-forming regions than are spherical collapse models. The star formation fertility of a bound or collapsing filament is quantified by its mean mass accretion rate when in radial free fall. For a given mass per length, the fertility increases with the filament mean column density and with its initial concentration. In selected regions the fertility of their characteristic filaments increases with the level of star formation.
NASA Astrophysics Data System (ADS)
Tremblin, P.; Schneider, N.; Minier, V.; Didelon, P.; Hill, T.; Anderson, L. D.; Motte, F.; Zavagno, A.; André, Ph.; Arzoumanian, D.; Audit, E.; Benedettini, M.; Bontemps, S.; Csengeri, T.; Di Francesco, J.; Giannini, T.; Hennemann, M.; Nguyen Luong, Q.; Marston, A. P.; Peretto, N.; Rivera-Ingraham, A.; Russeil, D.; Rygl, K. L. J.; Spinoglio, L.; White, G. J.
2014-04-01
Aims: Ionization feedback should impact the probability distribution function (PDF) of the column density of cold dust around the ionized gas. We aim to quantify this effect and discuss its potential link to the core and initial mass function (CMF/IMF). Methods: We used Herschel column density maps of several regions observed within the HOBYS key program in a systematic way: M 16, the Rosette and Vela C molecular clouds, and the RCW 120 H ii region. We computed the PDFs in concentric disks around the main ionizing sources, determined their properties, and discuss the effect of ionization pressure on the distribution of the column density. Results: We fitted the column density PDFs of all clouds with two lognormal distributions, since they present a "double-peak" or an enlarged shape in the PDF. Our interpretation is that the lowest part of the column density distribution describes the turbulent molecular gas, while the second peak corresponds to a compression zone induced by the expansion of the ionized gas into the turbulent molecular cloud. Such a double peak is not visible for all clouds associated with ionization fronts, but it depends on the relative importance of ionization pressure and turbulent ram pressure. A power-law tail is present for higher column densities, which are generally ascribed to the effect of gravity. The condensations at the edge of the ionized gas have a steep compressed radial profile, sometimes recognizable in the flattening of the power-law tail. This could lead to an unambiguous criterion that is able to disentangle triggered star formation from pre-existing star formation. Conclusions: In the context of the gravo-turbulent scenario for the origin of the CMF/IMF, the double-peaked or enlarged shape of the PDF may affect the formation of objects at both the low-mass and the high-mass ends of the CMF/IMF. In particular, a broader PDF is required by the gravo-turbulent scenario to fit the IMF properly with a reasonable initial Mach number for the molecular cloud. Since other physical processes (e.g., the equation of state and the variations among the core properties) have already been said to broaden the PDF, the relative importance of the different effects remains an open question. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
A bio-inspired device for drag reduction on a three-dimensional model vehicle.
Kim, Dongri; Lee, Hoon; Yi, Wook; Choi, Haecheon
2016-03-10
In this paper, we introduce a bio-mimetic device for the reduction of the drag force on a three-dimensional model vehicle, the Ahmed body (Ahmed et al 1984 SAE Technical Paper 840300). The device, called automatic moving deflector (AMD), is designed inspired by the movement of secondary feathers on bird's wing suction surface: i.e., secondary feathers pop up when massive separation occurs on bird's wing suction surface at high angles of attack, which increases the lift force at landing. The AMD is applied to the rear slanted surface of the Ahmed body to control the flow separation there. The angle of the slanted surface considered is 25° at which the drag coefficient on the Ahmed body is highest. The wind tunnel experiment is conducted at Re H = 1.0 × 10(5)-3.8 × 10(5), based on the height of the Ahmed body (H) and the free-stream velocity (U ∞). Several AMDs of different sizes and materials are tested by measuring the drag force on the Ahmed body, and showed drag reductions up to 19%. The velocity and surface-pressure measurements show that AMD starts to pop up when the pressure in the thin gap between the slanted surface and AMD is much larger than that on the upper surface of AMD. We also derive an empirical formula that predicts the critical free-stream velocity at which AMD starts to operate. Finally, it is shown that the drag reduction by AMD is mainly attributed to a pressure recovery on the slanted surface by delaying the flow separation and suppressing the strength of the longitudinal vortices emanating from the lateral edges of the slanted surface.
NASA Astrophysics Data System (ADS)
Zhang, Zhao-Huang; Fei, Sun; Liang, Meng
2016-08-01
At present, disc cutters of a full face rock tunnel boring machine are mostly mounted in the traditional way. Practical use in engineering projects reveals that this installation method not only heavily affects the operation life of disc cutters, but also increases the energy consumption of a full face rock tunnel boring machine. To straighten out this issue, therefore, a rock-breaking model is developed for disc cutters' movement after the research on the rock breaking of forward-slanting disc cutters. Equations of its displacement are established based on the analysis of velocity vector of a disc cutter's rock-breaking point. The functional relations then are brought forward between the displacement parameters of a rock-breaking point and its coordinate through the analysis of micro displacement of a rock-breaking point. Thus, the geometric equations of rock deformation are derived for the forward-slanting installation of disc cutters. With a linear relationship remaining between the acting force and its deformation either before or after the leap breaking, the constitutive relation of rock deformation can be expressed in the form of generalized Hooke law, hence the comparative analysis of the variation in the resistance of rock to the disc cutters mounted in the forward-slanting way with that in the traditional way. It is discovered that with the same penetration, strain of the rock in contact with forward-slanting disc cutters is apparently on the decline, in other words, the resistance of rock to disc cutters is reduced. Thus wear of disc cutters resulted from friction is lowered and energy consumption is correspondingly decreased. It will be useful for the development of installation and design theory of disc cutters, and significant for the breakthrough in the design of full face rock tunnel boring machine.
Stanfield, Kellie; Rodgers, Shelly
2018-07-01
We content analyzed 1,473 newspaper editorials for topic, tone, and slant, and connected the results to community characteristic data: clean indoor air ordinance status for cities, and official smoking rates for counties. The analysis occurred during a multi-year project aimed at prompting communities to adopt clean indoor air policies. The results showed that most editorials were about tobacco restrictions or ordinances, were neutral in tone, and provided factual information about tobacco control. More editorials were negatively slanted vs. positively slanted toward tobacco control. Most editorials with positive tones were published in newspapers in towns that already had clean indoor air policies. We concluded that editorials might hold increased weight in spurring change, as the percentage of smokers in a city is unrelated to the town enacting a clean indoor air ordinance.
40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass
Code of Federal Regulations, 2011 CFR
2011-07-01
... Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column B: Carbon share(% of mass) Column C:Emission factor (metric tons CO2/bbl) Ethanol (100%) 0.1267 52.14 0.2422...
40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass
Code of Federal Regulations, 2013 CFR
2013-07-01
... Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column B: Carbon share(% of mass) Column C:Emission factor (metric tons CO2/bbl) Ethanol (100%) 0.1267 52.14 0.2422...
40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass
Code of Federal Regulations, 2014 CFR
2014-07-01
... Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column B: Carbon share(% of mass) Column C:Emission factor (metric tons CO2/bbl) Ethanol (100%) 0.1267 52.14 0.2422...
40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass
Code of Federal Regulations, 2012 CFR
2012-07-01
... Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column B: Carbon share(% of mass) Column C:Emission factor (metric tons CO2/bbl) Ethanol (100%) 0.1267 52.14 0.2422...
NASA Technical Reports Server (NTRS)
Moos, H. W.; Sembach, K. R.; Vidal-Madjar, A.; York, D. G.; Friedman, S. D.; Hebrard, G.; Kruk, J. W.; Lehner, N.; Lemoine, M.; Sonneborn, G.;
2002-01-01
Observations obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) have been used to determine the column densities of D I, O I, and N I along seven sight lines that probe the local interstellar medium (LISM) at distances from 37 pc to 179 pc. Five of the sight lines are within the Local Bubble and two penetrate the surrounding H I wall. Reliable values of N(H I) were determined for five of the sight lines from HST data, IUE data, and published EUVE measurements. The weighted mean of DI/H I for these five sight lines is (1.52 +/- 0.08) x l0(exp -5)(1 sigma uncertainty in the mean). It is likely that the D I/H I ratio in the Local Bubble has a single value. The D I/O I ratio for the five sight lines within the Local Bubble is (3.76 +/- 0.20) x 10(esp -2). It is likely that O I column densities can serve as a proxy for H I in the Local Bubble. The weighted mean for O I/ H I for the seven FUSE sight lines is (3.03 +/- 0.21) x 10(esp -4), comparable to the weighted mean (3.43 +/- 0.15) x 10(exp -4) reported for 13 sight lines probing larger distances and higher column densities. The FUSE weighted mean of N I/ H I for five sight lines is half that reported by Meyer et al. for seven sight lines with larger distances and higher column densities. This result combined with the variability of O I/ N I (six sight lines) indicates that at the low column densities found in the LISM, nitrogen ionization balance is important. Thus, unlike O I, N I cannot be used as a proxy for H I or as a metallicity indicator in the LISM.
NASA Technical Reports Server (NTRS)
Lemoine, M.; Vidal-Madjar, A.; Hebrard, G.; Desert, J.-M.; Ferlet, R.; LecavelierdesEtangs, A.; Howk, J. C.; Andre, M.; Blair, W. P.; Friedman, S. D.;
2002-01-01
High-resolution spectra of the hot white dwarf G191-B2B covering the wavelength region 905-1187A were obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). This data was used in conjunction with existing high-resolution Hubble Space Telescope STIS observations to evaluate the total H(sub I), D(sub I), O(sub I) and N(sub I) column densities along the line of sight. Previous determinations of N(D(sub I)) based upon GHRS (Goddard High Resolution Spectrograph) and STIS (Space Telescope Imaging Spectrograph) observations were controversial due to the saturated strength of the D(sub I) Lyman alpha line. In the present analysis the column density of D(sub I) has been measured using only the unsaturated Lyman beta and Lyman gamma lines observed by FUSE. A careful inspection of possible systematic uncertainties tied to the modeling of the stellar continuum or to the uncertainties in the FUSE instrumental character series has been performed. The column densities derived are: log N(D(sub I)) = 13.40+/-0.07, log N(O(sub I)) = 14.86+/-0.07, and log N(N(sub I)) = 13.87+/-0.07 quoted with 2sigma, uncertainties. The measurement of the H(sub I) column density by profile fitting of the Lyman alpha line has been found to be unsecure. If additional weak hot interstellar components are added to the three detected clouds along the line of sight, the H(sub I)) column density can be reduced quite significantly, even though the signal-to-noise ratio and spectral resolution at Lyman alpha are excellent. The new estimate of N(H(sub I)) toward G191-B2B reads: logN(H (sub I)) = 18.18+/-0.18 (2sigma uncertainty), so that the average (D/H) ratio on the line of sight is: (D/H)= 1.66(+0.9/-0.6) x 10(exp -5) (2sigma uncertainty).
NASA Astrophysics Data System (ADS)
Nelson, Dylan; Kauffmann, Guinevere; Pillepich, Annalisa; Genel, Shy; Springel, Volker; Pakmor, Rüdiger; Hernquist, Lars; Weinberger, Rainer; Torrey, Paul; Vogelsberger, Mark; Marinacci, Federico
2018-06-01
We explore the abundance, spatial distribution, and physical properties of the O VI, O VII, and O VIII ions of oxygen in circumgalactic and intergalactic media (the CGM, IGM, and WHIM). We use the TNG100 and TNG300 large volume cosmological magnetohydrodynamical simulations. Modelling the ionization states of simulated oxygen, we find good agreement with observations of the low-redshift O VI column density distribution function (CDDF), and present its evolution for all three ions from z = 0 to z = 4. Producing mock quasar absorption line spectral surveys, we show that the IllustrisTNG simulations are fully consistent with constraints on the O VI content of the CGM from COS-haloes and other low-redshift observations, producing columns as high as observed. We measure the total amount of mass and average column densities of each ion using hundreds of thousands of simulated galaxies spanning 10^{11} < {M}_halo/ M⊙<1015 corresponding to 109 < M⋆/ M⊙<1012 in stellar mass. Stacked radial profiles of O VI are computed in 3D number density and 2D projected column density, decomposing into 1-halo and 2-halo terms. Relating halo O VI to properties of the central galaxy, we find a correlation between the (g - r) colour of a galaxy and the total amount of O VI in its CGM. In comparison to the COS-Haloes finding, this leads to a dichotomy of columns around star-forming versus passive galaxies at fixed stellar (or halo) mass. We demonstrate that this correlation is a direct result of black hole feedback associated with quenching and represents a causal consequence of galactic-scale baryonic feedback impacting the physical state of the circumgalactic medium.
Slant Path Low Visibility Atmospheric Conditions.
1980-09-01
situation. a) An optical propagation slant test path , of a length over which infrared transmissometer measurements can be made that are in a magnitude...transmission measure - ments which are close to 100% and therefore do not accurately relate to absolute transmissivity. A path which is too long will result in...is available for measurement of backscatter cross section along the chosen transmissometer path . 3. Rough Cross Cut of the Works unde Contract in
Toroidal high-spin isomers in light nuclei with N ≠ Z
NASA Astrophysics Data System (ADS)
Staszczak, A.; Wong, Cheuk-Yin
2015-11-01
The combined considerations of both the bulk liquid-drop-type behavior and the quantized aligned rotation with cranked Skyrme-Hartree-Fock approach revealed previously (Staszczak and Wong 2014 Phys. Lett. B 738 401) that even-even, N = Z, toroidal high-spin isomeric states have general occurrences for light nuclei with 28≤slant A≤slant 52. We find that in this mass region there are in addition N\
Gaudez, Clarisse; Cail, François
2016-11-01
This study compared muscular and postural stresses, performance and subject preference in women aged 18-40 years using a standard mouse, a vertical mouse and a slanted mouse in three different computer workstation positions. Four tasks were analysed: pointing, pointing-clicking, pointing-clicking-dragging and grasping-pointing the mouse after typing. Flexor digitorum superficialis (FDS) and extensor carpi radialis (ECR) activities were greater using the standard mouse compared to the vertical or slanted mouse. In all cases, the wrist position remained in the comfort zone recommended by standard ISO 11228-3. The vertical mouse was less comfortable and more difficult to use than the other two mice. FDS and ECR activities, shoulder abduction and wrist extension were greater when the mouse was placed next to the keyboard. Performance and subject preference were better with the unrestricted mouse positioning on the desktop. Grasping the mouse after typing was the task that caused the greatest stress. Practitioner Summary: In women, the slanted mouse and the unrestricted mouse positioning on the desktop provide a good blend of stresses, performance and preference. Unrestricted mouse positioning requires no keyboard, which is rare in practice. Placing the mouse in front of the keyboard, rather than next to it, reduced the physical load.
Asymmetric valley-resolved beam splitting and incident modes in slanted graphene junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, S. H.; Chu, C. S.
2016-01-18
Electron injection into a graphene sheet through a slanted armchair graphene nanoribbon (AGNR) is investigated. An incident mode, or subband, in the AGNR is valley-unpolarized. Our attention is on the valley-resolved nature of the injected electron beams and its connection to the incident mode. It is known for a normal injection that an incident mode will split symmetrically into two valley-resolved beams of equal intensity. We show, in contrast, that slanted injections result in asymmetric valley-resolved beam splitting. The most asymmetric beam splitting cases, when one of the valley-resolved beams has basically disappeared, are found and the condition derived. Thismore » is shown not due to trigonal warping because it holds even in the low incident energy regime, as long as collimation allows. These most asymmetric beam splitting cases occur at energies within an energy interval near and include the subband edge of an incident mode. The physical picture is best illustrated by a projection of the slanted AGNR subband states onto that of the 2D graphene sheet. It follows that the disappearing of a valley-resolved beam coincides with the situation that the group velocities of the projected states in the corresponding valley are in backward directions.« less
Montague, James A; Pinder, George F; Gonyea, Jay V; Hipko, Scott; Watts, Richard
2018-05-01
Magnetic resonance imaging is used to observe solute transport in a 40cm long, 26cm diameter sand column that contained a central core of low permeability silica surrounded by higher permeability well-sorted sand. Low concentrations (2.9g/L) of Magnevist, a gadolinium based contrast agent, produce density driven convection within the column when it starts in an unstable state. The unstable state, for this experiment, exists when higher density contrast agent is present above the lower density water. We implement a numerical model in OpenFOAM to reproduce the observed fluid flow and transport from a density difference of 0.3%. The experimental results demonstrate the usefulness of magnetic resonance imaging in observing three-dimensional gravity-driven convective-dispersive transport behaviors in medium scale experiments. Copyright © 2017 Elsevier B.V. All rights reserved.
Suspension of Drops of a Liquid in a Column of Water.
ERIC Educational Resources Information Center
Ahmad, Jamil
1995-01-01
Describes a demonstration which creates the illusion of violating Archimedes Principle. The procedure involves two liquids with identical densities and produces drops of one liquid suspended in the middle of a column of the second liquid. (DDR)
Changes of Dust Opacity with Density in the Orion A Molecular Cloud
NASA Astrophysics Data System (ADS)
Roy, Arabindo; Martin, Peter G.; Polychroni, Danae; Bontemps, Sylvain; Abergel, Alain; André, Philippe; Arzoumanian, Doris; Di Francesco, James; Hill, Tracey; Konyves, Vera; Nguyen-Luong, Quang; Pezzuto, Stefano; Schneider, Nicola; Testi, Leonardo; White, Glenn
2013-01-01
We have studied the opacity of dust grains at submillimeter wavelengths by estimating the optical depth from imaging at 160, 250, 350, and 500 μm from the Herschel Gould Belt Survey and comparing this to a column density obtained from the Two Micron All Sky Survey derived color excess E(J - K s). Our main goal was to investigate the spatial variations of the opacity due to "big" grains over a variety of environmental conditions and thereby quantify how emission properties of the dust change with column (and volume) density. The central and southern areas of the Orion A molecular cloud examined here, with N H ranging from 1.5 × 1021 cm-2 to 50 × 1021 cm-2, are well suited to this approach. We fit the multi-frequency Herschel spectral energy distributions (SEDs) of each pixel with a modified blackbody to obtain the temperature, T, and optical depth, τ1200, at a fiducial frequency of 1200 GHz (250 μm). Using a calibration of N H/E(J - Ks ) for the interstellar medium (ISM) we obtained the opacity (dust emission cross-section per H nucleon), σe(1200), for every pixel. From a value ~1 × 10-25 cm2 H-1 at the lowest column densities that is typical of the high-latitude diffuse ISM, σe(1200) increases as N 0.28 H over the range studied. This is suggestive of grain evolution. Integrating the SEDs over frequency, we also calculated the specific power P (emission power per H) for the big grains. In low column density regions where dust clouds are optically thin to the interstellar radiation field (ISRF), P is typically 3.7 × 10-31 W H-1, again close to that in the high-latitude diffuse ISM. However, we find evidence for a decrease of P in high column density regions, which would be a natural outcome of attenuation of the ISRF that heats the grains, and for localized increases for dust illuminated by nearby stars or embedded protostars.
NASA Astrophysics Data System (ADS)
Thiele, Michael
1998-04-01
Recently, Park [1996] presented an analytical solution for stationary one-dimensional solute transport in a variable-density fluid flow through a vertical soil column. He used the widespread Bear-Scheidegger dispersion model describing solute mixing as a sum of molecular diffusion and velocity-proportional mechanical dispersion effects. His closed-form implicit concentration and pressure distributions thus allow for a discussion of the combined impact of molecular diffusion and mechanical dispersion in a variable-density environment. Whereas Park only considered the example of vanishing molecular diffusion in detail, both phenomena are taken into account simultaneously in the present study in order to elucidate their different influences on concentration distribution characteristics. The boundary value problem dealt with herein is based on an upward inflow of high-density fluid of constant solute concentration and corresponding outflow of a lower constant concentration fluid at the upper end of the column when dispersivity does not change along the flow path. The thickness of the transition zone between the two fluids appeared to strongly depend on the prevailing share of the molecular diffusion and mechanical dispersion mechanisms. The latter can be characterized by a molecular Peclet number Pe, which here is defined as the ratio of the column outflow velocity multiplied by a characteristic pore size and the molecular diffusion coefficient. For very small values of Pe, when molecular diffusion represents the exclusive mixing process, density differences have no impact on transition zone thicknesses. A relative density-;dependent thickness increases with flow velocities (increasing Pe values) very rapidly compared to the density-independent case, and after having passed a maximum decreases asymptotically to a constant value for the large Peclet number limit when mechanical dispersion is the only mixing mechanism. Hence the special transport problem analyzed gives further evidence for the importance of simultaneously considering molecular diffusion and mechanical dispersion in gravity-affected solute transport in porous media.
THE PHASE COHERENCE OF INTERSTELLAR DENSITY FLUCTUATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkhart, Blakesley; Lazarian, A.
2016-08-10
Studies of MHD turbulence often investigate the Fourier power spectrum to provide information on the nature of the turbulence cascade. However, the Fourier power spectrum only contains the Fourier amplitudes and rejects all information regarding the Fourier phases. Here, we investigate the utility of two statistical diagnostics for recovering information on Fourier phases in ISM column density maps: the averaged amplitudes of the bispectrum and the phase coherence index (PCI), a new phase technique for the ISM. We create three-dimensional density and two-dimensional column density maps using a set of simulations of isothermal ideal MHD turbulence with a wide rangemore » of sonic and Alfvénic Mach numbers. We find that the bispectrum averaged along different angles with respect to either the k {sub 1} or k {sub 2} axis is primarily sensitive to the sonic Mach number while averaging the bispectral amplitudes over different annuli is sensitive to both the sonic and Alfvénic Mach numbers. The PCI of density suggests that the most correlated phases occur in supersonic sub-Alfvénic turbulence and near the shock scale. This suggests that nonlinear interactions with correlated phases are strongest in shock-dominated regions, in agreement with findings from the solar wind. Our results suggest that the phase information contained in the bispectrum and PCI can be used to find the turbulence parameters in column density maps.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinmann, Amanda L.; Hruska, Carrie B.; Conners, Amy L.
Purpose: Molecular breast imaging (MBI) is a dedicated nuclear medicine breast imaging modality that employs dual-head cadmium zinc telluride (CZT) gamma cameras to functionally detect breast cancer. MBI has been shown to detect breast cancers otherwise occult on mammography and ultrasound. Currently, a MBI-guided biopsy system does not exist to biopsy such lesions. Our objective was to consider the utility of a novel conical slant-hole (CSH) collimator for rapid (<1 min) and accurate monitoring of lesion position to serve as part of a MBI-guided biopsy system. Methods: An initial CSH collimator design was derived from the dimensions of a parallel-holemore » collimator optimized for MBI performed with dual-head CZT gamma cameras. The parameters of the CSH collimator included the collimator height, cone slant angle, thickness of septa and cones of the collimator, and the annular areas exposed at the base of the cones. These parameters were varied within the geometric constraints of the MBI system to create several potential CSH collimator designs. The CSH collimator designs were evaluated using Monte Carlo simulations. The model included a breast compressed to a thickness of 6 cm with a 1-cm diameter lesion located 3 cm from the collimator face. The number of particles simulated was chosen to represent the count density of a low-dose, screening MBI study acquired with the parallel-hole collimator for 10 min after a {approx}150 MBq (4 mCi) injection of Tc-99m sestamibi. The same number of particles was used for the CSH collimator simulations. In the resulting simulated images, the count sensitivity, spatial resolution, and accuracy of the lesion depth determined from the lesion profile width were evaluated. Results: The CSH collimator design with default parameters derived from the optimal parallel-hole collimator provided 1-min images with error in the lesion depth estimation of 1.1 {+-} 0.7 mm and over 21 times the lesion count sensitivity relative to 1-min images acquired with the current parallel-hole collimator. Sensitivity was increased via more vertical cone slant angles, larger annular areas, thinner cone walls, shorter cone heights, and thinner radiating septa. Full width at half maximum trended in the opposite direction as sensitivity for all parameters. There was less error in the depth estimates for less vertical slant angles, smaller annular areas, thinner cone walls, cone heights near 1 cm, and generally thinner radiating septa. Conclusions: A Monte Carlo model was used to demonstrate the feasibility of a CSH collimator design for rapid biopsy application in molecular breast imaging. Specifically, lesion depth of a 1-cm diameter lesion positioned in the center of a typical breast can be estimated with error of less than 2 mm using circumferential count profiles of images acquired in 1 min.« less
Comparison of the far-infrared and carbon monoxide emission in Heiles' Cloud 2 and B18
NASA Technical Reports Server (NTRS)
Snell, Ronald L.; Schloerb, F. Peter; Heyer, Mark H.
1989-01-01
A comparison is made of the far-IR emission detected by IRAS at 60 and 100 microns and the emission from C(-13)O in B18 and Heiles' Cloud 2. The results show that both these clouds have extended emission at the studied wavelengths and that this emission is correlated with the integrated intensity of (C-13)O emission. The dust temperature and optical depth, the gas column density, the mass of gas and dust, and the far-IR luminosity are derived and presented. The analysis shows that the dust optical depth is much better correlated with the gas column density than with the far-IR intensity. The dust temperature is found to be anticorrelated with the gas column density, suggesting that these clouds are externally heated by the interstellar radiation field. The far-IR luminosity-to-mass ratios for the clouds are substantially less than the average for the inner Galaxy.
Medium-resolution far-ultraviolet spectroscopy of PKS 2155-304
NASA Technical Reports Server (NTRS)
Appenzeller, I.; Mandel, H.; Krautter, J.; Bowyer, S.; Hurwitz, M.; Grewing, M.; Kramer, G.; Kappelmann, N.
1995-01-01
Using the Berkeley spectrometer of the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) we observed the 87-117 nm UV spectrum of the BL Lac object PKS 2155-304 with about 0.5 A resolution. In addition to the expected interstellar lines we detected higher quantum number counterparts of the intergalactic Lyman alpha lines discovered earlier with IUE and the Hubble Space Telescope (HST) in the direction of PKS 2155-304. The Lyman discontinuities indicate for three of the redshifted clouds a combined H I column density of 2-5 x 10(exp 16)/sq cm, while the column density for another cloud appears to be well below 5 x 10(exp 15)/sq cm. No siginificant O VI absorption in the galactic halo toward PKS 2155-304 could be detected from our data. Assuming that saturation effects are negligible for these weak features, we obtain for the O VI column density toward PKS 2155-304 a 3 sigma upper limit of 2.7 x 10(exp 14)/sq cm.
NASA Astrophysics Data System (ADS)
Marini, C.; Agnello, R.; Duval, B. P.; Furno, I.; Howling, A. A.; Jacquier, R.; Karpushov, A. N.; Plyushchev, G.; Verhaegh, K.; Guittienne, Ph.; Fantz, U.; Wünderlich, D.; Béchu, S.; Simonin, A.
2017-03-01
A new generation of neutral beam systems will be required in future fusion reactors, such as DEMO, able to deliver high power (up to 50 MW) with high (800 keV or higher) neutral energy. Only negative ion beams may be able to attain this performance, which has encouraged a strong research focus on negative ion production from both surface and volumetric plasma sources. A novel helicon plasma source, based on the resonant birdcage network antenna configuration, is currently under study at the Swiss Plasma Centre before installation on the Cybele negative ion source at the Institute for Magnetic Fusion Research, CEA, Cadarache, France. This source is driven by up to 10 kW at 13.56 MHz, and is being tested on a linear resonant antenna ion device. Passive spectroscopic measurements of the first three Balmer lines α, β and γ and of the Fulcher-α bands were performed with an f/2 spectrometer, for both hydrogen and deuterium. Multiple viewing lines and an absolute intensity calibration were used to determine the plasma radiance profile, with a spatial resolution <3 mm. A minimum Fisher regularization algorithm was applied to obtain the absolute emissivity profile for each emission line for cylindrical symmetry, which was experimentally confirmed. An uncertainty estimate of the inverted profiles was performed using a Monte Carlo approach. Finally, a radiofrequency-compensated Langmuir probe was inserted to measured the electron temperature and density profiles. The absolute line emissivities are interpreted using the collisional-radiative code YACORA which estimates the degree of dissociation and the distribution of the atomic and molecular species, including the negative ion density. This paper reports the results of a power scan up to 5 kW in conditions satisfying Cybele requirements for the plasma source, namely a low neutral pressure, p≤slant 0.3 Pa and magnetic field B≤slant 150 G.
Electronic structure of Mo1-x Re x alloys studied through resonant photoemission spectroscopy
NASA Astrophysics Data System (ADS)
Sundar, Shyam; Banik, Soma; Sharath Chandra, L. S.; Chattopadhyay, M. K.; Ganguli, Tapas; Lodha, G. S.; Pandey, Sudhir K.; Phase, D. M.; Roy, S. B.
2016-08-01
We studied the electronic structure of Mo-rich Mo1-x Re x alloys (0≤slant x≤slant 0.4 ) using valence band photoemission spectroscopy in the photon energy range 23-70 eV and density of states calculations. Comparison of the photoemission spectra with the density of states calculations suggests that, with respect to the Fermi level E F, the d states lie mostly in the binding energy range 0 to -6 eV, whereas s states lie in the binding energy range -4 to -10 eV. We observed two resonances in the photoemission spectra of each sample, one at about 35 eV photon energy and the other at about 45 eV photon energy. Our analysis suggests that the resonance at 35 eV photon energy is related to the Mo 4p-5s transition and the resonance at 45 eV photon energy is related to the contribution from both the Mo 4p-4d transition (threshold: 42 eV) and the Re 5p-5d transition (threshold: 46 eV). In the constant initial state plot, the resonance at 35 eV incident photon energy for binding energy features in the range E F (BE = 0) to -5 eV becomes progressively less prominent with increasing Re concentration x and vanishes for x > 0.2. The difference plots obtained by subtracting the valence band photoemission spectrum of Mo from that of Mo1-x Re x alloys, measured at 47 eV photon energy, reveal that the Re d-like states appear near E F when Re is alloyed with Mo. These results indicate that interband s-d interaction, which is weak in Mo, increases with increasing x and influences the nature of the superconductivity in alloys with higher x.
Ionization of polarized 3He+ ions in EBIS trap with slanted electrostatic mirror.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikin,A.; Zelenski, A.; Kponou, A.
2007-09-10
Methods of producing the nuclear polarized {sup 3}He{sup +} ions and their ionization to {sup 3}H{sup ++} in ion trap of the electron Beam Ion Source (EBIS) are discussed. Computer simulations show that injection and accumulation of {sup 3}He{sup +} ions in the EBIS trap with slanted electrostatic mirror can be very effective for injection times longer than the ion traversal time through the trap.
Ionization of polarized {sup 3}He{sup +} ions in EBIS trap with slanted electrostatic mirror
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikin, A.; Zelenski, A.; Kponou, A.
2008-02-06
Methods of producing the nuclear polarized {sup 3}He{sup +} ions and their ionization to {sup 3}He{sup ++} in ion trap of the electron Beam Ion Source (EBIS) are discussed. Computer simulations show that injection and accumulation of {sup 3}He{sup +} ions in the EBIS trap with slanted electrostatic mirror can be very effective for injection times longer than the ion traversal time through the trap.
An Experimental Device for Real Time Determination of Slant Path Atmospheric Contrast Transmittance.
1982-03-01
copies ftom th Defense Technical Information Caster. AN others ioM apply to the National Technical Information Service. UNCLASSIFIED SECURITV...EXPERIMENTAL DEVICE FOR REAL TIME DETERMINATION OF SLANT PATH ATMOSPHERIC CONTRAST TRANSMITTANCE Richard W. Johnson 1. INTRODUCTION 2. BASIC CONCEPTS As...and z is an altitude parameter. primary optical channel uses a cosine corrected and PE- ASSIG SYSTM DEPIS1ttt STAGE I DSIN STAGEM Pgormiy TES
"Teaching" an Industrial Robot To Spray
NASA Technical Reports Server (NTRS)
Evans, A. R.; Sweet, G. K.
1982-01-01
Teaching device, consisting of spacer rod or tube with three-pointed tip and line level, is used during pattern "teach-in" to make sure that robot manipulator holds spray gun perpendicular to surface to be sprayed and at right distance from it. For slanted surfaces angle adapter is added between spacer rod and line-level indicator. Angle is determined by slope of surface to be sprayed, thus allowing a perpendicular spray pattern against even slanted surfaces.
Grey water treatment by the slanted soil system with unsorted soil media.
Ushijima, Ken; Tanaka, Erina; Suzuki, Laís Yuko; Hijikata, Nowaki; Funamizu, Naoyuki; Ito, Ryusei
2015-01-01
This study evaluated the performance of unsorted soil media in the slanted soil treatment system, in terms of removal efficiency in suspended solids (SS), chemical oxygen demand (COD), linear alkylbenzene sulphonate (LAS) and Escherichia coli, and lifetime until clogging occurs. Unsorted soil performed longer lifetime until clogging than sorted fine soil. Removal of SS, COD, and LAS also performed same or better level in unsorted soil than fine soil. As reaction coefficients of COD and LAS were described as a function of the hydraulic loading rate, we can design a slanted soil system according to the expected hydraulic loading rate and the targeted level of COD or LAS in effluent. Regarding bacteria removal, unsorted soil performed sufficient reduction of E. coli for 5 weeks; however, the removal process occurred throughout all four chambers, while that of fine soil occurred in one to two chambers.
Li, Zhi; Durgin, Frank H
2011-06-01
Palm boards are often used as a nonverbal measure in human slant perception studies. It was recently found that palm boards are biased and relatively insensitive measures, and that an unrestricted hand gesture provides a more sensitive response (Durgin, Hajnal, Li, Tonge, & Stigliani, Acta Psychologica, 134, 182-197, 2010a). In this article, we describe an original design for a portable lightweight digital device for measuring hand orientation. This device is microcontroller-based and uses a micro inclinometer chip as its inclination sensor. The parts are fairly inexpensive. This device, used to measure hand orientation, provides a sensitive nonverbal method for studying slant perception, which can be used in both indoor and outdoor environments. We present data comparing the use of a free hand to palm-board and verbal measures for surfaces within reach and explain how to interpret free-hand measures for outdoor hills.
The burden of secrecy? No effect on hill slant estimation and beanbag throwing.
Pecher, Diane; van Mierlo, Heleen; Cañal-Bruland, Rouwen; Zeelenberg, René
2015-08-01
Slepian, Masicampo, Toosi, and Ambady (2012, Experiment 1) reported that participants who recalled a big secret estimated a hill as steeper than participants who recalled a small secret. This finding was interpreted as evidence that secrets are experienced as physical burdens. In 2 experiments, we tried to replicate this finding, but, despite larger power, did not find a difference in slant estimates between participants who recalled a big secret and those who recalled a small secret. This finding was further corroborated by a meta-analysis that included 8 published data sets of exact replications, which indicates that thinking of a big secret does not affect hill slant estimation. In a third experiment, we also failed to replicate the effect of recalling a secret on throwing a beanbag at a target (Slepian et al., 2012, Experiment 2). Together, our findings question the robustness of the original empirical findings. (c) 2015 APA, all rights reserved).
An Optical Sensor for Measuring the Position and Slanting Direction of Flat Surfaces
Chen, Yu-Ta; Huang, Yen-Sheng; Liu, Chien-Sheng
2016-01-01
Automated optical inspection is a very important technique. For this reason, this study proposes an optical non-contact slanting surface measuring system. The essential features of the measurement system are obtained through simulations using the optical design software Zemax. The actual propagation of laser beams within the measurement system is traced by using a homogeneous transformation matrix (HTM), the skew-ray tracing method, and a first-order Taylor series expansion. Additionally, a complete mathematical model that describes the variations in light spots on photoelectric sensors and the corresponding changes in the sample orientation and distance was established. Finally, a laboratory prototype system was constructed on an optical bench to verify experimentally the proposed system. This measurement system can simultaneously detect the slanting angles (x, z) in the x and z directions of the sample and the distance (y) between the biconvex lens and the flat sample surface. PMID:27409619
An Optical Sensor for Measuring the Position and Slanting Direction of Flat Surfaces.
Chen, Yu-Ta; Huang, Yen-Sheng; Liu, Chien-Sheng
2016-07-09
Automated optical inspection is a very important technique. For this reason, this study proposes an optical non-contact slanting surface measuring system. The essential features of the measurement system are obtained through simulations using the optical design software Zemax. The actual propagation of laser beams within the measurement system is traced by using a homogeneous transformation matrix (HTM), the skew-ray tracing method, and a first-order Taylor series expansion. Additionally, a complete mathematical model that describes the variations in light spots on photoelectric sensors and the corresponding changes in the sample orientation and distance was established. Finally, a laboratory prototype system was constructed on an optical bench to verify experimentally the proposed system. This measurement system can simultaneously detect the slanting angles (x, z) in the x and z directions of the sample and the distance (y) between the biconvex lens and the flat sample surface.
Existence of Lipschitz selections of the Steiner map
NASA Astrophysics Data System (ADS)
Bednov, B. B.; Borodin, P. A.; Chesnokova, K. V.
2018-02-01
This paper is concerned with the problem of the existence of Lipschitz selections of the Steiner map {St}_n, which associates with n points of a Banach space X the set of their Steiner points. The answer to this problem depends on the geometric properties of the unit sphere S(X) of X, its dimension, and the number n. For n≥slant 4 general conditions are obtained on the space X under which {St}_n admits no Lipschitz selection. When X is finite dimensional it is shown that, if n≥slant 4 is even, the map {St}_n has a Lipschitz selection if and only if S(X) is a finite polytope; this is not true if n≥slant 3 is odd. For n=3 the (single-valued) map {St}_3 is shown to be Lipschitz continuous in any smooth strictly-convex two-dimensional space; this ceases to be true in three-dimensional spaces. Bibliography: 21 titles.
NASA Astrophysics Data System (ADS)
Xiang, Deliang; Su, Yi; Ban, Yifeng
2015-04-01
Since the buildings have complex geometries and may be misclassified as forests or mountains with volume scattering due to the significant cross-pol backscatter and lack reflection symmetry, especially the slant-oriented buildings, building area extraction is a challenging problem. In this paper, the time-frequency decomposition technique is adopted to acquire subaperture images, which correspond to the same scene responses under different azimuthal look angles. Stationarity detection approach with polarimetric G0 distribution is proposed to extract ortho-orientedbuildings and the circular polarization correlation coefficient is optimal in characterizing slant-oriented buildings. We test the aforementioned method using ESAR image with L-band. The results demonstrate that the proposed method can effectively extract both ortho-oriented and slant-oriented buildings and the overall detection accuracy as well as kappa value is 10%-20% higher than the compared methods.
Subpixel area-based evaluation for crosstalk suppression in quasi-three-dimensional displays.
Zhuang, Zhenfeng; Surman, Phil; Cheng, Qijia; Thibault, Simon; Zheng, Yuanjin; Sun, Xiao Wei
2017-07-01
A subpixel area-based evaluation method for an improved slanted lenticular film that minimizes the crosstalk in a quasi-three-dimensional (Q3D) display is proposed in this paper. To identify an optimal slant angle of the film, a subpixel area-based measurement is derived to evaluate the crosstalk among viewing regions of the intended subpixel and adjacent unintended subpixel by taking the real subpixel shape and black matrix into consideration. The subpixel mapping, which corresponds to the optimal slant angle of the film, can then be determined. Meanwhile, the viewing zone characteristics are analyzed to balance the light intensity in both right and left eye channels. A compact and portable Q3D system has been built and appropriate experiments have been applied. The results indicate that significant improvements in both crosstalk and resolution can be obtained with the proposed technique.
NASA Astrophysics Data System (ADS)
Rosas, Pedro; Wagemans, Johan; Ernst, Marc O.; Wichmann, Felix A.
2005-05-01
A number of models of depth-cue combination suggest that the final depth percept results from a weighted average of independent depth estimates based on the different cues available. The weight of each cue in such an average is thought to depend on the reliability of each cue. In principle, such a depth estimation could be statistically optimal in the sense of producing the minimum-variance unbiased estimator that can be constructed from the available information. Here we test such models by using visual and haptic depth information. Different texture types produce differences in slant-discrimination performance, thus providing a means for testing a reliability-sensitive cue-combination model with texture as one of the cues to slant. Our results show that the weights for the cues were generally sensitive to their reliability but fell short of statistically optimal combination - we find reliability-based reweighting but not statistically optimal cue combination.
Automated absolute phase retrieval in across-track interferometry
NASA Technical Reports Server (NTRS)
Madsen, Soren N.; Zebker, Howard A.
1992-01-01
Discussed is a key element in the processing of topographic radar maps acquired by the NASA/JPL airborne synthetic aperture radar configured as an across-track interferometer (TOPSAR). TOPSAR utilizes a single transmit and two receive antennas; the three-dimensional target location is determined by triangulation based on a known baseline and two measured slant ranges. The slant range difference is determined very accurately from the phase difference between the signals received by the two antennas. This phase is measured modulo 2pi, whereas it is the absolute phase which relates directly to the difference in slant range. It is shown that splitting the range bandwidth into two subbands in the processor and processing each individually allows for the absolute phase. The underlying principles and system errors which must be considered are discussed, together with the implementation and results from processing data acquired during the summer of 1991.
Zhu, Lei; Jacob, Daniel J.; Kim, Patrick S.; Fisher, Jenny A.; Yu, Karen; Travis, Katherine R.; Mickley, Loretta J.; Yantosca, Robert M.; Sulprizio, Melissa P.; De Smedt, Isabelle; Abad, Gonzalo Gonzalez; Chance, Kelly; Li, Can; Ferrare, Richard; Fried, Alan; Hair, Johnathan W.; Hanisco, Thomas F.; Richter, Dirk; Scarino, Amy Jo; Walega, James; Weibring, Petter; Wolfe, Glenn M.
2018-01-01
Formaldehyde (HCHO) column data from satellites are widely used as a proxy for emissions of volatile organic compounds (VOCs) but validation of the data has been extremely limited. Here we use highly accurate HCHO aircraft observations from the NASA SEAC4RS campaign over the Southeast US in August–September 2013 to validate and intercompare six retrievals of HCHO columns from four different satellite instruments (OMI, GOME2A, GOME2B and OMPS) and three different research groups. The GEOS-Chem chemical transport model is used as a common intercomparison platform. All retrievals feature a HCHO maximum over Arkansas and Louisiana, consistent with the aircraft observations and reflecting high emissions of biogenic isoprene. The retrievals are also interconsistent in their spatial variability over the Southeast US (r=0.4–0.8 on a 0.5°×0.5° grid) and in their day-to-day variability (r=0.5–0.8). However, all retrievals are biased low in the mean by 20–51%, which would lead to corresponding bias in estimates of isoprene emissions from the satellite data. The smallest bias is for OMI-BIRA, which has high corrected slant columns relative to the other retrievals and low scattering weights in its air mass factor (AMF) calculation. OMI-BIRA has systematic error in its assumed vertical HCHO shape profiles for the AMF calculation and correcting this would eliminate its bias relative to the SEAC4RS data. Our results support the use of satellite HCHO data as a quantitative proxy for isoprene emission after correction of the low mean bias. There is no evident pattern in the bias, suggesting that a uniform correction factor may be applied to the data until better understanding is achieved. PMID:29619044
The O VI Mystery: Mismatch between X-Ray and UV Column Densities
NASA Astrophysics Data System (ADS)
Mathur, S.; Nicastro, F.; Gupta, A.; Krongold, Y.; McLaughlin, B. M.; Brickhouse, N.; Pradhan, A.
2017-12-01
The UV spectra of Galactic and extragalactic sightlines often show O VI absorption lines at a range of redshifts, and from a variety of sources from the Galactic circumgalactic medium to active galactic nuclei (AGN) outflows. Inner shell O VI absorption is also observed in X-ray spectra (at λ =22.03 Å), but the column density inferred from the X-ray line was consistently larger than that from the UV line. Here we present a solution to this discrepancy for the z = 0 systems. The O II Kβ line {}4{S}0\\to {(}3D)3{p}4P at 562.40 eV (≡22.04 Å) is blended with the O VI Kα line in X-ray spectra. We estimate the strength of this O II line in two different ways, and show that in most cases the O II line accounts for the entire blended line. The small amount of O VI equivalent width present in some cases has column density entirely consistent with the UV value. This solution to the O VI discrepancy, however, does not apply to high column-density systems like AGN outflows. We discuss other possible causes to explain their UV/X-ray mismatch. The O VI and O II lines will be resolved by gratings on board the proposed mission Arcus and the concept mission Lynx, and would allow the detection of weak O VI lines not just at z = 0, but also at higher redshift.
NASA Technical Reports Server (NTRS)
Friedman, S. D.; Howk, J. C.; Chayer, P.; Tripp, T. M.; Hebrard, G.; Andre, M.; Oliveira, C.; Jenkins, E. B.; Moos, H. W.; Oegerle, William R.
2001-01-01
We present measurements of the column densities of interstellar D I and O I made with the Far Ultraviolet Spectroscopic Explorer (FUSE), and of H I made with the International Ultraviolet Explorer (IUE) toward the sdOB star Feige 110 [(l,b) = (74.09 deg., - 59.07 deg.); d = 179(sup +265, sub -67) pc; Z = -154(sup +57, Sub -227 pc). Our determination of the D I column density made use of curve of growth fitting and profile fitting analyses, while our O I column density determination used only curve of growth techniques. The H I column density was estimated by fitting the damping wings of the interstellar Ly(lpha) profile. We find log N(D I) = 15.47 +/- 0.06, log N(O I) = 16.73 +/- 0.10, and log N(H I) = 20.14(sup +0.13, sub -0.20) (all errors 2(sigma)). This implies D/H = (2.14 +/- 0.82) x 10(esp -5), D/O = (5.50(sup + 1.64, sub -133)) x 10(exp -2), and O/H = (3.89 +/- 1.67) x 10(exp -4). Taken with the FUSE results reported in companion papers and previous measurements of the local interstellar medium, this suggests the possibility of spatial variability in D/H for sight lines exceeding approx. 100 pc. This result may constrain models which characterize the mixing time and length scales of material in the local interstellar medium.
Inversion and Application of Muon Tomography Data for Cave Exploration in Budapest, Hungary
NASA Astrophysics Data System (ADS)
Molnár, Gábor; Surányi, Gergely; Gábor Barnaföldi, Gergely; Oláh, László; Hamar, Gergö; Varga, Dezsö
2016-04-01
In this contribution we present a prospecting muon-tomograph and its application for cave exploration in Budapest, Hungary. The more than 50 years old basic idea behind muon tomography is the ability of muon particles, generated in the upper atmosphere to penetrate tens of meters into rocks with continuous attenuation before decay. This enables us placing a detector in a tunnel and measure muon fluxes from different directions and convert these fluxes to rock density data. The lightweight, 51x46x32 cm3 size, muon tomograph containing 5 detector layers was developed by Wigner Research Centre for Physics, Budapest, Hungary. A muon passing at least 4 of the 5 detector layers along one line are classified as unique muon detection. Its angular resolution is approximately 1 degree and it is effective up to 50 degrees off zenith. During the measurement campaign we installed the muon detector at seventeen locations along an abandoned, likely Cold War air raid shelter tunnel for 10-15 days at each location, collecting large set of events. The measured fluxes are converted to apparent density lengths (multiplication of rock densities by along path lengths) using an empirically tested relationship. For inverting measurements, a 3D block model of the subsurface was developed. It consisted of cuboids, with equal horizontal size, equal number in every line and in every row of the model. Additionally it consisted of blocks with different heights, equal number of blocks in every column. (Block height was constant in a column, but varied from column to column.) The heights of the blocks in a column were chosen, that top face of the uppermost blocks has an elevation defined by a Digital Elevation Model. Initially the density of every model blocks was set to a realistic value. We calculated the theoretical density length for every detector location and for a subset of flux measurement directions. We also calculated the partial derivatives of these theoretical density length values with respect to the densities of every model block. This is the Jacobian of the problem and these values were proportional to the path length in the respective block. A regularized least squares solution returns the corrections of the densities of the blocks. If the corrected density of a block is significantly smaller than the typical rock density of the subsurface, the block is dedicated as a cave. According to our results a supposed cave exists some 7 meters above the tunnel. This work has been supported by the Lendület Program of the Hungarian Academy of Sciences (LP2013-60) and the OTKA NK-106119 grant. Gergely Gábor Barnaföld and Dezsö Varga thank for the support of the Bolyai Fellowship of the Hungarian Academy of Sciences.
Retrieval of NO2 stratospheric profiles from ground-based zenith-sky uv-visible measurements at 60°N
NASA Astrophysics Data System (ADS)
Hendrick, F.; van Roozendael, M.; Lambert, J.-C.; Fayt, C.; Hermans, C.; de Mazière, M.
2003-04-01
Nitrogen dioxide (NO_2) plays an important role in controlling ozone abundances in the stratosphere, either directly through the NOx (NO+NO_2) catalytic cycle, either indirectly by reaction with the radical ClO to form the reservoir species ClONO_2. In this presentation, NO_2 stratospheric profiles are retrieved from ground-based UV-visible NO_2 slant column abundances measured since 1998 at the complementary NDSC station of Harestua (Norway, 60^oN). The retrieval algorithm is based on the Rodgers optimal estimation inversion method and a forward model consisting in the IASB-BIRA stacked box photochemical model PSCBOX coupled to the radiative transfer package UVspec/DISORT. This algorithm has been applied to a set of about 50 sunrises and sunsets for which spatially and temporally coincident NO_2 measurements made by the HALOE (Halogen Occultation Experiment) instrument on board the Upper Atmosphere Research Satellite (UARS) are available. The consistency between retrieved and HALOE profiles is discussed in term of the different seasonal conditions investigated which are spring with and without chlorine activation, summer, and fall.
NASA Astrophysics Data System (ADS)
Bieging, John H.; Patel, Saahil; Peters, William L.; Toth, L. Viktor; Marton, Gábor; Zahorecz, Sarolta
2016-09-01
We present the results of a program to map the Sh2-235 molecular cloud complex in the CO and 13CO J = 2 - 1 transitions using the Heinrich Hertz Submillimeter Telescope. The map resolution is 38″ (FWHM), with an rms noise of 0.12 K brightness temperature, for a velocity resolution of 0.34 km s-1. With the same telescope, we also mapped the CO J = 3 - 2 line at a frequency of 345 GHz, using a 64 beam focal plane array of heterodyne mixers, achieving a typical rms noise of 0.5 K brightness temperature with a velocity resolution of 0.23 km s-1. The three spectral line data cubes are available for download. Much of the cloud appears to be slightly sub-thermally excited in the J = 3 level, except for in the vicinity of the warmest and highest column density areas, which are currently forming stars. Using the CO and 13CO J = 2 - 1 lines, we employ an LTE model to derive the gas column density over the entire mapped region. Examining a 125 pc2 region centered on the most active star formation in the vicinity of Sh2-235, we find that the young stellar object surface density scales as approximately the 1.6-power of the gas column density. The area distribution function of the gas is a steeply declining exponential function of gas column density. Comparison of the morphology of ionized and molecular gas suggests that the cloud is being substantially disrupted by expansion of the H II regions, which may be triggering current star formation.
Satellitesimal Formation via Collisional Dust Growth in Steady Circumplanetary Disks
NASA Astrophysics Data System (ADS)
Shibaike, Yuhito; Okuzumi, Satoshi; Sasaki, Takanori; Ida, Shigeru
2017-09-01
The icy satellites around Jupiter are considered to have formed in a circumplanetary disk. While previous models have focused on the formation of the satellites starting from satellitesimals, the question of how satellitesimals themselves form from smaller dust particles has not yet been addressed. In this work, we study the possibility that satellitesimals form in situ in a circumplanetary disk. We calculate the radial distribution of the surface density and representative size of icy dust particles that grow by colliding with each other and drift toward the central planet in a steady circumplanetary disk with a continuous supply of gas and dust from the parent protoplanetary disk. The radial drift barrier is overcome if the ratio of the dust-to-gas accretion rates onto the circumplanetary disk, {\\dot{M}}{{d}}/{\\dot{M}}{{g}}, is high and the strength of turbulence, α, is not too low. The collision velocity is lower than the critical velocity of fragmentation when α is low. Taken together, we find that the conditions for satellitesimal formation via dust coagulation are given by {\\dot{M}}{{d}}/{\\dot{M}}{{g}}≥slant 1 and {10}-4≤slant α < {10}-2. The former condition is generally difficult to achieve, suggesting that the in situ satellitesimal formation via particle sticking is viable only under extreme conditions. We also show that neither satellitesimal formation via the collisional growth of porous aggregates nor via streaming instability is viable as long as {\\dot{M}}{{d}}/{\\dot{M}}{{g}} is low.
NASA Astrophysics Data System (ADS)
Pal, Anil Kumar; Bharathi Mohan, D.
2017-10-01
Metal enhanced ultraviolet light emission has been explored in ZnO/Ag hybrid structures prepared by hydrothermal growth of multi-angled ZnO nanorods on slanted Ag nanorods array fabricated by the thermal evaporation technique. Slanted Ag nanorods are realized to be the stacking of non-spherical Ag nanoparticles, resulting in asymmetric surface plasmon resonance spectra. The surface roughness of Ag nanorod array films significantly influences the growth mechanism of ZnO nanorods, leading to the formation of multi-angled ZnO microflowers. ZnO/Ag hybrid structures facilitate the interfacial charge transfer from Ag to ZnO with the realization of negative shift in binding energy of Ag 3d orbitals by ˜0.8 eV. These high quality ZnO nanorods in ZnO/Ag hybrid nanostructures exhibit strong ultraviolet emission in the 383-396 nm region without broad deep level emission, which can be explained by a suitable band diagram. The metal enhanced photoluminescence is witnessed mainly due to interfacial charge transfer with its dependence on surface roughness of bottom layer Ag nanorods, number density of ZnO nanorods and diversity in the interfacial area between Ag and ZnO nanorods. The existence of strong ultraviolet light with minor blue light emission and appearance of CIE shade in strong violet-blue region by ZnO/Ag hybrid structures depict exciting possibilities towards near UV-blue light emitting devices.
Pal, Anil Kumar; Mohan, D Bharathi
2017-10-13
Metal enhanced ultraviolet light emission has been explored in ZnO/Ag hybrid structures prepared by hydrothermal growth of multi-angled ZnO nanorods on slanted Ag nanorods array fabricated by the thermal evaporation technique. Slanted Ag nanorods are realized to be the stacking of non-spherical Ag nanoparticles, resulting in asymmetric surface plasmon resonance spectra. The surface roughness of Ag nanorod array films significantly influences the growth mechanism of ZnO nanorods, leading to the formation of multi-angled ZnO microflowers. ZnO/Ag hybrid structures facilitate the interfacial charge transfer from Ag to ZnO with the realization of negative shift in binding energy of Ag 3d orbitals by ∼0.8 eV. These high quality ZnO nanorods in ZnO/Ag hybrid nanostructures exhibit strong ultraviolet emission in the 383-396 nm region without broad deep level emission, which can be explained by a suitable band diagram. The metal enhanced photoluminescence is witnessed mainly due to interfacial charge transfer with its dependence on surface roughness of bottom layer Ag nanorods, number density of ZnO nanorods and diversity in the interfacial area between Ag and ZnO nanorods. The existence of strong ultraviolet light with minor blue light emission and appearance of CIE shade in strong violet-blue region by ZnO/Ag hybrid structures depict exciting possibilities towards near UV-blue light emitting devices.
3D tomography of midlatitude sporadic-E in Japan from GNSS-TEC data
NASA Astrophysics Data System (ADS)
Muafiry, Ihsan Naufal; Heki, Kosuke; Maeda, Jun
2018-03-01
We studied ionospheric irregularities caused by midlatitude sporadic-E ( Es) in Japan using ionospheric total electron content (TEC) data from a dense GNSS array, GEONET, with a 3D (three-dimensional) tomography technique. Es is a thin layer of unusually high ionization that appears at altitudes of 100 km. Here, we studied five cases of Es irregularities in 2010 and 2012, also reported in previous studies, over the Kanto and Kyushu Districts. We used slant TEC residuals as the input and estimated the number of electron density anomalies of more than 2000 small blocks with dimensions of 20-30 km covering a horizontal region of 300 × 500 km. We applied a continuity constraint to stabilize the solution and performed several different resolution tests with synthetic data to assess the accuracy of the results. The tomography results showed that positive electron density anomalies occurred at the E region height, and the morphology and dynamics were consistent with those reported by earlier studies.
Dynamic Target Acquisition: Empirical Models of Operator Performance.
1980-08-01
for 30,000 Ft Initial Slant Range VARIABLES MEAN Signature X Scene Complexity Low Medium High Active Target FLIR 22794 20162 20449 Inactive Target...Interactions for 30,000 Ft Initial Slant Range I Signature X Scene Complexity V * ORDERED MEANS 14867 18076 18079 18315 19105 19643 20162 20449 22794...14867 18076 1 183159 19105* 1 19643 20162* 20449 * 1 22794Signature X Speed I ORDERED MEANS 13429 15226 16604 17344 19033 20586 22641 24033 24491 1
Li, Ming; Gao, Wenbo; Cvijetic, Milorad
2017-01-10
As a continuation of our previous work [Appl. Opt.54, 1453 (2015)APOPAI0003-693510.1364/AO.54.001453] in which we have studied the performance of coherent free space optical (FSO) communication systems operating over a horizontal path, in this paper we study the coherent FSO system operating over a general slant path. We evaluated system bit-error-rate (BER) in the case when the quadrature phase-shift keying (QPSK) modulation format is applied and when an adaptive optics (AO) system is employed to mitigate the air turbulence effects for both maritime and terrestrial air transmission scenarios. We adopted a multiple-layer scheme to efficiently model the FSO slant-path links. The atmospheric channel fading was characterized by the wavefront phase distortions and the log-amplitude fluctuations. We derived analytical expressions to characterize log-amplitude fluctuations of air turbulence by asserting the aperture averaging within the frame of the multiple-layer model. The obtained results showed that use of AO enabled improvement of system performance for both uplinks and downlinks, and also revealed that it is more beneficial for the FSO downlinks. Also, AO employment brought larger enhancements in BER performance for the maritime slant-path FSO links than for the terrestrial ones, with an additional striking increase in performance when the AO correction is combined with the aperture averaging.
Zhou, Jie; Ning, Xiaopeng; Nimbarte, Ashish D; Dai, Fei
2015-01-01
As a major risk factor of low back injury, sudden loading often occurs when performing manual material-handling tasks on uneven ground surfaces. Therefore, the purpose of the current study was to investigate the effects of a laterally slanted ground on trunk biomechanical responses during sudden loading events. Thirteen male subjects were subjected to suddenly released loads of 3.4 and 6.8 kg, while standing on a laterally slanted ground of 0°, 15° and 30°. The results showed that 8.3% and 5.6% larger peak L5/S1 joint compression forces were generated in the 30° condition compared with the 0° and 15° conditions, respectively. The increase of L5/S1 joint moment in the 30° condition was 8.5% and 5.0% greater than the 0° and 15° conditions, respectively. Findings of this study suggest that standing on a laterally slanted ground could increase mechanical loading on the spine when experiencing sudden loading. Practitioner Summary: Sudden loading is closely related to occupational low back injuries. The results of this study showed that the increase of slanted ground angle and magnitude of load significantly increase the mechanical loading on the spine during sudden loading. Therefore, both of these two components should be controlled in task design.
Depictions of substance use in reality television: a content analysis of The Osbournes.
Blair, Nicole A; Yue, So Kuen; Singh, Ranbir; Bernhardt, Jay M
2005-12-24
To determine the source and slant of messages in a reality television programme that may promote or inhibit health related or risky behaviours. Coding visual and verbal references to alcohol, tobacco, and other drug (ATOD) use in The Osbournes. Three reviewers watched all 10 episodes of the first season and coded incidents of substance use according to the substance used (alcohol, tobacco, or drugs), the way use was portrayed (visually or verbally), the source of the message (the character in the show involved in the incident), and the slant of the incident (endorsement or rejection). The variation in number of messages in an average episode, the slant of messages, and message source. The average number of messages per episode was 9.1 (range 2-17). Most drug use messages (15, 54%) implied rejection of drugs, but most alcohol messages (30, 64%) and tobacco messages (12, 75%) implied endorsements for using these substances. Most rejections (34, 94%) were conveyed verbally, but most endorsements (36, 65%) were conveyed visually. Messages varied in frequency and slant by source. The reality television show analysed in this study contains numerous messages on substance use that imply both rejection and endorsement of use. The juxtaposition of verbal rejection messages and visual endorsement messages, and the depiction of contradictory messages about substance use from show characters, may send mixed messages to viewers about substance use.
Rock deformation equations and application to the study on slantingly installed disc cutter
NASA Astrophysics Data System (ADS)
Zhang, Zhao-Huang; Meng, Liang; Sun, Fei
2014-08-01
At present the mechanical model of the interaction between a disc cutter and rock mainly concerns indentation experiment, linear cutting experiment and tunnel boring machine (TBM) on-site data. This is not in line with the actual rock-breaking movement of the disc cutter and impedes to some extent the research on the rock-breaking mechanism, wear mechanism and design theory. Therefore, our study focuses on the interaction between the slantingly installed disc cutter and rock, developing a model in accordance with the actual rock-breaking movement. Displacement equations are established through an analysis of the velocity vector at the rock-breaking point of the disc cutter blade; the functional relationship between the displacement parameters at the rock-breaking point and its rectangular coordinates is established through an analysis of micro-displacement vectors at the rock-breaking point, thus leading to the geometric equations of rock deformation caused by the slantingly installed disc cutter. Considering the basically linear relationship between the cutting force of disc cutters and the rock deformation before and after the leap break of rock, we express the constitutive relations of rock deformation as generalized Hooke's law and analyze the effect of the slanting installation angle of disc cutters on the rock-breaking force. This will, as we hope, make groundbreaking contributions to the development of the design theory and installation practice of TBM.
Visuomotor sensitivity to visual information about surface orientation.
Knill, David C; Kersten, Daniel
2004-03-01
We measured human visuomotor sensitivity to visual information about three-dimensional surface orientation by analyzing movements made to place an object on a slanted surface. We applied linear discriminant analysis to the kinematics of subjects' movements to surfaces with differing slants (angle away form the fronto-parallel) to derive visuomotor d's for discriminating surfaces differing in slant by 5 degrees. Subjects' visuomotor sensitivity to information about surface orientation was very high, with discrimination "thresholds" ranging from 2 to 3 degrees. In a first experiment, we found that subjects performed only slightly better using binocular cues alone than monocular texture cues and that they showed only weak evidence for combining the cues when both were available, suggesting that monocular cues can be just as effective in guiding motor behavior in depth as binocular cues. In a second experiment, we measured subjects' perceptual discrimination and visuomotor thresholds in equivalent stimulus conditions to decompose visuomotor sensitivity into perceptual and motor components. Subjects' visuomotor thresholds were found to be slightly greater than their perceptual thresholds for a range of memory delays, from 1 to 3 s. The data were consistent with a model in which perceptual noise increases with increasing delay between stimulus presentation and movement initiation, but motor noise remains constant. This result suggests that visuomotor and perceptual systems rely on the same visual estimates of surface slant for memory delays ranging from 1 to 3 s.
1st- and 2nd-order motion and texture resolution in central and peripheral vision
NASA Technical Reports Server (NTRS)
Solomon, J. A.; Sperling, G.
1995-01-01
STIMULI. The 1st-order stimuli are moving sine gratings. The 2nd-order stimuli are fields of static visual texture, whose contrasts are modulated by moving sine gratings. Neither the spatial slant (orientation) nor the direction of motion of these 2nd-order (microbalanced) stimuli can be detected by a Fourier analysis; they are invisible to Reichardt and motion-energy detectors. METHOD. For these dynamic stimuli, when presented both centrally and in an annular window extending from 8 to 10 deg in eccentricity, we measured the highest spatial frequency for which discrimination between +/- 45 deg texture slants and discrimination between opposite directions of motion were each possible. RESULTS. For sufficiently low spatial frequencies, slant and direction can be discriminated in both central and peripheral vision, for both 1st- and for 2nd-order stimuli. For both 1st- and 2nd-order stimuli, at both retinal locations, slant discrimination is possible at higher spatial frequencies than direction discrimination. For both 1st- and 2nd-order stimuli, motion resolution decreases 2-3 times more rapidly with eccentricity than does texture resolution. CONCLUSIONS. (1) 1st- and 2nd-order motion scale similarly with eccentricity. (2) 1st- and 2nd-order texture scale similarly with eccentricity. (3) The central/peripheral resolution fall-off is 2-3 times greater for motion than for texture.
SEPARATION OF OCTYLPHENOL POLYETHER ALCOHOLS SURFACTANTS BY CAPILLARY COLUMN AND HPLC
Separation of nonionic octylphenol polyether alcohols (OPA) by supercritical fluid chromatography (SFC) and HPLC is described. sing a density programming and a 50-pm i.d. capillary column, a total of 18 group oligomers was separated. he effects of the operating parameters, such a...
X-Ray Wind Tomography of IGR J17252-3616
NASA Astrophysics Data System (ADS)
Manousakis, Antonios; Walter, Roland
2010-07-01
IGR J17252-3616, a highly absorbed High Mass X-ray Binary (HMXB) with Hydrogen column density NH~(2-4)×1023 cm-2, has been observed with XMM-Newton for about one month. Observations were scheduled in order to cover the orbital-phase space as much as possible. IGR J17252-3616 shows a varying column density NH and Fe Kα line when fit with simple phenomenological models. A refined orbital solution can be derived. Spectral timing analysis allows derivation of the wind properties of the massive star.
Anomalous dimension in a two-species reaction-diffusion system
NASA Astrophysics Data System (ADS)
Vollmayr-Lee, Benjamin; Hanson, Jack; McIsaac, R. Scott; Hellerick, Joshua D.
2018-01-01
We study a two-species reaction-diffusion system with the reactions A+A\\to (0, A) and A+B\\to A , with general diffusion constants D A and D B . Previous studies showed that for dimensions d≤slant 2 the B particle density decays with a nontrivial, universal exponent that includes an anomalous dimension resulting from field renormalization. We demonstrate via renormalization group methods that the scaled B particle correlation function has a distinct anomalous dimension resulting in the asymptotic scaling \\tilde CBB(r, t) ˜ tφf(r/\\sqrt{t}) , where the exponent ϕ results from the renormalization of the square of the field associated with the B particles. We compute this exponent to first order in \
An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines
NASA Astrophysics Data System (ADS)
Korista, Kirk; Baldwin, Jack; Ferland, Gary; Verner, Dima
We present graphically the results of several thousand photoionization calculations of broad emission-line clouds in quasars, spanning 7 orders of magnitude in hydrogen ionizing flux and particle density. The equivalent widths of 42 quasar emission lines are presented as contours in the particle density-ionizing flux plane for a typical incident continuum shape, solar chemical abundances, and cloud column density of N(H) = 1023 cm-2. Results are similarly given for a small subset of emission lines for two other column densities (1022 and 1024 cm-2), five other incident continuum shapes, and a gas metallicity of 5 Z⊙. These graphs should prove useful in the analysis of quasar emission-line data and in the detailed modeling of quasar broad emission-line regions. The digital results of these emission-line grids and many more are available over the Internet.
González, F R; Pérez-Parajón, J; García-Domínguez, J A
2002-04-12
Gas-liquid chromatographic columns were prepared coating silica capillaries with poly(oxyethylene) polymers of different molecular mass distributions, in the range of low number-average molar masses, where the density still varies significantly. A novel, high-temperature, rapid evaporation method was developed and applied to the static coating of the low-molecular-mass stationary phases. The analysis of alkanes retention data from these columns reveals that the dependence of the partition coefficient with the solvent macroscopic density is mainly due to a variation of entropy. Enthalpies of solute transfer contribute poorly to the observed variations of retention. Since the alkanes solubility diminishes with the increasing solvent density, and this variation is weakly dependent with temperature, it is concluded that the decrease of free-volume in the liquid is responsible for this behavior.
Myers, Allison E; Southwell, Brian G; Ribisl, Kurt M; Moreland-Russell, Sarah; Lytle, Leslie A
2017-07-01
Tobacco control policies affecting the point of sale (POS) are an emerging intervention, yet POS-related news media content has not been studied. We describe news coverage of POS tobacco control efforts and assess relationships between article characteristics, including policy domains, frames, sources, localisation and evidence present, and slant towards tobacco control efforts. High circulation state (n=268) and national (n=5) newspapers comprised the sampling frame. We retrieved 917 relevant POS-focused articles in newspapers from 1 January 2007 to 31 December 2014. 5 raters screened and coded articles, 10% of articles were double coded, and mean inter-rater reliability (IRR) was 0.74. POS coverage emphasised tobacco retailer licensing (49.1% of articles) and the most common frame present was regulation (71.3%). Government officials (52.3%), followed by tobacco retailers (39.6%), were the most frequent sources. Half of articles (51.3%) had a mixed, neutral or antitobacco control slant. Articles presenting a health frame, a greater number of protobacco control sources, and statistical evidence were significantly more likely to also have a protobacco control slant. Articles presenting a political/rights or regulation frame, a greater number of antitobacco control sources, or government, tobacco industry, tobacco retailers, or tobacco users as sources were significantly less likely to also have a protobacco control slant. Stories that feature procontrol sources, research evidence and a health frame also tend to support tobacco control objectives. Future research should investigate how to use data, stories and localisation to encourage a protobacco control slant, and should test relationships between content characteristics and policy progression. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
The Ages of Passive Galaxies in a z = 1.62 Protocluster
NASA Astrophysics Data System (ADS)
Lee-Brown, Donald B.; Rudnick, Gregory H.; Momcheva, Ivelina G.; Papovich, Casey; Lotz, Jennifer M.; Tran, Kim-Vy H.; Henke, Brittany; Willmer, Christopher N. A.; Brammer, Gabriel B.; Brodwin, Mark; Dunlop, James; Farrah, Duncan
2017-07-01
We present a study of the relation between galaxy stellar age and mass for 14 members of the z = 1.62 protocluster IRC 0218, using multiband imaging and HST G102 and G141 grism spectroscopy. Using UVJ colors to separate galaxies into star-forming and quiescent populations, we find that, at stellar masses {M}* ≥slant {10}10.85 {M}⊙ , the quiescent fraction in the protocluster is {f}Q={1.0}-0.37+0.00, consistent with a ˜ 2× enhancement relative to the field value, {f}Q={0.45}-0.03+0.03. At masses {10}10.2 {M}⊙ ≤slant {M}* ≤slant {10}10.85 {M}⊙ , f Q in the cluster is {f}Q={0.40}-0.18+0.20, consistent with the field value of {f}Q={0.28}-0.02+0.02. Using galaxy {D}n(4000) values derived from the G102 spectroscopy, we find no relation between galaxy stellar age and mass. These results may reflect the impact of merger-driven mass redistribution—which is plausible, as this cluster is known to host many dry mergers. Alternately, they may imply that the trend in f Q in IRC 0218 was imprinted over a short timescale in the protocluster’s assembly history. Comparing our results with those of other high-redshift studies and studies of clusters at z˜ 1, we determine that our observed relation between f Q and stellar mass only mildly evolves between z˜ 1.6 and z˜ 1, and only at stellar masses {M}* ≤slant {10}10.85 {M}⊙ . Both the z˜ 1 and z˜ 1.6 results are in agreement that the red sequence in dense environments was already populated at high redshift, z≳ 3, placing constraints on the mechanism(s) responsible for quenching in dense environments at z≥slant 1.5.
Richardson, Stephen D.; Aitken, Michael D.
2011-01-01
The distribution and potential bioavailability of polycyclic aromatic hydrocarbons (PAHs) in soil from a former manufactured-gas plant (MGP) site were examined before and after long-term biostimulation under simulated in situ conditions. Treated soil was collected from the oxygenated zones of two continuous-flow columns, one subjected to biostimulation and the other serving as a control, and separated into low- and high-density fractions. In the original soil, over 50% of the total PAH mass was associated with lower-density particles, which comprised < 2% of the total soil mass. However, desorbable fractions of PAHs were much lower in the low-density material than in the high-density material. After over 500 d of biostimulation, significant removal of total PAHs occurred in both the high- and low-density materials (77% and 53%, respectively), with three- and four-ring PAHs accounting for the majority of the observed mass loss. Total PAHs that desorbed over a 28-d period were substantially lower in treated soil from the biostimulated column than in the original soil for both the high-density material (23 versus 63%) and low-density material (5 versus 20%). The fast-desorbing fractions quantified by a two-site desorption model ranged from 0.1 to 0.5 for most PAHs in the original soil but were essentially zero in the biostimulated soil. The fast-desorbing fractions in the original soil underestimated the extent of PAH biodegradation observed in the biostimulated column, and thus was not a good predictor of PAH bioavailability after long-term, simulated in situ biostimulation. PMID:21932296
STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, Tomoaki; Dobashi, Kazuhito; Shimoikura, Tomomi, E-mail: matsu@hosei.ac.jp
2015-03-10
Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence ismore » weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.« less
Evaluating the precision of passive sampling methods using PRCs in the water column.
To assess these models, four different thicknesses of low-density polyethylene (LDPE) passive samplers were co-deployed for 28 days in the water column at three sites in New Bedford Harbor, MA, USA. Each sampler was pre-loaded with six PCB performance reference compounds (PRCs) t...
SEPARATION OF T-MAZ ETHOXYLATED SORBITAN FATTY ACID ESTERS BY SUPERCRITICAL FLUID CHROMATOGRAPHY
The application of supercritical fluid chromatography (SFC) to the analysis of T-MAZ ethoxylated sorbitan fatty acid esters is described. FC separation methods utilize a density programming technique and a 50 um I.D. capillary column. his work demonstrates that capillary column S...
SEPARATION OF OCTYLPHENOL POLYETHER ALCOHOLS SURFACTANTS BY CAPILLARY COLUMN SFC AND HPLC
Separation of nonionic octylphenol polyether alcohols (OPA) by supercritical fluid chromatography (SFC) and HPLC is described. Using a density programming and a 50-μm i.d. capillary column, a total of 18 group oligomers was separated. The effects of the operating parameters, such...
Structure and stability in TMC-1: Analysis of NH3 molecular line and Herschel continuum data
NASA Astrophysics Data System (ADS)
Fehér, O.; Tóth, L. V.; Ward-Thompson, D.; Kirk, J.; Kraus, A.; Pelkonen, V.-M.; Pintér, S.; Zahorecz, S.
2016-05-01
Aims: We examined the velocity, density, and temperature structure of Taurus molecular cloud-1 (TMC-1), a filamentary cloud in a nearby quiescent star forming area, to understand its morphology and evolution. Methods: We observed high signal-to-noise (S/N), high velocity resolution NH3(1,1), and (2, 2) emission on an extended map. By fitting multiple hyperfine-split line profiles to the NH3(1, 1) spectra, we derived the velocity distribution of the line components and calculated gas parameters on several positions. Herschel SPIRE far-infrared continuum observations were reduced and used to calculate the physical parameters of the Planck Galactic Cold Clumps (PGCCs) in the region, including the two in TMC-1. The morphology of TMC-1 was investigated with several types of clustering methods in the parameter space consisting of position, velocity, and column density. Results: Our Herschel-based column density map shows a main ridge with two local maxima and a separated peak to the south-west. The H2 column densities and dust colour temperatures are in the range of 0.5-3.3 × 1022 cm-2 and 10.5-12 K, respectively. The NH3 column densities and H2 volume densities are in the range of 2.8-14.2 × 1014 cm-2 and 0.4-2.8 × 104 cm-3. Kinetic temperatures are typically very low with a minimum of 9 K at the maximum NH3 and H2 column density region. The kinetic temperature maximum was found at the protostar IRAS 04381+2540 with a value of 13.7 K. The kinetic temperatures vary similarly to the colour temperatures in spite of the fact that densities are lower than the critical density for coupling between the gas and dust phase. The k-means clustering method separated four sub-filaments in TMC-1 with masses of 32.5, 19.6, 28.9, and 45.9 M⊙ and low turbulent velocity dispersion in the range of 0.13-0.2 km s-1. Conclusions: The main ridge of TMC-1 is composed of four sub-filaments that are close to gravitational equilibrium. We label these TMC-1F1 through F4. The sub-filaments TMC-1F1, TMC-1F2, and TMC-1F4 are very elongated, dense, and cold. TMC-1F3 is a little less elongated and somewhat warmer, and probably heated by the Class I protostar, IRAS 04381+2540, which is embedded in it. TMC-1F3 is approximately 0.1 pc behind TMC1-F1. Because of its structure, TMC-1 is a good target to test filament evolution scenarios.
The Mass and Absorption Columns of Galactic Gaseous Halos
NASA Astrophysics Data System (ADS)
Qu, Zhijie; Bregman, Joel N.
2018-01-01
The gaseous halo surrounding the galaxy is a reservoir for the gas on the galaxy disk, supplying materials for the star formation. We developed a gaseous halo model connecting the galactic disk and the gaseous halo by assuming the star formation rate is equal to the radiative cooling rate. Besides the single-phase collisional gaseous halo, we also consider the photoionization effect and a time-independent cooling model that assumes the mass cooling rate is constant over all temperatures. The photoionization dominates the low mass galaxy and the outskirts of the massive galaxy due to the low-temperature or low-density nature. The multi-phase cooling model dominates the denser region within the cooling radius, where the efficient radiative cooling must be included. Applying these two improvements, our model can reproduce the most of observed high ionization state ions (i.e., O VI, O VII, Ne VIII and Mg X). Our models show that the O VI column density is almost a constant of around 10^14 cm^-2 over a wide stellar mass from M_\\star ~10^8 M_Sun to 10^11 M_Sun, which is constant with current observations. This model also implies the O VI is photoionized for the galaxy with a halo mass <~ 3 * 10^11 M_Sun, while for more massive galaxies, the O VI is from the cooling-down medium from higher temperature materials (collisional ionized). As higher ionization states, Mg X and Ne VIII are also consistent with observations with the column density of 10^13.5 - 10^14.0 cm^-2, however, the absorber-galaxy pair sample is few to constrain the connection with the galaxy. Based on our calculation, such a gaseous halo cannot close the census of baryonic materials in the galaxy, which shows the same tendency as the baryonic fraction function of the EAGLE simulation. Finally, our model predicts plateaus of the Ne VIII and the Mg X column densities above the sub-L^* galaxy, and the possibly detectable O VII and O VIII column densities for low-mass galaxies, which help to determine the required detection limit for the future observations and missions.
NASA Astrophysics Data System (ADS)
Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi
2017-06-01
Carbon chains in the warm carbon chain chemistry (WCCC) region has been searched in the 42-44 GHz region by using Green Bank 100 m telescope. Long carbon chains C_{7}H, C_{6}H, CH_{3}CCCCH, and linear-C_{6}H_{2} and cyclic species C_{3}H and C_{3}H_{2}O have been detected in the low-mass star forming region L1527, performing the WCCC. C_{7}H was detected for the first time in molecular clouds. The column density of C_{7}H is derived to be 6.2 × 10^{10} cm^{-2} by using the detected J = 24.5-23.5 and 25.5-24.5 rotational lines. The ^{2}Π_{1/2} electronic state of C_{6}H, locating 21.6 K above the ^{2}Π_{3/2} electronic ground state, and the K_a = 0 line of the para species of linear-C_{6}H_{2} were also detected firstly in molecular clouds. The column densities of the ^{2}Π_{1/2} and ^{2}Π_{3/2} states of C_{6}H in L1527 were derived to be 1.6 × 10^{11} and 1.1 × 10^{12} cm^{-2}, respectively. The total column density of linear-C_{6}H_{2} is obtained to be 1.86 × 10^{11} cm^{-2}. While the abundance ratios of carbon chains in between L1527 and the starless dark cloud Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP) have a trend of decrease by extension of carbon-chain length, column densities of CH_{3}CCCCH and C_{6}H are on the trend. However, the column densities of linear-C_{6}H_{2}, and C_{7}H are as abundant as those of TMC-1 CP in spite of long carbon chain, i.e., they are not on the trend. The abundances of linear-C_{6}H_{2} and C_{7}H show that L1527 is rich for long carbon chains as well as TMC-1 CP.
The absorption spectrum of the QSO PKS 2126-158 (z_em =3.27) at high resolution
NASA Astrophysics Data System (ADS)
D'Odorico, V.; Cristiani, S.; D'Odorico, S.; Fontana, A.; Giallongo, E.
1998-01-01
Spectra of the z_em = 3.268 quasar PKS 2126-158 have been obtained in the range lambda lambda 4300-6620 Angstroms with a resolution Rsmallimeq27000 and an average signal-to-noise ratio s/nsmallimeq 25 per resolution element. The list of the identified absorption lines is given together with their fitted column densities and Doppler widths. The modal value of the Doppler parameter distribution for the Lyalpha lines is smallimeq 25 km s(-1) . The column density distribution can be described by a power-law dn / dN ~ N(-beta ) with beta smallimeq 1.5. 12 metal systems have been identified, two of which were previously unknown. In order to make the column densities of the intervening systems compatible with realistic assumptions about the cloud sizes and the silicon to carbon overabundance, it is necessary to assume a jump beyond the He II edge in the spectrum of the UV ionizing background at z smallim 3 a factor 10 larger than the standard predictions for the integrated quasar contribution. An enlarged sample of C IV absorptions (71 doublets) has been used to analyze the statistical properties of this class of absorbers strictly related to galaxies. The column density distribution is well described by a single power-law, with beta =1.64 and the Doppler parameter distribution shows a modal value b_CIV smallimeq 14 km s(-1) . The two point correlation function has been computed in the velocity space for the individual components of C IV features. A significant signal is obtained for scales smaller than 200- 300 km s(-1) , xi (30< Delta v < 90 km\\ s(-1) ) = 33 +/- 3. A trend of decreasing clustering amplitude with decreasing column density is apparent, analogously to what has been observed for Lyalpha lines. Based on observations collected at the European Southern Observatory, La Silla, Chile (ESO No. 2-013-49K). Table 2 is only available in electronic from via anonymous ftp 130.79.128.5 or http://cdsweb.u-strasbg.fr/Abstract.html
First detection of hydrogen in the β Pictoris gas disk
NASA Astrophysics Data System (ADS)
Wilson, P. A.; Lecavelier des Etangs, A.; Vidal-Madjar, A.; Bourrier, V.; Hébrard, G.; Kiefer, F.; Beust, H.; Ferlet, R.; Lagrange, A.-M.
2017-03-01
The young and nearby star β Pictoris (β Pic) is surrounded by a debris disk composed of dust and gas known to host a myriad evaporating exocomets, planetesimals and at least one planet. At an edge-on inclination, as seen from Earth, this system is ideal for debris disk studies providing an excellent opportunity to use absorption spectroscopy to study the planet forming environment. Using the Cosmic Origins Spectrograph (COS) instrument on the Hubble Space Telescope (HST) we observe the most abundant element in the disk, hydrogen, through the H I Lyman α (Ly-α) line. We present a new technique to decrease the contamination of the Ly-α line by geocoronal airglow in COS spectra. This Airglow Virtual Motion (AVM) technique allows us to shift the Ly-α line of the astrophysical target away from the contaminating airglow emission revealing more of the astrophysical line profile. This new AVM technique, together with subtraction of an airglow emission map, allows us to analyse the shape of the β Pic Ly-α emission line profile and from it, calculate the column density of neutral hydrogen surrounding β Pic. The column density of hydrogen in the β Pic stable gas disk at the stellar radial velocity is measured to be log (NH/ 1 cm2) ≪ 18.5. The Ly-α emission line profile is found to be asymmetric and we propose that this is caused by H I falling in towards the star with a bulk radial velocity of 41 ± 6 km s-1 relative to β Pic and a column density of log (NH/ 1 cm2) = 18.6 ± 0.1. The high column density of hydrogen relative to the hydrogen content of CI chondrite meteorites indicates that the bulk of the hydrogen gas does not come from the dust in the disk. This column density reveals a hydrogen abundance much lower than solar, which excludes the possibility that the detected hydrogen could be a remnant of the protoplanetary disk or gas expelled by the star. We hypothesise that the hydrogen gas observed falling towards the star arises from the dissociation of water originating from evaporating exocomets.
Regional model-based computerized ionospheric tomography using GPS measurements: IONOLAB-CIT
NASA Astrophysics Data System (ADS)
Tuna, Hakan; Arikan, Orhan; Arikan, Feza
2015-10-01
Three-dimensional imaging of the electron density distribution in the ionosphere is a crucial task for investigating the ionospheric effects. Dual-frequency Global Positioning System (GPS) satellite signals can be used to estimate the slant total electron content (STEC) along the propagation path between a GPS satellite and ground-based receiver station. However, the estimated GPS-STEC is very sparse and highly nonuniformly distributed for obtaining reliable 3-D electron density distributions derived from the measurements alone. Standard tomographic reconstruction techniques are not accurate or reliable enough to represent the full complexity of variable ionosphere. On the other hand, model-based electron density distributions are produced according to the general trends of ionosphere, and these distributions do not agree with measurements, especially for geomagnetically active hours. In this study, a regional 3-D electron density distribution reconstruction method, namely, IONOLAB-CIT, is proposed to assimilate GPS-STEC into physical ionospheric models. The proposed method is based on an iterative optimization framework that tracks the deviations from the ionospheric model in terms of F2 layer critical frequency and maximum ionization height resulting from the comparison of International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model-generated STEC and GPS-STEC. The suggested tomography algorithm is applied successfully for the reconstruction of electron density profiles over Turkey, during quiet and disturbed hours of ionosphere using Turkish National Permanent GPS Network.
Internal waves interacting with particles in suspension
NASA Astrophysics Data System (ADS)
Micard, Diane
2016-04-01
Internal waves are produced as a consequence of the dynamic balance between buoy- ancy and gravity forces when a particle of fluid is vertically displaced in a stable stratified environment. Geophysical systems such as ocean and atmosphere are naturally stratified and therefore suitable for internal waves to propagate. Furthermore, these two environ- ments stock a vast amount of particles in suspension, which present a large spectrum of physical properties (size, density, shape), and can be organic, mineral or pollutant agents. Therefore, it is reasonable to expect that internal waves will have an active effect over the dynamics of these particles. In order to study the interaction of internal waves and suspended particles, an ide- alized experimental setup has been implemented. A linear stratification is produced in a 80×40×17 cm3 tank, in which two dimensional plane waves are created thanks to the inno- vative wave generator GOAL. In addition, a particle injector has been developed to produce a vertical column of particles within the fluid, displaying the same two-dimensional sym- metry as the waves. The particle injector allows to control the volumic fraction of particles and the size of the column. The presence of internal waves passing through the column of particles allowed to observe two main effects: The column oscillates around an equilibrium position (which is observed in both, the contours an the interior of the column), and the column is displaced as a whole. The column is displaced depending on the characteristics of the column, the gradient of the density, and the intensity and frequency of the wave. When displaced, the particles within the column are sucked towards the source of waves. The direction of the displacement of the column is explained by computing the effect of the Lagrangian drift generated by the wave over the time the particles stay in the wave beam before settling.
Computation of Discrete Slanted Hole Film Cooling Flow Using the Navier-Stokes Equations.
1982-07-01
7 -121 796 COMPUTATION OF DISCRETE SLANTED HOLE FILM COOLING FLOW i/ i USING THE NAVIER- ..(U) CIENTIFIC RESEARCH ASSOCIATES INC GLASTONBURY CT H...V U U6-IMSA P/ & .OS,-TR. 82-1004 Report R82-910002-4 / COMPUTATION OF DISCRETE SLAMED HOLE FILM COOLING FLOW ( USING THE XAVIER-STOKES EQUATIONS H...CL SIT %GE (f.en Dae Entere)04 REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM REPORT NUMBER 2. GOVT ACCESSION NO] S. RECIPIENT’S CATALOG NUMBERAO
Media Agenda-Setting and Personal Influences in the Promotion of National Issues.
1983-01-01
thesis. Also, I am thankful to Mrs. Barbara McCook who helped with the con- tent analysis. Further thanks are due to my wonderful parents . I am grateful to...judging the basic slant of the news forming media agendas. Also, rela- tionships between media and public agendas will be most ap- parent with...slant * for each story was able to be interpreted (Appendix A). At the conclusion of a coder training session, a pretest invol - ving 28 editions of the
Huffman, Lester H.; Knoke, Gerald S.
1985-08-20
A method of hydraulically mining an underground pitched mineral vein comprising drilling a vertical borehole through the earth's lithosphere into the vein and drilling a slant borehole along the footwall of the vein to intersect the vertical borehole. Material is removed from the mineral vein by directing a high pressure water jet thereagainst. The resulting slurry of mineral fragments and water flows along the slant borehole into the lower end of the vertical borehole from where it is pumped upwardly through the vertical borehole to the surface.
Galactic interstellar abundance surveys with IUE and IRAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Steenberg, M.E.
1987-01-01
This thesis is a survey of interstellar densities, abundances, and cloud structure in the Galaxy, using two NASA satellites: the International Ultraviolet Explorer (IUE) and Infrared Astronomical Satellite (IRAS). From IUE high-resolution spectra, the author measured equivalent widths of 18 ultraviolet resonance transitions and derived column densities for Si/sup +/, Mn/sup +/, Fe/sup +/, S/sup +/, and Zn/sup +/ toward 261 early-type stars. From the IRAS all-sky survey he also measured the infrared cirrus flux. He examined the variations of the measured parameters with spectral type, E(B-V), galactic longitude and latitude, distance from the Sun, and mean density. The hydrogen-columnmore » densities, metal-column densities, and gas-to-dust ratio are in good agreement with Copernicus surveys. The derived interstellar abundances yield mean logarithmic depletions. These depletions correlate with mean density but not with the physical density derived from Copernicus H/sub 2/ rotational states. Abundance ratios indicate a larger Fe halo abundance compared to Si, Mn, S, or Zn, which may result from selective grain processing in shocks or from Type I supernovae.« less
Smooth H I Low Column Density Outskirts in Nearby Galaxies
NASA Astrophysics Data System (ADS)
Ianjamasimanana, R.; Walter, Fabian; de Blok, W. J. G.; Heald, George H.; Brinks, Elias
2018-06-01
The low column density gas at the outskirts of galaxies as traced by the 21 cm hydrogen line emission (H I) represents the interface between galaxies and the intergalactic medium, i.e., where galaxies are believed to get their supply of gas to fuel future episodes of star formation. Photoionization models predict a break in the radial profiles of H I at a column density of ∼5 × 1019 cm‑2 due to the lack of self-shielding against extragalactic ionizing photons. To investigate the prevalence of such breaks in galactic disks and to characterize what determines the potential edge of the H I disks, we study the azimuthally averaged H I column density profiles of 17 nearby galaxies from the H I Nearby Galaxy Survey and supplemented in two cases with published Hydrogen Accretion in LOcal GAlaxieS data. To detect potential faint H I emission that would otherwise be undetected using conventional moment map analysis, we line up individual profiles to the same reference velocity and average them azimuthally to derive stacked radial profiles. To do so, we use model velocity fields created from a simple extrapolation of the rotation curves to align the profiles in velocity at radii beyond the extent probed with the sensitivity of traditional integrated H I maps. With this method, we improve our sensitivity to outer-disk H I emission by up to an order of magnitude. Except for a few disturbed galaxies, none show evidence of a sudden change in the slope of the H I radial profiles: the alleged signature of ionization by the extragalactic background.
NASA Astrophysics Data System (ADS)
Taniguchi, Kotomi; Saito, Masao; Sridharan, T. K.; Minamidani, Tetsuhiro
2018-02-01
We carried out survey observations of HC3N and HC5N in the 42‑45 GHz band toward 17 high-mass starless cores (HMSCs) and 35 high-mass protostellar objects (HMPOs) with the Nobeyama 45 m radio telescope. We have detected HC3N from 15 HMSCs and 28 HMPOs, and HC5N from 5 HMSCs and 14 HMPOs, respectively. The average values of the column density of HC3N are found to be (5.7+/- 0.7) × {10}12 and (1.03+/- 0.12)×{10}13 cm‑2 in HMSCs and HMPOs, respectively. The average values of the fractional abundance of HC3N are derived to be (6.6+/- 0.8)× {10}-11 and (3.6+/- 0.5)× {10}-11 in HMSCs and HMPOs, respectively. We find that the fractional abundance of HC3N decreases from HMSCs to HMPOs using the Kolmogorov–Smirnov test. On the other hand, its average value of the column density slightly increases from HMSCs to HMPOs. This may imply that HC3N is newly formed in dense gas in HMPO regions. We also investigate the relationship between the column density of HC3N in HMPOs and the luminosity-to-mass ratio (L/M), a physical evolutional indicator. The column density of HC3N tends to decrease with the increase of the L/M ratio, which suggests that HC3N is destroyed by the stellar activities.
An X-Ray Spectral Model for Clumpy Tori in Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Liu, Yuan; Li, Xiaobo
2014-05-01
We construct an X-ray spectral model for the clumpy torus in an active galactic nucleus (AGN) using Geant4, which includes the physical processes of the photoelectric effect, Compton scattering, Rayleigh scattering, γ conversion, fluorescence line, and Auger process. Since the electrons in the torus are expected to be bounded instead of free, the deviation of the scattering cross section from the Klein-Nishina cross section has also been included, which changes the X-ray spectra by up to 25% below 10 keV. We have investigated the effect of the clumpiness parameters on the reflection spectra and the strength of the fluorescent line Fe Kα. The volume filling factor of the clouds in the clumpy torus only slightly influences the reflection spectra, however, the total column density and the number of clouds along the line of sight significantly change the shapes and amplitudes of the reflection spectra. The effect of column density is similar to the case of a smooth torus, while a small number of clouds along the line of sight will smooth out the anisotropy of the reflection spectra and the fluorescent line Fe Kα. The smoothing effect is mild in the low column density case (N H = 1023 cm-2), whereas it is much more evident in the high column density case (N H = 1025 cm-2). Our model provides a quantitative tool for the spectral analysis of the clumpy torus. We suggest that the joint fits of the broad band spectral energy distributions of AGNs (from X-ray to infrared) should better constrain the structure of the torus.
Gravity or turbulence? IV. Collapsing cores in out-of-virial disguise
NASA Astrophysics Data System (ADS)
Ballesteros-Paredes, Javier; Vázquez-Semadeni, Enrique; Palau, Aina; Klessen, Ralf S.
2018-06-01
We study the dynamical state of massive cores by using a simple analytical model, an observational sample, and numerical simulations of collapsing massive cores. From the analytical model, we find that cores increase their column density and velocity dispersion as they collapse, resulting in a time evolution path in the Larson velocity dispersion-size diagram from large sizes and small velocity dispersions to small sizes and large velocity dispersions, while they tend to equipartition between gravity and kinetic energy. From the observational sample, we find that: (a) cores with substantially different column densities in the sample do not follow a Larson-like linewidth-size relation. Instead, cores with higher column densities tend to be located in the upper-left corner of the Larson velocity dispersion σv, 3D-size R diagram, a result explained in the hierarchical and chaotic collapse scenario. (b) Cores appear to have overvirial values. Finally, our numerical simulations reproduce the behavior predicted by the analytical model and depicted in the observational sample: collapsing cores evolve towards larger velocity dispersions and smaller sizes as they collapse and increase their column density. More importantly, however, they exhibit overvirial states. This apparent excess is due to the assumption that the gravitational energy is given by the energy of an isolated homogeneous sphere. However, such excess disappears when the gravitational energy is correctly calculated from the actual spatial mass distribution. We conclude that the observed energy budget of cores is consistent with their non-thermal motions being driven by their self-gravity and in the process of dynamical collapse.
Probing the structure of the gas in the Milky Way through X-ray high-resolution spectroscopy
NASA Astrophysics Data System (ADS)
Gatuzz, Efraín; Churazov, Eugene
2018-02-01
We have developed a new X-ray absorption model, called IONeq, which computes the optical depth τ(E) simultaneously for ions of all abundant elements, assuming ionization equilibrium and taking into account turbulent broadening. We use this model to analyse the interstellar medium (ISM) absorption features in the Milky Way for a sample of 18 Galactic (LMXBs) and 42 extragalactic sources (mainly Blazars). The absorbing ISM was modelled as a combination of three components/phases - neutral (T ≲ 1 × 104 K), warm (T ˜ 5 × 104 K) and hot (T ˜ 2 × 106 K). We found that the spatial distribution of both, neutral and warm components, are difficult to describe using smooth profiles due to non-uniform distribution of the column densities over the sky. For the hot phase we used a combination of a flattened disc and a halo, finding comparable column densities for both spatial components, of the order of ˜6-7 × 1018 cm-2, although this conclusion depends on the adopted parametrization. If the halo component has sub-solar abundance Z, then the column density has to be scaled up by a factor of Z_{⊙}/Z. The vertically integrated column densities of the disc components suggest the following mass fractions for these three ISM phases in the Galactic disc: neutral ˜ 89 per cent, warm ˜ 8 per cent and hot ˜ 3 per cent components, respectively. The constraints on the radial distribution of the halo component of the hot component are weak.
A RELATION BETWEEN THE WARM NEUTRAL AND IONIZED MEDIA OBSERVED IN THE CANADIAN GALACTIC PLANE SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, T.; Kothes, R.; Brown, J. C., E-mail: Tyler.Foster@nrc-cnrc.gc.ca
2013-08-10
We report on a comparison between 21 cm rotation measure (RM) and the optically thin atomic hydrogen column density (N{sub H{sub I}}({tau} {yields} 0)) measured toward unresolved extragalactic sources in the Galactic plane of the northern sky. H I column densities integrated to the Galactic edge are measured immediately surrounding each of nearly 2000 sources in 1 arcmin 21 cm line data, and are compared to RMs observed from polarized emission of each source. RM data are binned in column density bins 4 Multiplication-Sign 10{sup 20} cm{sup -2} wide, and one observes a strong relationship between the number of hydrogenmore » atoms in a 1 cm{sup 2} column through the plane and the mean RM along the same line of sight and path length. The relationship is linear over one order of magnitude (from 0.8 to 14 Multiplication-Sign 10{sup 21} atoms cm{sup -2}) of column densities, with a constant RM/N{sub H{sub I}}{approx} -23.2 {+-} 2.3 rad m{sup -2}/10{sup 21} atoms cm{sup -2}, and a positive RM of 45.0 {+-} 13.8 rad m{sup -2} in the presence of no atomic hydrogen. This slope is used to calculate a mean volume-averaged magnetic field in the second quadrant of (B{sub Parallel-To }) {approx}1.0 {+-} 0.1 {mu}G directed away from the Sun, assuming an ionization fraction of 8% (consistent with the warm-neutral medium; WNM). The remarkable consistency between this field and (B) = 1.2 {mu}G found with the same RM sources and a Galactic model of dispersion measures (DMs) suggests that electrons in the partially ionized WNM are mainly responsible for pulsar DMs, and thus the partially ionized WNM is the dominant form of the magneto-ionic interstellar medium.« less
NASA Technical Reports Server (NTRS)
Hoch, Edward L.; Hallinan, Thomas J.; Stenbaek-Nielsen, Hans C.
1994-01-01
Intensity-calibrated color video recordings of three barium-shaped charge injections in the ionopshere were used to determine the initial ionization, the column density corresponding to unity optical depth, and the yield of vaporized barium in the fast jet. It was found that the initial ionization at the burst was less than 1% and that 0% burst ionization was consistent with the observations. Owing to the Doppler shift, the column density for optical thickness in the neutral barium varies somewhat according to the velocity distribution. For the cases examined here, the column density was 2-5 x 10(exp 10) atoms/sq cm. This value, which occurred 12 to 15 s after release, should be approximately valid for most shaped charge experiments. The yield was near 30% (15% in the fast jet) for two of the releases and was somewhat lower in the third, which also had a lower peak velocity. This study also demonstrated the applicability of the computer simulation code developed for chemical releases by Stenbaek-Nielsen and provided experimental verification of the Doppler-corrected emission rates calculated b Stenbaek-Nielsen (1989).
Analysis of interstellar cloud structure based on IRAS images
NASA Technical Reports Server (NTRS)
Scalo, John M.
1992-01-01
The goal of this project was to develop new tools for the analysis of the structure of densely sampled maps of interstellar star-forming regions. A particular emphasis was on the recognition and characterization of nested hierarchical structure and fractal irregularity, and their relation to the level of star formation activity. The panoramic IRAS images provided data with the required range in spatial scale, greater than a factor of 100, and in column density, greater than a factor of 50. In order to construct densely sampled column density maps of star-forming clouds, column density images of four nearby cloud complexes were constructed from IRAS data. The regions have various degrees of star formation activity, and most of them have probably not been affected much by the disruptive effects of young massive stars. The largest region, the Scorpius-Ophiuchus cloud complex, covers about 1000 square degrees (it was subdivided into a few smaller regions for analysis). Much of the work during the early part of the project focused on an 80 square degree region in the core of the Taurus complex, a well-studied region of low-mass star formation.
Ionospheric response to 17 March 2013 geomagnetic storm identified by data assimilation result
NASA Astrophysics Data System (ADS)
Yue, Xinan; Zhao, Biqiang; Hu, Lianhuan; She, Chengli
2017-04-01
Based on slant total electron content (TEC) observations made by 10 satellites and 450 ground IGS GNSS stations, we constructed a 4-D ionospheric electron density reanalysis during the March 17, 2013 geomagnetic storm. Four main large-scale ionospheric disturbances are identified from reanalysis: (1) The positive storm during the initial phase; (2) The SED (storm enhanced density) structure in both northern and southern hemisphere; (3) The large positive storm in main phase; (4) The significant negative storm in middle and low latitude during recovery phase. We then run the NCAR-TIEGCM model with Heelis electric potential empirical model as polar input. The TIEGCM can reproduce 3 of 4 large-scale structures (except SED) very well. We then further analyzed the altitudinal variations of these large-scale disturbances and found several interesting things, such as the altitude variation of SED, the rotation of positive/negative storm phase with local time. Those structures could not be identified clearly by traditional used data sources, which either has no global coverage or no vertical resolution. The drivers such as neutral wind/density and electric field from TIEGCM simulations are also analyzed to self-consistently explain the identified disturbance features.
Etching in Chlorine Discharges Using an Integrated Feature Evolution-Plasma Model
NASA Technical Reports Server (NTRS)
Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.; Biegel, Bryan (Technical Monitor)
2001-01-01
Etching of semiconductor materials is reliant on plasma properties. Quantities such as ion and neutral fluxes, both in magnitude and in direction, are often determined by reactor geometry (height, radius, position of the coils, etc.) In order to obtain accurate etching profiles, one must also model the plasma as a whole to obtain local fluxes and distributions. We have developed a set of three models that simulates C12 plasmas for etching of silicon, ion and neutral trajectories in the plasma, and feature profile evolution. We have found that the location of the peak in the ion densities in the reactor plays a major role in determining etching uniformity across the wafer. For a stove top coil inductively coupled plasma (ICP), the ion density is peaked at the top of the reactor. This leads to nearly uniform neutral and ion fluxes across the wafer. A side coil configuration causes the ion density to peak near the sidewalls. Ion fluxes are thus greater toward the wall's and decrease toward the center. In addition, the ions bombard the wafer at a slight angle. This angle is sufficient to cause slanted profiles, which is highly undesirable.
Nuclear fluxes during coherent tunnelling in asymmetric double well potentials
NASA Astrophysics Data System (ADS)
Liu, ChunMei; Manz, Jörn; Yang, Yonggang
2015-08-01
Previous results for nuclear fluxes during coherent tunnelling of molecules with symmetric double well potentials are extended to fluxes in asymmetric double well potentials. The theory is derived using the two-state approximation (TSA). The symmetric system serves as a reference. As an example, we consider the one-dimensional model of the tunnelling inversion of oriented ammonia, with semiclassical dipole coupling to an electric field. The tunnelling splitting increases with the dipole coupling by a factor f≥slant 1. The tunnelling time decreases by 1/f. The nuclear density appears as the sum of two parts: The tunnelling part decreases as {1/f}2 times the density of the symmetric reference, whereas the non-tunnelling part is the initial density times ≤ft({{1-1}/f}2\\right). Likewise, the nuclear flux decreases by 1/f, with essentially the same shape as for the symmetric reference, with maximum value at the potential barrier. Coherent nuclear tunnellings starting from the upper or lower wells of the asymmetric potential are equivalent. The results are universal, in the frame of the TSA, hence they allow straightforward extrapolations from one system to others. This is demonstrated by the prediction of isotope effects for five isotopomers of ammonia.
NASA Astrophysics Data System (ADS)
Yue, X.; Wang, W.; Schreiner, W. S.; Kuo, Y. H.; Lei, J.; Liu, J.; Burns, A. G.; Zhang, Y.; Zhang, S.
2015-12-01
Based on slant total electron content (TEC) observations made by ~10 satellites and ~450 ground IGS GNSS stations, we constructed a 4-D ionospheric electron density reanalysis during the March 17, 2013 geomagnetic storm. Four main large-scale ionospheric disturbances are identified from reanalysis: (1) The positive storm during the initial phase; (2) The SED (storm enhanced density) structure in both northern and southern hemisphere; (3) The large positive storm in main phase; (4) The significant negative storm in middle and low latitude during recovery phase. We then run the NCAR-TIEGCM model with Heelis electric potential empirical model as polar input. The TIEGCM can reproduce 3 of 4 large-scale structures (except SED) very well. We then further analyzed the altitudinal variations of these large-scale disturbances and found several interesting things, such as the altitude variation of SED, the rotation of positive/negative storm phase with local time. Those structures could not be identified clearly by traditional used data sources, which either has no gloval coverage or no vertical resolution. The drivers such as neutral wind/density and electric field from TIEGCM simulations are also analyzed to self-consistantly explain the identified disturbance features.
NASA Astrophysics Data System (ADS)
Lei, Wuyang; Qian, Nan; Zheng, Jun; Huang, Huan; Zhang, Ya; Deng, Zigang
2017-07-01
To improve the curve negotiating ability of high-temperature superconducting (HTS) maglev system, a special structure of magnetic superelevation for double-pole Halbach permanent magnet guideway (PMG) was designed. The most significant feature of this design is the asymmetrical PMG that forms a slanting magnetic field without affecting the smoothness of the PMG surface. When HTS maglev vehicle runs through curves with magnetic superelevation, the vehicle will slant due to asymmetry in magnetic field and the flux-pinning effect of onboard HTS bulks. At the same time, one component of the levitation force provides a part of the centripetal force that reduces lateral acceleration of the vehicle and thus enhances its curve negotiating ability. Furthermore, the slant angle of magnetic superelevation can be adjusted by changing the materials and the thickness of the added permanent magnets. This magnetic superelevation method, together with orographic uplift, can be applied to different requirements of PMG designs. Besides, the applicability of this method would benefit future development of high-speed HTS maglev system.
Task factor usability ratings for different age groups writing Chinese.
Chan, A H S; So, J C Y
2009-11-01
This study evaluated how different task factors affect performance and user subjective preferences for three different age groups of Chinese subjects (6-11, 20-23, 65-70 years) when hand writing Chinese characters. The subjects copied Chinese character sentences with different settings for the task factors of writing plane angle (horizontal 0 degrees , slanted 15 degrees ), writing direction (horizontal, vertical), and line spacing (5 mm, 7 mm and no lines). Writing speed was measured and subjective preferences (effectiveness and satisfaction) were assessed for each of the task factor settings. The result showed that there was a conflict between writing speed and personal preference for the line spacing factor; 5 mm line spacing increased writing speed but it was the least preferred. It was also found that: vertical and horizontal writing directions and a slanted work surface suited school-aged children; a horizontal work surface and horizontal writing direction suited university students; and a horizontal writing direction with either a horizontal or slanted work surface suited the older adults.
On the Spectrum of the Plenoptic Function.
Gilliam, Christopher; Dragotti, Pier-Luigi; Brookes, Mike
2014-02-01
The plenoptic function is a powerful tool to analyze the properties of multi-view image data sets. In particular, the understanding of the spectral properties of the plenoptic function is essential in many computer vision applications, including image-based rendering. In this paper, we derive for the first time an exact closed-form expression of the plenoptic spectrum of a slanted plane with finite width and use this expression as the elementary building block to derive the plenoptic spectrum of more sophisticated scenes. This is achieved by approximating the geometry of the scene with a set of slanted planes and evaluating the closed-form expression for each plane in the set. We then use this closed-form expression to revisit uniform plenoptic sampling. In this context, we derive a new Nyquist rate for the plenoptic sampling of a slanted plane and a new reconstruction filter. Through numerical simulations, on both real and synthetic scenes, we show that the new filter outperforms alternative existing filters.
The Need of Slanted Side Holes for Venous Cannulae
Park, Joong Yull
2012-01-01
Well-designed cannulae must allow good flow rate and minimize nonphysiologic load. Venous cannulae generally have side holes to prevent the rupture of blood vessel during perfusion. Optimizing side hole angle will yield more efficient and safe venous cannulae. A numerical modeling was used to study the effect of the angle (0°–45°) and number (0–12) of side holes on the performance of cannulae. By only slanting the side holes, it increases the flow rate up to 6% (in our models). In addition, it was found that increasing the number of side holes reduces the shear rate up to 12% (in our models). A new parameter called “penetration depth” was introduced to describe the interfering effect of stream jets from side holes, and the result showed that the 45°-slanted side holes caused minimum interfering for the flow in cannula. Our quantitative hemodynamic analysis study provides important guidelines for venous cannulae design. PMID:22291856
Groundwater flow to a horizontal or slanted well in an unconfined aquifer
NASA Astrophysics Data System (ADS)
Zhan, Hongbin; Zlotnik, Vitaly A.
2002-07-01
New semianalytical solutions for evaluation of the drawdown near horizontal and slanted wells with finite length screens in unconfined aquifers are presented. These fully three-dimensional solutions consider instantaneous drainage or delayed yield and aquifer anisotropy. As a basis, solution for the drawdown created by a point source in a uniform anisotropic unconfined aquifer is derived in Laplace domain. Using superposition, the point source solution is extended to the cases of the horizontal and slanted wells. The previous solutions for vertical wells can be described as a special case of the new solutions. Numerical Laplace inversion allows effective evaluation of the drawdown in real time. Examples illustrate the effects of well geometry and the aquifer parameters on drawdown. Results can be used to generate type curves from observations in piezometers and partially or fully penetrating observation wells. The proposed solutions and software are useful for the parameter identification, design of remediation systems, drainage, and mine dewatering.
NASA Astrophysics Data System (ADS)
Tian, Huanhuan; Xu, Yonggen; Yang, Ting; Ma, Zairu; Wang, Shijian; Dan, Youquan
2017-02-01
Based on the extended Huygens-Fresnel principal and the Wigner distribution function, the root mean square (rms) angular width and propagation factor (M2-factor) of partially coherent anomalous elliptical hollow Gaussian (PCAEHG) beam propagating through atmospheric turbulence along a slant path are studied in detail. Analytical formulae of the rms angular width and M2-factor of PCAEHG beam are derived. Our results show that the rms angular width increases with increasing of wavelength and zenith angle and with decreasing of transverse coherence length, beam waist sizes and inner scale. The M2-factor increases with increasing of zenith angle and with decreasing of wavelength, transverse coherence length, beam waist sizes and inner scale. The saturation propagation distances (SPDs) increase as zenith angle increases. The numerical calculations also indicate that the SPDs of rms angular width and M2-factor for uplink slant paths with zenith angle of π/12 are about 0.2 and 20 km, respectively.
An analysis of temperature-induced errors for an ultrasound distance measuring system. M. S. Thesis
NASA Technical Reports Server (NTRS)
Wenger, David Paul
1991-01-01
The presentation of research is provided in the following five chapters. Chapter 2 presents the necessary background information and definitions for general work with ultrasound and acoustics. It also discusses the basis for errors in the slant range measurements. Chapter 3 presents a method of problem solution and an analysis of the sensitivity of the equations to slant range measurement errors. It also presents various methods by which the error in the slant range measurements can be reduced to improve overall measurement accuracy. Chapter 4 provides a description of a type of experiment used to test the analytical solution and provides a discussion of its results. Chapter 5 discusses the setup of a prototype collision avoidance system, discusses its accuracy, and demonstrates various methods of improving the accuracy along with the improvements' ramifications. Finally, Chapter 6 provides a summary of the work and a discussion of conclusions drawn from it. Additionally, suggestions for further research are made to improve upon what has been presented here.
Density-driven transport of gas phase chemicals in unsaturated soils
NASA Astrophysics Data System (ADS)
Fen, Chiu-Shia; Sun, Yong-tai; Cheng, Yuen; Chen, Yuanchin; Yang, Whaiwan; Pan, Changtai
2018-01-01
Variations of gas phase density are responsible for advective and diffusive transports of organic vapors in unsaturated soils. Laboratory experiments were conducted to explore dense gas transport (sulfur hexafluoride, SF6) from different source densities through a nitrogen gas-dry soil column. Gas pressures and SF6 densities at transient state were measured along the soil column for three transport configurations (horizontal, vertically upward and vertically downward transport). These measurements and others reported in the literature were compared with simulation results obtained from two models based on different diffusion approaches: the dusty gas model (DGM) equations and a Fickian-type molar fraction-based diffusion expression. The results show that the DGM and Fickian-based models predicted similar dense gas density profiles which matched the measured data well for horizontal transport of dense gas at low to high source densities, despite the pressure variations predicted in the soil column were opposite to the measurements. The pressure evolutions predicted by both models were in trend similar to the measured ones for vertical transport of dense gas. However, differences between the dense gas densities predicted by the DGM and Fickian-based models were discernible for vertically upward transport of dense gas even at low source densities, as the DGM-based predictions matched the measured data better than the Fickian results did. For vertically downward transport, the dense gas densities predicted by both models were not greatly different from our experimental measurements, but substantially greater than the observations obtained from the literature, especially at high source densities. Further research will be necessary for exploring factors affecting downward transport of dense gas in soil columns. Use of the measured data to compute flux components of SF6 showed that the magnitudes of diffusive flux component based on the Fickian-type diffusion expressions in terms of molar concentration, molar fraction and mass density fraction gradient were almost the same. However, they were greater than the result computed with the mass fraction gradient for > 24% and the DGM-based result for more than one time. As a consequence, the DGM-based total flux of SF6 was in magnitude greatly less than the Fickian result not only for horizontal transport (diffusion-dominating) but also for vertical transport (advection and diffusion) of dense gas. Particularly, the Fickian-based total flux was more than two times in magnitude as much as the DGM result for vertically upward transport of dense gas.
The Nature of Turbulence in the LITTLE THINGS Dwarf Irregular Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maier, Erin; Chien, Li-Hsin; Hollyday, Gigja
We present probability density functions and higher order (skewness and kurtosis) analyses of the galaxy-wide and spatially resolved distributions of H i column density in the LITTLE THINGS sample of dwarf irregular galaxies. This analysis follows that of Burkhart et al. for the Small Magellanic Cloud (SMC). About 60% of our sample have galaxy-wide values of kurtosis that are similar to that found for the SMC, with a range up to much higher values, and kurtosis increases with integrated star formation rate. Kurtosis and skewness were calculated for radial annuli and for a grid of 32 pixel × 32 pixel kernels acrossmore » each galaxy. For most galaxies, kurtosis correlates with skewness. For about half of the galaxies, there is a trend of increasing kurtosis with radius. The range of kurtosis and skewness values is modeled by small variations in the Mach number close to the sonic limit and by conversion of H i to molecules at high column density. The maximum H i column densities decrease with increasing radius in a way that suggests molecules are forming in the weak-field limit, where H{sub 2} formation balances photodissociation in optically thin gas at the edges of clouds.« less
Gaussian model for emission rate measurement of heated plumes using hyperspectral data
NASA Astrophysics Data System (ADS)
Grauer, Samuel J.; Conrad, Bradley M.; Miguel, Rodrigo B.; Daun, Kyle J.
2018-02-01
This paper presents a novel model for measuring the emission rate of a heated gas plume using hyperspectral data from an FTIR imaging spectrometer. The radiative transfer equation (RTE) is used to relate the spectral intensity of a pixel to presumed Gaussian distributions of volume fraction and temperature within the plume, along a line-of-sight that corresponds to the pixel, whereas previous techniques exclusively presume uniform distributions for these parameters. Estimates of volume fraction and temperature are converted to a column density by integrating the local molecular density along each path. Image correlation velocimetry is then employed on raw spectral intensity images to estimate the volume-weighted normal velocity at each pixel. Finally, integrating the product of velocity and column density along a control surface yields an estimate of the instantaneous emission rate. For validation, emission rate estimates were derived from synthetic hyperspectral images of a heated methane plume, generated using data from a large-eddy simulation. Calculating the RTE with Gaussian distributions of volume fraction and temperature, instead of uniform distributions, improved the accuracy of column density measurement by 14%. Moreover, the mean methane emission rate measured using our approach was within 4% of the ground truth. These results support the use of Gaussian distributions of thermodynamic properties in calculation of the RTE for optical gas diagnostics.
Ibrahim, Taleb H; Sabri, Muhammad A; Khamis, Mustafa I
2018-05-10
Multiwalled carbon nanotubes and their magnetite derivatives were employed as adsorbents for emulsified oil removal from produced water. The experimental parameters for maximum emulsified oil removal efficiency and effective regeneration of these adsorbents were determined. The optimum parameters in terms of adsorbent dosage, contact time, salinity, pH and temperature were 3.0 g/L, 20.0 min, 0 ppm, 7.0 and 25°C for both adsorbents. Due to their low density, multiwalledcarbon nanotubes could not be successfully employed in packed bed columns. The magnetite derivative has a larger density and hence, for the removal of emulsified oil from produced water packed bed column studies were performed utilizing multiwalled carbon magnetite nanotubes. The packed bed column efficiency and behaviour were evaluated using Thomas, Clark, Yan et al. and Bohart and Adams models. The Yan model was found to best describe the column experimental data. The adsorbents were regenerated using n-hexane and reused several times for oil removal from produced water without any significant decrease in their initial adsorption capacities.
Scattering Matrix for the Interaction between Solar Acoustic Waves and Sunspots. I. Measurements
NASA Astrophysics Data System (ADS)
Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui
2017-01-01
Assessing the interaction between solar acoustic waves and sunspots is a scattering problem. The scattering matrix elements are the most commonly used measured quantities to describe scattering problems. We use the wavefunctions of scattered waves of NOAAs 11084 and 11092 measured in the previous study to compute the scattering matrix elements, with plane waves as the basis. The measured scattered wavefunction is from the incident wave of radial order n to the wave of another radial order n‧, for n=0{--}5. For a time-independent sunspot, there is no mode mixing between different frequencies. An incident mode is scattered into various modes with different wavenumbers but the same frequency. Working in the frequency domain, we have the individual incident plane-wave mode, which is scattered into various plane-wave modes with the same frequency. This allows us to compute the scattering matrix element between two plane-wave modes for each frequency. Each scattering matrix element is a complex number, representing the transition from the incident mode to another mode. The amplitudes of diagonal elements are larger than those of the off-diagonal elements. The amplitude and phase of the off-diagonal elements are detectable only for n-1≤slant n\\prime ≤slant n+1 and -3{{Δ }}k≤slant δ {k}x≤slant 3{{Δ }}k, where δ {k}x is the change in the transverse component of the wavenumber and Δk = 0.035 rad Mm-1.
Depictions of substance use in reality television: a content analysis of The Osbournes
Blair, Nicole A; Yue, So Kuen; Singh, Ranbir; Bernhardt, Jay M
2005-01-01
Objective To determine the source and slant of messages in a reality television programme that may promote or inhibit health related or risky behaviours. Design Coding visual and verbal references to alcohol, tobacco, and other drug (ATOD) use in The Osbournes. Review methods Three reviewers watched all 10 episodes of the first season and coded incidents of substance use according to the substance used (alcohol, tobacco, or drugs), the way use was portrayed (visually or verbally), the source of the message (the character in the show involved in the incident), and the slant of the incident (endorsement or rejection). Main outcome measures The variation in number of messages in an average episode, the slant of messages, and message source. Results The average number of messages per episode was 9.1 (range 2-17). Most drug use messages (15, 54%) implied rejection of drugs, but most alcohol messages (30, 64%) and tobacco messages (12, 75%) implied endorsements for using these substances. Most rejections (34, 94%) were conveyed verbally, but most endorsements (36, 65%) were conveyed visually. Messages varied in frequency and slant by source. Conclusions The reality television show analysed in this study contains numerous messages on substance use that imply both rejection and endorsement of use. The juxtaposition of verbal rejection messages and visual endorsement messages, and the depiction of contradictory messages about substance use from show characters, may send mixed messages to viewers about substance use. PMID:16373737
The structure of the ISM in the Zone of Avoidance by high-resolution multi-wavelength observations
NASA Astrophysics Data System (ADS)
Tóth, L. V.; Doi, Y.; Pinter, S.; Kovács, T.; Zahorecz, S.; Bagoly, Z.; Balázs, L. G.; Horvath, I.; Racz, I. I.; Onishi, T.
2018-05-01
We estimate the column density of the Galactic foreground interstellar medium (GFISM) in the direction of extragalactic sources. All-sky AKARI FIS infrared sky survey data might be used to trace the GFISM with a resolution of 2 arcminutes. The AKARI based GFISM hydrogen column density estimates are compared with similar quantities based on HI 21cm measurements of various resolution and of Planck results. High spatial resolution observations of the GFISM may be important recalculating the physical parameters of gamma-ray burst (GRB) host galaxies using the updated foreground parameters.
Detection of a new carbon-chain molecule, CCO
NASA Technical Reports Server (NTRS)
Ohishi, Masatoshi; Ishikawa, Shin-Ichi; Yamada, Chikashi; Kanamori, Hideto; Irvine, William M.; Brown, Ronald D.; Godfrey, Peter D.; Kaifu, Norio; Suzuki, Hiroko
1991-01-01
A new carbon-chain molecule, CCO 3Sigma(-), has been detected in the cold dark molecular cloud TMC-1. The excitation temperature and the column density of CCO are, respectively, about 6 K and about 6 x 10 to the 11th/sq cm. This column density corresponds to a fractional abundance relative to H2 of about 6 x 10 to the -11th. This value is two orders of magnitude less than the abundance of the related carbon-chain molecule CCS, and about half that of C3O. The formation mechanism for CCO is discussed.
CS band intensity and column densities and production rates of 15 comets
NASA Astrophysics Data System (ADS)
Sanzovo, G. C.; Singh, P. D.; Huebner, W. F.
1993-09-01
An accurate fluorescence efficiency of the CS(0,0) band and the lifetime of CS have been calculated at 1 AU heliocentric distance. Model-independent CS column densities and production rates are determined from derived fluorescent emission rates (g-factors) and lifetimes for 15 comets: Austin (1982g), Borrelly (1980i), Bradfield (1979X), Crommelin (1983n), Encke (1980), Encke (1984), Giacobini-Zinner (1984e), Halley (1982i), IRAS-Araki-Alcock (1983d), Meier (1980q), Panther (1980u), Stephan-Oterma (1980g), Tuttle (1980h), West (1975n), and Wilson (1986l).
CS band intensity and column densities and production rates of 15 comets
NASA Technical Reports Server (NTRS)
Sanzovo, G. C.; Singh, P. D.; Huebner, W. F.
1993-01-01
An accurate fluorescence efficiency of the CS(0,0) band and the lifetime of CS have been calculated at 1 AU heliocentric distance. Model-independent CS column densities and production rates are determined from derived fluorescent emission rates (g-factors) and lifetimes for 15 comets: Austin (1982g), Borrelly (1980i), Bradfield (1979X), Crommelin (1983n), Encke (1980), Encke (1984), Giacobini-Zinner (1984e), Halley (1982i), IRAS-Araki-Alcock (1983d), Meier (1980q), Panther (1980u), Stephan-Oterma (1980g), Tuttle (1980h), West (1975n), and Wilson (1986l).
NASA Technical Reports Server (NTRS)
Solomon, P. M.; De Zafra, R.; Parrish, A.; Barrett, J. W.
1984-01-01
Ground-based observations of a mm-wave spectral line at 278 GHz have yielded stratospheric chlorine monoxide column density diurnal variation records which indicate that the mixing ratio and column density of this compound above 30 km are about 20 percent lower than model predictions based on 2.1 parts/billion of total stratospheric chlorine. The observed day-to-night variation is, however, in good agreement with recent model predictions, both confirming the existence of a nighttime reservoir for chlorine and verifying the predicted general rate of its storage and retrieval.
Directed self-assembly into low-density colloidal liquid crystal phases
NASA Astrophysics Data System (ADS)
Gao, Yongxiang; Romano, Flavio; Dullens, Roel P. A.; Doye, Jonathan K.; Aarts, Dirk G. A. L.
2018-01-01
Alignment of anisometric particles into liquid crystals (LCs) often results from an entropic competition between their rotational and translational degrees of freedom at dense packings. Here we show that by selectively functionalizing the heads of colloidal rods with magnetic nanoparticles this tendency can be broken to direct the particles into novel, low-density LC phases. Under an external magnetic field, the magnetic heads line up in columns whereas the nonmagnetic tails point out randomly in a plane perpendicular to the columns, forming bottle-brush-like objects; laterally, the bottle brushes are entropically stabilized against coalescence. Experiments and simulations show that upon increasing the particle density the system goes from a dilute gas to a dense two-dimensional liquid of bottle brushes with a density well below the zero-field nematic phase. Our findings offer a strategy for self-assembly into three-dimensional open phases that may find applications in switchable photonics, filtration, and light-weight materials.
NASA Astrophysics Data System (ADS)
Veltchev, Todor; Donkov, Sava; Stanchev, Orlin
2017-07-01
We present a method to derive the density scaling relation
NASA Technical Reports Server (NTRS)
Kniffen, D. A.; Fichtel, C. E.; Thompson, D. J.
1976-01-01
Theoretical considerations and analysis of the results of gamma ray astronomy suggest that the galactic cosmic rays are dynamically coupled to the interstellar matter through the magnetic fields, and hence the cosmic ray density should be enhanced where the matter density is greatest on the scale of galactic arms. This concept has been explored in a galactic model using recent 21 cm radio observations of the neutral hydrogen and 2.6 mm observations of carbon monoxide, which is considered to be a tracer of molecular hydrogen. The model assumes: (1) cosmic rays are galactic and not universal; (2) on the scale of galactic arms, the cosmic ray column (surface) density is proportional to the total interstellar gas column density; (3) the cosmic ray scale height is significantly larger than the scale height of the matter; and (4) ours is a spiral galaxy characterized by an arm to interarm density ratio of about 3:1.
A quantitative analysis of microplastic pollution along the south-eastern coastline of South Africa.
Nel, H A; Froneman, P W
2015-12-15
The extent of microplastic pollution (<5mm) in the southern hemisphere, particularly southern Africa, is largely unknown. This study aimed to evaluate microplastic pollution along the south-eastern coastline of South Africa, looking at whether bays are characterised by higher microplastic densities than open stretches of coastline in both beach sediment and surf-zone water. Microplastic (mean ± standard error) densities in the beach sediment ranged between 688.9 ± 348.2 and 3308 ± 1449 particles · m(-2), while those in the water column varied between 257.9 ± 53.36 and 1215 ± 276.7 particles · m(-3). With few exceptions there were no significant spatial patterns in either the sediment or water column microplastic densities; with little differences in density between bays and the open coast (P>0.05). These data indicate that the presence of microplastics were not associated with proximity to land-based sources or population density, but rather is governed by water circulation. Copyright © 2015 Elsevier Ltd. All rights reserved.
The H I-to-H2 Transition in a Turbulent Medium
NASA Astrophysics Data System (ADS)
Bialy, Shmuel; Burkhart, Blakesley; Sternberg, Amiel
2017-07-01
We study the effect of density fluctuations induced by turbulence on the H I/H2 structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas and chemical H I/H2 balance calculations. We derive atomic-to-molecular density profiles and the H I column density probability density function (PDF) assuming chemical equilibrium. We find that, while the H I/H2 density profiles are strongly perturbed in turbulent gas, the mean H I column density is well approximated by the uniform-density analytic formula of Sternberg et al. The PDF width depends on (a) the radiation intensity-to-mean density ratio, (b) the sonic Mach number, and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the H I PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of H I in the Perseus molecular cloud. We show that a narrow observed H I PDF may imply small-scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.
NASA Astrophysics Data System (ADS)
Frins, E.; Bobrowski, N.; Osorio, M.; Casaballe, N.; Belsterli, G.; Wagner, T.; Platt, U.
2014-12-01
In March 2012 the emissions of NO2 and SO2 from a power station located on the east side of Montevideo Bay (34° 53‧ 10″ S, 56° 11‧ 49″ W) were quantified by simultaneously using mobile and scanning multi-axis differential optical absorption spectroscopy (in the following mobile DOAS and scanning DOAS, respectively). The facility produces electricity by means of two technologies: internal combustion motors and steam generators. The motors are powered with centrifuged heavy oil and produce a maximum power of 80 MW approximately. The steam generators produce approximately 305 MW and are powered with heavy fuel oil. We compare the emissions obtained from the measured slant column densities (mobile DOAS and scanning DOAS) with the emissions estimated from fuel mass balance. On one occasion it was possible to distinguish between the two types of sources, observing two plumes with different SO2 and NO2 emission rates. During the period of the campaign the mean SO2 emission flux was determined to be 0.36 (±0.12) kg s-1 and 0.26 (±0.09) kg s-1 retrieved from mobile and scanning DOAS respectively, while the calculated SO2 flux from the sulphur content of the fuel was 0.34 (±0.03) kg s-1. The average NO2 flux calculated from mobile DOAS was determined to be 11 (±3) × 10-3 kg s-1. Using the scanning DOAS approach a mean NO2 flux of 5.4 (±1.7) × 10-3 kg s-1 was obtained, which is significantly lower than by the mobile measurements. The differences between the results of mobile MAX-DOAS measurements and scanning DOAS measurements are most probably caused by the variability and the limited knowledge of the wind speed and direction.
NASA Astrophysics Data System (ADS)
Borovski, A.; Postylyakov, O.; Elokhov, A.; Bruchkovski, I.
2017-11-01
An instrument for measuring atmospheric trace gases by DOAS method using scattered solar radiation was developed in A.M.Obukhov IAP RAS. The instrument layout is based on the lab Shamrock 303i spectrograph supplemented by 2-port radiation input system employing optical fiber. Optical ports may be used with a telescope with fixed field of view or with a scanning MAX-DOAS unit. MAX-DOAS unit port will be used for investigation of gas contents and profiles in the low troposphere. In September 2016 the IAP instrument participated in the CINDI-2 campaign, held in the Netherlands. CINDI 2 (2nd Cabauw Intercomparison of Nitrogen Dioxide Measuring Instruments) involves about 40 instruments quasi-synchronously performing DOAS measurements of NO2 and other trace gases. During the campaign the instrument ports had telescopes A and B with similar field of view of about 0.3°. Telescope A was always directed to the zenith. Telescope B was directed at 5° elevation angle. Two gratings were installed in the spectrometer. They provide different spectral resolution (FWHM 0.4 and 0.8 nm respectively) and spectral window width ( 70 and 140 nm respectively). During CINDI-2 campaign we performed test measurements in UV and visible wavelength ranges to investigate instrument stability and retrieval errors of NO2 and HCHO contents. We perform the preliminary error analysis of retrieval of the NO2 and HCHO differential slant column densities using spectra measured in four modes of the instrument basing on residual noise analysis in this paper. It was found that rotation of grating turret does not significantly affected on quality of NO2 DSCD retrieval from spectra which measured in visible spectral region. Influence of grating turret rotation is much more significant for gas DSCD retrieval from spectra which measured in UV spectral region. Standard deviation of retrieval error points to presence of some systematic error.
Overview of SCIAMACHY validation: 2002-2004
NASA Astrophysics Data System (ADS)
Piters, A. J. M.; Bramstedt, K.; Lambert, J.-C.; Kirchhoff, B.
2006-01-01
SCIAMACHY, on board Envisat, has been in operation now for almost three years. This UV/visible/NIR spectrometer measures the solar irradiance, the earthshine radiance scattered at nadir and from the limb, and the attenuation of solar radiation by the atmosphere during sunrise and sunset, from 240 to 2380 nm and at moderate spectral resolution. Vertical columns and profiles of a variety of atmospheric constituents are inferred from the SCIAMACHY radiometric measurements by dedicated retrieval algorithms. With the support of ESA and several international partners, a methodical SCIAMACHY validation programme has been developed jointly by Germany, the Netherlands and Belgium (the three instrument providing countries) to face complex requirements in terms of measured species, altitude range, spatial and temporal scales, geophysical states and intended scientific applications. This summary paper describes the approach adopted to address those requirements.
Since provisional releases of limited data sets in summer 2002, operational SCIAMACHY processors established at DLR on behalf of ESA were upgraded regularly and some data products - level-1b spectra, level-2 O3, NO2, BrO and clouds data - have improved significantly. Validation results summarised in this paper and also reported in this special issue conclude that for limited periods and geographical domains they can already be used for atmospheric research. Nevertheless, current processor versions still experience known limitations that hamper scientific usability in other periods and domains. Free from the constraints of operational processing, seven scientific institutes (BIRA-IASB, IFE/IUP-Bremen, IUP-Heidelberg, KNMI, MPI, SAO and SRON) have developed their own retrieval algorithms and generated SCIAMACHY data products, together addressing nearly all targeted constituents. Most of the UV-visible data products - O3, NO2, SO2, H2O total columns; BrO, OClO slant columns; O3, NO2, BrO profiles - already have acceptable, if not excellent, quality. Provisional near-infrared column products - CO, CH4, N2O and CO2 - have already demonstrated their potential for a variety of applications. Cloud and aerosol parameters are retrieved, suffering from calibration with the exception of cloud cover. In any case, scientific users are advised to read carefully validation reports before using the data. It is required and anticipated that SCIAMACHY validation will continue throughout instrument lifetime and beyond and will accompany regular processor upgrades.
NASA Astrophysics Data System (ADS)
Ellingboe, Bert; Sirse, Nishant; Moloney, Rachel; McCarthy, John
2015-09-01
Bounded whistler wave, called ``helicon wave,'' is known to produce high-density plasmas and has been exploited as a high density plasma source for many applications, including electric propulsion for spacecraft. In a helicon plasma source, an antenna wrapped around the magnetized plasma column launches a low frequency wave, ωce/2 >ωhelicon >ωce/100, in the plasma which is responsible for maintaining high density plasma. Several antenna designs have been proposed in order to match efficiently the wave modes. In our experiment, helicon wave mode is observed using an m = 0 antenna. A floating B dot probe, compensated to the capacitively coupled E field, is employed to measure axial-wave-field-profiles (z, r, and θ components) in the plasma at multiple radial positions as a function of rf power and pressure. The Bθ component of the rf-field is observed to be unaffected as the wave propagates in the axial direction. Power coupling between the antenna and the plasma column is identified and agrees with the E, H, and wave coupling regimes previously seen in M =1 antenna systems. That is, the Bz component of the rf-field is observed at low plasma density as the Bz component from the antenna penetrates the plasma. The Bz component becomes very small at medium density due to shielding at the centre of the plasma column; however, with increasing density, a sudden ``jump'' occurs in the Bz component above which a standing wave under the antenna with a propagating wave away from the antenna are observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krčo, Marko; Goldsmith, Paul F., E-mail: marko@astro.cornell.edu
2016-05-01
We present a geometry-independent method for determining the shapes of radial volume density profiles of astronomical objects whose geometries are unknown, based on a single column density map. Such profiles are often critical to understand the physics and chemistry of molecular cloud cores, in which star formation takes place. The method presented here does not assume any geometry for the object being studied, thus removing a significant source of bias. Instead, it exploits contour self-similarity in column density maps, which appears to be common in data for astronomical objects. Our method may be applied to many types of astronomical objectsmore » and observable quantities so long as they satisfy a limited set of conditions, which we describe in detail. We derive the method analytically, test it numerically, and illustrate its utility using 2MASS-derived dust extinction in molecular cloud cores. While not having made an extensive comparison of different density profiles, we find that the overall radial density distribution within molecular cloud cores is adequately described by an attenuated power law.« less
Interstellar abundances and depletions inferred from observations of neutral atoms
NASA Technical Reports Server (NTRS)
Snow, T. P.
1984-01-01
Data on neutral atomic species are analyzed for the purpose of inferring relative elemental abundances and depletions in diffuse cloud cores, where it is assumed that densities are enhanced in comparison with mean densities over integrated lines of sight. Column densities of neutral atoms are compared to yield relative column densities of singly ionized species, which are assumed dominant in cloud cores. This paper incorporates a survey of literature data on neutral atomic abundances with the result that no systematic enhancement in the depletions of calcium or iron in cloud cores is found, except for zeta Ophiuchi. This may imply that depletions are not influenced by density, but other data argue against this interpretation. It is concluded either that in general all elements are depleted together in dense regions so that their relative abundances remain constant, or that typical diffuse clouds do not have significant cores, but instead are reasonably homogeneous. The data show a probable correlation between cloud-core depletion and hydrogen-molecular fraction, supporting the assumption that overall depletions are a function of density.
Radial Profiles of the Plasma Electron Characteristics in a 30 kW Arc Jet
NASA Technical Reports Server (NTRS)
Codron, Douglas A.; Nawaz, Anuscheh
2013-01-01
The present effort aims to strengthen modeling work conducted at the NASA Ames Research Center by measuring the critical plasma electron characteristics within and slightly outside of an arc jet plasma column. These characteristics are intended to give physical insights while assisting in the formulation of boundary conditions to validate full scale simulations. Single and triple Langmuir probes have been used to achieve estimates of the electron temperature (T(sub e)), electron number density (n(sub e)) and plasma potential (outside of the plasma column) as probing location is varied radially from the flow centerline. Both the electron temperature and electron number density measurements show a large dependence on radial distance from the plasma column centerline with T(sub e) approx. = (3 - 12 eV and n(sub e) approx. = 10(exp 12) - 10(exp 14)/cu cm.
NASA Technical Reports Server (NTRS)
Conel, James E.; Hoover, Gordon; Nolin, Anne; Alley, Ron; Margolis, Jack
1992-01-01
Empirical relationships between variables are ways of securing estimates of quantities difficult to measure by remote sensing methods. The use of empirical functions was explored between: (1) atmospheric column moisture abundance W (gm H2O/cm(sup 2) and surface absolute water vapor density rho(q-bar) (gm H2O/cm(sup 3), with rho density of moist air (gm/cm(sup 3), q-bar specific humidity (gm H2O/gm moist air), and (2) column abundance and surface moisture flux E (gm H2O/(cm(sup 2)sec)) to infer regional evapotranspiration from Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) water vapor mapping data. AVIRIS provides, via analysis of atmospheric water absorption features, estimates of column moisture abundance at very high mapping rate (at approximately 100 km(sup 2)/40 sec) over large areas at 20 m ground resolution.
Development of a cloud-screening method for MAX-DOAS measurements
NASA Astrophysics Data System (ADS)
Gielen, Clio; Van Roozendael, Michel; Hendrik, Francois; Fayt, Caroline; Hermans, Christian; Pinardi, Gaia; Vlemmix, Tim
2013-04-01
In recent years, ground-based multi-axis differential absorption spectroscopy (MAX-DOAS) has shown to be ideally suited for the retrieval of tropospheric trace gases and deriving information on the aerosol properties. These measurements are invaluable to our understanding of the physics and chemistry of the atmospheric system, and the impact on the Earth's climate. Unfortunately, MAX-DOAS measurements are often performed under (partially) cloudy conditions, causing data quality degradation and higher uncertainties on the retrievals. A high aerosol load and/or a strong cloud cover can introduce additional photon absorption or multiple scattering. The first effect strongly impacts the retrieved differential slant columns (DSCDs) of the trace gases, leading to an underestimation of the atmospheric column density. Multiple scattering, on the other hand, becomes important for low clouds with a high optical depth, and cause a strong increase in the retrieved trace gas DSCDs. The presence of thin clouds can furthermore introduce a degeneracy in the retrieved aerosol optical depth, since they will have similar effect on the MAX-DOAS measurements. In this case, only information on the trace gas DSCDs can be successfully retrieved. If the cloud cover consists of broken or scattered clouds, the MAX-DOAS method becomes very unstable, since the different elevation angels will probe regions of the sky with strongly deviating properties. Here we present a method to qualify the sky and cloud conditions, using the colour index and O4 DSCDs, as derived from the MAX-DOAS measurements. The colour index is defined as the ratio of the intensities at the short- and long-wavelength part of the visible spectral range, typically at 400 nm and 670 nm. For increasing optical thickness due to clouds or aerosols, the colour index values decrease and values for different elevation angles converge. In the case of broken clouds, the colour index shows a strong and rapid temporal variation, which is easily detectable. Additional information is derived from the O4 DSCD measurements, since they are quite sensitive to the change of the light paths due to scattering at different altitudes. For example, thick clouds at low altitude show a very strong increase in the DSCD values due to scattering, combined with a low colour index value due to the intensity screening. In general, our method shows promising results to qualify the sky and cloud conditions of MAX- DOAS measurements, without the need for other external cloud-detection systems such as Brewer instruments or pyrheliometers.
Boyd, Glen R; Ocampo-Gómez, Ana M; Li, Minghua; Husserl, Johana
2006-11-20
Packed column experiments were conducted to study effects of initial saturation of tetrachloroethene (PCE) in the range of 1.0-14% pore volume (PV) on mobilization and downward migration of the non-aqueous phase liquid (NAPL) product upon contact with aqueous isobutanol ( approximately 10 vol.%). This study focused on the consequences of swelling beyond residual saturation. Columns were packed with mixtures of neat PCE, water and glass beads and waterflooded to establish a desired homogeneous residual saturation, and then flooded with aqueous isobutanol under controlled hydraulic conditions. Results showed a critical saturation of approximately 8% PV for these packed column experimental conditions. At low initial PCE saturations (<8% PV), experimental results showed reduced risk of NAPL-product migration upon contact with aqueous isobutanol. At higher initial PCE saturations (>8% PV), results showed NAPL-product mobilization and downward migration which was attributed to interfacial tension (IFT) reduction, swelling of the NAPL-product, and reduced density modification. Packed column results were compared with good agreement to theoretical predictions of NAPL-product mobilization using the total trapping number, N(T). In addition to the packed column study, preliminary batch experiments were conducted to study the effects of PCE volumetric fraction in the range of 0.5-20% on density, viscosity, and IFT modification as a function of time following contact with aqueous isobutanol ( approximately 10 vol.%). Modified NAPL-product fluid properties approached equilibrium within approximately 2 h of contact for density and viscosity. IFT reduction occurred immediately as expected. Measured fluid properties were compared with good agreement to theoretical equilibrium predictions based on UNIQUAC. Overall, this study demonstrates the importance of initial DNAPL saturation, and the associated risk of downward NAPL-product migration, in applying alcohol flooding for remediation of DNAPL contaminated ground water sites.
NASA Astrophysics Data System (ADS)
Dangelmayr, Martin A.; Reimus, Paul W.; Johnson, Raymond H.; Clay, James T.; Stone, James J.
2018-06-01
This research assesses the ability of a GC SCM to simulate uranium transport under variable geochemical conditions typically encountered at uranium in-situ recovery (ISR) sites. Sediment was taken from a monitoring well at the SRH site at depths 192 and 193 m below ground and characterized by XRD, XRF, TOC, and BET. Duplicate column studies on the different sediment depths, were flushed with synthesized restoration waters at two different alkalinities (160 mg/l CaCO3 and 360 mg/l CaCO3) to study the effect of alkalinity on uranium mobility. Uranium breakthrough occurred 25% - 30% earlier in columns with 360 mg/l CaCO3 over columns fed with 160 mg/l CaCO3 influent water. A parameter estimation program (PEST) was coupled to PHREEQC to derive site densities from experimental data. Significant parameter fittings were produced for all models, demonstrating that the GC SCM approach can model the impact of carbonate on uranium in flow systems. Derived site densities for the two sediment depths were between 141 and 178 μmol-sites/kg-soil, demonstrating similar sorption capacities despite heterogeneity in sediment mineralogy. Model sensitivity to alkalinity and pH was shown to be moderate compared to fitted site densities, when calcite saturation was allowed to equilibrate. Calcite kinetics emerged as a potential source of error when fitting parameters in flow conditions. Fitted results were compared to data from previous batch and column studies completed on sediments from the Smith-Ranch Highland (SRH) site, to assess variability in derived parameters. Parameters from batch experiments were lower by a factor of 1.1 to 3.4 compared to column studies completed on the same sediments. The difference was attributed to errors in solid-solution ratios and the impact of calcite dissolution in batch experiments. Column studies conducted at two different laboratories showed almost an order of magnitude difference in fitted site densities suggesting that experimental methodology may play a bigger role in column sorption behavior than actual sediment heterogeneity. Our results demonstrate the necessity for ISR sites to remove residual pCO2 and equilibrate restoration water with background geochemistry to reduce uranium mobility. In addition, the observed variability between fitted parameters on the same sediments highlights the need to provide standardized guidelines and methodology for regulators and industry when the GC SCM approach is used for ISR risk assessments.
Dangelmayr, Martin A; Reimus, Paul W; Johnson, Raymond H; Clay, James T; Stone, James J
2018-06-01
This research assesses the ability of a GC SCM to simulate uranium transport under variable geochemical conditions typically encountered at uranium in-situ recovery (ISR) sites. Sediment was taken from a monitoring well at the SRH site at depths 192 and 193 m below ground and characterized by XRD, XRF, TOC, and BET. Duplicate column studies on the different sediment depths, were flushed with synthesized restoration waters at two different alkalinities (160 mg/l CaCO 3 and 360 mg/l CaCO 3 ) to study the effect of alkalinity on uranium mobility. Uranium breakthrough occurred 25% - 30% earlier in columns with 360 mg/l CaCO 3 over columns fed with 160 mg/l CaCO 3 influent water. A parameter estimation program (PEST) was coupled to PHREEQC to derive site densities from experimental data. Significant parameter fittings were produced for all models, demonstrating that the GC SCM approach can model the impact of carbonate on uranium in flow systems. Derived site densities for the two sediment depths were between 141 and 178 μmol-sites/kg-soil, demonstrating similar sorption capacities despite heterogeneity in sediment mineralogy. Model sensitivity to alkalinity and pH was shown to be moderate compared to fitted site densities, when calcite saturation was allowed to equilibrate. Calcite kinetics emerged as a potential source of error when fitting parameters in flow conditions. Fitted results were compared to data from previous batch and column studies completed on sediments from the Smith-Ranch Highland (SRH) site, to assess variability in derived parameters. Parameters from batch experiments were lower by a factor of 1.1 to 3.4 compared to column studies completed on the same sediments. The difference was attributed to errors in solid-solution ratios and the impact of calcite dissolution in batch experiments. Column studies conducted at two different laboratories showed almost an order of magnitude difference in fitted site densities suggesting that experimental methodology may play a bigger role in column sorption behavior than actual sediment heterogeneity. Our results demonstrate the necessity for ISR sites to remove residual pCO2 and equilibrate restoration water with background geochemistry to reduce uranium mobility. In addition, the observed variability between fitted parameters on the same sediments highlights the need to provide standardized guidelines and methodology for regulators and industry when the GC SCM approach is used for ISR risk assessments. Copyright © 2018 Elsevier B.V. All rights reserved.
Opposed slant tube diabatic sorber
Erickson, Donald C.
2004-01-20
A sorber comprised of at least three concentric coils of tubing contained in a shell with a flow path for liquid sorbent in one direction, a flow path for heat transfer fluid which is in counter-current heat exchange relationship with sorbent flow, a sorbate vapor port in communication with at least one of sorbent inlet or exit ports, wherein each coil is coiled in opposite direction to those coils adjoining it, whereby the opposed slant tube configuration is achieved, with structure for flow modification in the core space inside the innermost coil.
Gyroscopic effects in interference of matter waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolstikhin, Oleg I.; Morishita, Toru; Watanabe, Shinichi
2005-11-15
A new gyroscopic interference effect stemming from the Galilean translational factor in the matter wave function is pointed out. In contrast to the well-known Sagnac effect that stems from the geometric phase and leads to a shift of interference fringes, this effect causes slanting of the fringes. We illustrate it by calculations for two split cigar-shaped Bose-Einstein condensates under the conditions of a recent experiment, see Y. Shin et al., Phys. Rev. Lett. 92, 050405 (2004). Importantly, the measurement of slanting obviates the need of a third reference cloud.
Angular Distributions of Discrete Mesoscale Mapping Functions
NASA Astrophysics Data System (ADS)
Kroszczyński, Krzysztof
2015-08-01
The paper presents the results of analyses of numerical experiments concerning GPS signal propagation delays in the atmosphere and the discrete mapping functions defined on their basis. The delays were determined using data from the mesoscale non-hydrostatic weather model operated in the Centre of Applied Geomatics, Military University of Technology. A special attention was paid to investigating angular characteristics of GPS slant delays for low angles of elevation. The investigation proved that the temporal and spatial variability of the slant delays depends to a large extent on current weather conditions.
Multiple piece turbine blade/vane
Kimmel, Keith D
2013-02-05
An air cooled turbine blade or vane of a spar and shell construction with the shell made from a high temperature resistant material that must be formed from an EDM process. The shell and the spar both have a number of hooks extending in a spanwise direction and forming a contact surface that is slanted such that a contact force increases as the engaging hooks move away from one another. The slanted contact surfaces on the hooks provides for an better seal and allows for twisting between the shell and the spar while maintaining a tight fit.
M = +1, ± 1 and ± 2 mode helicon wave excitation.
NASA Astrophysics Data System (ADS)
Kim, J.-H.; Yun, S.-M.; Chang, H.-Y.
1996-11-01
The characteristics of M=+1, ± 1 and ± 2 modes helicon wave excited using a solenoid antenna, Nagoya type III and quadrupole antenna respectively are first investigated. The solenoid antenna is constructed by winding a copper cable on a quartz discharge tube. Two dimensional cross-field measurements of ArII optical emission induced by hot electrons are made to investigate RF power deposition: Components of the wave magnetic field measured with a single-turn, coaxial magnetic probe were compared with the field patterns computed for M=+1, ± 1 and ± 2 modes. The M=+1 mode plasma produced by the solenoid antenna has a cylindrical high intensity plasma column, which center is empty. This cylindrical high intensity column results from the rotation of the cross-sectional electric field pattern (right hand circularly polarization). The radial plasma density profile has a peak at r=2.5cm with axisymmetry. It has been found that the radial profile of the plasma density is in good agreement with the computed power deposition profile. The radial profiles of the wave magnetic field are in good agreement with computations. The plasma excited by Nagoya type III antenna has two high intensity columns which results from the linear combination of M=+1 and -1 modes (i.e. plane polarization). The radial plasma density profile is in good agreement with emission intensity profile of ArII line (488nm). The plasma excited by quadrupole antenna has four high intensity columns which results from the linear combination of M=+2 and -2 modes (i.e. plane polarization). In the M=± 2 modes, the radial plasma density profile is also in good agreement with emission intensity profile of ArII line.
The Orion Fingers: H2 Temperatures and Excitation in an Explosive Outflow
NASA Astrophysics Data System (ADS)
Youngblood, Allison; France, Kevin; Ginsburg, Adam; Hoadley, Keri; Bally, John
2018-04-01
We measure H2 temperatures and column densities across the Orion Becklin-Neugebauer/Kleinmann-Low (BN/KL) explosive outflow from a set of 13 near-infrared (IR) H2 rovibrational emission lines observed with the TripleSpec spectrograph on Apache Point Observatory’s 3.5 m telescope. We find that most of the region is well characterized by a single temperature (∼2000–2500 K), which may be influenced by the limited range of upper-energy levels (6000–20,000 K) probed by our data set. The H2 column density maps indicate that warm H2 comprises 10‑5–10‑3 of the total H2 column density near the center of the outflow. Combining column density measurements for co-spatial H2 and CO at T = 2500 K, we measure a CO/H2 fractional abundance of 2 × 10‑3 and discuss possible reasons why this value is in excess of the canonical 10‑4 value, including dust attenuation, incorrect assumptions on co-spatiality of the H2 and CO emission, and chemical processing in an extreme environment. We model the radiative transfer of H2 in this region with ultraviolet (UV) pumping models to look for signatures of H2 fluorescence from H I Lyα pumping. Dissociative (J-type) shocks and nebular emission from the foreground Orion H II region are considered as possible Lyα sources. From our radiative transfer models, we predict that signatures of Lyα pumping should be detectable in near-IR line ratios given a sufficiently strong source, but such a source is not present in the BN/KL outflow. The data are consistent with shocks as the H2 heating source.
NASA Technical Reports Server (NTRS)
Brinksma, E. J.; Meijer, Y. J.; Connor, B. J.; Manney, G. L.; Bergwerff, J. B.; Bodeker, G. E.; Boyd, I. S.; Liley, J. B.; Hogervorst, W.; Hovenier, J. W.;
1998-01-01
During early August 1997, the ozone column density measured over Lauder was unusually low, with a minimum value of 222 Dobson Units (DU) at August 10. These observations are striking since in August, during the Austral winter, the ozone column density should be heading towards its yearly maximum; The August mean ozone column density measured over Lauder between 1987 and 1996 was 348(+/-28) DU, the lowest monthly average in these ten years was 255 DU. Regular altitude profile measurements of ozone, performed at Network for the Detection of Stratospheric Change (NDSC) station Lauder, make it possible to do a detailed, altitude-resolved, study of the low ozone observations. The measurements show ozone poor air in two altitude regions of the stratosphere: A 'high region', extending from the 600 K to the 1050 K isentrope (25 to 34 km), and a 'low region', below about 550 K (22 km). High resolution reverse trajectory maps of potential vorticity (PV) and ozone mixing ratio, based on the assumption of passive advection by the large-scale three-dimensional winds, show that in the 'high region' the ozone poor air was part of the polar vortex, which was centered off the pole and extended over Lauder for several days, while in the 'low region' the ozone poor air was mixed in from low latitudes. A rapid recovery of the ozone column density, by more than 110 DU within 24 hours, was observed when in the low region an ozone rich filament of the polar vortex moved over Lauder, while in the high region the (ozone poor) high part of the vortex moved away.
Ingold, T; Mätzler, C; Wehrli, C; Heimo, A; Kämpfer, N; Philipona, R
2001-04-20
Ultraviolet light was measured at four channels (305, 311, 318, and 332 nm) with a precision filter radiometer (UV-PFR) at Arosa, Switzerland (46.78 degrees , 9.68 degrees , 1850 m above sea level), within the instrument trial phase of a cooperative venture of the Swiss Meteorological Institute (MeteoSwiss) and the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center. We retrieved ozone-column density data from these direct relative irradiance measurements by adapting the Dobson standard method for all possible single-difference wavelength pairs and one double-difference pair (305/311 and 305/318) under conditions of cloud-free sky and of thin clouds (cloud optical depth <2.5 at 500 nm). All UV-PFR retrievals exhibited excellent agreement with those of collocated Dobson and Brewer spectrophotometers for data obtained during two months in 1999. Combining the results of the error analysis and the findings of the validation, we propose to retrieve ozone-column density by using the 305/311 single difference pair and the double-difference pair. Furthermore, combining both retrievals by building the ratio of ozone-column density yields information that is relevant to data quality control. Estimates of the 305/311 pair agree with measurements by the Dobson and Brewer instruments within 1% for both the mean and the standard deviation of the differences. For the double pair these values are in a range up to 1.6%. However, this pair is less sensitive to model errors. The retrieval performance is also consistent with satellite-based data from the Earth Probe Total Ozone Mapping Spectrometer (EP-TOMS) and the Global Ozone Monitoring Experiment instrument (GOME).
NASA Astrophysics Data System (ADS)
Ingold, Thomas; Mätzler, Christian; Wehrli, Christoph; Heimo, Alain; Kämpfer, Niklaus; Philipona, Rolf
2001-04-01
Ultraviolet light was measured at four channels (305, 311, 318, and 332 nm) with a precision filter radiometer (UV-PFR) at Arosa, Switzerland (46.78 , 9.68 , 1850 m above sea level), within the instrument trial phase of a cooperative venture of the Swiss Meteorological Institute (MeteoSwiss) and the Physikalisch-Meteorologisches Observatorium Davos /World Radiation Center. We retrieved ozone-column density data from these direct relative irradiance measurements by adapting the Dobson standard method for all possible single-difference wavelength pairs and one double-difference pair (305 /311 and 305 /318) under conditions of cloud-free sky and of thin clouds (cloud optical depth <2.5 at 500 nm). All UV-PFR retrievals exhibited excellent agreement with those of collocated Dobson and Brewer spectrophotometers for data obtained during two months in 1999. Combining the results of the error analysis and the findings of the validation, we propose to retrieve ozone-column density by using the 305 /311 single difference pair and the double-difference pair. Furthermore, combining both retrievals by building the ratio of ozone-column density yields information that is relevant to data quality control. Estimates of the 305 /311 pair agree with measurements by the Dobson and Brewer instruments within 1% for both the mean and the standard deviation of the differences. For the double pair these values are in a range up to 1.6%. However, this pair is less sensitive to model errors. The retrieval performance is also consistent with satellite-based data from the Earth Probe Total Ozone Mapping Spectrometer (EP-TOMS) and the Global Ozone Monitoring Experiment instrument (GOME).
The Mean Metal-line Absorption Spectrum of Damped Ly α Systems in BOSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mas-Ribas, Lluís; Miralda-Escudé, Jordi; Pérez-Ràfols, Ignasi
We study the mean absorption spectrum of the Damped Ly α (DLA) population at z ∼ 2.6 by stacking normalized, rest-frame-shifted spectra of ∼27,000 DLA systems from the DR12 of the Baryon Oscillation Spectroscopic Survey (BOSS)/SDSS-III. We measure the equivalent widths of 50 individual metal absorption lines in five intervals of DLA hydrogen column density, five intervals of DLA redshift, and overall mean equivalent widths for an additional 13 absorption features from groups of strongly blended lines. The mean equivalent width of low-ionization lines increases with N {sub H} {sub i}, whereas for high-ionization lines the increase is much weaker.more » The mean metal line equivalent widths decrease by a factor ∼1.1–1.5 from z ∼ 2.1 to z ∼ 3.5, with small or no differences between low- and high-ionization species. We develop a theoretical model, inspired by the presence of multiple absorption components observed in high-resolution spectra, to infer mean metal column densities from the equivalent widths of partially saturated metal lines. We apply this model to 14 low-ionization species and to Al iii, S iii, Si iii, C iv, Si iv, N v, and O vi. We use an approximate derivation for separating the equivalent width contributions of several lines to blended absorption features, and infer mean equivalent widths and column densities from lines of the additional species N i, Zn ii, C ii*, Fe iii, and S iv. Several of these mean column densities of metal lines in DLAs are obtained for the first time; their values generally agree with measurements of individual DLAs from high-resolution, high signal-to-noise ratio spectra when they are available.« less
Estimated global nitrogen deposition using NO2 column density
Lu, Xuehe; Jiang, Hong; Zhang, Xiuying; Liu, Jinxun; Zhang, Zhen; Jin, Jiaxin; Wang, Ying; Xu, Jianhui; Cheng, Miaomiao
2013-01-01
Global nitrogen deposition has increased over the past 100 years. Monitoring and simulation studies of nitrogen deposition have evaluated nitrogen deposition at both the global and regional scale. With the development of remote-sensing instruments, tropospheric NO2 column density retrieved from Global Ozone Monitoring Experiment (GOME) and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) sensors now provides us with a new opportunity to understand changes in reactive nitrogen in the atmosphere. The concentration of NO2 in the atmosphere has a significant effect on atmospheric nitrogen deposition. According to the general nitrogen deposition calculation method, we use the principal component regression method to evaluate global nitrogen deposition based on global NO2 column density and meteorological data. From the accuracy of the simulation, about 70% of the land area of the Earth passed a significance test of regression. In addition, NO2 column density has a significant influence on regression results over 44% of global land. The simulated results show that global average nitrogen deposition was 0.34 g m−2 yr−1 from 1996 to 2009 and is increasing at about 1% per year. Our simulated results show that China, Europe, and the USA are the three hotspots of nitrogen deposition according to previous research findings. In this study, Southern Asia was found to be another hotspot of nitrogen deposition (about 1.58 g m−2 yr−1 and maintaining a high growth rate). As nitrogen deposition increases, the number of regions threatened by high nitrogen deposits is also increasing. With N emissions continuing to increase in the future, areas whose ecosystem is affected by high level nitrogen deposition will increase.
A new all-sky map of Galactic high-velocity clouds from the 21-cm HI4PI survey
NASA Astrophysics Data System (ADS)
Westmeier, Tobias
2018-02-01
High-velocity clouds (HVCs) are neutral or ionized gas clouds in the vicinity of the Milky Way that are characterized by high radial velocities inconsistent with participation in the regular rotation of the Galactic disc. Previous attempts to create a homogeneous all-sky H I map of HVCs have been hampered by a combination of poor angular resolution, limited surface brightness sensitivity and suboptimal sampling. Here, a new and improved H I map of Galactic HVCs based on the all-sky HI4PI survey is presented. The new map is fully sampled and provides significantly better angular resolution (16.2 versus 36 arcmin) and column density sensitivity (2.3 versus 3.7 × 1018 cm-2 at the native resolution) than the previously available LAB survey. The new HVC map resolves many of the major HVC complexes in the sky into an intricate network of narrow H I filaments and clumps that were not previously resolved by the LAB survey. The resulting sky coverage fraction of high-velocity H I emission above a column density level of 2 × 1018 cm-2 is approximately 15 per cent, which reduces to about 13 per cent when the Magellanic Clouds and other non-HVC emission are removed. The differential sky coverage fraction as a function of column density obeys a truncated power law with an exponent of -0.93 and a turnover point at about 5 × 1019 cm-2. H I column density and velocity maps of the HVC sky are made publicly available as FITS images for scientific use by the community.
How well does CO emission measure the H2 mass of MCs?
NASA Astrophysics Data System (ADS)
Szűcs, László; Glover, Simon C. O.; Klessen, Ralf S.
2016-07-01
We present numerical simulations of molecular clouds (MCs) with self-consistent CO gas-phase and isotope chemistry in various environments. The simulations are post-processed with a line radiative transfer code to obtain 12CO and 13CO emission maps for the J = 1 → 0 rotational transition. The emission maps are analysed with commonly used observational methods, I.e. the 13CO column density measurement, the virial mass estimate and the so-called XCO (also CO-to-H2) conversion factor, and then the inferred quantities (I.e. mass and column density) are compared to the physical values. We generally find that most methods examined here recover the CO-emitting H2 gas mass of MCs within a factor of 2 uncertainty if the metallicity is not too low. The exception is the 13CO column density method. It is affected by chemical and optical depth issues, and it measures both the true H2 column density distribution and the molecular mass poorly. The virial mass estimate seems to work the best in the considered metallicity and radiation field strength range, even when the overall virial parameter of the cloud is above the equilibrium value. This is explained by a systematically lower virial parameter (I.e. closer to equilibrium) in the CO-emitting regions; in CO emission, clouds might seem (sub-)virial, even when, in fact, they are expanding or being dispersed. A single CO-to-H2 conversion factor appears to be a robust choice over relatively wide ranges of cloud conditions, unless the metallicity is low. The methods which try to take the metallicity dependence of the conversion factor into account tend to systematically overestimate the true cloud masses.
Using Cassini UVIS Data to Constrain Enceladus' Libration State
NASA Technical Reports Server (NTRS)
Hurford, Terry A.; Helfenstein, P.; Hansen, C.
2010-01-01
Given the non-spherical shape of Enceladus, the satellite may experience gravitational torques that will cause it to physically librate as it orbits Saturn. Physical libration would produce a diurnal oscillation in the longitude of Enceladus' tidal bulge, which could have a profound effect on the diurnal stresses experienced by the surface of the satellite. Although Cassini ISS has placed an observational upper limit on Enceladus' libration amplitude, stall amplitude librations may have geologically significant consequences. For example, a physical libration will affect heat production along the tiger stripes as produced by tidal shear heating and a previous study has explored possible libration states that provided better matches to Cassini CIRS observations of heat along the tiger stripes. Cassini UVIS stellar occultations provided measurements of the column density of the Enceladus plume at two different points in Enceladus' orbit and find comparable column density values. This column density may be a reflection of the amount of the tiger stripe rifts in tension and able to vent volatiles and a physical libration will also affect the fraction of tiger stripe in tension at different points in the orbit. We have modeled the expected fraction of tiger stripes in tension under different libration conditions. Without libration the amount of tiger stripe rifts in tension at both paints in the orbit would not be comparable and therefore may not allow comparable amounts of volatiles to escape. However, we identify libration conditions that do allow comparable amounts of the tiger stripes to be in tension at each point in the orbit, which might lead to comparable column densities. The librations identified coincide with possible librations states identified in the earlier study, which used Cassini CIRS observations.
D/H Toward BD+28 4211: First FUSE Results
NASA Technical Reports Server (NTRS)
Sonneborne, George; Andre, M.; Oliveira, C.; Friedman, S. D.; Howk, J. C.; Kruk, J. W.; Moos, H. W.; Oegerle, W. R.; Sembach, K. R.; Chayer, P.;
2001-01-01
The atomic deuterium-to-hydrogen abundance ratio has been evaluated for the sight line toward the hot O subdwarf BD+28(sup circ) 4211. High signal-to-noise ratio (S/N is approx. 100) observations covering the wavelength range 905 to 1187 angstroms at a wavelength resolving power of lambda/Delta/lambda at approx. 20,000 were obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. BD+28(sup circ) 4211 is approx. 00 pc away with a total H I column density of approx. 10(exp 19)/sq cm, much higher than is typically found in the local interstellar medium (ISM). The deuterium column density was measured by analyzing several D I Lyman series transitions (Lyman delta, C, epsilon, eta, theta, iota with curve of growth and profile fitting techniques, after determining which lines were free of interference from other interstellar species and narrow stellar features. The neutral hydrogen column density was measured by an analysis of the Lyman-alpha profile using HST/Space Telescope Imaging Spectrograph (STIS) and Goddard High Resolution Spectrograph (GHRS) spectra. The stellar spectrum of BD+28(sup circ) 4211 was modelled to assist in determining the sensitivity of H I (Ly-alpha) and D I to the continuum placement and to identify stellar transitions. The D I and H I column densities, their uncertainties, and potential sources of systematic error will be presented. This work is based on data obtained for the FUSE Guaranteed Time Team by the NASA-CNES-CSA FUSE mission operated by the Johns Hopkins University. Financial support to U. S. participants has been provided in part by NASA contract NAS5-32985.
Investigating the physics and environment of Lyman limit systems in cosmological simulations
NASA Astrophysics Data System (ADS)
Erkal, Denis
2015-07-01
In this work, I investigate the properties of Lyman limit systems (LLSs) using state-of-the-art zoom-in cosmological galaxy formation simulations with on the fly radiative transfer, which includes both the cosmic UV background (UVB) and local stellar sources. I compare the simulation results to observations of the incidence frequency of LLSs and the H I column density distribution function over the redshift range z = 2-5 and find good agreement. I explore the connection between LLSs and their host haloes and find that LLSs reside in haloes with a wide range of halo masses with a nearly constant covering fraction within a virial radius. Over the range z = 2-5, I find that more than half of the LLSs reside in haloes with M < 1010 h-1 M⊙, indicating that absorption line studies of LLSs can probe these low-mass galaxies which H2-based star formation models predict to have very little star formation. I study the physical state of individual LLSs and test a simple model which encapsulates many of their properties. I confirm that LLSs have a characteristic absorption length given by the Jeans length and that they are in photoionization equilibrium at low column densities. Finally, I investigate the self-shielding of LLSs to the UVB and explore how the non-sphericity of LLSs affects the photoionization rate at a given N_{H I}. I find that at z ≈ 3, LLSs have an optical depth of unity at a column density of ˜1018 cm-2 and that this is the column density which characterizes the onset of self-shielding.
The Nature of the Torus in the Heavily Obscured AGN Markarian 3: an X-Ray Study
NASA Technical Reports Server (NTRS)
Guainazzi, M.; Risaliti, G.; Awaki, H.; Arevalo, P.; Bauer, F. E.; Bianchi, S.; Boggs, S.E; Brandt, W. N.; Brightman, M.; Christensen, F. E.;
2016-01-01
In this paper, we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy, Markarian 3, carried out between the fall of 2014 and the spring of 2015 with NuSTAR, Suzaku and XMMNewton. The hard X-ray spectrum of Markarian 3 is variable on all the time-scales probed by our campaign, down to a few days. The observed continuum variability is due to an intrinsically variable primary continuum seen in transmission through a large, but still Compton-thin column density (N(sub H) approx. 0.8-1.1 x 10(exp 24)/sq cm). If arranged in a spherical-toroidal geometry, the Compton scattering matter has an opening angle approx. 66deg, and is seen at a grazing angle through its upper rim (inclination angle approx. 70deg). We report a possible occultation event during the 2014 campaign. If the torus is constituted by a system of clouds sharing the same column density, this event allows us to constrain their number (17 +/- 5) and individual column density, [approx. (4.9 +/- 1.5) x 10(exp 22)/ sq cm]. The comparison of IR and X-ray spectroscopic results with state-of-the art torus models suggests that at least two-thirds of the X-ray obscuring gas volume might be located within the dust sublimation radius. We report also the discovery of an ionized absorber, characterized by variable resonant absorption lines due to He- and H-like iron. This discovery lends support to the idea that moderate column density absorbers could be due to clouds evaporated at the outer surface of the torus, possibly accelerated by the radiation pressure due to the central AGN emission leaking through the patchy absorber.
Radial distribution of the flow velocity, efficiency and concentration in a wide HPLC column
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farkas, T.; Sepaniak, M.J.; Guiochon, G.
1997-08-01
The use of optical fibers in a fluorescence-detection scheme permits the accurate determination of the radial distribution of the transit time, the column efficiency, and the analyte concentration at the exit of a chromatographic axial-compression column (50 mmID). The results obtained demonstrate that the column is not homogeneous, but suggest a nearly cylindrical distribution of the packing density. The average velocity close to the column wall is 7% lower than along its axis and the HETP 25% higher. The lack of homogeneity of the column packing is another source of band broadening not taken into account in chromatography so far.more » It causes the apparent HETP derived from the conventional elution chromatogram recorded on the bulk eluent to be larger than the local HETP and the band profile to be unsymmetrical with a slight tail reminiscent of kinetic tailing.« less
A {sup 13}CO SURVEY OF INTERMEDIATE-MASS STAR-FORMING REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundquist, Michael J.; Kobulnicky, Henry A.; Kerton, Charles R.
2015-06-10
We have conducted a {sup 13}CO survey of a sample of 128 infrared color-selected intermediate-mass star-forming region (IM SFR) candidates. We utilized the Onsala 20 m telescope to observe {sup 13}CO (1–0) toward 67 northern IM SFRs, used the 12 m Atacama Pathfinder Experiment telescope to observe {sup 13}CO (2–1) toward 22 southern IM SFRs, and incorporated an additional 39 sources from the Boston University Five College Radio Astronomy Observatory Galactic Ring Survey which observed {sup 13}CO (1–0). We detect {sup 13}CO (1–0) in 58 of the 67 northern sources and {sup 13}CO (2–1) in 20 of the 22 southernmore » sources. The mean molecular column densities and {sup 13}CO linewidths in the inner Galaxy are higher by factors of 3.4 and 1.5, respectively, than the outer Galaxy. We attribute this difference to molecular clouds in the inner Galaxy being more massive and hosting star forming regions with higher luminosities on average than the outer Galaxy. IM SFRs have mean a molecular column density of 7.89 × 10{sup 21} cm{sup −2}, a factor of 3.1 lower than that for a sample of high-mass regions, and have a mean {sup 13}CO linewidth of 1.84 km s{sup −1}, a factor of 1.5 lower than that for high-mass regions. We demonstrate a correlation between {sup 13}CO linewidth and infrared luminosity as well as between molecular column density and infrared luminosity for the entire sample of intermediate-mass and high-mass regions. IM SFRs appear to form in distinctly lower-density environments with mean linewidths and beam-averaged column densities a factor of several lower than high-mass star-forming regions.« less
NASA Astrophysics Data System (ADS)
Calcutt, Hannah
2015-04-01
Molecules are essential to the formation of stars, by allowing radiation to escape the cloud and cooling to occur. Over 180 molecules have been detected in interstellar environments, ranging from comets to interstellar clouds. Their spectra are useful probes of the conditions in which these molecules form. Comparison of rest frequencies to observed frequencies can provide information about the velocity of gas and indicate physical structures. The density, temperature, and excitation conditions of gas can be determined directly from the spectra of molecules. Furthermore, by taking a chemical inventory of a particular object, one can gain an understanding of the chemical processes occurring within a cloud. The class of molecules known as complex molecules (>6 atoms), are of particular interest when probing the conditions in massive starforming environments, as they are observed to trace a more compact region than smaller molecules. This thesis details the work of my PhD, to explore how complex molecules can be used to trace the physical and chemical conditions in hot cores (HCs), one of the earliest stages of massive star formation. This work combines both the observations and chemical modelling of several different massive star-forming regions. We identify molecular transitions observed in the spectra of these regions, and calculate column densities and rotation temperatures of these molecules (Chapters 2 and 3). In Chapter 4, we chemically model the HCs, and perform a comparison between observational column densities and chemical modelling column densities. In Chapter 5, we look at the abundance ratio of three isomers, acetic acid, glycolaldehyde, and methyl formate, to ascertain whether this ratio can be used as an indicator of HC evolution. Finally, we explore the chemistry of the HC IRAS 17233-3606, to identify emission features in the spectra, and determine column densities and rotation temperatures of the detected molecules.
2MASS wide-field extinction maps. V. Corona Australis
NASA Astrophysics Data System (ADS)
Alves, João; Lombardi, Marco; Lada, Charles J.
2014-05-01
We present a near-infrared extinction map of a large region (~870 deg2) covering the isolated Corona Australis complex of molecular clouds. We reach a 1-σ error of 0.02 mag in the K-band extinction with a resolution of 3 arcmin over the entire map. We find that the Corona Australis cloud is about three times as large as revealed by previous CO and dust emission surveys. The cloud consists of a 45 pc long complex of filamentary structure from the well known star forming Western-end (the head, N ≥ 1023 cm-2) to the diffuse Eastern-end (the tail, N ≤ 1021 cm-2). Remarkably, about two thirds of the complex both in size and mass lie beneath AV ~ 1 mag. We find that the probability density function (PDF) of the cloud cannot be described by a single log-normal function. Similar to prior studies, we found a significant excess at high column densities, but a log-normal + power-law tail fit does not work well at low column densities. We show that at low column densities near the peak of the observed PDF, both the amplitude and shape of the PDF are dominated by noise in the extinction measurements making it impractical to derive the intrinsic cloud PDF below AK < 0.15 mag. Above AK ~ 0.15 mag, essentially the molecular component of the cloud, the PDF appears to be best described by a power-law with index -3, but could also described as the tail of a broad and relatively low amplitude, log-normal PDF that peaks at very low column densities. FITS files of the extinction maps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/565/A18
Guidance for Subaqueous Dredged Material Capping.
1998-06-01
from Ambrose Channel , over the contaminated sediments. At least two intermediate sur- veys and additional capping were required before capping was...organisms to a given bioturbation depth; reducing contami- nant flux rates to achieve specific sediment, pore water, or water column target...bathymetry, bottom slopes, cur- rents, water depths, water column density stratification, erosion/accretion trends, proximity to navigation channels
NASA Astrophysics Data System (ADS)
Michelitsch, T. M.; Collet, B. A.; Riascos, A. P.; Nowakowski, A. F.; Nicolleau, F. C. G. A.
2017-12-01
We analyze a Markovian random walk strategy on undirected regular networks involving power matrix functions of the type L\\frac{α{2}} where L indicates a ‘simple’ Laplacian matrix. We refer to such walks as ‘fractional random walks’ with admissible interval 0<α ≤slant 2 . We deduce probability-generating functions (network Green’s functions) for the fractional random walk. From these analytical results we establish a generalization of Polya’s recurrence theorem for fractional random walks on d-dimensional infinite lattices: The fractional random walk is transient for dimensions d > α (recurrent for d≤slantα ) of the lattice. As a consequence, for 0<α< 1 the fractional random walk is transient for all lattice dimensions d=1, 2, .. and in the range 1≤slantα < 2 for dimensions d≥slant 2 . Finally, for α=2 , Polya’s classical recurrence theorem is recovered, namely the walk is transient only for lattice dimensions d≥slant 3 . The generalization of Polya’s recurrence theorem remains valid for the class of random walks with Lévy flight asymptotics for long-range steps. We also analyze the mean first passage probabilities, mean residence times, mean first passage times and global mean first passage times (Kemeny constant) for the fractional random walk. For an infinite 1D lattice (infinite ring) we obtain for the transient regime 0<α<1 closed form expressions for the fractional lattice Green’s function matrix containing the escape and ever passage probabilities. The ever passage probabilities (fractional lattice Green’s functions) in the transient regime fulfil Riesz potential power law decay asymptotic behavior for nodes far from the departure node. The non-locality of the fractional random walk is generated by the non-diagonality of the fractional Laplacian matrix with Lévy-type heavy tailed inverse power law decay for the probability of long-range moves. This non-local and asymptotic behavior of the fractional random walk introduces small-world properties with the emergence of Lévy flights on large (infinite) lattices.
Preparative liquid column electrophoresis of T and B lymphocytes at gravity = 1
NASA Technical Reports Server (NTRS)
Van Oss, C. J.; Bigazzi, P. E.; Gillman, C. F.; Allen, R. E.
1974-01-01
Vertical liquid columns containing low-molecular-weight dextran density gradients can be used for preparative lymphocyte electrophoresis on earth, in simulation of zero gravity conditions. Another method that has been tested at 1 g, is the electrophoresis of lymphocytes in an upward direction in vertical columns. By both methods up to 100 million lymphocytes can be separated at one time in a 30-cm glass column of 8-mm inside diameter, at 12 V/cm, in two hours. Due to convection and sedimentation problems, the separation at 1 g is less than ideal, but it is expected that at zero gravity electrophoresis will probe to be a uniquely powerful cell separation tool.
The Effect of Halo Mass on the H I Content of Galaxies in Groups and Clusters
NASA Astrophysics Data System (ADS)
Yoon, Ilsang; Rosenberg, Jessica L.
2015-10-01
We combine data from the Sloan Digital Sky Survey (SDSS) and the Arecibo Legacy Fast ALFA Survey (ALFALFA) to study the cold atomic gas content of galaxies in groups and clusters in the local universe. A careful cross-matching of galaxies in the SDSS, ALFALFA, and SDSS group catalogs provides a sample of group galaxies with stellar masses {10}8.4{M}⊙ ≤slant {M}*≤slant {10}10.6{M}⊙ and group halo masses {10}12.5{h}-1{M}⊙ ≤slant {M}h≤slant {10}15.0{h}-1{M}⊙ . Controlling our sample in stellar mass and redshift, we find no significant radial variation in the galaxy H i gas-to-stellar mass ratio for the halo mass range in our sample. However, the fraction of galaxies detected in ALFALFA declines steadily toward the centers of groups, with the effect being most prominent in the most massive halos. In the outskirts of massive halos a hint of a depressed detection fraction for low-mass galaxies suggests pre-processing that decreases the H i in these galaxies before they fall into massive clusters. We interpret the decline in the ALFALFA detection of galaxies in the context of a threshold halo mass for ram pressure stripping for a given galaxy stellar mass. The lack of an observable decrease in the galaxy H i gas-to-stellar mass ratio with the position of galaxies within groups and clusters highlights the difficulty of detecting the impact of environment on the galaxy H i content in a shallow H i survey.
Daftary-Kapur, Tarika; Penrod, Steven D; O'Connor, Maureen; Wallace, Brian
2014-10-01
The purpose of this study was to examine the influence of pretrial publicity (PTP) on mock juror decision making. Specifically, we examined the influence of quantity and slant of the PTP (proprosecution vs. prodefense), the persistence of PTP effects over time, and whether the PTP effects demonstrated in research laboratories would also occur in more naturalistic settings (generalizability). Using a shadow jury paradigm we examined these effects using a real trial as stimulus. Mock jurors included 115 jury-eligible community members who were naturally exposed to PTP in the venue in which the actual case occurred and 156 who were experimentally exposed. We found mock jurors were significantly influenced by both the slant and quantity of the PTP to which they were exposed, such that those exposed to proprosecution or prodefense PTP tended to render decision in support of the party favored in the PTP, and those exposed to greater quantities of PTP tended to be more biased. Additionally, PTP effects persisted throughout the course of the trial and continued to influence judgments in face of trial evidence and arguments. A finding of no significant difference in the effect of exposure slant between the naturally exposed and experimentally exposed samples provides support for the external validity of laboratory studies examining PTP effects. This research helps address some of the concerns raised by courts with regard to the durability of PTP effects and the application of laboratory findings to real world settings. PsycINFO Database Record (c) 2014 APA, all rights reserved.
A nontransferring dry adhesive with hierarchical polymer nanohairs.
Jeong, Hoon Eui; Lee, Jin-Kwan; Kim, Hong Nam; Moon, Sang Heup; Suh, Kahp Y
2009-04-07
We present a simple yet robust method for fabricating angled, hierarchically patterned high-aspect-ratio polymer nanohairs to generate directionally sensitive dry adhesives. The slanted polymeric nanostructures were molded from an etched polySi substrate containing slanted nanoholes. An angled etching technique was developed to fabricate slanted nanoholes with flat tips by inserting an etch-stop layer of silicon dioxide. This unique etching method was equipped with a Faraday cage system to control the ion-incident angles in the conventional plasma etching system. The polymeric nanohairs were fabricated with tailored leaning angles, sizes, tip shapes, and hierarchical structures. As a result of controlled leaning angle and bulged flat top of the nanohairs, the replicated, slanted nanohairs showed excellent directional adhesion, exhibiting strong shear attachment (approximately 26 N/cm(2) in maximum) in the angled direction and easy detachment (approximately 2.2 N/cm(2)) in the opposite direction, with a hysteresis value of approximately 10. In addition to single scale nanohairs, monolithic, micro-nanoscale combined hierarchical hairs were also fabricated by using a 2-step UV-assisted molding technique. These hierarchical nanoscale patterns maintained their adhesive force even on a rough surface (roughness <20 microm) because of an increase in the contact area by the enhanced height of hierarchy, whereas simple nanohairs lost their adhesion strength. To demonstrate the potential applications of the adhesive patch, the dry adhesive was used to transport a large-area glass (47.5 x 37.5 cm(2), second-generation TFT-LCD glass), which could replace the current electrostatic transport/holding system with further optimization.
A nontransferring dry adhesive with hierarchical polymer nanohairs
Jeong, Hoon Eui; Lee, Jin-Kwan; Kim, Hong Nam; Moon, Sang Heup; Suh, Kahp Y.
2009-01-01
We present a simple yet robust method for fabricating angled, hierarchically patterned high-aspect-ratio polymer nanohairs to generate directionally sensitive dry adhesives. The slanted polymeric nanostructures were molded from an etched polySi substrate containing slanted nanoholes. An angled etching technique was developed to fabricate slanted nanoholes with flat tips by inserting an etch-stop layer of silicon dioxide. This unique etching method was equipped with a Faraday cage system to control the ion-incident angles in the conventional plasma etching system. The polymeric nanohairs were fabricated with tailored leaning angles, sizes, tip shapes, and hierarchical structures. As a result of controlled leaning angle and bulged flat top of the nanohairs, the replicated, slanted nanohairs showed excellent directional adhesion, exhibiting strong shear attachment (≈26 N/cm2 in maximum) in the angled direction and easy detachment (≈2.2 N/cm2) in the opposite direction, with a hysteresis value of ≈10. In addition to single scale nanohairs, monolithic, micro-nanoscale combined hierarchical hairs were also fabricated by using a 2-step UV-assisted molding technique. These hierarchical nanoscale patterns maintained their adhesive force even on a rough surface (roughness <20 μm) because of an increase in the contact area by the enhanced height of hierarchy, whereas simple nanohairs lost their adhesion strength. To demonstrate the potential applications of the adhesive patch, the dry adhesive was used to transport a large-area glass (47.5 × 37.5 cm2, second-generation TFT-LCD glass), which could replace the current electrostatic transport/holding system with further optimization. PMID:19304801
Surveying the H I Content of the Galactic Halo via Lyman Series Absorption
NASA Astrophysics Data System (ADS)
Fox, Andrew
The halo of the Milky Way is home to a population of gaseous high-velocity clouds (HVCs) that trace the exchange of matter between the Galaxy and its surroundings. HVCs have been studied extensively via H I 21 cm emission and UV metal-line absorption. Here we propose a third, complementary approach for studying HVCs: surveying them in UV Lyman series H I absorption using all AGN spectra in the FarUltraviolet Spectroscopic Explorer (FUSE) archive. This H I survey will constitute a metal-independent view of the baryons in the Galactic halo at a level over 1000 times more sensitive than 21 cm surveys, and it can be conducted with archival data alone. 67 AGN are available in the FUSE archives with suitable properties (S/N>4 at 977 A), and the data are reduced and ready for analysis. With these data, we will calculate HVC sky covering fractions in H I absorption and conduct HVC metallicity measurements in sightlines with UV metal absorption in HST/COS or HST/STIS spectra. We will calculate the Galactic H I column density distribution function (CDDF), the incidence of H I clouds per unit column density that encodes underlying density and ionization variations and is sensitive to the escaping ionization radiation field. The CDDF has been measured at high redshifts over eight orders of magnitude of H I column density via quasar-absorption line experiments. However, the Galactic H I CDDF has until now only been constrained at high H I column density where HVCs can be seen in 21cm emission. Our detailed work plan will involve identifying and modeling HVC absorption in ten Lyman series lines from Ly gamma 972 to Ly mu 917 in each sight line in the FUSE sample. This will constrain the H I CDDF in the column density range log N(H I) 14 to 18. By combining with the existing H I CDDF in 21 cm HVCs in the range log N(H I) 18 to 21 from the all-sky GASS survey, we will produce a global Galactic CDDF complete over seven orders of magnitude, providing key new information on the distribution of diffuse gas in the Galactic halo. This will allow us to place the Milky Way s halo in the context of those of external galaxies, and to identify the galactic contribution from bound gas in halos to the extragalactic CDDF.
Electric discharge synthesis of HCN in simulated Jovian atmospheres
NASA Technical Reports Server (NTRS)
Stribling, Roscoe; Miller, Stanley L.
1987-01-01
Corona discharge is presently considered as a possible source of the HCN detected in the Jovian atmosphere at 2.2 x 10 to the -7th moles/sq cm column density, for the cases of gas mixtures containing H2, CH4, and NH3, with H2/CH4 ratios from 4.4 to 1585. A 3:1 ratio of corona discharge to lightning energy similar to that of the earth is applied to Jupiter. Depending on the lightning energy available on Jupiter and the eddy diffusion coefficients in the synthesis region, HCN column densities generated by corona discharge could account for about 10 percent of the HCN observed.
I(CO)/N(H2) conversions and molecular gas abundances in spiral and irregular galaxies
NASA Technical Reports Server (NTRS)
Maloney, Philip; Black, John H.
1988-01-01
Observations of emission in the J = 1-0 rotational transition of interstellar CO are used to obtain column densities and masses of hydrogen. By taking into account the effects of variations in molecular cloud parameters on conversion factors between integrated CO intensity and molecular hydrogen column density, it is shown that conversion factors are very sensitive to the kinetic temperature of the emitting gas. Results indicate that the gas temperatures in systems with high star formation rates can be quite high, and it is suggested that use of a standard conversion factor will lead to systematic overestimation of the amount of molecular gas.
A Herschel-SPIRE Survey of the MonR2 Giant Molecular Cloud
NASA Astrophysics Data System (ADS)
Pokhrel, Riwaj; Gutermuth, Robert A.; Ali, Babar; Megeath, S. Thomas; Pipher, Judith; Myers, Philip C.; Fischer, William J.; Henning, Thomas; Wolk, Scott J.; Allen, Lori; Tobin, John J.
2014-06-01
We present a new survey of the MonR2 giant molecular cloud with SPIRE on the Herschel Space Observatory. We cross-calibrated SPIRE data with Planck-HFI and accounted for its absolute offset and zero point correction. We fixed emissivity with the help of flux-error and flux ratio plots. As the best representation of cold dusty molecular clouds, we did greybody fits of the SEDs. We studied the nature of distribution of column densities above and below certain critical limit, followed by the mass and temperature distributions for different regions. We isolated the filaments and studied radial column density profile in this cloud.
A Multi-Wavelength Study of the Hot Component of the Interstellar Medium
NASA Technical Reports Server (NTRS)
Nichols, Joy; Oliversen, Ronald K. (Technical Monitor)
2002-01-01
The goals of this research are as follows: (1) Using the large number of lines of sight available in the ME database, identify the lines of sight with high-velocity components in interstellar lines, from neutral species through Si VI, C IV, and N V; (2) Compare the column density of the main components (i.e. low velocity components) of the interstellar lines with distance, galactic longitude and latitude, and galactic radial position. Derive statistics on the distribution of components in space (e.g. mean free path, mean column density of a component). Compare with model predictions for the column densities in the walls of old SNR bubbles and superbubbles, in evaporating cloud boundaries and in turbulent mixing layers; (3) For the lines of sight associated with multiple high velocity, high ionization components, model the shock parameters for the associated superbubble and SNR to provide more accurate energy input information for hot phase models and galactic halo models. Thus far 49 lines of sight with at least one high velocity component to the C IV lines have been identified; and (4) Obtain higher resolution data for the lines of sight with high velocity components (and a few without) to further refine these models.
Rapid ionization of the environment of SN 1987A
NASA Technical Reports Server (NTRS)
Raga, A. C.
1987-01-01
It has been suggested by some authors that IUE observations of the supernova SN 1987A show the presence of a strong component of the interstellar C IV 1550 and Si IV 1393 absorption lines at a velocity that approximately corresponds to the velocity of the LMC. It is possible that this component might come from originally neutral (or at least not very highly ionized) gas which has been photoionized by the initially very strong ionizing radiation field of the supernova. Theoretical considerations of this scenario lead to the study of fast (with velocities of about c) ionization fronts. It is shown that for reasonable model parameters it is possible to obtain considerably large C IV column densities, in agreement with the IUE observations. On the other hand, the models do not so easily predict the large Si IV column densities that are also obtained from the IUE observations. It is found that only models in which the interstellar medium surrounding SN 1987A is initially composed of already ionized hydrogen and helium predict substantial Si IV column densities. This result provides an interesting prediction of the ionization state of the environment of the presupernova star.
Wide-field SCUBA-2 observations of NGC 2264: submillimetre clumps and filaments
NASA Astrophysics Data System (ADS)
Buckle, J. V.; Richer, J. S.
2015-10-01
We present wide-field observations of the NGC 2264 molecular cloud in the dust continuum at 850 and 450 μm using SCUBA-2 on the James Clerk Maxwell Telescope. Using 12CO 3 → 2 molecular line data, we determine that emission from CO contaminates the 850 μm emission at levels ˜30 per cent in localized regions associated with high-velocity molecular outflows. Much higher contamination levels of 60 per cent are seen in shocked regions near the massive star S Mon. If not removed, the levels of CO contamination would contribute an extra 13 per cent to the dust mass in NGC 2264. We use the FELLWALKER routine to decompose the dust into clumpy structures, and a Hessian-based routine to decompose the dust into filamentary structures. The filaments can be described as a hub-filament structure, with lower column density filaments radiating from the NGC 2264 C protocluster hub. Above mean filament column densities of 2.4 × 1022 cm-2, star formation proceeds with the formation of two or more protostars. Below these column densities, filaments are starless, or contain only a single protostar.
Optical observations of nearby interstellar gas
NASA Astrophysics Data System (ADS)
Frisch, P. C.; York, D. G.
1984-11-01
Observations indicated that a cloud with a heliocentric velocity of approximately -28 km/s and a hydrogen column density that possibly could be on the order of, or greater than, 5 x 10 to the 19 power/square cm is located within the nearest 50 to 80 parsecs in the direction of Ophiuchus. This is a surprisingly large column density of material for this distance range. The patchy nature of the absorption from the cloud indicates that it may not be a feature with uniform properties, but rather one with small scale structure which includes local enhancements in the column density. This cloud is probably associated with the interstellar cloud at about the same velocity in front of the 20 parsec distant star alpha Oph (Frisch 1981, Crutcher 1982), and the weak interstellar polarization found in stars as near as 35 parsecs in this general region (Tinbergen 1982). These data also indicate that some portion of the -14 km/s cloud also must lie within the 100 parsec region. Similar observations of both Na1 and Ca2 interstellar absorption features were performed in other lines of sight. Similar interstellar absorption features were found in a dozen stars between 20 and 100 parsecs of the Sun.
Optical Observations of Nearby Interstellar Gas
NASA Technical Reports Server (NTRS)
Frisch, P. C.; York, D. G.
1984-01-01
Observations indicated that a cloud with a heliocentric velocity of approximately -28 km/s and a hydrogen column density that possibly could be on the order of, or greater than, 5 x 10 to the 19 power/square cm is located within the nearest 50 to 80 parsecs in the direction of Ophiuchus. This is a surprisingly large column density of material for this distance range. The patchy nature of the absorption from the cloud indicates that it may not be a feature with uniform properties, but rather one with small scale structure which includes local enhancements in the column density. This cloud is probably associated with the interstellar cloud at about the same velocity in front of the 20 parsec distant star alpha Oph (Frisch 1981, Crutcher 1982), and the weak interstellar polarization found in stars as near as 35 parsecs in this general region (Tinbergen 1982). These data also indicate that some portion of the -14 km/s cloud also must lie within the 100 parsec region. Similar observations of both Na1 and Ca2 interstellar absorption features were performed in other lines of sight. Similar interstellar absorption features were found in a dozen stars between 20 and 100 parsecs of the Sun.
NASA Technical Reports Server (NTRS)
Woronowicz, Michael
2016-01-01
Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M = 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plume's axis. For sonic plumes this ratio is reduced to about 4/3. For high Mach number cases the maximum CND will be found along the axial centerline path. Keywords: column number density, plume flows, outgassing, free molecule flow.
Seasonal variability of the hydrogen exosphere of Mars
NASA Astrophysics Data System (ADS)
Halekas, J. S.
2017-05-01
The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission measures both the upstream solar wind and collisional products from energetic neutral hydrogen atoms that precipitate into the upper atmosphere after their initial formation by charge exchange with exospheric hydrogen. By computing the ratio between the densities of these populations, we derive a robust measurement of the column density of exospheric hydrogen upstream of the Martian bow shock. By comparing with Chamberlain-type model exospheres, we place new constraints on the structure and escape rates of exospheric hydrogen, derived from observations sensitive to a different and potentially complementary column from most scattered sunlight observations. Our observations provide quantitative estimates of the hydrogen exosphere with nearly complete temporal coverage, revealing order of magnitude seasonal changes in column density and a peak slightly after perihelion, approximately at southern summer solstice. The timing of this peak suggests either a lag in the response of the Martian atmosphere to solar inputs or a seasonal effect driven by lower atmosphere dynamics. The high degree of seasonal variability implied by our observations suggests that the Martian atmosphere and the thermal escape of light elements depend sensitively on solar inputs.
Evolution of column density distributions within Orion A⋆
NASA Astrophysics Data System (ADS)
Stutz, A. M.; Kainulainen, J.
2015-05-01
We compare the structure of star-forming molecular clouds in different regions of Orion A to determine how the column density probability distribution function (N-PDF) varies with environmental conditions such as the fraction of young protostars. A correlation between the N-PDF slope and Class 0 protostar fraction has been previously observed in a low-mass star-formation region (Perseus); here we test whether a similar correlation is observed in a high-mass star-forming region. We used Herschel PACS and SPIRE cold dust emission observations to derive a column density map of Orion A. We used the Herschel Orion Protostar Survey catalog to accurately identify and classify the Orion A young stellar object content, including the cold and relatively short-lived Class 0 protostars (with a lifetime of ~0.14 Myr). We divided Orion A into eight independent regions of 0.25 square degrees (13.5 pc2); in each region we fit the N-PDF distribution with a power law, and we measured the fraction of Class 0 protostars. We used a maximum-likelihood method to measure the N-PDF power-law index without binning the column density data. We find that the Class 0 fraction is higher in regions with flatter column density distributions. We tested the effects of incompleteness, extinction-driven misclassification of Class 0 sources, resolution, and adopted pixel-scales. We show that these effects cannot account for the observed trend. Our observations demonstrate an association between the slope of the power-law N-PDF and the Class 0 fractions within Orion A. Various interpretations are discussed, including timescales based on the Class 0 protostar fraction assuming a constant star-formation rate. The observed relation suggests that the N-PDF can be related to an evolutionary state of the gas. If universal, such a relation permits evaluating the evolutionary state from the N-PDF power-law index at much greater distances than those accessible with protostar counts. Appendices are available in electronic form at http://www.aanda.orgThe N(H) map as a FITS file is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/L6
Stability and Structure of Star-Shape Granules
NASA Astrophysics Data System (ADS)
Zhao, Yuchen; Bares, Jonathan; Zheng, Matthew; Dierichs, Karola; Menges, Achim; Behringer, Robert
2015-11-01
Columns are made of convex non-cohesive grains like sand collapse after being released from initial positions. On the other hand, various architectures built by concave grains can maintain stability. We explore why these structures are stable, and how stable they can be. We performed experiments by randomly pouring identical star-shape particles into hollow cylinders left on glass and a rough base, and observed stable granular columns after lifting the cylinders. Particles have six 9 mm arms, which extend symmetrically in the xyz directions. Both the probability of creating a stable column and mechanical stability aspects have been investigated. We define r as the weight fraction of particles that fall out of the column after removing confinement. r gradually increases as the column height increases, or the column diameter decreases. We also explored different experiment conditions such as vibration of columns with confinement, or large basal friction. We also consider different stability measures such as the maximum inclination angle or maximum weight a column can support. In order to understand structure leading to stability, 3D CT scan reconstructions of columns have been done and coordination number and packing density will be discussed. We acknowledge supports from W.M.Keck Foundation and Research Triangle MRSEC.
Tropospheric wet refractivity tomography using multiplicative algebraic reconstruction technique
NASA Astrophysics Data System (ADS)
Xiaoying, Wang; Ziqiang, Dai; Enhong, Zhang; Fuyang, K. E.; Yunchang, Cao; Lianchun, Song
2014-01-01
Algebraic reconstruction techniques (ART) have been successfully used to reconstruct the total electron content (TEC) of the ionosphere and in recent years be tentatively used in tropospheric wet refractivity and water vapor tomography in the ground-based GNSS technology. The previous research on ART used in tropospheric water vapor tomography focused on the convergence and relaxation parameters for various algebraic reconstruction techniques and rarely discussed the impact of Gaussian constraints and initial field on the iteration results. The existing accuracy evaluation parameters calculated from slant wet delay can only evaluate the resultant precision of the voxels penetrated by slant paths and cannot evaluate that of the voxels not penetrated by any slant path. The paper proposes two new statistical parameters Bias and RMS, calculated from wet refractivity of the total voxels, to improve the deficiencies of existing evaluation parameters and then discusses the effect of the Gaussian constraints and initial field on the convergence and tomography results in multiplicative algebraic reconstruction technique (MART) to reconstruct the 4D tropospheric wet refractivity field using simulation method.
2 kV slanted tri-gate GaN-on-Si Schottky barrier diodes with ultra-low leakage current
NASA Astrophysics Data System (ADS)
Ma, Jun; Matioli, Elison
2018-01-01
This letter reports lateral GaN-on-Si power Schottky barrier diodes (SBDs) with unprecedented voltage-blocking performance by integrating 3-dimensionally a hybrid of tri-anode and slanted tri-gate architectures in their anode. The hybrid tri-anode pins the voltage drop at the Schottky junction (VSCH), despite a large applied reverse bias, fixing the reverse leakage current (IR) of the SBD. Such architecture led to an ultra-low IR of 51 ± 5.9 nA/mm at -1000 V, in addition to a small turn-on voltage (VON) of 0.61 ± 0.03 V. The slanted tri-gate effectively distributes the electric field in OFF state, leading to a remarkably high breakdown voltage (VBR) of -2000 V at 1 μA/mm, constituting a significant breakthrough from existing technologies. The approach pursued in this work reduces the IR and increases the VBR without sacrificing the VON, which provides a technology for high-voltage SBDs, and unveils the unique advantage of tri-gates for advanced power applications.
A microfluidic separation platform using an array of slanted ramps
NASA Astrophysics Data System (ADS)
Risbud, Sumedh; Bernate, Jorge; Drazer, German
2013-03-01
The separation of the different components of a sample is a crucial step in many micro- and nano-fluidic applications, including the detection of infections, the capture of circulating tumor cells, the isolation of proteins, RNA and DNA, to mention but a few. Vector chromatography, in which different species migrate in different directions in a planar microfluidic device thus achieving spatial as well as temporal resolution, offers the promise of high selectivity along with high throughput. In this work, we present a microfluidic vector chromatography platform consisting of slanted ramps in a microfluidic channel for the separation of suspended particles. We construct these ramps using inclined UV lithography, such that the inclined portion of the ramps is upstream. We show that particles of different size displace laterally to a different extent when driven by a flow field over a slanted ramp. The flow close to the ramp reorients along the ramp, causing the size-dependent deflection of the particles. The cumulative effect of an array of these ramps would cause particles of different size to migrate in different directions, thus allowing their passive and continuous separation.
NASA Astrophysics Data System (ADS)
Zheng, Jiashan
2017-05-01
This paper deals with a quasilinear chemotaxis-haptotaxis system with generalized logistic source {ut=∇ṡ(ϕ(u)∇u)-∇ṡ(u∇v)-∇ṡ(u∇w)+u(1-ur-1-w),vt=Δv-v+u,wt=-vw, under homogeneous Neumann boundary conditions in a smooth bounded domain {{{R}}N}(N≥slant 3) , with parameter r > 1, where the given function φ (u) is the nonlinear diffusion. Besides appropriate smoothness assumptions, in this paper it is only required that φ (u)≥slant {{C}φ}(u+1){{}m-1} for all u≥slant 0 with some {{C}φ}>0 and some m{>2-2N if 1
The Visual Representation of 3D Object Orientation in Parietal Cortex
Cowan, Noah J.; Angelaki, Dora E.
2013-01-01
An accurate representation of three-dimensional (3D) object orientation is essential for interacting with the environment. Where and how the brain visually encodes 3D object orientation remains unknown, but prior studies suggest the caudal intraparietal area (CIP) may be involved. Here, we develop rigorous analytical methods for quantifying 3D orientation tuning curves, and use these tools to the study the neural coding of surface orientation. Specifically, we show that single neurons in area CIP of the rhesus macaque jointly encode the slant and tilt of a planar surface, and that across the population, the distribution of preferred slant-tilts is not statistically different from uniform. This suggests that all slant-tilt combinations are equally represented in area CIP. Furthermore, some CIP neurons are found to also represent the third rotational degree of freedom that determines the orientation of the image pattern on the planar surface. Together, the present results suggest that CIP is a critical neural locus for the encoding of all three rotational degrees of freedom specifying an object's 3D spatial orientation. PMID:24305830
Boundedness and exponential convergence in a chemotaxis model for tumor invasion
NASA Astrophysics Data System (ADS)
Jin, Hai-Yang; Xiang, Tian
2016-12-01
We revisit the following chemotaxis system modeling tumor invasion {ut=Δu-∇ṡ(u∇v),x∈Ω,t>0,vt=Δv+wz,x∈Ω,t>0,wt=-wz,x∈Ω,t>0,zt=Δz-z+u,x∈Ω,t>0, in a smooth bounded domain Ω \\subset {{{R}}n}(n≥slant 1) with homogeneous Neumann boundary and initial conditions. This model was recently proposed by Fujie et al (2014 Adv. Math. Sci. Appl. 24 67-84) as a model for tumor invasion with the role of extracellular matrix incorporated, and was analyzed later by Fujie et al (2016 Discrete Contin. Dyn. Syst. 36 151-69), showing the uniform boundedness and convergence for n≤slant 3 . In this work, we first show that the {{L}∞} -boundedness of the system can be reduced to the boundedness of \\parallel u(\\centerdot,t){{\\parallel}{{L\\frac{n{4}+ɛ}}(Ω )}} for some ɛ >0 alone, and then, for n≥slant 4 , if the initial data \\parallel {{u}0}{{\\parallel}{{L\\frac{n{4}}}}} , \\parallel {{z}0}{{\\parallel}{{L\\frac{n{2}}}}} and \\parallel \
Qualitative and quantitative processing of side-scan sonar data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwan, F.S.; Anderson, A.L.; Hilde, T.W.C.
1990-06-01
Modern side-scan sonar systems allow vast areas of seafloor to be rapidly imaged and quantitatively mapped in detail. The application of remote sensing image processing techniques can be used to correct for various distortions inherent in raw sonography. Corrections are possible for water column, slant-range, aspect ratio, speckle and striping noise, multiple returns, power drop-off, and for georeferencing. The final products reveal seafloor features and patterns that are geometrically correct, georeferenced, and have improved signal/noise ratio. These products can be merged with other georeferenced data bases for further database management and information extraction. In order to compare data collected bymore » different systems from a common area and to ground truth measurements and geoacoustic models, quantitative correction must be made for calibrated sonar system and bathymetry effects. Such data inversion must account for system source level, beam pattern, time-varying gain, processing gain, transmission loss, absorption, insonified area, and grazing angle effects. Seafloor classification can then be performed on the calculated back-scattering strength using Lambert's Law and regression analysis. Examples are given using both approaches: image analysis and inversion of data based on the sonar equation.« less
The H i-to-H{sub 2} Transition in a Turbulent Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bialy, Shmuel; Sternberg, Amiel; Burkhart, Blakesley, E-mail: shmuelbi@mail.tau.ac.il
2017-07-10
We study the effect of density fluctuations induced by turbulence on the H i/H{sub 2} structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas and chemical H i/H{sub 2} balance calculations. We derive atomic-to-molecular density profiles and the H i column density probability density function (PDF) assuming chemical equilibrium. We find that, while the H i/H{sub 2} density profiles are strongly perturbed in turbulent gas, the mean H i column density is well approximated by the uniform-density analytic formula of Sternberg et al. The PDF width depends onmore » (a) the radiation intensity–to–mean density ratio, (b) the sonic Mach number, and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the H i PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of H i in the Perseus molecular cloud. We show that a narrow observed H i PDF may imply small-scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.« less
Grain boundaries in bcc-Fe: a density-functional theory and tight-binding study
NASA Astrophysics Data System (ADS)
Wang, Jingliang; Madsen, Georg K. H.; Drautz, Ralf
2018-02-01
Grain boundaries (GBs) have a significant influence on material properties. In the present paper, we calculate the energies of eleven low-Σ ({{Σ }}≤slant 13) symmetrical tilt GBs and two twist GBs in ferromagnetic bcc iron using first-principles density functional theory (DFT) calculations. The results demonstrate the importance of a sufficient sampling of initial rigid body translations in all three directions. We show that the relative GB energies can be explained by the miscoordination of atoms at the GB region. While the main features of the studied GB structures were captured by previous empirical interatomic potential calculations, it is shown that the absolute values of GB energies calculated were substantially underestimated. Based on DFT-calculated GB structures and energies, we construct a new d-band orthogonal tight-binding (TB) model for bcc iron. The TB model is validated by its predictive power on all the studied GBs. We apply the TB model to block boundaries in lath martensite and demonstrate that the experimentally observed GB character distribution can be explained from the viewpoint of interface energy.
An Inexpensive Apparatus for Growing Photosynthetic Microorganisms in Exotic Atmospheres
NASA Astrophysics Data System (ADS)
Thomas, David J.; Herbert, Stephen K.
2005-02-01
Given the need for a light source, cyanobacteria and other photosynthetic microorganisms can be difficult and expensive to grow in large quantities. Lighted growth chambers and incubators typically cost 50-100% more than standard microbiological incubators. Self-shading of cells in liquid cultures prevents the growth of dense suspensions. Growing liquid cultures on a shaker table or lighted shaker incubator achieves greater cell densities, but adds considerably to the cost. For experiments in which gases other than air are required, the cost for conventional incubators increases even more. We describe an apparatus for growing photosynthetic organisms in exotic atmospheres that can be built relatively inexpensively (approximately $100 U.S.) using parts available from typical hardware or department stores (e.g., Wal-mart or K-mart). The apparatus uses microfiltered air (or other gases) to aerate, agitate, and mix liquid cultures, thus achieving very high cell densities (A750 > 3). Because gases are delivered to individual culture tubes, a variety of gas mixes can be used without the need for enclosed chambers. The apparatus works with liquid cultures of unicellular and filamentous species, and also works with agar slants.
Application of generalized singular value decomposition to ionospheric tomography
NASA Astrophysics Data System (ADS)
Bhuyan, K.; Singh, S.; Bhuyan, P.
2004-10-01
The electron density distribution of the low- and mid-latitude ionosphere has been investigated by the computerized tomography technique using a Generalized Singular Value Decomposition (GSVD) based algorithm. Model ionospheric total electron content (TEC) data obtained from the International Reference Ionosphere 2001 and slant relative TEC data measured at a chain of three stations receiving transit satellite transmissions in Alaska, USA are used in this analysis. The issue of optimum efficiency of the GSVD algorithm in the reconstruction of ionospheric structures is being addressed through simulation of the equatorial ionization anomaly (EIA), in addition to its application to investigate complicated ionospheric density irregularities. Results show that the Generalized Cross Validation approach to find the regularization parameter and the corresponding solution gives a very good reconstructed image of the low-latitude ionosphere and the EIA within it. Provided that some minimum norm is fulfilled, the GSVD solution is found to be least affected by considerations, such as pixel size and number of ray paths. The method has also been used to investigate the behaviour of the mid-latitude ionosphere under magnetically quiet and disturbed conditions.
A new model is described for computing in-chamber actinic flux using site specific conditions that include time of day, air pressure, total column ozone, total column water vapor, relative humidity, aerosol type, aerosol optical density at 500 nm, and the spectral albedo of the g...
Accretion Makes a Splash on TW Hydrae
NASA Astrophysics Data System (ADS)
Brickhouse, N. S.
2011-12-01
The Chandra Large Program on the Classical T Tauri star TW Hydrae (489 ksec, obtained over the course of one month) brings a wealth of spectral diagnostics to the study of X-ray emission from a young star. The emission measure distribution shows two components separated by a gap (i.e. no emission measure in between). Light curves for the two components can then be constructed from the summed light curves of the appropriate individual lines. The two light curves show uncorrelated variability, with one large flare occurring only in the hot component. We associate the hotter component with the corona, since its peak temperature is ˜10 MK. Ne IX line ratio diagnostics for temperature and density indicate that the source of the cooler component is indeed the accretion shock, as originally reported by Kastner et al. (2002). The temperature and density of the accretion shock are in excellent agreement with models using mass accretion rates derived from the optical. We require a third component, which we call the "post-shock region," from line ratio diagnostics of O VII. The density derived from O VII is lower than the density derived from Ne IX, contrary to standard one-dimensional model expectations and from hydrodynamics simulations to date. The column densities derived from the two ions are also significantly different, with the column density from O VII lower than that from Ne IX. This post-shock region cannot be the settling flow expected from the cooling of the shock column, since its mass is 30 times the mass of material that passes through the shock. Instead this region is the splash of stellar atmosphere that has been hit by the accretion stream and heated by the accretion process (Brickhouse et al. 2010).
Inferring physical properties of galaxies from their emission-line spectra
NASA Astrophysics Data System (ADS)
Ucci, G.; Ferrara, A.; Gallerani, S.; Pallottini, A.
2017-02-01
We present a new approach based on Supervised Machine Learning algorithms to infer key physical properties of galaxies (density, metallicity, column density and ionization parameter) from their emission-line spectra. We introduce a numerical code (called GAME, GAlaxy Machine learning for Emission lines) implementing this method and test it extensively. GAME delivers excellent predictive performances, especially for estimates of metallicity and column densities. We compare GAME with the most widely used diagnostics (e.g. R23, [N II] λ6584/Hα indicators) showing that it provides much better accuracy and wider applicability range. GAME is particularly suitable for use in combination with Integral Field Unit spectroscopy, both for rest-frame optical/UV nebular lines and far-infrared/sub-millimeter lines arising from photodissociation regions. Finally, GAME can also be applied to the analysis of synthetic galaxy maps built from numerical simulations.
NASA Astrophysics Data System (ADS)
Remy, Q.; Grenier, I. A.; Marshall, D. J.; Casandjian, J. M.
2018-03-01
Aim. H I 21-cm and 12CO 2.6-mm line emissions trace the atomic and molecular gas phases, respectively, but they miss most of the opaque H I and diffuse H2 present in the dark neutral medium (DNM) at the transition between the H I-bright and CO-bright regions. Jointly probing H I, CO, and DNM gas, we aim to constrain the threshold of the H I-H2 transition in visual extinction, AV, and in total hydrogen column densities, NHtot. We also aim to measure gas mass fractions in the different phases and to test their relation to cloud properties. Methods: We have used dust optical depth measurements at 353 GHz, γ-ray maps at GeV energies, and H I and CO line data to trace the gas column densities and map the DNM in nearby clouds toward the Galactic anticentre and Chamaeleon regions. We have selected a subset of 15 individual clouds, from diffuse to star-forming structures, in order to study the different phases across each cloud and to probe changes from cloud to cloud. Results: The atomic fraction of the total hydrogen column density is observed to decrease in the (0.6-1) × 1021 cm-2 range in NHtot (AV ≈ 0.4 mag) because of the formation of H2 molecules. The onset of detectable CO intensities varies by only a factor of 4 from cloud to cloud, between 0.6 × 1021 cm-2 and 2.5 × 1021 cm-2 in total gas column density. We observe larger H2 column densities than linearly inferred from the CO intensities at AV > 3 mag because of the large CO optical thickness; the additional H2 mass in this regime represents on average 20% of the CO-inferred molecular mass. In the DNM envelopes, we find that the fraction of diffuse CO-dark H2 in the molecular column densities decreases with increasing AV in a cloud. For a half molecular DNM, the fraction decreases from more than 80% at 0.4 mag to less than 20% beyond 2 mag. In mass, the DNM fraction varies with the cloud properties. Clouds with low peak CO intensities exhibit large CO-dark H2 fractions in molecular mass, in particular the diffuse clouds lying at high altitude above the Galactic plane. The mass present in the DNM envelopes appears to scale with the molecular mass seen in CO as MHDNM = 62 ± 7 MH2CO0.51 ± 0.02 across two decades in mass. Conclusions: The phase transitions in these clouds show both common trends and environmental differences. These findings will help support the theoretical modelling of H2 formation and the precise tracing of H2 in the interstellar medium.
NASA Astrophysics Data System (ADS)
Bock, James Joseph
1994-01-01
We report an observation of 158 micron line emission from singly ionized carbon from the diffuse interstellar medium at high galactic latitude. The integrated line intensity is measured in a 36 arcmin field-of-view along a triangular scan path in a 5 deg x 20 deg region in Ursa Major using a rocket-borne, liquid helium cooled spectrophotometer. The scan includes high latitude infrared cirrus, molecular clouds, a bright external galaxy, M82, and the HI Hole, which is a region of uniquely low neutral hydrogen column density. Emission from (CII) is observed in all regions and, in the absence of appreciable CO emission, is well correlated with neutral hydrogen column density. We observe a (CII) gas cooling rate which varies from (3.25 +/- 0.8 to 1.18 +/- 0.4) x 10-26 ergs-1 H-atom-1, in good agreement with recent observations of UV absorption lines at high galactic latitude. Regions with CO emission have enhanced (CII) line emission over that expected from the correlation with neutral hydrogen column density. The line-to-continuum ratio varies from I(CII)/lambda Ilambda = 0.002 to 0.008 in comparison with the all sky average of 0.0082 reported by FIRAS, which is heavily weighted towards the Galactic plane. The far-infrared continuum intensity, measured at 134 microns, 154 microns, and 186 microns, correlates with the 100 micron brightness measured by IRAS, and in regions excluding molecular clouds, with HI column density. The far-infrared brightness correlated with HI column density is fit by a thermal spectrum with a temperature T = 16.4 (+2.3/-1.8) K assuming an index of emissivity n = 2. The residual brightness after subtracting the emission correlated with neutral hydrogen column density yields an upper limit to the far-infrared extra-galactic background radiation of lambda Ilambda (154 microns) less than 2.6 x 10-12 W cm-2 sr-1. The observation of M82 confirms the laboratory calibration of the instrument. Unique instrumentation was developed to realize the instrument. A high sensitivity detection system consisting of stressed Ge:Ga photoconductors coupled to charge integrating amplifiers is described. We developed a compact, miniature He-4 refrigerator suitable for spaceborne operation. A silicon-gap Fabry-Perot filter, designed for use in high-throughput, compact optical systems, was developed. The performance of a far-infrared low-pass filter stack with high out-of-band rejection is reported. We tested the performance of a telescope baffle system with high-off axis rejection in a combination of ground-based and rocket-borne experiments. A submillimeter-black coating suitable for use in spaceborne telescopes is described. We report the laboratory testing of the instrument and the performance during the flight, and discuss the scientific implications of the observations.
Yule, Daniel L.; Adams, Jean V.; Warner, David M.; Hrabik, Thomas R.; Kocovsky, Patrick M.; Weidel, Brian C.; Rudstam, Lars G.; Sullivan, Patrick J.
2013-01-01
Pelagic fish assessments often combine large amounts of acoustic-based fish density data and limited midwater trawl information to estimate species-specific biomass density. We compared the accuracy of five apportionment methods for estimating pelagic fish biomass density using simulated communities with known fish numbers that mimic Lakes Superior, Michigan, and Ontario, representing a range of fish community complexities. Across all apportionment methods, the error in the estimated biomass generally declined with increasing effort, but methods that accounted for community composition changes with water column depth performed best. Correlations between trawl catch and the true species composition were highest when more fish were caught, highlighting the benefits of targeted trawling in locations of high fish density. Pelagic fish surveys should incorporate geographic and water column depth stratification in the survey design, use apportionment methods that account for species-specific depth differences, target midwater trawling effort in areas of high fish density, and include at least 15 midwater trawls. With relatively basic biological information, simulations of fish communities and sampling programs can optimize effort allocation and reduce error in biomass estimates.
NASA Technical Reports Server (NTRS)
Walter, Steven J.; Bender, Peter L.
1992-01-01
The water vapor-induced propagation delay experienced by a radio signal traversing the atmosphere is characterized by the Slant Path Atmospheric Refraction Calibrator (SPARC), which measures the difference in the travel times between an optical and a microwave signal propagating along the same atmospheric path with an accuracy of 15 picosec or better. Attention is given to the theoretical and experimental issues involved in measuring the delay induced by water vapor; SPARC measurements conducted along a 13.35-km ground-based path are presented, illustrating the instrument's stability, precision, and accuracy.
NASA Technical Reports Server (NTRS)
Allen, Kenneth C.
1988-01-01
Progress on millimeter-wave propagation experiments in Hawaii is reported. A short path for measuring attenuation in rain at 9.6, 28.8, 57.6, and 96.1 GHz is in operation. A slant path from Hilo to the top of Mauna Kea is scheduled. On this path, scattering from rain and clouds that may cause interference for satellites closely spaced in geosynchronous orbit will be measured at the same frequencies at 28.8 and 96.1 GHz. In addition the full transmission matrix will be measured at the same frequencies on the slant path. The technique and equipment used to measure the transmission matrix are described.
NASA Technical Reports Server (NTRS)
Zhu, Lei; Jacob, Daniel J.; Kim, Patrick S.; Fisher, Jenny A.; Yu, Karen; Travis, Katherine R.; Mickley, Loretta J.; Yantosca, Robert M.; Sulprizio, Melissa P.; De Smedt, Isabelle;
2016-01-01
Formaldehyde (HCHO) column data from satellites are widely used as a proxy for emissions of volatile organic compounds (VOCs), but validation of the data has been extremely limited. Here we use highly accurate HCHO aircraft observations from the NASA SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) campaign over the southeast US in August-September 2013 to validate and intercompare six retrievals of HCHO columns from four different satellite instruments (OMI (Ozone Monitoring Instrument), GOME (Global Ozone Monitoring Experiment) 2A, GOME (Global Ozone Monitoring Experiment) 2B and OMPS (Ozone Mapping and Profiler Suite)) and three different research groups. The GEOS (Goddard Earth Observing System)-Chem chemical transport model is used as a common intercomparison platform. All retrievals feature a HCHO maximum over Arkansas and Louisiana, consistent with the aircraft observations and reflecting high emissions of biogenic isoprene. The retrievals are also interconsistent in their spatial variability over the southeast US (r equals 0.4 to 0.8 on a 0.5 degree by 0.5 degree grid) and in their day-to-day variability (r equals 0.5 to 0.8). However, all retrievals are biased low in the mean by 20 to 51 percent, which would lead to corresponding bias in estimates of isoprene emissions from the satellite data. The smallest bias is for OMI-BIRA (Ozone Monitoring Instrument - Belgian Institute for Space Aeronomy), which has high corrected slant columns relative to the other retrievals and low scattering weights in its air mass factor (AMF) calculation. OMI-BIRA has systematic error in its assumed vertical HCHO shape profiles for the AMF calculation, and correcting this would eliminate its bias relative to the SEAC (sup 4) RS data. Our results support the use of satellite HCHO data as a quantitative proxy for isoprene emission after correction of the low mean bias. There is no evident pattern in the bias, suggesting that a uniform correction factor may be applied to the data until better understanding is achieved.
Increasing phytoplankton-available phosphorus and inhibition of macrophyte on phytoplankton bloom.
Dai, Yanran; Wu, Juan; Ma, Xiaohang; Zhong, Fei; Cui, Naxin; Cheng, Shuiping
2017-02-01
We assembled mesocosms to address the coherent mechanisms that an increasing phosphorus (P) concentration in water columns coupled with the phytoplankton bloom and identify the performance gap of regulating phytoplankton growth between two macrophyte species, Ceratophyllum demersum L. and Vallisneria spiralis L. Intense alkaline phosphatase activities (APA) were observed in the unplanted control, with their predominant part, phytoplankton APA (accounting for up to 44.7% of the total APA), and another large share, bacterial APA. These correspond with the large average concentration of total phosphorus (TP), total dissolved phosphorus (TDP) and soluble reactive (SRP) as well as high phytoplankton density in the water column. The consistency among P concentrations, phytoplankton density and APA, together with the positive impact of phytoplankton density on total APA revealed by the structural equation modelling (SEM), indicates that facilitated APA levels in water is an essential strategy for phytoplankton to enhance the available P. Furthermore, a positive interaction between phytoplankton APA and bacteria APA was detected, suggesting a potential collaboration between phytoplankton and bacteria to boost available P content in the water column. Both macrophyte species had a prominent performance on regulating phytoplankton proliferation. The phytoplankton density and quantum yield in C. demersum systems were all significantly lower (33.8% and 24.0%) than those in V. spiralis systems. Additionally, a greater decoupling effect of C. demersum on the relationship between P, APA, phytoplankton density, bacteria dynamic and quantum yield was revealed by SEM. These results imply that the preferred tactic of different species could lead to the performance gap. Copyright © 2016 Elsevier B.V. All rights reserved.
Test of direct and indirect effects of agrochemicals on the survival of fecal indicator bacteria.
Staley, Zachery R; Rohr, Jason R; Harwood, Valerie J
2011-12-01
Water bodies often receive agrochemicals and animal waste carrying fecal indicator bacteria (FIB) and zoonotic pathogens, but we know little about the effects of agrochemicals on these microbes. We assessed the direct effects of the pesticides atrazine, malathion, and chlorothalonil and inorganic fertilizer on Escherichia coli and enterococcal survival in simplified microcosms held in the dark. E. coli strain composition in sediments and water column were positively correlated, but none of the agrochemicals had significant direct effects on E. coli strain composition or on densities of culturable FIBs. In a companion study, microcosms with nondisinfected pond water and sediments were exposed to or shielded from sunlight to examine the potential indirect effects of atrazine and inorganic fertilizer on E. coli. The herbicide atrazine had no effect on E. coli in dark-exposed microcosms containing natural microbial and algal communities. However, in light-exposed microcosms, atrazine significantly lowered E. coli densities in the water column and significantly increased densities in the sediment compared to controls. This effect appears to be mediated by the effects of atrazine on algae, given that atrazine significantly reduced phytoplankton, which was a positive and negative predictor of E. coli densities in the water column and sediment, respectively. These data suggest that atrazine does not directly affect the survival of FIB, rather that it indirectly alters the distribution and abundance of E. coli by altering phytoplankton and periphyton communities. These results improve our understanding of the influence of agricultural practices on FIB densities in water bodies impacted by agricultural runoff.
Test of Direct and Indirect Effects of Agrochemicals on the Survival of Fecal Indicator Bacteria▿
Staley, Zachery R.; Rohr, Jason R.; Harwood, Valerie J.
2011-01-01
Water bodies often receive agrochemicals and animal waste carrying fecal indicator bacteria (FIB) and zoonotic pathogens, but we know little about the effects of agrochemicals on these microbes. We assessed the direct effects of the pesticides atrazine, malathion, and chlorothalonil and inorganic fertilizer on Escherichia coli and enterococcal survival in simplified microcosms held in the dark. E. coli strain composition in sediments and water column were positively correlated, but none of the agrochemicals had significant direct effects on E. coli strain composition or on densities of culturable FIBs. In a companion study, microcosms with nondisinfected pond water and sediments were exposed to or shielded from sunlight to examine the potential indirect effects of atrazine and inorganic fertilizer on E. coli. The herbicide atrazine had no effect on E. coli in dark-exposed microcosms containing natural microbial and algal communities. However, in light-exposed microcosms, atrazine significantly lowered E. coli densities in the water column and significantly increased densities in the sediment compared to controls. This effect appears to be mediated by the effects of atrazine on algae, given that atrazine significantly reduced phytoplankton, which was a positive and negative predictor of E. coli densities in the water column and sediment, respectively. These data suggest that atrazine does not directly affect the survival of FIB, rather that it indirectly alters the distribution and abundance of E. coli by altering phytoplankton and periphyton communities. These results improve our understanding of the influence of agricultural practices on FIB densities in water bodies impacted by agricultural runoff. PMID:22003017
The structure and statistics of interstellar turbulence
NASA Astrophysics Data System (ADS)
Kritsuk, A. G.; Ustyugov, S. D.; Norman, M. L.
2017-06-01
We explore the structure and statistics of multiphase, magnetized ISM turbulence in the local Milky Way by means of driven periodic box numerical MHD simulations. Using the higher order-accurate piecewise-parabolic method on a local stencil (PPML), we carry out a small parameter survey varying the mean magnetic field strength and density while fixing the rms velocity to observed values. We quantify numerous characteristics of the transient and steady-state turbulence, including its thermodynamics and phase structure, kinetic and magnetic energy power spectra, structure functions, and distribution functions of density, column density, pressure, and magnetic field strength. The simulations reproduce many observables of the local ISM, including molecular clouds, such as the ratio of turbulent to mean magnetic field at 100 pc scale, the mass and volume fractions of thermally stable Hi, the lognormal distribution of column densities, the mass-weighted distribution of thermal pressure, and the linewidth-size relationship for molecular clouds. Our models predict the shape of magnetic field probability density functions (PDFs), which are strongly non-Gaussian, and the relative alignment of magnetic field and density structures. Finally, our models show how the observed low rates of star formation per free-fall time are controlled by the multiphase thermodynamics and large-scale turbulence.
Excitation of the molecular gas in the nuclear region of M 82
NASA Astrophysics Data System (ADS)
Loenen, A. F.; van der Werf, P. P.; Güsten, R.; Meijerink, R.; Israel, F. P.; Requena-Torres, M. A.; García-Burillo, S.; Harris, A. I.; Klein, T.; Kramer, C.; Lord, S.; Martín-Pintado, J.; Röllig, M.; Stutzki, J.; Szczerba, R.; Weiß, A.; Philipp-May, S.; Yorke, H.; Caux, E.; Delforge, B.; Helmich, F.; Lorenzani, A.; Morris, P.; Philips, T. G.; Risacher, C.; Tielens, A. G. G. M.
2010-10-01
We present high-resolution HIFI spectroscopy of the nucleus of the archetypical starburst galaxy M 82. Six 12CO lines, 2 13CO lines and 4 fine-structure lines have been detected. Besides showing the effects of the overall velocity structure of the nuclear region, the line profiles also indicate the presence of multiple components with different optical depths, temperatures, and densities in the observing beam. The data have been interpreted using a grid of PDR models. It is found that the majority of the molecular gas is in low density (n = 103.5 cm-3) clouds, with column densities of NH = 1021.5 cm-2 and a relatively low UV radiation field (G0 = 102). The remaining gas is predominantly found in clouds with higher densities (n = 105 cm-3) and radiation fields (G0 = 102.75), but somewhat lower column densities (NH = 1021.2 cm-2). The highest J CO lines are dominated by a small (1% relative surface filling) component, with an even higher density (n = 106 cm-3) and UV field (G0 = 103.25). These results show the strength of multi-component modelling for interpretating the integrated properties of galaxies.
Microstructures and mechanical behavior of magnesium processed by ECAP at ice-water temperature
NASA Astrophysics Data System (ADS)
Zuo, Dai; Li, Taotao; Liang, Wei; Wen, Xiyu; Yang, Fuqian
2018-05-01
Magnesium of high purity is processed by equal channel angular pressing (ECAP) up to eight passes at the ice-water temperature, in which a core–shell-like structure is used. The core–shell-like structure consists of pure iron (Fe) of 1.5 mm in thickness as the shell and magnesium (Mg) as the core. The microstructure, texture and mechanical behavior of the ECAP-processed Mg are studied. The ECAP processing leads to the formation of fine and equiaxed grains of ~1.1 µm. The basal planes initially parallel to the extrusion direction evolve to slanted basal planes with the tilting angle in a range of 25°–45° to the extrusion direction. Increasing the number of the extrusion passes leads to the decreasing of twins and dislocation density in grains, while individual grains after eight passes still have high dislocation density. The large decreases of twins and the dislocation density make dynamic recrystallization (DRX) difficult, resulting in the decrease of the degree of DRX. Tension test reveals that the mechanical behavior of the ECAP-processed Mg is dependent on grain refinement and textures. The yield strength of the ECAP-extruded Mg first increases with the decrease of the grain size, and then decreases with further decrease of the grain size.