Sample records for slant visual range

  1. Trial of a slant visual range measuring device

    NASA Technical Reports Server (NTRS)

    Streicher, J.; Muenkel, C.; Borchardt, H.

    1992-01-01

    Each year, fog at airports renders some landing operations either difficult or impossible. The visibility that a pilot of a landing aircraft can expect is in that case the most important information. It could happen that the visibility versus the altitude is constantly decreasing or increasing. However, it is not possible to distinguish this with the existing sensors at an airport. If the visibility is decreasing with the altitude, one has the worst case - ground fog. The standard visibility sensor, the transmissometer, determines only the horizontal visual range, which will be underestimated in comparison with the real visibility a pilot has on his landing approach. Described here is a new technique to measure the slant visual range, making use of a slant scanning device - an eye-safe laser radar. A comparison with commercial visibility sensors shows that it is possible to measure visibilities with the slant looking laser radar in the range from 50 meters up to 2000 meters and even distinguish inhomogenities like ground fog.

  2. Bayesian modeling of cue interaction: bistability in stereoscopic slant perception.

    PubMed

    van Ee, Raymond; Adams, Wendy J; Mamassian, Pascal

    2003-07-01

    Our two eyes receive different views of a visual scene, and the resulting binocular disparities enable us to reconstruct its three-dimensional layout. However, the visual environment is also rich in monocular depth cues. We examined the resulting percept when observers view a scene in which there are large conflicts between the surface slant signaled by binocular disparities and the slant signaled by monocular perspective. For a range of disparity-perspective cue conflicts, many observers experience bistability: They are able to perceive two distinct slants and to flip between the two percepts in a controlled way. We present a Bayesian model that describes the quantitative aspects of perceived slant on the basis of the likelihoods of both perspective and disparity slant information combined with prior assumptions about the shape and orientation of objects in the scene. Our Bayesian approach can be regarded as an overarching framework that allows researchers to study all cue integration aspects-including perceptual decisions--in a unified manner.

  3. Visuomotor sensitivity to visual information about surface orientation.

    PubMed

    Knill, David C; Kersten, Daniel

    2004-03-01

    We measured human visuomotor sensitivity to visual information about three-dimensional surface orientation by analyzing movements made to place an object on a slanted surface. We applied linear discriminant analysis to the kinematics of subjects' movements to surfaces with differing slants (angle away form the fronto-parallel) to derive visuomotor d's for discriminating surfaces differing in slant by 5 degrees. Subjects' visuomotor sensitivity to information about surface orientation was very high, with discrimination "thresholds" ranging from 2 to 3 degrees. In a first experiment, we found that subjects performed only slightly better using binocular cues alone than monocular texture cues and that they showed only weak evidence for combining the cues when both were available, suggesting that monocular cues can be just as effective in guiding motor behavior in depth as binocular cues. In a second experiment, we measured subjects' perceptual discrimination and visuomotor thresholds in equivalent stimulus conditions to decompose visuomotor sensitivity into perceptual and motor components. Subjects' visuomotor thresholds were found to be slightly greater than their perceptual thresholds for a range of memory delays, from 1 to 3 s. The data were consistent with a model in which perceptual noise increases with increasing delay between stimulus presentation and movement initiation, but motor noise remains constant. This result suggests that visuomotor and perceptual systems rely on the same visual estimates of surface slant for memory delays ranging from 1 to 3 s.

  4. Perception of Stand-on-ability: Do Geographical Slants Feel Steeper Than They Look?

    PubMed

    Hajnal, Alen; Wagman, Jeffrey B; Doyon, Jonathan K; Clark, Joseph D

    2016-07-01

    Past research has shown that haptically perceived surface slant by foot is matched with visually perceived slant by a factor of 0.81. Slopes perceived visually appear shallower than when stood on without looking. We sought to identify the sources of this discrepancy by asking participants to judge whether they would be able to stand on an inclined ramp. In the first experiment, visual perception was compared to pedal perception in which participants took half a step with one foot onto an occluded ramp. Visual perception closely matched the actual maximal slope angle that one could stand on, whereas pedal perception underestimated it. Participants may have been less stable in the pedal condition while taking half a step onto the ramp. We controlled for this by having participants hold onto a sturdy tripod in the pedal condition (Experiment 2). This did not eliminate the difference between visual and haptic perception, but repeating the task while sitting on a chair did (Experiment 3). Beyond balance requirements, pedal perception may also be constrained by the limited range of motion at the ankle and knee joints while standing. Indeed, when we restricted range of motion by wearing an ankle brace pedal perception underestimated the affordance (Experiment 4). Implications for ecological theory were offered by discussing the notion of functional equivalence and the role of exploration in perception. © The Author(s) 2016.

  5. Visual discrimination of local surface structure: slant, tilt, and curvedness.

    PubMed

    Norman, J Farley; Todd, James T; Norman, Hideko F; Clayton, Anna Marie; McBride, T Ryan

    2006-03-01

    In four experiments, observers were required to discriminate interval or ordinal differences in slant, tilt, or curvedness between designated probe points on randomly shaped curved surfaces defined by shading, texture, and binocular disparity. The results reveal that discrimination thresholds for judgments of slant or tilt typically range between 4 degrees and 10 degrees; that judgments of one component are unaffected by simultaneous variations in the other; and that the individual thresholds for either the slant or tilt components of orientation are approximately equal to those obtained for judgments of the total orientation difference between two probed regions. Performance was much worse, however, for judgments of curvedness, and these judgments were significantly impaired when there were simultaneous variations in the shape index parameter of curvature.

  6. Depictions of substance use in reality television: a content analysis of The Osbournes.

    PubMed

    Blair, Nicole A; Yue, So Kuen; Singh, Ranbir; Bernhardt, Jay M

    2005-12-24

    To determine the source and slant of messages in a reality television programme that may promote or inhibit health related or risky behaviours. Coding visual and verbal references to alcohol, tobacco, and other drug (ATOD) use in The Osbournes. Three reviewers watched all 10 episodes of the first season and coded incidents of substance use according to the substance used (alcohol, tobacco, or drugs), the way use was portrayed (visually or verbally), the source of the message (the character in the show involved in the incident), and the slant of the incident (endorsement or rejection). The variation in number of messages in an average episode, the slant of messages, and message source. The average number of messages per episode was 9.1 (range 2-17). Most drug use messages (15, 54%) implied rejection of drugs, but most alcohol messages (30, 64%) and tobacco messages (12, 75%) implied endorsements for using these substances. Most rejections (34, 94%) were conveyed verbally, but most endorsements (36, 65%) were conveyed visually. Messages varied in frequency and slant by source. The reality television show analysed in this study contains numerous messages on substance use that imply both rejection and endorsement of use. The juxtaposition of verbal rejection messages and visual endorsement messages, and the depiction of contradictory messages about substance use from show characters, may send mixed messages to viewers about substance use.

  7. Depictions of substance use in reality television: a content analysis of The Osbournes

    PubMed Central

    Blair, Nicole A; Yue, So Kuen; Singh, Ranbir; Bernhardt, Jay M

    2005-01-01

    Objective To determine the source and slant of messages in a reality television programme that may promote or inhibit health related or risky behaviours. Design Coding visual and verbal references to alcohol, tobacco, and other drug (ATOD) use in The Osbournes. Review methods Three reviewers watched all 10 episodes of the first season and coded incidents of substance use according to the substance used (alcohol, tobacco, or drugs), the way use was portrayed (visually or verbally), the source of the message (the character in the show involved in the incident), and the slant of the incident (endorsement or rejection). Main outcome measures The variation in number of messages in an average episode, the slant of messages, and message source. Results The average number of messages per episode was 9.1 (range 2-17). Most drug use messages (15, 54%) implied rejection of drugs, but most alcohol messages (30, 64%) and tobacco messages (12, 75%) implied endorsements for using these substances. Most rejections (34, 94%) were conveyed verbally, but most endorsements (36, 65%) were conveyed visually. Messages varied in frequency and slant by source. Conclusions The reality television show analysed in this study contains numerous messages on substance use that imply both rejection and endorsement of use. The juxtaposition of verbal rejection messages and visual endorsement messages, and the depiction of contradictory messages about substance use from show characters, may send mixed messages to viewers about substance use. PMID:16373737

  8. An experimental investigation of the aerodynamic characteristics of slanted base ogive cylinders using magnetic suspension technology

    NASA Technical Reports Server (NTRS)

    Alcorn, Charles W.; Britcher, Colin

    1988-01-01

    An experimental investigation is reported on slanted base ogive cylinders at zero incidence. The Mach number range is 0.05 to 0.3. All flow disturbances associated with wind tunnel supports are eliminated in this investigation by magnetically suspending the wind tunnel models. The sudden and drastic changes in the lift, pitching moment, and drag for a slight change in base slant angle are reported. Flow visualization with liquid crystals and oil is used to observe base flow patterns, which are responsible for the sudden changes in aerodynamic characteristics. Hysteretic effects in base flow pattern changes are present in this investigation and are reported. The effect of a wire support attachment on the 0 deg slanted base model is studied. Computational drag and transition location results using VSAERO and SANDRAG are presented and compared with experimental results. Base pressure measurements over the slanted bases are made with an onboard pressure transducer using remote data telemetry.

  9. Bibliography on methods of atmospheric visibility measurements relevant to air traffic control and related subjects

    DOT National Transportation Integrated Search

    1973-11-30

    The bibliographical survey provides reference information and background material to assist in the selection of principles and measuring techniques which may be used in the development of future systems to measure Runway Visual Range (RVR), Slant Vis...

  10. The venetian-blind effect: a preference for zero disparity or zero slant?

    PubMed Central

    Vlaskamp, Björn N. S.; Guan, Phillip; Banks, Martin S.

    2013-01-01

    When periodic stimuli such as vertical sinewave gratings are presented to the two eyes, the initial stage of disparity estimation yields multiple solutions at multiple depths. The solutions are all frontoparallel when the sinewaves have the same spatial frequency; they are all slanted when the sinewaves have quite different frequencies. Despite multiple solutions, humans perceive only one depth in each visual direction: a single frontoparallel plane when the frequencies are the same and a series of small slanted planes—Venetian blinds—when the frequencies are quite different. These percepts are consistent with a preference for solutions that minimize absolute disparity or overall slant. The preference for minimum disparity and minimum slant are identical for gaze at zero eccentricity; we dissociated the predictions of the two by measuring the occurrence of Venetian blinds when the stimuli were viewed in eccentric gaze. The results were generally quite consistent with a zero-disparity preference (Experiment 1), but we also observed a shift toward a zero-slant preference when the edges of the stimulus had zero slant (Experiment 2). These observations provide useful insights into how the visual system constructs depth percepts from a multitude of possible depths. PMID:24273523

  11. The venetian-blind effect: a preference for zero disparity or zero slant?

    PubMed

    Vlaskamp, Björn N S; Guan, Phillip; Banks, Martin S

    2013-01-01

    When periodic stimuli such as vertical sinewave gratings are presented to the two eyes, the initial stage of disparity estimation yields multiple solutions at multiple depths. The solutions are all frontoparallel when the sinewaves have the same spatial frequency; they are all slanted when the sinewaves have quite different frequencies. Despite multiple solutions, humans perceive only one depth in each visual direction: a single frontoparallel plane when the frequencies are the same and a series of small slanted planes-Venetian blinds-when the frequencies are quite different. These percepts are consistent with a preference for solutions that minimize absolute disparity or overall slant. The preference for minimum disparity and minimum slant are identical for gaze at zero eccentricity; we dissociated the predictions of the two by measuring the occurrence of Venetian blinds when the stimuli were viewed in eccentric gaze. The results were generally quite consistent with a zero-disparity preference (Experiment 1), but we also observed a shift toward a zero-slant preference when the edges of the stimulus had zero slant (Experiment 2). These observations provide useful insights into how the visual system constructs depth percepts from a multitude of possible depths.

  12. Skating down a steeper slope: Fear influences the perception of geographical slant

    PubMed Central

    Stefanucci, Jeanine K.; Proffitt, Dennis R.; Clore, Gerald L.; Parekh, Nazish

    2008-01-01

    Conscious awareness of hill slant is overestimated, but visually guided actions directed at hills are relatively accurate. Also, steep hills are consciously estimated to be steeper from the top as opposed to the bottom, possibly because they are dangerous to walk down. In the present study, participants stood at the top of a hill on either a skateboard or a wooden box of the same height. They gave three estimates of the slant of the hill: a verbal report, a visually matched estimate, and a visually guided action. Fear of descending the hill was also assessed. Those participants that were scared (by standing on the skateboard) consciously judged the hill to be steeper relative to participants who were unafraid. However, the visually guided action measure was accurate across conditions. These results suggest that our explicit awareness of slant is influenced by the fear associated with a potentially dangerous action. “[The phobic] reported that as he drove towards bridges, they appeared to be sloping at a dangerous angle.” (Rachman and Cuk 1992 p. 583). PMID:18414594

  13. Atmospheric Transmission and Particle Size Measurements, Proceedings of Workshop: 23-25 October 1979, Dayton Ohio

    DTIC Science & Technology

    1980-05-01

    102 17. A Feasibility Study: Application of Lidar Transmission Measurement in the Slant Visual Range Problem - Ronald H. Kohl 108 18. Multiwavelength ...discrete filters gives greater spectral resolution over the whole band. The success of the Model 14-703 System led to the development of a more advanced...REQUIREMENTS Success in a wide range of atmospheric transmission measurement applications has led to the reqi,-st for more advanced capabilities which are listed

  14. Error Analysis and Validation for Insar Height Measurement Induced by Slant Range

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Li, T.; Fan, W.; Geng, X.

    2018-04-01

    InSAR technique is an important method for large area DEM extraction. Several factors have significant influence on the accuracy of height measurement. In this research, the effect of slant range measurement for InSAR height measurement was analysis and discussed. Based on the theory of InSAR height measurement, the error propagation model was derived assuming no coupling among different factors, which directly characterise the relationship between slant range error and height measurement error. Then the theoretical-based analysis in combination with TanDEM-X parameters was implemented to quantitatively evaluate the influence of slant range error to height measurement. In addition, the simulation validation of InSAR error model induced by slant range was performed on the basis of SRTM DEM and TanDEM-X parameters. The spatial distribution characteristics and error propagation rule of InSAR height measurement were further discussed and evaluated.

  15. Summarizing slant perception with words and hands; an empirical alternative to correlations in Shaffer, McManama, Swank, Williams & Durgin (2014).

    PubMed

    Eves, Frank F

    2015-02-01

    The paper by Shaffer, McManama, Swank, Williams & Durgin (2014) uses correlations between palm-board and verbal estimates of geographical slant to argue against dissociation of the two measures. This paper reports the correlations between the verbal, visual and palm-board measures of geographical slant used by Proffitt and co-workers as a counterpoint to the analyses presented by Shaffer and colleagues. The data are for slant perception of staircases in a station (N=269), a shopping mall (N=229) and a civic square (N=109). In all three studies, modest correlations between the palm-board matches and the verbal reports were obtained. Multiple-regression analyses of potential contributors to verbal reports, however, indicated no unique association between verbal and palm-board measures. Data from three further studies (combined N=528) also show no evidence of any relationship. Shared method variance between visual and palm-board matches could account for the modest association between palm-boards and verbal reports. Copyright © 2015. Published by Elsevier B.V.

  16. Two memories for geographical slant: separation and interdependence of action and awareness

    NASA Technical Reports Server (NTRS)

    Creem, S. H.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    1998-01-01

    The present study extended previous findings of geographical slant perception, in which verbal judgments of the incline of hills were greatly overestimated but motoric (haptic) adjustments were much more accurate. In judging slant from memory following a brief or extended time delay, subjects' verbal judgments were greater than those given when viewing hills. Motoric estimates differed depending on the length of the delay and place of response. With a short delay, motoric adjustments made in the proximity of the hill did not differ from those evoked during perception. When given a longer delay or when taken away from the hill, subjects' motoric responses increased along with the increase in verbal reports. These results suggest two different memorial influences on action. With a short delay at the hill, memory for visual guidance is separate from the explicit memory informing the conscious response. With short or long delays away from the hill, short-term visual guidance memory no longer persists, and both motor and verbal responses are driven by an explicit representation. These results support recent research involving visual guidance from memory, where actions become influenced by conscious awareness, and provide evidence for communication between the "what" and "how" visual processing systems.

  17. Helping Children with Visual and Motor Impairments Make the Most of Their Visual Abilities.

    ERIC Educational Resources Information Center

    Amerson, Marie J.

    1999-01-01

    Lists strategies for promoting functional vision use in children with visual and motor impairments, including providing postural stability, presenting visual attention tasks when energy level is the highest, using a slanted work surface, placing target items in varied locations within reach, and determining the most effective visual adaptations.…

  18. Streakline flow visualization of discrete-hole film cooling with normal, slanted, and compound angle injection

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.; Russell, L. M.

    1976-01-01

    Film injection from discrete holes in a three-row, staggered array with five-diameter spacing was studied for three hole angles: (1) normal, (2) slanted 30 deg to the surface in the direction of the main stream, and (3) slanted 30 deg to the surface and 45 deg laterally to the main stream. The ratio of the boundary layer thickness-to-hole diameter and Reynolds number were typical of gas-turbine film-cooling applications. Detailed streaklines showing the turbulent motion of the injected air were obtained by photographing very small neutrally buoyant, helium-filled soap bubbles which follow the flow field.

  19. Visual slant misperception and the Black-Hole landing situation

    NASA Technical Reports Server (NTRS)

    Perrone, J. A.

    1983-01-01

    A theory which explains the tendency for dangerously low approaches during night landing situations is presented. The two dimensional information at the pilot's eye contains sufficient information for the visual system to extract the angle of slant of the runway relative to the approach path. The analysis is depends upon perspective information which is available at a certain distance out from the aimpoint, to either side of the runway edgelights. Under black hole landing conditions, however, this information is not available, and it is proposed that the visual system use instead the only available information, the perspective gradient of the runway edgelights. An equation is developed which predicts the perceived approach angle when this incorrect parameter is used. The predictions are in close agreement with existing experimental data.

  20. Results from EDGES High-band. I. Constraints on Phenomenological Models for the Global 21 cm Signal

    NASA Astrophysics Data System (ADS)

    Monsalve, Raul A.; Rogers, Alan E. E.; Bowman, Judd D.; Mozdzen, Thomas J.

    2017-09-01

    We report constraints on the global 21 cm signal due to neutral hydrogen at redshifts 14.8≥slant z≥slant 6.5. We derive our constraints from low-foreground observations of the average sky brightness spectrum conducted with the EDGES High-band instrument between 2015 September 7 and October 26. Observations were calibrated by accounting for the effects of antenna beam chromaticity, antenna and ground losses, signal reflections, and receiver parameters. We evaluate the consistency between the spectrum and phenomenological models for the global 21 cm signal. For tanh-based representations of the ionization history during the epoch of reionization, we rule out, at ≥slant 2σ significance, models with duration of up to {{Δ }}z=1 at z≈ 8.5 and higher than {{Δ }}z=0.4 across most of the observed redshift range under the usual assumption that the 21 cm spin temperature is much larger than the temperature of the cosmic microwave background during reionization. We also investigate a “cold” intergalactic medium (IGM) scenario that assumes perfect Lyα coupling of the 21 cm spin temperature to the temperature of the IGM, but that the latter is not heated by early stars or stellar remants. Under this assumption, we reject tanh-based reionization models of duration {{Δ }}z≲ 2 over most of the observed redshift range. Finally, we explore and reject a broad range of Gaussian models for the 21 cm absorption feature expected in the First Light era. As an example, we reject 100 mK Gaussians with duration (full width at half maximum) {{Δ }}z≤slant 4 over the range 14.2≥slant z≥slant 6.5 at ≥slant 2σ significance.

  1. New H-band Stellar Spectral Libraries for the SDSS-III/APOGEE Survey

    NASA Astrophysics Data System (ADS)

    Zamora, O.; García-Hernández, D. A.; Allende Prieto, C.; Carrera, R.; Koesterke, L.; Edvardsson, B.; Castelli, F.; Plez, B.; Bizyaev, D.; Cunha, K.; García Pérez, A. E.; Gustafsson, B.; Holtzman, J. A.; Lawler, J. E.; Majewski, S. R.; Manchado, A.; Mészáros, Sz.; Shane, N.; Shetrone, M.; Smith, V. V.; Zasowski, G.

    2015-06-01

    The Sloan Digital Sky Survey-III (SDSS-III) Apache Point Observatory Galactic Evolution Experiment (APOGEE) has obtained high-resolution (R ˜ 22,500), high signal-to-noise ratio (\\gt 100) spectra in the H-band (˜1.5-1.7 μm) for about 146,000 stars in the Milky Way galaxy. We have computed spectral libraries with effective temperature ({{T}eff}) ranging from 3500 to 8000 K for the automated chemical analysis of the survey data. The libraries, used to derive stellar parameters and abundances from the APOGEE spectra in the SDSS-III data release 12 (DR12), are based on ATLAS9 model atmospheres and the ASSɛT spectral synthesis code. We present a second set of libraries based on MARCS model atmospheres and the spectral synthesis code Turbospectrum. The ATLAS9/ASSɛT ({{T}eff} = 3500-8000 K) and MARCS/Turbospectrum ({{T}eff} = 3500-5500 K) grids cover a wide range of metallicity (-2.5 ≤slant [M/H] ≤slant +0.5 dex), surface gravity (0 ≤ log g ≤slant 5 dex), microturbulence (0.5 ≤slant ξ ≤slant 8 km s-1), carbon (-1 ≤slant [C/M] ≤slant +1 dex), nitrogen (-1 ≤slant [N/M] ≤slant +1 dex), and α-element (-1 ≤slant [α/M] ≤slant +1 dex) variations, having thus seven dimensions. We compare the ATLAS9/ASSɛT and MARCS/Turbospectrum libraries and apply both of them to the analysis of the observed H-band spectra of the Sun and the K2 giant Arcturus, as well as to a selected sample of well-known giant stars observed at very high resolution. The new APOGEE libraries are publicly available and can be employed for chemical studies in the H-band using other high-resolution spectrographs.

  2. fMRI Analysis-by-Synthesis Reveals a Dorsal Hierarchy That Extracts Surface Slant.

    PubMed

    Ban, Hiroshi; Welchman, Andrew E

    2015-07-08

    The brain's skill in estimating the 3-D orientation of viewed surfaces supports a range of behaviors, from placing an object on a nearby table, to planning the best route when hill walking. This ability relies on integrating depth signals across extensive regions of space that exceed the receptive fields of early sensory neurons. Although hierarchical selection and pooling is central to understanding of the ventral visual pathway, the successive operations in the dorsal stream are poorly understood. Here we use computational modeling of human fMRI signals to probe the computations that extract 3-D surface orientation from binocular disparity. To understand how representations evolve across the hierarchy, we developed an inference approach using a series of generative models to explain the empirical fMRI data in different cortical areas. Specifically, we simulated the responses of candidate visual processing algorithms and tested how well they explained fMRI responses. Thereby we demonstrate a hierarchical refinement of visual representations moving from the representation of edges and figure-ground segmentation (V1, V2) to spatially extensive disparity gradients in V3A. We show that responses in V3A are little affected by low-level image covariates, and have a partial tolerance to the overall depth position. Finally, we show that responses in V3A parallel perceptual judgments of slant. This reveals a relatively short computational hierarchy that captures key information about the 3-D structure of nearby surfaces, and more generally demonstrates an analysis approach that may be of merit in a diverse range of brain imaging domains. Copyright © 2015 Ban and Welchman.

  3. Assessment of ground effects on the propagation of aircraft noise: The T-38A flight experiment

    NASA Technical Reports Server (NTRS)

    Willshire, W. L., Jr.

    1980-01-01

    A flight experiment was conducted to investigate air to ground propagation of sound at gazing angles of incidence. A turbojet powered airplane was flown at altitudes ranging from 10 to 160 m over a 20-microphone array positioned over grass and concrete. The dependence of ground effects on frequency, incidence angle, and slant range was determined using two analysis methods. In one method, a microphone close to the flight path is compared to down range microphones. In the other method, comparisons are made between two microphones which were equidistant from the flight path but positioned over the two surfaces. In both methods, source directivity angle was the criterion by which portions of the microphone signals were compared. The ground effects were largest in the frequency range of 200 to 400 Hz and were found to be dependent on incidence angle and slant range. Ground effects measured for angles of incidence greater than 10 deg to 15 deg were near zero. Measured attenuation increased with increasing slant range for slant ranges less than 750 m. Theoretical predictions were found to be in good agreement with the major details of the measured results.

  4. The Visual Representation of 3D Object Orientation in Parietal Cortex

    PubMed Central

    Cowan, Noah J.; Angelaki, Dora E.

    2013-01-01

    An accurate representation of three-dimensional (3D) object orientation is essential for interacting with the environment. Where and how the brain visually encodes 3D object orientation remains unknown, but prior studies suggest the caudal intraparietal area (CIP) may be involved. Here, we develop rigorous analytical methods for quantifying 3D orientation tuning curves, and use these tools to the study the neural coding of surface orientation. Specifically, we show that single neurons in area CIP of the rhesus macaque jointly encode the slant and tilt of a planar surface, and that across the population, the distribution of preferred slant-tilts is not statistically different from uniform. This suggests that all slant-tilt combinations are equally represented in area CIP. Furthermore, some CIP neurons are found to also represent the third rotational degree of freedom that determines the orientation of the image pattern on the planar surface. Together, the present results suggest that CIP is a critical neural locus for the encoding of all three rotational degrees of freedom specifying an object's 3D spatial orientation. PMID:24305830

  5. Assimilation of nontraditional datasets to improve atmospheric compensation

    NASA Astrophysics Data System (ADS)

    Kelly, Michael A.; Osei-Wusu, Kwame; Spisz, Thomas S.; Strong, Shadrian; Setters, Nathan; Gibson, David M.

    2012-06-01

    Detection and characterization of space objects require the capability to derive physical properties such as brightness temperature and reflectance. These quantities, together with trajectory and position, are often used to correlate an object from a catalogue of known characteristics. However, retrieval of these physical quantities can be hampered by the radiative obscuration of the atmosphere. Atmospheric compensation must therefore be applied to remove the radiative signature of the atmosphere from electro-optical (EO) collections and enable object characterization. The JHU/APL Atmospheric Compensation System (ACS) was designed to perform atmospheric compensation for long, slant-range paths at wavelengths from the visible to infrared. Atmospheric compensation is critically important for airand ground-based sensors collecting at low elevations near the Earth's limb. It can be demonstrated that undetected thin, sub-visual cirrus clouds in the line of sight (LOS) can significantly alter retrieved target properties (temperature, irradiance). The ACS algorithm employs non-traditional cirrus datasets and slant-range atmospheric profiles to estimate and remove atmospheric radiative effects from EO/IR collections. Results are presented for a NASA-sponsored collection in the near-IR (NIR) during hypersonic reentry of the Space Shuttle during STS-132.

  6. The Visual System's Intrinsic Bias and Knowledge of Size Mediate Perceived Size and Location in the Dark

    ERIC Educational Resources Information Center

    Zhou, Liu; He, Zijiang J.; Ooi, Teng Leng

    2013-01-01

    Dimly lit targets in the dark are perceived as located about an implicit slanted surface that delineates the visual system's intrinsic bias (Ooi, Wu, & He, 2001). If the intrinsic bias reflects the internal model of visual space--as proposed here--its influence should extend beyond target localization. Our first 2 experiments demonstrated that…

  7. Direct Evidence for the Economy of Action: Glucose and the Perception of Geographical Slant

    PubMed Central

    Schnall, Simone; Zadra, Jonathan R.; Proffitt, Dennis R.

    2012-01-01

    When locomoting in a physically challenging environment, the body draws upon available energy reserves to accommodate increased metabolic demand. Ingested glucose supplements the body’s energy resources, whereas non-caloric sweetener does not. Two experiments demonstrate that participants who had consumed a glucose-containing drink perceived a hills slant to be less steep than did participants who had consumed a drink containing non-caloric sweetener. The glucose manipulation influenced participants’ explicit awareness of hill slant but, as predicted, it did not affect a visually-guided action of orienting a tilting palmboard to be parallel to the hill. Measured individual differences in factors related to bioenergetic state such as fatigue, sleep quality, fitness, mood, and stress also affected perception such that lower energetic states were associated with steeper perceptions of hill slant. This research shows that the perception of the environment’s spatial layout is influenced by the energetic resources available for locomotion within it. Our findings are consistent with the view that spatial perceptions are influenced by bioenergetic factors. PMID:20514996

  8. Automated absolute phase retrieval in across-track interferometry

    NASA Technical Reports Server (NTRS)

    Madsen, Soren N.; Zebker, Howard A.

    1992-01-01

    Discussed is a key element in the processing of topographic radar maps acquired by the NASA/JPL airborne synthetic aperture radar configured as an across-track interferometer (TOPSAR). TOPSAR utilizes a single transmit and two receive antennas; the three-dimensional target location is determined by triangulation based on a known baseline and two measured slant ranges. The slant range difference is determined very accurately from the phase difference between the signals received by the two antennas. This phase is measured modulo 2pi, whereas it is the absolute phase which relates directly to the difference in slant range. It is shown that splitting the range bandwidth into two subbands in the processor and processing each individually allows for the absolute phase. The underlying principles and system errors which must be considered are discussed, together with the implementation and results from processing data acquired during the summer of 1991.

  9. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled Models

    NASA Astrophysics Data System (ADS)

    Choi, Jieun; Dotter, Aaron; Conroy, Charlie; Cantiello, Matteo; Paxton, Bill; Johnson, Benjamin D.

    2016-06-01

    This is the first of a series of papers presenting the Modules for Experiments in Stellar Astrophysics (MESA) Isochrones and Stellar Tracks (MIST) project, a new comprehensive set of stellar evolutionary tracks and isochrones computed using MESA, a state-of-the-art open-source 1D stellar evolution package. In this work, we present models with solar-scaled abundance ratios covering a wide range of ages (5≤slant {log}({Age}) [{year}]≤slant 10.3), masses (0.1≤slant M/{M}⊙ ≤slant 300), and metallicities (-2.0≤slant [{{Z}}/{{H}}]≤slant 0.5). The models are self-consistently and continuously evolved from the pre-main sequence (PMS) to the end of hydrogen burning, the white dwarf cooling sequence, or the end of carbon burning, depending on the initial mass. We also provide a grid of models evolved from the PMS to the end of core helium burning for -4.0≤slant [{{Z}}/{{H}}]\\lt -2.0. We showcase extensive comparisons with observational constraints as well as with some of the most widely used existing models in the literature. The evolutionary tracks and isochrones can be downloaded from the project website at http://waps.cfa.harvard.edu/MIST/.

  10. Data-Intensive Scientific Management, Analysis and Visualization

    NASA Astrophysics Data System (ADS)

    Goranova, Mariana; Shishedjiev, Bogdan; Juliana Georgieva, Juliana

    2012-11-01

    The proposed integrated system provides a suite of services for data-intensive sciences that enables scientists to describe, manage, analyze and visualize data from experiments and numerical simulations in distributed and heterogeneous environment. This paper describes the advisor and the converter services and presents an example from the monitoring of the slant column content of atmospheric minor gases.

  11. Phase and vacancy behaviour of hard "slanted" cubes

    NASA Astrophysics Data System (ADS)

    van Damme, R.; van der Meer, B.; van den Broeke, J. J.; Smallenburg, F.; Filion, L.

    2017-09-01

    We use computer simulations to study the phase behaviour for hard, right rhombic prisms as a function of the angle of their rhombic face (the "slant" angle). More specifically, using a combination of event-driven molecular dynamics simulations, Monte Carlo simulations, and free-energy calculations, we determine and characterize the equilibrium phases formed by these particles for various slant angles and densities. Surprisingly, we find that the equilibrium crystal structure for a large range of slant angles and densities is the simple cubic crystal—despite the fact that the particles do not have cubic symmetry. Moreover, we find that the equilibrium vacancy concentration in this simple cubic phase is extremely high and depends only on the packing fraction and not the particle shape. At higher densities, a rhombic crystal appears as the equilibrium phase. We summarize the phase behaviour of this system by drawing a phase diagram in the slant angle-packing fraction plane.

  12. Texture and haptic cues in slant discrimination: reliability-based cue weighting without statistically optimal cue combination

    NASA Astrophysics Data System (ADS)

    Rosas, Pedro; Wagemans, Johan; Ernst, Marc O.; Wichmann, Felix A.

    2005-05-01

    A number of models of depth-cue combination suggest that the final depth percept results from a weighted average of independent depth estimates based on the different cues available. The weight of each cue in such an average is thought to depend on the reliability of each cue. In principle, such a depth estimation could be statistically optimal in the sense of producing the minimum-variance unbiased estimator that can be constructed from the available information. Here we test such models by using visual and haptic depth information. Different texture types produce differences in slant-discrimination performance, thus providing a means for testing a reliability-sensitive cue-combination model with texture as one of the cues to slant. Our results show that the weights for the cues were generally sensitive to their reliability but fell short of statistically optimal combination - we find reliability-based reweighting but not statistically optimal cue combination.

  13. A homogeneous field for light adaptation.

    DOT National Transportation Integrated Search

    1966-09-01

    Visual judgments of size, distance, slant, etc. in the flying situation are often made under reduced cue conditions, especially during night flying. In the experimental study of spatial perception under these conditions, experiments often require lon...

  14. Experimental investigation of piercing of high-strength steels within a critical range of slant angle

    NASA Astrophysics Data System (ADS)

    Senn, S.; Liewald, M.

    2017-09-01

    Deep drawn parts often do have complex designs and, therefore, must be trimmed or punched subsequently in a second stage. Due to the complex part geometry, most punching areas do reveal critical slant angle (angle between part surface and ram movement direction) different to perpendicular direction. Piercing within a critical range of slant angle may lead to severe damage of the cutting tool. Consequently, expensive cam units are required to transform the ram moving direction in order to perform the piercing process perpendicularly to the local part surface. For modern sheet metals, however, the described critical angle of attack has not been investigated adequately until now. Therefore, cam units are used in cases in which regular piercing with high slant angle wouldn’t be possible. Purpose of this study is to investigate influencing factors and their effect on punch damage during piercing of high strength steels with slant angles. Therefore, a modular shearing tool was designed, which allows to simply switch die parts to vary cutting clearance and cutting angle. The target size of the study is to measure the lateral deviation of the punch which is monitored by an eddy current sensor. The sensor is located in the downholder and measures the lateral punch deviation in-line during manufacturing. The deviation is mainly influenced by slant angle of workpiece surface. In relation to slang angle and sheet thickness the clearance has a small influence on the measured punch deflection.

  15. Brightness masking is modulated by disparity structure.

    PubMed

    Pelekanos, Vassilis; Ban, Hiroshi; Welchman, Andrew E

    2015-05-01

    The luminance contrast at the borders of a surface strongly influences surface's apparent brightness, as demonstrated by a number of classic visual illusions. Such phenomena are compatible with a propagation mechanism believed to spread contrast information from borders to the interior. This process is disrupted by masking, where the perceived brightness of a target is reduced by the brief presentation of a mask (Paradiso & Nakayama, 1991), but the exact visual stage that this happens remains unclear. In the present study, we examined whether brightness masking occurs at a monocular-, or a binocular-level of the visual hierarchy. We used backward masking, whereby a briefly presented target stimulus is disrupted by a mask coming soon afterwards, to show that brightness masking is affected by binocular stages of the visual processing. We manipulated the 3-D configurations (slant direction) of the target and mask and measured the differential disruption that masking causes on brightness estimation. We found that the masking effect was weaker when stimuli had a different slant. We suggest that brightness masking is partly mediated by mid-level neuronal mechanisms, at a stage where binocular disparity edge structure has been extracted. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Velocity-resolved [{\\rm{C}}\\,{\\rm{II}}] Emission from Cold Diffuse Clouds in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul F.; Pineda, Jorge L.; Neufeld, David A.; Wolfire, Mark G.; Risacher, Christophe; Simon, Robert

    2018-04-01

    We have combined emission from the 158 μm fine structure transition of C+ observed with the GREAT and upGREAT instruments on SOFIA with 21 cm absorption spectra and visual extinction to characterize the diffuse interstellar clouds found along the lines of sight. The weak [C II] emission is consistent in velocity and line width with the strongest H I component produced by the cold neutral medium. The H I column density and kinetic temperature are known from the 21 cm data and, assuming a fractional abundance of ionized carbon, we calculate the volume density and thermal pressure of each source, which vary considerably, with 27 {cm}}-3≤slant n({{{H}}}0) ≤slant 210 cm‑3 considering only the atomic hydrogen along the lines of sight to be responsible for the C+, while 13 {cm}}-3≤slant n({{{H}}}0+{{{H}}}2)≤slant 190 cm‑3 including the hydrogen in both forms. The thermal pressure varies widely with 1970 cm‑3 K ≤slant {P}th}/k≤slant 10,440 cm‑3 K for H0 alone and 750 cm‑3 K ≤ P th/k ≤ 9360 cm‑3 K including both H0 and H2. The molecular hydrogen fraction varies between 0.10 and 0.67. Photoelectric heating is the dominant heating source, supplemented by a moderately enhanced cosmic ray ionization rate, constrained by the relatively low 45 K to 73 K gas temperatures of the clouds. The resulting thermal balance for the two lower-density clouds is satisfactory, but for the two higher-density clouds, the combined heating rate is insufficient to balance the observed C+ cooling.

  17. Dynamic Target Acquisition: Empirical Models of Operator Performance.

    DTIC Science & Technology

    1980-08-01

    for 30,000 Ft Initial Slant Range VARIABLES MEAN Signature X Scene Complexity Low Medium High Active Target FLIR 22794 20162 20449 Inactive Target...Interactions for 30,000 Ft Initial Slant Range I Signature X Scene Complexity V * ORDERED MEANS 14867 18076 18079 18315 19105 19643 20162 20449 22794...14867 18076 1 183159 19105* 1 19643 20162* 20449 * 1 22794Signature X Speed I ORDERED MEANS 13429 15226 16604 17344 19033 20586 22641 24033 24491 1

  18. Pot/Lid Illusion

    PubMed Central

    Kennedy, John M.

    2016-01-01

    A new everyday visual size illusion is presented—the Pot/Lid illusion. Observers choose an unduly large lid for a pot. We ask whether the optic slant of the pot brim would increase its apparent size or if vision underestimates the size of tilted lids. PMID:27698990

  19. An analysis of temperature-induced errors for an ultrasound distance measuring system. M. S. Thesis

    NASA Technical Reports Server (NTRS)

    Wenger, David Paul

    1991-01-01

    The presentation of research is provided in the following five chapters. Chapter 2 presents the necessary background information and definitions for general work with ultrasound and acoustics. It also discusses the basis for errors in the slant range measurements. Chapter 3 presents a method of problem solution and an analysis of the sensitivity of the equations to slant range measurement errors. It also presents various methods by which the error in the slant range measurements can be reduced to improve overall measurement accuracy. Chapter 4 provides a description of a type of experiment used to test the analytical solution and provides a discussion of its results. Chapter 5 discusses the setup of a prototype collision avoidance system, discusses its accuracy, and demonstrates various methods of improving the accuracy along with the improvements' ramifications. Finally, Chapter 6 provides a summary of the work and a discussion of conclusions drawn from it. Additionally, suggestions for further research are made to improve upon what has been presented here.

  20. A High Resolution Survey of the Galactic Plane at 408 MHz

    NASA Astrophysics Data System (ADS)

    Tung, A. K.; Kothes, R.; Landecker, T. L.; Geisbüsch, J.; Del Rizzo, D.; Taylor, A. R.; Brunt, C. M.; Gray, A. D.; Dougherty, S. M.

    2017-10-01

    The interstellar medium is a complex “ecosystem” with gas constituents in the atomic, molecular and ionized states, dust, magnetic fields, and relativistic particles. The Canadian Galactic Plane Survey has imaged these constituents at multiple radio and infrared frequencies with angular resolution of the order of arcminutes. This paper presents radio continuum data at 408 MHz over the area of 52^\\circ ≤slant {\\ell }≤slant 193^\\circ , -6\\buildrel{\\circ}\\over{.} 5≤slant b≤slant 8\\buildrel{\\circ}\\over{.} 5, with an extension to b=21^\\circ in the range of 97^\\circ ≤slant {\\ell }≤slant 120^\\circ , with angular resolution 2\\buildrel{ \\prime}\\over{.} 8× 2\\buildrel{ \\prime}\\over{.} 8 cosecδ. Observations were made with the Synthesis Telescope at the Dominion Radio Astrophysical Observatory as part of the Canadian Galactic Plane Survey. The calibration of the survey using existing radio source catalogs is described. The accuracy of 408 MHz flux densities from the data is 6%. Information on large structures has been incorporated into the data using the single-antenna survey of Haslam et al. The paper presents the data, describes how it can be accessed electronically, and gives examples of applications of the data to ISM research.

  1. Michel accretion of a polytropic fluid with adiabatic index \\gamma \\gt 5/3: global flows versus homoclinic orbits

    NASA Astrophysics Data System (ADS)

    Chaverra, Eliana; Mach, Patryk; Sarbach, Olivier

    2016-05-01

    We analyze the properties of a polytropic fluid that is radially accreted into a Schwarzschild black hole. The case where the adiabatic index γ lies in the range of 1\\lt γ ≤slant 5/3 has been treated in previous work. In this article, we analyze the complementary range of 5/3\\lt γ ≤slant 2. To this purpose, the problem is cast into an appropriate Hamiltonian dynamical system, whose phase flow is analyzed. While, for 1\\lt γ ≤slant 5/3, the solutions are always characterized by the presence of a unique critical saddle point, we show that, when 5/3\\lt γ ≤slant 2, an additional critical point might appear, which is a center point. For the parametrization used in this paper, we prove that, whenever this additional critical point appears, there is a homoclinic orbit. Solutions corresponding to homoclinic orbits differ from standard transonic solutions with vanishing asymptotic velocities in two aspects: they are local (i.e., they cannot be continued to arbitrarily large radii); the dependence of the density or the value of the velocity on the radius is not monotonic.

  2. Multipolar anisotropy of E{sub 0} Greater-Than-Or-Slanted-Equal-To 10{sup 17} eV cosmic rays according to data of the Yakutsk array for studying extensive air showers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glushkov, A. V., E-mail: a.v.glushkov@ikfia.ysn.ru

    The results obtained by analyzing arrival directions for primary cosmic particles characterized by energies in the region E{sub 0} Greater-Than-Or-Slanted-Equal-To 10{sup 17} eV and zenith angles in the range {theta} Less-Than-Or-Slanted-Equal-To 60 Degree-Sign and detected at the Yakutsk array for studying extensive air showers (EASs) over the period spanning 1974 and 2009 are presented. It is shown that these events exhibit different anisotropies in different energy intervals.

  3. Flow visualization of discrete hole film cooling for gas turbine applications

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.; Russell, L. M.

    1975-01-01

    Film injection from discrete holes in a three row staggered array with 5-diameter spacing is studied for three different hole angles: (1) normal, (2) slanted 30 deg to the surface in the direction of the mainstream, and (3) slanted 30 deg to the surface and 45 deg laterally to the mainstream. The boundary layer thickness-to-hole diameter ratio and Reynolds number are typical of gas turbine film cooling applications. Two different injection locations are studied to evaluate the effect of boundary layer thickness on film penetration and mixing. Detailed streaklines showing the turbulent motion of the injected air are obtained by photographing very small neutrally buoyant helium filled 'soap' bubbles which follow the flow field. Unlike smoke, which diffuses rapidly in the high turbulent mixing region associated with discrete hole blowing, the bubble streaklines passing downstream injection locations are clearly identifiable and can be traced back to their origin. Visualization of surface temperature patterns obtained from infrared photographs of a similar film cooled surface are also included.

  4. Retinal image quality and visual stimuli processing by simulation of partial eye cataract

    NASA Astrophysics Data System (ADS)

    Ozolinsh, Maris; Danilenko, Olga; Zavjalova, Varvara

    2016-10-01

    Visual stimuli were demonstrated on a 4.3'' mobile phone screen inside a "Virtual Reality" adapter that allowed separation of the left and right eye visual fields. Contrast of the retina image thus can be controlled by the image on the phone screen and parallel to that at appropriate geometry by the AC voltage applied to scattering PDLC cell inside the adapter. Such optical pathway separation allows to demonstrate to both eyes spatially variant images, that after visual binocular fusion acquire their characteristic indications. As visual stimuli we used grey and different color (two opponent components to vision - red-green in L*a*b* color space) spatially periodical stimuli for left and right eyes; and with spatial content that by addition or subtraction resulted as clockwise or counter clockwise slanted Gabor gratings. We performed computer modeling with numerical addition or subtraction of signals similar to processing in brain via stimuli input decomposition in luminance and color opponency components. It revealed the dependence of the perception psychophysical equilibrium point between clockwise or counter clockwise perception of summation on one eye image contrast and color saturation, and on the strength of the retinal aftereffects. Existence of a psychophysical equilibrium point in perception of summation is only in the presence of a prior adaptation to a slanted periodical grating and at the appropriate slant orientation of adaptation grating and/or at appropriate spatial grating pattern phase according to grating nods. Actual observer perception experiments when one eye images were deteriorated by simulated cataract approved the shift of mentioned psychophysical equilibrium point on the degree of artificial cataract. We analyzed also the mobile devices stimuli emission spectra paying attention to areas sensitive to macula pigments absorption spectral maxima and blue areas where the intense irradiation can cause in abnormalities in periodic melatonin regeneration and deviations in regular circadian rhythms. Therefore participants in vision studies using "Virtual Reality" appliances with fixed vision fields and emitting a spike liked spectral bands (on basis of OLED and AMOLED diodes) different from spectra of ambient illuminators should be accordingly warned about potential health risks.

  5. Slant Path Low Visibility Atmospheric Conditions.

    DTIC Science & Technology

    1980-09-01

    precipitation rate ; humidity; aerosol concentration; Particle spectrum; local aeiosol inhomogeneities; air * -Q.!ZIBS’IRACT: A slant path for...test path , of a length over which infrared transmissometer measurements can be made that are in a magnitude range permitting accurate measurements under...and therefore do not accurately relate to absolute transmissivity. A path which is too long will result in transmission measurements which are very low

  6. 1st- and 2nd-order motion and texture resolution in central and peripheral vision

    NASA Technical Reports Server (NTRS)

    Solomon, J. A.; Sperling, G.

    1995-01-01

    STIMULI. The 1st-order stimuli are moving sine gratings. The 2nd-order stimuli are fields of static visual texture, whose contrasts are modulated by moving sine gratings. Neither the spatial slant (orientation) nor the direction of motion of these 2nd-order (microbalanced) stimuli can be detected by a Fourier analysis; they are invisible to Reichardt and motion-energy detectors. METHOD. For these dynamic stimuli, when presented both centrally and in an annular window extending from 8 to 10 deg in eccentricity, we measured the highest spatial frequency for which discrimination between +/- 45 deg texture slants and discrimination between opposite directions of motion were each possible. RESULTS. For sufficiently low spatial frequencies, slant and direction can be discriminated in both central and peripheral vision, for both 1st- and for 2nd-order stimuli. For both 1st- and 2nd-order stimuli, at both retinal locations, slant discrimination is possible at higher spatial frequencies than direction discrimination. For both 1st- and 2nd-order stimuli, motion resolution decreases 2-3 times more rapidly with eccentricity than does texture resolution. CONCLUSIONS. (1) 1st- and 2nd-order motion scale similarly with eccentricity. (2) 1st- and 2nd-order texture scale similarly with eccentricity. (3) The central/peripheral resolution fall-off is 2-3 times greater for motion than for texture.

  7. Following the Cosmic Evolution of Pristine Gas. II. The Search for Pop III–bright Galaxies

    NASA Astrophysics Data System (ADS)

    Sarmento, Richard; Scannapieco, Evan; Cohen, Seth

    2018-02-01

    Direct observational searches for Population III (Pop III) stars at high redshift are faced with the question of how to select the most promising targets for spectroscopic follow-up. To help answer this, we use a large-scale cosmological simulation, augmented with a new subgrid model that tracks the fraction of pristine gas, to follow the evolution of high-redshift galaxies and the Pop III stars they contain. We generate rest-frame ultraviolet (UV) luminosity functions for our galaxies and find that they are consistent with current z≥slant 7 observations. Throughout the redshift range 7≤slant z≤slant 15, we identify “Pop III–bright” galaxies as those with at least 75% of their flux coming from Pop III stars. While less than 1% of galaxies brighter than {m}UV,{AB}}=31.4 mag are Pop III–bright in the range 7≤slant z≤slant 8, roughly 17% of such galaxies are Pop III–bright at z = 9, immediately before reionization occurs in our simulation. Moving to z = 10, {m}UV,{AB}}=31.4 mag corresponds to larger, more luminous galaxies, and the Pop III–bright fraction falls off to 5%. Finally, at the highest redshifts, a large fraction (29% at z = 14 and 41% at z = 15) of all galaxies are Pop III–bright regardless of magnitude. While {m}UV,{AB}}=31.4 mag galaxies are extremely rare during this epoch, we find that 13% of galaxies at z = 14 are Pop III–bright with {m}UV,{AB}}≤slant 33 mag, a intrinsic magnitude within reach of the James Webb Space Telescope using lensing. Thus, we predict that the best redshift to search for luminous Pop III–bright galaxies is just before reionization, while lensing surveys for fainter galaxies should push to the highest redshifts possible.

  8. Recurrence of random walks with long-range steps generated by fractional Laplacian matrices on regular networks and simple cubic lattices

    NASA Astrophysics Data System (ADS)

    Michelitsch, T. M.; Collet, B. A.; Riascos, A. P.; Nowakowski, A. F.; Nicolleau, F. C. G. A.

    2017-12-01

    We analyze a Markovian random walk strategy on undirected regular networks involving power matrix functions of the type L\\frac{α{2}} where L indicates a ‘simple’ Laplacian matrix. We refer to such walks as ‘fractional random walks’ with admissible interval 0<α ≤slant 2 . We deduce probability-generating functions (network Green’s functions) for the fractional random walk. From these analytical results we establish a generalization of Polya’s recurrence theorem for fractional random walks on d-dimensional infinite lattices: The fractional random walk is transient for dimensions d > α (recurrent for d≤slantα ) of the lattice. As a consequence, for 0<α< 1 the fractional random walk is transient for all lattice dimensions d=1, 2, .. and in the range 1≤slantα < 2 for dimensions d≥slant 2 . Finally, for α=2 , Polya’s classical recurrence theorem is recovered, namely the walk is transient only for lattice dimensions d≥slant 3 . The generalization of Polya’s recurrence theorem remains valid for the class of random walks with Lévy flight asymptotics for long-range steps. We also analyze the mean first passage probabilities, mean residence times, mean first passage times and global mean first passage times (Kemeny constant) for the fractional random walk. For an infinite 1D lattice (infinite ring) we obtain for the transient regime 0<α<1 closed form expressions for the fractional lattice Green’s function matrix containing the escape and ever passage probabilities. The ever passage probabilities (fractional lattice Green’s functions) in the transient regime fulfil Riesz potential power law decay asymptotic behavior for nodes far from the departure node. The non-locality of the fractional random walk is generated by the non-diagonality of the fractional Laplacian matrix with Lévy-type heavy tailed inverse power law decay for the probability of long-range moves. This non-local and asymptotic behavior of the fractional random walk introduces small-world properties with the emergence of Lévy flights on large (infinite) lattices.

  9. An Accurate Co-registration Method for Airborne Repeat-pass InSAR

    NASA Astrophysics Data System (ADS)

    Dong, X. T.; Zhao, Y. H.; Yue, X. J.; Han, C. M.

    2017-10-01

    Interferometric Synthetic Aperture Radar (InSAR) technology plays a significant role in topographic mapping and surface deformation detection. Comparing with spaceborne repeat-pass InSAR, airborne repeat-pass InSAR solves the problems of long revisit time and low-resolution images. Due to the advantages of flexible, accurate, and fast obtaining abundant information, airborne repeat-pass InSAR is significant in deformation monitoring of shallow ground. In order to getting precise ground elevation information and interferometric coherence of deformation monitoring from master and slave images, accurate co-registration must be promised. Because of side looking, repeat observing path and long baseline, there are very different initial slant ranges and flight heights between repeat flight paths. The differences of initial slant ranges and flight height lead to the pixels, located identical coordinates on master and slave images, correspond to different size of ground resolution cells. The mismatching phenomenon performs very obvious on the long slant range parts of master image and slave image. In order to resolving the different sizes of pixels and getting accurate co-registration results, a new method is proposed based on Range-Doppler (RD) imaging model. VV-Polarization C-band airborne repeat-pass InSAR images were used in experiment. The experiment result shows that the proposed method leads to superior co-registration accuracy.

  10. Subsonic sting interference on the aerodynamic characteristics of a family of slanted-base ogive-cylinders

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Alcorn, Charles W.; Kilgore, W. Allen

    1990-01-01

    Support interference free drag, lift, and pitching moment measurements on a range of slanted base ogive cylinders were made using the NASA Langley 13 inch magnetic suspension and balance system. Typical test Mach numbers were in the range 0.04 to 0.2. Drag results are shown to be in broad agreement with previous tests with this configuration. Measurements were repeated with a dummy sting support installed in the wind tunnel. Significant support interferences were found at all test conditions and are quantified. Further comparison is made between interference free base pressures, obtained using remote telemetry, and sting cavity pressures.

  11. Evaluation of a novel collimator for molecular breast tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilland, David R.; Welch, Benjamin L.; Lee, Seungjoon

    Here, this study investigated a novel gamma camera for molecular breast tomosynthesis (MBT), which is a nuclear breast imaging method that uses limited angle tomography. The camera is equipped with a variable angle, slant-hole (VASH) collimator that allows the camera to remain close to the breast throughout the acquisition. The goal of this study was to evaluate the spatial resolution and count sensitivity of this camera and to compare contrast and contrast-to-noise ratio (CNR) with conventional planar imaging using an experimental breast phantom. Methods The VASH collimator mounts to a commercial gamma camera for breast imaging that uses a pixelatedmore » (3.2 mm), 15 × 20 cm NaI crystal. Spatial resolution was measured in planar images over a range of distances from the collimator (30-100 mm) and a range of slant angles (–25° to 25°) using 99mTc line sources. Spatial resolution was also measured in reconstructed MBT images including in the depth dimension. The images were reconstructed from data acquired over the -25° to 25° angular range using an iterative algorithm adapted to the slant-hole geometry. Sensitivity was measured over the range of slant angles using a disk source. Measured spatial resolution and sensitivity were compared to theoretical values. Contrast and CNR were measured using a breast phantom containing spherical lesions (6.2 mm and 7.8 mm diameter) and positioned over a range of depths in the phantom. The MBT and planar methods had equal scan time, and the count density in the breast phantom data was similar to that in clinical nuclear breast imaging. The MBT method used an iterative reconstruction algorithm combined with a postreconstruction Metz filter. Results The measured spatial resolution in planar images agreed well with theoretical calculations over the range of distances and slant angles. The measured FWHM was 9.7 mm at 50 mm distance. In reconstructed MBT images, the spatial resolution in the depth dimension was approximately 2.2 mm greater than the other two dimensions due to the limited angle data. The measured count sensitivity agreed closely with theory over all slant angles when using a wide energy window. At 0° slant angle, measured sensitivity was 19.7 counts sec -1 μCi -1 with the open energy window and 11.2 counts sec -1 μCi -1 with a 20% wide photopeak window (126 to 154 keV). The measured CNR in the MBT images was significantly greater than in the planar images for all but the lowest CNR cases where the lesion detectability was extremely low for both MBT and planar. The 7.8 mm lesion at 37 mm depth was marginally detectable in the planar image but easily visible in the MBT image. The improved CNR with MBT was due to a large improvement in contrast, which out-weighed the increase in image noise. Conclusion The spatial resolution and count sensitivity measurements with the prototype MBT system matched theoretical calculations, and the measured CNR in breast phantom images was generally greater with the MBT system compared to conventional planar imaging. These results demonstrate the potential of the proposed MBT system to improve lesion detection in nuclear breast imaging.« less

  12. Evaluation of a novel collimator for molecular breast tomosynthesis.

    PubMed

    Gilland, David R; Welch, Benjamin L; Lee, Seungjoon; Kross, Brian; Weisenberger, Andrew G

    2017-11-01

    This study investigated a novel gamma camera for molecular breast tomosynthesis (MBT), which is a nuclear breast imaging method that uses limited angle tomography. The camera is equipped with a variable angle, slant-hole (VASH) collimator that allows the camera to remain close to the breast throughout the acquisition. The goal of this study was to evaluate the spatial resolution and count sensitivity of this camera and to compare contrast and contrast-to-noise ratio (CNR) with conventional planar imaging using an experimental breast phantom. The VASH collimator mounts to a commercial gamma camera for breast imaging that uses a pixelated (3.2 mm), 15 × 20 cm NaI crystal. Spatial resolution was measured in planar images over a range of distances from the collimator (30-100 mm) and a range of slant angles (-25° to 25°) using 99m Tc line sources. Spatial resolution was also measured in reconstructed MBT images including in the depth dimension. The images were reconstructed from data acquired over the -25° to 25° angular range using an iterative algorithm adapted to the slant-hole geometry. Sensitivity was measured over the range of slant angles using a disk source. Measured spatial resolution and sensitivity were compared to theoretical values. Contrast and CNR were measured using a breast phantom containing spherical lesions (6.2 mm and 7.8 mm diameter) and positioned over a range of depths in the phantom. The MBT and planar methods had equal scan time, and the count density in the breast phantom data was similar to that in clinical nuclear breast imaging. The MBT method used an iterative reconstruction algorithm combined with a postreconstruction Metz filter. The measured spatial resolution in planar images agreed well with theoretical calculations over the range of distances and slant angles. The measured FWHM was 9.7 mm at 50 mm distance. In reconstructed MBT images, the spatial resolution in the depth dimension was approximately 2.2 mm greater than the other two dimensions due to the limited angle data. The measured count sensitivity agreed closely with theory over all slant angles when using a wide energy window. At 0° slant angle, measured sensitivity was 19.7 counts sec -1 μCi -1 with the open energy window and 11.2 counts sec -1 μCi -1 with a 20% wide photopeak window (126 to 154 keV). The measured CNR in the MBT images was significantly greater than in the planar images for all but the lowest CNR cases where the lesion detectability was extremely low for both MBT and planar. The 7.8 mm lesion at 37 mm depth was marginally detectable in the planar image but easily visible in the MBT image. The improved CNR with MBT was due to a large improvement in contrast, which out-weighed the increase in image noise. The spatial resolution and count sensitivity measurements with the prototype MBT system matched theoretical calculations, and the measured CNR in breast phantom images was generally greater with the MBT system compared to conventional planar imaging. These results demonstrate the potential of the proposed MBT system to improve lesion detection in nuclear breast imaging. © 2017 American Association of Physicists in Medicine.

  13. Evaluation of a novel collimator for molecular breast tomosynthesis

    DOE PAGES

    Gilland, David R.; Welch, Benjamin L.; Lee, Seungjoon; ...

    2017-09-06

    Here, this study investigated a novel gamma camera for molecular breast tomosynthesis (MBT), which is a nuclear breast imaging method that uses limited angle tomography. The camera is equipped with a variable angle, slant-hole (VASH) collimator that allows the camera to remain close to the breast throughout the acquisition. The goal of this study was to evaluate the spatial resolution and count sensitivity of this camera and to compare contrast and contrast-to-noise ratio (CNR) with conventional planar imaging using an experimental breast phantom. Methods The VASH collimator mounts to a commercial gamma camera for breast imaging that uses a pixelatedmore » (3.2 mm), 15 × 20 cm NaI crystal. Spatial resolution was measured in planar images over a range of distances from the collimator (30-100 mm) and a range of slant angles (–25° to 25°) using 99mTc line sources. Spatial resolution was also measured in reconstructed MBT images including in the depth dimension. The images were reconstructed from data acquired over the -25° to 25° angular range using an iterative algorithm adapted to the slant-hole geometry. Sensitivity was measured over the range of slant angles using a disk source. Measured spatial resolution and sensitivity were compared to theoretical values. Contrast and CNR were measured using a breast phantom containing spherical lesions (6.2 mm and 7.8 mm diameter) and positioned over a range of depths in the phantom. The MBT and planar methods had equal scan time, and the count density in the breast phantom data was similar to that in clinical nuclear breast imaging. The MBT method used an iterative reconstruction algorithm combined with a postreconstruction Metz filter. Results The measured spatial resolution in planar images agreed well with theoretical calculations over the range of distances and slant angles. The measured FWHM was 9.7 mm at 50 mm distance. In reconstructed MBT images, the spatial resolution in the depth dimension was approximately 2.2 mm greater than the other two dimensions due to the limited angle data. The measured count sensitivity agreed closely with theory over all slant angles when using a wide energy window. At 0° slant angle, measured sensitivity was 19.7 counts sec -1 μCi -1 with the open energy window and 11.2 counts sec -1 μCi -1 with a 20% wide photopeak window (126 to 154 keV). The measured CNR in the MBT images was significantly greater than in the planar images for all but the lowest CNR cases where the lesion detectability was extremely low for both MBT and planar. The 7.8 mm lesion at 37 mm depth was marginally detectable in the planar image but easily visible in the MBT image. The improved CNR with MBT was due to a large improvement in contrast, which out-weighed the increase in image noise. Conclusion The spatial resolution and count sensitivity measurements with the prototype MBT system matched theoretical calculations, and the measured CNR in breast phantom images was generally greater with the MBT system compared to conventional planar imaging. These results demonstrate the potential of the proposed MBT system to improve lesion detection in nuclear breast imaging.« less

  14. Ground-plane influences on size estimation in early visual processing.

    PubMed

    Champion, Rebecca A; Warren, Paul A

    2010-07-21

    Ground-planes have an important influence on the perception of 3D space (Gibson, 1950) and it has been shown that the assumption that a ground-plane is present in the scene plays a role in the perception of object distance (Bruno & Cutting, 1988). Here, we investigate whether this influence is exerted at an early stage of processing, to affect the rapid estimation of 3D size. Participants performed a visual search task in which they searched for a target object that was larger or smaller than distracter objects. Objects were presented against a background that contained either a frontoparallel or slanted 3D surface, defined by texture gradient cues. We measured the effect on search performance of target location within the scene (near vs. far) and how this was influenced by scene orientation (which, e.g., might be consistent with a ground or ceiling plane, etc.). In addition, we investigated how scene orientation interacted with texture gradient information (indicating surface slant), to determine how these separate cues to scene layout were combined. We found that the difference in target detection performance between targets at the front and rear of the simulated scene was maximal when the scene was consistent with a ground-plane - consistent with the use of an elevation cue to object distance. In addition, we found a significant increase in the size of this effect when texture gradient information (indicating surface slant) was present, but no interaction between texture gradient and scene orientation information. We conclude that scene orientation plays an important role in the estimation of 3D size at an early stage of processing, and suggest that elevation information is linearly combined with texture gradient information for the rapid estimation of 3D size. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Visual-motor recalibration in geographical slant perception

    NASA Technical Reports Server (NTRS)

    Bhalla, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    1999-01-01

    In 4 experiments, it was shown that hills appear steeper to people who are encumbered by wearing a heavy backpack (Experiment 1), are fatigued (Experiment 2), are of low physical fitness (Experiment 3), or are elderly and/or in declining health (Experiment 4). Visually guided actions are unaffected by these manipulations of physiological potential. Although dissociable, the awareness and action systems were also shown to be interconnected. Recalibration of the transformation relating awareness and actions was found to occur over long-term changes in physiological potential (fitness level, age, and health) but not with transitory changes (fatigue and load). Findings are discussed in terms of a time-dependent coordination between the separate systems that control explicit visual awareness and visually guided action.

  16. Measurements of (60)Co in massive steel samples exposed to the Hiroshima atomic bomb explosion.

    PubMed

    Gasparro, Joël; Hult, Mikael; Marissens, Gerd; Hoshi, Masaharu; Tanaka, Kenichi; Endo, Satoru; Laubenstein, Matthias; Dombrowski, Harald; Arnold, Dirk

    2012-04-01

    To study discrepancies in retrospective Hiroshima dosimetry, the specific activity of (60)Co in 16 steel samples from Hiroshima was measured using gamma-ray spectrometry in underground laboratories. There is general agreement between these new activity measurements and the specific activities derived from previously calculated dose values on the one hand and former measurements of samples gathered at distances less than 1,000 m from the center of the explosion (< 1,000 m slant range) on the other. It was found that activities at long range (> 1,300 m slant range) were mainly cosmogenically induced. Furthermore, at long range, these results are in disagreement with older measurements whose specific activity values were 10 to 100 times higher than predicted by computer model calculations in DS86 and DS02. As a consequence, the previously reported discrepancy is not confirmed.

  17. Slant correction for handwritten English documents

    NASA Astrophysics Data System (ADS)

    Shridhar, Malayappan; Kimura, Fumitaka; Ding, Yimei; Miller, John W. V.

    2004-12-01

    Optical character recognition of machine-printed documents is an effective means for extracting textural material. While the level of effectiveness for handwritten documents is much poorer, progress is being made in more constrained applications such as personal checks and postal addresses. In these applications a series of steps is performed for recognition beginning with removal of skew and slant. Slant is a characteristic unique to the writer and varies from writer to writer in which characters are tilted some amount from vertical. The second attribute is the skew that arises from the inability of the writer to write on a horizontal line. Several methods have been proposed and discussed for average slant estimation and correction in the earlier papers. However, analysis of many handwritten documents reveals that slant is a local property and slant varies even within a word. The use of an average slant for the entire word often results in overestimation or underestimation of the local slant. This paper describes three methods for local slant estimation, namely the simple iterative method, high-speed iterative method, and the 8-directional chain code method. The experimental results show that the proposed methods can estimate and correct local slant more effectively than the average slant correction.

  18. Numerical simulation of the deterministic vector separation of particles flowing over slanted open cavities

    NASA Astrophysics Data System (ADS)

    Shaqfeh, Eric S. G.; Bernate, Jorge A.; Yang, Mengfei

    2016-12-01

    Within the past decade, the separation of particles via continuous flow through microfluidic devices has been developed largely through an Edisonian approach whereby devices have been developed based on observation and intuition. This is particularly true in the development of vector chromatography at vanishingly small Reynolds number for non-Brownian particles. Note that this latter phenomenon has its origins in the irreversible forces that are at work in the device, since Stokes flow reversibility typically prohibits their function otherwise. We present a numerical simulation of the vector separation of non-Brownian particles of different sizes and deformabilities in the Stokes flow through channels whose lower surface is composed of slanted cavities. The simulations are designed to understand the physical principles behind the separation as well as to provide design criteria for devices for separating particles in a given size and flexibility range. The numerical simulations are Stokes flow boundary element simulations using techniques defined elsewhere in the literature, but including a close-range repulsive force between the particles and the slanted cavities. We demonstrate that over a range of repulsive force that is comparable to the roughness in the experimental devices, the separation data (particularly in particle size) are predicted quantitatively and are a very weak function of the range of the force. We then vary the geometric parameters of the simulated devices to demonstrate the sensitivity of the separation efficiency to these parameters, thus making design predictions as to which devices are appropriate for separating particles in different size, shape, and deformability ranges.

  19. Simple design of slanted grating with simplified modal method.

    PubMed

    Li, Shubin; Zhou, Changhe; Cao, Hongchao; Wu, Jun

    2014-02-15

    A simplified modal method (SMM) is presented that offers a clear physical image for subwavelength slanted grating. The diffraction characteristic of the slanted grating under Littrow configuration is revealed by the SMM as an equivalent rectangular grating, which is in good agreement with rigorous coupled-wave analysis. Based on the equivalence, we obtained an effective analytic solution for simplifying the design and optimization of a slanted grating. It offers a new approach for design of the slanted grating, e.g., a 1×2 beam splitter can be easily designed. This method should be helpful for designing various new slanted grating devices.

  20. Slant Perception Under Stereomicroscopy.

    PubMed

    Horvath, Samantha; Macdonald, Kori; Galeotti, John; Klatzky, Roberta L

    2017-11-01

    Objective These studies used threshold and slant-matching tasks to assess and quantitatively measure human perception of 3-D planar images viewed through a stereomicroscope. The results are intended for use in developing augmented-reality surgical aids. Background Substantial research demonstrates that slant perception is performed with high accuracy from monocular and binocular cues, but less research concerns the effects of magnification. Viewing through a microscope affects the utility of monocular and stereo slant cues, but its impact is as yet unknown. Method Participants performed in a threshold slant-detection task and matched the slant of a tool to a surface. Different stimuli and monocular versus binocular viewing conditions were implemented to isolate stereo cues alone, stereo with perspective cues, accommodation cue only, and cues intrinsic to optical-coherence-tomography images. Results At magnification of 5x, slant thresholds with stimuli providing stereo cues approximated those reported for direct viewing, about 12°. Most participants (75%) who passed a stereoacuity pretest could match a tool to the slant of a surface viewed with stereo at 5x magnification, with mean compressive error of about 20% for optimized surfaces. Slant matching to optical coherence tomography images of the cornea viewed under the microscope was also demonstrated. Conclusion Despite the distortions and cue loss introduced by viewing under the stereomicroscope, most participants were able to detect and interact with slanted surfaces. Application The experiments demonstrated sensitivity to surface slant that supports the development of augmented-reality systems to aid microscope-aided surgery.

  1. Does an Oblique/Slanted Perspective during Virtual Navigation Engage Both Egocentric and Allocentric Brain Strategies?

    PubMed Central

    Barra, Julien; Laou, Laetitia; Poline, Jean-Baptiste; Lebihan, Denis; Berthoz, Alain

    2012-01-01

    Perspective (route or survey) during the encoding of spatial information can influence recall and navigation performance. In our experiment we investigated a third type of perspective, which is a slanted view. This slanted perspective is a compromise between route and survey perspectives, offering both information about landmarks as in route perspective and geometric information as in survey perspective. We hypothesized that the use of slanted perspective would allow the brain to use either egocentric or allocentric strategies during storage and recall. Twenty-six subjects were scanned (3-Tesla fMRI) during the encoding of a path (40-s navigation movie within a virtual city). They were given the task of encoding a segment of travel in the virtual city and of subsequent shortcut-finding for each perspective: route, slanted and survey. The analysis of the behavioral data revealed that perspective influenced response accuracy, with significantly more correct responses for slanted and survey perspectives than for route perspective. Comparisons of brain activation with route, slanted, and survey perspectives suggested that slanted and survey perspectives share common brain activity in the left lingual and fusiform gyri and lead to very similar behavioral performance. Slanted perspective was also associated with similar activation to route perspective during encoding in the right middle occipital gyrus. Furthermore, slanted perspective induced intermediate patterns of activation (in between route and survey) in some brain areas, such as the right lingual and fusiform gyri. Our results suggest that the slanted perspective may be considered as a hybrid perspective. This result offers the first empirical support for the choice to present the slanted perspective in many navigational aids. PMID:23209583

  2. Pictorial communication in virtual and real environments

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R. (Editor)

    1991-01-01

    Papers about the communication between human users and machines in real and synthetic environments are presented. Individual topics addressed include: pictorial communication, distortions in memory for visual displays, cartography and map displays, efficiency of graphical perception, volumetric visualization of 3D data, spatial displays to increase pilot situational awareness, teleoperation of land vehicles, computer graphics system for visualizing spacecraft in orbit, visual display aid for orbital maneuvering, multiaxis control in telemanipulation and vehicle guidance, visual enhancements in pick-and-place tasks, target axis effects under transformed visual-motor mappings, adapting to variable prismatic displacement. Also discussed are: spatial vision within egocentric and exocentric frames of reference, sensory conflict in motion sickness, interactions of form and orientation, perception of geometrical structure from congruence, prediction of three-dimensionality across continuous surfaces, effects of viewpoint in the virtual space of pictures, visual slant underestimation, spatial constraints of stereopsis in video displays, stereoscopic stance perception, paradoxical monocular stereopsis and perspective vergence. (No individual items are abstracted in this volume)

  3. Na2O-Al2O3 system: Activity of Na2O in (α + β)- and (β + β)-alumina

    NASA Astrophysics Data System (ADS)

    Kale, G. M.

    1992-12-01

    The activity of Na2O in a biphasic mixture of (α + β)-alumina has been measured in the temperature range of 700 to 1100 K using the solid-state galvanic cell: 11663_2007_Article_BF02656462_TeX2GIFE1.gif _{(1:1)}^{Pt,CO_2 + O_2 /Na_2 CO_3 /(α + β ) - alumin a//(Y_2 O_3 )ZrO_2 //In + In_2 O_3 ,Ta,Pt} Similarly, the activity of Na2O in a (β + β’’)-alumina two-phase mixture has been measured between 700 and 1100 K employing the galvanic cell: 11663_2007_Article_BF02656462_TeX2GIFE2.gif _{(1:1)}^{Pt,CO_2 + O_2 /Na_2 CO_3 /(β + β ) - alumin a//(Y_2 O_3 )ZrO_2 //In + In_2 O_3 ,Ta,Pt} The reversible electromotive force (emf ) of both the cells was found to vary linearly with temperature over the entire temperature range of measurement. From the measured reversible emf and auxiliary thermodynamic data for In2O2, Na2O, CO2 and Na2CO3 reported in the literature, the temperature dependence of the logarithm of activity of Na2O in (α + β)-alumina is obtained: 11663_2007_Article_BF02656462_TeX2GIFE3.gif log α _{Na_2 O} (α + β ) = 1.85 - 14,750/T(K)( ± 0.015)(700 ≤slant T ≤slant 1100) For (β + β'’)-alumina, 11663_2007_Article_BF02656462_TeX2GIFE4.gif log α _{Na_2 O} (β + β ) = 3.9 - 13,000/T(K)( ± 0.015)(700 ≤slant T ≤slant 1100)

  4. Novel lidar algorithms for atmospheric slantrange visibility, planetary boundary layer height, meteorogical phenomena and atmospheric layering measurements

    NASA Astrophysics Data System (ADS)

    Pantazis, Alexandros; Papayannis, Alexandros; Georgoussis, Georgios

    2018-04-01

    In this paper we present a development of novel algorithms and techniques implemented within the Laser Remote Sensing Laboratory (LRSL) of the National Technical University of Athens (NTUA), in collaboration with Raymetrics S.A., in order to incorporate them into a 3-Dimensional (3D) lidar. The lidar is transmitting at 355 nm in the eye safe region and the measurements then are transposed to the visual range at 550 nm, according to the World Meteorological Organization (WMO) and the International Civil Aviation Organization (ICAO) rules of daytime visibility. These algorithms are able to provide horizontal, slant and vertical visibility for tower aircraft controllers, meteorologists, but also from pilot's point of view. Other algorithms are also provided for detection of atmospheric layering in any given direction and vertical angle, along with the detection of the Planetary Boundary Layer Height (PBLH).

  5. Nonlinear travelling waves in rotating Hagen–Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Pier, Benoît; Govindarajan, Rama

    2018-03-01

    The dynamics of viscous flow through a rotating pipe is considered. Small-amplitude stability characteristics are obtained by linearizing the Navier–Stokes equations around the base flow and solving the resulting eigenvalue problems. For linearly unstable configurations, the dynamics leads to fully developed finite-amplitude perturbations that are computed by direct numerical simulations of the complete Navier–Stokes equations. By systematically investigating all linearly unstable combinations of streamwise wave number k and azimuthal mode number m, for streamwise Reynolds numbers {{Re}}z ≤slant 500 and rotational Reynolds numbers {{Re}}{{Ω }} ≤slant 500, the complete range of nonlinear travelling waves is obtained and the associated flow fields are characterized.

  6. Lindeberg theorem for Gibbs-Markov dynamics

    NASA Astrophysics Data System (ADS)

    Denker, Manfred; Senti, Samuel; Zhang, Xuan

    2017-12-01

    A dynamical array consists of a family of functions \\{ fn, i: 1≤slant i≤slant k_n, n≥slant 1\\} and a family of initial times \\{τn, i: 1≤slant i≤slant k_n, n≥slant 1\\} . For a dynamical system (X, T) we identify distributional limits for sums of the form for suitable (non-random) constants s_n>0 and an, i\\in { R} . We derive a Lindeberg-type central limit theorem for dynamical arrays. Applications include new central limit theorems for functions which are not locally Lipschitz continuous and central limit theorems for statistical functions of time series obtained from Gibbs-Markov systems. Our results, which hold for more general dynamics, are stated in the context of Gibbs-Markov dynamical systems for convenience.

  7. Heterogeneity of residuals from comparison of GNSS and raytracing based troposphere slant total delays, as an indicator of hydrometeors

    NASA Astrophysics Data System (ADS)

    Hordyniec, Paweł; Rohm, Witold; Kapłon, Jan

    2017-04-01

    Post-fit residuals from Precise Point Positioning (PPP) carry the troposphere information except of multipath and residual antenna Phase Centre Variations (PCVs), when precise satellite orbits and clocks were introduced. Slant total delay (STD) of GNSS signal is a sum of a priori slant hydrostatic delay, estimated wet delay, asymetry introduced by the estimated zenith total delay (ZTD) horizontal gradients and a post-fit residual reduced by the systematic (site-dependant) effect. It was revealed, that application of reduced post-fit residuls to the slant total delays obtained from GNSS data processing increases the discrepancy with slant delays from raytracing (RT) through the Numerical Weather Model (NWM). One of the possible sources of that effect is neglected influence of hydrometeors in raytracing procedures. If the assumption of hydrometeor information existence in the PPP post-fit residuals is correct, we expect the diversity of slant delay discrepancies for satellite-receiver rays pointing or not the hydrometeors. Paper presents the spatial and temporal correlation analysis of the slant delay residuals (GNSS - RT) with hydrometeor phenomena recorded during the COST ES1206 GNSS4SWEC benchmark period (May 5th - June 29th, 2013). It presents the discussion of the results from different GNSS PPP slant delay estimation approaches including coordinates unconstraining or heavy constraining, and the calculation of slant delays with and without ZTD horizontal gradients estimation.

  8. Thermal Behaviour of Beams with Slant End-Plate Connection Subjected to Nonsymmetric Gravity Load

    PubMed Central

    Osman, Mohd Hanim; Talebi, Elnaz

    2014-01-01

    Research on the steel structures with confining of axial expansion in fixed beams has been quite intensive in the past decade. It is well established that the thermal behaviour has a key influence on steel structural behaviours. This paper describes mechanical behaviour of beams with bolted slant end-plate connection with nonsymmetric gravity load, subjected to temperature increase. Furthermore, the performance of slant connections of beams in steel moment frame structures in the elastic field is investigated. The proposed model proved that this flexible connection system could successfully decrease the extra thermal induced axial force by both of the friction force dissipation among two faces of slant connection and a small upward movement on the slant plane. The applicability of primary assumption is illustrated. The results from the proposed model are examined within various slant angles, thermal and friction factors. It can be concluded that higher thermal conditions are tolerable when slanting connection is used. PMID:24587720

  9. Thermal behaviour of beams with slant end-plate connection subjected to nonsymmetric gravity load.

    PubMed

    Zahmatkesh, Farshad; Osman, Mohd Hanim; Talebi, Elnaz

    2014-01-01

    Research on the steel structures with confining of axial expansion in fixed beams has been quite intensive in the past decade. It is well established that the thermal behaviour has a key influence on steel structural behaviours. This paper describes mechanical behaviour of beams with bolted slant end-plate connection with nonsymmetric gravity load, subjected to temperature increase. Furthermore, the performance of slant connections of beams in steel moment frame structures in the elastic field is investigated. The proposed model proved that this flexible connection system could successfully decrease the extra thermal induced axial force by both of the friction force dissipation among two faces of slant connection and a small upward movement on the slant plane. The applicability of primary assumption is illustrated. The results from the proposed model are examined within various slant angles, thermal and friction factors. It can be concluded that higher thermal conditions are tolerable when slanting connection is used.

  10. New inverse synthetic aperture radar algorithm for translational motion compensation

    NASA Astrophysics Data System (ADS)

    Bocker, Richard P.; Henderson, Thomas B.; Jones, Scott A.; Frieden, B. R.

    1991-10-01

    Inverse synthetic aperture radar (ISAR) is an imaging technique that shows real promise in classifying airborne targets in real time under all weather conditions. Over the past few years a large body of ISAR data has been collected and considerable effort has been expended to develop algorithms to form high-resolution images from this data. One important goal of workers in this field is to develop software that will do the best job of imaging under the widest range of conditions. The success of classifying targets using ISAR is predicated upon forming highly focused radar images of these targets. Efforts to develop highly focused imaging computer software have been challenging, mainly because the imaging depends on and is affected by the motion of the target, which in general is not precisely known. Specifically, the target generally has both rotational motion about some axis and translational motion as a whole with respect to the radar. The slant-range translational motion kinematic quantities must be first accurately estimated from the data and compensated before the image can be focused. Following slant-range motion compensation, the image is further focused by determining and correcting for target rotation. The use of the burst derivative measure is proposed as a means to improve the computational efficiency of currently used ISAR algorithms. The use of this measure in motion compensation ISAR algorithms for estimating the slant-range translational motion kinematic quantities of an uncooperative target is described. Preliminary tests have been performed on simulated as well as actual ISAR data using both a Sun 4 workstation and a parallel processing transputer array. Results indicate that the burst derivative measure gives significant improvement in processing speed over the traditional entropy measure now employed.

  11. Dynamic analysis of a geared rotor system considering a slant crack on the shaft

    NASA Astrophysics Data System (ADS)

    Han, Qinkai; Zhao, Jingshan; Chu, Fulei

    2012-12-01

    The vibration problems associated with geared systems have been the focus of research in recent years. As the torque is mainly transmitted by the geared system, a slant crack is more likely to appear on the gear shaft. Due to the slant crack and its breathing mechanism, the dynamic behavior of cracked geared system would differ distinctly with that of uncracked system. Relatively less work is reported on slant crack in the geared rotor system during the past research. Thus, the dynamic analysis of a geared rotor-bearing system with a breathing slant crack is performed in the paper. The finite element model of a geared rotor with slant crack is presented. Based on fracture mechanics, the flexibility matrix for the slant crack is derived that accounts for the additional stress intensity factors. Three methods for whirling analysis, parametric instability analysis and steady-state response analysis are introduced. Then, by taking a widely used one-stage geared rotor-bearing system as an example, the whirling frequencies of the equivalent time-invariant system, two types of instability regions and steady-state response under the excitations of unbalance forces and tooth transmission errors, are computed numerically. The effects of crack depth, position and type (transverse or slant) on the system dynamic behaviors are considered in the discussion. The comparative study with slant cracked geared rotor is carried out to explore distinctive features in their modal, parametric instability and frequency response behaviors.

  12. Antigravity hills are visual illusions.

    PubMed

    Bressan, Paola; Garlaschelli, Luigi; Barracano, Monica

    2003-09-01

    Antigravity hills, also known as spook hills or magnetic hills, are natural places where cars put into neutral are seen to move uphill on a slightly sloping road, apparently defying the law of gravity. We show that these effects, popularly attributed to gravitational anomalies, are in fact visual illusions. We re-created all the known types of antigravity spots in our laboratory using tabletop models; the number of visible stretches of road, their slant, and the height of the visible horizon were systematically varied in four experiments. We conclude that antigravity-hill effects follow from a misperception of the eye level relative to gravity, caused by the presence of either contextual inclines or a false horizon line.

  13. Combined mode I stress intensity factors of slanted cracks

    NASA Astrophysics Data System (ADS)

    Ismail, A. E.; Rahman, M. Q. Abdul; Ghazali, M. Z. Mohd; Zulafif Rahim, M.; Rasidi Ibrahim, M.; Fahrul Hassan, Mohd; Nor, Nik Hisyamudin Muhd; Ariffin, A. M. T.; Zaini Yunos, Muhamad

    2017-08-01

    The solutions of stress intensity factors (SIFs) for slanted cracks in plain strain plate are hard to find in open literature. There are some previous solutions of SIFs available, however the studies are not completed except for the case of plain stress. The slanted cracks are modelled numerically using ANSYS finite element program. There are ten slanted angles and seven relative crack depths are used and the plate contains cracks which is assumed to fulfil the plain strain condition. The plate is then stressed under tension and bending loading and the SIFs are determined according to the displacement extrapolation method. Based on the numerical analysis, both slanted angles and relative crack length, a/L played an important role in determining the modes I and II SIFs. As expected the SIFs increased when a/L is increased. Under tension force, the introduction of slanted angles increased the SIFs. Further increment of angles reduced the SIFs however they are still higher than the SIFs obtained using normal cracks. Under bending moment, the present of slanted angles are significantly reduced the SIFs compared with the normal cracks. Under similar loading, mode II SIFs increased as function of a/L and slanted angles where increasing such parameters increasing the mode II SIFs.

  14. Effect of tellurium concentration on the structural, electronic and mechanical properties of beryllium sulphide: A DFT approach

    NASA Astrophysics Data System (ADS)

    Iyorzor, B. E.; Babalola, M. I.; Adetunji, B. I.; Bakare, F. O.

    2018-05-01

    The structural, electronic and mechanical properties of Be{S}1-xT{e}x are studied within the concentration range of 0≤slant x≤slant 1 using first-principles plane–wave Pseudopotential density functional theory (DFT) approach. We have used generalized gradient approximation (GGA) to treat the exchange-correlation potentials. The elastic constants, bulk, shear and Young’s moduli, Poisson’s ratio, and Zener’s anisotropic factors are calculated. The results were found to be in agreement with other available theoretical and experimental values. It was also observed that the existence and increase of Tellurium concentration decreases the hardness of the alloy.

  15. Stress Intensity Factors of Slanted Cracks in Bi-Material Plates

    NASA Astrophysics Data System (ADS)

    Ismail, Al Emran; Azhar Kamarudin, Kamarul; Nor, Nik Hisyamudin Muhd

    2017-10-01

    In this study, the stress intensity factors (SIF) of slanted cracks in bi-material plates subjected to mode I loading is numerically solved. Based on the literature survey, tremendous amount of research works are available studying the normal cracks in both similar and dissimilar plates. However, lack of SIF behavior for slanted cracks especially when it is embedded in bi-material plates. The slanted cracks are then modelled numerically using ANSYS finite element program. Two plates of different in mechanical properties are firmly bonded obliquely and then slanted edge cracks are introduced at the lower inclined edge. Isoparametric singular element is used to model the crack tip and the SIF is determined which is based on the domain integral method. Three mechanical mismatched and four slanted angles are used to model the cracks. According to the present results, the effects of mechanical mismatch on the SIF for normal cracks are not significant. However, it is played an important role when slanted angles are introduced. It is suggested that higher SIF can be obtained when the cracks are inclined comparing with the normal cracks. Consequently, accelerating the crack growth at the interface between two distinct materials.

  16. High-aspect-ratio microstructures with versatile slanting angles on silicon by uniform metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Li, Liyi; Zhang, Cheng; Tuan, Chia-Chi; Chen, Yun; Wong, C.-P.

    2018-05-01

    High-aspect-ratio (HAR) microstructures on silicon (Si) play key roles in photonics and electromechanical devices. However, it has been challenging to fabricate HAR microstructures with slanting profiles. Here we report successful fabrication of uniform HAR microstructures with controllable slanting angles on (1 0 0)-Si by slanted uniform metal-assisted chemical etching (SUMaCE). The trenches have width of 2 µm, aspect ratio greater than 20:1 and high geometric uniformity. The slanting angles can be adjusted between 2-70° with respect to the Si surface normal. The results support a fundamental hypothesis that under the UMaCE condition, the preferred etching direction is along the normal of the thin film catalysts, regardless of the relative orientation of the catalyst to Si substrates or the crystalline orientation of the substrates. The SUMaCE method paves the way to HAR 3D microfabrication with arbitrary slanting profiles inside Si.

  17. Optical and structural properties of cobalt-permalloy slanted columnar heterostructure thin films

    NASA Astrophysics Data System (ADS)

    Sekora, Derek; Briley, Chad; Schubert, Mathias; Schubert, Eva

    2017-11-01

    Optical and structural properties of sequential Co-column-NiFe-column slanted columnar heterostructure thin films with an Al2O3 passivation coating are reported. Electron-beam evaporated glancing angle deposition is utilized to deposit the sequential multiple-material slanted columnar heterostructure thin films. Mueller matrix generalized spectroscopic ellipsometry data is analyzed with a best-match model approach employing the anisotropic Bruggeman effective medium approximation formalism to determine bulk-like and anisotropic optical and structural properties of the individual Co and NiFe slanted columnar material sub-layers. Scanning electron microscopy is applied to image the Co-NiFe sequential growth properties and to verify the results of the ellipsometric analysis. Comparisons to single-material slanted columnar thin films and optically bulk solid thin films are presented and discussed. We find that the optical and structural properties of each material sub-layer of the sequential slanted columnar heterostructure film are distinct from each other and resemble those of their respective single-material counterparts.

  18. Modified slanted-edge method for camera modulation transfer function measurement using nonuniform fast Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Duan, Yaxuan; Xu, Songbo; Yuan, Suochao; Chen, Yongquan; Li, Hongguang; Da, Zhengshang; Gao, Limin

    2018-01-01

    ISO 12233 slanted-edge method experiences errors using fast Fourier transform (FFT) in the camera modulation transfer function (MTF) measurement due to tilt angle errors in the knife-edge resulting in nonuniform sampling of the edge spread function (ESF). In order to resolve this problem, a modified slanted-edge method using nonuniform fast Fourier transform (NUFFT) for camera MTF measurement is proposed. Theoretical simulations for images with noise at a different nonuniform sampling rate of ESF are performed using the proposed modified slanted-edge method. It is shown that the proposed method successfully eliminates the error due to the nonuniform sampling of the ESF. An experimental setup for camera MTF measurement is established to verify the accuracy of the proposed method. The experiment results show that under different nonuniform sampling rates of ESF, the proposed modified slanted-edge method has improved accuracy for the camera MTF measurement compared to the ISO 12233 slanted-edge method.

  19. Effects of film injection angle on turbine vane cooling

    NASA Technical Reports Server (NTRS)

    Gauntner, J. W.

    1977-01-01

    Film ejection from discrete holes in the suction surface of a turbine vane was studied for hole axes (1) slanted 30 deg to the surface in the streamwise direction and (2) slanted 30 deg to the surface and 45 deg from the streamwise direction toward the hub. The holes were near the throat area in a five-row staggered array with 8-diameter spacing. Mass flux ratios were as high as 1.2. The data were obtained in an annular sector cascade at conditions where both the ratio of the boundary layer momentum thickness-to-hole diameter and the momentum thickness Reynolds number were typical of an advanced turbofan engine at both takeoff and cruise. Wall temperatures were measured downstream of each of the rows of holes. Results of this study are expressed as a comparison of cooling effectiveness between the in-line angle injection and the compound-angle injection as a function of mass flux ratio. These heat transfer results are also compared with the results of a referenced flow visualization study. Also included is a closed-form analytical solution for temperature within the film cooled wall.

  20. Experimental aerodynamic study of a car-type bluff body

    NASA Astrophysics Data System (ADS)

    Conan, Boris; Anthoine, Jérôme; Planquart, Philippe

    2011-05-01

    The Ahmed body is used as a reference model for fundamental studies of car-type bluff body aerodynamics, in particular focused on the influence of the rear slant angle on the drag coefficient. The objectives of the present work are to obtain reliable drag coefficient comparable to the literature and to explain, based on the nature of the flow, its variation when changing the rear slant angle from 10° to 40°. The drag coefficients measured in both an open and a closed test sections differ by less than 0.5% which proves the reliability and reproducibility of the results. The sensitivity of the drag coefficient to some parameters such as the model roughness or the oncoming boundary layer and the lack of precise information on these parameters in the literature could explain the difference observed with the Ahmed drag coefficient data. The various types of measurement techniques used in the study underline their complementarity. The combination of particle image velocimetry and oil visualization provides a deeper understanding of the flow behaviour around the Ahmed body and a physical interpretation of the drag coefficient evolution.

  1. Humans Have Precise Knowledge of Familiar Geographical Slants

    ERIC Educational Resources Information Center

    Stigliani, Anthony; Li, Zhi; Durgin, Frank H.

    2013-01-01

    Whereas maps primarily represent the 2-dimensional layout of the environment, people are also aware of the 3-dimensional layout of their environment. An experiment conducted on a small college campus tested whether the remembered slants of familiar paths were precisely represented. Three measures of slant (verbal, manual, and pictorial) were…

  2. Mode I stress intensity factors of slanted cracks in plates

    NASA Astrophysics Data System (ADS)

    Ismail, Al Emran; Ghazali, Mohd Zubir Mohd; Nor, Nik Hisyamudin Muhd

    2017-01-01

    This paper presents the roles of slanted cracks on the stress intensity factors (SIF) under mode I tension and bending loading. Based on the literature survey, lack of solution of SIFs of slanted cracks in plain strain plates are available. In this work, the cracks are modelled numerically using ANSYS finite element program. There are two important parameters such as slanted angles and relative crack length. SIFs at the crack tips are calculated according to domain integral method. Before the model is further used, it is validated with the existing model. It is found that the present model is well agreed with the previous model. According to finite element analysis, there are not only mode I SIFs produced but also mode II. As expected the SIFs increased as the relative crack length increased. However, when slanted angles are introduced (slightly higher than normal crack), the SIFs increased. Once the angles are further increased, the SIFs decreased gradually however they are still higher than the SIFs of normal cracks. For mode II SIFs, higher the slanted angels higher the SIFs. This is due to the fact that when the cracks are slanted, the cracked plates are not only failed due to mode I but a combination between both modes I and II.

  3. The changes of lumbar muscle flexion-relaxation phenomenon due to antero-posteriorly slanted ground surfaces.

    PubMed

    Hu, Boyi; Ning, Xiaopeng; Dai, Fei; Almuhaidib, Ibrahim

    2016-09-01

    Uneven ground surface is a common occupational injury risk factor in industries such as agriculture, fishing, transportation and construction. Studies have shown that antero-posteriorly slanted ground surfaces could reduce spinal stability and increase the risk of falling. In this study, the influence of antero-posteriorly slanted ground surfaces on lumbar flexion-relaxation responses was investigated. Fourteen healthy participants performed sagittally symmetric and asymmetric trunk bending motions on one flat and two antero-posteriorly slanted surfaces (-15° (uphill facing) and 15° (downhill facing)), while lumbar muscle electromyography and trunk kinematics were recorded. Results showed that standing on a downhill facing slanted surface delays the onset of lumbar muscle flexion-relaxation phenomenon (FRP), while standing on an uphill facing ground causes lumbar muscle FRP to occur earlier. In addition, compared to symmetric bending, when performing asymmetric bending, FRP occurred earlier on the contralateral side of lumbar muscles and significantly smaller maximum lumbar flexion and trunk inclination angles were observed. Practitioner Summary: Uneven ground surface is a common risk factor among a number of industries. In this study, we investigated the influence of antero-posteriorly slanted ground surface on trunk biomechanics during trunk bending. Results showed the slanted surface alters the lumbar tissue load-sharing mechanism in both sagittally symmetric and asymmetric bending.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Efroymson, Rebecca Ann; Hargrove, William Walter; Suter, Glenn

    A multi-stressor risk assessment was conducted at Yuma Proving Ground, Arizona, as a demonstration of the Military Ecological Risk Assessment Framework. The focus of the assessment was a testing program at Cibola Range, which involved an Apache Longbow helicopter firing Hellfire missiles at moving targets, M60-A1 tanks. This paper focuses on the wildlife risk assessment for the helicopter overflight. The primary stressors were sound and the view of the aircraft. Exposure to desert mule deer (Odocoileus hemionus crooki) was quantified using Air Force sound contour programs NOISEMAP and MR_NMAP, which gave very different results. Slant distance from helicopters to deermore » was also used as a measure of exposure that integrated risk from sound and view of the aircraft. Exposure-response models for the characterization of effects consisted of behavioral thresholds in sound exposure level or maximum sound level units or slant distance. Available sound thresholds were limited for desert mule deer, but a distribution of slant-distance thresholds was available for ungulates. The risk characterization used a weight-of-evidence approach and concluded that risk to mule deer behavior from the Apache overflight is uncertain, but that no risk to mule deer abundance and reproduction is expected.« less

  5. Addressing challenges of modulation transfer function measurement with fisheye lens cameras

    NASA Astrophysics Data System (ADS)

    Deegan, Brian M.; Denny, Patrick E.; Zlokolica, Vladimir; Dever, Barry; Russell, Laura

    2015-03-01

    Modulation transfer function (MTF) is a well defined and accepted method of measuring image sharpness. The slanted edge test, as defined in ISO12233 is a standard method of calculating MTF, and is widely used for lens alignment and auto-focus algorithm verification. However, there are a number of challenges which should be considered when measuring MTF in cameras with fisheye lenses. Due to trade-offs related Petzval curvature, planarity of the optical plane is difficult to achieve in fisheye lenses. It is therefore critical to have the ability to accurately measure sharpness throughout the entire image, particularly for lens alignment. One challenge for fisheye lenses is that, because of the radial distortion, the slanted edges will have different angles, depending on the location within the image and on the distortion profile of the lens. Previous work in the literature indicates that MTF measurements are robust for angles between 2 and 10 degrees. Outside of this range, MTF measurements become unreliable. Also, the slanted edge itself will be curved by the lens distortion, causing further measurement problems. This study summarises the difficulties in the use of MTF for sharpness measurement in fisheye lens cameras, and proposes mitigations and alternative methods.

  6. Joint Task Force Two, Test 4.1; B 52 Aircraft Data Book

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Department 9210

    1968-10-01

    This volume contains plots of the aircraft position track in the target area. There are also plots of the aircraft altitude above the terrain, normal accelerations, roll angle, pitch angle & slant range from the navigation check points and the targets.

  7. The Effect of Halo Mass on the H I Content of Galaxies in Groups and Clusters

    NASA Astrophysics Data System (ADS)

    Yoon, Ilsang; Rosenberg, Jessica L.

    2015-10-01

    We combine data from the Sloan Digital Sky Survey (SDSS) and the Arecibo Legacy Fast ALFA Survey (ALFALFA) to study the cold atomic gas content of galaxies in groups and clusters in the local universe. A careful cross-matching of galaxies in the SDSS, ALFALFA, and SDSS group catalogs provides a sample of group galaxies with stellar masses {10}8.4{M}⊙ ≤slant {M}*≤slant {10}10.6{M}⊙ and group halo masses {10}12.5{h}-1{M}⊙ ≤slant {M}h≤slant {10}15.0{h}-1{M}⊙ . Controlling our sample in stellar mass and redshift, we find no significant radial variation in the galaxy H i gas-to-stellar mass ratio for the halo mass range in our sample. However, the fraction of galaxies detected in ALFALFA declines steadily toward the centers of groups, with the effect being most prominent in the most massive halos. In the outskirts of massive halos a hint of a depressed detection fraction for low-mass galaxies suggests pre-processing that decreases the H i in these galaxies before they fall into massive clusters. We interpret the decline in the ALFALFA detection of galaxies in the context of a threshold halo mass for ram pressure stripping for a given galaxy stellar mass. The lack of an observable decrease in the galaxy H i gas-to-stellar mass ratio with the position of galaxies within groups and clusters highlights the difficulty of detecting the impact of environment on the galaxy H i content in a shallow H i survey.

  8. Optimization of nonbinary slanted surface-relief gratings as high-efficiency broadband couplers for light guides.

    PubMed

    Bai, Benfeng; Laukkanen, Janne; Kuittinen, Markku; Siitonen, Samuli

    2010-10-01

    We propose and investigate the use of slanted surface-relief gratings with nonbinary profiles as high-efficiency broadband couplers for light guides. First, a Chandezon-method-based rigorous numerical formulation is presented for modeling the slanted gratings with overhanging profiles. Then, two typical types of slanted grating couplers--a sinusoidal one and a trapezoidal one--are studied and optimized numerically, both exhibiting a high coupling efficiency of over 50% over the full band of white LED under the normal illumination of unpolarized light. Reasonable structural parameters with nice tolerance have been obtained for the optimized designs. It is found that the performance of the couplers depends little on the grating profile shape, but primarily on the grating period and the slant angle of the ridge. The underlying mechanism is analyzed by the equivalence rules of gratings, which provide useful guidelines for the design and fabrication of the couplers. Preliminary investigation has been performed on the fabrication and replication of the slanted overhanging grating couplers, which shows the feasibility of fabrication with mature microfabrication techniques and the perspective for mass production.

  9. Aging and the perception of slant from optical texture, motion parallax, and binocular disparity.

    PubMed

    Norman, J Farley; Crabtree, Charles E; Bartholomew, Ashley N; Ferrell, Elizabeth L

    2009-01-01

    The ability of younger and older observers to perceive surface slant was investigated in four experiments. The surfaces possessed slants of 20 degrees, 35 degrees, 50 degrees, and 65 degrees, relative to the frontoparallel plane. The observers judged the slants using either a palm board (Experiments 1, 3, and 4) or magnitude estimation (Experiment 2). In Experiments 1-3, physically slanted surfaces were used (the surfaces possessed marble, granite, pebble, and circle textures), whereas computer-generated 3-D surfaces (defined by motion parallax and binocular disparity) were utilized in Experiment 4. The results showed that the younger and older observers' performance was essentially identical with regard to accuracy. The younger and older age groups, however, differed in terms of precision in Experiments 1 and 2: The judgments of the older observers were more variable across repeated trials. When taken as a whole, the results demonstrate that older observers (at least through the age of 83 years) can effectively extract information about slant in depth from optical patterns containing texture, motion parallax, or binocular disparity.

  10. Bayesian Modeling of Perceived Surface Slant from Actively-Generated and Passively-Observed Optic Flow

    PubMed Central

    Caudek, Corrado; Fantoni, Carlo; Domini, Fulvio

    2011-01-01

    We measured perceived depth from the optic flow (a) when showing a stationary physical or virtual object to observers who moved their head at a normal or slower speed, and (b) when simulating the same optic flow on a computer and presenting it to stationary observers. Our results show that perceived surface slant is systematically distorted, for both the active and the passive viewing of physical or virtual surfaces. These distortions are modulated by head translation speed, with perceived slant increasing directly with the local velocity gradient of the optic flow. This empirical result allows us to determine the relative merits of two alternative approaches aimed at explaining perceived surface slant in active vision: an “inverse optics” model that takes head motion information into account, and a probabilistic model that ignores extra-retinal signals. We compare these two approaches within the framework of the Bayesian theory. The “inverse optics” Bayesian model produces veridical slant estimates if the optic flow and the head translation velocity are measured with no error; because of the influence of a “prior” for flatness, the slant estimates become systematically biased as the measurement errors increase. The Bayesian model, which ignores the observer's motion, always produces distorted estimates of surface slant. Interestingly, the predictions of this second model, not those of the first one, are consistent with our empirical findings. The present results suggest that (a) in active vision perceived surface slant may be the product of probabilistic processes which do not guarantee the correct solution, and (b) extra-retinal signals may be mainly used for a better measurement of retinal information. PMID:21533197

  11. Deferred slanted-edge analysis: a unified approach to spatial frequency response measurement on distorted images and color filter array subsets.

    PubMed

    van den Bergh, F

    2018-03-01

    The slanted-edge method of spatial frequency response (SFR) measurement is usually applied to grayscale images under the assumption that any distortion of the expected straight edge is negligible. By decoupling the edge orientation and position estimation step from the edge spread function construction step, it is shown in this paper that the slanted-edge method can be extended to allow it to be applied to images suffering from significant geometric distortion, such as produced by equiangular fisheye lenses. This same decoupling also allows the slanted-edge method to be applied directly to Bayer-mosaicked images so that the SFR of the color filter array subsets can be measured directly without the unwanted influence of demosaicking artifacts. Numerical simulation results are presented to demonstrate the efficacy of the proposed deferred slanted-edge method in relation to existing methods.

  12. The processing of linear perspective and binocular information for action and perception.

    PubMed

    Bruggeman, Hugo; Yonas, Albert; Konczak, Jürgen

    2007-04-08

    To investigate the processing of linear perspective and binocular information for action and for the perceptual judgment of depth, we presented viewers with an actual Ames trapezoidal window. The display, when presented perpendicular to the line of sight, provided perspective information for a rectangular window slanted in depth, while binocular information specified a planar surface in the fronto-parallel plane. We compared pointing towards the display-edges with perceptual judgment of their positions in depth as the display orientation was varied under monocular and binocular view. On monocular trials, pointing and depth judgment were based on the perspective information and failed to respond accurately to changes in display orientation because pictorial information did not vary sufficiently to specify the small differences in orientation. For binocular trials, pointing was based on binocular information and precisely matched the changes in display orientation whereas depth judgment was short of such adjustment and based upon both binocular and perspective-specified slant information. The finding, that on binocular trials pointing was considerably less responsive to the illusion than perceptual judgment, supports an account of two separate processing streams in the human visual system, a ventral pathway involved in object recognition and a dorsal pathway that produces visual information for the control of actions. Previously, similar differences between perception and action were explained by an alternate explanation, that is, viewers selectively attend to different parts of a display in the two tasks. The finding that under monocular view participants responded to perspective information in both the action and the perception task rules out the attention-based argument.

  13. Anisoplanatic image propagation along a slanted path under lower atmosphere phase turbulence in the presence of encrypted chaos

    NASA Astrophysics Data System (ADS)

    Chatterjee, Monish R.; Mohamed, Ali A.

    2017-05-01

    In recent research, anisoplanatic electromagnetic (EM) wave propagation along a slanted path in the presence of low atmosphere phase turbulence (modified von Karman spectrum or MVKS) has been investigated assuming a Hufnagel-Valley (HV) type structure parameter. Preliminary results indicate a strong dependence on the slant angle especially for long range transmission and relatively strong turbulence. The investigation was further divided into two regimes, viz. (a) one where the EM source consisted of a plane wave modulated with a digitized image, which is propagated along the turbulent path and recovered via demodulation at the receiver; and (b) transmit the plane wave without modulation along the turbulent path through an image transparency and a thin lens designed to gather the received image in the focal plane. In this paper, we reexamine the same problem (part (a) only) in the presence of a chaotic optical carrier where the chaos is generated in the feedback loop of an acousto-optic Bragg cell. The image information is encrypted within the chaos wave, and subsequently propagated along a similar slant path and identical turbulence conditions. The recovered image extracted via heterodyning from the received chaos is compared quantitatively (through image cross-correlations and mean-squared error measures) for the non-chaotic versus the chaotic approaches. Generally, "packaging" the information in chaos improves performance through turbulent propagation, and results are discussed from this perspective. Concurrently, we will also examine the effect of a non-encrypted plane EM wave propagation through a transparency-lens combination. These results are also presented with appropriate comparisons with the cases involving lensless transmission of imagery through corresponding turbulent and non-turbulent layers.

  14. Experimental study of the active control applied to the flow past a backward facing ramp

    NASA Astrophysics Data System (ADS)

    Hlevca, Dan; Gilliéron, Patrick; Grasso, Francesco

    2018-03-01

    An experimental study of open loop active flow control on a backward facing ramp is presented. The ramp has finite span and a slant angle of 25°. Wind tunnel experiments were performed both for the uncontrolled and the controlled cases where time periodic forcing by pulsed jets is considered. The control system exploits an electro-magnetic valve system to generate pulsed jets with an operating frequency and duty cycle ranging, respectively, between 50 and 250 Hz and between 25 and 60%. A parametric study was carried out for three different freestream velocities and varying the frequency of the pulsed jets and the duty cycle. The control strategy relies on the injection of periodic perturbations before separation at the edge of the slant, considering various combinations of frequencies and duty cycles while keeping constant the blowing time for every Reynolds number, so as to excite the flow with the same jet structure over different actuation cycle extents. The receptivity of the flow to periodic forcing was assessed by characterizing mean and unsteady flow properties, turbulence statistics and flow topology. The study focused on the impact of control on reattachement and showed that the flow locks with excitation frequencies typical of initial Kelvin-Helmholtz instabilities. However, the flow was found to respond to any injected unsteady perturbation locking to the forcing frequencies and the extent of the region where locking occurs was found to be of the order of a few slant heights. A relaxation process was observed and the flow was found to relax past the slant trailing edge toward frequencies close to the natural ones.

  15. Segmented slant hole collimator for stationary cardiac SPECT: Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Yanfei, E-mail: ymao@ucair.med.utah.edu; Yu, Zhicong; Zeng, Gengsheng L.

    2015-09-15

    Purpose: This work is a preliminary study of a stationary cardiac SPECT system. The goal of this research is to propose a stationary cardiac SPECT system using segmented slant-hole collimators and to perform computer simulations to test the feasibility. Compared to the rotational SPECT, a stationary system has a benefit of acquiring temporally consistent projections. The most challenging issue in building a stationary system is to provide sufficient projection view-angles. Methods: A GATE (GEANT4 application for tomographic emission) Monte Carlo model was developed to simulate a two-detector stationary cardiac SPECT that uses segmented slant-hole collimators. Each detector contains seven segmentedmore » slant-hole sections that slant to a common volume at the rotation center. Consequently, 14 view-angles over 180° were acquired without any gantry rotation. The NCAT phantom was used for data generation and a tailored maximum-likelihood expectation-maximization algorithm was used for image reconstruction. Effects of limited number of view-angles and data truncation were carefully evaluated in the paper. Results: Simulation results indicated that the proposed segmented slant-hole stationary cardiac SPECT system is able to acquire sufficient data for cardiac imaging without a loss of image quality, even when the uptakes in the liver and kidneys are high. Seven views are acquired simultaneously at each detector, leading to 5-fold sensitivity gain over the conventional dual-head system at the same total acquisition time, which in turn increases the signal-to-noise ratio by 19%. The segmented slant-hole SPECT system also showed a good performance in lesion detection. In our prototype system, a short hole-length was used to reduce the dead zone between neighboring collimator segments. The measured sensitivity gain is about 17-fold over the conventional dual-head system. Conclusions: The GATE Monte Carlo simulations confirm the feasibility of the proposed stationary cardiac SPECT system with segmented slant-hole collimators. The proposed collimator consists of combined parallel and slant holes, and the image on the detector is not reduced in size.« less

  16. Apparent motion determined by surface layout not by disparity or three-dimensional distance.

    PubMed

    He, Z J; Nakayama, K

    1994-01-13

    The most meaningful events ecologically, including the motion of objects, occur in relation to or on surfaces. We run along the ground, cars travel on roads, balls roll across lawns, and so on. Even though there are other motions, such as flying of birds, it is likely that motion along surfaces is more frequent and more significant biologically. To examine whether events occurring in relation to surfaces have a preferred status in terms of visual representation, we asked whether the phenomenon of apparent motion would show a preference for motion attached to surfaces. We used a competitive three-dimensional motion paradigm and found that there is a preference to see motion between tokens placed within the same disparity as opposed to different planes. Supporting our surface-layout hypothesis, the effect of disparity was eliminated either by slanting the tokens so that they were all seen within the same surface plane or by inserting a single slanted background surface upon which the tokens could rest. Additionally, a highly curved stereoscopic surface led to the perception of a more circuitous motion path defined by that surface, instead of the shortest path in three-dimensional space.

  17. Laser long-range remote-sensing program experimental results

    NASA Astrophysics Data System (ADS)

    Highland, Ronald G.; Shilko, Michael L.; Fox, Marsha J.; Gonglewski, John D.; Czyzak, Stanley R.; Dowling, James A.; Kelly, Brian; Pierrottet, Diego F.; Ruffatto, Donald; Loando, Sharon; Matsuura, Chris; Senft, Daniel C.; Finkner, Lyle; Rae, Joe; Gallegos, Joe

    1995-12-01

    A laser long range remote sensing (LRS) program is being conducted by the United States Air Force Phillips Laboratory (AF/PL). As part of this program, AF/PL is testing the feasibility of developing a long path CO(subscript 2) laser-based DIAL system for remote sensing. In support of this program, the AF/PL has recently completed an experimental series using a 21 km slant- range path (3.05 km ASL transceiver height to 0.067 km ASL target height) at its Phillips Laboratory Air Force Maui Optical Station (AMOS) facility located on Maui, Hawaii. The dial system uses a 3-joule, (superscript 13)C isotope laser coupled into a 0.6 m diameter telescope. The atmospheric optical characterization incorporates information from an infrared scintillometer co-aligned to the laser path, atmospheric profiles from weather balloons launched from the target site, and meteorological data from ground stations at AMOS and the target site. In this paper, we report a description of the experiment configuration, a summary of the results, a summary of the atmospheric conditions and their implications to the LRS program. The capability of such a system for long-range, low-angle, slant-path remote sensing is discussed. System performance issues relating to both coherent and incoherent detection methods, atmospheric limitations, as well as, the development of advanced models to predict performance of long range scenarios are presented.

  18. Inferring Caravaggio's studio lighting and praxis in The calling of St. Matthew by computer graphics modeling

    NASA Astrophysics Data System (ADS)

    Stork, David G.; Nagy, Gabor

    2010-02-01

    We explored the working methods of the Italian Baroque master Caravaggio through computer graphics reconstruction of his studio, with special focus on his use of lighting and illumination in The calling of St. Matthew. Although he surely took artistic liberties while constructing this and other works and did not strive to provide a "photographic" rendering of the tableau before him, there are nevertheless numerous visual clues to the likely studio conditions and working methods within the painting: the falloff of brightness along the rear wall, the relative brightness of the faces of figures, and the variation in sharpness of cast shadows (i.e., umbrae and penumbrae). We explored two studio lighting hypotheses: that the primary illumination was local (and hence artificial) and that it was distant solar. We find that the visual evidence can be consistent with local (artificial) illumination if Caravaggio painted his figures separately, adjusting the brightness on each to compensate for the falloff in illumination. Alternatively, the evidence is consistent with solar illumination only if the rear wall had particular reflectance properties, as described by a bi-directional reflectance distribution function, BRDF. (Ours is the first research applying computer graphics to the understanding of artists' praxis that models subtle reflectance properties of surfaces through BRDFs, a technique that may find use in studies of other artists.) A somewhat puzzling visual feature-unnoted in the scholarly literature-is the upward-slanting cast shadow in the upper-right corner of the painting. We found this shadow is naturally consistent with a local illuminant passing through a small window perpendicular to the viewer's line of sight, but could also be consistent with solar illumination if the shadow was due to a slanted, overhanging section of a roof outside the artist's studio. Our results place likely conditions upon any hypotheses concerning Caravaggio's working methods and point to new sources of evidence that could be confirmed or disconfirmed by future art historical research.

  19. Determining River Ice Displacement Using the Differential Interferometry Synthetic Aperture Radar (D-InSAR) technique

    NASA Astrophysics Data System (ADS)

    Chu, T.; Lindenschmidt, K. E.

    2016-12-01

    Monitoring river ice cover dynamics during the course of winter is necessary to comprehend possible negative effects of ice on anthropogenic systems and natural ecosystems to provide a basis to develop mitigation measures. Due to their large scale and limited accessibility to most places along river banks, especially in northern regions, remote sensing techniques are a suitable approach for monitoring river ice regimes. Additionally, determining the vertical displacements of ice covers due to changes in flow provides an indication of vulnerable areas to initial cracking and breakup of the ice cover. Such information is paramount when deciding on suitable locations for winter road crossing along rivers. A number of RADARSAT-2 (RS-2) beam modes (i.e. Wide Fine, Wide Ultra-Fine, Wide Fine Quad Polarization and Spotlight) and D-InSAR methods were examined in this research to characterize slant range and vertical displacement of ice covers along the Slave River in the Northwest Territories, Canada. Our results demonstrate that the RS-2 Spotlight beam mode, processed by the Multiple Aperture InSAR (MAI) method, outperformed other beam modes and conventional InSAR when characterizing spatio-temporal patterns of ice surface fluctuations. For example, the MAI based Spotlight differential interferogram derived from the January and February 2016 images of the Slave River Delta resulted in a slant range displacement of the ice surface between -3.3 and +3.6 cm (vertical displacement between -4.3 and +4.8 cm), due to the changes in river flow and river ice morphology between the two acquisition dates. It is difficult to monitor the ice movement in early and late winter periods due to the loss of phase coherence and error in phase unwrapping. These findings are consistent with our river ice hydraulic modelling and visual interpretation of the river ice processes under different hydrometeorological conditions and river ice morphology. An extension of this study is planned to incorporate the results of ice cover displacement (rise/drop) to locate areas of initial breakup in an ice jam forecasting system. Keywords: D-InSAR, Mutiple Aperture Radar InSAR (MAI), river ice displacement, RADARSAT-2

  20. Ocular Manifestations of Noonan Syndrome: A Prospective Clinical and Genetic Study of 25 Patients.

    PubMed

    van Trier, Dorothée C; Vos, Anna M C; Draaijer, Renske W; van der Burgt, Ineke; Draaisma, Jos M Th; Cruysberg, Johannes R M

    2016-10-01

    To determine the full spectrum of ocular manifestations in patients with Noonan syndrome (NS). Prospective cross-sectional clinical and genetic study in a tertiary referral center. Twenty-five patients with NS (mean age, 14 years; range, 8 months-25 years) clinically diagnosed by validated criteria. All patients were examined by the same team following a detailed study protocol. Genetic analyses were performed in 23 patients. Ocular abnormalities of vision and refraction, external ocular features, ocular position and motility, anterior segment, posterior segment, and intraocular pressure. Ocular features of vision and refraction were amblyopia (32%), myopia (40%), and astigmatism (52%). External ocular features were epicanthic folds (84%), hypertelorism (68%), ptosis (56%), high upper eyelid crease (64%), lower eyelid retraction (60%), abnormal upward slanting palpebral fissures (36%), downward slanting palpebral fissures (32%), and lagophthalmos (28%). Orthoptic abnormalities included strabismus (40%), abnormal stereopsis (44%), and limited ocular motility (40%). Anterior segment abnormalities included prominent corneal nerves (72%) and posterior embryotoxon (32%). Additional ocular features were found, including nonglaucomatous optic disc excavation (20%), relatively low (<10 mmHg) intraocular pressure (22%), and optic nerve hypoplasia (4%). Mutations were established in 22 patients: 19 PTPN11 mutations (76%), 1 SOS1 mutation, 1 BRAF mutation, and 1 KRAS mutation. The patient with the highest number of prominent corneal nerves had an SOS1 mutation. The patient with the lowest visual acuity, associated with bilateral optic nerve hypoplasia, had a BRAF mutation. Patients with severe ptosis and nearly total absence of levator muscle function had PTPN11 mutations. All patients showed at least 3 ocular features (range, 3-13; mean, 7), including at least 1 external ocular feature in more than 95% of the patients. Noonan syndrome is a clinical diagnosis with multiple genetic bases associated with an extensive variety of congenital ocular abnormalities. Ocular features of NS are characterized by 1 or more developmental anomalies of the eyelids (involving the position, opening, and closure) associated with various other ocular abnormalities in childhood, including amblyopia, myopia, astigmatism, strabismus, limited ocular motility, prominent corneal nerves, and posterior embryotoxon. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  1. CFD Mixing Analysis of Jets Injected from Straight and Slanted Slots into Confined Crossflow in Rectangular Ducts

    NASA Technical Reports Server (NTRS)

    Bain, D. B.; Smith, C. E.; Holdeman, J. D.

    1992-01-01

    A CFD study was performed to analyze the mixing potential of opposed rows of staggered jets injected into confined crossflow in a rectangular duct. Three jet configurations were numerically tested: (1) straight (0 deg) slots; (2) perpendicular slanted (45 deg) slots angled in opposite directions on top and bottom walls; and (3) parallel slanted (45 deg) slots angled in the same direction on top and bottom walls. All three configurations were tested at slot spacing-to-duct height ratios (S/H) of 0.5, 0.75, and 1.0; a jet-to-mainstream momentum flux ratio (J) of 100; and a jet-to-mainstream mass flow ratio of 0.383. Each configuration had its best mixing performance at S/H of 0.75. Asymmetric flow patterns were expected and predicted for all slanted slot configurations. The parallel slanted slot configuration was the best overall configuration at x/H of 1.0 for S/H of 0.75.

  2. Ground-Based Radiometric Measurements of Slant Path Attenuation in the V/W Bands

    DTIC Science & Technology

    2016-04-01

    GROUND-BASED RADIOMETRIC MEASUREMENTS OF SLANT PATH ATTENUATION IN THE V/W BANDS APRIL 2016 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...2. REPORT TYPE FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) OCT 2012 – SEP 2015 4. TITLE AND SUBTITLE GROUND-BASED RADIOMETRIC MEASUREMENTS ...SUPPLEMENTARY NOTES 14. ABSTRACT Ground-based radiometric techniques were applied to measure the slant path attenuation cumulative distribution function to

  3. Polynomial modal analysis of slanted lamellar gratings.

    PubMed

    Granet, Gérard; Randriamihaja, Manjakavola Honore; Raniriharinosy, Karyl

    2017-06-01

    The problem of diffraction by slanted lamellar dielectric and metallic gratings in classical mounting is formulated as an eigenvalue eigenvector problem. The numerical solution is obtained by using the moment method with Legendre polynomials as expansion and test functions, which allows us to enforce in an exact manner the boundary conditions which determine the eigensolutions. Our method is successfully validated by comparison with other methods including in the case of highly slanted gratings.

  4. Slant rectification in Russian passport OCR system using fast Hough transform

    NASA Astrophysics Data System (ADS)

    Limonova, Elena; Bezmaternykh, Pavel; Nikolaev, Dmitry; Arlazarov, Vladimir

    2017-03-01

    In this paper, we introduce slant detection method based on Fast Hough Transform calculation and demonstrate its application in industrial system for Russian passports recognition. About 1.5% of this kind of documents appear to be slant or italic. This fact reduces recognition rate, because Optical Recognition Systems are normally designed to process normal fonts. Our method uses Fast Hough Transform to analyse vertical strokes of characters extracted with the help of x-derivative of a text line image. To improve the quality of detector we also introduce field grouping rules. The resulting algorithm allowed to reach high detection quality. Almost all errors of considered approach happen on passports of nonstandard fonts, while slant detector works in appropriate way.

  5. Radiation Hydrodynamics Simulations of Photoevaporation of Protoplanetary Disks by Ultraviolet Radiation: Metallicity Dependence

    NASA Astrophysics Data System (ADS)

    Nakatani, Riouhei; Hosokawa, Takashi; Yoshida, Naoki; Nomura, Hideko; Kuiper, Rolf

    2018-04-01

    Protoplanetary disks are thought to have lifetimes of several million yr in the solar neighborhood, but recent observations suggest that the disk lifetimes are shorter in a low-metallicity environment. We perform a suite of radiation hydrodynamics simulations of photoevaporating protoplanetary disks to study their long-term evolution of ∼10,000 yr and the metallicity dependence of mass-loss rates. Our simulations follow hydrodynamics, extreme and far-ultraviolet (FUV) radiative transfer, and nonequilibrium chemistry in a self-consistent manner. Dust-grain temperatures are also calculated consistently by solving the radiative transfer of the stellar irradiation and grain (re-)emission. We vary the disk metallicity over a wide range of {10}-4 {Z}ȯ ≤slant Z≤slant 10 {Z}ȯ . The photoevaporation rate is lower with higher metallicity in the range of {10}-1 {Z}ȯ ≲ Z≲ 10 {Z}ȯ , because dust shielding effectively prevents FUV photons from penetrating and heating the dense regions of the disk. The photoevaporation rate sharply declines at even lower metallicities in {10}-2 {Z}ȯ ≲ Z≲ {10}-1 {Z}ȯ , because FUV photoelectric heating becomes less effective than dust–gas collisional cooling. The temperature in the neutral region decreases, and photoevaporative flows are excited only in an outer region of the disk. At {10}-4 {Z}ȯ ≤slant Z≲ {10}-2 {Z}ȯ , H I photoionization heating acts as a dominant gas heating process and drives photoevaporative flows with a roughly constant rate. The typical disk lifetime is shorter at Z = 0.3 {Z}ȯ than at Z={Z}ȯ , being consistent with recent observations of the extreme outer galaxy.

  6. Aerodynamic drag control by pulsed jets on simplified car geometry

    NASA Astrophysics Data System (ADS)

    Gilliéron, Patrick; Kourta, Azeddine

    2013-02-01

    Aerodynamic drag control by pulsed jets is tested in a wind tunnel around a simplified car geometry named Ahmed body with a rear slant angle of 35°. Pulsed jet actuators are located 5 × 10-3 m from the top of the rear window. These actuators are produced by a pressure difference ranging from 1.5 to 6.5 × 105 Pa. Their excitation frequency can vary between 10 and 550 Hz. The analysis of the control effects is based on wall visualizations, aerodynamic drag coefficient measurements, and the velocity fields obtained by 2D PIV measurements. The maximum drag reduction is 20 % and is obtained for the excitation frequency F j = 500 Hz and for the pressure difference ∆ P = 1.5 × 105 Pa. This result is linked with a substantial reduction in the transverse development of the longitudinal vortex structures coming from the left and right lateral sides of the rear window, with a displacement of the vortex centers downstream and with a decrease in the transverse rotational absolute values of these structures.

  7. Hybrid Parallel-Slant Hole Collimators for SPECT Imaging

    NASA Astrophysics Data System (ADS)

    Bai, Chuanyong; Shao, Ling; Ye, Jinghan; Durbin, M.; Petrillo, M.

    2004-06-01

    We propose a new collimator geometry, the hybrid parallel-slant (HPS) hole geometry, to improve sensitivity for SPECT imaging with large field of view (LFOV) gamma cameras. A HPS collimator has one segment with parallel holes and one or more segments with slant holes. The collimator can be mounted on a conventional SPECT LFOV system that uses parallel-beam collimators, and no additional detector or collimator motion is required for data acquisition. The parallel segment of the collimator allows for the acquisition of a complete data set of the organs-of-interest and the slant segments provide additional data. In this work, simulation studies of an MCAT phantom were performed with a HPS collimator with one slant segment. The slant direction points from patient head to patient feet with a slant angle of 30/spl deg/. We simulated 64 projection views over 180/spl deg/ with the modeling of nonuniform attenuation effect, and then reconstructed images using an MLEM algorithm that incorporated the hybrid geometry. It was shown that sensitivity to the cardiac region of the phantom was increased by approximately 50% when using the HPS collimator compared with a parallel-hole collimator. No visible artifacts were observed in the myocardium and the signal-to-noise ratio (SNR) of the myocardium walls was improved. Compared with collimators with other geometries, using a HPS collimator has the following advantages: (a) significant sensitivity increase; (b) a complete data set obtained from the parallel segment that allows for artifact-free image reconstruction; and (c) no additional collimator or detector motion. This work demonstrates the potential value of hybrid geometry in collimator design for LFOV SPECT imaging.

  8. On site experiments of the slanted soil treatment systems for domestic gray water.

    PubMed

    Itayama, Tomoaki; Kiji, Masato; Suetsugu, Aya; Tanaka, Nobuyuki; Saito, Takeshi; Iwami, Norio; Mizuochi, Motoyuki; Inamori, Yuhei

    2006-01-01

    In order to make a breakthrough for the acute problem of water shortage in the world, the key words "decentralization and re-use" are very important for new sustainable sanitation systems that will be developed. Therefore, we focused on a new treatments system called "a slanted soil treatment system" which combines a biotoilet system with a domestic grey water treatment system. Because this system is a low cost and compact system, the system can be easily introduced to homes in urban areas or in the suburbs of cities in many developing countries. In this study, we performed on site experiments carried out on Shikoku Island, Japan, for several years. We obtained the following results. The slanted soil treatment system could remove organic pollutants and total nitrogen and total phosphorus in grey water effectively. Furthermore, the system performance became high in the case of the high concentration of the influent water. The nitrification reaction and denitrification reaction were speculated to exist due to aerobic zones and anaerobic zones present in the slanted soil treatment system. The slanted soil treatment system could perform for approximately 3 years with zero maintenance. The plug flow model of 1st order reaction kinetics could describe the reaction in the slanted soil treatment system. However, it is necessary to improve the system to maintain the performance in all seasons.

  9. Processing vertical size disparities in distinct depth planes.

    PubMed

    Duke, Philip A; Howard, Ian P

    2012-08-17

    A textured surface appears slanted about a vertical axis when the image in one eye is horizontally enlarged relative to the image in the other eye. The surface appears slanted in the opposite direction when the same image is vertically enlarged. Two superimposed textured surfaces with different horizontal size disparities appear as two surfaces that differ in slant. Superimposed textured surfaces with equal and opposite vertical size disparities appear as a single frontal surface. The vertical disparities are averaged. We investigated whether vertical size disparities are averaged across two superimposed textured surfaces in different depth planes or whether they induce distinct slants in the two depth planes. In Experiment 1, two superimposed textured surfaces with different vertical size disparities were presented in two depth planes defined by horizontal disparity. The surfaces induced distinct slants when the horizontal disparity was more than ±5 arcmin. Thus, vertical size disparities are not averaged over surfaces with different horizontal disparities. In Experiment 2 we confirmed that vertical size disparities are processed in surfaces away from the horopter, so the results of Experiment 1 cannot be explained by the processing of vertical size disparities in a fixated surface only. Together, these results show that vertical size disparities are processed separately in distinct depth planes. The results also suggest that vertical size disparities are not used to register slant globally by their effect on the registration of binocular direction of gaze.

  10. Anomalous refraction of light through slanted-nanoaperture arrays on metal surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Myungji; Jung, Yun Suk; Xi, Yonggang

    2015-09-07

    We report a nanoapertured metal surface that demonstrates anomalous refraction of light for a wide range of incident angles. A nanoslit aperture is designed to serve as a tilted vertical-dipole whose radiation pattern orients to a glancing angle direction to substrate. An array of such slanted nanoslits formed in a metal film redirects an incident beam into the direction of negative refraction angle: the aperture-transmitted wave makes a far-field propagation to the tilt-oriented direction of radiation pattern. The thus-designed nanoaperture array demonstrates the −1st order diffraction (i.e., to the negative refraction-angle direction) with well-suppressed background transmission (the zero-order direct transmissionmore » and other higher-order diffractions). Engineering the radiation pattern of nanoaperture offers an approach to overcoming the limits of conventional diffractive/refractive optics and complementing metasurface-based nano-optics.« less

  11. Perceived Surface Slant Is Systematically Biased in the Actively-Generated Optic Flow

    PubMed Central

    Fantoni, Carlo; Caudek, Corrado; Domini, Fulvio

    2012-01-01

    Humans make systematic errors in the 3D interpretation of the optic flow in both passive and active vision. These systematic distortions can be predicted by a biologically-inspired model which disregards self-motion information resulting from head movements (Caudek, Fantoni, & Domini 2011). Here, we tested two predictions of this model: (1) A plane that is stationary in an earth-fixed reference frame will be perceived as changing its slant if the movement of the observer's head causes a variation of the optic flow; (2) a surface that rotates in an earth-fixed reference frame will be perceived to be stationary, if the surface rotation is appropriately yoked to the head movement so as to generate a variation of the surface slant but not of the optic flow. Both predictions were corroborated by two experiments in which observers judged the perceived slant of a random-dot planar surface during egomotion. We found qualitatively similar biases for monocular and binocular viewing of the simulated surfaces, although, in principle, the simultaneous presence of disparity and motion cues allows for a veridical recovery of surface slant. PMID:22479473

  12. NASA Computational Case Study SAR Data Processing: Ground-Range Projection

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Rincon, Rafael

    2013-01-01

    Radar technology is used extensively by NASA for remote sensing of the Earth and other Planetary bodies. In this case study, we learn about different computational concepts for processing radar data. In particular, we learn how to correct a slanted radar image by projecting it on the surface that was sensed by a radar instrument.

  13. Infants' Perception of Affordances of Slopes under High- and Low-Friction Conditions

    ERIC Educational Resources Information Center

    Adolph, Karen E.; Joh, Amy S.; Eppler, Marion A.

    2010-01-01

    Three experiments investigated whether 14- and 15-month-old infants use information for both friction and slant for prospective control of locomotion down slopes. In Experiment 1, high- and low-friction conditions were interleaved on a range of shallow and steep slopes. In Experiment 2, friction conditions were blocked. In Experiment 3, the…

  14. Slanted snaking of localized Faraday waves

    NASA Astrophysics Data System (ADS)

    Pradenas, Bastián; Araya, Isidora; Clerc, Marcel G.; Falcón, Claudio; Gandhi, Punit; Knobloch, Edgar

    2017-06-01

    We report on an experimental, theoretical, and numerical study of slanted snaking of spatially localized parametrically excited waves on the surface of a water-surfactant mixture in a Hele-Shaw cell. We demonstrate experimentally the presence of a hysteretic transition to spatially extended parametrically excited surface waves when the acceleration amplitude is varied, as well as the presence of spatially localized waves exhibiting slanted snaking. The latter extend outside the hysteresis loop. We attribute this behavior to the presence of a conserved quantity, the liquid volume trapped within the meniscus, and introduce a universal model based on symmetry arguments, which couples the wave amplitude with such a conserved quantity. The model captures both the observed slanted snaking and the presence of localized waves outside the hysteresis loop, as demonstrated by numerical integration of the model equations.

  15. Alternation frequency thresholds for stereopsis as a technique for exploring stereoscopic difficulties

    PubMed Central

    Rychkova, Svetlana; Ninio, Jacques

    2011-01-01

    When stereoscopic images are presented alternately to the two eyes, stereopsis occurs at F ≥ 1 Hz full-cycle frequencies for very simple stimuli, and F ≥ 3 Hz full-cycle frequencies for random-dot stereograms (eg Ludwig I, Pieper W, Lachnit H, 2007 “Temporal integration of monocular images separated in time: stereopsis, stereoacuity, and binocular luster” Perception & Psychophysics 69 92–102). Using twenty different stereograms presented through liquid crystal shutters, we studied the transition to stereopsis with fifteen subjects. The onset of stereopsis was observed during a stepwise increase of the alternation frequency, and its disappearance was observed during a stepwise decrease in frequency. The lowest F values (around 2.5 Hz) were observed with stimuli involving two to four simple disjoint elements (circles, arcs, rectangles). Higher F values were needed for stimuli containing slanted elements or curved surfaces (about 1 Hz increment), overlapping elements at two different depths (about 2.5 Hz increment), or camouflaged overlapping surfaces (> 7 Hz increment). A textured cylindrical surface with a horizontal axis appeared easier to interpret (5.7 Hz) than a pair of slanted segments separated in depth but forming a cross in projection (8 Hz). Training effects were minimal, and F usually increased as disparities were reduced. The hierarchy of difficulties revealed in the study may shed light on various problems that the brain needs to solve during stereoscopic interpretation. During the construction of the three-dimensional percept, the loss of information due to natural decay of the stimuli traces must be compensated by refreshes of visual input. In the discussion an attempt is made to link our results with recent advances in the comprehension of visual scene memory. PMID:23145225

  16. Radiometric Measurements of Slant Path Attenuation in the V/W Bands

    DTIC Science & Technology

    2014-09-01

    AUTHOR(S) George Brost , Kevin Magde, William Cook 5d. PROJECT NUMBER T2WB 5e. TASK NUMBER IN 5f. WORK UNIT NUMBER HO 7. PERFORMING...Measurements of Slant-Path Attenuation in the V/W Bands G. Brost , K. Magde, and W. Cook Air Force Research Laboratory, 525 Brooks Rd, Rome, NY, USA...slant path statistics at frequencies above 50 GHz. REFERENCES [1] G. Brost , W. Cook, and W. Lipe,” On the modeling and prediction of

  17. Solar energy incident at the receiver of a solar tower plant, derived from remote sensing: Computation of both DNI and slant path transmittance

    NASA Astrophysics Data System (ADS)

    Elias, Thierry; Ramon, Didier; Garnero, Marie-Agnès; Dubus, Laurent; Bourdil, Charles

    2017-06-01

    By scattering and absorbing solar radiation, aerosols generate production losses in solar plants. Due to the specific design of solar tower plants, solar radiation is attenuated not only in the atmospheric column but also in the slant path between the heliostats and the receiver. Broadband attenuation by aerosols is estimated in both the column and the slant path for Ouarzazate, Morocco, using spectral measurements of aerosol optical thickness (AOT) collected by AERONET. The proportion of AOT below the tower's height is computed assuming a single uniform aerosol layer of height equal to the boundary layer height computed by ECMWF for the Operational Analysis. The monthly average of the broadband attenuation by aerosols in the slant path was 6.9±3.0% in August 2012 at Ouarzazate, for 1-km distance between the heliostat and the receiver. The slant path attenuation should be added to almost 40% attenuation along the atmospheric column, with aerosols in an approximate 4.7-km aerosol layer. Also, around 1.5% attenuation is caused by Rayleigh and water vapour in the slant path. The monochromatic-broadband extrapolation is validated by comparing computed and observed direct normal irradiance (DNI). DNI observed around noon varied from more than 1000 W/m2 to around 400 W/m2 at Ouarzazate in 2012 because of desert dust plumes transported from North African desert areas.

  18. Chirp Scaling Algorithms for SAR Processing

    NASA Technical Reports Server (NTRS)

    Jin, M.; Cheng, T.; Chen, M.

    1993-01-01

    The chirp scaling SAR processing algorithm is both accurate and efficient. Successful implementation requires proper selection of the interval of output samples, which is a function of the chirp interval, signal sampling rate, and signal bandwidth. Analysis indicates that for both airborne and spaceborne SAR applications in the slant range domain a linear chirp scaling is sufficient. To perform nonlinear interpolation process such as to output ground range SAR images, one can use a nonlinear chirp scaling interpolator presented in this paper.

  19. Estimating Elevation Angles From SAR Crosstalk

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    1994-01-01

    Scheme for processing polarimetric synthetic-aperture-radar (SAR) image data yields estimates of elevation angles along radar beam to target resolution cells. By use of estimated elevation angles, measured distances along radar beam to targets (slant ranges), and measured altitude of aircraft carrying SAR equipment, one can estimate height of target terrain in each resolution cell. Monopulselike scheme yields low-resolution topographical data.

  20. Numerical Analysis of Orbital Perturbation Effects on Inclined Geosynchronous SAR

    PubMed Central

    Dong, Xichao; Hu, Cheng; Long, Teng; Li, Yuanhao

    2016-01-01

    The geosynchronous synthetic aperture radar (GEO SAR) is susceptible to orbit perturbations, leading to orbit drifts and variations. The influences behave very differently from those in low Earth orbit (LEO) SAR. In this paper, the impacts of perturbations on GEO SAR orbital elements are modelled based on the perturbed dynamic equations, and then, the focusing is analyzed theoretically and numerically by using the Systems Tool Kit (STK) software. The accurate GEO SAR slant range histories can be calculated according to the perturbed orbit positions in STK. The perturbed slant range errors are mainly the first and second derivatives, leading to image drifts and defocusing. Simulations of the point target imaging are performed to validate the aforementioned analysis. In the GEO SAR with an inclination of 53° and an argument of perigee of 90°, the Doppler parameters and the integration time are different and dependent on the geometry configurations. Thus, the influences are varying at different orbit positions: at the equator, the first-order phase errors should be mainly considered; at the perigee and apogee, the second-order phase errors should be mainly considered; at other positions, first-order and second-order exist simultaneously. PMID:27598168

  1. Slant-hole collimator, dual mode sterotactic localization method

    DOEpatents

    Weisenberger, Andrew G.

    2002-01-01

    The use of a slant-hole collimator in the gamma camera of dual mode stereotactic localization apparatus allows the acquisition of a stereo pair of scintimammographic images without repositioning of the gamma camera between image acquisitions.

  2. Lattice stick number of knots

    NASA Astrophysics Data System (ADS)

    Huang, Yuanfei; Yang, Weiling

    2017-12-01

    The minimal number of straight line segments required to construct a polygonal presentation of the knot K in the cubic lattice is called the lattice stick number of the knot K, denoted by S_L(K) . It is known that S_L(K)≥slant15 if the crossing number of K, C_r(K) , satisfies C_r(K)≥slant5 , and the main result of this paper is to improve this to S_L(K)≥slant16 if C_r(K)≥slant5 . Furthermore, we will show that S_L(K)=16 for K=51 and K=52 which implies that this lower bound cannot be improved except for knots with higher crossing numbers. Project supported by the NSFC grants 11531006, 11371367 and 11271290, and the Fundamental Research Funds for the Central Universities 20720160038 and Fujian Province young and middle-aged teacher education research project JA15016.

  3. Inequalities for a polynomial and its derivative

    NASA Astrophysics Data System (ADS)

    Chanam, Barchand; Dewan, K. K.

    2007-12-01

    Let , 1[less-than-or-equals, slant][mu][less-than-or-equals, slant]n, be a polynomial of degree n such that p(z)[not equal to]0 in z0, then for 0

  4. Moiré-reduction method for slanted-lenticular-based quasi-three-dimensional displays

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhenfeng; Surman, Phil; Zhang, Lei; Rawat, Rahul; Wang, Shizheng; Zheng, Yuanjin; Sun, Xiao Wei

    2016-12-01

    In this paper we present a method for determining the preferred slanted angle for a lenticular film that minimizes moiré patterns in quasi-three-dimensional (Q3D) displays. We evaluate the preferred slanted angles of the lenticular film for the stripe-type sub-pixel structure liquid crystal display (LCD) panel. Additionally, the sub-pixels mapping algorithm of the specific angle is proposed to assign the images to either the right or left eye channel. A Q3D display prototype is built. Compared with the conventional SLF, this newly implemented Q3D display can not only eliminate moiré patterns but also provide 3D images in both portrait and landscape orientations. It is demonstrated that the developed slanted lenticular film (SLF) provides satisfactory 3D images by employing a compact structure, minimum moiré patterns and stabilized 3D contrast.

  5. Error of the slanted edge method for measuring the modulation transfer function of imaging systems.

    PubMed

    Xie, Xufen; Fan, Hongda; Wang, Hongyuan; Wang, Zebin; Zou, Nianyu

    2018-03-01

    The slanted edge method is a basic approach for measuring the modulation transfer function (MTF) of imaging systems; however, its measurement accuracy is limited in practice. Theoretical analysis of the slanted edge MTF measurement method performed in this paper reveals that inappropriate edge angles and random noise reduce this accuracy. The error caused by edge angles is analyzed using sampling and reconstruction theory. Furthermore, an error model combining noise and edge angles is proposed. We verify the analyses and model with respect to (i) the edge angle, (ii) a statistical analysis of the measurement error, (iii) the full width at half-maximum of a point spread function, and (iv) the error model. The experimental results verify the theoretical findings. This research can be referential for applications of the slanted edge MTF measurement method.

  6. A Demonstration of ‘Broken’ Visual Space

    PubMed Central

    Gilson, Stuart

    2012-01-01

    It has long been assumed that there is a distorted mapping between real and ‘perceived’ space, based on demonstrations of systematic errors in judgements of slant, curvature, direction and separation. Here, we have applied a direct test to the notion of a coherent visual space. In an immersive virtual environment, participants judged the relative distance of two squares displayed in separate intervals. On some trials, the virtual scene expanded by a factor of four between intervals although, in line with recent results, participants did not report any noticeable change in the scene. We found that there was no consistent depth ordering of objects that can explain the distance matches participants made in this environment (e.g. A>B>D yet also A

  7. Shape equivalence under perspective and projective transformations.

    PubMed

    Wagemans, J; Lamote, C; Van Gool, L

    1997-06-01

    When a planar shape is viewed obliquely, it is deformed by a perspective deformation. If the visual system were to pick up geometrical invariants from such projections, these would necessarily be invariant under the wider class of projective transformations. To what extent can the visual system tell the difference between perspective and nonperspective but still projective deformations of shapes? To investigate this, observers were asked to indicate which of two test patterns most resembled a standard pattern. The test patterns were related to the standard pattern by a perspective or projective transformation, or they were completely unrelated. Performance was slightly better in a matching task with perspective and unrelated test patterns (92.6%) than in a projective-random matching task (88.8%). In a direct comparison, participants had a small preference (58.5%) for the perspectively related patterns over the projectively related ones. Preferences were based on the values of the transformation parameters (slant and shear). Hence, perspective and projective transformations yielded perceptual differences, but they were not treated in a categorically different manner by the human visual system.

  8. 3D flash lidar performance in flight testing on the Morpheus autonomous, rocket-propelled lander to a lunar-like hazard field

    NASA Astrophysics Data System (ADS)

    Roback, Vincent E.; Amzajerdian, Farzin; Bulyshev, Alexander E.; Brewster, Paul F.; Barnes, Bruce W.

    2016-05-01

    For the first time, a 3-D imaging Flash Lidar instrument has been used in flight to scan a lunar-like hazard field, build a 3-D Digital Elevation Map (DEM), identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The flight tests served as the TRL 6 demo of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) system and included launch from NASA-Kennedy, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range. The ALHAT project developed a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar is a second generation, compact, real-time, air-cooled instrument. Based upon extensive on-ground characterization at flight ranges, the Flash Lidar was shown to be capable of imaging hazards from a slant range of 1 km with an 8 cm range precision and a range accuracy better than 35 cm, both at 1-σ. The Flash Lidar identified landing hazards as small as 30 cm from the maximum slant range which Morpheus could achieve (450 m); however, under certain wind conditions it was susceptible to scintillation arising from air heated by the rocket engine and to pre-triggering on a dust cloud created during launch and transported down-range by wind.

  9. 3-D Flash Lidar Performance in Flight Testing on the Morpheus Autonomous, Rocket-Propelled Lander to a Lunar-Like Hazard Field

    NASA Technical Reports Server (NTRS)

    Roback, Vincent E.; Amzajerdian, Farzin; Bulyshev, Alexander E.; Brewster, Paul F.; Barnes, Bruce W.

    2016-01-01

    For the first time, a 3-D imaging Flash Lidar instrument has been used in flight to scan a lunar-like hazard field, build a 3-D Digital Elevation Map (DEM), identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The flight tests served as the TRL 6 demo of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) system and included launch from NASA-Kennedy, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range. The ALHAT project developed a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar is a second generation, compact, real-time, air-cooled instrument. Based upon extensive on-ground characterization at flight ranges, the Flash Lidar was shown to be capable of imaging hazards from a slant range of 1 km with an 8 cm range precision and a range accuracy better than 35 cm, both at 1-delta. The Flash Lidar identified landing hazards as small as 30 cm from the maximum slant range which Morpheus could achieve (450 m); however, under certain wind conditions it was susceptible to scintillation arising from air heated by the rocket engine and to pre-triggering on a dust cloud created during launch and transported down-range by wind.

  10. Slanted baffle mist eliminator

    DOEpatents

    Vance, Richard F.

    1995-11-07

    An apparatus for the elimination of mist from off-gas during vitrification f nuclear waste, where baffles are installed on a slant toward the flow of the off-gasses eliminating the need to expand the cross-sectional area of the duct size.

  11. Helicopter Air-to-Air Combat Test 4 (AACT 4) Maneuverability Analysis

    DTIC Science & Technology

    1992-07-01

    histories during fuselage tail boom skin fatigue dam age ............................................................. 145 x LIST OF FIGURES (Continued...concerning X -Y-Z relative aircraft positions, velocities, headings, relative bearings, slant ranges (distance between aircraft), and closure rates. This...real-time hit feedback system such as a flashing aiming reticle would permit the pilot to assess the actual effort required to put hits on target

  12. Comparison of results of medial rectus muscle recession using augmentation, Faden procedure, and slanted recession in the treatment of high accommodative convergence/accommodation ratio esotropia.

    PubMed

    Gharabaghi, Davoud; Zanjani, Leila Kazemi

    2006-01-01

    According to the literature, accommodative esotropia has an unpredictable course when nonsurgical treatment is considered, especially in cases with a high accommodative convergence/accommodation ratio (AC/A). The aim of this study was to compare the results of augmented recession, slanted recession, and recession with posterior fixation suture of the medial rectus muscles in the treatment of high AC/A esotropia. Twenty-eight children (4 to 14 years old) with high AC/A esotropia with a near-distance disparity greater than 10 PD were included in a prospective, randomized, blinded clinical trial. Nine children underwent recession of both medial rectus muscles and posterior fixation suture (Faden procedure), 9 children underwent augmented recession of the medial rectus muscles, and 10 children underwent slanted recession of both medial rectus muscles. The amount of esodeviation was measured before strabismus surgery and at least 6 months postoperatively. In the augmented recession group, the mean near-distance disparity was reduced from 16.33 +/- 2.17 PD preoperatively to 7.55 +/- 3.87 PD postoperatively (54.21%; P = .056). In the Faden procedure group, it was reduced from 15.22 +/- 4.08 PD to 2.55 +/- 4.03 PD (80.7%; P = .056). In the slanted recession group, it was reduced from 15.50 +/- 4.30 PD to 4.10 +/- 4.80 PD (67.55%; P = .056). The Faden procedure had the best outcome, but slanted recession also was successful. Because of our good results and an easy, non-invasive approach without any additional complications, we recommend slanted recession to treat high AC/A esotropia.

  13. Teaching tone and intonation with the Prosody Workstation using schematic versus veridical contours

    NASA Astrophysics Data System (ADS)

    Allen, George D.; Eulenberg, John B.

    2004-05-01

    Prosodic features of speech (e.g., intonation and rhythm) are often challenging for adults to learn. Most computerized teaching tools, developed to help learners mimic model prosodic patterns, display lines representing the veridical (actual) acoustic fundamental frequency and intensity of the model speech. However, a veridical display may not be optimal for this task. Instead, stereotypical representations (e.g., simplified level or slanting lines) may help by reducing the amount of potentially distracting information. The Prosody Workstation (PW) permits the prosodic contours of both models and users' responses to be displayed using either veridical or stereotypical contours. Users are informed by both visual displays and scores representing the degree of match of their utterance to the model. American English-speaking undergraduates are being studied learning the tone contours and rhythm of Chinese and Hausa utterances ranging in length from two to six syllables. Data include (a) accuracy of mimicking of the models' prosodic contours, measured by the PW; (b) quality of tonal and rhythmic production, judged by native speaker listeners; and (c) learners' perceptions of the ease of the task, measured by a questionnaire at the end of each session.

  14. Study of Various Slanted Air-Gap Structures of Interior Permanent Magnet Synchronous Motor with Brushless Field Excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolbert, Leon M; Lee, Seong T

    2010-01-01

    This paper shows how to maximize the effect of the slanted air-gap structure of an interior permanent magnet synchronous motor with brushless field excitation (BFE) for application in a hybrid electric vehicle. The BFE structure offers high torque density at low speed and weakened flux at high speed. The unique slanted air-gap is intended to increase the output torque of the machine as well as to maximize the ratio of the back-emf of a machine that is controllable by BFE. This irregularly shaped air-gap makes a flux barrier along the d-axis flux path and decreases the d-axis inductance; as amore » result, the reluctance torque of the machine is much higher than a uniform air-gap machine, and so is the output torque. Also, the machine achieves a higher ratio of the magnitude of controllable back-emf. The determination of the slanted shape was performed by using magnetic equivalent circuit analysis and finite element analysis (FEA).« less

  15. Spreadsheet Calculation of Jets in Crossflow: Opposed Rows of Slots Slanted at 45 Degrees

    NASA Technical Reports Server (NTRS)

    Holderman, James D.; Clisset, James R.; Moder, Jeffrey P.

    2011-01-01

    The purpose of this study was to extend a baseline empirical model to the case of jets entering the mainstream flow from opposed rows of 45 degrees slanted slots. The results in this report were obtained using a spreadsheet modified from the one posted with NASA/TM--2010-216100. The primary conclusion in this report is that the best mixing configuration for opposed rows of 45 degrees slanted slots at any down stream distance is a parallel staggered configuration where the slots are angled in the same direction on top and bottom walls and one side is shifted by half the orifice spacing. Although distributions from perpendicular slanted slots are similar to those from parallel staggered configurations at some downstream locations, results for perpendicular slots are highly dependent on downstream distance and are no better than parallel staggered slots at locations where they are similar and are worse than parallel ones at other distances.

  16. Robust cue integration: a Bayesian model and evidence from cue-conflict studies with stereoscopic and figure cues to slant.

    PubMed

    Knill, David C

    2007-05-23

    Most research on depth cue integration has focused on stimulus regimes in which stimuli contain the small cue conflicts that one might expect to normally arise from sensory noise. In these regimes, linear models for cue integration provide a good approximation to system performance. This article focuses on situations in which large cue conflicts can naturally occur in stimuli. We describe a Bayesian model for nonlinear cue integration that makes rational inferences about scenes across the entire range of possible cue conflicts. The model derives from the simple intuition that multiple properties of scenes or causal factors give rise to the image information associated with most cues. To make perceptual inferences about one property of a scene, an ideal observer must necessarily take into account the possible contribution of these other factors to the information provided by a cue. In the context of classical depth cues, large cue conflicts most commonly arise when one or another cue is generated by an object or scene that violates the strongest form of constraint that makes the cue informative. For example, when binocularly viewing a slanted trapezoid, the slant interpretation of the figure derived by assuming that the figure is rectangular may conflict greatly with the slant suggested by stereoscopic disparities. An optimal Bayesian estimator incorporates the possibility that different constraints might apply to objects in the world and robustly integrates cues with large conflicts by effectively switching between different internal models of the prior constraints underlying one or both cues. We performed two experiments to test the predictions of the model when applied to estimating surface slant from binocular disparities and the compression cue (the aspect ratio of figures in an image). The apparent weight that subjects gave to the compression cue decreased smoothly as a function of the conflict between the cues but did not shrink to zero; that is, subjects did not fully veto the compression cue at large cue conflicts. A Bayesian model that assumes a mixed prior distribution of figure shapes in the world, with a large proportion being very regular and a smaller proportion having random shapes, provides a good quantitative fit for subjects' performance. The best fitting model parameters are consistent with the sensory noise to be expected in measurements of figure shape, further supporting the Bayesian model as an account of robust cue integration.

  17. Ionospheric Slant Total Electron Content Analysis Using Global Positioning System Based Estimation

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila (Inventor); Mannucci, Anthony J. (Inventor); Sparks, Lawrence C. (Inventor)

    2017-01-01

    A method, system, apparatus, and computer program product provide the ability to analyze ionospheric slant total electron content (TEC) using global navigation satellite systems (GNSS)-based estimation. Slant TEC is estimated for a given set of raypath geometries by fitting historical GNSS data to a specified delay model. The accuracy of the specified delay model is estimated by computing delay estimate residuals and plotting a behavior of the delay estimate residuals. An ionospheric threat model is computed based on the specified delay model. Ionospheric grid delays (IGDs) and grid ionospheric vertical errors (GIVEs) are computed based on the ionospheric threat model.

  18. Relation between textured surface and diffuse reflectance of Cu films

    NASA Astrophysics Data System (ADS)

    Shukla, Gaurav; Angappane, S.

    2018-04-01

    Cu nanostructures namely chevron, slanted and vertical posts deposited on Si substrate by glancing angle deposition (GLAD) technique using DC magnetron sputtering are studied to understand the optical reflectance properties of various textures. The X-ray diffraction analysis confirmed the crystalline nature of the different structures of deposited Cu films. The FESEM images confirmed the formation of chevron, slanted and vertical posts. From the optical reflectance spectra, we found that the reflectance is more for chevron than vertical and slanted posts which have almost the same reflectance over the entire wavelength. The films with chevron texture would find various applications, like, light detector, light trapping, sensors etc.

  19. Shift-bonded resonance-domain diffraction gratings.

    PubMed

    Axelrod, Ramon; Shacham-Diamand, Yosi; Golub, Michael

    2016-10-20

    Resonance-domain-transmission diffractive optics with grating periods comparable to those of the illumination wavelength offers large angles of light deflection and nearly 100% Bragg diffraction efficiency. Optical design preferences for nearly normal incidence can be met by proper choice for the slant of the diffraction grooves relative to the substrate. However, straightforward fabrication of the slanted submicron high-aspect-ratio grooves is challenging. In this paper, optical performance comparable to that of the slanted grooves was achieved by an alternative solution of bonding two half-height symmetrical gratings with a lateral shift and an optional small longitudinal spacing. Results of design, nanofabrication, and optical testing are presented.

  20. Dysmorphic Facial Features and Other Clinical Characteristics in Two Patients with PEX1 Gene Mutations

    PubMed Central

    Gunduz, Mehmet

    2016-01-01

    Peroxisomal disorders are a group of genetically heterogeneous metabolic diseases related to dysfunction of peroxisomes. Dysmorphic features, neurological abnormalities, and hepatic dysfunction can be presenting signs of peroxisomal disorders. Here we presented dysmorphic facial features and other clinical characteristics in two patients with PEX1 gene mutation. Follow-up periods were 3.5 years and 1 year in the patients. Case I was one-year-old girl that presented with neurodevelopmental delay, hepatomegaly, bilateral hearing loss, and visual problems. Ophthalmologic examination suggested septooptic dysplasia. Cranial magnetic resonance imaging (MRI) showed nonspecific gliosis at subcortical and periventricular deep white matter. Case II was 2.5-year-old girl referred for investigation of global developmental delay and elevated liver enzymes. Ophthalmologic examination findings were consistent with bilateral nystagmus and retinitis pigmentosa. Cranial MRI was normal. Dysmorphic facial features including broad nasal root, low set ears, downward slanting eyes, downward slanting eyebrows, and epichantal folds were common findings in two patients. Molecular genetic analysis indicated homozygous novel IVS1-2A>G mutation in Case I and homozygous p.G843D (c.2528G>A) mutation in Case II in the PEX1 gene. Clinical findings and developmental prognosis vary in PEX1 gene mutation. Kabuki-like phenotype associated with liver pathology may indicate Zellweger spectrum disorders (ZSD). PMID:27882258

  1. Active control of jet flowfields

    NASA Astrophysics Data System (ADS)

    Kibens, Valdis; Wlezien, Richard W.

    1987-06-01

    Passive and active control of jet shear layer development were investigated as mechanisms for modifying the global characteristics of jet flowfields. Slanted and stepped indeterminate origin (I.O.) nozzles were used as passive, geometry-based control devices which modified the flow origins. Active control techniques were also investigated, in which periodic acoustic excitation signals were injected into the I.O. nozzle shear layers. Flow visualization techniques based on a pulsed copper-vapor laser were used in a phase-conditioned image acquisition mode to assemble optically averaged sets of images acquired at known times throughout the repetition cycle of the basic flow oscillation period. Hot wire data were used to verify the effect of the control techniques on the mean and fluctuating flow properties. The flow visualization images were digitally enhanced and processed to show locations of prominent vorticity concentrations. Three-dimensional vortex interaction patterns were assembled in a format suitable for movie mode on a graphic display workstation, showing the evolution of three-dimensional vortex system in time.

  2. Measuring the Largest Angular Scale CMB B-mode Polarization with Galactic Foregrounds on a Cut Sky

    NASA Astrophysics Data System (ADS)

    Watts, Duncan J.; Larson, David; Marriage, Tobias A.; Abitbol, Maximilian H.; Appel, John W.; Bennett, Charles L.; Chuss, David T.; Eimer, Joseph R.; Essinger-Hileman, Thomas; Miller, Nathan J.; Rostem, Karwan; Wollack, Edward J.

    2015-12-01

    We consider the effectiveness of foreground cleaning in the recovery of Cosmic Microwave Background (CMB) polarization sourced by gravitational waves for tensor-to-scalar ratios in the range 0\\lt r\\lt 0.1. Using the planned survey area, frequency bands, and sensitivity of the Cosmology Large Angular Scale Surveyor (CLASS), we simulate maps of Stokes Q and U parameters at 40, 90, 150, and 220 GHz, including realistic models of the CMB, diffuse Galactic thermal dust and synchrotron foregrounds, and Gaussian white noise. We use linear combinations (LCs) of the simulated multifrequency data to obtain maximum likelihood estimates of r, the relative scalar amplitude s, and LC coefficients. We find that for 10,000 simulations of a CLASS-like experiment using only measurements of the reionization peak ({\\ell }≤slant 23), there is a 95% C.L. upper limit of r\\lt 0.017 in the case of no primordial gravitational waves. For simulations with r=0.01, we recover at 68% C.L. r={0.012}-0.006+0.011. The reionization peak corresponds to a fraction of the multipole moments probed by CLASS, and simulations including 30≤slant {\\ell }≤slant 100 further improve our upper limits to r\\lt 0.008 at 95% C.L. (r={0.010}-0.004+0.004 for primordial gravitational waves with r = 0.01). In addition to decreasing the current upper bound on r by an order of magnitude, these foreground-cleaned low multipole data will achieve a cosmic variance limited measurement of the E-mode polarization’s reionization peak.

  3. Geometry of warped product pointwise semi-slant submanifolds of cosymplectic manifolds and its applications

    NASA Astrophysics Data System (ADS)

    Ali, Akram; Ozel, Cenap

    It is known from [K. Yano and M. Kon, Structures on Manifolds (World Scientific, 1984)] that the integration of the Laplacian of a smooth function defined on a compact orientable Riemannian manifold without boundary vanishes with respect to the volume element. In this paper, we find out the some potential applications of this notion, and study the concept of warped product pointwise semi-slant submanifolds in cosymplectic manifolds as a generalization of contact CR-warped product submanifolds. Then, we prove the existence of warped product pointwise semi-slant submanifolds by their characterizations, and give an example supporting to this idea. Further, we obtain an interesting inequality in terms of the second fundamental form and the scalar curvature using Gauss equation and then, derive some applications of it with considering the equality case. We provide many trivial results for the warped product pointwise semi-slant submanifolds in cosymplectic space forms in various mathematical and physical terms such as Hessian, Hamiltonian and kinetic energy, and generalize the triviality results for contact CR-warped products as well.

  4. Atmospheric Structure White Sands Missile Range, New Mexico. Part 3. Upper Air and Surface Data: White Sands Desert Site

    DTIC Science & Technology

    1975-07-01

    Parameter and Instrument Types WIND VELOCITY Range of Values or Environemnt Data Reliability Rawin Sets, AN/GMD-IA, WBRT -47 (with- out slant...Environment PRESSURE Rawin Sets, AN/GMD-1A, 2A*, A*, WBRT -57, etc. 10 to 50 mb 50 to 200 mb 200 to 500 mb greater than 500 mb Data...Reliability Rawin Sets, (5 to 99%) AN/GMD-IA, 2A Temperature greater 4, WBRT -57, etc. than 0oC 5% using ML-A76 Hy- Temperature 0° to gristor or

  5. Measurement of forward-backward asymmetry A{sub FB} and of the weak mixing angle in processes of dilepton production in proton-proton collisions at {radical} s = 7 TeV in the CMS experiment at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorbunov, I. N., E-mail: Ilya.Gorbunov@cern.ch; Shmatov, S. V., E-mail: shmatov@cern.ch

    2013-09-15

    The results obtained by measuring the forward-backward asymmetry (A{sub FB}) of Drell-Yan lepton pairs in proton-proton collisions at {radical} s = 7 TeV at the LHC are presented. This asymmetry is measured as a function of the dilepton mass and rapidity in the dielectron and dimuon channels. The values of A{sub FB} were found for invariant masses of dileptons in the range of 40 Less-Than-Or-Slanted-Equal-To M{sub ll} Less-Than-Or-Slanted-Equal-To 600 GeV. The results for the effective weak mixing angle that were deduced from data on dimuon production in Drell-Yan processes are also presented. The respective data sample was collected by usingmore » the Compact Muon Solenoid (CMS) detector over the period spanning the years 2010 and 2011. The measured asymmetry and the effective weak mixing are consistent with the respective Standard Model predictions.« less

  6. Validation of Smithsonian Astrophysical Observatory's OMI Water Vapor Product

    NASA Astrophysics Data System (ADS)

    Wang, H.; Gonzalez Abad, G.; Liu, X.; Chance, K.

    2015-12-01

    We perform a comprehensive validation of SAO's OMI water vapor product. The SAO OMI water vapor slant column is retrieved using the 430 - 480 nm wavelength range. In addition to water vapor, the retrieval considers O3, NO2, liquid water, O4, C2H2O2, the Ring effect, water ring, 3rd order polynomial, common mode and under-sampling. The slant column is converted to vertical column using AMF. AMF is calculated using GEOS-Chem water vapor profile shape, OMCLDO2 cloud information and OMLER surface albedo information. We validate our product using NCAR's GPS network data over the world and RSS's gridded microwave data over the ocean. We also compare our product with the total precipitable water derived from the AERONET ground-based sun photometer data, the GlobVapour gridded product, and other datasets. We investigate the influence of sub-grid scale variability and filtering criteria on the comparison. We study the influence of clouds, aerosols and a priori profiles on the retrieval. We also assess the long-term performance and stability of our product and seek ways to improve it.

  7. A Differential Abundance Analysis of Very Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    O'Malley, Erin M.; McWilliam, Andrew; Chaboyer, Brian; Thompson, Ian

    2017-04-01

    We have performed a differential line-by-line chemical abundance analysis, ultimately relative to the Sun, of nine very metal-poor main-sequence (MS) halo stars, near [Fe/H] = -2 dex. Our abundances range from -2.66≤slant [{Fe}/{{H}}]≤slant -1.40 dex with conservative uncertainties of 0.07 dex. We find an average [α/Fe] = 0.34 ± 0.09 dex, typical of the Milky Way. While our spectroscopic atmosphere parameters provide good agreement with Hubble Space Telescope parallaxes, there is significant disagreement with temperature and gravity parameters indicated by observed colors and theoretical isochrones. Although a systematic underestimate of the stellar temperature by a few hundred degrees could explain this difference, it is not supported by current effective temperature studies and would create large uncertainties in the abundance determinations. Both 1D and < 3{{D}}> hydrodynamical models combined with separate 1D non-LTE effects do not yet account for the atmospheres of real metal-poor MS stars, but a fully 3D non-LTE treatment may be able to explain the ionization imbalance found in this work.

  8. Evidence for Universality in the Initial Planetesimal Mass Function

    NASA Astrophysics Data System (ADS)

    Simon, Jacob B.; Armitage, Philip J.; Youdin, Andrew N.; Li, Rixin

    2017-10-01

    Planetesimals may form from the gravitational collapse of dense particle clumps initiated by the streaming instability. We use simulations of aerodynamically coupled gas-particle mixtures to investigate whether the properties of planetesimals formed in this way depend upon the sizes of the particles that participate in the instability. Based on three high-resolution simulations that span a range of dimensionless stopping times 6× {10}-3≤slant τ ≤slant 2, no statistically significant differences in the initial planetesimal mass function are found. The mass functions are fit by a power law, {dN}/{{dM}}p\\propto {M}p-p, with p = 1.5-1.7 and errors of {{Δ }}p≈ 0.1. Comparing the particle density fields prior to collapse, we find that the high-wavenumber power spectra are similarly indistinguishable, though the large-scale geometry of structures induced via the streaming instability is significantly different between all three cases. We interpret the results as evidence for a near-universal slope to the mass function, arising from the small-scale structure of streaming-induced turbulence.

  9. Recessed Slant Gate AlGaN/GaN High Electron Mobility Transistors with 20.9 W/mm at 10 GHz

    NASA Astrophysics Data System (ADS)

    Pei, Yi; Chu, Rongming; Fichtenbaum, Nicholas A.; Chen, Zhen; Brown, David; Shen, Likun; Keller, Stacia; DenBaars, Steven P.; Mishra, Umesh K.

    2007-12-01

    A recessed slant gate processing has been used in AlGaN/GaN high electron mobility transistors (HEMTs) to mitigate the electric field, minimize the dispersion and increase the breakdown voltage. More than one order of magnitude of decrease in gate leakage has been observed by recessing the slant gate. For a 0.65 μm gate-length device, an extrinsic fT of 18 GHz and extrinsic fMAX of 52 GHz at a drain bias of 25 V were achieved. At 10 GHz, a state-of-the-art power density of 20.9 W/mm, with a power-added efficiency (PAE) of 40% at a drain bias of 83 V, was demonstrated.

  10. Processing techniques for digital sonar images from GLORIA.

    USGS Publications Warehouse

    Chavez, P.S.

    1986-01-01

    Image processing techniques have been developed to handle data from one of the newest members of the remote sensing family of digital imaging systems. This paper discusses software to process data collected by the GLORIA (Geological Long Range Inclined Asdic) sonar imaging system, designed and built by the Institute of Oceanographic Sciences (IOS) in England, to correct for both geometric and radiometric distortions that exist in the original 'raw' data. Preprocessing algorithms that are GLORIA-specific include corrections for slant-range geometry, water column offset, aspect ratio distortion, changes in the ship's velocity, speckle noise, and shading problems caused by the power drop-off which occurs as a function of range.-from Author

  11. Three-D multilateration: A precision geodetic measurement system

    NASA Technical Reports Server (NTRS)

    Escobal, P. R.; Ong, K. M.; Vonroos, O. H.; Shumate, M. S.; Jaffe, R. M.; Fliegel, H. F.; Muller, P. M.

    1973-01-01

    A technique of satellite geodesy for determining the relative three dimensional coordinates of ground stations within one centimeter over baselines of 20 to 10,000 kilometers is discussed. The system is referred to as 3-D Multilateration and has applications in earthquake hazard assessment, precision surveying, plate tectonics, and orbital mechanics. The accuracy is obtained by using pulsed lasers to obtain simultaneous slant ranges between several ground stations and a moving retroreflector with known trajectory for aiming the lasers.

  12. WESCOM. A Fortran Code for Evaluation of Nuclear Weapon Effects on Satellite Communications. Volume 2. Code Structure

    DTIC Science & Technology

    1981-01-31

    quantities for h i ;.;h-:t It i 1 ndc hurst s 1BMI.I Determines t ime-independent fireball quantities for low-altitude bursts 10 Table 1...of reference Oval of Cassini (km) LAFBP - vortex longitudinal radius (km) LAFBP - vortex transverse radius (km) Power law exponent Inner scale...Maximum slant range of ionization from transmitter (km) Power law exponent Frequency (Hz) Striation velocity flag Propagation path index Radius

  13. MFP scanner diagnostics using a self-printed target to measure the modulation transfer function

    NASA Astrophysics Data System (ADS)

    Wang, Weibao; Bauer, Peter; Wagner, Jerry; Allebach, Jan P.

    2014-01-01

    In the current market, reduction of warranty costs is an important avenue for improving profitability by manufacturers of printer products. Our goal is to develop an autonomous capability for diagnosis of printer and scanner caused defects with mid-range laser multifunction printers (MFPs), so as to reduce warranty costs. If the scanner unit of the MFP is not performing according to specification, this issue needs to be diagnosed. If there is a print quality issue, this can be diagnosed by printing a special test page that is resident in the firmware of the MFP unit, and then scanning it. However, the reliability of this process will be compromised if the scanner unit is defective. Thus, for both scanner and printer image quality issues, it is important to be able to properly evaluate the scanner performance. In this paper, we consider evaluation of the scanner performance by measuring its modulation transfer function (MTF). The MTF is a fundamental tool for assessing the performance of imaging systems. Several ways have been proposed to measure the MTF, all of which require a special target, for example a slanted-edge target. It is unacceptably expensive to ship every MFP with such a standard target, and to expect that the customer can keep track of it. To reduce this cost, in this paper, we develop new approach to this task. It is based on a self-printed slanted-edge target. Then, we propose algorithms to improve the results using a self-printed slanted-edge target. Finally, we present experimental results for MTF measurement using self-printed targets and compare them to the results obtained with standard targets.

  14. Atmospheric transmission loss in mirror-to-tower slant ranges due to water vapor

    NASA Astrophysics Data System (ADS)

    Gueymard, Christian A.; López, Gabriel; Rapp-Arrarás, Igor

    2017-06-01

    Considering CSP systems of the central tower-receiver type, this study investigates the specific effect of water vapor absorption on the total atmospheric transmission losses that impact direct irradiance along the slant path between a distant mirror and the receiver on the tower. Spectral and broadband calculations of total atmospheric attenuation are made for various water vapor conditions (from dry to humid) with both the rigorous MODTRAN code and the simpler and faster SMARTS code. The use of the latter is made indirectly possible through the "fictitious sun" concept. The MODTRAN and SMARTS results compare reasonably well under the present conditions, which closely echo the conditions used in previous studies, thus allowing instructive comparisons that will be reported later. To study the vertical profile of water vapor between surface and a height of 300 m, the columnar precipitable water at ≈5 m resolution has been derived from special high-resolution radiosonde soundings carried out twice daily at two arid sites. This analysis shows that the desired precipitable water at the receiver level can be simply extrapolated from that at the mirror level if the water vapor scale height is known. The latter is shown to significantly vary on a daily basis at the two sounding sites, with a median of 2.74 km. The exact value of this scale height conditions the transmission loss due to water vapor, but in any case this loss is found relatively small in comparison with other sources of attenuation, even when considering long slant paths under humid conditions. This unexpected finding is explained by the saturation effect that characterizes water vapor absorption.

  15. Photovoltaic Roofs

    NASA Technical Reports Server (NTRS)

    Drummond, R. W., Jr.; Shepard, N. F., Jr.

    1984-01-01

    Solar cells perform two functions: waterproofing roof and generating electricity. Sections through horizontal and slanting joints show overlapping modules sealed by L-section rubber strips and side-by-side modules sealed by P-section strips. Water seeping through seals of slanting joints drains along channels. Rooftop photovoltaic array used watertight south facing roof, replacing shingles, tar, and gravel. Concept reduces cost of residential solar-cell array.

  16. Fourier method for modeling slanted lamellar gratings of arbitrary end-surface shapes in conical mounting.

    PubMed

    Li, Lifeng

    2015-10-01

    An efficient modal method for numerically modeling slanted lamellar gratings of isotropic dielectric or metallic media in conical mounting is presented. No restrictions are imposed on the slant angle and the length of the lamellae. The end surface of the lamellae can be arbitrary, subject to certain restrictions. An oblique coordinate system that is adapted to the slanted lamella sidewalls allows the most efficient way of representing and manipulating the electromagnetic fields. A translational coordinate system that is based on the oblique Cartesian coordinate system adapts to the end-surface profile of the lamellae, so that the latter can be handled simply and easily. Moreover, two matrix eigenvalue problems of size 2N × 2N, one for each fundamental polarization of the electromagnetic fields in the periodic lamellar structure, where N is the matrix truncation number, are derived to replace the 4N × 4N eigenvalue problem that has been used in the literature. The core idea leading to this success is the polarization decomposition of the electromagnetic fields inside the periodic lamellar region when the fields are expressed in the oblique translational coordinate system.

  17. Variables affecting results of sodium chloride tolerance test for identification of rapidly growing mycobacteria.

    PubMed

    Conville, P S; Witebsky, F G

    1998-06-01

    The sodium chloride tolerance test is often used in the identification of rapidly growing mycobacteria, particularly for distinguishing between Mycobacterium abscessus and Mycobacterium chelonae. This test, however, is frequently unreliable for the identification of some species. In this study we examined the following variables: medium manufacturer, inoculum concentration, and atmosphere and temperature of incubation. Results show that reliability is improved if the test and control slants are inoculated with an organism suspension spectrophotometrically equal to a 1 McFarland standard. Slants should be incubated at 35 degrees C in ambient air and checked weekly for 4 weeks. Growth on control slants should be critically evaluated to determine the adequacy of the inoculum; colonies should number greater than 50. Salt-containing media should be examined carefully to detect pinpoint or tiny colonies, and colonies should number greater than 50 for a positive reaction. Concurrent use of a citrate slant may be helpful for distinguishing between M. abscessus and M. chelonae. Molecular methodologies are probably the most reliable means for the identification of rapidly growing mycobacteria and should be used, if possible, when unequivocal species identification is of particular importance.

  18. Lp-estimates on diffusion processes

    NASA Astrophysics Data System (ADS)

    Yan, Litan; Zhu, Bei

    2005-03-01

    Let be a diffusion process on given by where B=(Bt)t[greater-or-equal, slanted]0 is a standard Brownian motion starting at zero and [mu],[sigma] are two continuous functions on , and [sigma](x)>0 if x[not equal to]0. For a nonnegative continuous function [phi] we define the functional by , t[greater-or-equal, slanted]0. Then under suitable conditions we establish the relationship between Lp-norm of sup0[less-than-or-equals, slant]t[less-than-or-equals, slant][tau]Xt and Lp-norm of J[tau] for all stopping times [tau]. In particular, for a Bessel process Z of dimension [delta]>0 starting at zero, we show that the inequalities hold for all 00, where Cp and cp are some positive constants depending only on p, and H[mu],h[mu] are the inverses of x|->(e2[mu]x-2[mu]x-1)/2[mu]2 and x|->(e-2[mu]x+2[mu]x-1)/2[mu]2 on (0,[infinity]), respectively.

  19. Variables Affecting Results of Sodium Chloride Tolerance Test for Identification of Rapidly Growing Mycobacteria

    PubMed Central

    Conville, Patricia S.; Witebsky, Frank G.

    1998-01-01

    The sodium chloride tolerance test is often used in the identification of rapidly growing mycobacteria, particularly for distinguishing between Mycobacterium abscessus and Mycobacterium chelonae. This test, however, is frequently unreliable for the identification of some species. In this study we examined the following variables: medium manufacturer, inoculum concentration, and atmosphere and temperature of incubation. Results show that reliability is improved if the test and control slants are inoculated with an organism suspension spectrophotometrically equal to a 1 McFarland standard. Slants should be incubated at 35°C in ambient air and checked weekly for 4 weeks. Growth on control slants should be critically evaluated to determine the adequacy of the inoculum; colonies should number greater than 50. Salt-containing media should be examined carefully to detect pinpoint or tiny colonies, and colonies should number greater than 50 for a positive reaction. Concurrent use of a citrate slant may be helpful for distinguishing between M. abscessus and M. chelonae. Molecular methodologies are probably the most reliable means for the identification of rapidly growing mycobacteria and should be used, if possible, when unequivocal species identification is of particular importance. PMID:9620376

  20. Chimpanzees know that others make inferences

    PubMed Central

    Schmelz, Martin; Call, Josep; Tomasello, Michael

    2011-01-01

    If chimpanzees are faced with two opaque boards on a table, in the context of searching for a single piece of food, they do not choose the board lying flat (because if food was under there it would not be lying flat) but, rather, they choose the slanted one— presumably inferring that some unperceived food underneath is causing the slant. Here we demonstrate that chimpanzees know that other chimpanzees in the same situation will make a similar inference. In a back-and-forth foraging game, when their competitor had chosen before them, chimpanzees tended to avoid the slanted board on the assumption that the competitor had already chosen it. Chimpanzees can determine the inferences that a conspecific is likely to make and then adjust their competitive strategies accordingly. PMID:21282649

  1. Seeing mountains in mole hills: geographical-slant perception

    NASA Technical Reports Server (NTRS)

    Proffitt, D. R.; Creem, S. H.; Zosh, W. D.; Kaiser, M. K. (Principal Investigator)

    2001-01-01

    When observers face directly toward the incline of a hill, their awareness of the slant of the hill is greatly overestimated, but motoric estimates are much more accurate. The present study examined whether similar results would be found when observers were allowed to view the side of a hill. Observers viewed the cross-sections of hills in real (Experiment 1) and virtual (Experiment 2) environments and estimated the inclines with verbal estimates, by adjusting the cross-section of a disk, and by adjusting a board with their unseen hand to match the inclines. We found that the results for cross-section viewing replicated those found when observers directly face the incline. Even though the angles of hills are directly evident when viewed from the side, slant perceptions are still grossly overestimated.

  2. Simulator of Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Clare, Loren; Jennings, Esther; Gao, Jay; Segui, John; Kwong, Winston

    2005-01-01

    Multimission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) is a suite of software tools that simulates the behaviors of communication networks to be used in space exploration, and predict the performance of established and emerging space communication protocols and services. MACHETE consists of four general software systems: (1) a system for kinematic modeling of planetary and spacecraft motions; (2) a system for characterizing the engineering impact on the bandwidth and reliability of deep-space and in-situ communication links; (3) a system for generating traffic loads and modeling of protocol behaviors and state machines; and (4) a system of user-interface for performance metric visualizations. The kinematic-modeling system makes it possible to characterize space link connectivity effects, including occultations and signal losses arising from dynamic slant-range changes and antenna radiation patterns. The link-engineering system also accounts for antenna radiation patterns and other phenomena, including modulations, data rates, coding, noise, and multipath fading. The protocol system utilizes information from the kinematic-modeling and link-engineering systems to simulate operational scenarios of space missions and evaluate overall network performance. In addition, a Communications Effect Server (CES) interface for MACHETE has been developed to facilitate hybrid simulation of space communication networks with actual flight/ground software/hardware embedded in the overall system.

  3. Real-Time Precise Point Positioning (RTPPP) with raw observations and its application in real-time regional ionospheric VTEC modeling

    NASA Astrophysics Data System (ADS)

    Liu, Teng; Zhang, Baocheng; Yuan, Yunbin; Li, Min

    2018-01-01

    Precise Point Positioning (PPP) is an absolute positioning technology mainly used in post data processing. With the continuously increasing demand for real-time high-precision applications in positioning, timing, retrieval of atmospheric parameters, etc., Real-Time PPP (RTPPP) and its applications have drawn more and more research attention in recent years. This study focuses on the models, algorithms and ionospheric applications of RTPPP on the basis of raw observations, in which high-precision slant ionospheric delays are estimated among others in real time. For this purpose, a robust processing strategy for multi-station RTPPP with raw observations has been proposed and realized, in which real-time data streams and State-Space-Representative (SSR) satellite orbit and clock corrections are used. With the RTPPP-derived slant ionospheric delays from a regional network, a real-time regional ionospheric Vertical Total Electron Content (VTEC) modeling method is proposed based on Adjusted Spherical Harmonic Functions and a Moving-Window Filter. SSR satellite orbit and clock corrections from different IGS analysis centers are evaluated. Ten globally distributed real-time stations are used to evaluate the positioning performances of the proposed RTPPP algorithms in both static and kinematic modes. RMS values of positioning errors in static/kinematic mode are 5.2/15.5, 4.7/17.4 and 12.8/46.6 mm, for north, east and up components, respectively. Real-time slant ionospheric delays from RTPPP are compared with those from the traditional Carrier-to-Code Leveling (CCL) method, in terms of function model, formal precision and between-receiver differences of short baseline. Results show that slant ionospheric delays from RTPPP are more precise and have a much better convergence performance than those from the CCL method in real-time processing. 30 real-time stations from the Asia-Pacific Reference Frame network are used to model the ionospheric VTECs over Australia in real time, with slant ionospheric delays from both RTPPP and CCL methods for comparison. RMS of the VTEC differences between RTPPP/CCL method and CODE final products is 0.91/1.09 TECU, and RMS of the VTEC differences between RTPPP and CCL methods is 0.67 TECU. Slant Total Electron Contents retrieved from different VTEC models are also validated with epoch-differenced Geometry-Free combinations of dual-frequency phase observations, and mean RMS values are 2.14, 2.33 and 2.07 TECU for RTPPP method, CCL method and CODE final products, respectively. This shows the superiority of RTPPP-derived slant ionospheric delays in real-time ionospheric VTEC modeling.

  4. Throat-bypass bleed systems for increasing the stable airflow range of a Mach 2.50 axisymmetric inlet with 40-percent internal contraction

    NASA Technical Reports Server (NTRS)

    Sanders, B. W.; Mitchell, G. A.

    1973-01-01

    The results of an experimental investigation to increase the stable airflow range of a super sonic mixed-compression inlet are presented. Various throat-bypass bleeds were located on the inlet cowl. The bleed types were distributed porous normal holes, a forward slanted slot, or distributed educated slots. Large inlet stability margins were obtained with the inlet throat bleed systems if a constant pressure was maintained in the throat-bypass bleed plenum. Stability limits were determined for steady-state and limited transient internal air flow changes. Limited unstart angle-of-attack data are presented.

  5. Surface Craft Motion Parameter Estimation Using Multipath Delay Measurements from Hydrophones

    DTIC Science & Technology

    2011-12-01

    the sensor is cd . The slant range of the source from the sensor at time t is given by 21222 ])([)( cc RtvtR +−= τ ( 1 ) where 2122 ])[( crtc dhhR...Surface Craft Motion Parameter Estimation Using Multipath Delay Measurements from Hydrophones Kam W. Lo # 1 and Brian G. Ferguson #2 # Maritime...Eveleigh, NSW 2015 Australia 1 kam.lo@dsto.defence.gov.au 2 brian.ferguson@dsto.defence.gov.au Abstract— An equation-error (EE) method is

  6. Moving target parameter estimation of SAR after two looks cancellation

    NASA Astrophysics Data System (ADS)

    Gan, Rongbing; Wang, Jianguo; Gao, Xiang

    2005-11-01

    Moving target detection of synthetic aperture radar (SAR) by two looks cancellation is studied. First, two looks are got by the first and second half of the synthetic aperture. After two looks cancellation, the moving targets are reserved and stationary targets are removed. After that, a Constant False Alarm Rate (CFAR) detector detects moving targets. The ground range velocity and cross-range velocity of moving target can be got by the position shift between the two looks. We developed a method to estimate the cross-range shift due to slant range moving. we estimate cross-range shift by Doppler frequency center. Wigner-Ville Distribution (WVD) is used to estimate the Doppler frequency center (DFC). Because the range position and cross range before correction is known, estimation of DFC is much easier and efficient. Finally experiments results show that our algorithms have good performance. With the algorithms we can estimate the moving target parameter accurately.

  7. A bio-inspired device for drag reduction on a three-dimensional model vehicle.

    PubMed

    Kim, Dongri; Lee, Hoon; Yi, Wook; Choi, Haecheon

    2016-03-10

    In this paper, we introduce a bio-mimetic device for the reduction of the drag force on a three-dimensional model vehicle, the Ahmed body (Ahmed et al 1984 SAE Technical Paper 840300). The device, called automatic moving deflector (AMD), is designed inspired by the movement of secondary feathers on bird's wing suction surface: i.e., secondary feathers pop up when massive separation occurs on bird's wing suction surface at high angles of attack, which increases the lift force at landing. The AMD is applied to the rear slanted surface of the Ahmed body to control the flow separation there. The angle of the slanted surface considered is 25° at which the drag coefficient on the Ahmed body is highest. The wind tunnel experiment is conducted at Re H  = 1.0 × 10(5)-3.8 × 10(5), based on the height of the Ahmed body (H) and the free-stream velocity (U ∞). Several AMDs of different sizes and materials are tested by measuring the drag force on the Ahmed body, and showed drag reductions up to 19%. The velocity and surface-pressure measurements show that AMD starts to pop up when the pressure in the thin gap between the slanted surface and AMD is much larger than that on the upper surface of AMD. We also derive an empirical formula that predicts the critical free-stream velocity at which AMD starts to operate. Finally, it is shown that the drag reduction by AMD is mainly attributed to a pressure recovery on the slanted surface by delaying the flow separation and suppressing the strength of the longitudinal vortices emanating from the lateral edges of the slanted surface.

  8. The comparative analysis of rocks' resistance to forward-slanting disc cutters and traditionally installed disc cutters

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao-Huang; Fei, Sun; Liang, Meng

    2016-08-01

    At present, disc cutters of a full face rock tunnel boring machine are mostly mounted in the traditional way. Practical use in engineering projects reveals that this installation method not only heavily affects the operation life of disc cutters, but also increases the energy consumption of a full face rock tunnel boring machine. To straighten out this issue, therefore, a rock-breaking model is developed for disc cutters' movement after the research on the rock breaking of forward-slanting disc cutters. Equations of its displacement are established based on the analysis of velocity vector of a disc cutter's rock-breaking point. The functional relations then are brought forward between the displacement parameters of a rock-breaking point and its coordinate through the analysis of micro displacement of a rock-breaking point. Thus, the geometric equations of rock deformation are derived for the forward-slanting installation of disc cutters. With a linear relationship remaining between the acting force and its deformation either before or after the leap breaking, the constitutive relation of rock deformation can be expressed in the form of generalized Hooke law, hence the comparative analysis of the variation in the resistance of rock to the disc cutters mounted in the forward-slanting way with that in the traditional way. It is discovered that with the same penetration, strain of the rock in contact with forward-slanting disc cutters is apparently on the decline, in other words, the resistance of rock to disc cutters is reduced. Thus wear of disc cutters resulted from friction is lowered and energy consumption is correspondingly decreased. It will be useful for the development of installation and design theory of disc cutters, and significant for the breakthrough in the design of full face rock tunnel boring machine.

  9. Visual stimulus presentation using fiber optics in the MRI scanner.

    PubMed

    Huang, Ruey-Song; Sereno, Martin I

    2008-03-30

    Imaging the neural basis of visuomotor actions using fMRI is a topic of increasing interest in the field of cognitive neuroscience. One challenge is to present realistic three-dimensional (3-D) stimuli in the subject's peripersonal space inside the MRI scanner. The stimulus generating apparatus must be compatible with strong magnetic fields and must not interfere with image acquisition. Virtual 3-D stimuli can be generated with a stereo image pair projected onto screens or via binocular goggles. Here, we describe designs and implementations for automatically presenting physical 3-D stimuli (point-light targets) in peripersonal and near-face space using fiber optics in the MRI scanner. The feasibility of fiber-optic based displays was demonstrated in two experiments. The first presented a point-light array along a slanted surface near the body, and the second presented multiple point-light targets around the face. Stimuli were presented using phase-encoded paradigms in both experiments. The results suggest that fiber-optic based displays can be a complementary approach for visual stimulus presentation in the MRI scanner.

  10. A Multi-Year Study of Tobacco Control in Newspaper Editorials Using Community Characteristic Data and Content Analysis Findings.

    PubMed

    Stanfield, Kellie; Rodgers, Shelly

    2018-07-01

    We content analyzed 1,473 newspaper editorials for topic, tone, and slant, and connected the results to community characteristic data: clean indoor air ordinance status for cities, and official smoking rates for counties. The analysis occurred during a multi-year project aimed at prompting communities to adopt clean indoor air policies. The results showed that most editorials were about tobacco restrictions or ordinances, were neutral in tone, and provided factual information about tobacco control. More editorials were negatively slanted vs. positively slanted toward tobacco control. Most editorials with positive tones were published in newspapers in towns that already had clean indoor air policies. We concluded that editorials might hold increased weight in spurring change, as the percentage of smokers in a city is unrelated to the town enacting a clean indoor air ordinance.

  11. Extracting Depth From Motion Parallax in Real-World and Synthetic Displays

    NASA Technical Reports Server (NTRS)

    Hecht, Heiko; Kaiser, Mary K.; Aiken, William; Null, Cynthia H. (Technical Monitor)

    1994-01-01

    In psychophysical studies on human sensitivity to visual motion parallax (MP), the use of computer displays is pervasive. However, a number of potential problems are associated with such displays: cue conflicts arise when observers accommodate to the screen surface, and observer head and body movements are often not reflected in the displays. We investigated observers' sensitivity to depth information in MP (slant, depth order, relative depth) using various real-world displays and their computer-generated analogs. Angle judgments of real-world stimuli were consistently superior to judgments that were based on computer-generated stimuli. Similar results were found for perceived depth order and relative depth. Perceptual competence of observers tends to be underestimated in research that is based on computer generated displays. Such findings cannot be generalized to more realistic viewing situations.

  12. The role of spatial integration in the perception of surface orientation with active touch.

    PubMed

    Giachritsis, Christos D; Wing, Alan M; Lovell, Paul G

    2009-10-01

    Vision research has shown that perception of line orientation, in the fovea area, improves with line length (Westheimer & Ley, 1997). This suggests that the visual system may use spatial integration to improve perception of orientation. In the present experiments, we investigated the role of spatial integration in the perception of surface orientation using kinesthetic and proprioceptive information from shoulder and elbow. With their left index fingers, participants actively explored virtual slanted surfaces of different lengths and orientations, and were asked to reproduce an orientation or discriminate between two orientations. Results showed that reproduction errors and discrimination thresholds improve with surface length. This suggests that the proprioceptive shoulder-elbow system may integrate redundant spatial information resulting from extended arm movements to improve orientation judgments.

  13. Slant Path Low Visibility Atmospheric Conditions.

    DTIC Science & Technology

    1980-09-01

    situation. a) An optical propagation slant test path , of a length over which infrared transmissometer measurements can be made that are in a magnitude...transmission measure - ments which are close to 100% and therefore do not accurately relate to absolute transmissivity. A path which is too long will result in...is available for measurement of backscatter cross section along the chosen transmissometer path . 3. Rough Cross Cut of the Works unde Contract in

  14. Toroidal high-spin isomers in light nuclei with N ≠ Z

    NASA Astrophysics Data System (ADS)

    Staszczak, A.; Wong, Cheuk-Yin

    2015-11-01

    The combined considerations of both the bulk liquid-drop-type behavior and the quantized aligned rotation with cranked Skyrme-Hartree-Fock approach revealed previously (Staszczak and Wong 2014 Phys. Lett. B 738 401) that even-even, N = Z, toroidal high-spin isomeric states have general occurrences for light nuclei with 28≤slant A≤slant 52. We find that in this mass region there are in addition N\

  15. Effects of mouse slant and desktop position on muscular and postural stresses, subject preference and performance in women aged 18-40 years.

    PubMed

    Gaudez, Clarisse; Cail, François

    2016-11-01

    This study compared muscular and postural stresses, performance and subject preference in women aged 18-40 years using a standard mouse, a vertical mouse and a slanted mouse in three different computer workstation positions. Four tasks were analysed: pointing, pointing-clicking, pointing-clicking-dragging and grasping-pointing the mouse after typing. Flexor digitorum superficialis (FDS) and extensor carpi radialis (ECR) activities were greater using the standard mouse compared to the vertical or slanted mouse. In all cases, the wrist position remained in the comfort zone recommended by standard ISO 11228-3. The vertical mouse was less comfortable and more difficult to use than the other two mice. FDS and ECR activities, shoulder abduction and wrist extension were greater when the mouse was placed next to the keyboard. Performance and subject preference were better with the unrestricted mouse positioning on the desktop. Grasping the mouse after typing was the task that caused the greatest stress. Practitioner Summary: In women, the slanted mouse and the unrestricted mouse positioning on the desktop provide a good blend of stresses, performance and preference. Unrestricted mouse positioning requires no keyboard, which is rare in practice. Placing the mouse in front of the keyboard, rather than next to it, reduced the physical load.

  16. Asymmetric valley-resolved beam splitting and incident modes in slanted graphene junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, S. H.; Chu, C. S.

    2016-01-18

    Electron injection into a graphene sheet through a slanted armchair graphene nanoribbon (AGNR) is investigated. An incident mode, or subband, in the AGNR is valley-unpolarized. Our attention is on the valley-resolved nature of the injected electron beams and its connection to the incident mode. It is known for a normal injection that an incident mode will split symmetrically into two valley-resolved beams of equal intensity. We show, in contrast, that slanted injections result in asymmetric valley-resolved beam splitting. The most asymmetric beam splitting cases, when one of the valley-resolved beams has basically disappeared, are found and the condition derived. Thismore » is shown not due to trigonal warping because it holds even in the low incident energy regime, as long as collimation allows. These most asymmetric beam splitting cases occur at energies within an energy interval near and include the subband edge of an incident mode. The physical picture is best illustrated by a projection of the slanted AGNR subband states onto that of the 2D graphene sheet. It follows that the disappearing of a valley-resolved beam coincides with the situation that the group velocities of the projected states in the corresponding valley are in backward directions.« less

  17. BAT AGN Spectroscopic Survey. V. X-Ray Properties of the Swift/BAT 70-month AGN Catalog

    NASA Astrophysics Data System (ADS)

    Ricci, C.; Trakhtenbrot, B.; Koss, M. J.; Ueda, Y.; Del Vecchio, I.; Treister, E.; Schawinski, K.; Paltani, S.; Oh, K.; Lamperti, I.; Berney, S.; Gandhi, P.; Ichikawa, K.; Bauer, F. E.; Ho, L. C.; Asmus, D.; Beckmann, V.; Soldi, S.; Baloković, M.; Gehrels, N.; Markwardt, C. B.

    2017-12-01

    Hard X-ray (≥10 keV) observations of active galactic nuclei (AGNs) can shed light on some of the most obscured episodes of accretion onto supermassive black holes. The 70-month Swift/BAT all-sky survey, which probes the 14-195 keV energy range, has currently detected 838 AGNs. We report here on the broadband X-ray (0.3-150 keV) characteristics of these AGNs, obtained by combining XMM-Newton, Swift/XRT, ASCA, Chandra, and Suzaku observations in the soft X-ray band (≤slant 10 keV) with 70-month averaged Swift/BAT data. The nonblazar AGNs of our sample are almost equally divided into unobscured ({N}{{H}}< {10}22 {{cm}}-2) and obscured ({N}{{H}}≥slant {10}22 {{cm}}-2) AGNs, and their Swift/BAT continuum is systematically steeper than the 0.3-10 keV emission, which suggests that the presence of a high-energy cutoff is almost ubiquitous. We discuss the main X-ray spectral parameters obtained, such as the photon index, the reflection parameter, the energy of the cutoff, neutral and ionized absorbers, and the soft excess for both obscured and unobscured AGNs.

  18. Erosion of a grooved surface caused by impact of particle-laden flow

    NASA Astrophysics Data System (ADS)

    Jung, Sohyun; Yang, Eunjin; Kim, Ho-Young

    2016-11-01

    Solid erosion can be a life-limiting process for mechanical elements in erosive environments, thus it is of practical importance in many industries such as construction, mining, and coal conversion. Erosion caused by particle-laden flow occurs through diverse mechanisms, such as cutting, plastic deformation, brittle fracture, fatigue and melting, depending on particle velocity, total particle mass and impingement angle. Among a variety of attempts to lessen erosion, here we investigate the effectiveness of millimeter-sized grooves on the surface. By experimentally measuring the erosion rates of smooth and triangular-grooved surfaces under various impingement angles, we find that erosion can be significantly reduced within a finite range of impingement angles. We show that such erosion resistance is attributed to the swirls of air within grooves and the differences in erosive strength of normal and slanted impact. In particular, erosion is mitigated when we increase the effective area under normal impact causing plastic deformation and fracture while decreasing the area under slanted impact that cuts the surface to a large degree. Our quantitative model for the erosion rate of grooved surfaces considering the foregoing effects agrees with the measurement results.

  19. Ionization of polarized 3He+ ions in EBIS trap with slanted electrostatic mirror.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin,A.; Zelenski, A.; Kponou, A.

    2007-09-10

    Methods of producing the nuclear polarized {sup 3}He{sup +} ions and their ionization to {sup 3}H{sup ++} in ion trap of the electron Beam Ion Source (EBIS) are discussed. Computer simulations show that injection and accumulation of {sup 3}He{sup +} ions in the EBIS trap with slanted electrostatic mirror can be very effective for injection times longer than the ion traversal time through the trap.

  20. Ionization of polarized {sup 3}He{sup +} ions in EBIS trap with slanted electrostatic mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, A.; Zelenski, A.; Kponou, A.

    2008-02-06

    Methods of producing the nuclear polarized {sup 3}He{sup +} ions and their ionization to {sup 3}He{sup ++} in ion trap of the electron Beam Ion Source (EBIS) are discussed. Computer simulations show that injection and accumulation of {sup 3}He{sup +} ions in the EBIS trap with slanted electrostatic mirror can be very effective for injection times longer than the ion traversal time through the trap.

  1. An Experimental Device for Real Time Determination of Slant Path Atmospheric Contrast Transmittance.

    DTIC Science & Technology

    1982-03-01

    copies ftom th Defense Technical Information Caster. AN others ioM apply to the National Technical Information Service. UNCLASSIFIED SECURITV...EXPERIMENTAL DEVICE FOR REAL TIME DETERMINATION OF SLANT PATH ATMOSPHERIC CONTRAST TRANSMITTANCE Richard W. Johnson 1. INTRODUCTION 2. BASIC CONCEPTS As...and z is an altitude parameter. primary optical channel uses a cosine corrected and PE- ASSIG SYSTM DEPIS1ttt STAGE I DSIN STAGEM Pgormiy TES

  2. "Teaching" an Industrial Robot To Spray

    NASA Technical Reports Server (NTRS)

    Evans, A. R.; Sweet, G. K.

    1982-01-01

    Teaching device, consisting of spacer rod or tube with three-pointed tip and line level, is used during pattern "teach-in" to make sure that robot manipulator holds spray gun perpendicular to surface to be sprayed and at right distance from it. For slanted surfaces angle adapter is added between spacer rod and line-level indicator. Angle is determined by slope of surface to be sprayed, thus allowing a perpendicular spray pattern against even slanted surfaces.

  3. Grey water treatment by the slanted soil system with unsorted soil media.

    PubMed

    Ushijima, Ken; Tanaka, Erina; Suzuki, Laís Yuko; Hijikata, Nowaki; Funamizu, Naoyuki; Ito, Ryusei

    2015-01-01

    This study evaluated the performance of unsorted soil media in the slanted soil treatment system, in terms of removal efficiency in suspended solids (SS), chemical oxygen demand (COD), linear alkylbenzene sulphonate (LAS) and Escherichia coli, and lifetime until clogging occurs. Unsorted soil performed longer lifetime until clogging than sorted fine soil. Removal of SS, COD, and LAS also performed same or better level in unsorted soil than fine soil. As reaction coefficients of COD and LAS were described as a function of the hydraulic loading rate, we can design a slanted soil system according to the expected hydraulic loading rate and the targeted level of COD or LAS in effluent. Regarding bacteria removal, unsorted soil performed sufficient reduction of E. coli for 5 weeks; however, the removal process occurred throughout all four chambers, while that of fine soil occurred in one to two chambers.

  4. Design, data, and theory regarding a digital hand inclinometer: a portable device for studying slant perception.

    PubMed

    Li, Zhi; Durgin, Frank H

    2011-06-01

    Palm boards are often used as a nonverbal measure in human slant perception studies. It was recently found that palm boards are biased and relatively insensitive measures, and that an unrestricted hand gesture provides a more sensitive response (Durgin, Hajnal, Li, Tonge, & Stigliani, Acta Psychologica, 134, 182-197, 2010a). In this article, we describe an original design for a portable lightweight digital device for measuring hand orientation. This device is microcontroller-based and uses a micro inclinometer chip as its inclination sensor. The parts are fairly inexpensive. This device, used to measure hand orientation, provides a sensitive nonverbal method for studying slant perception, which can be used in both indoor and outdoor environments. We present data comparing the use of a free hand to palm-board and verbal measures for surfaces within reach and explain how to interpret free-hand measures for outdoor hills.

  5. The burden of secrecy? No effect on hill slant estimation and beanbag throwing.

    PubMed

    Pecher, Diane; van Mierlo, Heleen; Cañal-Bruland, Rouwen; Zeelenberg, René

    2015-08-01

    Slepian, Masicampo, Toosi, and Ambady (2012, Experiment 1) reported that participants who recalled a big secret estimated a hill as steeper than participants who recalled a small secret. This finding was interpreted as evidence that secrets are experienced as physical burdens. In 2 experiments, we tried to replicate this finding, but, despite larger power, did not find a difference in slant estimates between participants who recalled a big secret and those who recalled a small secret. This finding was further corroborated by a meta-analysis that included 8 published data sets of exact replications, which indicates that thinking of a big secret does not affect hill slant estimation. In a third experiment, we also failed to replicate the effect of recalling a secret on throwing a beanbag at a target (Slepian et al., 2012, Experiment 2). Together, our findings question the robustness of the original empirical findings. (c) 2015 APA, all rights reserved).

  6. An Optical Sensor for Measuring the Position and Slanting Direction of Flat Surfaces

    PubMed Central

    Chen, Yu-Ta; Huang, Yen-Sheng; Liu, Chien-Sheng

    2016-01-01

    Automated optical inspection is a very important technique. For this reason, this study proposes an optical non-contact slanting surface measuring system. The essential features of the measurement system are obtained through simulations using the optical design software Zemax. The actual propagation of laser beams within the measurement system is traced by using a homogeneous transformation matrix (HTM), the skew-ray tracing method, and a first-order Taylor series expansion. Additionally, a complete mathematical model that describes the variations in light spots on photoelectric sensors and the corresponding changes in the sample orientation and distance was established. Finally, a laboratory prototype system was constructed on an optical bench to verify experimentally the proposed system. This measurement system can simultaneously detect the slanting angles (x, z) in the x and z directions of the sample and the distance (y) between the biconvex lens and the flat sample surface. PMID:27409619

  7. An Optical Sensor for Measuring the Position and Slanting Direction of Flat Surfaces.

    PubMed

    Chen, Yu-Ta; Huang, Yen-Sheng; Liu, Chien-Sheng

    2016-07-09

    Automated optical inspection is a very important technique. For this reason, this study proposes an optical non-contact slanting surface measuring system. The essential features of the measurement system are obtained through simulations using the optical design software Zemax. The actual propagation of laser beams within the measurement system is traced by using a homogeneous transformation matrix (HTM), the skew-ray tracing method, and a first-order Taylor series expansion. Additionally, a complete mathematical model that describes the variations in light spots on photoelectric sensors and the corresponding changes in the sample orientation and distance was established. Finally, a laboratory prototype system was constructed on an optical bench to verify experimentally the proposed system. This measurement system can simultaneously detect the slanting angles (x, z) in the x and z directions of the sample and the distance (y) between the biconvex lens and the flat sample surface.

  8. Existence of Lipschitz selections of the Steiner map

    NASA Astrophysics Data System (ADS)

    Bednov, B. B.; Borodin, P. A.; Chesnokova, K. V.

    2018-02-01

    This paper is concerned with the problem of the existence of Lipschitz selections of the Steiner map {St}_n, which associates with n points of a Banach space X the set of their Steiner points. The answer to this problem depends on the geometric properties of the unit sphere S(X) of X, its dimension, and the number n. For n≥slant 4 general conditions are obtained on the space X under which {St}_n admits no Lipschitz selection. When X is finite dimensional it is shown that, if n≥slant 4 is even, the map {St}_n has a Lipschitz selection if and only if S(X) is a finite polytope; this is not true if n≥slant 3 is odd. For n=3 the (single-valued) map {St}_3 is shown to be Lipschitz continuous in any smooth strictly-convex two-dimensional space; this ceases to be true in three-dimensional spaces. Bibliography: 21 titles.

  9. Building Area Extraction from Polarimetric SAR Data via Stationarity Detection and Circular-Pol Correlation Coefficient

    NASA Astrophysics Data System (ADS)

    Xiang, Deliang; Su, Yi; Ban, Yifeng

    2015-04-01

    Since the buildings have complex geometries and may be misclassified as forests or mountains with volume scattering due to the significant cross-pol backscatter and lack reflection symmetry, especially the slant-oriented buildings, building area extraction is a challenging problem. In this paper, the time-frequency decomposition technique is adopted to acquire subaperture images, which correspond to the same scene responses under different azimuthal look angles. Stationarity detection approach with polarimetric G0 distribution is proposed to extract ortho-orientedbuildings and the circular polarization correlation coefficient is optimal in characterizing slant-oriented buildings. We test the aforementioned method using ESAR image with L-band. The results demonstrate that the proposed method can effectively extract both ortho-oriented and slant-oriented buildings and the overall detection accuracy as well as kappa value is 10%-20% higher than the compared methods.

  10. Subpixel area-based evaluation for crosstalk suppression in quasi-three-dimensional displays.

    PubMed

    Zhuang, Zhenfeng; Surman, Phil; Cheng, Qijia; Thibault, Simon; Zheng, Yuanjin; Sun, Xiao Wei

    2017-07-01

    A subpixel area-based evaluation method for an improved slanted lenticular film that minimizes the crosstalk in a quasi-three-dimensional (Q3D) display is proposed in this paper. To identify an optimal slant angle of the film, a subpixel area-based measurement is derived to evaluate the crosstalk among viewing regions of the intended subpixel and adjacent unintended subpixel by taking the real subpixel shape and black matrix into consideration. The subpixel mapping, which corresponds to the optimal slant angle of the film, can then be determined. Meanwhile, the viewing zone characteristics are analyzed to balance the light intensity in both right and left eye channels. A compact and portable Q3D system has been built and appropriate experiments have been applied. The results indicate that significant improvements in both crosstalk and resolution can be obtained with the proposed technique.

  11. Statistical properties of excited nuclei in the mass range 47 Less-Than-Or-Slanted-Equal-To A Less-Than-Or-Slanted-Equal-To 59

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuravlev, B. V., E-mail: zhurav@ippe.ru; Lychagin, A. A., E-mail: Lychagin1@yandex.ru; Titarenko, N. N.

    Level densities and their energy dependences for nuclei in the mass range of 47 {<=} A {<=} 59 were determined from the results obtained by measuring neutron-evaporation spectra in respective (p, n) reactions. The spectra of neutrons originating from the (p, n) reactions on {sup 47}Ti, {sup 48}Ti, {sup 49}Ti, {sup 53}Cr, {sup 54}Cr, {sup 57}Fe, and {sup 59}Co nuclei were measured in the proton-energy range of 7-11 MeV. These measurements were performed with the aid of a fast-neutron spectrometer by the time-of-flight method over the base of the EGP-15 pulsed tandem accelerator installed at the Institute for Physics andmore » Power Engineering (Obninsk, Russia). A high resolution of the spectrometer and its stability in the time of flight made it possible to identify reliably discrete low-lying levels along with the continuum part of neutron spectra. Our measured data were analyzed within the statistical equilibrium and preequilibrium models of nuclear reactions. The respective calculations were performed with the aid of the Hauser-Feshbach formalismof statistical theory supplemented with the generalized model of a superfluid nucleus, the back-shifted Fermi gas model, and the Gilbert-Cameron composite formula for nuclear level densities. Nuclear level densities for {sup 47}V, {sup 48}V, {sup 49}V, {sup 53}Mn, {sup 54}Mn, {sup 57}Co, and {sup 59}Ni and their energy dependences were determined. The results are discussed and compared with available experimental data and with recommendations of model-based systematics.« less

  12. The SDSS-IV MaNGA Sample: Design, Optimization, and Usage Considerations

    NASA Astrophysics Data System (ADS)

    Wake, David A.; Bundy, Kevin; Diamond-Stanic, Aleksandar M.; Yan, Renbin; Blanton, Michael R.; Bershady, Matthew A.; Sánchez-Gallego, José R.; Drory, Niv; Jones, Amy; Kauffmann, Guinevere; Law, David R.; Li, Cheng; MacDonald, Nicholas; Masters, Karen; Thomas, Daniel; Tinker, Jeremy; Weijmans, Anne-Marie; Brownstein, Joel R.

    2017-09-01

    We describe the sample design for the SDSS-IV MaNGA survey and present the final properties of the main samples along with important considerations for using these samples for science. Our target selection criteria were developed while simultaneously optimizing the size distribution of the MaNGA integral field units (IFUs), the IFU allocation strategy, and the target density to produce a survey defined in terms of maximizing signal-to-noise ratio, spatial resolution, and sample size. Our selection strategy makes use of redshift limits that only depend on I-band absolute magnitude (M I ), or, for a small subset of our sample, M I and color (NUV - I). Such a strategy ensures that all galaxies span the same range in angular size irrespective of luminosity and are therefore covered evenly by the adopted range of IFU sizes. We define three samples: the Primary and Secondary samples are selected to have a flat number density with respect to M I and are targeted to have spectroscopic coverage to 1.5 and 2.5 effective radii (R e ), respectively. The Color-Enhanced supplement increases the number of galaxies in the low-density regions of color-magnitude space by extending the redshift limits of the Primary sample in the appropriate color bins. The samples cover the stellar mass range 5× {10}8≤slant {M}* ≤slant 3× {10}11 {M}⊙ {h}-2 and are sampled at median physical resolutions of 1.37 and 2.5 kpc for the Primary and Secondary samples, respectively. We provide weights that will statistically correct for our luminosity and color-dependent selection function and IFU allocation strategy, thus correcting the observed sample to a volume-limited sample.

  13. Slant-path coherent free space optical communications over the maritime and terrestrial atmospheres with the use of adaptive optics for beam wavefront correction.

    PubMed

    Li, Ming; Gao, Wenbo; Cvijetic, Milorad

    2017-01-10

    As a continuation of our previous work [Appl. Opt.54, 1453 (2015)APOPAI0003-693510.1364/AO.54.001453] in which we have studied the performance of coherent free space optical (FSO) communication systems operating over a horizontal path, in this paper we study the coherent FSO system operating over a general slant path. We evaluated system bit-error-rate (BER) in the case when the quadrature phase-shift keying (QPSK) modulation format is applied and when an adaptive optics (AO) system is employed to mitigate the air turbulence effects for both maritime and terrestrial air transmission scenarios. We adopted a multiple-layer scheme to efficiently model the FSO slant-path links. The atmospheric channel fading was characterized by the wavefront phase distortions and the log-amplitude fluctuations. We derived analytical expressions to characterize log-amplitude fluctuations of air turbulence by asserting the aperture averaging within the frame of the multiple-layer model. The obtained results showed that use of AO enabled improvement of system performance for both uplinks and downlinks, and also revealed that it is more beneficial for the FSO downlinks. Also, AO employment brought larger enhancements in BER performance for the maritime slant-path FSO links than for the terrestrial ones, with an additional striking increase in performance when the AO correction is combined with the aperture averaging.

  14. The assessment of material-handling strategies in dealing with sudden loading: the effect of uneven ground surface on trunk biomechanical responses.

    PubMed

    Zhou, Jie; Ning, Xiaopeng; Nimbarte, Ashish D; Dai, Fei

    2015-01-01

    As a major risk factor of low back injury, sudden loading often occurs when performing manual material-handling tasks on uneven ground surfaces. Therefore, the purpose of the current study was to investigate the effects of a laterally slanted ground on trunk biomechanical responses during sudden loading events. Thirteen male subjects were subjected to suddenly released loads of 3.4 and 6.8 kg, while standing on a laterally slanted ground of 0°, 15° and 30°. The results showed that 8.3% and 5.6% larger peak L5/S1 joint compression forces were generated in the 30° condition compared with the 0° and 15° conditions, respectively. The increase of L5/S1 joint moment in the 30° condition was 8.5% and 5.0% greater than the 0° and 15° conditions, respectively. Findings of this study suggest that standing on a laterally slanted ground could increase mechanical loading on the spine when experiencing sudden loading. Practitioner Summary: Sudden loading is closely related to occupational low back injuries. The results of this study showed that the increase of slanted ground angle and magnitude of load significantly increase the mechanical loading on the spine during sudden loading. Therefore, both of these two components should be controlled in task design.

  15. Rock deformation equations and application to the study on slantingly installed disc cutter

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao-Huang; Meng, Liang; Sun, Fei

    2014-08-01

    At present the mechanical model of the interaction between a disc cutter and rock mainly concerns indentation experiment, linear cutting experiment and tunnel boring machine (TBM) on-site data. This is not in line with the actual rock-breaking movement of the disc cutter and impedes to some extent the research on the rock-breaking mechanism, wear mechanism and design theory. Therefore, our study focuses on the interaction between the slantingly installed disc cutter and rock, developing a model in accordance with the actual rock-breaking movement. Displacement equations are established through an analysis of the velocity vector at the rock-breaking point of the disc cutter blade; the functional relationship between the displacement parameters at the rock-breaking point and its rectangular coordinates is established through an analysis of micro-displacement vectors at the rock-breaking point, thus leading to the geometric equations of rock deformation caused by the slantingly installed disc cutter. Considering the basically linear relationship between the cutting force of disc cutters and the rock deformation before and after the leap break of rock, we express the constitutive relations of rock deformation as generalized Hooke's law and analyze the effect of the slanting installation angle of disc cutters on the rock-breaking force. This will, as we hope, make groundbreaking contributions to the development of the design theory and installation practice of TBM.

  16. Geotaxis baseline data for Drosophila

    NASA Technical Reports Server (NTRS)

    Schnebel, E. M.; Bhargava, R.; Grossfield, J.

    1987-01-01

    Geotaxis profiles for 20 Drosophila species and semispecies at different ages have been examined using a calibrated, adjustable slant board device. Measurements were taken at 5 deg intervals ranging from 0 deg to 85 deg. Clear strain and species differences are observed, with some groups tending to move upward (- geotaxis) with increasing angles, while others move downward (+ geotaxis). Geotactic responses change with age in some, but not all experimental groups. Sample geotaxis profiles are presented and their application to ecological and aging studies are discussed. Data provide a baseline for future evaluations of the biological effects of microgravity.

  17. Shuttle Laser Technology Experiment Facility (LTEF)-to-airplane lasercom experiment: Airplane considerations

    NASA Technical Reports Server (NTRS)

    Kalil, Ford

    1990-01-01

    NASA is considering the use of various airplanes for a Shuttle Laser Technology Experiment Facility (LTEF)-to-Airplane laser communications experiment. As supporting documentation, pertinent technical details are included about the potential use of airplanes located at Ames Research Center and Wallops Flight Facility. The effects and application of orbital mechanics considerations are also presented, including slant range, azimuth, elevation, and time. The pros and cons of an airplane equipped with a side port with a bubble window versus a top port with a dome are discussed.

  18. Setting the agenda for a healthy retail environment: content analysis of US newspaper coverage of tobacco control policies affecting the point of sale, 2007-2014.

    PubMed

    Myers, Allison E; Southwell, Brian G; Ribisl, Kurt M; Moreland-Russell, Sarah; Lytle, Leslie A

    2017-07-01

    Tobacco control policies affecting the point of sale (POS) are an emerging intervention, yet POS-related news media content has not been studied. We describe news coverage of POS tobacco control efforts and assess relationships between article characteristics, including policy domains, frames, sources, localisation and evidence present, and slant towards tobacco control efforts. High circulation state (n=268) and national (n=5) newspapers comprised the sampling frame. We retrieved 917 relevant POS-focused articles in newspapers from 1 January 2007 to 31 December 2014. 5 raters screened and coded articles, 10% of articles were double coded, and mean inter-rater reliability (IRR) was 0.74. POS coverage emphasised tobacco retailer licensing (49.1% of articles) and the most common frame present was regulation (71.3%). Government officials (52.3%), followed by tobacco retailers (39.6%), were the most frequent sources. Half of articles (51.3%) had a mixed, neutral or antitobacco control slant. Articles presenting a health frame, a greater number of protobacco control sources, and statistical evidence were significantly more likely to also have a protobacco control slant. Articles presenting a political/rights or regulation frame, a greater number of antitobacco control sources, or government, tobacco industry, tobacco retailers, or tobacco users as sources were significantly less likely to also have a protobacco control slant. Stories that feature procontrol sources, research evidence and a health frame also tend to support tobacco control objectives. Future research should investigate how to use data, stories and localisation to encourage a protobacco control slant, and should test relationships between content characteristics and policy progression. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. The Ages of Passive Galaxies in a z = 1.62 Protocluster

    NASA Astrophysics Data System (ADS)

    Lee-Brown, Donald B.; Rudnick, Gregory H.; Momcheva, Ivelina G.; Papovich, Casey; Lotz, Jennifer M.; Tran, Kim-Vy H.; Henke, Brittany; Willmer, Christopher N. A.; Brammer, Gabriel B.; Brodwin, Mark; Dunlop, James; Farrah, Duncan

    2017-07-01

    We present a study of the relation between galaxy stellar age and mass for 14 members of the z = 1.62 protocluster IRC 0218, using multiband imaging and HST G102 and G141 grism spectroscopy. Using UVJ colors to separate galaxies into star-forming and quiescent populations, we find that, at stellar masses {M}* ≥slant {10}10.85 {M}⊙ , the quiescent fraction in the protocluster is {f}Q={1.0}-0.37+0.00, consistent with a ˜ 2× enhancement relative to the field value, {f}Q={0.45}-0.03+0.03. At masses {10}10.2 {M}⊙ ≤slant {M}* ≤slant {10}10.85 {M}⊙ , f Q in the cluster is {f}Q={0.40}-0.18+0.20, consistent with the field value of {f}Q={0.28}-0.02+0.02. Using galaxy {D}n(4000) values derived from the G102 spectroscopy, we find no relation between galaxy stellar age and mass. These results may reflect the impact of merger-driven mass redistribution—which is plausible, as this cluster is known to host many dry mergers. Alternately, they may imply that the trend in f Q in IRC 0218 was imprinted over a short timescale in the protocluster’s assembly history. Comparing our results with those of other high-redshift studies and studies of clusters at z˜ 1, we determine that our observed relation between f Q and stellar mass only mildly evolves between z˜ 1.6 and z˜ 1, and only at stellar masses {M}* ≤slant {10}10.85 {M}⊙ . Both the z˜ 1 and z˜ 1.6 results are in agreement that the red sequence in dense environments was already populated at high redshift, z≳ 3, placing constraints on the mechanism(s) responsible for quenching in dense environments at z≥slant 1.5.

  20. Three methods to retrieve slant total electron content measurements from ground-based GPS receivers and performance assessment

    NASA Astrophysics Data System (ADS)

    Zhang, Baocheng

    2016-07-01

    The high sampling rate along with the global coverage of ground-based receivers makes Global Positioning System (GPS) data particularly ideal for sensing the Earth's ionosphere. Retrieval of slant total electron content measurements (TECMs) constitutes a key first step toward extracting various ionospheric parameters from GPS data. Within the ionospheric community, the interpretation of TECM is widely recognized as the slant total electron content along the satellite receiver line of sight, biased by satellite and receiver differential code biases (DCBs). The Carrier-to-Code Leveling (CCL) has long been used as a geometry-free method for retrieving TECM, mainly because of its simplicity and effectiveness. In fact, however, the CCL has proven inaccurate as it may give rise to TECM very susceptible to so-called leveling errors. With the goal of attaining more accurate TECM retrieval, we report in this contribution two other methods than the CCL, namely, the Precise Point Positioning (PPP) and the Array-aided PPP (A-PPP). The PPP further exploits the International GPS Service (IGS) orbit and clock products and turns out to be a geometry-based method. The A-PPP is designed to retrieve TECM from an array of colocated receivers, taking advantage of the broadcast orbit and clock products. Moreover, A-PPP also takes into account the fact that the ionospheric effects measured from one satellite to all colocated receivers ought to be the same, thus leading to the estimability of interreceiver DCB. We perform a comparative study of the formal precision and the empirical accuracy of the TECM that are retrieved, respectively, by three methods from the same set of GPS data. Results of such a study can be used to assess the actual performance of the three methods. In addition, we check the temporal stability in A-PPP-derived interreceiver DCB estimates over time periods ranging from 1 to 3 days.

  1. Crystal, magnetic, calorimetric and electronic structure investigation of GdScGe1-x Sb x compounds

    NASA Astrophysics Data System (ADS)

    Guillou, F.; Pathak, A. K.; Hackett, T. A.; Paudyal, D.; Mudryk, Y.; Pecharsky, V. K.

    2017-12-01

    Experimental investigations of crystal structure, magnetism and heat capacity of compounds in the pseudoternary GdScGe-GdScSb system combined with density functional theory projections have been employed to clarify the interplay between the crystal structure and magnetism in this series of RTX materials (R  =  rare-earth, T   =  transition metal and X  =  p-block element). We demonstrate that the CeScSi-type structure adopted by GdScGe and CeFeSi-type structure adopted by GdScSb coexist over a limited range of compositions 0.65 ≤slant x ≤slant 0.9 . Antimony for Ge substitutions in GdScGe result in an anisotropic expansion of the unit cell of the parent that is most pronounced along the c axis. We believe that such expansion acts as the driving force for the instability of the double layer CeScSi-type structure of the parent germanide. Extensive, yet limited Sb substitutions 0 ≤slant x < 0.65 lead to a strong reduction of the Curie temperature compared to the GdScGe parent, but without affecting the saturation magnetization. With a further increase in Sb content, the first compositions showing the presence of the CeFeSi-type structure of the antimonide, x ≈ 0.7 , coincide with the appearance of an antiferromagnetic phase. The application of a finite magnetic field reveals a jump in magnetization toward a fully saturated ferromagnetic state. This antiferro-ferromagnetic transformation is not associated with a sizeable latent heat, as confirmed by heat capacity measurements. The electronic structure calculations for x = 0.75 indicate that the key factor in the conversion from the ferromagnetic CeScSi-type to the antiferromagnetic CeFeSi-type structure is the disappearance of the induced magnetic moments on Sc. For the parent antimonide, heat capacity measurements indicate an additional transition below the main antiferromagnetic transition.

  2. Computation of Discrete Slanted Hole Film Cooling Flow Using the Navier-Stokes Equations.

    DTIC Science & Technology

    1982-07-01

    7 -121 796 COMPUTATION OF DISCRETE SLANTED HOLE FILM COOLING FLOW i/ i USING THE NAVIER- ..(U) CIENTIFIC RESEARCH ASSOCIATES INC GLASTONBURY CT H...V U U6-IMSA P/ & .OS,-TR. 82-1004 Report R82-910002-4 / COMPUTATION OF DISCRETE SLAMED HOLE FILM COOLING FLOW ( USING THE XAVIER-STOKES EQUATIONS H...CL SIT %GE (f.en Dae Entere)04 REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM REPORT NUMBER 2. GOVT ACCESSION NO] S. RECIPIENT’S CATALOG NUMBERAO

  3. Media Agenda-Setting and Personal Influences in the Promotion of National Issues.

    DTIC Science & Technology

    1983-01-01

    thesis. Also, I am thankful to Mrs. Barbara McCook who helped with the con- tent analysis. Further thanks are due to my wonderful parents . I am grateful to...judging the basic slant of the news forming media agendas. Also, rela- tionships between media and public agendas will be most ap- parent with...slant * for each story was able to be interpreted (Appendix A). At the conclusion of a coder training session, a pretest invol - ving 28 editions of the

  4. Hydraulic mining method

    DOEpatents

    Huffman, Lester H.; Knoke, Gerald S.

    1985-08-20

    A method of hydraulically mining an underground pitched mineral vein comprising drilling a vertical borehole through the earth's lithosphere into the vein and drilling a slant borehole along the footwall of the vein to intersect the vertical borehole. Material is removed from the mineral vein by directing a high pressure water jet thereagainst. The resulting slurry of mineral fragments and water flows along the slant borehole into the lower end of the vertical borehole from where it is pumped upwardly through the vertical borehole to the surface.

  5. Application of ray-traced tropospheric slant delays to geodetic VLBI analysis

    NASA Astrophysics Data System (ADS)

    Hofmeister, Armin; Böhm, Johannes

    2017-08-01

    The correction of tropospheric influences via so-called path delays is critical for the analysis of observations from space geodetic techniques like the very long baseline interferometry (VLBI). In standard VLBI analysis, the a priori slant path delays are determined using the concept of zenith delays, mapping functions and gradients. The a priori use of ray-traced delays, i.e., tropospheric slant path delays determined with the technique of ray-tracing through the meteorological data of numerical weather models (NWM), serves as an alternative way of correcting the influences of the troposphere on the VLBI observations within the analysis. In the presented research, the application of ray-traced delays to the VLBI analysis of sessions in a time span of 16.5 years is investigated. Ray-traced delays have been determined with program RADIATE (see Hofmeister in Ph.D. thesis, Department of Geodesy and Geophysics, Faculty of Mathematics and Geoinformation, Technische Universität Wien. http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3444, 2016) utilizing meteorological data provided by NWM of the European Centre for Medium-Range Weather Forecasts (ECMWF). In comparison with a standard VLBI analysis, which includes the tropospheric gradient estimation, the application of the ray-traced delays to an analysis, which uses the same parameterization except for the a priori slant path delay handling and the used wet mapping factors for the zenith wet delay (ZWD) estimation, improves the baseline length repeatability (BLR) at 55.9% of the baselines at sub-mm level. If no tropospheric gradients are estimated within the compared analyses, 90.6% of all baselines benefit from the application of the ray-traced delays, which leads to an average improvement of the BLR of 1 mm. The effects of the ray-traced delays on the terrestrial reference frame are also investigated. A separate assessment of the RADIATE ray-traced delays is carried out by comparison to the ray-traced delays from the National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC) (Eriksson and MacMillan in http://lacerta.gsfc.nasa.gov/tropodelays, 2016) with respect to the analysis performances in terms of BLR results. If tropospheric gradient estimation is included in the analysis, 51.3% of the baselines benefit from the RADIATE ray-traced delays at sub-mm difference level. If no tropospheric gradients are estimated within the analysis, the RADIATE ray-traced delays deliver a better BLR at 63% of the baselines compared to the NASA GSFC ray-traced delays.

  6. Use of acoustic classification of sidescan sonar data for mapping benthic habitat in the Northern Channel Islands, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Lafferty, Kevin D.

    2002-01-01

    Highly reflective seafloor features imaged by sidescan sonar in nearshore waters off the Northern Channel Islands (California, USA) have been observed in subsequent submersible dives to be areas of thin sand covering bedrock. Adjacent areas of rocky seafloor, suitable as habitat for endangered species of abalone and rockfish, and encrusting organisms, cannot be differentiated from the areas of thin sand on the basis of acoustic backscatter (i.e. grey level) alone. We found second-order textural analysis of sidescan sonar data useful to differentiate the bottom types where data is not degraded by near-range distortion (caused by slant-range and ground-range corrections), and where data is not degraded by far-range signal attenuation. Hand editing based on submersible observations is necessary to completely convert the sidescan sonar image to a bottom character classification map suitable for habitat mapping.

  7. Lidar Sensor Performance in Closed-Loop Flight Testing of the Morpheus Rocket-Propelled Lander to a Lunar-Like Hazard Field

    NASA Technical Reports Server (NTRS)

    Roback, V. Eric; Pierrottet, Diego F.; Amzajerdian, Farzin; Barnes, Bruce W.; Bulyshev, Alexander E.; Hines, Glenn D.; Petway, Larry B.; Brewster, Paul F.; Kempton, Kevin S.

    2015-01-01

    For the first time, a suite of three lidar sensors have been used in flight to scan a lunar-like hazard field, identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The lidar sensors and GN&C system are part of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) project which has been seeking to develop a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The 3-D imaging Flash Lidar is a second generation, compact, real-time, aircooled instrument developed from a number of components from industry and NASA and is used as part of the ALHAT Hazard Detection System (HDS) to scan the hazard field and build a 3-D Digital Elevation Map (DEM) in near-real time for identifying safe sites. The Flash Lidar is capable of identifying a 30 cm hazard from a slant range of 1 km with its 8 cm range precision (1-s). The Flash Lidar is also used in Hazard Relative Navigation (HRN) to provide position updates down to a 250m slant range to the ALHAT navigation filter as it guides Morpheus to the safe site. The Navigation Doppler Lidar (NDL) system has been developed within NASA to provide velocity measurements with an accuracy of 0.2 cm/sec and range measurements with an accuracy of 17 cm both from a maximum range of 2,200 m to a minimum range of several meters above the ground. The NDLâ€"TM"s measurements are fed into the ALHAT navigation filter to provide lander guidance to the safe site. The Laser Altimeter (LA), also developed within NASA, provides range measurements with an accuracy of 5 cm from a maximum operational range of 30 km down to 1 m and, being a separate sensor from the Flash Lidar, can provide range along a separate vector. The LA measurements are also fed into the ALHAT navigation filter to provide lander guidance to the safe site. The flight tests served as the culmination of the TRL 6 journey for the ALHAT system and included launch from a pad situated at the NASA-Kennedy Space Center Shuttle Landing Facility (SLF) runway, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range just off the North end of the runway. The tests both confirmed the expected performance and also revealed several challenges present in the flight-like environment which will feed into future TRL advancement of the sensors. Guidance provided by the ALHAT system was impeded in portions of the trajectory and intermittent near the end of the trajectory due to optical effects arising from air heated by the rocket engine. The Flash Lidar identified hazards as small as 30 cm from the maximum slant range of 450 m which Morpheus could provide; however, it was occasionally susceptible to an increase in range noise due to scintillation arising from air heated by the Morpheus rocket engine which entered its Field-of-View (FOV). The Flash Lidar was also susceptible to pre-triggering, during the HRN phase, on a dust cloud created during launch and transported down-range by the wind. The NDL provided velocity and range measurements to the expected accuracy levels yet it was also susceptible to signal degradation due to air heated by the rocket engine. The LA, operating with a degraded transmitter laser, also showed signal attenuation over a few seconds at a specific phase of the flight due to the heat plume generated by the rocket engine.

  8. Magnetic superelevation design of Halbach permanent magnet guideway for high-temperature superconducting maglev

    NASA Astrophysics Data System (ADS)

    Lei, Wuyang; Qian, Nan; Zheng, Jun; Huang, Huan; Zhang, Ya; Deng, Zigang

    2017-07-01

    To improve the curve negotiating ability of high-temperature superconducting (HTS) maglev system, a special structure of magnetic superelevation for double-pole Halbach permanent magnet guideway (PMG) was designed. The most significant feature of this design is the asymmetrical PMG that forms a slanting magnetic field without affecting the smoothness of the PMG surface. When HTS maglev vehicle runs through curves with magnetic superelevation, the vehicle will slant due to asymmetry in magnetic field and the flux-pinning effect of onboard HTS bulks. At the same time, one component of the levitation force provides a part of the centripetal force that reduces lateral acceleration of the vehicle and thus enhances its curve negotiating ability. Furthermore, the slant angle of magnetic superelevation can be adjusted by changing the materials and the thickness of the added permanent magnets. This magnetic superelevation method, together with orographic uplift, can be applied to different requirements of PMG designs. Besides, the applicability of this method would benefit future development of high-speed HTS maglev system.

  9. Task factor usability ratings for different age groups writing Chinese.

    PubMed

    Chan, A H S; So, J C Y

    2009-11-01

    This study evaluated how different task factors affect performance and user subjective preferences for three different age groups of Chinese subjects (6-11, 20-23, 65-70 years) when hand writing Chinese characters. The subjects copied Chinese character sentences with different settings for the task factors of writing plane angle (horizontal 0 degrees , slanted 15 degrees ), writing direction (horizontal, vertical), and line spacing (5 mm, 7 mm and no lines). Writing speed was measured and subjective preferences (effectiveness and satisfaction) were assessed for each of the task factor settings. The result showed that there was a conflict between writing speed and personal preference for the line spacing factor; 5 mm line spacing increased writing speed but it was the least preferred. It was also found that: vertical and horizontal writing directions and a slanted work surface suited school-aged children; a horizontal work surface and horizontal writing direction suited university students; and a horizontal writing direction with either a horizontal or slanted work surface suited the older adults.

  10. On the Spectrum of the Plenoptic Function.

    PubMed

    Gilliam, Christopher; Dragotti, Pier-Luigi; Brookes, Mike

    2014-02-01

    The plenoptic function is a powerful tool to analyze the properties of multi-view image data sets. In particular, the understanding of the spectral properties of the plenoptic function is essential in many computer vision applications, including image-based rendering. In this paper, we derive for the first time an exact closed-form expression of the plenoptic spectrum of a slanted plane with finite width and use this expression as the elementary building block to derive the plenoptic spectrum of more sophisticated scenes. This is achieved by approximating the geometry of the scene with a set of slanted planes and evaluating the closed-form expression for each plane in the set. We then use this closed-form expression to revisit uniform plenoptic sampling. In this context, we derive a new Nyquist rate for the plenoptic sampling of a slanted plane and a new reconstruction filter. Through numerical simulations, on both real and synthetic scenes, we show that the new filter outperforms alternative existing filters.

  11. The Need of Slanted Side Holes for Venous Cannulae

    PubMed Central

    Park, Joong Yull

    2012-01-01

    Well-designed cannulae must allow good flow rate and minimize nonphysiologic load. Venous cannulae generally have side holes to prevent the rupture of blood vessel during perfusion. Optimizing side hole angle will yield more efficient and safe venous cannulae. A numerical modeling was used to study the effect of the angle (0°–45°) and number (0–12) of side holes on the performance of cannulae. By only slanting the side holes, it increases the flow rate up to 6% (in our models). In addition, it was found that increasing the number of side holes reduces the shear rate up to 12% (in our models). A new parameter called “penetration depth” was introduced to describe the interfering effect of stream jets from side holes, and the result showed that the 45°-slanted side holes caused minimum interfering for the flow in cannula. Our quantitative hemodynamic analysis study provides important guidelines for venous cannulae design. PMID:22291856

  12. Groundwater flow to a horizontal or slanted well in an unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Zhan, Hongbin; Zlotnik, Vitaly A.

    2002-07-01

    New semianalytical solutions for evaluation of the drawdown near horizontal and slanted wells with finite length screens in unconfined aquifers are presented. These fully three-dimensional solutions consider instantaneous drainage or delayed yield and aquifer anisotropy. As a basis, solution for the drawdown created by a point source in a uniform anisotropic unconfined aquifer is derived in Laplace domain. Using superposition, the point source solution is extended to the cases of the horizontal and slanted wells. The previous solutions for vertical wells can be described as a special case of the new solutions. Numerical Laplace inversion allows effective evaluation of the drawdown in real time. Examples illustrate the effects of well geometry and the aquifer parameters on drawdown. Results can be used to generate type curves from observations in piezometers and partially or fully penetrating observation wells. The proposed solutions and software are useful for the parameter identification, design of remediation systems, drainage, and mine dewatering.

  13. Propagation characteristics of partially coherent anomalous elliptical hollow Gaussian beam propagating through atmospheric turbulence along a slant path

    NASA Astrophysics Data System (ADS)

    Tian, Huanhuan; Xu, Yonggen; Yang, Ting; Ma, Zairu; Wang, Shijian; Dan, Youquan

    2017-02-01

    Based on the extended Huygens-Fresnel principal and the Wigner distribution function, the root mean square (rms) angular width and propagation factor (M2-factor) of partially coherent anomalous elliptical hollow Gaussian (PCAEHG) beam propagating through atmospheric turbulence along a slant path are studied in detail. Analytical formulae of the rms angular width and M2-factor of PCAEHG beam are derived. Our results show that the rms angular width increases with increasing of wavelength and zenith angle and with decreasing of transverse coherence length, beam waist sizes and inner scale. The M2-factor increases with increasing of zenith angle and with decreasing of wavelength, transverse coherence length, beam waist sizes and inner scale. The saturation propagation distances (SPDs) increase as zenith angle increases. The numerical calculations also indicate that the SPDs of rms angular width and M2-factor for uplink slant paths with zenith angle of π/12 are about 0.2 and 20 km, respectively.

  14. Motion of Major Ice Shelf Fronts in Antarctica from Slant Range Analysis of Radar Altimeter Data, 1978 - 1998

    NASA Technical Reports Server (NTRS)

    Zwally, H. J.; Beckley, M. A.; Brenner, A. C.; Giovinetto, M. B.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Slant range analysis of radar altimeter data from the Seasat, Geosat, ERS-1 and ERS-2 databases are used to determine barrier location at particular times, and estimate barrier motion (km/yr) for major Antarctic ice shelves. The barrier locations, which are the seaward edges or fronts of floating ice shelves, advance with time as the ice flows from the grounded ice sheets and retreat whenever icebergs calve from the fronts. The analysis covers various multiyear intervals from 1978 to 1998, supplemented by barrier location maps produced elsewhere for 1977 and 1986. Barrier motion is estimated as the ratio between mean annual ice shelf area change for a particular interval, and the length of the discharge periphery. This value is positive if the barrier location progresses seaward, or negative if the barrier location regresses (break-back). Either positive or negative values are lower limit estimates because the method does not detect relatively small area changes due to calving or surge events. The findings are discussed in the context of the three ice shelves that lie in large embayments (the Filchner-Ronne, Amery, and Ross), and marginal ice shelves characterized by relatively short distances between main segments of grounding line and barrier (those in the Queen Maud Land sector between 10.1 deg. W and 32.5 deg. E, and the West and Shackleton ice shelves). All the ice shelves included in the study account for approximately three-fourths of the total ice shelf area of Antarctica, and discharge approximately two-thirds of the total grounded ice area.

  15. The symmetry energy {\\boldsymbol{\\gamma }} parameter of relativistic mean-field models

    NASA Astrophysics Data System (ADS)

    Dutra, Mariana; Lourenço, Odilon; Hen, Or; Piasetzky, Eliezer; Menezes, Débora P.

    2018-05-01

    The relativistic mean-field models tested in previous works against nuclear matter experimental values, critical parameters and macroscopic stellar properties are revisited and used in the evaluation of the symmetry energy γ parameter obtained in three different ways. We have checked that, independent of the choice made to calculate the γ values, a trend of linear correlation is observed between γ and the symmetry energy ({{\\mathscr{S}}}0) and a more clear linear relationship is established between γ and the slope of the symmetry energy (L 0). These results directly contribute to the arising of other linear correlations between γ and the neutron star radii of {R}1.0 and {R}1.4, in agreement with recent findings. Finally, we have found that short-range correlations induce two specific parametrizations, namely, IU-FSU and DD-MEδ, simultaneously compatible with the neutron star mass constraint of 1.93≤slant {M}{{\\max }}/{M}ȯ ≤slant 2.05 and with the overlap band for the {L}0× {{\\mathscr{S}}}0 region, to present γ in the range of γ =0.25+/- 0.05. This work is a part of the project INCT-FNA Proc. No. 464898/2014-5 and was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil under grants 300602/2009-0 and 306786/2014-1. E. P. acknowledges support from the Israel Science Foundation. O. H. acknowledges the U.S. Department of Energy Office of Science, Office of Nuclear Physics program under award number DE-FG02-94ER40818

  16. A moving observer in a three-dimensional world

    PubMed Central

    2016-01-01

    For many tasks such as retrieving a previously viewed object, an observer must form a representation of the world at one location and use it at another. A world-based three-dimensional reconstruction of the scene built up from visual information would fulfil this requirement, something computer vision now achieves with great speed and accuracy. However, I argue that it is neither easy nor necessary for the brain to do this. I discuss biologically plausible alternatives, including the possibility of avoiding three-dimensional coordinate frames such as ego-centric and world-based representations. For example, the distance, slant and local shape of surfaces dictate the propensity of visual features to move in the image with respect to one another as the observer's perspective changes (through movement or binocular viewing). Such propensities can be stored without the need for three-dimensional reference frames. The problem of representing a stable scene in the face of continual head and eye movements is an appropriate starting place for understanding the goal of three-dimensional vision, more so, I argue, than the case of a static binocular observer. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269608

  17. The Performance of the Robo-AO Laser Guide Star Adaptive Optics System at the Kitt Peak 2.1 m Telescope

    NASA Astrophysics Data System (ADS)

    Jensen-Clem, Rebecca; Duev, Dmitry A.; Riddle, Reed; Salama, Maïssa; Baranec, Christoph; Law, Nicholas M.; Kulkarni, S. R.; Ramprakash, A. N.

    2018-01-01

    Robo-AO is an autonomous laser guide star adaptive optics (AO) system recently commissioned at the Kitt Peak 2.1 m telescope. With the ability to observe every clear night, Robo-AO at the 2.1 m telescope is the first dedicated AO observatory. This paper presents the imaging performance of the AO system in its first 18 months of operations. For a median seeing value of 1.″44, the average Strehl ratio is 4% in the i\\prime band. After post processing, the contrast ratio under sub-arcsecond seeing for a 2≤slant i\\prime ≤slant 16 primary star is five and seven magnitudes at radial offsets of 0.″5 and 1.″0, respectively. The data processing and archiving pipelines run automatically at the end of each night. The first stage of the processing pipeline shifts and adds the rapid frame rate data using techniques optimized for different signal-to-noise ratios. The second “high-contrast” stage of the pipeline is eponymously well suited to finding faint stellar companions. Currently, a range of scientific programs, including the synthetic tracking of near-Earth asteroids, the binarity of stars in young clusters, and weather on solar system planets are being undertaken with Robo-AO.

  18. Scattering Matrix for the Interaction between Solar Acoustic Waves and Sunspots. I. Measurements

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui

    2017-01-01

    Assessing the interaction between solar acoustic waves and sunspots is a scattering problem. The scattering matrix elements are the most commonly used measured quantities to describe scattering problems. We use the wavefunctions of scattered waves of NOAAs 11084 and 11092 measured in the previous study to compute the scattering matrix elements, with plane waves as the basis. The measured scattered wavefunction is from the incident wave of radial order n to the wave of another radial order n‧, for n=0{--}5. For a time-independent sunspot, there is no mode mixing between different frequencies. An incident mode is scattered into various modes with different wavenumbers but the same frequency. Working in the frequency domain, we have the individual incident plane-wave mode, which is scattered into various plane-wave modes with the same frequency. This allows us to compute the scattering matrix element between two plane-wave modes for each frequency. Each scattering matrix element is a complex number, representing the transition from the incident mode to another mode. The amplitudes of diagonal elements are larger than those of the off-diagonal elements. The amplitude and phase of the off-diagonal elements are detectable only for n-1≤slant n\\prime ≤slant n+1 and -3{{Δ }}k≤slant δ {k}x≤slant 3{{Δ }}k, where δ {k}x is the change in the transverse component of the wavenumber and Δk = 0.035 rad Mm-1.

  19. Nitrogen Dioxide Total Column Over Terra Nova Bay Station - Antarctica - During 2001

    NASA Astrophysics Data System (ADS)

    Bortoli, D.; Ravegnani, F.; Giovanelli, G.; Petritoli, A.; Kostadinov, I.

    GASCOD (Gas Analyzer Spectrometer Correlating Optical Differences), installed at the Italian Antarctic Station of Terra Nova Bay (TNB) - 74.69S, 164.12E - since 1995, carried out a full dataset of zenith scattered light measurements for the year 2001. The application of DOAS methodology to the collected data gave as final results, the slant column values for nitrogen dioxide. The seasonal variation shows a maxi- mum in the summer and it is in good agreement with the results obtained by other authors. The data analysis is performed by using different parameters like the po- tential vorticity (PV) at 500 K and the atmospheric temperatures at the same level. After the verification of the linear dependency between the NO2 slant column values and the temperature of NO2 cross section utilized in the DOAS algorithm, the actual stratospheric temperatures (from ECMWF) over TNB are applied to the results. The sensible changes in the nitrogen dioxide slant column values allow to highlight the good matching between the NO2 AM/PM ratio and the potential vorticity at 500 K. The NO2 slant column values follow the variations of the stratospheric temperature mainly during the spring season, when the lowest temperatures are observed and the ozone-hole phenomena mainly occur. ACKNOWLEDGMENTS: The author Daniele Bortoli was financially supported by the "Subprograma Ciência e Tecnologia do Ter- ceiro Quadro Comunitário de Apoio". The National Program for Antarctic Research (PNRA) supported this research.

  20. Geological terrain models

    NASA Technical Reports Server (NTRS)

    Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.

    1981-01-01

    The initial phase of a program to determine the best interpretation strategy and sensor configuration for a radar remote sensing system for geologic applications is discussed. In this phase, terrain modeling and radar image simulation were used to perform parametric sensitivity studies. A relatively simple computer-generated terrain model is presented, and the data base, backscatter file, and transfer function for digital image simulation are described. Sets of images are presented that simulate the results obtained with an X-band radar from an altitude of 800 km and at three different terrain-illumination angles. The simulations include power maps, slant-range images, ground-range images, and ground-range images with statistical noise incorporated. It is concluded that digital image simulation and computer modeling provide cost-effective methods for evaluating terrain variations and sensor parameter changes, for predicting results, and for defining optimum sensor parameters.

  1. Traveling solitons in long-range oscillator chains

    NASA Astrophysics Data System (ADS)

    Miloshevich, George; Nguenang, Jean Pierre; Dauxois, Thierry; Khomeriki, Ramaz; Ruffo, Stefano

    2017-03-01

    We investigate the existence and propagation of solitons in a long-range extension of the quartic Fermi-Pasta-Ulam (FPU) chain of anharmonic oscillators. The coupling in the linear term decays as a power-law with an exponent 1<α ≤slant 3 . We obtain an analytic perturbative expression of traveling envelope solitons by introducing a non linear Schrödinger equation for the slowly varying amplitude of short wavelength modes. Due to the non analytic properties of the dispersion relation, it is crucial to develop the theory using discrete difference operators. Those properties are also the ultimate reason why kink-solitons may exist but are unstable, at variance with the short-range FPU model. We successfully compare these approximate analytic results with numerical simulations for the value α =2 which was chosen as a case study.

  2. Lidar Sensor Performance in Closed-Loop Flight Testing of the Morpheus Rocket-Propelled Lander to a Lunar-Like Hazard Field

    NASA Technical Reports Server (NTRS)

    Roback, Vincent E.; Pierrottet, Diego F.; Amzajerdian, Farzin; Barnes, Bruce W.; Hines, Glenn D.; Petway, Larry B.; Brewster, Paul F.; Kempton, Kevin S.; Bulyshev, Alexander E.

    2015-01-01

    For the first time, a suite of three lidar sensors have been used in flight to scan a lunar-like hazard field, identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, guide the Morpheus autonomous, rocket-propelled, free-flying test bed to a safe landing on the hazard field. The lidar sensors and GN&C system are part of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) project which has been seeking to develop a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The 3-D imaging flash lidar is a second generation, compact, real-time, air-cooled instrument developed from a number of cutting-edge components from industry and NASA and is used as part of the ALHAT Hazard Detection System (HDS) to scan the hazard field and build a 3-D Digital Elevation Map (DEM) in near-real time for identifying safe sites. The flash lidar is capable of identifying a 30 cm hazard from a slant range of 1 km with its 8 cm range precision at 1 sigma. The flash lidar is also used in Hazard Relative Navigation (HRN) to provide position updates down to a 250m slant range to the ALHAT navigation filter as it guides Morpheus to the safe site. The Doppler Lidar system has been developed within NASA to provide velocity measurements with an accuracy of 0.2 cm/sec and range measurements with an accuracy of 17 cm both from a maximum range of 2,200 m to a minimum range of several meters above the ground. The Doppler Lidar's measurements are fed into the ALHAT navigation filter to provide lander guidance to the safe site. The Laser Altimeter, also developed within NASA, provides range measurements with an accuracy of 5 cm from a maximum operational range of 30 km down to 1 m and, being a separate sensor from the flash lidar, can provide range along a separate vector. The Laser Altimeter measurements are also fed into the ALHAT navigation filter to provide lander guidance to the safe site. The flight tests served as the culmination of the TRL 6 journey for the lidar suite and included launch from a pad situated at the NASA-Kennedy Space Center Shuttle Landing Facility (SLF) runway, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range just off the North end of the runway. The tests both confirmed the expected performance and also revealed several challenges present in the flight-like environment which will feed into future TRL advancement of the sensors. The flash lidar identified hazards as small as 30 cm from the maximum slant range of 450 m which Morpheus could provide, however, it was occasionally susceptible to an increase in range noise due to heated air from the Morpheus rocket plume which entered its Field-of-View (FOV). The flash lidar was also susceptible to pre-triggering on dust during the HRN phase which was created during launch and transported by the wind. The Doppler Lidar provided velocity and range measurements to the expected accuracy levels yet it was also susceptible to signal degradation due to air heated by the rocket engine. The Laser Altimeter, operating with a degraded transmitter laser, also showed signal attenuation over a few seconds at a specific phase of the flight due to the heat plume generated by the rocket engine.

  3. Opposed slant tube diabatic sorber

    DOEpatents

    Erickson, Donald C.

    2004-01-20

    A sorber comprised of at least three concentric coils of tubing contained in a shell with a flow path for liquid sorbent in one direction, a flow path for heat transfer fluid which is in counter-current heat exchange relationship with sorbent flow, a sorbate vapor port in communication with at least one of sorbent inlet or exit ports, wherein each coil is coiled in opposite direction to those coils adjoining it, whereby the opposed slant tube configuration is achieved, with structure for flow modification in the core space inside the innermost coil.

  4. Gyroscopic effects in interference of matter waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolstikhin, Oleg I.; Morishita, Toru; Watanabe, Shinichi

    2005-11-15

    A new gyroscopic interference effect stemming from the Galilean translational factor in the matter wave function is pointed out. In contrast to the well-known Sagnac effect that stems from the geometric phase and leads to a shift of interference fringes, this effect causes slanting of the fringes. We illustrate it by calculations for two split cigar-shaped Bose-Einstein condensates under the conditions of a recent experiment, see Y. Shin et al., Phys. Rev. Lett. 92, 050405 (2004). Importantly, the measurement of slanting obviates the need of a third reference cloud.

  5. Angular Distributions of Discrete Mesoscale Mapping Functions

    NASA Astrophysics Data System (ADS)

    Kroszczyński, Krzysztof

    2015-08-01

    The paper presents the results of analyses of numerical experiments concerning GPS signal propagation delays in the atmosphere and the discrete mapping functions defined on their basis. The delays were determined using data from the mesoscale non-hydrostatic weather model operated in the Centre of Applied Geomatics, Military University of Technology. A special attention was paid to investigating angular characteristics of GPS slant delays for low angles of elevation. The investigation proved that the temporal and spatial variability of the slant delays depends to a large extent on current weather conditions.

  6. Multiple piece turbine blade/vane

    DOEpatents

    Kimmel, Keith D

    2013-02-05

    An air cooled turbine blade or vane of a spar and shell construction with the shell made from a high temperature resistant material that must be formed from an EDM process. The shell and the spar both have a number of hooks extending in a spanwise direction and forming a contact surface that is slanted such that a contact force increases as the engaging hooks move away from one another. The slanted contact surfaces on the hooks provides for an better seal and allows for twisting between the shell and the spar while maintaining a tight fit.

  7. New non-geosynchronous orbits for communications satellites to off-load daily peaks in geostationary traffic

    NASA Technical Reports Server (NTRS)

    Turner, A. E.

    1987-01-01

    The potential for satellites in two orbits, the sun-synchronous 12-hour equatorial orbit (STET) and the apogee at constant time-of-day equatorial orbit (ACE), to off-load peaks in the CONUS geostationary communications traffic is discussed. These orbits are found to require maneuvers of smaller magnitudes for insertion than geostationary orbits. Advantages of the ACE orbit over the STET orbit are discussed, including larger satellite mass capability for a given launch vehicle, lower slant ranges, and larger angular separation from the geostationary arc for a nonequatorial ground observer.

  8. Crop identification of SAR data using digital textural analysis

    NASA Technical Reports Server (NTRS)

    Nuesch, D. R.

    1983-01-01

    After preprocessing SEASAT SAR data which included slant to ground range transformation, registration to LANDSAT MSS data and appropriate filtering of the raw SAR data to minimize coherent speckle, textural features were developed based upon the spatial gray level dependence method (SGLDM) to compute entropy and inertia as textural measures. It is indicated that the consideration of texture features are very important in SAR data analysis. The SEASAT SAR data are useful for the improvement of field boundary definitions and for an earlier season estimate of corn and soybean area location than is supported by LANDSAT alone.

  9. Examining pretrial publicity in a shadow jury paradigm: issues of slant, quantity, persistence and generalizability.

    PubMed

    Daftary-Kapur, Tarika; Penrod, Steven D; O'Connor, Maureen; Wallace, Brian

    2014-10-01

    The purpose of this study was to examine the influence of pretrial publicity (PTP) on mock juror decision making. Specifically, we examined the influence of quantity and slant of the PTP (proprosecution vs. prodefense), the persistence of PTP effects over time, and whether the PTP effects demonstrated in research laboratories would also occur in more naturalistic settings (generalizability). Using a shadow jury paradigm we examined these effects using a real trial as stimulus. Mock jurors included 115 jury-eligible community members who were naturally exposed to PTP in the venue in which the actual case occurred and 156 who were experimentally exposed. We found mock jurors were significantly influenced by both the slant and quantity of the PTP to which they were exposed, such that those exposed to proprosecution or prodefense PTP tended to render decision in support of the party favored in the PTP, and those exposed to greater quantities of PTP tended to be more biased. Additionally, PTP effects persisted throughout the course of the trial and continued to influence judgments in face of trial evidence and arguments. A finding of no significant difference in the effect of exposure slant between the naturally exposed and experimentally exposed samples provides support for the external validity of laboratory studies examining PTP effects. This research helps address some of the concerns raised by courts with regard to the durability of PTP effects and the application of laboratory findings to real world settings. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  10. A nontransferring dry adhesive with hierarchical polymer nanohairs.

    PubMed

    Jeong, Hoon Eui; Lee, Jin-Kwan; Kim, Hong Nam; Moon, Sang Heup; Suh, Kahp Y

    2009-04-07

    We present a simple yet robust method for fabricating angled, hierarchically patterned high-aspect-ratio polymer nanohairs to generate directionally sensitive dry adhesives. The slanted polymeric nanostructures were molded from an etched polySi substrate containing slanted nanoholes. An angled etching technique was developed to fabricate slanted nanoholes with flat tips by inserting an etch-stop layer of silicon dioxide. This unique etching method was equipped with a Faraday cage system to control the ion-incident angles in the conventional plasma etching system. The polymeric nanohairs were fabricated with tailored leaning angles, sizes, tip shapes, and hierarchical structures. As a result of controlled leaning angle and bulged flat top of the nanohairs, the replicated, slanted nanohairs showed excellent directional adhesion, exhibiting strong shear attachment (approximately 26 N/cm(2) in maximum) in the angled direction and easy detachment (approximately 2.2 N/cm(2)) in the opposite direction, with a hysteresis value of approximately 10. In addition to single scale nanohairs, monolithic, micro-nanoscale combined hierarchical hairs were also fabricated by using a 2-step UV-assisted molding technique. These hierarchical nanoscale patterns maintained their adhesive force even on a rough surface (roughness <20 microm) because of an increase in the contact area by the enhanced height of hierarchy, whereas simple nanohairs lost their adhesion strength. To demonstrate the potential applications of the adhesive patch, the dry adhesive was used to transport a large-area glass (47.5 x 37.5 cm(2), second-generation TFT-LCD glass), which could replace the current electrostatic transport/holding system with further optimization.

  11. A nontransferring dry adhesive with hierarchical polymer nanohairs

    PubMed Central

    Jeong, Hoon Eui; Lee, Jin-Kwan; Kim, Hong Nam; Moon, Sang Heup; Suh, Kahp Y.

    2009-01-01

    We present a simple yet robust method for fabricating angled, hierarchically patterned high-aspect-ratio polymer nanohairs to generate directionally sensitive dry adhesives. The slanted polymeric nanostructures were molded from an etched polySi substrate containing slanted nanoholes. An angled etching technique was developed to fabricate slanted nanoholes with flat tips by inserting an etch-stop layer of silicon dioxide. This unique etching method was equipped with a Faraday cage system to control the ion-incident angles in the conventional plasma etching system. The polymeric nanohairs were fabricated with tailored leaning angles, sizes, tip shapes, and hierarchical structures. As a result of controlled leaning angle and bulged flat top of the nanohairs, the replicated, slanted nanohairs showed excellent directional adhesion, exhibiting strong shear attachment (≈26 N/cm2 in maximum) in the angled direction and easy detachment (≈2.2 N/cm2) in the opposite direction, with a hysteresis value of ≈10. In addition to single scale nanohairs, monolithic, micro-nanoscale combined hierarchical hairs were also fabricated by using a 2-step UV-assisted molding technique. These hierarchical nanoscale patterns maintained their adhesive force even on a rough surface (roughness <20 μm) because of an increase in the contact area by the enhanced height of hierarchy, whereas simple nanohairs lost their adhesion strength. To demonstrate the potential applications of the adhesive patch, the dry adhesive was used to transport a large-area glass (47.5 × 37.5 cm2, second-generation TFT-LCD glass), which could replace the current electrostatic transport/holding system with further optimization. PMID:19304801

  12. Intensity Mapping of Hα, Hβ, [OII], and [OIII] Lines at z < 5

    NASA Astrophysics Data System (ADS)

    Gong, Yan; Cooray, Asantha; Silva, Marta B.; Zemcov, Michael; Feng, Chang; Santos, Mario G.; Dore, Olivier; Chen, Xuelei

    2017-02-01

    Intensity mapping is becoming a useful tool to study the large-scale structure of the universe through spatial variations in the integrated emission from galaxies and the intergalactic medium. We study intensity mapping of the {{H}}α 6563 \\mathringA , [O III] 5007 Å, [O II] 3727 Å, and {{H}}β 4861 \\mathringA lines at 0.8≤slant z≤slant 5.2. The mean intensities of these four emission lines are estimated using the observed luminosity functions (LFs), cosmological simulations, and the star formation rate density (SFRD) derived from observations at z≲ 5. We calculate the intensity power spectra and consider the foreground contamination of other lines at lower redshifts. We use the proposed NASA small explorer SPHEREx (the Spectro-Photometer for the History of the universe, Epoch of Reionization, and Ices Explorer) as a case study for the detectability of the intensity power spectra of the four emission lines. We also investigate the cross-correlation with the 21 cm line probed by the Canadian Hydrogen Intensity Mapping Experiment (CHIME), Tianlai experiment and the Square Kilometer Array (SKA) at 0.8≤slant z≤slant 2.4. We find both the auto and cross power spectra can be well measured for the Hα, [O III] and [O II] lines at z≲ 3, while it is more challenging for the Hβ line. Finally, we estimate the constraint on the SFRD from intensity mapping, and find we can reach an accuracy higher than 7% at z≲ 4, which is better than with the usual method of measurements using the LFs of galaxies.

  13. Tropospheric wet refractivity tomography using multiplicative algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Xiaoying, Wang; Ziqiang, Dai; Enhong, Zhang; Fuyang, K. E.; Yunchang, Cao; Lianchun, Song

    2014-01-01

    Algebraic reconstruction techniques (ART) have been successfully used to reconstruct the total electron content (TEC) of the ionosphere and in recent years be tentatively used in tropospheric wet refractivity and water vapor tomography in the ground-based GNSS technology. The previous research on ART used in tropospheric water vapor tomography focused on the convergence and relaxation parameters for various algebraic reconstruction techniques and rarely discussed the impact of Gaussian constraints and initial field on the iteration results. The existing accuracy evaluation parameters calculated from slant wet delay can only evaluate the resultant precision of the voxels penetrated by slant paths and cannot evaluate that of the voxels not penetrated by any slant path. The paper proposes two new statistical parameters Bias and RMS, calculated from wet refractivity of the total voxels, to improve the deficiencies of existing evaluation parameters and then discusses the effect of the Gaussian constraints and initial field on the convergence and tomography results in multiplicative algebraic reconstruction technique (MART) to reconstruct the 4D tropospheric wet refractivity field using simulation method.

  14. 2 kV slanted tri-gate GaN-on-Si Schottky barrier diodes with ultra-low leakage current

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Matioli, Elison

    2018-01-01

    This letter reports lateral GaN-on-Si power Schottky barrier diodes (SBDs) with unprecedented voltage-blocking performance by integrating 3-dimensionally a hybrid of tri-anode and slanted tri-gate architectures in their anode. The hybrid tri-anode pins the voltage drop at the Schottky junction (VSCH), despite a large applied reverse bias, fixing the reverse leakage current (IR) of the SBD. Such architecture led to an ultra-low IR of 51 ± 5.9 nA/mm at -1000 V, in addition to a small turn-on voltage (VON) of 0.61 ± 0.03 V. The slanted tri-gate effectively distributes the electric field in OFF state, leading to a remarkably high breakdown voltage (VBR) of -2000 V at 1 μA/mm, constituting a significant breakthrough from existing technologies. The approach pursued in this work reduces the IR and increases the VBR without sacrificing the VON, which provides a technology for high-voltage SBDs, and unveils the unique advantage of tri-gates for advanced power applications.

  15. A microfluidic separation platform using an array of slanted ramps

    NASA Astrophysics Data System (ADS)

    Risbud, Sumedh; Bernate, Jorge; Drazer, German

    2013-03-01

    The separation of the different components of a sample is a crucial step in many micro- and nano-fluidic applications, including the detection of infections, the capture of circulating tumor cells, the isolation of proteins, RNA and DNA, to mention but a few. Vector chromatography, in which different species migrate in different directions in a planar microfluidic device thus achieving spatial as well as temporal resolution, offers the promise of high selectivity along with high throughput. In this work, we present a microfluidic vector chromatography platform consisting of slanted ramps in a microfluidic channel for the separation of suspended particles. We construct these ramps using inclined UV lithography, such that the inclined portion of the ramps is upstream. We show that particles of different size displace laterally to a different extent when driven by a flow field over a slanted ramp. The flow close to the ramp reorients along the ramp, causing the size-dependent deflection of the particles. The cumulative effect of an array of these ramps would cause particles of different size to migrate in different directions, thus allowing their passive and continuous separation.

  16. Boundedness of the solution of a higher-dimensional parabolic-ODE-parabolic chemotaxis-haptotaxis model with generalized logistic source

    NASA Astrophysics Data System (ADS)

    Zheng, Jiashan

    2017-05-01

    This paper deals with a quasilinear chemotaxis-haptotaxis system with generalized logistic source {ut=∇ṡ(ϕ(u)∇u)-∇ṡ(u∇v)-∇ṡ(u∇w)+u(1-ur-1-w),vt=Δv-v+u,wt=-vw, under homogeneous Neumann boundary conditions in a smooth bounded domain {{{R}}N}(N≥slant 3) , with parameter r  >  1, where the given function φ (u) is the nonlinear diffusion. Besides appropriate smoothness assumptions, in this paper it is only required that φ (u)≥slant {{C}φ}(u+1){{}m-1} for all u≥slant 0 with some {{C}φ}>0 and some m{>2-2N if 11+(N+2-2r)+N+2 if N+22⩾r⩾N+2N,⩾1 if r>N+22. It is shown that then for all reasonably regular initial data, a corresponding initial-boundary value problem for (0.1) possesses a unique global classical solution that is uniformly bounded in Ω × (0,∞ ) .

  17. Boundedness and exponential convergence in a chemotaxis model for tumor invasion

    NASA Astrophysics Data System (ADS)

    Jin, Hai-Yang; Xiang, Tian

    2016-12-01

    We revisit the following chemotaxis system modeling tumor invasion {ut=Δu-∇ṡ(u∇v),x∈Ω,t>0,vt=Δv+wz,x∈Ω,t>0,wt=-wz,x∈Ω,t>0,zt=Δz-z+u,x∈Ω,t>0, in a smooth bounded domain Ω \\subset {{{R}}n}(n≥slant 1) with homogeneous Neumann boundary and initial conditions. This model was recently proposed by Fujie et al (2014 Adv. Math. Sci. Appl. 24 67-84) as a model for tumor invasion with the role of extracellular matrix incorporated, and was analyzed later by Fujie et al (2016 Discrete Contin. Dyn. Syst. 36 151-69), showing the uniform boundedness and convergence for n≤slant 3 . In this work, we first show that the {{L}∞} -boundedness of the system can be reduced to the boundedness of \\parallel u(\\centerdot,t){{\\parallel}{{L\\frac{n{4}+ɛ}}(Ω )}} for some ɛ >0 alone, and then, for n≥slant 4 , if the initial data \\parallel {{u}0}{{\\parallel}{{L\\frac{n{4}}}}} , \\parallel {{z}0}{{\\parallel}{{L\\frac{n{2}}}}} and \\parallel \

  18. A Comparison of Cosmological Parameters Determined from CMB Temperature Power Spectra from the South Pole Telescope and the Planck Satellite

    NASA Astrophysics Data System (ADS)

    Aylor, K.; Hou, Z.; Knox, L.; Story, K. T.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H.-M.; Chown, R.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Everett, W. B.; George, E. M.; Halverson, N. W.; Harrington, N. L.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Keisler, R.; Lee, A. T.; Leitch, E. M.; Luong-Van, D.; Marrone, D. P.; McMahon, J. J.; Meyer, S. S.; Millea, M.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Omori, Y.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Staniszewski, Z.; Stark, A. A.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.

    2017-11-01

    The Planck cosmic microwave background temperature data are best fit with a ΛCDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540 {\\deg }2 SPT-SZ survey offers measurements on sub-degree angular scales (multipoles 650≤slant {\\ell }≤slant 2500) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing ΛCDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipole range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n s and {A}s{e}-2τ . We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of ΛCDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at {\\ell }> 2000.

  19. Topographic mapping using a monopulse SAR system

    NASA Technical Reports Server (NTRS)

    Zink, M.; Oettl, H.; Freeman, A.

    1993-01-01

    Terrain height variations in mountainous areas cause two problems in the radiometric correction of SAR images: the first being that the wrong elevation angle may be used in correcting for the radiometric variation of the antenna pattern; the second that the local incidence angle used in correcting the projection of the pixel area from slant range to ground range coordinates may vary from that given by the flat earth assumption. We propose a novel design of a SAR system which exploits the monopulse principle to determine the elevation angle and thus the height at the different parts of the image. The key element of such a phase monopulse system is an antenna, which can be divided into a lower and upper half in elevation using a monopulse comparator. In addition to the usual sum pattern, the elevation difference pattern can be generated by a -pi phase shift on one half of the antenna. From the ratios of images radiometrically modulated by the difference and sum antenna pattern in cross-track direction, we can derive the appropriate elevation angle at any point in the image. Together with the slant range we can calculate the height of the platform above this point using information on the antenna pointing and the platform attitude. This operation, repeated at many locations throughout the image, allows us to build up a topographic map of the height of the aircraft above each location. Inversion of this map, using the precisely determined aircraft altitude and the accurate flight path, leads to the actual topography of the imaged surface. The precise elevation of one point in the image could also be used to convert the height map to a topographic map. In this paper, we present design considerations for a corresponding airborne SAR system in X-Band and give estimates of the error due to system noise and azimuth ambiguities as well as the expected performance and precision in topographic mapping.

  20. Electronic structure of Mo1-x Re x alloys studied through resonant photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Sundar, Shyam; Banik, Soma; Sharath Chandra, L. S.; Chattopadhyay, M. K.; Ganguli, Tapas; Lodha, G. S.; Pandey, Sudhir K.; Phase, D. M.; Roy, S. B.

    2016-08-01

    We studied the electronic structure of Mo-rich Mo1-x Re x alloys (0≤slant x≤slant 0.4 ) using valence band photoemission spectroscopy in the photon energy range 23-70 eV and density of states calculations. Comparison of the photoemission spectra with the density of states calculations suggests that, with respect to the Fermi level E F, the d states lie mostly in the binding energy range 0 to  -6 eV, whereas s states lie in the binding energy range  -4 to  -10 eV. We observed two resonances in the photoemission spectra of each sample, one at about 35 eV photon energy and the other at about 45 eV photon energy. Our analysis suggests that the resonance at 35 eV photon energy is related to the Mo 4p-5s transition and the resonance at 45 eV photon energy is related to the contribution from both the Mo 4p-4d transition (threshold: 42 eV) and the Re 5p-5d transition (threshold: 46 eV). In the constant initial state plot, the resonance at 35 eV incident photon energy for binding energy features in the range E F (BE  =  0) to  -5 eV becomes progressively less prominent with increasing Re concentration x and vanishes for x  >  0.2. The difference plots obtained by subtracting the valence band photoemission spectrum of Mo from that of Mo1-x Re x alloys, measured at 47 eV photon energy, reveal that the Re d-like states appear near E F when Re is alloyed with Mo. These results indicate that interband s-d interaction, which is weak in Mo, increases with increasing x and influences the nature of the superconductivity in alloys with higher x.

  1. Improved Diffuse Foreground Subtraction with the ILC Method: CMB Map and Angular Power Spectrum Using Planck and WMAP Observations

    NASA Astrophysics Data System (ADS)

    Sudevan, Vipin; Aluri, Pavan K.; Yadav, Sarvesh Kumar; Saha, Rajib; Souradeep, Tarun

    2017-06-01

    We report an improved technique for diffuse foreground minimization from Cosmic Microwave Background (CMB) maps using a new multiphase iterative harmonic space internal-linear-combination (HILC) approach. Our method nullifies a foreground leakage that was present in the old and usual iterative HILC method. In phase 1 of the multiphase technique, we obtain an initial cleaned map using the single iteration HILC approach over the desired portion of the sky. In phase 2, we obtain a final CMB map using the iterative HILC approach; however, now, to nullify the leakage, during each iteration, some of the regions of the sky that are not being cleaned in the current iteration are replaced by the corresponding cleaned portions of the phase 1 map. We bring all input frequency maps to a common and maximum possible beam and pixel resolution at the beginning of the analysis, which significantly reduces data redundancy, memory usage, and computational cost, and avoids, during the HILC weight calculation, the deconvolution of partial sky harmonic coefficients by the azimuthally symmetric beam and pixel window functions, which in a strict mathematical sense, are not well defined. Using WMAP 9 year and Planck 2015 frequency maps, we obtain foreground-cleaned CMB maps and a CMB angular power spectrum for the multipole range 2≤slant {\\ell }≤slant 2500. Our power spectrum matches the published Planck results with some differences at different multipole ranges. We validate our method by performing Monte Carlo simulations. Finally, we show that the weights for HILC foreground minimization have the intrinsic characteristic that they also tend to produce a statistically isotropic CMB map.

  2. New Low-mass Stars in the 25 Orionis Stellar Group and Orion OB1a Sub-association from SDSS-III/BOSS Spectroscopy

    NASA Astrophysics Data System (ADS)

    Suárez, Genaro; Downes, Juan José; Román-Zúñiga, Carlos; Covey, Kevin R.; Tapia, Mauricio; Hernández, Jesús; Petr-Gotzens, Monika G.; Stassun, Keivan G.; Briceño, César

    2017-07-01

    The Orion OB1a sub-association is a rich low-mass star (LMS) region. Previous spectroscopic studies have confirmed 160 LMSs in the 25 Orionis stellar group (25 Ori), which is the most prominent overdensity of Orion OB1a. Nonetheless, the current census of the 25 Ori members is estimated to be lower than 50% complete, leaving a large number of members to be still confirmed. We retrieved 172 low-resolution stellar spectra in Orion OB1a observed as ancillary science in the SDSS-III/BOSS survey, for which we classified their spectral types and determined physical parameters. To determine memberships, we analyzed the {{{H}}}α emission, Li I λ6708 absorption, and Na I λλ8183, 8195 absorption as youth indicators in stars classified as M type. We report 50 new LMSs spread across the 25 Orionis, ASCC 18, and ASCC 20 stellar groups with spectral types from M0 to M6, corresponding to a mass range of 0.10≤slant m/{M}⊙ ≤slant 0.58. This represents an increase of 50% in the number of known LMSs in the area and a net increase of 20% in the number of 25 Ori members in this mass range. Using parallax values from the Gaia DR1 catalog, we estimated the distances to these three stellar groups and found that they are all co-distant, at 338 ± 66 pc. We analyzed the spectral energy distributions of these LMSs and classified their disks into evolutionary classes. Using H-R diagrams, we found a suggestion that 25 Ori could be slightly older than the other two observed groups in Orion OB1a.

  3. The slant path atmospheric refraction calibrator - An instrument to measure the microwave propagation delays induced by atmospheric water vapor

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Bender, Peter L.

    1992-01-01

    The water vapor-induced propagation delay experienced by a radio signal traversing the atmosphere is characterized by the Slant Path Atmospheric Refraction Calibrator (SPARC), which measures the difference in the travel times between an optical and a microwave signal propagating along the same atmospheric path with an accuracy of 15 picosec or better. Attention is given to the theoretical and experimental issues involved in measuring the delay induced by water vapor; SPARC measurements conducted along a 13.35-km ground-based path are presented, illustrating the instrument's stability, precision, and accuracy.

  4. Millimeter-wave studies

    NASA Technical Reports Server (NTRS)

    Allen, Kenneth C.

    1988-01-01

    Progress on millimeter-wave propagation experiments in Hawaii is reported. A short path for measuring attenuation in rain at 9.6, 28.8, 57.6, and 96.1 GHz is in operation. A slant path from Hilo to the top of Mauna Kea is scheduled. On this path, scattering from rain and clouds that may cause interference for satellites closely spaced in geosynchronous orbit will be measured at the same frequencies at 28.8 and 96.1 GHz. In addition the full transmission matrix will be measured at the same frequencies on the slant path. The technique and equipment used to measure the transmission matrix are described.

  5. Estimation of 3D shape from image orientations.

    PubMed

    Fleming, Roland W; Holtmann-Rice, Daniel; Bülthoff, Heinrich H

    2011-12-20

    One of the main functions of vision is to estimate the 3D shape of objects in our environment. Many different visual cues, such as stereopsis, motion parallax, and shading, are thought to be involved. One important cue that remains poorly understood comes from surface texture markings. When a textured surface is slanted in 3D relative to the observer, the surface patterns appear compressed in the retinal image, providing potentially important information about 3D shape. What is not known, however, is how the brain actually measures this information from the retinal image. Here, we explain how the key information could be extracted by populations of cells tuned to different orientations and spatial frequencies, like those found in the primary visual cortex. To test this theory, we created stimuli that selectively stimulate such cell populations, by "smearing" (filtering) images of 2D random noise into specific oriented patterns. We find that the resulting patterns appear vividly 3D, and that increasing the strength of the orientation signals progressively increases the sense of 3D shape, even though the filtering we apply is physically inconsistent with what would occur with a real object. This finding suggests we have isolated key mechanisms used by the brain to estimate shape from texture. Crucially, we also find that adapting the visual system's orientation detectors to orthogonal patterns causes unoriented random noise to look like a specific 3D shape. Together these findings demonstrate a crucial role of orientation detectors in the perception of 3D shape.

  6. Detection of an Optical Counterpart to the ALFALFA Ultra-compact High-velocity Cloud AGC 249525

    NASA Astrophysics Data System (ADS)

    Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth A. K.; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.

    2017-03-01

    We report on the detection at >98% confidence of an optical counterpart to AGC 249525, an ultra-compact high-velocity cloud (UCHVC) discovered by the Arecibo Legacy Fast ALFA survey blind neutral hydrogen survey. UCHVCs are compact, isolated H I clouds with properties consistent with their being nearby low-mass galaxies, but without identified counterparts in extant optical surveys. Analysis of the resolved stellar sources in deep g- and I-band imaging from the WIYN pODI camera reveals a clustering of possible red giant branch stars associated with AGC 249525 at a distance of 1.64 ± 0.45 Mpc. Matching our optical detection with the H I synthesis map of AGC 249525 from Adams et al. shows that the stellar overdensity is exactly coincident with the highest-density H I contour from that study. Combining our optical photometry and the H I properties of this object yields an absolute magnitude of -7.1≤slant {M}V≤slant -4.5, a stellar mass between 2.2+/- 0.6× {10}4 {M}⊙ and 3.6+/- 1.0× {10}5 {M}⊙ , and an H I to stellar mass ratio between 9 and 144. This object has stellar properties within the observed range of gas-poor ultra-faint dwarfs in the Local Group, but is gas-dominated.

  7. Slant path range gated imaging of static and moving targets

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Elmqvist, Magnus; Karlsson, Kjell; Gustafsson, Ove; Chevalier, Tomas

    2012-06-01

    This paper will report experiments and analysis of slant path imaging using 1.5 μm and 0.8 μm gated imaging. The investigation is a follow up on the measurement reported last year at the laser radar conference at SPIE Orlando. The sensor, a SWIR camera was collecting both passive and active images along a 2 km long path over an airfield. The sensor was elevated by a lift in steps from 1.6-13.5 meters. Targets were resolution charts and also human targets. The human target was holding various items and also performing certain tasks some of high of relevance in defence and security. One of the main purposes with this investigation was to compare the recognition of these human targets and their activities with the resolution information obtained from conventional resolution charts. The data collection of human targets was also made from out roof top laboratory at about 13 m height above ground. The turbulence was measured along the path with anemometers and scintillometers. The camera was collecting both passive and active images in the SWIR region. We also included the Obzerv camera working at 0.8 μm in some tests. The paper will present images for both passive and active modes obtained at different elevations and discuss the results from both technical and system perspectives.

  8. Remnant radio-loud AGN in the Herschel-ATLAS field

    NASA Astrophysics Data System (ADS)

    Mahatma, V. H.; Hardcastle, M. J.; Williams, W. L.; Brienza, M.; Brüggen, M.; Croston, J. H.; Gurkan, G.; Harwood, J. J.; Kunert-Bajraszewska, M.; Morganti, R.; Röttgering, H. J. A.; Shimwell, T. W.; Tasse, C.

    2018-04-01

    Only a small fraction of observed active galactic nuclei (AGN) display large-scale radio emission associated with jets, yet these radio-loud AGN have become increasingly important in models of galaxy evolution. In determining the dynamics and energetics of the radio sources over cosmic time, a key question concerns what happens when their jets switch off. The resulting `remnant' radio-loud AGN have been surprisingly evasive in past radio surveys, and therefore statistical information on the population of radio-loud AGN in their dying phase is limited. In this paper, with the recent developments of Low-Frequency Array (LOFAR) and the Very Large Array, we are able to provide a systematically selected sample of remnant radio-loud AGN in the Herschel-ATLAS field. Using a simple core-detection method, we constrain the upper limit on the fraction of remnants in our radio-loud AGN sample to 9 per cent, implying that the extended lobe emission fades rapidly once the core/jets turn off. We also find that our remnant sample has a wide range of spectral indices (-1.5≤slant α ^{1400}_{150}≤slant -0.5), confirming that the lobes of some remnants may possess flat spectra at low frequencies just as active sources do. We suggest that, even with the unprecedented sensitivity of LOFAR, our sample may still only contain the youngest of the remnant population.

  9. Assessment of tropospheric delay mapping function models in Egypt: Using PTD database model

    NASA Astrophysics Data System (ADS)

    Abdelfatah, M. A.; Mousa, Ashraf E.; El-Fiky, Gamal S.

    2018-06-01

    For space geodetic measurements, estimates of tropospheric delays are highly correlated with site coordinates and receiver clock biases. Thus, it is important to use the most accurate models for the tropospheric delay to reduce errors in the estimates of the other parameters. Both the zenith delay value and mapping function should be assigned correctly to reduce such errors. Several mapping function models can treat the troposphere slant delay. The recent models were not evaluated for the Egyptian local climate conditions. An assessment of these models is needed to choose the most suitable one. The goal of this paper is to test the quality of global mapping function which provides high consistency with precise troposphere delay (PTD) mapping functions. The PTD model is derived from radiosonde data using ray tracing, which consider in this paper as true value. The PTD mapping functions were compared, with three recent total mapping functions model and another three separate dry and wet mapping function model. The results of the research indicate that models are very close up to zenith angle 80°. Saastamoinen and 1/cos z model are behind accuracy. Niell model is better than VMF model. The model of Black and Eisner is a good model. The results also indicate that the geometric range error has insignificant effect on slant delay and the fluctuation of azimuth anti-symmetric is about 1%.

  10. Physical Properties of Sub-galactic Clumps at 0.5 ≤ Z ≤ 1.5 in the UVUDF

    NASA Astrophysics Data System (ADS)

    Soto, Emmaris; de Mello, Duilia F.; Rafelski, Marc; Gardner, Jonathan P.; Teplitz, Harry I.; Koekemoer, Anton M.; Ravindranath, Swara; Grogin, Norman A.; Scarlata, Claudia; Kurczynski, Peter; Gawiser, Eric

    2017-03-01

    We present an investigation of clumpy galaxies in the Hubble Ultra Deep Field at 0.5≤slant z≤slant 1.5 in the rest-frame far-ultraviolet (FUV) using Hubble Space Telescope Wide Field Camera 3 broadband imaging in F225W, F275W, and F336W. An analysis of 1404 galaxies yields 209 galaxies that host 403 kpc scale clumps. These host galaxies appear to be typical star-forming galaxies, with an average of 2 clumps per galaxy and reaching a maximum of 8 clumps. We measure the photometry of the clumps and determine the mass, age, and star formation rates (SFR) using the spectral energy distribution fitting code FAST. We find that clumps make an average contribution of 19% to the total rest-frame FUV flux of their host galaxy. Individually, clumps contribute a median of 5% to the host galaxy SFR and an average of ˜4% to the host galaxy mass, with total clump contributions to the host galaxy stellar mass ranging widely from lower than 1% up to 93%. Clumps in the outskirts of galaxies are typically younger, with higher SFRs, than clumps in the inner regions. The results are consistent with clump migration theories in which clumps form through violent gravitational instabilities in gas-rich turbulent disks, eventually migrate toward the center of the galaxies, and coalesce into the bulge.

  11. Recent advances in a linear micromirror array for high-resolution projection

    NASA Astrophysics Data System (ADS)

    Picard, Francis; Doucet, Michel; Niall, Keith K.; Larouche, Carl; Savard, Maxime; Crisan, Silviu; Thibault, Simon; Jerominek, Hubert

    2004-05-01

    The visual displays of contemporary military flight simulators lack adequate definition to represent scenes in basic fast-jet fighter tasks. For example, air-to-air and air-to-ground targets are not projected with sufficient contrast and resolution for a pilot to perceive aspect, aspect rate and object detail at real world slant ranges. Simulator display geometries require the development of ultra-high resolution projectors with greater than 20 megapixel resolution at 60 Hz frame rate. A new micromirror device has been developed to address this requirement; it is able to modulate light intensity in an analog fashion with switching times shorter than 5 μs. When combined with a scanner, a laser and Schlieren optics, a linear array of these flexible micromirrors can display images composed of thousands of lines at a frame rate of 60 Hz. Recent results related to evaluation of this technology for high resolution projection are presented. Alternate operation modes for light modulation with flexible micromirrors are proposed. The related importance of controlling the residual micromirror curvature is discussed and results of experiments investigating the use of the deposition pressure to achieve such control are reported. Moreover, activities aiming at minimizing the micromirror response time and, so doing, maximizing the number of image columns per image frame are discussed. Finally, contrast measurement and estimate of the contrast limit achievable with the flexible micromirror technology are presented. All reported activities support the development of a fully addressable 2000-element micromirror array.

  12. A new mutant of Arabidopsis disturbed in its roots, right-handed slanting, and gravitropism defines a gene that encodes a heat-shock factor.

    PubMed

    Fortunati, A; Piconese, S; Tassone, P; Ferrari, S; Migliaccio, F

    2008-01-01

    A new mutant of Arabidopsis named rha1 is characterized and the gene involved cloned. In roots, the mutant shows minimal right-handed slanting, reduced gravitropic response, notable resistance to 2,4-D, but scarce resistance to IAA and NAA. The roots also show a clear resistance to the auxin transport inhibitors TIBA and NPA, and to ethylene. Other characteristics are a reduced number of lateral roots and reduced size of shoot and root in the seedlings. The gene, cloned through TAIL-PCR, was found to be a heat-shock factor that maps on chromosome 5, close to and above the RFLP marker m61. The rha1 structure, mRNA, and translation product are reported. Since, so far, no other gravitropic mutant has been described as mutated in a heat-shock factor, rha1 belongs to a new group of mutants disturbed in slanting, gravitropism, and auxin physiology. As shown through the RT-PCR analyses of its expression, the gene retains the function connected with heat shock. If the characteristics connected with auxin physiology are considered, however, it is also likely that the gene, as a transcription factor, could be involved in root circumnutation, gravitropic response, and hormonal control of differentiation. Since GUS staining under the gene promoter was localized mainly in the mature tissues, rha1 does not seem to be involved in the first steps of gravitropism, but is rather related to the general response to auxin. The alterations in slanting (mainly due to reduced chiral circumnutation) and gravitropism lead to the supposition that the two processes may have, at least in part, common origins.

  13. Vacuum polarization and classical self-action near higher-dimensional defects

    NASA Astrophysics Data System (ADS)

    Grats, Yuri V.; Spirin, Pavel

    2017-02-01

    We analyze the gravity-induced effects associated with a massless scalar field in a higher-dimensional spacetime being the tensor product of (d-n)-dimensional Minkowski space and n-dimensional spherically/cylindrically symmetric space with a solid/planar angle deficit. These spacetimes are considered as simple models for a multidimensional global monopole (if n≥slant 3) or cosmic string (if n=2) with (d-n-1) flat extra dimensions. Thus, we refer to them as conical backgrounds. In terms of the angular-deficit value, we derive the perturbative expression for the scalar Green function, valid for any d≥slant 3 and 2≤slant n≤slant d-1, and compute it to the leading order. With the use of this Green function we compute the renormalized vacuum expectation value of the field square {< φ {2}(x)rangle }_{ren} and the renormalized vacuum averaged of the scalar-field energy-momentum tensor {< T_{M N}(x)rangle }_{ren} for arbitrary d and n from the interval mentioned above and arbitrary coupling constant to the curvature ξ . In particular, we revisit the computation of the vacuum polarization effects for a non-minimally coupled massless scalar field in the spacetime of a straight cosmic string. The same Green function enables to consider the old purely classical problem of the gravity-induced self-action of a classical point-like scalar or electric charge, placed at rest at some fixed point of the space under consideration. To deal with divergences, which appear in consideration of the two problems, we apply the dimensional-regularization technique, widely used in quantum field theory. The explicit dependence of the results upon the dimensionalities of both the bulk and conical submanifold is discussed.

  14. High-Resolution Spectroscopic Study of Extremely Metal-Poor Star Candidates from the SkyMapper Survey

    NASA Astrophysics Data System (ADS)

    Jacobson, Heather R.; Keller, Stefan; Frebel, Anna; Casey, Andrew R.; Asplund, Martin; Bessell, Michael S.; Da Costa, Gary S.; Lind, Karin; Marino, Anna F.; Norris, John E.; Peña, José M.; Schmidt, Brian P.; Tisserand, Patrick; Walsh, Jennifer M.; Yong, David; Yu, Qinsi

    2015-07-01

    The SkyMapper Southern Sky Survey is carrying out a search for the most metal-poor stars in the Galaxy. It identifies candidates by way of its unique filter set which allows for estimation of stellar atmospheric parameters. The set includes a narrow filter centered on the Ca ii K 3933 Å line, enabling a robust estimate of stellar metallicity. Promising candidates are then confirmed with spectroscopy. We present the analysis of Magellan Inamori Kyocera Echelle high-resolution spectroscopy of 122 metal-poor stars found by SkyMapper in the first two years of commissioning observations. Forty-one stars have [{Fe}/{{H}}]≤slant -3.0. Nine have [{Fe}/{{H}}]≤slant -3.5, with three at [{Fe}/{{H}}]∼ -4. A 1D LTE abundance analysis of the elements Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, Ba, and Eu shows these stars have [X/Fe] ratios typical of other halo stars. One star with low [X/Fe] values appears to be “Fe-enhanced,” while another star has an extremely large [Sr/Ba] ratio: \\gt 2. Only one other star is known to have a comparable value. Seven stars are “CEMP-no” stars ([{{C}}/{Fe}]\\gt 0.7, [{Ba}/{Fe}]\\lt 0). 21 stars exhibit mild r-process element enhancements (0.3≤slant [{Eu}/{Fe}]\\lt 1.0), while four stars have [{Eu}/{Fe}]≥slant 1.0. These results demonstrate the ability to identify extremely metal-poor stars from SkyMapper photometry, pointing to increased sample sizes and a better characterization of the metal-poor tail of the halo metallicity distribution function in the future. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  15. The natural statistics of blur

    PubMed Central

    Sprague, William W.; Cooper, Emily A.; Reissier, Sylvain; Yellapragada, Baladitya; Banks, Martin S.

    2016-01-01

    Blur from defocus can be both useful and detrimental for visual perception: It can be useful as a source of depth information and detrimental because it degrades image quality. We examined these aspects of blur by measuring the natural statistics of defocus blur across the visual field. Participants wore an eye-and-scene tracker that measured gaze direction, pupil diameter, and scene distances as they performed everyday tasks. We found that blur magnitude increases with increasing eccentricity. There is a vertical gradient in the distances that generate defocus blur: Blur below the fovea is generally due to scene points nearer than fixation; blur above the fovea is mostly due to points farther than fixation. There is no systematic horizontal gradient. Large blurs are generally caused by points farther rather than nearer than fixation. Consistent with the statistics, participants in a perceptual experiment perceived vertical blur gradients as slanted top-back whereas horizontal gradients were perceived equally as left-back and right-back. The tendency for people to see sharp as near and blurred as far is also consistent with the observed statistics. We calculated how many observations will be perceived as unsharp and found that perceptible blur is rare. Finally, we found that eye shape in ground-dwelling animals conforms to that required to put likely distances in best focus. PMID:27580043

  16. The GF-3 SAR Data Processor

    PubMed Central

    Han, Bing; Ding, Chibiao; Zhong, Lihua; Liu, Jiayin; Qiu, Xiaolan; Hu, Yuxin; Lei, Bin

    2018-01-01

    The Gaofen-3 (GF-3) data processor was developed as a workstation-based GF-3 synthetic aperture radar (SAR) data processing system. The processor consists of two vital subsystems of the GF-3 ground segment, which are referred to as data ingesting subsystem (DIS) and product generation subsystem (PGS). The primary purpose of DIS is to record and catalogue GF-3 raw data with a transferring format, and PGS is to produce slant range or geocoded imagery from the signal data. This paper presents a brief introduction of the GF-3 data processor, including descriptions of the system architecture, the processing algorithms and its output format. PMID:29534464

  17. Resonances at very low temperature for the reaction D2 + H

    NASA Astrophysics Data System (ADS)

    Simbotin, I.; Côté, R.

    2017-05-01

    We present numerical results for rate coefficients of reaction and vibrational quenching in the collision of H with {{{D}}}2(v,j) at cold and ultracold temperatures. We explore both ortho-D{}2(j=0) and para-D{}2(j=1) for several initial vibrational states (v≤slant 5), and find resonant structures in the energy range 0.01-10 K, which are sensitive to the initial rovibrational state (v, j). We compare the reaction rates for D2 + H with our previously obtained results for the isotopologue reaction H2 + D, and discuss the implications of our detailed study of this benchmark system for ultracold chemistry.

  18. Prediction of slant path rain attenuation statistics at various locations

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.

    1977-01-01

    The paper describes a method for predicting slant path attenuation statistics at arbitrary locations for variable frequencies and path elevation angles. The method involves the use of median reflectivity factor-height profiles measured with radar as well as the use of long-term point rain rate data and assumed or measured drop size distributions. The attenuation coefficient due to cloud liquid water in the presence of rain is also considered. Absolute probability fade distributions are compared for eight cases: Maryland (15 GHz), Texas (30 GHz), Slough, England (19 and 37 GHz), Fayetteville, North Carolina (13 and 18 GHz), and Cambridge, Massachusetts (13 and 18 GHz).

  19. Numerical radius and zero pattern of matrices

    NASA Astrophysics Data System (ADS)

    Nikiforov, Vladimir

    2008-01-01

    Let A be an n×n complex matrix and r be the maximum size of its principal submatrices with no off-diagonal zero entries. Suppose A has zero main diagonal and x is a unit n-vector. Then, letting ||A|| be the Frobenius norm of A, we show that2[less-than-or-equals, slant](1-1/2r-1/2n)||A||2. This inequality is tight within an additive term O(rn-2). If the matrix A is Hermitian, then2[less-than-or-equals, slant](1-1/r)||A||2. This inequality is sharp; moreover, it implies the Turán theorem for graphs.

  20. A method to measure the presampling MTF in digital radiography using Wiener deconvolution

    NASA Astrophysics Data System (ADS)

    Zhou, Zhongxing; Zhu, Qingzhen; Gao, Feng; Zhao, Huijuan; Zhang, Lixin; Li, Guohui

    2013-03-01

    We developed a novel method for determining the presampling modulation transfer function (MTF) of digital radiography systems from slanted edge images based on Wiener deconvolution. The degraded supersampled edge spread function (ESF) was obtained from simulated slanted edge images with known MTF in the presence of poisson noise, and its corresponding ideal ESF without degration was constructed according to its central edge position. To meet the requirements of the absolute integrable condition of Fourier transformation, the origianl ESFs were mirrored to construct the symmetric pattern of ESFs. Then based on Wiener deconvolution technique, the supersampled line spread function (LSF) could be acquired from the symmetric pattern of degraded supersampled ESFs in the presence of ideal symmetric ESFs and system noise. The MTF is then the normalized magnitude of the Fourier transform of the LSF. The determined MTF showed a strong agreement with the theoritical true MTF when appropriated Wiener parameter was chosen. The effects of Wiener parameter value and the width of square-like wave peak in symmetric ESFs were illustrated and discussed. In conclusion, an accurate and simple method to measure the presampling MTF was established using Wiener deconvolution technique according to slanted edge images.

  1. Lamplighter groups, de Brujin graphs, spider-web graphs and their spectra

    NASA Astrophysics Data System (ADS)

    Grigorchuk, R.; Leemann, P.-H.; Nagnibeda, T.

    2016-05-01

    We study the infinite family of spider-web graphs \\{{{ S }}k,N,M\\}, k≥slant 2, N≥slant 0 and M≥slant 1, initiated in the 50s in the context of network theory. It was later shown in physical literature that these graphs have remarkable percolation and spectral properties. We provide a mathematical explanation of these properties by putting the spider-web graphs in the context of group theory and algebraic graph theory. Namely, we realize them as tensor products of the well-known de Bruijn graphs \\{{{ B }}k,N\\} with cyclic graphs \\{{C}M\\} and show that these graphs are described by the action of the lamplighter group {{ L }}k={Z}/k{Z}\\wr {Z} on the infinite binary tree. Our main result is the identification of the infinite limit of \\{{{ S }}k,N,M\\}, as N,M\\to ∞ , with the Cayley graph of the lamplighter group {{ L }}k which, in turn, is one of the famous Diestel-Leader graphs {{DL}}k,k. As an application we compute the spectra of all spider-web graphs and show their convergence to the discrete spectral distribution associated with the Laplacian on the lamplighter group.

  2. Fiber optic probe having fibers with endfaces formed for improved coupling efficiency and method using same

    DOEpatents

    O`Rourke, P.E.; Livingston, R.R.

    1995-03-28

    A fiber optic probe is disclosed for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers. 3 figures.

  3. Fiber optic probe having fibers with endfaces formed for improved coupling efficiency and method using same

    DOEpatents

    O'Rourke, Patrick E.; Livingston, Ronald R.

    1995-01-01

    A fiber optic probe for detecting scattered light, with transmitting and receiving fibers having slanted ends and bundled together to form a bevel within the tip of the probe. The probe comprises a housing with a transparent window across its tip for protecting the transmitting and receiving fibers held therein. The endfaces of the fibers are slanted, by cutting, polishing and the like, so that they lie in a plane that is not perpendicular to the longitudinal axis of the respective fiber. The fibers are held in the tip of the probe using an epoxy and oriented so that lines normal to the slanted endfaces are divergent with respect to one another. The epoxy, which is positioned substantially between the transmitting and receiving fibers, is tapered so that the transmitting fiber, the epoxy and the receiving fiber form a bevel of not more than 20 degrees. The angled fiber endfaces cause directing of the light cones toward each other, resulting in improved light coupling efficiency. A light absorber, such as carbon black, is contained in the epoxy to reduce crosstalk between the transmitting and receiving fibers.

  4. Torso sizing ring construction for hard space suit

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.

    1986-01-01

    A hard suit for use in space or diving applications having an adjustable length torso covering that will fit a large variety of wearers is described. The torso covering comprises an upper section and a lower section which interconnect so that the covering will fit wearers with short torsos. One or more sizing rings may be inserted between the upper and lower sections to accommodate larger torso sizes as required. Since access of the astronaut to the torso covering is preferably through an opening in the back of the upper section (which is closed off by the backpack), the rings slant upward-forward from the lower edge of the opening. The lower edge of the upper covering section has a coupler which slants upward-forward from the lower edge of the back opening. The lower torso section has a similarly slanted coupler which may interfit with the upper section coupler to accommodate the smallest torso size. One or more sizing rings may be inserted between the coupler sections of the upper and lower torso sections to accommodate larger torsos. Each ring has an upper coupler which may interfit with the upper section coupler and a lower coupler which may interfit with the lower section coupler.

  5. Impacts of shape and height of upstream roof on airflow and pollutant dispersion inside an urban street canyon.

    PubMed

    Huang, Yuan-Dong; He, Wen-Rong; Kim, Chang-Nyung

    2015-02-01

    A two-dimensional numerical model for simulating flow and pollutant dispersion in an urban street canyon is firstly developed using the FLUENT code and then validated against the wind tunnel results. After this, the flow field and pollutant dispersion inside an urban street canyon with aspect ratio W/H = 1 are examined numerically considering five different shapes (vaulted, trapezoidal, slanted, upward wedged, and downward wedged roofs) as well as three different roof height to building height ratios (Z H /H = 1/6, 1/3, and 1/2) for the upstream building roof. The results obtained reveal that the shape and height of an upstream roof have significant influences on flow pattern and pollutant distribution in an urban canyon. A large single clockwise vortex is generated in the canyon for the vaulted upstream roof at Z H /H = 1/6, 1/3, and 1/2, the trapezoidal and downward wedged roofs at Z H /H = 1/6 and 1/3, and the slanted and upward wedged roofs at Z H /H = 1/6, while a main clockwise vortex and a secondary counterclockwise vortex are established for the trapezoidal and downward wedged roofs at Z H /H = 1/2 and the slanted and upward wedged roofs at Z H /H = 1/3 and 1/2. In the one-vortex flow regime, the clockwise vortex moves upward and grows in size with increasing upstream roof height for the vaulted, trapezoidal, and downward wedged roofs. In the two-vortex flow regime, the size and rotational velocity of both upper clockwise and lower counterclockwise vortices increase with the upstream roof height for the slanted and upward wedged roofs. At Z H /H = 1/6, the pollution levels in the canyon are close among all the upstream roof shapes studied. At Z H /H = 1/3, the pollution levels in the canyon for the upward wedged roof and slanted roof are much higher than those for the vaulted, trapezoidal, and downward wedged roofs. At Z H /H = 1/2, the lowest pollution level appears in the canyon for the vaulted upstream roof, while the highest pollution level occurs in the canyon for the upward wedged roof.

  6. Tree attenuation at 20 GHz: Foliage effects

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Goldhirsh, Julius

    1993-01-01

    Static tree attenuation measurements at 20 GHz (K-Band) on a 30 deg slant path through a mature Pecan tree with and without leaves showed median fades exceeding approximately 23 dB and 7 dB, respectively. The corresponding 1% probability fades were 43 dB and 25 dB. Previous 1.6 GHz (L-Band) measurements for the bare tree case showed fades larger than those at K-Band by 3.4 dB for the median and smaller by approximately 7 dB at the 1% probability. While the presence of foliage had only a small effect on fading at L-Band (approximately 1 dB additional for the median to 1% probability range), the attenuation increase was significant at K-Band, where it increased by about 17 dB over the same probability range.

  7. Tree attenuation at 20 GHz: Foliage effects

    NASA Astrophysics Data System (ADS)

    Vogel, Wolfhard J.; Goldhirsh, Julius

    1993-08-01

    Static tree attenuation measurements at 20 GHz (K-Band) on a 30 deg slant path through a mature Pecan tree with and without leaves showed median fades exceeding approximately 23 dB and 7 dB, respectively. The corresponding 1% probability fades were 43 dB and 25 dB. Previous 1.6 GHz (L-Band) measurements for the bare tree case showed fades larger than those at K-Band by 3.4 dB for the median and smaller by approximately 7 dB at the 1% probability. While the presence of foliage had only a small effect on fading at L-Band (approximately 1 dB additional for the median to 1% probability range), the attenuation increase was significant at K-Band, where it increased by about 17 dB over the same probability range.

  8. Formation of ultracold molecules induced by a high-power single-frequency fiber laser

    NASA Astrophysics Data System (ADS)

    Fernandes Passagem, Henry; Colín-Rodríguez, Ricardo; Ventura da Silva, Paulo Cesar; Bouloufa-Maafa, Nadia; Dulieu, Olivier; Marcassa, Luis Gustavo

    2017-02-01

    The influence of a high-power single-frequency fiber laser on the formation of ultracold 85Rb2 molecules is investigated as a function of its frequency (in the 1062-1070 nm range) in a magneto-optical trap. We find evidence for the formation of ground-state 85Rb2 molecules in low vibrational levels (v≤slant 20) with a maximal rate of 104 s-1, induced by short-range photoassociation by the fiber laser followed by spontaneous emission. When this laser is used to set up a dipole trap, we measure an atomic loss rate at a wavelength far from the PA resonances, only four times smaller than that observed at a PA resonance wavelength. This work may have important consequences for atom trapping using lasers around the conventional 1064 nm wavelength.

  9. The Case for Cryovolcanism on Saturns Moon Titan

    NASA Astrophysics Data System (ADS)

    Nelson, R. M.

    2009-04-01

    Two regions on the surface of Saturn's satellite Titan have been observed to change reflectance during the Cassini spacecraft's four-year, orbital tour of the Saturnian system. These changes were documented by Cassini's Visual and Infrared Mapping Spectrometer. Titan's atmosphere is opaque at visual wavelengths due to methane, but VIMS is able to image the surface through "windows" at infrared wavelengths where the methane is relatively transparent[1,2]. Cassini RADAR images show that at least one of these regions, Hotei Arcus (26S,78W), exhibits lobate "flow" forms, consistent with the morphology of volcanic terrain [3]. Here we report the discovery of additional lobate "flow" patterns on Titan's surface at Hotei Arcus, based on VIMS images recently obtained during close flybys by Cassini. This new evidence, combined with the previous evidence from RADAR images, together with the earlier brightness variability seen at these same locations by VIMS, supports the hypothesis of volcanic eruptions. If so, then Titan is presently geologically active on the surface, and in its interior. Cassini encountered Titan at very close range on 2008-11-19-13:58 and again on 2008-12-05-12:38. These epochs are called T47 and T48. The slant distance from the spacecraft to Hotei Arcus was 27,051 and 31,787 km. for T47 and T48 respectively. We report changes that occurred since the T5 flyby (2005-04-16-13:17; range 117042 km). Previously, VIMS was able to see brightness changes but not morphological change. Now, comparison of earlier higher-resolution data (T5) with the recent T47 and T48 data reveal changes of the surface reflectance and morphology in the Hotei region. This is the first evidence from VIMS that shows that Hotei Arcus is morphology consistent with volcanic terrain. If Titan is currently active then these results raise for discussion the following questions: What is the full extent of current geologic activity? What are the ongoing processes? Are Titan's chemical processes today supporting a prebiotic chemistry similar to that under which life evolved on Earth? References: [1]R. M. Nelson et al., 2008a accepted in Icarus [2]R. M. Nelson et al., 2008b accepted in GRL. [3]S. D. Wall et al. 2009 accepted in GRL. This work performed at JPL under contract with NASA.

  10. When what we need influences what we see: choice of energetic replenishment is linked with perceived steepness.

    PubMed

    Taylor-Covill, Guy A H; Eves, Frank F

    2014-06-01

    The apparent steepness of the locomotor challenge presented by hills and staircases is overestimated in explicit awareness. Experimental evidence suggests the visual system may rescale our conscious experience of steepness in line with available energy resources. Skeptics of this "embodied" view argue that such findings reflect experimental demand. This article tested whether perceived steepness was related to resource choices in the built environment. Travelers in a station estimated the slant angle of a 6.45 m staircase (23.4°) either before (N = 302) or after (N = 109) choosing from a selection of consumable items containing differing levels of energetic resources. Participants unknowingly allocated themselves to a quasi-experimental group based on the energetic resources provided by the item they chose. Consistent with a resource based model, individuals that chose items with a greater energy density, or more rapidly available energy, estimated the staircase as steeper than those opting for items that provided less energetic resources. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  11. The lawful imprecision of human surface tilt estimation in natural scenes

    PubMed Central

    2018-01-01

    Estimating local surface orientation (slant and tilt) is fundamental to recovering the three-dimensional structure of the environment. It is unknown how well humans perform this task in natural scenes. Here, with a database of natural stereo-images having groundtruth surface orientation at each pixel, we find dramatic differences in human tilt estimation with natural and artificial stimuli. Estimates are precise and unbiased with artificial stimuli and imprecise and strongly biased with natural stimuli. An image-computable Bayes optimal model grounded in natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting parameters to the human data. The similarities between human and model performance suggest that the complex human performance patterns with natural stimuli are lawful, and that human visual systems have internalized local image and scene statistics to optimally infer the three-dimensional structure of the environment. These results generalize our understanding of vision from the lab to the real world. PMID:29384477

  12. The lawful imprecision of human surface tilt estimation in natural scenes.

    PubMed

    Kim, Seha; Burge, Johannes

    2018-01-31

    Estimating local surface orientation (slant and tilt) is fundamental to recovering the three-dimensional structure of the environment. It is unknown how well humans perform this task in natural scenes. Here, with a database of natural stereo-images having groundtruth surface orientation at each pixel, we find dramatic differences in human tilt estimation with natural and artificial stimuli. Estimates are precise and unbiased with artificial stimuli and imprecise and strongly biased with natural stimuli. An image-computable Bayes optimal model grounded in natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting parameters to the human data. The similarities between human and model performance suggest that the complex human performance patterns with natural stimuli are lawful, and that human visual systems have internalized local image and scene statistics to optimally infer the three-dimensional structure of the environment. These results generalize our understanding of vision from the lab to the real world. © 2018, Kim et al.

  13. An ergonomics study of a semiconductors factory in an IDC for improvement in occupational health and safety.

    PubMed

    Bin, Wong Saw; Richardson, Stanley; Yeow, Paul H P

    2010-01-01

    The study aimed to conduct an ergonomic intervention on a conventional line (CL) in a semiconductor factory in Malaysia, an industrially developing country (IDC), to improve workers' occupational health and safety (OHS). Low-cost and simple (LCS) ergonomics methods were used (suitable for IDCs), e.g., subjective assessment, direct observation, use of archival data and assessment of noise. It was found that workers were facing noise irritation, neck and back pains and headache in the various processes in the CL. LCS ergonomic interventions to rectify the problems included installing noise insulating covers, providing earplugs, installing elevated platforms, slanting visual display terminals and installing extra exhaust fans. The interventions cost less than 3 000 USD but they significantly improved workers' OHS, which directly correlated with an improvement in working conditions and job satisfaction. The findings are useful in solving OHS problems in electronics industries in IDCs as they share similar manufacturing processes, problems and limitations.

  14. Benchmark Campaign of the COST Action GNSS4SWEC: Main Goals and Achievements

    NASA Astrophysics Data System (ADS)

    Dick, G.; Dousa, J.; Kacmarik, M.; Pottiaux, E.; Zus, F.; Brenot, H. H.; Moeller, G.; Kaplon, J.; Morel, L.; Hordyniec, P.

    2016-12-01

    This talk will give an overview of achievements of the Benchmark campaign, one of the central activities in the framework of the COST Action ES 1206 GNSS4SWEC. The main goal of the campaign is supporting the development and validation of advanced Global Navigation Satellite System (GNSS) tropospheric products, in particular high-resolution and ultra-fast/real-time zenith total delays (ZTD) and asymmetry products in terms of tropospheric horizontal gradients and slant delays.For the Benchmark campaign a complex data set of GNSS observations and various meteorological data were collected for a two-month period in 2013 (May-June) which included severe weather events in central Europe. An initial processing of data sets from GNSS and numerical weather models (NWM) provided independently estimated tropospheric reference products - ZTDs, tropospheric horizontal gradients and others. The comparison of horizontal tropospheric gradients from GNSS and NWM data demonstrated a very good agreement among independent solutions with negligible biases and an accuracy of about 0.5 mm. Visual comparisons of maps of zenith wet delays and tropospheric horizontal gradients showed very promising results for future exploitations of advanced GNSS tropospheric products in meteorological applications such as severe weather event monitoring and weather nowcasting.The benchmark data set is also used for an extensive validation of line-of-sight tropospheric Slant Total Delays (STD) from GNSS, NWM-raytracing and Water Vapour Radiometer (WVR) solutions. Six institutions delivered their STDs based on GNSS observations processed using different software and strategies. STDs from NWM ray-tracing came from three institutions using three different NWM models. Results show generally a very good mutual agreement among all solutions from all techniques. Among all an influence of adding not cleaned as well as cleaned GNSS post-fit residuals, i.e. residuals with eliminated and not eliminated non-tropospheric systematic effects such as multipath, to estimated STDs will be presented.

  15. Precise identification of <1 0 0> directions on Si{0 0 1} wafer using a novel self-aligning pre-etched technique

    NASA Astrophysics Data System (ADS)

    Singh, S. S.; Veerla, S.; Sharma, V.; Pandey, A. K.; Pal, P.

    2016-02-01

    Micromirrors with a tilt angle of 45° are widely used in optical switching and interconnect applications which require 90° out of plane reflection. Silicon wet bulk micromachining based on surfactant added TMAH is usually employed to fabricate 45° slanted walls at the < 1 0 0> direction on Si≤ft\\{0 0 1\\right\\} wafers. These slanted walls are used as 45° micromirrors. However, the appearance of a precise 45° ≤ft\\{0 1 1\\right\\} wall is subject to the accurate identification of the < 1 0 0> direction. In this paper, we present a simple technique based on pre-etched patterns for the identification of < 1 0 0> directions on the Si≤ft\\{0 0 1\\right\\} surface. The proposed pre-etched pattern self-aligns itself at the < 1 0 0> direction while becoming misaligned at other directions. The < 1 0 0> direction is determined by a simple visual inspection of pre-etched patterns and does not need any kind of measurement. To test the accuracy of the proposed method, we fabricated a 32 mm long rectangular opening with its sides aligned along the < 1 0 0> direction, which is determined using the proposed technique. Due to the finite etch rate of the ≤ft\\{1 1 0\\right\\} plane, undercutting occurred, which was measured at 12 different locations along the longer edge of the rectangular strip. The mean of these undercutting lengths, measured perpendicular to the mask edge, is found to be 13.41 μm with a sub-micron standard deviation of 0.38 μm. This level of uniform undercutting indicates that our method of identifying the < 1 0 0> direction is precise and accurate. The developed method will be extremely useful in fabricating arrays of 45° micromirrors.

  16. Comment on ‘Monogamy of multi-qubit entanglement using Rényi entropy’

    NASA Astrophysics Data System (ADS)

    Yu, Long-Bao; Zhang, Li-Hua; Zhao, Jun-Long; Tang, Yong-Sheng

    2018-02-01

    In an article in 2010, Kim et al introduced the definition of Rényi-α entanglement for bipartite quantum states and established an analytic formula of Rényi-α entanglement for arbitrary two-qubit states with α≥slant 1 . They also derived a monogamy of entanglement in multi-qubit systems in terms of Rényi-α entanglement for α≥slant 2 Kim et al (2010 J. Phys. A: Math. Theor. 43 445305). We find the proofs of theorems 2 and 3 contain some errors and we also present an improved derivation to overcome this flaw. The alternative derivation shows that the main conclusions remain valid despite the invalidity of the proofs.

  17. Flow-through PCR on a 3D qiandu-shaped polydimethylsiloxane (PDMS) microdevice employing a single heater: toward microscale multiplex PCR.

    PubMed

    Wu, Wenming; Loan, Kieu The Loan; Lee, Nae Yoon

    2012-05-07

    Consistent temperature control in an on-chip flow-through polymerase chain reaction (PCR) employing two or more heaters is one of the main obstacles for device miniaturization and integration when realizing micro total analysis systems (μTAS), and also leads to operational complexity. In this study, we propose a qiandu (right triangular prism)-shaped polydimethylsiloxane (PDMS) microdevice with serpentine microchannels fabricated on its slanted plane, and apply the device for an on-chip flow-through PCR employing a single heater. The inclined nature of the qiandu-shaped microdevice enables the formation of a surface temperature gradient along the slanted plane of the microdevice in a height-dependent manner by the use of a single heater, and enables liquid to traverse over wide ranges of temperatures, including the three temperature zones--denaturation, annealing, and extension temperatures--required in a typical PCR. The feasibility of the qiandu-shaped PDMS microdevice as a versatile platform for performing a flow-through PCR was examined by employing multiple templates and varying the inclination angle of the device. In addition, the potential of performing a multiplex PCR using a single qiandu-shaped PDMS microdevice was explored. A 409 bp long gene fragment effective as a marker for diagnosing lung cancer and a 230 bp long gene fragment from a plasmid vector were simultaneously amplified in less than 25 min on a single microdevice, paving the way for a microscale, multiplex PCR on a single device employing a single heater.

  18. A Long Distance Laser Altimeter for Terrain Relative Navigation and Spacecraft Landing

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F.; Amzajerdian, Farzin; Barnes, Bruce W.

    2014-01-01

    A high precision laser altimeter was developed under the Autonomous Landing and Hazard Avoidance (ALHAT) project at NASA Langley Research Center. The laser altimeter provides slant-path range measurements from operational ranges exceeding 30 km that will be used to support surface-relative state estimation and navigation during planetary descent and precision landing. The altimeter uses an advanced time-of-arrival receiver, which produces multiple signal-return range measurements from tens of kilometers with 5 cm precision. The transmitter is eye-safe, simplifying operations and testing on earth. The prototype is fully autonomous, and able to withstand the thermal and mechanical stresses experienced during test flights conducted aboard helicopters, fixed-wing aircraft, and Morpheus, a terrestrial rocket-powered vehicle developed by NASA Johnson Space Center. This paper provides an overview of the sensor and presents results obtained during recent field experiments including a helicopter flight test conducted in December 2012 and Morpheus flight tests conducted during March of 2014.

  19. Haptic cues for orientation and postural control in sighted and blind individuals

    NASA Technical Reports Server (NTRS)

    Jeka, J. J.; Easton, R. D.; Bentzen, B. L.; Lackner, J. R.

    1996-01-01

    Haptic cues from fingertip contact with a stable surface attenuate body sway in subjects even when the contact forces are too small to provide physical support of the body. We investigated how haptic cues derived from contact of a cane with a stationary surface at low force levels aids postural control in sighted and congenitally blind individuals. Five sighted (eyes closed) and five congenitally blind subjects maintained a tandem Romberg stance in five conditions: (1) no cane; (2,3) touch contact (< 2 N of applied force) while holding the cane in a vertical or slanted orientation; and (4,5) force contact (as much force as desired) in the vertical and slanted orientations. Touch contact of a cane at force levels below those necessary to provide significant physical stabilization was as effective as force contact in reducing postural sway in all subjects, compared to the no-cane condition. A slanted cane was far more effective in reducing postural sway than was a perpendicular cane. Cane use also decreased head displacement of sighted subjects far more than that of blind subjects. These results suggest that head movement control is linked to postural control through gaze stabilization reflexes in sighted subjects; such reflexes are absent in congenitally blind individuals and may account for their higher levels of head displacement.

  20. A formal power series expansion-regularization approach for Lévy stable distributions: the symmetric case with \\alpha =2/M (M positive integer)

    NASA Astrophysics Data System (ADS)

    Crisanto-Neto, J. C.; da Luz, M. G. E.; Raposo, E. P.; Viswanathan, G. M.

    2016-09-01

    In practice, the Lévy α-stable distribution is usually expressed in terms of the Fourier integral of its characteristic function. Indeed, known closed form expressions are relatively scarce given the huge parameters space: 0\\lt α ≤slant 2 ({{L\\'{e}vy}} {{index}}), -1≤slant β ≤slant 1 ({{skewness}}),σ \\gt 0 ({{scale}}), and -∞ \\lt μ \\lt ∞ ({{shift}}). Hence, systematic efforts have been made towards the development of proper methods for analytically solving the mentioned integral. As a further contribution in this direction, here we propose a new way to tackle the problem. We consider an approach in which one first solves the Fourier integral through a formal (thus not necessarily convergent) series representation. Then, one uses (if necessary) a pertinent sum-regularization procedure to the resulting divergent series, so as to obtain an exact formula for the distribution, which is amenable to direct numerical calculations. As a concrete study, we address the centered, symmetric, unshifted and unscaled distribution (β =0, μ =0, σ =1), with α ={α }M=2/M, M=1,2,3\\ldots . Conceivably, the present protocol could be applied to other sets of parameter values.

  1. Isolation and detection of circulating tumour cells from metastatic melanoma patients using a slanted spiral microfluidic device.

    PubMed

    Aya-Bonilla, Carlos A; Marsavela, Gabriela; Freeman, James B; Lomma, Chris; Frank, Markus H; Khattak, Muhammad A; Meniawy, Tarek M; Millward, Michael; Warkiani, Majid E; Gray, Elin S; Ziman, Mel

    2017-09-15

    Circulating Tumour Cells (CTCs) are promising cancer biomarkers. Several methods have been developed to isolate CTCs from blood samples. However, the isolation of melanoma CTCs is very challenging as a result of their extraordinary heterogeneity, which has hindered their biological and clinical study. Thus, methods that isolate CTCs based on their physical properties, rather than surface marker expression, such as microfluidic devices, are greatly needed in melanoma. Here, we assessed the ability of the slanted spiral microfluidic device to isolate melanoma CTCs via label-free enrichment. We demonstrated that this device yields recovery rates of spiked melanoma cells of over 80% and 55%, after one or two rounds of enrichment, respectively. Concurrently, a two to three log reduction of white blood cells was achieved with one or two rounds of enrichment, respectively. We characterised the isolated CTCs using multimarker flow cytometry, immunocytochemistry and gene expression. The results demonstrated that CTCs from metastatic melanoma patients were highly heterogeneous and commonly expressed stem-like markers such as PAX3 and ABCB5. The implementation of the slanted microfluidic device for melanoma CTC isolation enables further understanding of the biology of melanoma metastasis for biomarker development and to inform future treatment approaches.

  2. Effect of Turbulence Models on Two Massively-Separated Benchmark Flow Cases

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2003-01-01

    Two massively-separated flow cases (the 2-D hill and the 3-D Ahmed body) were computed with several different turbulence models in the Reynolds-averaged Navier-Stokes code CFL3D as part of participation in a turbulence modeling workshop held in Poitiers, France in October, 2002. Overall, results were disappointing, but were consistent with results from other RANS codes and other turbulence models at the workshop. For the 2-D hill case, those turbulence models that predicted separation location accurately ended up yielding a too-long separation extent downstream. The one model that predicted a shorter separation extent in better agreement with LES data did so only by coincidence: its prediction of earlier reattachment was due to a too-late prediction of the separation location. For the Ahmed body, two slant angles were computed, and CFD performed fairly well for one of the cases (the larger slant angle). Both turbulence models tested in this case were very similar to each other. For the smaller slant angle, CFD predicted massive separation, whereas the experiment showed reattachment about half-way down the center of the face. These test cases serve as reminders that state- of-the-art CFD is currently not a reliable predictor of massively-separated flow physics, and that further validation studies in this area would be beneficial.

  3. Role of Structural Asymmetry in Controlling Drop Spacing in Microfluidic Ladder Networks

    NASA Astrophysics Data System (ADS)

    Wang, William; Maddala, Jeevan; Vanapalli, Siva; Rengasamy, Raghunathan

    2012-02-01

    Manipulation of drop spacing is crucial to many processes in microfluidic devices including drop coalescence, detection and storage. Microfluidic ladder networks ---where two droplet-carrying parallel channels are connected by narrow bypass channels through which the motion of drops is forbidden---have been proposed as a means to control relative separation between pairs of drops. Prior studies in microfluidic ladder networks with vertical bypasses, which possess fore-aft structural symmetry, have revealed that pairs of drops can only undergo reduction in drop spacing at the ladder exit. We investigate the dynamics of drops in microfluidic ladder networks with both vertical and slanted bypasses. Our analytical results indicate that unlike symmetric ladder networks, structural asymmetry introduced by a single slanted bypass can be used to modulate the relative spacing between drops, enabling them to contract, synchronize, expand or even flip at the ladder exit. Our experiments confirm all the behaviors predicted by theory. Numerical analysis further shows that ladders containing several identical bypasses can only linearly transform the input drop spacing. Finally, we find that ladders with specific combinations of vertical and slanted bypasses can generate non-linear transformation of input drop spacing, despite the absence of drop decision-making events at the bypass junctions.

  4. Optofluidic Modulation of Self-Associated Nanostructural Units Forming Planar Bragg Microcavities.

    PubMed

    Oliva-Ramirez, Manuel; Barranco, Angel; Löffler, Markus; Yubero, Francisco; González-Elipe, Agustin R

    2016-01-26

    Bragg microcavities (BMs) formed by the successive stacking of nanocolumnar porous SiO2 and TiO2 layers with slanted, zigzag, chiral, and vertical configurations are prepared by physical vapor deposition at oblique angles while azimuthally varying the substrate orientation during the multilayer growth. The slanted and zigzag BMs act as wavelength-selective optical retarders when they are illuminated with linearly polarized light, while no polarization dependence is observed for the chiral and vertical cavities. This distinct optical behavior is attributed to a self-nanostructuration mechanism involving a fence-bundling association of nanocolumns as observed by focused ion beam scanning electron microscopy in the slanted and zigzag microcavities. The outstanding retarder response of the optically active BMs can be effectively modulated by dynamic infiltration of nano- and mesopores with liquids of different refraction indices acting as a switch of the polarization behavior. The unprecedented polarization and tunable optofluidic properties of these nanostructured photonic systems have been successfully simulated with a simple model that assumes a certain birefringence for the individual stacked layers and accounts for the light interference phenomena developed in the BMs. The possibilities of this type of self-arranged nanostructured and optically active BMs for liquid sensing and monitoring applications are discussed.

  5. A novel data reduction technique for single slanted hot-wire measurements used to study incompressible compressor tip leakage flows

    NASA Astrophysics Data System (ADS)

    Berdanier, Reid A.; Key, Nicole L.

    2016-03-01

    The single slanted hot-wire technique has been used extensively as a method for measuring three velocity components in turbomachinery applications. The cross-flow orientation of probes with respect to the mean flow in rotating machinery results in detrimental prong interference effects when using multi-wire probes. As a result, the single slanted hot-wire technique is often preferred. Typical data reduction techniques solve a set of nonlinear equations determined by curve fits to calibration data. A new method is proposed which utilizes a look-up table method applied to a simulated triple-wire sensor with application to turbomachinery environments having subsonic, incompressible flows. Specific discussion regarding corrections for temperature and density changes present in a multistage compressor application is included, and additional consideration is given to the experimental error which accompanies each data reduction process. Hot-wire data collected from a three-stage research compressor with two rotor tip clearances are used to compare the look-up table technique with the traditional nonlinear equation method. The look-up table approach yields velocity errors of less than 5 % for test conditions deviating by more than 20 °C from calibration conditions (on par with the nonlinear solver method), while requiring less than 10 % of the computational processing time.

  6. Preformation probability inside α emitters around the shell closures Z = 50 and N = 82

    NASA Astrophysics Data System (ADS)

    Seif, W. M.; Ismail, M.; Zeini, E. T.

    2017-05-01

    The preformation of an α-particle as a distinct entity inside the α-emitter is the first move towards α-decay. We investigate the α-particle preformation probability (S α ) in ordinary and exotic α-decays. We consider favored and unfavored decays at which the α-emitters and the produced daughter nuclides are in their ground or isomeric states. The study of 244 α-decay modes with 52≤slant Z≤slant 81 and 53≤slant N≤slant 112 is accomplished using the preformed cluster model. The preformation probabilities were estimated from the experimental half-lives and the computed decay widths based on the Wentzel-Kramers-Brillouin tunneling penetrability and knocking frequency, and the Skyrme-SLy4 interaction potential. We found that the favored α-decay mode from a ground state to an isomeric state shows larger α-preformation probability than the favored and unfavored decays of the same isotope but from isomeric to ground states. The favored decay mode from isomeric- to ground-state exhibits rather less S α relative to the other decay modes from the same nuclide. The favored decay modes between two isomeric states tend to yield larger S α and less partial half-life compared with the favored and unfavored decays from the same nuclides but between two ground states. For the decays involving two ground states, the preformation probability is larger for the favored decay modes than for the unfavored ones. The unfavored α-decay modes from ground- to isomeric-states are rare. The unfavored decay modes from isomeric- to ground-states show less S α than that for the favored decays from the ground states of the same emitters. The unfavored α-decay modes between two isomeric states exhibit larger S α than the other α-decay modes from the same isomers.

  7. The NuSTAR  Extragalactic Surveys: X-Ray Spectroscopic Analysis of the Bright Hard-band Selected Sample

    NASA Astrophysics Data System (ADS)

    Zappacosta, L.; Comastri, A.; Civano, F.; Puccetti, S.; Fiore, F.; Aird, J.; Del Moro, A.; Lansbury, G. B.; Lanzuisi, G.; Goulding, A.; Mullaney, J. R.; Stern, D.; Ajello, M.; Alexander, D. M.; Ballantyne, D. R.; Bauer, F. E.; Brandt, W. N.; Chen, C.-T. J.; Farrah, D.; Harrison, F. A.; Gandhi, P.; Lanz, L.; Masini, A.; Marchesi, S.; Ricci, C.; Treister, E.

    2018-02-01

    We discuss the spectral analysis of a sample of 63 active galactic nuclei (AGN) detected above a limiting flux of S(8{--}24 {keV})=7× {10}-14 {erg} {{{s}}}-1 {{cm}}-2 in the multi-tiered NuSTAR extragalactic survey program. The sources span a redshift range z=0{--}2.1 (median < z> =0.58). The spectral analysis is performed over the broad 0.5–24 keV energy range, combining NuSTAR with Chandra and/or XMM-Newton data and employing empirical and physically motivated models. This constitutes the largest sample of AGN selected at > 10 {keV} to be homogeneously spectrally analyzed at these flux levels. We study the distribution of spectral parameters such as photon index, column density ({N}{{H}}), reflection parameter ({\\boldsymbol{R}}), and 10–40 keV luminosity ({L}{{X}}). Heavily obscured ({log}[{N}{{H}}/{{cm}}-2]≥slant 23) and Compton-thick (CT; {log}[{N}{{H}}/{{cm}}-2]≥slant 24) AGN constitute ∼25% (15–17 sources) and ∼2–3% (1–2 sources) of the sample, respectively. The observed {N}{{H}} distribution agrees fairly well with predictions of cosmic X-ray background population-synthesis models (CXBPSM). We estimate the intrinsic fraction of AGN as a function of {N}{{H}}, accounting for the bias against obscured AGN in a flux-selected sample. The fraction of CT AGN relative to {log}[{N}{{H}}/{{cm}}-2]=20{--}24 AGN is poorly constrained, formally in the range 2–56% (90% upper limit of 66%). We derived a fraction (f abs) of obscured AGN ({log}[{N}{{H}}/{{cm}}-2]=22{--}24) as a function of {L}{{X}} in agreement with CXBPSM and previous z< 1 X-ray determinations. Furthermore, f abs at z=0.1{--}0.5 and {log}({L}{{x}}/{erg} {{{s}}}-1)≈ 43.6{--}44.3 agrees with observational measurements/trends obtained over larger redshift intervals. We report a significant anti-correlation of R with {L}{{X}} (confirmed by our companion paper on stacked spectra) with considerable scatter around the median R values.

  8. Visual defects in Nepalese children with Down syndrome.

    PubMed

    Paudel, Nabin; Leat, Susan J; Adhikari, Prakash; Woodhouse, J Margaret; Shrestha, Jyoti Baba

    2010-03-01

    Down syndrome (DS) is a common chromosomal anomaly. People with this syndrome have recognisable physical characteristics and limited intellectual abilities. The aim of this study was to determine visual defects, especially refractive error and binocular anomalies, in a sample of Nepalese children with DS. Thirty-six children with DS (19 boys and 17 girls) from the Kathmandu valley, aged from four months to 18 years, underwent detailed optometric examination. Cycloplegic refraction was performed on all subjects. Vision on presentation of all the children was assessed with preferential looking cards, the Kay picture cards, the Bailey-Lovie logMAR chart or the Snellen chart. Binocular function was assessed with cover test, Hirschberg or Bruckner test. Cycloplegic refraction of the children revealed that 80 per cent of the children had significant refractive error. Most of them had hyperopia (55 per cent), followed by astigmatism (44 per cent), myopia (25 per cent) and anisometropia (19 per cent). Only two (5.6 per cent) children were strabismic and both of them were alternating esotropes. Nystagmus was present in 10 (28 per cent). Other ocular findings were upward slanting palpebral fissures, blepharitis, congenital nasolacrimal duct obstruction, blepharoconjunctivitis, chalazion and lenticular opacities. Nepalese children with DS have a high prevalence of refractive error and nystagmus. Regular eye examinations are indicated for these children to enable early diagnosis and appropriate management of ocular disorders to improve their vision and quality of life.

  9. Effects of boundary-layer separation controllers on a desktop fume hood.

    PubMed

    Huang, Rong Fung; Chen, Jia-Kun; Hsu, Ching Min; Hung, Shuo-Fu

    2016-10-02

    A desktop fume hood installed with an innovative design of flow boundary-layer separation controllers on the leading edges of the side plates, work surface, and corners was developed and characterized for its flow and containment leakage characteristics. The geometric features of the developed desktop fume hood included a rearward offset suction slot, two side plates, two side-plate boundary-layer separation controllers on the leading edges of the side plates, a slanted surface on the leading edge of the work surface, and two small triangular plates on the upper left and right corners of the hood face. The flow characteristics were examined using the laser-assisted smoke flow visualization technique. The containment leakages were measured by the tracer gas (sulphur hexafluoride) detection method on the hood face plane with a mannequin installed in front of the hood. The results of flow visualization showed that the smoke dispersions induced by the boundary-layer separations on the leading edges of the side plates and work surface, as well as the three-dimensional complex flows on the upper-left and -right corners of the hood face, were effectively alleviated by the boundary-layer separation controllers. The results of the tracer gas detection method with a mannequin standing in front of the hood showed that the leakage levels were negligibly small (≤0.003 ppm) at low face velocities (≥0.19 m/s).

  10. Reference Frames and 3-D Shape Perception of Pictured Objects: On Verticality and Viewpoint-From-Above

    PubMed Central

    van Doorn, Andrea J.; Wagemans, Johan

    2016-01-01

    Research on the influence of reference frames has generally focused on visual phenomena such as the oblique effect, the subjective visual vertical, the perceptual upright, and ambiguous figures. Another line of research concerns mental rotation studies in which participants had to discriminate between familiar or previously seen 2-D figures or pictures of 3-D objects and their rotated versions. In the present study, we disentangled the influence of the environmental and the viewer-centered reference frame, as classically done, by comparing the performances obtained in various picture and participant orientations. However, this time, the performance is the pictorial relief: the probed 3-D shape percept of the depicted object reconstructed from the local attitude settings of the participant. Comparisons between the pictorial reliefs based on different picture and participant orientations led to two major findings. First, in general, the pictorial reliefs were highly similar if the orientation of the depicted object was vertical with regard to the environmental or the viewer-centered reference frame. Second, a viewpoint-from-above interpretation could almost completely account for the shears occurring between the pictorial reliefs. More specifically, the shears could largely be considered as combinations of slants generated from the viewpoint-from-above, which was determined by the environmental as well as by the viewer-centered reference frame. PMID:27433329

  11. Global exponential stability of bidirectional associative memory neural networks with distributed delays

    NASA Astrophysics Data System (ADS)

    Song, Qiankun; Cao, Jinde

    2007-05-01

    A bidirectional associative memory neural network model with distributed delays is considered. By constructing a new Lyapunov functional, employing the homeomorphism theory, M-matrix theory and the inequality (a[greater-or-equal, slanted]0,bk[greater-or-equal, slanted]0,qk>0 with , and r>1), a sufficient condition is obtained to ensure the existence, uniqueness and global exponential stability of the equilibrium point for the model. Moreover, the exponential converging velocity index is estimated, which depends on the delay kernel functions and the system parameters. The results generalize and improve the earlier publications, and remove the usual assumption that the activation functions are bounded . Two numerical examples are given to show the effectiveness of the obtained results.

  12. Close-packed monolayer self-assembly of silica nanospheres assisted by infrared irradiation

    NASA Astrophysics Data System (ADS)

    Minh, Nguyen Van; Hue, Nguyen Thi; Lien, Nghiem Thi Ha; Hoang, Chu Manh

    2018-01-01

    In this paper, we report on a fast and cost-effective drop coating technique for the self-assembly of silica nano-spheres from a mono-dispersed colloidal suspension into close-packed monolayer (CMP) on hydrophilic single-crystal silicon substrate. The technique includes the self-assembly of silica nano-spheres on slanted silicon substrate and infrared irradiation during evaporation process of the coated droplet. The influence of the substrate slant angle and infrared irradiation on the formation of silica nano-sphere monolayer is investigated. This achievement is promising for various applications, such as a mask layer for nano-sphere lithography that is employed for producing fundamental elements in photonics, plasmonics, and solar cell. [Figure not available: see fulltext.

  13. Development of a GNSS water vapour tomography system using algebraic reconstruction techniques

    NASA Astrophysics Data System (ADS)

    Bender, Michael; Dick, Galina; Ge, Maorong; Deng, Zhiguo; Wickert, Jens; Kahle, Hans-Gert; Raabe, Armin; Tetzlaff, Gerd

    2011-05-01

    A GNSS water vapour tomography system developed to reconstruct spatially resolved humidity fields in the troposphere is described. The tomography system was designed to process the slant path delays of about 270 German GNSS stations in near real-time with a temporal resolution of 30 min, a horizontal resolution of 40 km and a vertical resolution of 500 m or better. After a short introduction to the GPS slant delay processing the framework of the GNSS tomography is described in detail. Different implementations of the iterative algebraic reconstruction techniques (ART) used to invert the linear inverse problem are discussed. It was found that the multiplicative techniques (MART) provide the best results with least processing time, i.e., a tomographic reconstruction of about 26,000 slant delays on a 8280 cell grid can be obtained in less than 10 min. Different iterative reconstruction techniques are compared with respect to their convergence behaviour and some numerical parameters. The inversion can be considerably stabilized by using additional non-GNSS observations and implementing various constraints. Different strategies for initialising the tomography and utilizing extra information are discussed. At last an example of a reconstructed field of the wet refractivity is presented and compared to the corresponding distribution of the integrated water vapour, an analysis of a numerical weather model (COSMO-DE) and some radiosonde profiles.

  14. Approximate controllability of a system of parabolic equations with delay

    NASA Astrophysics Data System (ADS)

    Carrasco, Alexander; Leiva, Hugo

    2008-09-01

    In this paper we give necessary and sufficient conditions for the approximate controllability of the following system of parabolic equations with delay: where [Omega] is a bounded domain in , D is an n×n nondiagonal matrix whose eigenvalues are semi-simple with nonnegative real part, the control and B[set membership, variant]L(U,Z) with , . The standard notation zt(x) defines a function from [-[tau],0] to (with x fixed) by zt(x)(s)=z(t+s,x), -[tau][less-than-or-equals, slant]s[less-than-or-equals, slant]0. Here [tau][greater-or-equal, slanted]0 is the maximum delay, which is supposed to be finite. We assume that the operator is linear and bounded, and [phi]0[set membership, variant]Z, [phi][set membership, variant]L2([-[tau],0];Z). To this end: First, we reformulate this system into a standard first-order delay equation. Secondly, the semigroup associated with the first-order delay equation on an appropriate product space is expressed as a series of strongly continuous semigroups and orthogonal projections related with the eigenvalues of the Laplacian operator (); this representation allows us to reduce the controllability of this partial differential equation with delay to a family of ordinary delay equations. Finally, we use the well-known result on the rank condition for the approximate controllability of delay system to derive our main result.

  15. The area-angular momentum inequality for black holes in cosmological spacetimes

    NASA Astrophysics Data System (ADS)

    Gabach Clément, María Eugenia; Reiris, Martín; Simon, Walter

    2015-07-01

    For a stable, marginally outer trapped surface (MOTS) in an axially symmetric spacetime with cosmological constant Λ \\gt 0 and with matter satisfying the dominant energy condition, we prove that the area A and the angular momentum J satisfy the inequality 8π | J| ≤slant A\\sqrt{(1-Λ A/4π )(1-Λ A/12π )}, which is saturated precisely for the extreme Kerr-de Sitter family of metrics. This result entails a universal upper bound | J| ≤slant {J}{max}≈ 0.17/Λ for such MOTS, which is saturated for one particular extreme configuration. Our result sharpens the inequality 8π | J| ≤slant A (Dain and Reiris 2011 Phys. Rev. Lett. 107 051101, Jaramillo, Reiris and Dain 2011 Phys. Rev. Lett. D 84 121503), and we follow the overall strategy of its proof in the sense that we first estimate the area from below in terms of the energy corresponding to a ‘mass functional’, which is basically a suitably regularized harmonic map {{{S}}}2\\to {{{H}}}2. However, in the cosmological case this mass functional acquires an additional potential term which itself depends on the area. To estimate the corresponding energy in terms of the angular momentum and the cosmological constant we use a subtle scaling argument, a generalized ‘Carter-identity’, and various techniques from variational calculus, including the mountain pass theorem.

  16. Computer image processing in marine resource exploration

    NASA Technical Reports Server (NTRS)

    Paluzzi, P. R.; Normark, W. R.; Hess, G. R.; Hess, H. D.; Cruickshank, M. J.

    1976-01-01

    Pictographic data or imagery is commonly used in marine exploration. Pre-existing image processing techniques (software) similar to those used on imagery obtained from unmanned planetary exploration were used to improve marine photography and side-scan sonar imagery. Features and details not visible by conventional photo processing methods were enhanced by filtering and noise removal on selected deep-sea photographs. Information gained near the periphery of photographs allows improved interpretation and facilitates construction of bottom mosaics where overlapping frames are available. Similar processing techniques were applied to side-scan sonar imagery, including corrections for slant range distortion, and along-track scale changes. The use of digital data processing and storage techniques greatly extends the quantity of information that can be handled, stored, and processed.

  17. Tunable resonance-domain diffraction gratings based on electrostrictive polymers.

    PubMed

    Axelrod, Ramon; Shacham-Diamand, Yosi; Golub, Michael A

    2017-03-01

    Critical combination of high diffraction efficiency and large diffraction angles can be delivered by resonance-domain diffractive optics with high aspect ratio and wavelength-scale grating periods. To advance from static to electrically tunable resonance-domain diffraction grating, we resorted to its replication onto 2-5 μm thick P(VDF-TrFE-CFE) electrostrictive ter-polymer membranes. Electromechanical and optical computer simulations provided higher than 90% diffraction efficiency, a large continuous deflection range exceeding 20°, and capabilities for adiabatic spatial modulation of the grating period and slant. A prototype of the tunable resonance-domain diffraction grating was fabricated in a soft-stamp thermal nanoimprinting process, characterized, optically tested, and provided experimental feasibility proof for the tunable sub-micron-period gratings on electrostrictive polymers.

  18. Estimating 3D tilt from local image cues in natural scenes

    PubMed Central

    Burge, Johannes; McCann, Brian C.; Geisler, Wilson S.

    2016-01-01

    Estimating three-dimensional (3D) surface orientation (slant and tilt) is an important first step toward estimating 3D shape. Here, we examine how three local image cues from the same location (disparity gradient, luminance gradient, and dominant texture orientation) should be combined to estimate 3D tilt in natural scenes. We collected a database of natural stereoscopic images with precisely co-registered range images that provide the ground-truth distance at each pixel location. We then analyzed the relationship between ground-truth tilt and image cue values. Our analysis is free of assumptions about the joint probability distributions and yields the Bayes optimal estimates of tilt, given the cue values. Rich results emerge: (a) typical tilt estimates are only moderately accurate and strongly influenced by the cardinal bias in the prior probability distribution; (b) when cue values are similar, or when slant is greater than 40°, estimates are substantially more accurate; (c) when luminance and texture cues agree, they often veto the disparity cue, and when they disagree, they have little effect; and (d) simplifying assumptions common in the cue combination literature is often justified for estimating tilt in natural scenes. The fact that tilt estimates are typically not very accurate is consistent with subjective impressions from viewing small patches of natural scene. The fact that estimates are substantially more accurate for a subset of image locations is also consistent with subjective impressions and with the hypothesis that perceived surface orientation, at more global scales, is achieved by interpolation or extrapolation from estimates at key locations. PMID:27738702

  19. A Theory of Exoplanet Transits with Light Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Tyler D., E-mail: tydrobin@ucsc.edu

    Exoplanet transit spectroscopy enables the characterization of distant worlds, and will yield key results for NASA's James Webb Space Telescope . However, transit spectra models are often simplified, omitting potentially important processes like refraction and multiple scattering. While the former process has seen recent development, the effects of light multiple scattering on exoplanet transit spectra have received little attention. Here, we develop a detailed theory of exoplanet transit spectroscopy that extends to the full refracting and multiple scattering case. We explore the importance of scattering for planet-wide cloud layers, where the relevant parameters are the slant scattering optical depth, themore » scattering asymmetry parameter, and the angular size of the host star. The latter determines the size of the “target” for a photon that is back-mapped from an observer. We provide results that straightforwardly indicate the potential importance of multiple scattering for transit spectra. When the orbital distance is smaller than 10–20 times the stellar radius, multiple scattering effects for aerosols with asymmetry parameters larger than 0.8–0.9 can become significant. We provide examples of the impacts of cloud/haze multiple scattering on transit spectra of a hot Jupiter-like exoplanet. For cases with a forward and conservatively scattering cloud/haze, differences due to multiple scattering effects can exceed 200 ppm, but shrink to zero at wavelength ranges corresponding to strong gas absorption or when the slant optical depth of the cloud exceeds several tens. We conclude with a discussion of types of aerosols for which multiple scattering in transit spectra may be important.« less

  20. Mitigation of Atmospheric Delay in SAR Absolute Ranging Using Global Numerical Weather Prediction Data: Corner Reflector Experiments at 3 Different Test Sites

    NASA Astrophysics Data System (ADS)

    Cong, Xiaoying; Balss, Ulrich; Eineder, Michael

    2015-04-01

    The atmospheric delay due to vertical stratification, the so-called stratified atmospheric delay, has a great impact on both interferometric and absolute range measurements. In our current researches [1][2][3], centimeter-range accuracy has been proven based on Corner Reflector (CR) based measurements by applying atmospheric delay correction using the Zenith Path Delay (ZPD) corrections derived from nearby Global Positioning System (GPS) stations. For a global usage, an effective method has been introduced to estimate the stratified delay based on global 4-dimensional Numerical Weather Prediction (NWP) products: the direct integration method [4][5]. Two products, ERA-Interim and operational data, provided by European Centre for Medium-Range Weather Forecast (ECMWF) are used to integrate the stratified delay. In order to access the integration accuracy, a validation approach is investigated based on ZPD derived from six permanent GPS stations located in different meteorological conditions. Range accuracy at centimeter level is demonstrated using both ECMWF products. Further experiments have been carried out in order to determine the best interpolation method by analyzing the temporal and spatial correlation of atmospheric delay using both ECMWF and GPS ZPD. Finally, the integrated atmospheric delays in slant direction (Slant Path Delay, SPD) have been applied instead of the GPS ZPD for CR experiments at three different test sites with more than 200 TerraSAR-X High Resolution SpotLight (HRSL) images. The delay accuracy is around 1-3 cm depending on the location of test site due to the local water vapor variation and the acquisition time/date. [1] Eineder M., Minet C., Steigenberger P., et al. Imaging geodesy - Toward centimeter-level ranging accuracy with TerraSAR-X. Geoscience and Remote Sensing, IEEE Transactions on, 2011, 49(2): 661-671. [2] Balss U., Gisinger C., Cong X. Y., et al. Precise Measurements on the Absolute Localization Accuracy of TerraSAR-X on the Base of Far-Distributed Test Sites; EUSAR 2014; 10th European Conference on Synthetic Aperture Radar; Proceedings of. VDE, 2014: 1-4. [3] Eineder M., Balss U., Gisinger C., et al. TerraSAR-X pixel localization accuracy: Approaching the centimeter level, Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International. IEEE, 2014: 2669-2670. [4] Cong X., Balss U., Eineder M., et al. Imaging Geodesy -- Centimeter-Level Ranging Accuracy With TerraSAR-X: An Update. Geoscience and Remote Sensing Letters, IEEE, 2012, 9(5): 948-952. [5] Cong X. SAR Interferometry for Volcano Monitoring: 3D-PSI Analysis and Mitigation of Atmospheric Refractivity. München, Technische Universität München, Dissertation, 2014.

  1. Rain rate duration statistics derived from the Mid-Atlantic coast rain gauge network

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius

    1993-01-01

    A rain gauge network comprised of 10 tipping bucket rain gauges located in the Mid-Atlantic coast of the United States has been in continuous operation since June 1, 1986. Rain rate distributions and estimated slant path fade distributions at 20 GHz and 30 GHz covering the first five year period were derived from the gauge network measurements, and these results were described by Goldhirsh. In this effort, rain rate time duration statistics are presented. The rain duration statistics are of interest for better understanding the physical nature of precipitation and to present a data base which may be used by modelers to convert to slant path fade duration statistics. Such statistics are important for better assessing optimal coding procedures over defined bandwidths.

  2. MTF measurement and analysis of linear array HgCdTe infrared detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Lin, Chun; Chen, Honglei; Sun, Changhong; Lin, Jiamu; Wang, Xi

    2018-01-01

    The slanted-edge technique is the main method for measurement detectors MTF, however this method is commonly used on planar array detectors. In this paper the authors present a modified slanted-edge method to measure the MTF of linear array HgCdTe detectors. Crosstalk is one of the major factors that degrade the MTF value of such an infrared detector. This paper presents an ion implantation guard-ring structure which was designed to effectively absorb photo-carriers that may laterally defuse between adjacent pixels thereby suppressing crosstalk. Measurement and analysis of the MTF of the linear array detectors with and without a guard-ring were carried out. The experimental results indicated that the ion implantation guard-ring structure effectively suppresses crosstalk and increases MTF value.

  3. Multiple-layered effective medium approximation approach to modeling environmental effects on alumina passivated highly porous silicon nanostructured thin films measured by in-situ Mueller matrix ellipsometry

    NASA Astrophysics Data System (ADS)

    Mock, Alyssa; Carlson, Timothy; VanDerslice, Jeremy; Mohrmann, Joel; Woollam, John A.; Schubert, Eva; Schubert, Mathias

    2017-11-01

    Optical changes in alumina passivated highly porous silicon slanted columnar thin films during controlled exposure to toluene vapor are reported. Electron-beam evaporation glancing angle deposition and subsequent atomic layer deposition are utilized to deposit alumina passivated nanostructured porous silicon thin films. In-situ Mueller matrix generalized spectroscopic ellipsometry in an environmental cell is then used to determine changes in optical properties of the nanostructured thin films by inspection of individual Mueller matrix elements, each of which exhibit sensitivity to adsorption. The use of a multiple-layered effective medium approximation model allows for accurate description of the inhomogeneous nature of toluene adsorption onto alumina passivated highly porous silicon slanted columnar thin films.

  4. Tomato R2R3-MYB Proteins SlANT1 and SlAN2: Same Protein Activity, Different Roles

    PubMed Central

    Bassolino, Laura; Povero, Giovanni; Spelt, Cornelis; Buti, Sara; Giuliano, Giovanni; Quattrocchio, Francesca; Koes, Ronald; Perata, Pierdomenico; Gonzali, Silvia

    2015-01-01

    Anthocyanins are water-soluble polyphenolic compounds with a high nutraceutical value. Despite the fact that cultivated tomato varieties do not accumulate anthocyanins in the fruit, the biosynthetic pathway can be activated in the vegetative organs by several environmental stimuli. Little is known about the molecular mechanisms regulating anthocyanin synthesis in tomato. Here, we carried out a molecular and functional characterization of two genes, SlAN2 and SlANT1, encoding two R2R3-MYB transcription factors. We show that both can induce ectopic anthocyanin synthesis in transgenic tomato lines, including the fruit. However, only SlAN2 acts as a positive regulator of anthocyanin synthesis in vegetative tissues under high light or low temperature conditions. PMID:26308527

  5. Slant path rain attenuation and path diversity statistics obtained through radar modeling of rain structure

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.

    1984-01-01

    Single and joint terminal slant path attenuation statistics at frequencies of 28.56 and 19.04 GHz have been derived, employing a radar data base obtained over a three-year period at Wallops Island, VA. Statistics were independently obtained for path elevation angles of 20, 45, and 90 deg for purposes of examining how elevation angles influences both single-terminal and joint probability distributions. Both diversity gains and autocorrelation function dependence on site spacing and elevation angles were determined employing the radar modeling results. Comparisons with other investigators are presented. An independent path elevation angle prediction technique was developed and demonstrated to fit well with the radar-derived single and joint terminal radar-derived cumulative fade distributions at various elevation angles.

  6. Study of nuclear structure of 76-86Sr isotopes in the pn interacting boson model

    NASA Astrophysics Data System (ADS)

    Saxena, M.; Gupta, J. B.; Mandal, S.

    2015-08-01

    The proton neutron interacting boson model (IBM-2) has been used to make a systematic study of Strontium isotopes in this mass region of A ˜ 80 with 38 ≤slant N ≤slant 48 and Z = 38. The three-term Talmi-Otsuka general Hamiltonian in the framework of the neutron proton version of the Interaction boson model was used to perform the calculations. The yrast levels energy are reproduced. The beta and gamma band energy levels also matched well. The reduced transition probabilities were also calculated and were found to be in agreement with the experimental values. In addition, g-factor for the {2}1+ state was evaluated. Possible candidates for mixed symmetry states were also predicted for several nuclei in this isotopic chain.

  7. On the classification of scalar evolution equations with non-constant separant

    NASA Astrophysics Data System (ADS)

    Hümeyra Bilge, Ayşe; Mizrahi, Eti

    2017-01-01

    The ‘separant’ of the evolution equation u t   =  F, where F is some differentiable function of the derivatives of u up to order m, is the partial derivative \\partial F/\\partial {{u}m}, where {{u}m}={{\\partial}m}u/\\partial {{x}m} . As an integrability test, we use the formal symmetry method of Mikhailov-Shabat-Sokolov, which is based on the existence of a recursion operator as a formal series. The solvability of its coefficients in the class of local functions gives a sequence of conservation laws, called the ‘conserved densities’ {ρ(i)}, i=-1,1,2,3,\\ldots . We apply this method to the classification of scalar evolution equations of orders 3≤slant m≤slant 15 , for which {ρ(-1)}={≤ft[\\partial F/\\partial {{u}m}\\right]}-1/m} and {{ρ(1)} are non-trivial, i.e. they are not total derivatives and {ρ(-1)} is not linear in its highest order derivative. We obtain the ‘top level’ parts of these equations and their ‘top dependencies’ with respect to the ‘level grading’, that we defined in a previous paper, as a grading on the algebra of polynomials generated by the derivatives u b+i , over the ring of {{C}∞} functions of u,{{u}1},\\ldots,{{u}b} . In this setting b and i are called ‘base’ and ‘level’, respectively. We solve the conserved density conditions to show that if {ρ(-1)} depends on u,{{u}1},\\ldots,{{u}b}, then, these equations are level homogeneous polynomials in {{u}b+i},\\ldots,{{u}m} , i≥slant 1 . Furthermore, we prove that if {ρ(3)} is non-trivial, then {ρ(-1)}={≤ft(α ub2+β {{u}b}+γ \\right)}1/2} , with b≤slant 3 while if {{ρ(3)} is trivial, then {ρ(-1)}={≤ft(λ {{u}b}+μ \\right)}1/3} , where b≤slant 5 and α, β, γ, λ and μ are functions of u,\\ldots,{{u}b-1} . We show that the equations that we obtain form commuting flows and we construct their recursion operators that are respectively of orders 2 and 6 for non-trivial and trivial {{ρ(3)} respectively. Omitting lower order dependencies, we show that equations with non-trivial {ρ(3)} and b  =  3 are symmetries of the ‘essentially non-linear third order equation’ for trivial {ρ(3)} , the equations with b  =  5 are symmetries of a non-quasilinear fifth order equation obtained in previous work, while for b  =  3, 4 they are symmetries of quasilinear fifth order equations.

  8. Employees with Dystonia

    MedlinePlus

    ... including trackballs, touchpads, foot mice, head pointers, and programmable mice Word prediction and alternative mouse software Writing: ... slants Using the Telephone: Speaker-phones Telephones with programmable number storage Phone holders Telephone headsets Using Tools: ...

  9. Perceptual scale expansion: an efficient angular coding strategy for locomotor space.

    PubMed

    Durgin, Frank H; Li, Zhi

    2011-08-01

    Whereas most sensory information is coded on a logarithmic scale, linear expansion of a limited range may provide a more efficient coding for the angular variables important to precise motor control. In four experiments, we show that the perceived declination of gaze, like the perceived orientation of surfaces, is coded on a distorted scale. The distortion seems to arise from a nearly linear expansion of the angular range close to horizontal/straight ahead and is evident in explicit verbal and nonverbal measures (Experiments 1 and 2), as well as in implicit measures of perceived gaze direction (Experiment 4). The theory is advanced that this scale expansion (by a factor of about 1.5) may serve a functional goal of coding efficiency for angular perceptual variables. The scale expansion of perceived gaze declination is accompanied by a corresponding expansion of perceived optical slants in the same range (Experiments 3 and 4). These dual distortions can account for the explicit misperception of distance typically obtained by direct report and exocentric matching, while allowing for accurate spatial action to be understood as the result of calibration.

  10. Perceptual Scale Expansion: An Efficient Angular Coding Strategy for Locomotor Space

    PubMed Central

    Durgin, Frank H.; Li, Zhi

    2011-01-01

    Whereas most sensory information is coded in a logarithmic scale, linear expansion of a limited range may provide a more efficient coding for angular variables important to precise motor control. In four experiments it is shown that the perceived declination of gaze, like the perceived orientation of surfaces is coded on a distorted scale. The distortion seems to arise from a nearly linear expansion of the angular range close to horizontal/straight ahead and is evident in explicit verbal and non-verbal measures (Experiments 1 and 2) and in implicit measures of perceived gaze direction (Experiment 4). The theory is advanced that this scale expansion (by a factor of about 1.5) may serve a functional goal of coding efficiency for angular perceptual variables. The scale expansion of perceived gaze declination is accompanied by a corresponding expansion of perceived optical slants in the same range (Experiments 3 and 4). These dual distortions can account for the explicit misperception of distance typically obtained by direct report and exocentric matching while allowing accurate spatial action to be understood as the result of calibration. PMID:21594732

  11. SP mountain data analysis

    NASA Technical Reports Server (NTRS)

    Rawson, R. F.; Hamilton, R. E.; Liskow, C. L.; Dias, A. R.; Jackson, P. L.

    1981-01-01

    An analysis of synthetic aperture radar data of SP Mountain was undertaken to demonstrate the use of digital image processing techniques to aid in geologic interpretation of SAR data. These data were collected with the ERIM X- and L-band airborne SAR using like- and cross-polarizations. The resulting signal films were used to produce computer compatible tapes, from which four-channel imagery was generated. Slant range-to-ground range and range-azimuth-scale corrections were made in order to facilitate image registration; intensity corrections were also made. Manual interpretation of the imagery showed that L-band represented the geology of the area better than X-band. Several differences between the various images were also noted. Further digital analysis of the corrected data was done for enhancement purposes. This analysis included application of an MSS differencing routine and development of a routine for removal of relief displacement. It was found that accurate registration of the SAR channels is critical to the effectiveness of the differencing routine. Use of the relief displacement algorithm on the SP Mountain data demonstrated the feasibility of the technique.

  12. Slanting Shadows

    NASA Image and Video Library

    2009-11-23

    Long shadows stretch away from the towering edge waves created by the gravity of the moon Daphnis in this image taken by NASA Cassini spacecraft a little more than a week before Saturn August 2009 equinox.

  13. Instrument Landing System performance prediction

    DOT National Transportation Integrated Search

    1974-01-01

    Further achievements made in fiscal year 1973 on the development : of an Instrument Landing System (ILS) performance prediction model : are reported. These include (ILS) localizer scattering from generalized : slanted rectangular, triangular and cyli...

  14. Ionosphere Profile Estimation Using Ionosonde & GPS Data in an Inverse Refraction Calculation

    NASA Astrophysics Data System (ADS)

    Psiaki, M. L.

    2014-12-01

    A method has been developed to assimilate ionosonde virtual heights and GPS slant TEC data to estimate the parameters of a local ionosphere model, including estimates of the topside and of latitude and longitude variations. This effort seeks to better assimilate a variety of remote sensing data in order to characterize local (and eventually regional and global) ionosphere electron density profiles. The core calculations involve a forward refractive ray-tracing solution and a nonlinear optimal estimation algorithm that inverts the forward model. The ray-tracing calculations solve a nonlinear two-point boundary value problem for the curved ionosonde or GPS ray path through a parameterized electron density profile. It implements a full 3D solution that can handle the case of a tilted ionosphere. These calculations use Hamiltonian equivalents of the Appleton-Hartree magneto-plasma refraction index model. The current ionosphere parameterization is a modified Booker profile. It has been augmented to include latitude and longitude dependencies. The forward ray-tracing solution yields a given signal's group delay and beat carrier phase observables. An auxiliary set of boundary value problem solutions determine the sensitivities of the ray paths and observables with respect to the parameters of the augmented Booker profile. The nonlinear estimation algorithm compares the measured ionosonde virtual-altitude observables and GPS slant-TEC observables to the corresponding values from the forward refraction model. It uses the parameter sensitivities of the model to iteratively improve its parameter estimates in a way the reduces the residual errors between the measurements and their modeled values. This method has been applied to data from HAARP in Gakona, AK and has produced good TEC and virtual height fits. It has been extended to characterize electron density perturbations caused by HAARP heating experiments through the use of GPS slant TEC data for an LOS through the heated zone. The next planned extension of the method is to estimate the parameters of a regional ionosphere profile. The input observables will be slant TEC from an array of GPS receivers and group delay and carrier phase observables from an array of high-frequency beacons. The beacon array will function as a sort of multi-static ionosonde.

  15. Note on the Effect of Horizontal Gradients for Nadir-Viewing Microwave and Infrared Sounders

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Poli, P.

    2004-01-01

    Passive microwave and infrared nadir sounders such as the Advanced Microwave Sounding Unit A (AMSU-A) and the Atmospheric InfraRed Sounder (AIRS), both flying on NASA s EOS Aqua satellite, provide information about vertical temperature and humidity structure that is used in data assimilation systems for numerical weather prediction and climate applications. These instruments scan cross track so that at the satellite swath edges, the satellite zenith angles can reach approx. 60 deg. The emission path through the atmosphere as observed by the satellite is therefore slanted with respect to the satellite footprint s zenith. Although radiative transfer codes currently in use at operational centers use the appropriate satellite zenith angle to compute brightness temperature, the input atmospheric fields are those from the vertical profile above the center of the satellite footprint. If horizontal gradients are present in the atmospheric fields, the use of a vertical atmospheric profile may produce an error. This note attempts to quantify the effects of horizontal gradients on AIRS and AMSU-A channels by computing brightness temperatures with accurate slanted atmospheric profiles. We use slanted temperature, water vapor, and ozone fields from data assimilation systems. We compare the calculated slanted and vertical brightness temperatures with AIRS and AMSU-A observations. We show that the effects of horizontal gradients on these sounders are generally small and below instrument noise. However, there are cases where the effects are greater than the instrument noise and may produce erroneous increments in an assimilation system. The majority of the affected channels have weighting functions that peak in the upper troposphere (water vapor sensitive channels) and above (temperature sensitive channels) and are unlikely t o significantly impact tropospheric numerical weather prediction. However, the errors could be significant for other applications such as stratospheric analysis. Gradients in ozone and tropospheric temperature appear to be well captured by the analyses. In contrast, gradients in upper stratospheric and mesospheric temperature as well as upper tropospheric humidity are less well captured. This is likely due in part to a lack of data to specify these fields accurately in the analyses. Advanced new sounders, like AIRS, may help to better specify these fields in the future.

  16. What do we perceive from motion pictures? A computational account.

    PubMed

    Cheong, Loong-Fah; Xiang, Xu

    2007-06-01

    Cinema viewed from a location other than a canonical viewing point (CVP) presents distortions to the viewer in both its static and its dynamic aspects. Past works have investigated mainly the static aspect of this problem and attempted to explain why viewers still seem to perceive the scene very well. The dynamic aspect of depth perception, which is known as structure from motion, and its possible distortion, have not been well investigated. We derive the dynamic depth cues perceived by the viewer and use the so-called isodistortion framework to understand its distortion. The result is that viewers seated at a reasonably central position experience a shift in the intrinsic parameters of their visual systems. Despite this shift, the key properties of the perceived depths remain largely the same, being determined in the main by the accuracy to which extrinsic motion parameters can be recovered. For a viewer seated at a noncentral position and watching the movie screen at a slant angle, the view is related to the view at the CVP by a homography, resulting in various aberrations such as noncentral projection.

  17. Computational Investigations on the Aerodynamics of a Generic Car Model in Proximity to a Side Wall

    NASA Astrophysics Data System (ADS)

    Mallapragada, Srivatsa

    A moving road vehicle is subjected to many fluid interferences caused by a number of external agents apart from the vehicle itself. Vehicles moving in proximity to a side wall is an interesting aspect that has been little investigated in the literature. This is of great interest in motorsports, more specifically in NASCAR racing. The aim of this thesis is to develop a Computational Fluid Dynamics (CFD) model that can simulate the motion of a race car moving close to a side wall with an objective of understanding the influence of this side barrier on the overall aerodynamic characteristics of the vehicle, like the force and moment coefficients. Additionally, flow visualization tools are used to gain insights into the flow field and to explain the causes of the observed aerodynamic characteristics of the vehicle. This is accomplished by using a generic car model, a 25-degree slant angle Ahmed Body, in proximity to a side wall in a virtual wind tunnel where the vehicle body is allowed to move at constant velocity. This methodology is different from the traditional CFD approach where the air is blown over a stationary vehicle. The simulation process used in this thesis requires the use of a recently developed meshing methodology called the Overset mesh. All simulations were run using a commercial finite volume CFD code called StarCCM+ where the Unsteady Reynolds Averaged Navier-Stokes URANS fluid flow solver was used to model turbulence. However, the existing literature suggests that no URANS model can correctly predict the flow field around a 25-degree slant Ahmed body model; all models under-predict turbulence in the initial separated shear layer and over-predict the separation region. Subsequently, the first phase of this thesis involved the determination of a modeling methodology that can accurately predict the flow-field over a 25-degree Ahmed body. Two two-equation eddy-viscosity turbulence models, the AKN and SST preferred by many researchers for CFD simulations of massively separated flows, were tested. It turned out that only the latter with modified model coefficients was capable of reproducing the experimental results with a reasonable accuracy. Compared to the eddy viscosity CFD simulations of an isolated 25-degree slant angle Ahmed body seen in existing literature, the results presented in this thesis show significantly better correlations with experiments. The wall proximity studies show a strong influence of the presence of the wall on the overall aerodynamic characteristics of the vehicle body. When compared with the experimental studies, although both show similar trends, however, there exists a significant difference between the experimental and CFD predicted results which tend to worsen as one approaches the wall. These differences can be attributed to fact that the CFD emulation of the flow around the side-wall is more realistic compared to the experimental implementation.

  18. Muscular Dystrophy: Hope Through Research

    MedlinePlus

    ... waddling gait, frequent falls and clumsiness (especially when running), difficulty when rising from a sitting or lying ... to appear to be slanted and the shoulder blades to appear winged. Muscles in the lower extremities ...

  19. The statistics of local motion signals in naturalistic movies

    PubMed Central

    Nitzany, Eyal I.; Victor, Jonathan D.

    2014-01-01

    Extraction of motion from visual input plays an important role in many visual tasks, such as separation of figure from ground and navigation through space. Several kinds of local motion signals have been distinguished based on mathematical and computational considerations (e.g., motion based on spatiotemporal correlation of luminance, and motion based on spatiotemporal correlation of flicker), but little is known about the prevalence of these different kinds of signals in the real world. To address this question, we first note that different kinds of local motion signals (e.g., Fourier, non-Fourier, and glider) are characterized by second- and higher-order correlations in slanted spatiotemporal regions. The prevalence of local motion signals in natural scenes can thus be estimated by measuring the extent to which each of these correlations are present in space-time patches and whether they are coherent across spatiotemporal scales. We apply this technique to several popular movies. The results show that all three kinds of local motion signals are present in natural movies. While the balance of the different kinds of motion signals varies from segment to segment during the course of each movie, the overall pattern of prevalence of the different kinds of motion and their subtypes, and the correlations between them, is strikingly similar across movies (but is absent from white noise movies). In sum, naturalistic movies contain a diversity of local motion signals that occur with a consistent prevalence and pattern of covariation, indicating a substantial regularity of their high-order spatiotemporal image statistics. PMID:24732243

  20. The statistics of local motion signals in naturalistic movies.

    PubMed

    Nitzany, Eyal I; Victor, Jonathan D

    2014-04-14

    Extraction of motion from visual input plays an important role in many visual tasks, such as separation of figure from ground and navigation through space. Several kinds of local motion signals have been distinguished based on mathematical and computational considerations (e.g., motion based on spatiotemporal correlation of luminance, and motion based on spatiotemporal correlation of flicker), but little is known about the prevalence of these different kinds of signals in the real world. To address this question, we first note that different kinds of local motion signals (e.g., Fourier, non-Fourier, and glider) are characterized by second- and higher-order correlations in slanted spatiotemporal regions. The prevalence of local motion signals in natural scenes can thus be estimated by measuring the extent to which each of these correlations are present in space-time patches and whether they are coherent across spatiotemporal scales. We apply this technique to several popular movies. The results show that all three kinds of local motion signals are present in natural movies. While the balance of the different kinds of motion signals varies from segment to segment during the course of each movie, the overall pattern of prevalence of the different kinds of motion and their subtypes, and the correlations between them, is strikingly similar across movies (but is absent from white noise movies). In sum, naturalistic movies contain a diversity of local motion signals that occur with a consistent prevalence and pattern of covariation, indicating a substantial regularity of their high-order spatiotemporal image statistics.

  1. What Are the Types of Muscular Dystrophy?

    MedlinePlus

    ... or sitting position Waddle when walking Have difficulty running and jumping Have calf muscles that appear large ... that causes shoulders to appear slanted and shoulder blades to appear "winged" Impaired reflexes only at the ...

  2. Palpebral slant - eye

    MedlinePlus

    ... and syndromes. The most common of these is Down syndrome. People with Down syndrome often also have an epicanthal fold in the ... in some cases, it may be due to: Down syndrome Fetal alcohol syndrome Certain genetic disorders

  3. Uniqueness of boundary blow-up solutions on exterior domain of RN

    NASA Astrophysics Data System (ADS)

    Dong, Wei; Pang, Changci

    2007-06-01

    In this paper, we consider the existence and uniqueness of positive solutions of the degenerate logistic type elliptic equation where N[greater-or-equal, slanted]2, D[subset of]RN is a bounded domain with smooth boundary and a(x), b(x) are continuous functions on RN with b(x)[greater-or-equal, slanted]0, b(x)[not identical with]0. We show that under rather general conditions on a(x) and b(x) for large x, there exists a unique positive solution. Our results improve the corresponding ones in [W. Dong, Y. Du, Unbounded principal eigenfunctions and the logistic equation on RN, Bull. Austral. Math. Soc. 67 (2003) 413-427] and [Y. Du, L. Ma, Logistic type equations on RN by a squeezing method involving boundary blow-up solutions, J. London Math. Soc. (2) 64 (2001) 107-124].

  4. Optical disguising of orbital deformity with prism and cylinder lenses.

    PubMed

    Speculand, B; Jackson, M; James, D D; Rouse, C; Roberts, V G; Killingback, N; Stephens, C D

    1992-04-01

    This paper describes the way in which prism and cylinder lenses may be used to disguise orbital dystopia when the affected eye is blind. The lenses used can correct the height of the eye, the opening of the eyelids or the rotation or slant of the eye. Four cases are presented to illustrated this technique, which may be used either instead of, or as an adjunct to orbital surgery. An investigation of these effects is described using a mannikin head fitted with an optician's trial frame, with measuring by the reflex metrograph. This revealed that an inferiorly displaced eye may be elevated by 4 to 5 mm, that the vertical eyelid opening may be widened (or narrowed) by just under 20% and that an adverse slant of the eye may be rotated in either direction by about 4 degrees.

  5. Localized rotating convection with no-slip boundary conditions

    NASA Astrophysics Data System (ADS)

    Beaume, Cédric; Kao, Hsien-Ching; Knobloch, Edgar; Bergeon, Alain

    2013-12-01

    Localized patches of stationary convection embedded in a background conduction state are called convectons. Multiple states of this type have recently been found in two-dimensional Boussinesq convection in a horizontal fluid layer with stress-free boundary conditions at top and bottom, and rotating about the vertical. The convectons differ in their lengths and in the strength of the self-generated shear within which they are embedded, and exhibit slanted snaking. We use homotopic continuation of the boundary conditions to show that similar structures exist in the presence of no-slip boundary conditions at the top and bottom of the layer and show that such structures exhibit standard snaking. The homotopic continuation allows us to study the transformation from slanted snaking characteristic of systems with a conserved quantity, here the zonal momentum, to standard snaking characteristic of systems with no conserved quantity.

  6. Generalized Ellipsometry on Complex Nanostructures and Low-Symmetry Materials

    NASA Astrophysics Data System (ADS)

    Mock, Alyssa Lynn

    In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with monoclinic and triclinic symmetries. A model eigendielectric displacement vector approach is developed, described and utilized to characterize monoclinic materials. Materials are investigated in spectral regions spanning from the far-infrared to the vacuum ultraviolet. Examples are demonstrated for phonon mode determination in cadmium tungstate and yttrium silicate and for band-to-band transitions in gallia (beta-Ga2O3) single crystals. Furthermore, the anisotropic optical properties of an emerging class of spatially coherent heterostructure materials with nanostructure dimensions are investigated. The so-called anisotropic effective medium approximation for slanted columnar thin films is extended to the concept of slanted columnar heterostructure thin films as well as core-shell heterostructure thin films. Examples include the determination of band-to-band transitions, phonon modes and oxidation properties of cobalt-oxide core shell structures and gas-liquid-solid distribution during controlled adsorption of organic solvents in silicon slanted columnar thin films.

  7. Nitrogen dioxide observations from the Geostationary Trace ...

    EPA Pesticide Factsheets

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m  ×  250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm−2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with prelim

  8. [Effect of BMI and WHR on lumbar lordosis and sacrum slant angle in middle and elderly women].

    PubMed

    Guo, Jin-Ming; Zhang, Guo-Quan; Alimujiang

    2008-01-01

    To investigate the effect of body mass index (BMI) and waist hip ratio (WHR) on lumbar lordosis and sacrum slant angle in the patients with low back pain, and to discuss the theory of low back pain induced by obesity. The Roland Disability Questionnaire (RDQ) was answered by 98 middle and elderly women with low back pain, whose body height, body weight, waist circumference, and hip circumference were measured and used to calculate their MBI and WHR. According to BMI, all the cases were divided into normal, overweight and obesity groups. These cases were also divided into noncentral and central obesity groups according to WHR. The lateral X-ray films of the lumbar spine were studied by measuring LCI, Cobb angle, and SSA. The data of all groups were analyzed statistically. LCI, Cobb angle, SSA and RDQ scores in the overweight and obesity groups are significantly higher than those in the normal group. LCI, Cobb angle, SSA, and RDQ scores in the central obesity group are significantly higher than those in the noncentral obesity group. BMI exceeding 24 kg/m2 or WHR exceeding 0.85 may increase the measurements of Cobb angle, SSA and RDQ scores. Low back pain may occur because of overweight, obesity, or central obesity. The anatomy foundation of the increasing lumbar lordosis and sacrum slant angle may be the one of reasons of low back pain in obese person.

  9. Contrast computation methods for interferometric measurement of sensor modulation transfer function

    NASA Astrophysics Data System (ADS)

    Battula, Tharun; Georgiev, Todor; Gille, Jennifer; Goma, Sergio

    2018-01-01

    Accurate measurement of image-sensor frequency response over a wide range of spatial frequencies is very important for analyzing pixel array characteristics, such as modulation transfer function (MTF), crosstalk, and active pixel shape. Such analysis is especially significant in computational photography for the purposes of deconvolution, multi-image superresolution, and improved light-field capture. We use a lensless interferometric setup that produces high-quality fringes for measuring MTF over a wide range of frequencies (here, 37 to 434 line pairs per mm). We discuss the theoretical framework, involving Michelson and Fourier contrast measurement of the MTF, addressing phase alignment problems using a moiré pattern. We solidify the definition of Fourier contrast mathematically and compare it to Michelson contrast. Our interferometric measurement method shows high detail in the MTF, especially at high frequencies (above Nyquist frequency). We are able to estimate active pixel size and pixel pitch from measurements. We compare both simulation and experimental MTF results to a lens-free slanted-edge implementation using commercial software.

  10. AUV Positioning Method Based on Tightly Coupled SINS/LBL for Underwater Acoustic Multipath Propagation.

    PubMed

    Zhang, Tao; Shi, Hongfei; Chen, Liping; Li, Yao; Tong, Jinwu

    2016-03-11

    This paper researches an AUV (Autonomous Underwater Vehicle) positioning method based on SINS (Strapdown Inertial Navigation System)/LBL (Long Base Line) tightly coupled algorithm. This algorithm mainly includes SINS-assisted searching method of optimum slant-range of underwater acoustic propagation multipath, SINS/LBL tightly coupled model and multi-sensor information fusion algorithm. Fuzzy correlation peak problem of underwater LBL acoustic propagation multipath could be solved based on SINS positional information, thus improving LBL positional accuracy. Moreover, introduction of SINS-centered LBL locating information could compensate accumulative AUV position error effectively and regularly. Compared to loosely coupled algorithm, this tightly coupled algorithm can still provide accurate location information when there are fewer than four available hydrophones (or within the signal receiving range). Therefore, effective positional calibration area of tightly coupled system based on LBL array is wider and has higher reliability and fault tolerance than loosely coupled. It is more applicable to AUV positioning based on SINS/LBL.

  11. AUV Positioning Method Based on Tightly Coupled SINS/LBL for Underwater Acoustic Multipath Propagation

    PubMed Central

    Zhang, Tao; Shi, Hongfei; Chen, Liping; Li, Yao; Tong, Jinwu

    2016-01-01

    This paper researches an AUV (Autonomous Underwater Vehicle) positioning method based on SINS (Strapdown Inertial Navigation System)/LBL (Long Base Line) tightly coupled algorithm. This algorithm mainly includes SINS-assisted searching method of optimum slant-range of underwater acoustic propagation multipath, SINS/LBL tightly coupled model and multi-sensor information fusion algorithm. Fuzzy correlation peak problem of underwater LBL acoustic propagation multipath could be solved based on SINS positional information, thus improving LBL positional accuracy. Moreover, introduction of SINS-centered LBL locating information could compensate accumulative AUV position error effectively and regularly. Compared to loosely coupled algorithm, this tightly coupled algorithm can still provide accurate location information when there are fewer than four available hydrophones (or within the signal receiving range). Therefore, effective positional calibration area of tightly coupled system based on LBL array is wider and has higher reliability and fault tolerance than loosely coupled. It is more applicable to AUV positioning based on SINS/LBL. PMID:26978361

  12. Synthesis of atmospheric turbulence point spread functions by sparse and redundant representations

    NASA Astrophysics Data System (ADS)

    Hunt, Bobby R.; Iler, Amber L.; Bailey, Christopher A.; Rucci, Michael A.

    2018-02-01

    Atmospheric turbulence is a fundamental problem in imaging through long slant ranges, horizontal-range paths, or uplooking astronomical cases through the atmosphere. An essential characterization of atmospheric turbulence is the point spread function (PSF). Turbulence images can be simulated to study basic questions, such as image quality and image restoration, by synthesizing PSFs of desired properties. In this paper, we report on a method to synthesize PSFs of atmospheric turbulence. The method uses recent developments in sparse and redundant representations. From a training set of measured atmospheric PSFs, we construct a dictionary of "basis functions" that characterize the atmospheric turbulence PSFs. A PSF can be synthesized from this dictionary by a properly weighted combination of dictionary elements. We disclose an algorithm to synthesize PSFs from the dictionary. The algorithm can synthesize PSFs in three orders of magnitude less computing time than conventional wave optics propagation methods. The resulting PSFs are also shown to be statistically representative of the turbulence conditions that were used to construct the dictionary.

  13. A Basic Fourier Transform Pair for Slant Range-Doppler Modeling of Moving Scatterers for SAR Applications: Theory

    DTIC Science & Technology

    2007-11-01

    applications: theory Ramin Sabry; DRDC Ottawa TM 2007-289; R & D pour la défense Canada – Ottawa; Novembre 2007. Introduction : Le radar à synthèse...P r R j r R j kR r R j x k k m                                 ( 13 ) 0 1 2, ,C C C in (4),(6) and ( 13 ) are...in (2) defined by (20)-(22) with , ,( )x y x yx  . DRDC Ottawa TM 2007-289 9 Using ( 13 ), the system Green’s function for a uniformly moving rigid

  14. On Sound Reflection in Superfluid

    NASA Astrophysics Data System (ADS)

    Melnikovsky, L. A.

    2008-02-01

    We consider reflection of first and second sound waves by a rigid flat wall in superfluid. A nontrivial dependence of the reflection coefficients on the angle of incidence is obtained. Sound conversion is predicted at slanted incidence.

  15. Dynamics and statistics of the Fermi-Pasta-Ulam β-model with different ranges of particle interactions

    NASA Astrophysics Data System (ADS)

    Christodoulidi, Helen; Bountis, Tassos; Tsallis, Constantino; Drossos, Lambros

    2016-12-01

    In the present work we study the Fermi-Pasta-Ulam (FPU) β -model involving long-range interactions (LRI) in both the quadratic and quartic potentials, by introducing two independent exponents {α1} and {α2} respectively, which make the forces decay with distance r. Our results demonstrate that weak chaos, in the sense of decreasing Lyapunov exponents, and q-Gaussian probability density functions (pdfs) of sums of the momenta, occurs only when long-range interactions are included in the quartic part. More importantly, for 0≤slant {α2}<1 , we obtain extrapolated values for q\\equiv {{q}∞}>1 , as N\\to ∞ , suggesting that these pdfs persist in that limit. On the other hand, when long-range interactions are imposed only on the quadratic part, strong chaos and purely Gaussian pdfs are always obtained for the momenta. We have also focused on similar pdfs for the particle energies and have obtained q E -exponentials (with q E   >  1) when the quartic-term interactions are long-ranged, otherwise we get the standard Boltzmann-Gibbs weight, with q  =  1. The values of q E coincide, within small discrepancies, with the values of q obtained by the momentum distributions.

  16. The Konus-Wind Catalog of Gamma-Ray Bursts with Known Redshifts. I. Bursts Detected in the Triggered Mode

    NASA Astrophysics Data System (ADS)

    Tsvetkova, A.; Frederiks, D.; Golenetskii, S.; Lysenko, A.; Oleynik, P.; Pal'shin, V.; Svinkin, D.; Ulanov, M.; Cline, T.; Hurley, K.; Aptekar, R.

    2017-12-01

    In this catalog, we present the results of a systematic study of gamma-ray bursts (GRBs) with reliable redshift estimates detected in the triggered mode of the Konus-Wind (KW) experiment during the period from 1997 February to 2016 June. The sample consists of 150 GRBs (including 12 short/hard bursts) and represents the largest set of cosmological GRBs studied to date over a broad energy band. From the temporal and spectral analyses of the sample, we provide the burst durations, the spectral lags, the results of spectral fits with two model functions, the total energy fluences, and the peak energy fluxes. Based on the GRB redshifts, which span the range 0.1≤slant z≤slant 5, we estimate the rest-frame, isotropic-equivalent energy, and peak luminosity. For 32 GRBs with reasonably constrained jet breaks, we provide the collimation-corrected values of the energetics. We consider the behavior of the rest-frame GRB parameters in the hardness-duration and hardness-intensity planes, and confirm the “Amati” and “Yonetoku” relations for Type II GRBs. The correction for the jet collimation does not improve these correlations for the KW sample. We discuss the influence of instrumental selection effects on the GRB parameter distributions and estimate the KW GRB detection horizon, which extends to z˜ 16.6, stressing the importance of GRBs as probes of the early universe. Accounting for the instrumental bias, we estimate the KW GRB luminosity evolution, luminosity and isotropic-energy functions, and the evolution of the GRB formation rate, which are in general agreement with those obtained in previous studies.

  17. Utilization of O4 slant column density to derive aerosol layer height from a space-borne UV-visible hyperspectral sensor: sensitivity and case study

    NASA Astrophysics Data System (ADS)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-02-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 1040 molecules2 cm-5, to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 % of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  18. Reduction of the Mg acceptor activation energy in GaN, AlN, Al0.83Ga0.17N and MgGa δ-doping (AlN)5/(GaN)1: the strain effect

    NASA Astrophysics Data System (ADS)

    Jiang, Xin-He; Shi, Jun-Jie; Zhang, Min; Zhong, Hong-Xia; Huang, Pu; Ding, Yi-Min; He, Ying-Ping; Cao, Xiong

    2015-12-01

    To resolve the p-type doping problem of Al-rich AlGaN alloys, we investigate the influence of biaxial and hydrostatic strains on the activation energy, formation energy and band gap of Mg-doped GaN, AlN, Al0.83Ga0.17N disorder alloy and (AlN)5/(GaN)1 superlattice based on first-principles calculations by combining the standard DFT and hybrid functional. We find that the Mg acceptor activation energy {{E}\\text{A}} , the formation energy {{E}\\text{f}} and the band gap {{E}\\text{g}} decrease with increasing the strain ɛ. The hydrostatic strain has a more remarkable impact on {{E}\\text{g}} and {{E}\\text{A}} than the biaxial strain. Both {{E}\\text{A}} and {{E}\\text{g}} have a linear dependence on the hydrostatic strain. For the biaxial strain, {{E}\\text{g}} shows a parabolic dependence on ɛ if \\varepsilon ≤slant 0 while it becomes linear if \\varepsilon ≥slant 0 . In GaN and (AlN)5/(GaN)1, {{E}\\text{A}} parabolically depends on the biaxial compressive strain and linearly depends on the biaxial tensible strain. However, the dependence is approximately linear over the whole biaxial strain range in AlN and Al0.83Ga0.17N. The Mg acceptor activation energy in (AlN)5/(GaN)1 can be reduced from 0.26 eV without strain to 0.16 (0.22) eV with the hydrostatic (biaxial) tensible strain 3%.

  19. Planet-driven Spiral Arms in Protoplanetary Disks. II. Implications

    NASA Astrophysics Data System (ADS)

    Bae, Jaehan; Zhu, Zhaohuan

    2018-06-01

    We examine whether various characteristics of planet-driven spiral arms can be used to constrain the masses of unseen planets and their positions within their disks. By carrying out two-dimensional hydrodynamic simulations varying planet mass and disk gas temperature, we find that a larger number of spiral arms form with a smaller planet mass and a lower disk temperature. A planet excites two or more spiral arms interior to its orbit for a range of disk temperatures characterized by the disk aspect ratio 0.04≤slant {(h/r)}p≤slant 0.15, whereas exterior to a planet’s orbit multiple spiral arms can form only in cold disks with {(h/r)}p≲ 0.06. Constraining the planet mass with the pitch angle of spiral arms requires accurate disk temperature measurements that might be challenging even with ALMA. However, the property that the pitch angle of planet-driven spiral arms decreases away from the planet can be a powerful diagnostic to determine whether the planet is located interior or exterior to the observed spirals. The arm-to-arm separations increase as a function of planet mass, consistent with previous studies; however, the exact slope depends on disk temperature as well as the radial location where the arm-to-arm separations are measured. We apply these diagnostics to the spiral arms seen in MWC 758 and Elias 2–27. As shown in Bae et al., planet-driven spiral arms can create concentric rings and gaps, which can produce a more dominant observable signature than spiral arms under certain circumstances. We discuss the observability of planet-driven spiral arms versus rings and gaps.

  20. Utilization of O4 Slant Column Density to Derive Aerosol Layer Height from a Space-Borne UV-Visible Hyperspectral Sensor: Sensitivity and Case Study

    NASA Technical Reports Server (NTRS)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-01-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(sup 40) molecules (sup 2) per centimeters(sup -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nanometers, the O4 absorption band at 477 nanometers is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nanometers is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 meters for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 percent of retrieved aerosol effective heights are within the error range of 1 kilometer compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  1. Testing the validity of the phenomenological gravitational waveform models for nonspinning binary black hole searches at low masses

    NASA Astrophysics Data System (ADS)

    Cho, Hee-Suk

    2015-11-01

    The phenomenological gravitational waveform models, which we refer to as PhenomA, PhenomB, and PhenomC, generate full inspiral, merger, and ringdown (IMR) waveforms of coalescing binary back holes (BBHs). These models are defined in the Fourier domain, thus can be used for fast matched filtering in the gravitational wave search. PhenomA has been developed for nonspinning BBH waveforms, while PhenomB and PhenomC were designed to model the waveforms of BBH systems with nonprecessing (aligned) spins, but can also be used for nonspinning systems. In this work, we study the validity of the phenomenological models for nonspinning BBH searches at low masses, {m}{1,2}≥slant 4{M}⊙ and {m}1+{m}2\\equiv M≤slant 30{M}⊙ , with Advanced LIGO. As our complete signal waveform model, we adopt EOBNRv2, which is a time-domain IMR waveform model. To investigate the search efficiency of the phenomenological template models, we calculate fitting factors (FFs) by exploring overlap surfaces. We find that only PhenomC is valid to obtain FFs better than 0.97 in the mass range of M\\lt 15{M}⊙ . Above 15{M}⊙ , PhenomA is most efficient in symmetric mass region, PhenomB is most efficient in highly asymmetric mass region, and PhenomC is most efficient in the intermediate region. Specifically, we propose an effective phenomenological template family that can be constructed by employing the phenomenological models in four subregions individually. We find that FFs of the effective templates are better than 0.97 in our entire mass region and mostly greater than 0.99.

  2. Utilization of O4 Slant Column Density to Derive Aerosol Layer Height from a Spaceborne UV-Visible Hyperspectral Sensor: Sensitivity and Case Study

    NASA Technical Reports Server (NTRS)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-01-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the Differential Optical Absorption Spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(exp 40) sq molecules cm(exp -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80% of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  3. A Census of Large-scale (≥10 PC), Velocity-coherent, Dense Filaments in the Northern Galactic Plane: Automated Identification Using Minimum Spanning Tree

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Testi, Leonardo; Burkert, Andreas; Walmsley, C. Malcolm; Beuther, Henrik; Henning, Thomas

    2016-09-01

    Large-scale gaseous filaments with lengths up to the order of 100 pc are on the upper end of the filamentary hierarchy of the Galactic interstellar medium (ISM). Their association with respect to the Galactic structure and their role in Galactic star formation are of great interest from both an observational and theoretical point of view. Previous “by-eye” searches, combined together, have started to uncover the Galactic distribution of large filaments, yet inherent bias and small sample size limit conclusive statistical results from being drawn. Here, we present (1) a new, automated method for identifying large-scale velocity-coherent dense filaments, and (2) the first statistics and the Galactic distribution of these filaments. We use a customized minimum spanning tree algorithm to identify filaments by connecting voxels in the position-position-velocity space, using the Bolocam Galactic Plane Survey spectroscopic catalog. In the range of 7\\buildrel{\\circ}\\over{.} 5≤slant l≤slant 194^\\circ , we have identified 54 large-scale filaments and derived mass (˜ {10}3{--}{10}5 {M}⊙ ), length (10-276 pc), linear mass density (54-8625 {M}⊙ pc-1), aspect ratio, linearity, velocity gradient, temperature, fragmentation, Galactic location, and orientation angle. The filaments concentrate along major spiral arms. They are widely distributed across the Galactic disk, with 50% located within ±20 pc from the Galactic mid-plane and 27% run in the center of spiral arms. An order of 1% of the molecular ISM is confined in large filaments. Massive star formation is more favorable in large filaments compared to elsewhere. This is the first comprehensive catalog of large filaments that can be useful for a quantitative comparison with spiral structures and numerical simulations.

  4. Training for Today's Office

    ERIC Educational Resources Information Center

    Wise, Elva Lea

    1974-01-01

    After observing several large company offices in Denver in operation, the author suggests course content slantings and recommendations to better meet office requirements of today and tomorrow. Recommendations are categorized according to clerical practice, data processing, shorthand, and typewriting. (EA)

  5. Fundamentals of computer graphics for artists and designers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, B.A.

    1986-01-01

    This tutorial provides introductory information about computer graphics slanted towards novice users from artist/designer backgrounds. The goal is to describe the applications and terminology sufficiently to provide a base of knowledge for discussions with vendors.

  6. International Conference on Antennas and Propagation (ICAP 89), 6th, University of Warwick, Coventry, England, Apr. 4-7, 1989, Proceedings. Part 1 - Antennas. Part 2 - Propagation

    NASA Astrophysics Data System (ADS)

    Various papers on antennas and propagation are presented. The general topics addressed include: phased arrays; reflector antennas; slant path propagation; propagation data for HF radio systems performance; satellite and earth station antennas; radio propagation in the troposphere; propagation data for HF radio systems performance; microstrip antennas; rain radio meteorology; conformal antennas; horns and feed antennas; low elevation slant path propagation; radio millimeter wave propagation; array antennas; propagation effects on satellite mobile, satellite broadcast, and aeronautical systems; ionospheric irregularities and motions; adaptive antennas; transient response; measurement techniques; clear air radio meteorology; ionospheric and propagation modeling; millimeter wave and lens antennas; electromagnetic theory and numerical techniques; VHF propagation modeling, system planning methods; radio propagation theoretical techniques; scattering and diffraction; transhorizon rain scatter effects; ELF-VHF and broadcast antennas; clear air millimeter propagation; scattering and frequency-selective surfaces; antenna technology; clear air transhorizon propagation.

  7. Three-dimensional modeling of light rays on the surface of a slanted lenticular array for autostereoscopic displays.

    PubMed

    Jung, Sung-Min; Kang, In-Byeong

    2013-08-10

    In this paper, we developed an optical model describing the behavior of light at the surface of a slanted lenticular array for autostereoscopic displays in three dimensions and simulated the optical characteristics of autostereoscopic displays using the Monte Carlo method under actual design conditions. The behavior of light is analyzed by light rays for selected inclination and azimuthal angles; numerical aberrations and conditions of total internal reflection for the lenticular array were found. The intensity and the three-dimensional crosstalk distributions calculated from our model coincide very well with those from conventional design software, and our model shows highly enhanced calculation speed that is 67 times faster than that of the conventional software. From the results, we think that the optical model is very useful for predicting the optical characteristics of autostereoscopic displays with enhanced calculation speed.

  8. The slant of the forehead as a craniofacial feature of impulsiveness.

    PubMed

    Guerrero-Apolo, J David; Navarro-Pastor, J Blas; Bulbena-Vilarrasa, Antonio; Gabarre-Mir, Julián

    2018-03-12

    Impulsiveness has been the subject of much research, but little is known about the possible relationship between craniofacial anatomy and impulsiveness. The present study was designed to investigate the relationship between one aspect of craniofacial structure (the angle of inclination of the forehead) and impulsiveness. Photographs in profile were obtained from 131 volunteers who had been fined for driving at high speed and were undergoing a court-mandated driving license point-recovery course. They completed the Barratt Impulsiveness Scale (BIS-11), the Impulsive Behavior Scale (UPPS-P), and Zuckerman's Sensation Seeking Scale (V). The angle of the slant of the forehead was measured with a photographic support and a protractor. High positive concordance was found between forehead inclination and 14 out of the 15 impulsiveness factors studied. The angle of inclination of the forehead was significantly associated with self-reported impulsiveness in this sample of traffic violators.

  9. Apparatus and method for variable angle slant hole collimator

    DOEpatents

    Lee, Seung Joon; Kross, Brian J.; McKisson, John E.

    2017-07-18

    A variable angle slant hole (VASH) collimator for providing collimation of high energy photons such as gamma rays during radiological imaging of humans. The VASH collimator includes a stack of multiple collimator leaves and a means of quickly aligning each leaf to provide various projection angles. Rather than rotate the detector around the subject, the VASH collimator enables the detector to remain stationary while the projection angle of the collimator is varied for tomographic acquisition. High collimator efficiency is achieved by maintaining the leaves in accurate alignment through the various projection angles. Individual leaves include unique angled cuts to maintain a precise target collimation angle. Matching wedge blocks driven by two actuators with twin-lead screws accurately position each leaf in the stack resulting in the precise target collimation angle. A computer interface with the actuators enables precise control of the projection angle of the collimator.

  10. Effects of annealing and conformal alumina passivation on anisotropy and hysteresis of magneto-optical properties of cobalt slanted columnar thin films

    NASA Astrophysics Data System (ADS)

    Briley, Chad; Mock, Alyssa; Korlacki, Rafał; Hofmann, Tino; Schubert, Eva; Schubert, Mathias

    2017-11-01

    We present magneto-optical dielectric tensor data of cobalt and cobalt oxide slanted columnar thin films obtained by vector magneto-optical generalized ellipsometry. Room-temperature hysteresis magnetization measurements were performed in longitudinal and polar Kerr geometries on samples prior to and after a heat treatment process with and without a conformal Al2O3 passivation coating. The samples have been characterized by generalized ellipsometry, scanning electron microscopy, and Raman spectroscopy in conjuncture with density functional theory. We observe strongly anisotropic hysteresis behaviors, which depend on the nanocolumn and magnetizing field orientations. We find that deposited cobalt films that have been exposed to heat treatment and subsequent atmospheric oxidation into Co3O4, when not conformally passivated, reveal no measurable magneto-optical properties while cobalt films with passivation coatings retain highly anisotropic magneto-optical properties.

  11. Rha1, a new mutant of Arabidopsis disturbed in root slanting, gravitropism and auxin physiology.

    PubMed

    Fortunati, Alessio; Piconese, Silvia; Tassone, Paola; Ferrari, Simone; Migliaccio, Fernando

    2008-11-01

    A new Arabidopsis mutant is characterized (rha1) that shows, in the roots, reduced right-handed slanting, reduced gravitropism and resistance to 2,4-D, TIBA, NPA and ethylene. It also shows reduced length in the shoot and root, reduced number of lateral roots and shorter siliques. The gene was cloned through TAIL-PCR and resulted in a HSF. Because none of the known gravitropic and auxinic mutants result from damage in a HSF, rha1 seems to belong to a new class of this group of mutants. Quantitative PCR analysis showed that the expression of the gene is increased by heat and cold shock, and by presence of 2,4-D in the media. Study of the expression through the GUS reporter gene revealed increased expression in clinostated and gravistimulated plants, but only in adult tissues, and not in the apical meristems of shoots and roots.

  12. Rha1, a new mutant of Arabidopsis disturbed in root slanting, gravitropism and auxin physiology

    PubMed Central

    Fortunati, Alessio; Piconese, Silvia; Tassone, Paola; Ferrari, Simone

    2008-01-01

    A new Arabidopsis mutant is characterized (rha1) that shows, in the roots, reduced right-handed slanting, reduced gravitropism and resistance to 2,4-D, TIBA, NPA and ethylene. It also shows reduced length in the shoot and root, reduced number of lateral roots and shorter siliques. The gene was cloned through TAIL-PCR and resulted in a HSF. Because none of the known gravitropic and auxinic mutants result from damage in a HSF, rha1 seems to belong to a new class of this group of mutants. Quantitative PCR analysis showed that the expression of the gene is increased by heat and cold shock, and by presence of 2,4-D in the media. Study of the expression through the GUS reporter gene revealed increased expression in clinostated and gravistimulated plants, but only in adult tissues, and not in the apical meristems of shoots and roots. PMID:19704429

  13. High resolution PET breast imager with improved detection efficiency

    DOEpatents

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  14. Effects of cue types on sex differences in human spatial memory.

    PubMed

    Chai, Xiaoqian J; Jacobs, Lucia F

    2010-04-02

    We examined the effects of cue types on human spatial memory in 3D virtual environments adapted from classical animal and human tasks. Two classes of cues of different functions were investigated: those that provide directional information, and those that provide positional information. Adding a directional cue (geographical slant) to the spatial delayed-match-to-sample task improved performance in males but not in females. When the slant directional cue was removed in a hidden-target location task, male performance was impaired but female performance was unaffected. The removal of positional cues, on the other hand, impaired female performance but not male performance. These results are consistent with results from laboratory rodents and thus support the hypothesis that sex differences in spatial memory arise from the dissociation between a preferential reliance on directional cues in males and on positional cues in females. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Light extraction efficiency of GaN-based LED with pyramid texture by using ray path analysis.

    PubMed

    Pan, Jui-Wen; Wang, Chia-Shen

    2012-09-10

    We study three different gallium-nitride (GaN) based light emitting diode (LED) cases based on the different locations of the pyramid textures. In case 1, the pyramid texture is located on the sapphire top surface, in case 2, the pyramid texture is locate on the P-GaN top surface, while in case 3, the pyramid texture is located on both the sapphire and P-GaN top surfaces. We study the relationship between the light extraction efficiency (LEE) and angle of slant of the pyramid texture. The optimization of total LEE was highest for case 3 among the three cases. Moreover, the seven escape paths along which most of the escaped photon flux propagated were selected in a simulation of the LEDs. The seven escape paths were used to estimate the slant angle for the optimization of LEE and to precisely analyze the photon escape path.

  16. Holographic humidity response of slanted gratings in moisture-absorbing acrylamide photopolymer.

    PubMed

    Yu, Dan; Liu, Hongpeng; Mao, Dongyao; Geng, Yaohui; Wang, Weibo; Sun, Liping; Lv, Jiang

    2015-08-01

    Holographic humidity response is characterized in detail using transmission and reflection geometry in moisture-absorbing acrylamide photopolymer. The diffraction spectrum and its temporal evolution at various relative humidity are measured and analyzed. The quantitative relations between relative humidity and holographic properties of slanted gratings are determined. The responsibility of holographic gratings for various relative humidity is observed by the spectrum response of gratings. The extracted humidity constants reflect the applicability of reflection and transmission gratings at different humidity regions. The humidity reversibility experiment is achieved for confirming repeatability of the sensor. These experiments provide a probability for improving the applicability of a holographic humidity sensor. Finally, the extended diffusion model is derived by introducing the expansion coefficient to describe the dynamic swelling process. This work can accelerate development of the holographic sensor and provide a novel strategy for exploring the swelling mechanism of photopolymer.

  17. Use of Total Electron Content data to analyze ionosphere electron density gradients

    NASA Astrophysics Data System (ADS)

    Nava, B.; Radicella, S. M.; Leitinger, R.; Coisson, P.

    In presence of electron density gradients the thin shell approximation for the ionosphere used together with a simple mapping function to convert slant Total Electron Content TEC to vertical TEC could lead to TEC conversion errors Therefore these mapping function errors can be used to identify the effects of the electron density gradients in the ionosphere In the present work high precision GPS derived slant TEC data have been used to investigate the effects of the electron density gradients in the middle and low latitude ionosphere under geomagnetic quiet and disturbed conditions In particular the data corresponding to the geographic area of the American sector for the days 5-7 April 2000 have been used to perform a complete analysis of mapping function errors based on the coinciding pierce point technique The results clearly illustrate the electron density gradient effects according to the locations considered and to the actual levels of disturbance of the ionosphere

  18. Effect of Axial Force on the Performance of Micromachined Vibratory Rate Gyroscopes

    PubMed Central

    Hou, Zhanqiang; Xiao, Dingbang; Wu, Xuezhong; Dong, Peitao; Chen, Zhihua; Niu, Zhengyi; Zhang, Xu

    2011-01-01

    It is reported in the published literature that the resonant frequency of a silicon micromachined gyroscope decreases linearly with increasing temperature. However, when the axial force is considerable, the resonant frequency might increase as the temperature increases. The axial force is mainly induced by thermal stress due to the mismatch between the thermal expansion coefficients of the structure and substrate. In this paper, two types of micromachined suspended vibratory gyroscopes with slanted beams were proposed to evaluate the effect of the axial force. One type was suspended with a clamped-free (C-F) beam and the other one was suspended with a clamped-clamped (C-C) beam. Their drive modes are the bending of the slanted beam, and their sense modes are the torsion of the slanted beam. The relationships between the resonant frequencies of the two types were developed. The prototypes were packaged by vacuum under 0.1 mbar and an analytical solution for the axial force effect on the resonant frequency was obtained. The temperature dependent performances of the operated mode responses of the micromachined gyroscopes were measured. The experimental values of the temperature coefficients of resonant frequencies (TCF) due to axial force were 101.5 ppm/°C for the drive mode and 21.6 ppm/°C for the sense mode. The axial force has a great influence on the modal frequency of the micromachined gyroscopes suspended with a C-C beam, especially for the flexure mode. The quality factors of the operated modes decreased with increasing temperature, and changed drastically when the micromachined gyroscopes worked at higher temperatures. PMID:22346578

  19. Crack-tip-opening angle measurements and crack tunneling under stable tearing in thin sheet 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Sutton, M. A.

    1993-01-01

    The stable tearing behavior of thin sheets 2024-T3 aluminum alloy was studied for middle crack tension specimens having initial cracks that were: flat cracks (low fatigue stress) and 45 degrees through-thickness slant cracks (high fatigue stress). The critical crack-tip-opening angle (CTOA) values during stable tearing were measured by two independent methods, optical microscopy and digital image correlation. Results from the two methods agreed well. The CTOA measurements and observations of the fracture surfaces showed that the initial stable tearing behavior of low and high fatigue stress tests is significantly different. The cracks in the low fatigue stress tests underwent a transition from flat-to-slant crack growth, during which the CTOA values were high and significant crack tunneling occurred. After crack growth equal to about the thickness, CTOA reached a constant value of 6 deg and after crack growth equal to about twice the thickness, crack tunneling stabilized. The initial high CTOA values, in the low fatigue crack tests, coincided with large three-dimensional crack front shape changes due to a variation in the through-thickness crack tip constraint. The cracks in the high fatigue stress tests reach the same constant CTOA value after crack growth equal to about the thickness, but produced only a slightly higher CTOA value during initial crack growth. For crack growth on the 45 degree slant, the crack front and local field variables are still highly three-dimensional. However, the constant CTOA values and stable crack front shape may allow the process to be approximated with two-dimensional models.

  20. State-Level Point-of-Sale Tobacco News Coverage and Policy Progression Over a 2-Year Period.

    PubMed

    Myers, Allison E; Southwell, Brian G; Ribisl, Kurt M; Moreland-Russell, Sarah; Bowling, J Michael; Lytle, Leslie A

    2018-01-01

    Mass media content may play an important role in policy change. However, the empirical relationship between media advocacy efforts and tobacco control policy success has rarely been studied. We examined the extent to which newspaper content characteristics (volume, slant, frame, source, use of evidence, and degree of localization) that have been identified as important in past descriptive studies were associated with policy progression over a 2-year period in the context of point-of-sale (POS) tobacco control. We used regression analyses to test the relationships between newspaper content and policy progression from 2012 to 2014. The dependent variable was the level of implementation of state-level POS tobacco control policies at Time 2. Independent variables were newspaper article characteristics (volume, slant, frame, source, use of evidence, and degree of localization) and were collected via content analysis of the articles. State-level policy environment contextual variables were examined as confounders. Positive, significant bivariate relationships exist between characteristics of news content (e.g., high overall volume, public health source present, local quote and local angle present, and pro-tobacco control slant present) and Time 2 POS score. However, in a multivariate model controlling for other factors, significant relationships did not hold. Newspaper coverage can be a marker of POS policy progression. Whether media can influence policy implementation remains an important question. Future work should continue to tease out and confirm the unique characteristics of media content that are most associated with subsequent policy progression, in order to inform media advocacy efforts.

  1. The Dynamical History of 2060 Chiron and Its Proposed Ring System

    NASA Astrophysics Data System (ADS)

    Wood, Jeremy; Horner, Jonti; Hinse, Tobias C.; Marsden, Stephen C.

    2018-01-01

    The surprising discovery of a ring system around the Centaur 10199 Chariklo in 2013 led to a reanalysis of archival stellar occultation data for the Centaur 2060 Chiron by Ortiz et al. One possible interpretation of that data is that a system of rings exists around Chiron. In this work, we study the dynamical history of the proposed Chiron ring system by integrating nearly 36,000 clones of the Centaur backward in time for 100 Myr under the influence of the Sun and the four giant planets. The severity of all close encounters between the clones and planets while the clones are in the Centaur region is recorded, along with the mean time between close encounters. We find that severe and extreme close encounters are very rare, making it possible that the Chiron ring system has remained intact since its injection into the Centaur region, which we find likely occurred within the past 8.5 Myr. Our simulations yield a backward dynamical half-life for Chiron of 0.7 Myr. The dynamical classes of a sample of clones are found. It is found that, on average, the Centaur lifetimes of resonance hopping clones are twice those of random-walk clones because of resonance sticking in mean motion resonances. In addition, we present MEGNO and chaotic lifetime maps of the region bound by 13 au ≤slant a≤slant 14 au and e≤slant 0.5. We confirm that the current mean orbital parameters of Chiron are located in a highly chaotic region of a - e phase space.

  2. Evaluation of different approaches to modeling the second-order ionospheric delay on GPS measurements

    NASA Astrophysics Data System (ADS)

    Garcia-Fernandez, M.; Desai, S. D.; Butala, M. D.; Komjathy, A.

    2013-12-01

    This work evaluates various approaches to compute the second order ionospheric correction (SOIC) to Global Positioning System (GPS) measurements. When estimating the reference frame using GPS, applying this correction is known to primarily affect the realization of the origin of the Earth's reference frame along the spin axis (Z coordinate). Therefore, the Z translation relative to the International Terrestrial Reference Frame 2008 is used as the metric to evaluate various published approaches to determining the slant total electron content (TEC) for the SOIC: getting the slant TEC from GPS measurements, and using the vertical total electron content (TEC) given by a Global Ionospheric Model (GIM) to transform it to slant TEC via a mapping function. All of these approaches agree to 1 mm if the ionospheric shell height needed in GIM-based approaches is set to 600 km. The commonly used shell height of 450 km introduces an offset of 1 to 2 mm. When the SOIC is not applied, the Z axis translation can be reasonably modeled with a ratio of +0.23 mm/TEC units of the daily median GIM vertical TEC. Also, precise point positioning (PPP) solutions (positions and clocks) determined with and without SOIC differ by less than 1 mm only if they are based upon GPS orbit and clock solutions that have consistently applied or not applied the correction, respectively. Otherwise, deviations of few millimeters in the north component of the PPP solutions can arise due to inconsistencies with the satellite orbit and clock products, and those deviations exhibit a dependency on solar cycle conditions.

  3. Mid-range sidescan-sonar images covering parts of proposed tracts for OCS lease sale 56 and contiguous areas, Manteo, Cape Fear, and adjacent quadrangles off North Carolina

    USGS Publications Warehouse

    Popenoe, Peter; Cashman, K.V.; Chayes, Dale; Ryan, William B. F.

    1981-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Bureau of Land Management (BLM) and the Lamont-Doherty Geological Observatory (LDGO), collected 335 km of mid-range sidescan-sonar data in some of the tracts proposed for inclusion in Federal OCS (Outer Continental Shelf) Oil and Gas Lease Sale 56 and in some contiguous areas (R.V. GYRE, September 18-25, 1980 [GYRE 80-9, leg 1]). The data were collected by use of the Sea Mark I mid-range sidescan-sonar system designed by International Submarine Technology, Ltd. (IST). This system surveys a swath having a width of approximately 2-1/2 km on each side of the deep-towed fish. Transducers were towed about 300 m above the bottom on a neutrally bouyant vehicle at a speed of 1-1/2 to 2 knots. Transducers were pulsed at 4-second intervals at a frequency of 27 kHz on one side and 30 kHz on the other. Data recorded on seven EPC recorders aboard ship included slant-range corrected port channel, starboard channel, and port and starboard channels; uncorrected port channel, starboard channel, and port and starboard channels, and a 3.5-kHz tuned-transducer record of the bottom. Fish height or the altitude above the bottom was recorded on a strip-chart recorder. Distance of the fish from the ship (slant range) was recorded by use of a sled-mounted 4.5-kHz transducer.Data recorded on sonograms lagged the 3.5-kHz tuned-transducer record and ship navigational fix by as much as 1 hour (2 km) owing to tow-cable length (up to 5 km). Navigation of the ship was by Loran-C at a 5-minute fix interval, supplemented by satellite fixes.Data are of excellent quality and bottom features several meters high and about 6-12 m wide can be identified. Figures 1 and 2 show the location of track lines in the Manteo (NI 18-2) quadrangle just east of Cape Hatteras where the upper slope within proposed lease tract areas was surveyed. Figures 3 and 4 show track lines in the Cape Fear (NI 18-7) and contiguous quandrangles where data were recorded over the outer Blake Plateau, the Continental Slope, and the upper Continental Rise.The original records may be examined at the U.S. Survey, Woods Hole, MA 02543. Microfilm copies of the data are available for purchase only from the National Geophysical and Solar-Terrestrial Data c,nt er, NOAA/EDIS/NGSDC, Code D621, 325 Broadway, Boulder, CO 80303 (303-497-6338).

  4. Write On with Continuous Stroke Point.

    ERIC Educational Resources Information Center

    Thurber, Donald N.

    1983-01-01

    The continuous stroke print program is intended to lead up to cursive writing by teaching printing using a consistent letter slant and a flowing rhythm absent in the traditional ball-stick method. This approach is also helpful in reading. (CL)

  5. Non-pumping reactive wells filled with mixing nano and micro zero-valent iron for nitrate removal from groundwater: Vertical, horizontal, and slanted wells

    NASA Astrophysics Data System (ADS)

    Hosseini, Seiyed Mossa; Tosco, Tiziana; Ataie-Ashtiani, Behzad; Simmons, Craig T.

    2018-03-01

    Non-pumping reactive wells (NPRWs) filled by zero-valent iron (ZVI) can be utilized for the remediation of groundwater contamination of deep aquifers. The efficiency of NPRWs mainly depends on the hydraulic contact time (HCT) of the pollutant with the reactive materials, the extent of the well capture zone (Wcz), and the relative hydraulic conductivity of aquifer and reactive material (Kr). We investigated nitrate removal from groundwater using NPRWs filled by ZVI (in nano and micro scales) and examined the effect of NPRWs orientations (i.e. vertical, slanted, and horizontal) on HCT and Wcz. The dependence of HCT on Wcz for different Kr values was derived theoretically for a homogeneous and isotropic aquifer, and verified using particle tracking simulations performed using the semi-analytical particle tracking and pathlines model (PMPATH). Nine batch experiments were then performed to investigate the impact of mixed nano-ZVI, NZVI (0 to 2 g l-1) and micro-ZVI, MZVI (0 to 4 g l-1) on the nitrate removal rate (with initial NO3-=132 mg l-1). The NPRWs system was tested in a bench-scale sand medium (60 cm length × 40 cm width × 25 cm height) for three orientations of NPRWs (vertical, horizontal, and slanted with inclination angle of 45°). A mixture of nano/micro ZVI, was used, applying constant conditions of pore water velocity (0.024 mm s-1) and initial nitrate concentration (128 mg l-1) for five pore volumes. The results of the batch tests showed that mixing nano and micro Fe0 outperforms these individual materials in nitrate removal rates. The final products of nitrate degradation in both batch and bench-scale experiments were NO2-, NH4+, and N2(gas). The results of sand-box experiments indicated that the slanted NPRWs have a higher nitrate reduction rate (57%) in comparison with vertical (38%) and horizontal (41%) configurations. The results also demonstrated that three factors have pivotal roles in expected HCT and Wcz, namely the contrast between the hydraulic conductivity of aquifer and reactive materials within the wells, the mass of Fe0 in the NPRWs, and the orientation of NPRWs adopted. A trade-off between these factors should be considered to increase the efficiency of remediation using the NPRWs system.

  6. Conical-Domain Model for Estimating GPS Ionospheric Delays

    NASA Technical Reports Server (NTRS)

    Sparks, Lawrence; Komjathy, Attila; Mannucci, Anthony

    2009-01-01

    The conical-domain model is a computational model, now undergoing development, for estimating ionospheric delays of Global Positioning System (GPS) signals. Relative to the standard ionospheric delay model described below, the conical-domain model offers improved accuracy. In the absence of selective availability, the ionosphere is the largest source of error for single-frequency users of GPS. Because ionospheric signal delays contribute to errors in GPS position and time measurements, satellite-based augmentation systems (SBASs) have been designed to estimate these delays and broadcast corrections. Several national and international SBASs are currently in various stages of development to enhance the integrity and accuracy of GPS measurements for airline navigation. In the Wide Area Augmentation System (WAAS) of the United States, slant ionospheric delay errors and confidence bounds are derived from estimates of vertical ionospheric delay modeled on a grid at regularly spaced intervals of latitude and longitude. The estimate of vertical delay at each ionospheric grid point (IGP) is calculated from a planar fit of neighboring slant delay measurements, projected to vertical using a standard, thin-shell model of the ionosphere. Interpolation on the WAAS grid enables estimation of the vertical delay at the ionospheric pierce point (IPP) corresponding to any arbitrary measurement of a user. (The IPP of a given user s measurement is the point where the GPS signal ray path intersects a reference ionospheric height.) The product of the interpolated value and the user s thin-shell obliquity factor provides an estimate of the user s ionospheric slant delay. Two types of error that restrict the accuracy of the thin-shell model are absent in the conical domain model: (1) error due to the implicit assumption that the electron density is independent of the azimuthal angle at the IPP and (2) error arising from the slant-to-vertical conversion. At low latitudes or at mid-latitudes under disturbed conditions, the accuracy of SBAS systems based upon the thin-shell model suffers due to the presence of complex ionospheric structure, high delay values, and large electron density gradients. Interpolation on the vertical delay grid serves as an additional source of delay error. The conical-domain model permits direct computation of the user s slant delay estimate without the intervening use of a vertical delay grid. The key is to restrict each fit of GPS measurements to a spatial domain encompassing signals from only one satellite. The conical domain model is so named because each fit involves a group of GPS receivers that all receive signals from the same GPS satellite (see figure); the receiver and satellite positions define a cone, the satellite position being the vertex. A user within a given cone evaluates the delay to the satellite directly, using (1) the IPP coordinates of the line of sight to the satellite and (2) broadcast fit parameters associated with the cone. The conical-domain model partly resembles the thin-shell model in that both models reduce an inherently four-dimensional problem to two dimensions. However, unlike the thin-shell model, the conical domain model does not involve any potentially erroneous simplifying assumptions about the structure of the ionosphere. In the conical domain model, the initially four-dimensional problem becomes truly two-dimensional in the sense that once a satellite location has been specified, any signal path emanating from a satellite can be identified by only two coordinates; for example, the IPP coordinates. As a consequence, a user s slant-delay estimate converges to the correct value in the limit that the receivers converge to the user s location (or, equivalently, in the limit that the measurement IPPs converge to the user s IPP).

  7. Range management visual impacts

    Treesearch

    Bruce R. Brown; David Kissel

    1979-01-01

    Historical overgrazing of western public rangelands has resulted in the passage of the Public Rangeland Improvement Act of 1978. The main purpose of this Act is to improve unsatisfactory range conditions. A contributing factor to unfavorable range conditions is adverse visual impacts. These visual impacts can be identified in three categories of range management: range...

  8. [The research progress of Treacher Collins syndrome].

    PubMed

    Wang, Pu; Fan, Xinmiao; Fan, Yue

    2016-02-01

    Treacher Collins syndrome (TCS, OMIM 154500), also known as Franceschetti-Klein syndrome, is a rare disorder that affects the first and second branchial arches. The estimated incidence is 1/50 000 live births. Mutations in TCOF1 (78%-93%) and POLR1C or POLR1D (8%) cause the disease. Most of TCS cases are inherited in a dominant pattern, while a small proportion are inherited in a recessive pattern. TCS has a variable phenotype with typical clinical characteristics including downward-slant of palpebral fissure, malar hypoplasia, mandibular hypoplasia and microtia. TCS management is a multidisciplinary affair, as interventions range from reconstructive to psychosocial. For hearing rehabilitation, TCS patients may have the choices of BAHA, ponto, vibrant soundbridge or bonebridge implantation. In this review, we summarize the TCS clinical malformations, diagnosis, genetics, management and auditory rehabilitation.

  9. Application of modified VICAR/IBIS GIS to analysis of July 1991 Flevoland AIRSAR data

    NASA Technical Reports Server (NTRS)

    Norikane, L.; Broek, B.; Freeman, A.

    1992-01-01

    Three overflights of the Flevoland calibration/agricultural site were made by the JPL Airborne Synthetic Aperture Radar (AIRSAR) on 3, 12, and 28 July 1991 as part of MAC-Europe '92. A polygon map was generated at TNO-FEL which overlayed the slant range projected July 3 data set. Each polygon was identified by a sequence of points and a crop label. The polygon map was composed of 452 uniquely identified polygons and 15 different crop types. Analysis of the data was done using our modified Video Image Communication and Retrieval/Image Based Information System Geographic Information System (VICAR/IBIS GIS). This GIS is an extension of the VICAR/IBIS GIS first developed by Bryant in the 1970's which is itself an extension of the VICAR image processing system also developed at JPL.

  10. Single Station System and Method of Locating Lightning Strikes

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Starr, Stanley O. (Inventor)

    2003-01-01

    An embodiment of the present invention uses a single detection system to approximate a location of lightning strikes. This system is triggered by a broadband RF detector and measures a time until the arrival of a leading edge of the thunder acoustic pulse. This time difference is used to determine a slant range R from the detector to the closest approach of the lightning. The azimuth and elevation are determined by an array of acoustic sensors. The leading edge of the thunder waveform is cross-correlated between the various acoustic sensors in the array to determine the difference in time of arrival, AT. A set of AT S is used to determine the direction of arrival, AZ and EL. The three estimated variables (R, AZ, EL) are used to locate a probable point of the lightning strike.

  11. Lidar systems for measuring visibility : a technical assessment

    DOT National Transportation Integrated Search

    1974-09-01

    A study has been made of the feasibility of using a laser backscatter system (lidar) to measure slant visibility at airports. This report summarizes the present status of lidar from a technical standpoint. Based largely on the results of experimental...

  12. Focus information is used to interpret binocular images

    PubMed Central

    Hoffman, David M.; Banks, Martin S.

    2011-01-01

    Focus information—blur and accommodation—is highly correlated with depth in natural viewing. We examined the use of focus information in solving the binocular correspondence problem and in interpreting monocular occlusions. We presented transparent scenes consisting of two planes. Observers judged the slant of the farther plane, which was seen through the nearer plane. To do this, they had to solve the correspondence problem. In one condition, the two planes were presented with sharp rendering on one image plane, as is done in conventional stereo displays. In another condition, the planes were presented on two image planes at different focal distances, simulating focus information in natural viewing. Depth discrimination performance improved significantly when focus information was correct, which shows that the visual system utilizes the information contained in depth-of-field blur in solving binocular correspondence. In a second experiment, we presented images in which one eye could see texture behind an occluder that the other eye could not see. When the occluder's texture was sharp along with the occluded texture, binocular rivalry was prominent. When the occluded and occluding textures were presented with different blurs, rivalry was significantly reduced. This shows that blur aids the interpretation of scene layout near monocular occlusions. PMID:20616139

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schimmenti, L.A.; Berry, S.A.; Tuchman, M.

    The authors report on a male infant with developmental delay, growth failure, hypotonia, dolichocephaly, hypoplastic midface, epicanthal folds, down-slanting palpebral fissures, foveal hypoplasia, tracheomalacia, pectus excavatum, supraventricular tachycardia, gut malrotation, hypospadias, talipes equinovarus, short third metatarsals, capillary hemangiomata, and a de novo terminal deletion at 9q34.3.

  14. Grinding technoloy of aspheric molds for glass-molding; Technical Digest

    NASA Astrophysics Data System (ADS)

    Kojima, Yoichi

    2005-05-01

    We introduce the method of precisely grinding of axis-symmetric aspherical glass-molding dies by using a diamond wheel. Those show how to select vertical-grinding or slant-grinding, how to grind molds with high accuracy and actual grinding results.

  15. Slanting Design: A Pilot Program

    DTIC Science & Technology

    1985-10-01

    adequate financing and proper planning and forethought. itG’ven the significant number of variables over which FEMA has no control , however, it would...Eskilstuna SWEDEN Ministero dell Interno Direzione Generale della Protezione Civile 00100 Rome ITALY Directeur de la Protection: Civile Ministere de

  16. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory.

    PubMed

    Zhou, Rui; Sun, Jinping; Hu, Yuxin; Qi, Yaolong

    2018-01-31

    Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.

  17. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory

    PubMed Central

    Zhou, Rui; Hu, Yuxin; Qi, Yaolong

    2018-01-01

    Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm. PMID:29385059

  18. Ionospheric effects on synthetic aperture radar at VHF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, T.J.

    1997-02-01

    Synthetic aperture radars (SAR) operated from airplanes have been used at VHF because of their enhanced foliage and ground penetration compared to radars operated at UHF. A satellite-borne VHF SAR would have considerable utility but in order to operate with high resolution it would have to use both a large relative bandwidth and a large aperture. The presence of the ionosphere in the propagation path of the radar will cause a deterioration of the imaging because of dispersion over the bandwidth and group path changes in the imaged area over the collection aperture. In this paper we present calculations ofmore » the effects of a deterministic ionosphere on SAR imaging for a radar operated with a 100 MHz bandwidth centered at 250 MHz and over an angular aperture of 23{degrees}. The ionosphere induces a point spread function with an approximate half-width of 150 m in the slant-range direction and of 25 m in the cross-range direction compared to the nominal resolution of 1.5 m in both directions.« less

  19. Optimization of data retrieval process for spectroscopic CO2 isotopologue ratio measurements

    NASA Astrophysics Data System (ADS)

    Hovorka, J.; Čermák, P.; Veis, P.

    2017-05-01

    In this work, a numerical model was developed for critical evaluation of the 13CO2/12CO2 ratio retrievals ( Δ δ value) from laser absorption spectra. The goal of the analysis was to determine the dependency of the absolute error of δ on different experimental parameters, in order to find the optimal conditions for isotopic ratio retrievals without using calibrated reference samples. In our study, the target precision for Δ δ was set at a level of ≤slant 1 %. The analysis was performed in the spectral range of the {ν1}+{ν3} CO2 band at 1.6 μm, with the theoretical data originating from the HITRAN database. The proposed fitting algorithm allowed efficient compensation of the interference from weak transitions which are not well recognizable in a single spectrum. This effect was found to make a dominant contribution to the Δ δ value. Next, the optimal conditions for such an experiment regarding the pressure, spectral range and spectrum noise were found and discussed from the perspective of widely tunable laser applications.

  20. Fade Measurements into Buildings from 500 to 3000 MHz

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Torrence, Geoffrey W.

    1996-01-01

    Slant-path fade measurements from 500 to 3000 MHz were made into six different buildings employing a vector network analyzer, a tower-mounted transmitting antenna and an automatically positioned receiving antenna. The objective of the measurements was to provide information for satellite audio broadcasting and personal communications satellite design on the correlation of fading inside buildings. Fades were measured with 5 cm spatial separation and every 0.2 percent of the frequency. Median fades ranged from 10 to 20 dB in woodframe houses with metal roofs and walls without and with an aluminum heat shield, respectively. The median decorrelation distance was from 0.5 to 1.1. m and was independent of frequency. The attenuation into the buildings increased only moderately with frequency in most of the buildings with a median slope of about 1 to 3 db/GHz, but increased fastest in the least attenuating building with a slope of 5 dB/GHz. The median decorrelation bandwidth ranged from 1.2 to 3.8 percent of frequency in five of the buildings, and was largest in the least attenuating building, with 20.2 percent of frequency.

  1. Fade Measurements into Buildings from 500 to 3000 MHz

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Torrence, Geoffrey W.

    1996-01-01

    Slant-path fade measurements from 500 to 3000 MHz were made into six different buildings employing a vector network analyzer, a tower-mounted transmitting antenna and an automatically positioned receiving antenna. The objective of the measurements was to provide information for satellite audio broadcasting and personal communications satellite design on the correlation of fading inside buildings. Fades were measured with 5 cm spatial separation and every 0.2% of the frequency. Median fades ranged from 10 to 20 dB in woodframe houses with metal roofs and walls without and with an aluminum heatshield, respectively. The median decorrelation distance was from 0.5 to 1.1 m and was independent of frequency. The attenuation into the buildings increased only moderately with frequency in most of the buildings with a median slope of about 1 to 3 dB/GHz, but increased fastest in the least attenuating building with a slope of 5 dB/GHz. The median decorrelation bandwidth ranged from 1.2 to 3.8% of frequency in five of the buildings, and was largest in the least attenuating building, with 20.2% of frequency.

  2. GPS Water Vapor Tomography Based on Accurate Estimations of the GPS Tropospheric Parameters

    NASA Astrophysics Data System (ADS)

    Champollion, C.; Masson, F.; Bock, O.; Bouin, M.; Walpersdorf, A.; Doerflinger, E.; van Baelen, J.; Brenot, H.

    2003-12-01

    The Global Positioning System (GPS) is now a common technique for the retrieval of zenithal integrated water vapor (IWV). Further applications in meteorology need also slant integrated water vapor (SIWV) which allow to precisely define the high variability of tropospheric water vapor at different temporal and spatial scales. Only precise estimations of IWV and horizontal gradients allow the estimation of accurate SIWV. We present studies developed to improve the estimation of tropospheric water vapor from GPS data. Results are obtained from several field experiments (MAP, ESCOMPTE, OHM-CV, IHOP, .). First IWV are estimated using different GPS processing strategies and results are compared to radiosondes. The role of the reference frame and the a priori constraints on the coordinates of the fiducial and local stations is generally underestimated. It seems to be of first order in the estimation of the IWV. Second we validate the estimated horizontal gradients comparing zenith delay gradients and single site gradients. IWV, gradients and post-fit residuals are used to construct slant integrated water delays. Validation of the SIWV is under progress comparing GPS SIWV, Lidar measurements and high resolution meteorological models (Meso-NH). A careful analysis of the post-fit residuals is needed to separate tropospheric signal from multipaths. The slant tropospheric delays are used to study the 3D heterogeneity of the troposphere. We develop a tomographic software to model the three-dimensional distribution of the tropospheric water vapor from GPS data. The software is applied to the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers operated in southern France. Three inversions have been successfully compared to three successive radiosonde launches. Good resolution is obtained up to heights of 3000 m.

  3. Slantingly cross loading sample system enables simultaneous performance of separation and mixture to detect molecular interactions on thin-layer chromatography.

    PubMed

    Shimizu-Yumoto, Hiroko; Hayashi, Nobuyuki; Ichimura, Kazuo; Nakayama, Masayoshi

    2012-07-06

    Anthocyanins are major flower pigments that can be affected by copigments, colorless compounds that can modify anthocyanin coloration to more intense and bluer. Thin-layer chromatography (TLC) is an available technique to separate and analyze anthocyanins and copigments. To easily and comprehensively detect copigments, we added function of mixture of compounds to TLC; by slantingly cross loading samples on TLC, compounds are symmetrically developed at various angle lines from the upper origin to individual R(f) values and cross each other in an orderly fashion, where mixture is simultaneously performed with separation. Occurrence of copigments can be detected as a coloration change on the developed line of anthocyanin. Pink sweet pea (Lathyrus odoratus L.) petals were analyzed by the cross-TLC and a more intense spot and a paler spot on the anthocyanin line were detected. As each spot overlapped with an ultraviolet absorbance line, each of these ultraviolet absorption compounds was purified and identified as kaempferol 3-rhamnoside and 2-cyanoethyl-isoxazolin-5-one, respectively. Whereas kaempferol 3-rhamnoside is a flavonoid and had a general copigment effect of more intense and bluer coloration change, 2-cyanoethyl-isoxazolin-5-one is a compound whose structure is outside of conventional categories of copigments and had a novel effect to change anthocyanin coloration paler while maintaining color tone. We determined that the search for copigments should be carried out without pre-existing prediction of structures and effects. We have shown that slantingly cross loading samples system on plate-type chromatography is an effective technique for such comprehensive analysis of molecular interaction. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  4. Finding Distant Galactic HII Regions

    NASA Astrophysics Data System (ADS)

    Anderson, L. D.; Armentrout, W. P.; Johnstone, B. M.; Bania, T. M.; Balser, Dana S.; Wenger, Trey V.; Cunningham, V.

    2015-12-01

    The WISE Catalog of Galactic H ii Regions contains ˜2000 H ii region candidates lacking ionized gas spectroscopic observations. All candidates have the characteristic H ii region mid-infrared morphology of WISE 12 μ {{m}} emission surrounding 22 μ {{m}} emission, and additionally have detected radio continuum emission. We here report Green Bank Telescope hydrogen radio recombination line and radio continuum detections in the X-band (9 GHz; 3 cm) of 302 WISE H ii region candidates (out of 324 targets observed) in the zone 225^\\circ ≥slant {\\ell }≥slant -20^\\circ , | {\\text{}}b| ≤slant 6^\\circ . Here we extend the sky coverage of our H ii region Discovery Survey, which now contains nearly 800 H ii regions distributed across the entire northern sky. We provide LSR velocities for the 302 detections and kinematic distances for 131 of these. Of the 302 new detections, 5 have ({\\ell },{\\text{}}b,v) coordinates consistent with the Outer Scutum-Centaurus Arm (OSC), the most distant molecular spiral arm of the Milky Way. Due to the Galactic warp, these nebulae are found at Galactic latitudes >1° in the first Galactic quadrant, and therefore were missed in previous surveys of the Galactic plane. One additional region has a longitude and velocity consistent with the OSC but lies at a negative Galactic latitude (G039.183-01.422 -54.9 {km} {{{s}}}-1). With Heliocentric distances >22 kpc and Galactocentric distances >16 kpc, the OSC H ii regions are the most distant known in the Galaxy. We detect an additional three H ii regions near {\\ell }≃ 150^\\circ whose LSR velocities place them at Galactocentric radii >19 kpc. If their distances are correct, these nebulae may represent the limit to Galactic massive star formation.

  5. On the Anomalously Large Extension of the Pulsar Wind Nebula HESS J1825-137

    NASA Astrophysics Data System (ADS)

    Khangulyan, Dmitry; Koldoba, Alexander V.; Ustyugova, Galina V.; Bogovalov, Sergey V.; Aharonian, Felix

    2018-06-01

    The very high energy gamma-ray emission reported from a number of pulsar wind nebulae (PWNe) is naturally explained by the inverse Compton scattering of multi-TeV electrons. However, the physical dimensions of some gamma-ray-emitting PWNe significantly exceed the scales anticipated by the standard hydrodynamical paradigm of PWN formation. The most “disturbing” case in this regard is HESS J1825-137, which extends to distances of r ≈ 70 pc from the central pulsar PSR J1826‑1334. If the gamma-ray emission is indeed produced inside the PWN, but not by electrons that escaped the nebula and diffuse in the interstellar medium (ISM), the formation of such an anomalously extended plerion could be realized, in a diluted environment with the hydrogen number density {n}{{ISM}}≤slant {10}-2 {cm}}-3. In this paper, we explore an alternative scenario assuming that the pulsar responsible for the formation of the nebula initially had a very short rotation period. In this case, the sizes of both the PWN and the surrounding supernova remnant depend on the initial pulsar period, the braking index, and the ISM density. To check the feasibility of this scenario, we study the parameter space that would reproduce the size of HESS J1825-137. We show that this demand can be achieved if the braking index is small, n≤slant 2, and the pulsar birth period is short, {P}{{b}}≃ 1 {ms}. This scenario can reproduce the wind termination position, which is expected at {R}{{TS}}≃ 0.03 {pc}, only in a dense environment with {n}{{ISM}}≥slant 1 {cm}}-3. The requirement of the dense surrounding gas is supported by the presence of molecular clouds found in the source vicinity.

  6. Total Ozone Observations at Arosa (Switzerland) by Dobson and Brewer: Temperature and Ozone Slant Path Effect

    NASA Astrophysics Data System (ADS)

    Scarnato, B.; Staehelin, J.; Groebner, J.

    2008-12-01

    Dobson and Brewer spectrophotometers are the main ground based instruments used to monitor the ozone layer. Early total ozone (TOZ) measurements were made primarily with Dobson instruments; however, there has been a trend over the last years to replace them by the newer, more advanced Brewer spectrophotometer. Given this transition, it is of utmost importance to assure the homogeneity of the data taken with these two distinct instruments types if total ozone (TOZ) changes over long time periods are to be diagnosed accurately. Previous studies have identified a seasonal bias of few percentage from Brewer and Dobson spectrophotometers measurements at mid-latitudes. At Arosa (Switzerland), two Dobson and three Brewers instruments have been co-located since 1998, producing a unique dataset of quasi-simultaneous observations valuable for the study of systematic differences between these measurements. The differences can be at least partially attributed to seasonal variability in the atmospheric temperature and the ozone slant path. The effective temperature sensitivity of the ozone cross section has been calculated using different reference spectra, at high and low resolution, weighting of the slit functions for each operational Brewer and for the primary standard Dobson spectrophotometers. If one takes into account the temperature dependence of the [Bass, 1985] ozone absorption spectra (current remote sensing standard) and the ozone slant path effect, the seasonal bias between Dobson and Brewer TOZ measurements is reduced from an amplitude of about 2% to less than 0.5%. The use of different ozone laboratory spectra yields different results in retrieved TOZ, because of the sensitivity of the retrieval algorithms and uncertainties in the experimental ozone cross section measurements.

  7. Air Mass Factor Formulation for Spectroscopic Measurements from Satellites: Application to Formaldehyde Retrievals from the Global Ozone Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Jacob, Daniel J.; Chance, Kelly; Martin, Randall V.; Spurr, Robert J. D.; Kurosu, Thomas P.; Bey, Isabelle; Yantosca, Robert; Fiore, Arlene; Li, Qinbin

    2004-01-01

    We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitude-dependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are cumputed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40% less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be approximately 10%. The GEOS-CHEM model captures 50% and 60% of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias.

  8. Nitrogen Dioxide Observations from the Geostationary Trace Gas and Aerosol Sensor Optimization (GeoTaso) Airborne Instrument: Retrieval Algorithm and Measurements During DISCOVER-AQ Texas 2013

    NASA Technical Reports Server (NTRS)

    Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; Abad, Gonzalo Gonzalez; Liu, Xiaojun; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; hide

    2016-01-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m x 250 m spatial resolution with a fitting precision of 2.2 x 10(exp 15) molecules/sq cm. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  9. Return to [Log-]Normalcy: Rethinking Quenching, The Star Formation Main Sequence, and Perhaps Much More

    NASA Astrophysics Data System (ADS)

    Abramson, Louis E.; Gladders, Michael D.; Dressler, Alan; Oemler, Augustus, Jr.; Poggianti, Bianca; Vulcani, Benedetta

    2016-11-01

    Knowledge of galaxy evolution rests on cross-sectional observations of different objects at different times. Understanding of galaxy evolution rests on longitudinal interpretations of how these data relate to individual objects moving through time. The connection between the two is often assumed to be clear, but we use a simple “physics-free” model to show that it is not and that exploring its nuances can yield new insights. Comprising nothing more than 2094 loosely constrained lognormal star formation histories (SFHs), the model faithfully reproduces the following data it was not designed to match: stellar mass functions at z≤slant 8; the slope of the star formation rate/stellar mass relation (the SFR “Main Sequence”) at z≤slant 6; the mean {sSFR}(\\equiv {SFR}/{M}* ) of low-mass galaxies at z≤slant 7; “fast-” and “slow-track” quenching; downsizing; and a correlation between formation timescale and {sSFR}({M}* ,t) similar to results from simulations that provides a natural connection to bulge growth. We take these findings—which suggest that quenching is the natural downturn of all SFHs affecting galaxies at rates/times correlated with their densities—to mean that: (1) models in which galaxies are diversified on Hubble timescales by something like initial conditions rival the dominant grow-and-quench framework as good descriptions of the data; or (2) absent spatial information, many metrics of galaxy evolution are too undiscriminating—if not inherently misleading—to confirm a unique explanation. We outline future tests of our model but stress that, even if ultimately incorrect, it illustrates how exploring different paradigms can aid learning and, we hope, more detailed modeling efforts.

  10. On the coupled unsaturated-saturated flow process induced by vertical, horizontal, and slant wells in unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Liang, Xiuyu; Zhan, Hongbin; Zhang, You-Kuan; Liu, Jin

    2017-03-01

    Conventional models of pumping tests in unconfined aquifers often neglect the unsaturated flow process. This study concerns the coupled unsaturated-saturated flow process induced by vertical, horizontal, and slant wells positioned in an unconfined aquifer. A mathematical model is established with special consideration of the coupled unsaturated-saturated flow process and the well orientation. Groundwater flow in the saturated zone is described by a three-dimensional governing equation and a linearized three-dimensional Richards' equation in the unsaturated zone. A solution in the Laplace domain is derived by the Laplace-finite-Fourier-transform and the method of separation of variables, and the semi-analytical solutions are obtained using a numerical inverse Laplace method. The solution is verified by a finite-element numerical model. It is found that the effects of the unsaturated zone on the drawdown of a pumping test exist at any angle of inclination of the pumping well, and this impact is more significant in the case of a horizontal well. The effects of the unsaturated zone on the drawdown are independent of the length of the horizontal well screen. The vertical well leads to the largest water volume drained from the unsaturated zone (W) during the early pumping time, and the effects of the well orientation on W values become insignificant at the later time. The screen length of the horizontal well does not affect W for the whole pumping period. The proposed solutions are useful for the parameter identification of pumping tests with a general well orientation (vertical, horizontal, and slant) in unconfined aquifers affected from above by the unsaturated flow process.

  11. Detecting Planet Pairs in Mean Motion Resonances via the Astrometry Method

    NASA Astrophysics Data System (ADS)

    Wu, Dong-Hong; Liu, Hui-Gen; Yu, Zhou-Yi; Zhang, Hui; Zhou, Ji-Lin

    2016-07-01

    Gaia is leading us into a new era with a high astrometry precision of ˜10 μas. Under such precision, astrometry can play an important role in detecting and characterizing exoplanets. In particular, we can identify planet pairs in mean motion resonances (MMRs), which constrain the formation and evolution of planetary systems. In accordance with observations, we consider two-Jupiter or two-super-Earth systems in 1:2, 2:3, and 3:4 MMRs. Our simulations show that the false alarm probabilities (FAPs) of a third planet are extremely small, while the two real planets can be fitted well with a signal-to-noise ratio (S/N) \\gt 3. The probability of reconstructing a resonant system is related to the eccentricities and the resonance intensity. Generally, when the S/N ≥slant 10, if the eccentricities of both planets are larger than 0.01 and the resonance is quite strong, the probability of reconstructing the planet pair in MMRs is ≥slant 80 % . Jupiter pairs in MMRs are reconstructed more easily than super-Earth pairs with similar S/N when we consider dynamical stability. FAPs are also calculated when we detect planet pairs in or near MMRs. The FAPs for 1:2 MMRs are the largest, I.e., FAP \\gt 15 % when S/N ≤slant 10. Extrapolating from the Kepler planet pairs near MMRs and assuming a S/N ˜ 3, we discover and reconstruct a few tens of Jupiter pairs and hundreds of super-Earth pairs in 2:3 and 1:2 MMRs within 30 pc. We also compare the differences between even and uneven data cadence and find that planets are better measured with more uniform phase coverage.

  12. Evolution Reporting in 1925: How the Audience Determined Coverage.

    ERIC Educational Resources Information Center

    Spencer, Carrie

    General interest, scientific, and religious periodicals responded to the theory of evolution in 1925 with the same opinions but slanted their coverage to appeal to different readerships. "Scientific American" and "Current History" differed only stylistically in their coverage of the "Australopithecus africanus"…

  13. Heritability study of eGFP-transformed Aspergillus flavus strains

    USDA-ARS?s Scientific Manuscript database

    Pre-harvest prevention of aflatoxin contamination of corn, cottonseed, and peanut through field inoculation with non-aflatoxigenic Aspergillus flavus appears to be the only method for biocontrol currently being used. Until recently, evidence for out-crossing in A. flavus was observed in agar slants...

  14. Water vapour tomography using GPS phase observations: Results from the ESCOMPTE experiment

    NASA Astrophysics Data System (ADS)

    Nilsson, T.; Gradinarsky, L.; Elgered, G.

    2007-10-01

    Global Positioning System (GPS) tomography is a technique for estimating the 3-D structure of the atmospheric water vapour using data from a dense local network of GPS receivers. Several current methods utilize estimates of slant wet delays between the GPS satellites and the receivers on the ground, which are difficult to obtain with millimetre accuracy from the GPS observations. We present results of applying a new tomographic method to GPS data from the Expériance sur site pour contraindre les modèles de pollution atmosphérique et de transport d'emissions (ESCOMPTE) experiment in southern France. This method does not rely on any slant wet delay estimates, instead it uses the GPS phase observations directly. We show that the estimated wet refractivity profiles estimated by this method is on the same accuracy level or better compared to other tomographic methods. The results are in agreement with earlier simulations, for example the profile information is limited above 4 km.

  15. Power Flow Angles for Slanted Finger Surface Acoustic Wave Filters on Langasite Substrate

    NASA Astrophysics Data System (ADS)

    Goto, Mikihiro; Yatsuda, Hiromi; Chiba, Takao

    2007-07-01

    Power flow angles (PFAs) on a langasite (LGS) substrate with Euler angles of (0{\\degree}, 138.5{\\degree}, \\psi), \\psi=25.7 to 27.7° are investigated for slanted finger interdigital transducer (SFIT) surface acoustic wave (SAW) filters by an electrical and optical methods. In the electrical method, several tilted SFIT SAW filters with different tilt angles for (0{\\degree}, 138.5{\\degree}, \\psi) LGS substrates were designed, and the frequency responses of the filters were measured. In the optical method, the PFAs were directly measured by optical probing for a parallel interdigital transducer (IDT) with wide propagation area on the substrate. As a result, a good correlation between electrical and optical measurements of the PFAs is obtained, but the calculated PFAs are slightly different from the measured PFAs. A good frequency response of a tilted 380 MHz SFIT SAW filter with an appropriate tilt angle corresponding to the PFA on the substrate is obtained even though the aperture is small.

  16. Entanglement across extended random defects in the XX spin chain

    NASA Astrophysics Data System (ADS)

    Juhász, Róbert

    2017-08-01

    We study the half-chain entanglement entropy in the ground state of the spin-1/2 XX chain across an extended random defect, where the strength of disorder decays with the distance from the interface algebraically as Δ_l∼ l-κ . In the whole regime κ≥slant 0 , the average entanglement entropy is found to increase logarithmically with the system size L as S_L≃\\frac{c_eff(κ)}{6}\\ln L+const , where the effective central charge c_eff(κ) depends on κ. In the regime κ<1/2 , where the extended defect is a relevant perturbation, the strong-disorder renormalization group method gives c_eff(κ)=(1-2κ)\\ln2 , while, in the regime κ≥slant 1/2 , where the extended defect is irrelevant in the bulk, numerical results indicate a non-zero effective central charge, which increases with κ. The variation of c_eff(κ) is thus found to be non-monotonic and discontinuous at κ=1/2 .

  17. Rain rate and modeled fade distributions at 20 GHz and 30 GHz derived from five years of network rain gauge measurements

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Krichevsky, Vladimir; Gebo, Norman

    1992-01-01

    Five years of rain rate and modeled slant path attenuation distributions at 20 GHz and 30 GHz derived from a network of 10 tipping bucket rain gages was examined. The rain gage network is located within a grid 70 km north-south and 47 km east-west in the Mid-Atlantic coast of the United States in the vicinity of Wallops Island, Virginia. Distributions were derived from the variable integration time data and from one minute averages. It was demonstrated that for realistic fade margins, the variable integration time results are adequate to estimate slant path attenuations at frequencies above 20 GHz using models which require one minute averages. An accurate empirical formula was developed to convert the variable integration time rain rates to one minute averages. Fade distributions at 20 GHz and 30 GHz were derived employing Crane's Global model because it was demonstrated to exhibit excellent accuracy with measured COMSTAR fades at 28.56 GHz.

  18. Theoretical Analysis of Rain Attenuation Probability

    NASA Astrophysics Data System (ADS)

    Roy, Surendra Kr.; Jha, Santosh Kr.; Jha, Lallan

    2007-07-01

    Satellite communication technologies are now highly developed and high quality, distance-independent services have expanded over a very wide area. As for the system design of the Hokkaido integrated telecommunications(HIT) network, it must first overcome outages of satellite links due to rain attenuation in ka frequency bands. In this paper theoretical analysis of rain attenuation probability on a slant path has been made. The formula proposed is based Weibull distribution and incorporates recent ITU-R recommendations concerning the necessary rain rates and rain heights inputs. The error behaviour of the model was tested with the loading rain attenuation prediction model recommended by ITU-R for large number of experiments at different probability levels. The novel slant path rain attenuastion prediction model compared to the ITU-R one exhibits a similar behaviour at low time percentages and a better root-mean-square error performance for probability levels above 0.02%. The set of presented models exhibits the advantage of implementation with little complexity and is considered useful for educational and back of the envelope computations.

  19. A three-dimensional algebraic grid generation scheme for gas turbine combustors with inclined slots

    NASA Technical Reports Server (NTRS)

    Yang, S. L.; Cline, M. C.; Chen, R.; Chang, Y. L.

    1993-01-01

    A 3D algebraic grid generation scheme is presented for generating the grid points inside gas turbine combustors with inclined slots. The scheme is based on the 2D transfinite interpolation method. Since the scheme is a 2D approach, it is very efficient and can easily be extended to gas turbine combustors with either dilution hole or slot configurations. To demonstrate the feasibility and the usefulness of the technique, a numerical study of the quick-quench/lean-combustion (QQ/LC) zones of a staged turbine combustor is given. Preliminary results illustrate some of the major features of the flow and temperature fields in the QQ/LC zones. Formation of co- and counter-rotating bulk flow and shape temperature fields can be observed clearly, and the resulting patterns are consistent with experimental observations typical of the confined slanted jet-in-cross flow. Numerical solutions show the method to be an efficient and reliable tool for generating computational grids for analyzing gas turbine combustors with slanted slots.

  20. Slant path L- and S-Band tree shadowing measurements

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Torrence, Geoffrey W.

    1994-01-01

    This contribution presents selected results from simultaneous L- and S-Band slant-path fade measurements through a pecan, a cottonwood, and a pine tree employing a tower-mounted transmitter and dual-frequency receiver. A single, circularly-polarized antenna was used at each end of the link. The objective was to provide information for personal communications satellite design on the correlation of tree shadowing between frequencies near 1620 and 2500 MHz. Fades were measured along 10 m lateral distance with 5 cm spacing. Instantaneous fade differences between L- and S-Band exhibited normal distribution with means usually near 0 dB and standard deviations from 5.2 to 7.5 dB. The cottonwood tree was an exception, with 5.4 dB higher average fading at S- than at L-Band. The spatial autocorrelation reduced to near zero with lags of about 10 lambda. The fade slope in dB/MHz is normally distributed with zero mean and standard deviation increasing with fade level.

  1. Slant path L- and S-Band tree shadowing measurements

    NASA Astrophysics Data System (ADS)

    Vogel, Wolfhard J.; Torrence, Geoffrey W.

    1994-08-01

    This contribution presents selected results from simultaneous L- and S-Band slant-path fade measurements through a pecan, a cottonwood, and a pine tree employing a tower-mounted transmitter and dual-frequency receiver. A single, circularly-polarized antenna was used at each end of the link. The objective was to provide information for personal communications satellite design on the correlation of tree shadowing between frequencies near 1620 and 2500 MHz. Fades were measured along 10 m lateral distance with 5 cm spacing. Instantaneous fade differences between L- and S-Band exhibited normal distribution with means usually near 0 dB and standard deviations from 5.2 to 7.5 dB. The cottonwood tree was an exception, with 5.4 dB higher average fading at S- than at L-Band. The spatial autocorrelation reduced to near zero with lags of about 10 lambda. The fade slope in dB/MHz is normally distributed with zero mean and standard deviation increasing with fade level.

  2. Effects of ladder parameters on asymmetric patterns of force exertion during below-knee amputees climbing ladders.

    PubMed

    Li, Weidong; Li, Shiqi; Fu, Yan; Chen, Jacon

    2017-03-01

    Different from walking, ladder climbing requires four-limb coordination and more energy exertion for below-knee amputees (BKAs). We hypothesized that functional deficiency of a disabled limb shall be compensated by the other three intact limbs, showing an asymmetry pattern among limbs. Hand and foot forces of six below-knee amputees and six able-bodied people were collected. Hand, foot and hand/foot sum force variances between groups (non-BKA, intact side and prosthetic side) were carefully examined. Our hypothesis was validated that there is asymmetry between prosthetic and intact side. Results further showed that the ipsilateral hand of the prosthetic leg is stronger than the hand on the intact side, compensating weakness of the prosthetic leg. Effects of ladder rung separations and ladder slant on asymmetric force distribution of BKAs were evaluated, indicating that rung separation has a more significant interactive effect on hand/foot force of BKAs than ladder slant.

  3. Use of total electron content data to analyze ionosphere electron density gradients

    NASA Astrophysics Data System (ADS)

    Nava, B.; Radicella, S. M.; Leitinger, R.; Coïsson, P.

    In the presence of electron density gradients the thin shell approximation for the ionosphere, used together with a simple mapping function to convert slant total electron content (TEC) to vertical TEC, could lead to TEC conversion errors. These "mapping function errors" can therefore be used to detect the electron density gradients in the ionosphere. In the present work GPS derived slant TEC data have been used to investigate the effects of the electron density gradients in the middle and low latitude ionosphere under geomagnetic quiet and disturbed conditions. In particular the data corresponding to the geographic area of the American Sector for the days 5-7 April 2000 have been used to perform a complete analysis of mapping function errors based on the "coinciding pierce point technique". The results clearly illustrate the electron density gradient effects according to the locations considered and to the actual levels of disturbance of the ionosphere. In addition, the possibility to assess an ionospheric shell height able to minimize the mapping function errors has been verified.

  4. A likelihood method for measuring the ultrahigh energy cosmic ray composition

    NASA Astrophysics Data System (ADS)

    High Resolution Fly'S Eye Collaboration; Abu-Zayyad, T.; Amman, J. F.; Archbold, G. C.; Belov, K.; Blake, S. A.; Belz, J. W.; Benzvi, S.; Bergman, D. R.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Connolly, B. M.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M.; Rodriguez, D.; Sasaki, M.; Schnetzer, S.; Seman, M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.

    2006-08-01

    Air fluorescence detectors traditionally determine the dominant chemical composition of the ultrahigh energy cosmic ray flux by comparing the averaged slant depth of the shower maximum, Xmax, as a function of energy to the slant depths expected for various hypothesized primaries. In this paper, we present a method to make a direct measurement of the expected mean number of protons and iron by comparing the shapes of the expected Xmax distributions to the distribution for data. The advantages of this method includes the use of information of the full distribution and its ability to calculate a flux for various cosmic ray compositions. The same method can be expanded to marginalize uncertainties due to choice of spectra, hadronic models and atmospheric parameters. We demonstrate the technique with independent simulated data samples from a parent sample of protons and iron. We accurately predict the number of protons and iron in the parent sample and show that the uncertainties are meaningful.

  5. Ground noise measurements during landing, take-off, and flyby operations of a four-engine turbopropeller STOL airplane

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Henderson, H. R.; Maglieri, D. J.

    1971-01-01

    Noise measurements were obtained for a four-engine turbopropeller STOL airplane during a Federal Aviation Administration flight evaluation program at the National Aviation Facilities Experimental Center. These noise measurements involved landing-approach, takeoff-climbout, and flyby operations of the airplane. A total of 13 measuring positions were used to define the noise characteristics around a simulated STOL port. The results are presented in the form of both physical and subjective measurements. An appendix is included to present tabulated values of various subjective reaction units which may be significant for the planning and operation of STOL ports. The main source of noise produced by this vehicle was found to be the propeller, and noise levels decrease generally in accordance with the inverse-distance law for distances up to about 457 meters. For similar slant ranges, somewhat lower noise levels were experienced during flyby than during takeoff or landing.

  6. Simultaneous measurements of L- and S-band tree shadowing for space-Earth communications

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Torrence, Geoffrey W.; Lin, Hsin P.

    1995-01-01

    We present results from simultaneous L- and S-Band slant-path fade measurements through trees. One circularly-polarized antenna was used at each end of the dual-frequency link to provide information on the correlation of tree shadowing at 1620 and 2500 MHz. Fades were measured laterally in the shadow region with 5 cm spacing. Fade differences between L- and S-Band had a normal distribution with low means and standard deviations from 5.2 to 7.5 dB. Spatial variations occurred with periods larger than 1-2 wavelengths. Swept measurements over 160 MHz spans showed that the stdv. of power as function of frequency increased from approximately 1-6 dB at locations with mean fades of 4 and 20 dB, respectively. At a 5 dB fade, the central 90% of fade slopes were within a range of 0.7 (1.9) dB/MHz at L-(S-) Band.

  7. Lidar determination of winds by aerosol inhomogeneities: motion velocity in the planetary boundary layer.

    PubMed

    Kolev, I; Parvanov, O; Kaprielov, B

    1988-06-15

    The paper presents results from lidar measurements of wind velocity in the planetary boundary layer using correlation data processing. Two lidars are used in our experiments: a ruby lidar operating along slant paths and a YAG:Nd lidar operating for near vertical sounding used by us for the first time. On the basis of our experience the optimal sizes of aerosol inhomogeneities (30-300 m), the duration of the experiments (2-10 min), and the repetition rate of laser shots (fractions of hertz to several hertz) are determined. The results are compared to independent data obtained from anemometer measurements, theodolite- and radar-tracked pilot balloons. The range of differences is ~1-2 m/s in speed and 10-15 degrees in direction. Preliminary results from the use of lidar data to remotely sound the wind speed for various atmospheric stratifications and synoptic situations are described as well.

  8. Experimental Bell violations with classical, non-entangled optical fields

    NASA Astrophysics Data System (ADS)

    Gonzales, J.; Sánchez, P.; Barberena, D.; Yugra, Y.; Caballero, R.; De Zela, F.

    2018-02-01

    We report experiments in which the Bell parameter S that enters the Clauser-Horne-Shimony-Holt inequality: | S| ≤slant 2, attains values | S| > 2. In our experiments, we used two spatially separated optical beams, the electric fields of which were correlated to one another. The amount of correlation was quantified by the spectral degree of coherence η (α ,β ). This quantity measures the correlation between fields that exist at two distant locations and whose respective polarizations are given in terms of angles α and β, which can be set independently from one another. Such a correlation qualifies for the construction of the Bell parameter S. By changing the amount of field correlation, we could cover a range that goes from | S| < 2 to | S| > 2. Our experimental findings should provide useful material for the ongoing, theoretical discussions about the quantum-classical border.

  9. The fall of a viscous thread onto a moving surface: a ‘fluid-mechanical sewing machine’

    NASA Astrophysics Data System (ADS)

    Chiu-Webster, S.; Lister, J. R.

    2006-12-01

    A viscous thread falling onto a steadily moving horizontal belt shows a surprisingly complex range of behaviour in experiments. Low belt speeds produce coiling, as might be expected from the behaviour of a thread falling onto a stationary surface. High belt speeds produce a steady thread, whose shape is predicted well by theory developed to describe a stretching viscous catenary with surface tension and inertia. Intermediate belt speeds show several novel modes of oscillation, which lay down a wide variety of patterns on the belt. The patterns include meanders, side kicks, slanted loops, braiding, figures-of-eight, Ws, and also period-doubled versions of figures-of-eight, meanders and coiling. The experimental boundary between steady and unsteady behaviour occurs at a slightly lower belt speed than the loss of the steady solution for a stretching catenary.

  10. Flood Assessment Area 3 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Management

    2007-07-01

    A flood assessment was conducted at the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) in Nye County, Nevada (Figure 1-1). The study area encompasses the watershed of Yucca Flat, a closed basin approximately 780 square kilometers (km2) (300 square miles) in size. The focus of this effort was on a drainage area of approximately 94 km2 (36 mi2), determined from review of topographic maps and aerial photographs to be the only part of the Yucca Flat watershed that could directly impact the Area 3 RWMS. This smaller area encompasses portions of the Halfpint Range,more » including Paiute Ridge, Jangle Ridge, Carbonate Ridge, Slanted Buttes, Cockeyed Ridge, and Banded Mountain. The Area 3 RWMS is located on coalescing alluvial fans emanating from this drainage area.« less

  11. Remote Sensing of the Ionosphere and Plasmasphere from Space Using Radiowaves

    NASA Technical Reports Server (NTRS)

    Mannucci, Anthony J.

    2008-01-01

    Topics include the scientific context, trans-ionospheric and sounding, small-scale structure, plasmasphere, fast and slow tomography, and pseudo-imaging. Individual slides focus on where geospace science stands today, variability in inner magnetosphere electric fields, Appleton-Hartree formula, phase and range ionospheric observables, examples of leveling, large ionization changes during storms, new mid-latitude phenomena, ionospheric sounding, COSMIC CERTO/Tri-band beacon, LEO-ground radio tomography, irregularity measurements, COSMIC, critical sensor data from COSMIC GPS limb sounding, occultation geometry, comparison of calibrated slant TEC measurements for 26 June 2006, historic examples of Abel electron density profiles, comparison of UCAR and JPL Able profiles of 26 June 2006, validating UCAR and JPL Abel profiles using Arecibo ISR measurements for 26 June 2006, E-region from GPS/MET 1995, Abel versus gradient assisted retrieval, 3000 profiles/day, plasmasphere, JASON TEC above satellite, GPS equatorial plasmasphere measurements, April 2002 geomagnetic storm, and space-based GPS tomography.

  12. Making Microbiology Even Smaller!

    ERIC Educational Resources Information Center

    Young, Linda Mull; Motz, Vicki Abrams

    2013-01-01

    We outline protocols for producing slant-minis (SLINIs) and mini-deeps (MEEPs) and examples of their use in simple microbiology experiments suitable for high school students. The principal benefits of these protocols are decreased cost associated with significantly reduced media use; easier, less expensive disposal of waste; and increased safety…

  13. Effects of various runway lighting parameters upon the relation between runway visual range and visual range of centerline and edge lights in fog

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1973-01-01

    Thirty six students and 54 commercial airline pilots were tested in the fog chamber to determine the effect of runway edge and centerline light intensity and spacing, fog density, ambient luminance level, and lateral and vertical offset distance of the subject from the runway's centerline upon horizontal visual range. These data were obtained to evaluate the adequacy of a balanced lighting system to provide maximum visual range in fog viewing both centerline and runway edge lights. The daytime system was compared against two other candidate lighting systems; the nighttime system was compared against other candidate lighting systems. The second objective was to determine if visual range is affected by lights between the subject and the farthestmost light visible through the fog. The third objective was to determine if college student subjects differ from commercial airline pilots in their horizontal visual range through fog. Two studies were conducted.

  14. Effect of pasteurization on survival of Mycobacterium paratuberculosis in milk.

    PubMed

    Gao, A; Mutharia, L; Chen, S; Rahn, K; Odumeru, J

    2002-12-01

    Mycobacterium paratuberculosis (Mptb) is the causative agent of Johne's disease of ruminant animals including cattle, goats, and sheep. It has been suggested that this organism is associated with Crohn's disease in humans, and milk is a potential source of human exposure to this organism. A total of 18, including 7 regular batch and 11 high temperature short time (HTST) pasteurization experiments, were conducted in this study. Raw milk or ultra-high temperature pasteurized milk samples were spiked at levels of 10(3), 10(5), and 10(7) cfu of Mptb/ml. Escherichia coli and Mycobacterium bovis BCG strains at 10(7) cfu/ml were used as controls. Pasteurization experiments were conducted using time and temperature standards specified in the Canadian National Dairy Code: regular batch pasteurization method: 63 degrees C for 30 min, and HTST method: 72 degrees C for 15 s. The death curve of this organism was assessed at 63 degrees C. No survivors were detected after 15 min. Each spiked sample was cultured in Middlebrook 7H9 culture broth and Middlebrook 7H11 agar slants. Samples selected from 15 experiments were also subjected to BACTEC culture procedure. Survival of Mptb was confirmed by IS900-based PCR of colonies recovered on slants. No survivors were detected from any of the slants or broths corresponding to the seven regular batch pasteurization trials. Mptb survivors were detected in two of the 11 HTST experiments. One was by both slant and broth culture for the sample spiked to 10(7) cfu/ml of Mptb, while the other was detected by BACTEC for the sample spiked to 10(5) cfu/ml. These results indicate that Mptb may survive HTST pasteurization when present at > or = 10(5) cfu/ml in milk. A total of 710 retail milk samples collected from retail store and dairy plants in southwest Ontario were tested by nested IS900 PCR for the presence of Mptb. Fifteen percent of these samples (n = 110) were positive. However, no survivors were isolated from the broth and agar cultures of 44 PCR positive and 200 PCR negative retail milk samples. The lack of recovery of live Mptb from the retail milk samples tested may be due to either the absence of live Mptb in the retail milk samples tested or the presence of low number of viable Mptb which were undetected by the culture method used in this study.

  15. The Other Danger... Scholasticism in Academic Research

    ERIC Educational Resources Information Center

    Mead, Lawrence M.

    2010-01-01

    Most members of the National Association of Scholars worry about the politicization of the university. Academia gives undue preference to racial minorities in student admissions and faculty appointments. Teaching and research is often slanted toward minority grievances and Third World claims against the United States. However, critics have largely…

  16. The Roles of Altitude and Fear in the Perception of Height

    ERIC Educational Resources Information Center

    Stefanucci, Jeanine K.; Proffitt, Dennis R.

    2009-01-01

    Previous research on perceiving spatial layout has found that people often exhibit normative biases in their perception of the environment. For instance, slant is typically overestimated and distance is usually underestimated. Surprisingly, however, the perception of height has rarely been studied. The present experiments examined the perception…

  17. Youth Mentoring and Resilience: Implications for Practice

    ERIC Educational Resources Information Center

    Rhodes, Jean; Lowe, Sarah Ryan

    2008-01-01

    Despite findings indicating the importance of non-parental adults in the lives of youth, there is little research on these relationships, including those that occur in the context of youth mentoring. Compounding this problem is a positive slant taken towards youth mentoring in the media, often unsubstantiated by empirical evidence. This article…

  18. Fractions: A New Slant on Slope

    ERIC Educational Resources Information Center

    Cheng, Ivan

    2010-01-01

    An understanding of fractions is foundational to proportional reasoning and algebra. For example, a direct-variation relationship may include a constant of proportionality that is rational, and linear equations may have solutions that are fractions. Beyond that, a grasp of the concept of proportionality and of rational numbers is necessary for…

  19. 16 CFR 1301.3 - Findings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... containers, refuse bins, buckets, boxes or hoppers, with actual internal volumes of one cubic yard or greater... containers indicate that most accidents have occurred with slant-sided metal refuse bins which are used by.... 20207. (c) Need of the public for the product and effects on utility, cost, and availability. (1) The...

  20. The Jackson Presidential Campaign: Setting the Public Agenda.

    ERIC Educational Resources Information Center

    Dates, Jannette Lake; Gandy, Oscar, Jr.

    Print news media coverage of Jesse Jackson's 1984 presidential campaign was analyzed to determine whether publishers followed their roles as liberal, moderate, or conservative publications in their coverage. It was hypothesized that print media coverage would be similar across publications regardless of editorial slant, because of the dominance of…

  1. Working-Class Children's Experience through the Prism of Personal Storytelling

    ERIC Educational Resources Information Center

    Miller, Peggy J.; Cho, Grace E.; Bracey, Jeana R.

    2005-01-01

    Framed within recent developments in genre theory, this paper examines personal storytelling as practiced by working-class children and their families. Although both working-class and middle-class children encounter versions of oral storytelling that embody a personal perspective, these versions privilege different slants on experience. Drawing on…

  2. New Slants on Old Correctional Recreation Ideas.

    ERIC Educational Resources Information Center

    Hormachea, Carroll

    1981-01-01

    A needs assessment concluded that trained personnel for correctional recreation were necessary to develop an understanding of the needs of prison inmates. The objectives of correctional recreation are: to assist the inmate in adjusting to institutional living; to develop interests and skills; and to make beneficial use of leisure time. (JN)

  3. Teacher Evaluations in Leisure Studies Programs: An Old Issue with a New Slant.

    ERIC Educational Resources Information Center

    Butts, Frank B.; Swearingen, Tommy

    1994-01-01

    This paper examines teacher evaluation practices in leisure studies programs, noting the perceived effectiveness of rating instruments. Surveys of leisure studies professors nationwide indicated many institutions used evaluation instruments and processes that were not statistically validated; key decisions were often made on the basis of these…

  4. Millimeter-Wave Radar Field Measurements and Inversion of Cloud Parameters for the 1999 Mt. Washington Icing Sensors Project

    NASA Technical Reports Server (NTRS)

    Pazmany, Andrew L.; Reehorst, Andrew (Technical Monitor)

    2001-01-01

    The Mount Washington Icing Sensors Project (MWISP) was a multi-investigator experiment with participants from Quadrant Engineering, NOAA Environmental Technology Laboratory (NOAA/ETL), the Microwave Remote Sensing Laboratory (MIRSL) of the University of Massachusetts (UMass), and others. Radar systems from UMass and NOAA/ETL were used to measure X-, Ka-, and W-band backscatter data from the base of Mt. Washington, while simultaneous in-situ particle measurements were made from aircraft and from the observatory at the summit. This report presents range and time profiles of liquid water content and particle size parameters derived from range profiles of radar reflectivity as measured at X-, Ka-, and W-band (9.3, 33.1, and 94.9 GHz) using an artificial neural network inversion algorithm. In this report, we provide a brief description of the experiment configuration, radar systems, and a review of the artificial neural network used to extract cloud parameters from the radar data. Time histories of liquid water content (LWC), mean volume diameter (MVD) and mean Z diameter (MZD) are plotted at 300 m range intervals for slant ranges between 1.1 and 4 km. Appendix A provides details on the extraction of radar reflectivity from measured radar power, and Appendix B provides summary logs of the weather conditions for each day in which we processed data.

  5. A 33 GHz Survey of Local Major Mergers: Estimating the Sizes of the Energetically Dominant Regions from High-resolution Measurements of the Radio Continuum

    NASA Astrophysics Data System (ADS)

    Barcos-Muñoz, L.; Leroy, A. K.; Evans, A. S.; Condon, J.; Privon, G. C.; Thompson, T. A.; Armus, L.; Díaz-Santos, T.; Mazzarella, J. M.; Meier, D. S.; Momjian, E.; Murphy, E. J.; Ott, J.; Sanders, D. B.; Schinnerer, E.; Stierwalt, S.; Surace, J. A.; Walter, F.

    2017-07-01

    We present Very Large Array observations of the 33 GHz radio continuum emission from 22 local ultraluminous and luminous infrared (IR) galaxies (U/LIRGs). These observations have spatial (angular) resolutions of 30-720 pc (0.″07-0.″67) in a part of the spectrum that is likely to be optically thin. This allows us to estimate the size of the energetically dominant regions. We find half-light radii from 30 pc to 1.7 kpc. The 33 GHz flux density correlates well with the IR emission, and we take these sizes as indicative of the size of the region that produces most of the energy. Combining our 33 GHz sizes with unresolved measurements, we estimate the IR luminosity and star formation rate per area and the molecular gas surface and volume densities. These quantities span a wide range (4 dex) and include some of the highest values measured for any galaxy (e.g., {{{Σ }}}{SFR}33 {GHz}≤slant {10}4.1 {M}⊙ {{yr}}-1 {{kpc}}-2). At least 13 sources appear Compton thick ({N}{{H}}33 {GHz}≥slant {10}24 {{cm}}-2). Consistent with previous work, contrasting these data with observations of normal disk galaxies suggests a nonlinear and likely multivalued relation between star formation rate and molecular gas surface density, though this result depends on the adopted CO-to-H2 conversion factor and the assumption that our 33 GHz sizes apply to the gas. Eleven sources appear to exceed the luminosity surface density predicted for starbursts supported by radiation pressure and supernova feedback; however, we note the need for more detailed observations of the inner disk structure. U/LIRGs with higher surface brightness exhibit stronger [C II] 158 μm deficits, consistent with the suggestion that high energy densities drive this phenomenon.

  6. Catalog of Narrow Mg II Absorption Lines in the Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Chen, Yan-Mei

    2015-12-01

    Using the Data Release 9 Quasar spectra from the Baryonic Oscillation Spectroscopic Survey, which does not include quasar spectra from the Sloan Digital Sky Survey Data Release 7, we detect narrow Mg ii λλ2796, 2803 absorption doublets in the spectral data redward of 1250 Å (quasar rest frame) until the red wing of the Mg ii λ2800 emission line. Our survey is limited to quasar spectra with a median signal-to-noise ratio < {{S}}/{{N}}> ≥slant 4 pixel-1 in the surveyed spectral region, resulting in a sample that contains 43,260 quasars. We have detected a total of 18,598 Mg ii absorption doublets with 0.2933 ≤ zabs ≤ 2.6529. About 75% of absorbers have an equivalent width at rest frame of {W}rλ 2796≥slant 1 \\mathringA . About 75% of absorbers have doublet ratios ({DR}={W}rλ 2796/{W}rλ 2803) in the range of 1 ≤ DR ≤ 2, and about 3.2% lie outside the range of 1 - σDR ≤ DR ≤ 2 + σDR. We characterize the detection false positives/negatives by the frequency of detected Mg ii absorption doublets in the limits of the S/N of the spectral data. The S/N = 4.5 limit is assigned a completeness fraction of 53% and tends to be complete when the S/N is greater than 4.5. The redshift number densities of all of the detected Mg ii absorbers moderately increase from z ≈ 0.4 to z ≈ 1.5, which parallels the evolution of the cosmic star formation rate density. Limiting our investigation to those quasars whose emission redshift can be determined from narrow emission lines, the relative velocities (β) of Mg ii absorbers have a complex distribution which probably consists of three classes of Mg ii absorbers: (1) cosmologically intervening absorbers; (2) environmental absorbers that reside within the quasar host galaxies or galaxy clusters; (3) quasar outflow absorbers. After subtracting contributions from cosmologically intervening absorbers and environmental absorbers, the β distribution of the Mg iiabsorbers might mainly be contributed by the quasar outflow absorbers and peaks at υ ≈ 1500 km s-1. This peak velocity is lower than the value of 2000 km s-1 found in statistical analysis of C iv absorbers.

  7. Marine atmospheric effects on electro-optical systems performance

    NASA Astrophysics Data System (ADS)

    Richter, Juergen H.; Hughes, Herbert G.

    1990-09-01

    For the past twelve years, a coordinated tri-service effort has been underway in the United States Department of Defense to provide an atmospheric effects assessment capability for existing and planned electro-optical (E0) systems. This paper reviews the exploratory development effort in the US Navy. A key responsibility for the Navy was the development of marine aerosol models. An initial model, the Navy Aerosol Model (NAN), was developed, tested, and transitioned into LOWTRAN 6. A more comprehensive model, the Navy Oceanic Vertical Aerosol Model (NOVAM), has been formulated and is presently undergoing comprehensive evaluation and testing. Marine aerosols and their extinction properties are only one important factor in EO systems performance assessment. For many EO systems applications, an accurate knowledge of marine background radiances is required in addition to considering the effects of the intervening atmosphere. Accordingly, a capability was developed to estimate the apparent sea surface radiance for different sea states and meteorological conditions. Also, an empirical relationship was developed which directly relates apparent mean sea temperature to calculated mean sky temperature. In situ measurements of relevant environmental parameters are essential for real-time EO systems performance assessment. Direct measurement of slant path extinction would be most desirable. This motivated a careful investigation of lidar (light detection and ranging) techniques including improvements to single-ended lidar profile inversion algorithms and development of new lidar techniques such as double-ended and dual-angle configurations. It was concluded that single-ended, single frequency lidars can not be used to infer slant path extinction with an accuracy necessary to make meaningful performance assessments. Other lidar configurations may find limited application in model validation and research efforts. No technique has emerged yet which could be considered ready for shipboard implementation. A shipboard real-time performance assessment system was developed and named PREOS (Performance and Range for EO Systems). PREOS has been incorporated into the Navy's Tactical Environmental Support System (TESS). The present version of PREOS is a first step in accomplishing the complex task of real-time systems performance assessment. Improved target and background models are under development and will be incorporated into TESS when tested and validated. A reliable assessment capability can be used to develop Tactical Decision Aids (TDAs). TDAs permit optimum selection or combination of sensors and estimation of a ship's own vulnerability against hostile systems.

  8. A range/depth modulation transfer function (RMTF) framework for characterizing 3D imaging LADAR performance

    NASA Astrophysics Data System (ADS)

    Staple, Bevan; Earhart, R. P.; Slaymaker, Philip A.; Drouillard, Thomas F., II; Mahony, Thomas

    2005-05-01

    3D imaging LADARs have emerged as the key technology for producing high-resolution imagery of targets in 3-dimensions (X and Y spatial, and Z in the range/depth dimension). Ball Aerospace & Technologies Corp. continues to make significant investments in this technology to enable critical NASA, Department of Defense, and national security missions. As a consequence of rapid technology developments, two issues have emerged that need resolution. First, the terminology used to rate LADAR performance (e.g., range resolution) is inconsistently defined, is improperly used, and thus has become misleading. Second, the terminology does not include a metric of the system"s ability to resolve the 3D depth features of targets. These two issues create confusion when translating customer requirements into hardware. This paper presents a candidate framework for addressing these issues. To address the consistency issue, the framework utilizes only those terminologies proposed and tested by leading LADAR research and standards institutions. We also provide suggestions for strengthening these definitions by linking them to the well-known Rayleigh criterion extended into the range dimension. To address the inadequate 3D image quality metrics, the framework introduces the concept of a Range/Depth Modulation Transfer Function (RMTF). The RMTF measures the impact of the spatial frequencies of a 3D target on its measured modulation in range/depth. It is determined using a new, Range-Based, Slanted Knife-Edge test. We present simulated results for two LADAR pulse detection techniques and compare them to a baseline centroid technique. Consistency in terminology plus a 3D image quality metric enable improved system standardization.

  9. Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) from an Unmanned Aerial Vehicle (UAV): Results from the 2014 AROMAT campaign

    NASA Astrophysics Data System (ADS)

    Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Fayt, Caroline; Maes, Jeroen; Mingireanu, Florin; Mocanu, Ionut; Georgescu, Lucian; Van Roozendael, Michel

    2015-04-01

    The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is an instrument dedicated to atmospheric trace gas retrieval from an Unmanned Aerial Vehicle (UAV). The payload is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27x12x12 cm3, and 6 W. The custom-built 2.5 m flying wing UAV is electrically powered, has a typical airspeed of 100 km/h, and can operate at a maximum altitude of 3 km. Both the payload and the UAV were developed in the framework of a collaboration between the Belgian Institute for Space Aeronomy (BIRA-IASB) and the Dunarea de Jos University of Galati, Romania. We present here SWING-UAV test flights dedicated to NO2 measurements and performed in Romania on 10 and 11 September 2014, during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign. The UAV performed 5 flights in the vicinity of the large thermal power station of Turceni (44.67° N, 23.4° E). The UAV was operated in visual range during the campaign, up to 900 m AGL , downwind of the plant and crossing its exhaust plume. The spectra recorded on flight are analyzed with the Differential Optical Absorption Spectroscopy (DOAS) method. The retrieved NO2 Differential Slant Column Densities (DSCDs) are up to 1.5e17 molec/cm2 and reveal the horizontal gradients around the plant. The DSCDs are converted to vertical columns and compared with coincident car-based DOAS measurements. We also present the near-future perspective of the SWING-UAV observation system, which includes flights in 2015 above the Black Sea to quantify ship emissions, the addition of SO2 as a target species, and autopilot flights at higher altitudes to cover a typical satellite pixel extent (10x10 km2).

  10. A RT-based Technique for the Analysis and the Removal of Titan's Atmosphere by Cassini/VIMS-IR data

    NASA Astrophysics Data System (ADS)

    Sindoni, G.; Tosi, F.; Adriani, A.; Moriconi, M. L.; D'Aversa, E.; Grassi, D.; Oliva, F.; Dinelli, B. M.; Castelli, E.

    2015-12-01

    Since 2004, the Visual and Infrared Mapping Spectrometer (VIMS), together with the CIRS and UVIS spectrometers, aboard the Cassini spacecraft has provided insight on Saturn and Titan atmospheres through remote sensing observations. The presence of clouds and aerosols in Titan's dense atmosphere makes the analysis of the surface radiation a difficult task. For this purpose, an atmospheric radiative transfer (RT) model is required. The implementation of a RT code, which includes multiple scattering, in an inversion algorithm based on the Bayesian approach, can provide strong constraints about both the surface albedo and the atmospheric composition. The application of this retrieval procedure we have developed to VIMS-IR spectra acquired in nadir or slant geometries allows us to retrieve the equivalent opacity of Titan's atmosphere in terms of variable aerosols and gaseous content. Thus, the separation of the atmospheric and surface contributions in the observed spectrum is possible. The atmospheric removal procedure was tested on the spectral range 1-2.2μm of publicly available VIMS data covering the Ontario Lacus and Ligeia Mare regions. The retrieval of the accurate composition of Titan's atmosphere is a much more complex task. So far, the information about the vertical structure of the atmosphere by limb spectra was mostly derived under conditions where the scattering could be neglected [1,2]. Indeed, since the very high aerosol load in the middle-low atmosphere produces strong scattering effects on the measured spectra, the analysis requires a RT modeling taking into account multiple scattering in a spherical-shell geometry. Therefore the use of an innovative method we are developing based on the Monte-Carlo approach, can provide important information about the vertical distribution of the aerosols and the gases composing Titan's atmosphere.[1]Bellucci et al., (2009). Icarus, 201, Issue 1, p. 198-216.[2]de Kok et al., (2007). Icarus, 191, Issue 1, p. 223-235.

  11. Toward an Information Bill of Rights and Responsibilities.

    ERIC Educational Resources Information Center

    Firestone, Charles M., Ed.; Schement, Jorge Reina, Ed.

    This book is an attempt to express rudimentary "first principles" in the application of democratic values to some of the most pressing issues inherent in the advent of a new information society. Its purpose is not to advance any particular political slant, but rather, to incorporate a balance of democratic values--libertarian,…

  12. A Tale of Two Kiddies: A Dickensian Slant on Multiplicative Thinking

    ERIC Educational Resources Information Center

    Hurst, Chris

    2018-01-01

    Evidence suggests that some students have learned procedures with little or no underpinning understanding while others have a much more connected and conceptual levels of understanding. In this article, the work of four primary students is discussed in terms of their contextual understanding of multiplicative concepts. The difference between…

  13. Alternative Differential Identification Approaches for 2 Similar Bacilli Commonly Studied in Microbiology.

    ERIC Educational Resources Information Center

    Benathen, Isaiah A.

    1991-01-01

    Alternatives to the traditional unknown tests that permit a clear and unequivocal differential identification decision between Bacillus subtilis and Bacillus megaterium are presented. Plates of Phenylethyl Alcohol agar with Blood (PEAB), slants of Bile Esculin agar and plates of DNA agar are used. The materials, methods, results, and conclusions…

  14. Applying Learning Design to Work-Based Learning

    ERIC Educational Resources Information Center

    Miao, Yongwu; Hoppe, Heinz Ulrich

    2011-01-01

    Learning design is currently slanted to reflect a course-based approach to learning. This article explores whether the concept of learning design could be applied to support the informal aspects of work-based learning (WBL). It also discusses the characteristics of WBL and presents a WBL-specific learning design that highlights the key features…

  15. Maintaining cultures of wood-rotting fungi.

    Treesearch

    E.E. Nelson; H.A. Fay

    1985-01-01

    Phellinus weirii cultures were stored successfully for 10 years in small alder (Alnus rubra Bong.) disks at 2 °C. The six isolates tested appeared morphologically identical and after 10 years varied little in growth rate from those stored on malt agar slants. Long-term storage on alder disks reduces the time required for...

  16. Constructing Stylish Characters on Computer Graphics Systems.

    ERIC Educational Resources Information Center

    Goldman, Gary S.

    1980-01-01

    Computer graphics systems typically produce a single, machine-like character font. At most, these systems enable the user to (1) alter the aspect ratio (height-to-width ratio) of the characters, (2) specify a transformation matrix to slant the characters, and (3) define a virtual pen table to change the lineweight of the plotted characters.…

  17. Fuel Injector With Shear Atomizer

    NASA Technical Reports Server (NTRS)

    Beal, George W.; Mills, Virgil L.; Smith, Durward B., II; Beacom, William F.

    1995-01-01

    Atomizer for injecting liquid fuel into combustion chamber uses impact and swirl to break incoming stream of fuel into small, more combustible droplets. Slanted holes direct flow of liquid fuel to stepped cylindrical wall. Impact on wall atomizes liquid. Air flowing past vanes entrains droplets of liquid in swirling flow. Fuel injected at pressure lower than customarily needed.

  18. The Nature of Discourse as Students Collaborate on a Mathematics WebQuest

    ERIC Educational Resources Information Center

    Orme, Michelle P.; Monroe, Eula Ewing

    2005-01-01

    Students were audio taped while working in teams on a WebQuest. Although gender-segregated, each team included both fifth- and sixth-graders. Interactions from two tasks were analyzed according to categories (exploratory, cumulative, disputational, tutorial) defined by the Spoken Language and New Technology (SLANT) project (e.g., Wegerif &…

  19. The Quality of Talk in Children's Joint Activity at the Computer.

    ERIC Educational Resources Information Center

    Mercer, Neil

    1994-01-01

    Describes findings of the Spoken Language and New Technology (SLANT) research project which studied the talk of primary school children in the United Kingdom who were working in small groups at computers with various kinds of software. Improvements in the quality of talk and collaboration during computer-based activities are suggested. (Contains…

  20. A New Syndrome with Hypotonia, Obesity, Mental Deficiency, and Facial, Oral, Ocular, and Limb Anomalies

    ERIC Educational Resources Information Center

    Cohen, M. Michael, Jr.; And Others

    1973-01-01

    Presented were three case reports of patients, 8 to 18 years of age, who shared common features, such as obesity beginning in midchildhood, hypotonia, mental deficiency characteristic craniofacial appearance (antimongoloid slant, open mouth, or prominent central incisors), oral and ocular anomalies, and tapering extremities with narrow hands and…

  1. Video surveillance with speckle imaging

    DOEpatents

    Carrano, Carmen J [Livermore, CA; Brase, James M [Pleasanton, CA

    2007-07-17

    A surveillance system looks through the atmosphere along a horizontal or slant path. Turbulence along the path causes blurring. The blurring is corrected by speckle processing short exposure images recorded with a camera. The exposures are short enough to effectively freeze the atmospheric turbulence. Speckle processing is used to recover a better quality image of the scene.

  2. Use of bile-esculin agar for rapid differentiation of Enterobacteriaceae.

    PubMed Central

    Lindell, S S; Quinn, P

    1975-01-01

    Bile-esculin agar has been used for several years for the presumptive identification of group D streptococci. All members of the Enterobacteriaceae family will also grow on this medium, but only certain ones can hydrolyze esculin to 6,7-dihydroxycoumarin, which reacts with iron to produce a characteristic blackening of the medium. One thousand and six cultures from clinical specimens representing 20 genera were isolated and identified. Heavy inocula from fresh pure culture isolates on heart infusion agar were placed on bile-esculin agar slants and incubated at 35 C. The slants were examined at 4 h and again at 18 h for esculin hydrolysis. Shigella, Salmonella, Arizona, Proteus mirabilis, Proteus morganii, Providencia alcalifaciens, and Providencia stuartii all produced negative results. Klebsiella pneumoniae, Enterobacter aerogenes, Serratia marcescens, and Serratia rubidaea produced a positive reaction in 4 h. The other remaining eight genera exhibited varying results. The use of this medium in conjunction with triple sugar iron-lysine iron agar has been of great value in differentiating the Klebsiella-Enterobacter-Serratia group from other Enterobacteriaceae. PMID:1176613

  3. The structure factor of primes

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Martelli, F.; Torquato, S.

    2018-03-01

    Although the prime numbers are deterministic, they can be viewed, by some measures, as pseudo-random numbers. In this article, we numerically study the pair statistics of the primes using statistical-mechanical methods, particularly the structure factor S(k) in an interval M ≤slant p ≤slant M + L with M large, and L/M smaller than unity. We show that the structure factor of the prime-number configurations in such intervals exhibits well-defined Bragg-like peaks along with a small ‘diffuse’ contribution. This indicates that primes are appreciably more correlated and ordered than previously thought. Our numerical results definitively suggest an explicit formula for the locations and heights of the peaks. This formula predicts infinitely many peaks in any non-zero interval, similar to the behavior of quasicrystals. However, primes differ from quasicrystals in that the ratio between the location of any two predicted peaks is rational. We also show numerically that the diffuse part decays slowly as M and L increases. This suggests that the diffuse part vanishes in an appropriate infinite-system-size limit.

  4. Design Alternatives to Improve Access Time Performance of Disk Drives Under DOS and UNIX

    NASA Astrophysics Data System (ADS)

    Hospodor, Andy

    For the past 25 years, improvements in CPU performance have overshadowed improvements in the access time performance of disk drives. CPU performance has been slanted towards greater instruction execution rates, measured in millions of instructions per second (MIPS). However, the slant for performance of disk storage has been towards capacity and corresponding increased storage densities. The IBM PC, introduced in 1982, processed only a fraction of a MIP. Follow-on CPUs, such as the 80486 and 80586, sported 5-10 MIPS by 1992. Single user PCs and workstations, with one CPU and one disk drive, became the dominant application, as implied by their production volumes. However, disk drives did not enjoy a corresponding improvement in access time performance, although the potential still exists. The time to access a disk drive improves (decreases) in two ways: by altering the mechanical properties of the drive or by adding cache to the drive. This paper explores the improvement to access time performance of disk drives using cache, prefetch, faster rotation rates, and faster seek acceleration.

  5. Different phases of a system of hard rods on three dimensional cubic lattice

    NASA Astrophysics Data System (ADS)

    Vigneshwar, N.; Dhar, Deepak; Rajesh, R.

    2017-11-01

    We study the different phases of a system of monodispersed hard rods of length k on a cubic lattice, using an efficient cluster algorithm able to simulate densities close to the fully-packed limit. For k≤slant 4 , the system is disordered at all densities. For k=5, 6 , we find a single density-driven transition, from a disordered phase to high density layered-disordered phase, in which the density of rods of one orientation is strongly suppressed, breaking the system into weakly coupled layers. Within a layer, the system is disordered. For k ≥slant 7 , three density-driven transitions are observed numerically: isotropic to nematic to layered-nematic to layered-disordered. In the layered-nematic phase, the system breaks up into layers, with nematic order in each layer, but very weak correlation between the ordering directions of different layers. We argue that the layered-nematic phase is a finite-size effect, and in the thermodynamic limit, the nematic phase will have higher entropy per site. We expect the systems of rods in four and higher dimensions will have a qualitatively similar phase diagram.

  6. Enhanced oil recovery utilizing high-angle wells in the Frontier Formation, Badger Basin Field, Park County, Wyoming. Quarterly technical progress report, 1 October 1993--31 December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortmann, R.G.

    1994-01-14

    The goals during this period included the following objectives from the Statement of Work: in Phase 2A, completion of Subtask 2.1.4 -- Interpret data, of Task 2.1 -- Acquire 3-D seismic data; and, in Phase 2B, completion of Subtask 2.2.1 -- Solicit bids and award, and initiation of Subtask 2.2.2 -- Acquire cores, of Task 2.2 -- Drill slant hole. Subtask 2.1.4 -- Interpret data: Interpretation of the 3- D seismic survey was completed on a Sun Sparcstation10 workstation (UNIX based), using Landmark Graphics latest version of Seisworks 3D software. Subtask 2.2.2 -- Acquire cores: Sierra had picked a locationmore » and prepared a drilling plan for the slant/horizontal wellbores. Sierra was ready to submit an Application for Permit to Drill. However, due to the fact that Sierra entered into an agreement to sell the Badger Basin property, the drilling phase was put on hold.« less

  7. Numerical mixing calculations of confined reacting jet flows in a cylindrical duct

    NASA Technical Reports Server (NTRS)

    Oechsle, Victor L.; Holdeman, J. D.

    1995-01-01

    The results reported in this paper describe some of the main flow characteristics and NOx production results which develop in the mixing process in a constant cross-sectional cylindrical duct. A 3-dimensional numerical model has been used to predict the mixing flow field and NOx characteristics in a mixing section of an RQL combustor. Eighteen configurations have been analyzed in a circular geometry in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying three parameter: (1) jet-to-mainstream momentum-flux ration (J), (2) orifice shape or orifice aspect ratio, and (3) slot slant angle. The results indicate that the mixing flow field and NOx production significantly vary with the value of the jet penetration and subsequently, slanting elongated slots generally improve the NOx production at high J conditions. Round orifices produce low NOx at low J due to the strong jet penetration. The NOx production trends do not correlate with the mixing non-uniformity parameters described herein.

  8. [Occupational epidemiology: some methodological considerations].

    PubMed

    Alvear-Galindo, María Guadalupe; del Pilar Paz-Román, María

    2006-01-01

    During the last decade, occupational epidemiology has gained a great importance, not only because of the increase of pollutants and their noxiousness, but also because it has gone from the descriptive to the analytic level. The purpose of this work is to present what has been reported on epidemiological studies, different ways of characterizing and measuring occupational exposure, by emphasizing slants of exposure and selection measurement. In the reviewed studies, an interest in improving the exposure evaluation has been shown. The mainly reported measurement slants are the ways of measuring and classifying the exposure. The main designs were transversal with the use of matrixes to improve the evaluation of exposure. Conditions of hygiene and security were considered in order to control the quality of the information. This information was analyzed with different criteria. Some of the elements that hinder the research on occupational epidemiology are a mixed exposure, small populations, lack of exposure data, low levels of exposure and long periods of illness latency. Some breakthroughs in the strategies of epidemiological analysis and some other areas of knowledge have made possible a better understanding of work and health conditions of workers.

  9. Comparison of effectiveness of wood decay fungi maintained by annual subculture on agar and stored in sterile water for 18 years.

    PubMed

    Richter, Dana L; Kangas, Laura C; Smith, Jill K; Laks, Peter E

    2010-03-01

    Fourteen isolates of basidiomycete decay fungi (12 species) were maintained for 18 years on agar slants transferred annually and also stored as mycelium-agar cores under cold sterile water without subculture. Isolates stored by each method were evaluated for decay effectiveness using a standard laboratory accelerated soil-block decay test. Effectiveness was measured by mean percent mass loss of wood blocks. There was no significant difference (p < or = 0.05) in decay effectiveness between storage methods for 12 of the fungus isolates tested. For the 2 fungi that showed a significant difference in the amount of decay with respect to storage method, 1 fungus (Fomitopsis lilacinogilva) produced more decay by the strain maintained as an agar slant, while the other fungus (Trametes versicolor) produced more decay by the strain stored in sterile water. Results suggested that storage under sterile water is an easy and effective method to store isolates of decay fungi for long periods, but as with any microbial storage method, careful monitoring of isolates upon revival is necessary.

  10. Scattering theory for the defocusing fourth-order Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Miao, Changxing; Zheng, Jiqiang

    2016-02-01

    In this paper, we study the global well-posedness and scattering theory for the defocusing fourth-order nonlinear Schrödinger equation (FNLS) \\text{i}{{u}t}+{{Δ }2}u +\\mid u{{\\mid}p}u=0 in dimensions d≥slant 8 . We prove that if the solution u is apriorily bounded in the critical Sobolev space, that is, u\\in Lt∞≤ft(I;\\overset{\\centerdot}{\\mathop{H}} x{{sc}}≤ft({{{R}}d}\\right)\\right) with all {{s}c}:=\\frac{d}{2}-\\frac{4}{p}≥slant 1 if p is an even integer or {{s}c}\\in ≤ft[1,2+p\\right) otherwise, then u is global and scatters. We will give a uniform way to treat the energy-subcritical, energy-critical and energy-supercritical FNLS by making use of the strategy derived from concentration compactness ideas, and we are able to overcome the logarithmic blowup in the double Duhamel trick in dimension eight by exploiting the refined dispersive estimate which is in sharp contrast to the Schrödinger equation.

  11. The uncatchable smile in Leonardo da Vinci's La Bella Principessa portrait.

    PubMed

    Soranzo, Alessandro; Newberry, Michelle

    2015-08-01

    A portrait of uncertain origin recently came to light which, after extensive research and examination, was shown to be that rarest of things: a newly discovered Leonardo da Vinci painting entitled La Bella Principessa. This research presents a new illusion which is similar to that identified in the Mona Lisa; La Bella Principessa's mouth appears to change slant depending on both the Viewing Distance and the Level of Blur applied to a digital version of the portrait. Through a series of psychophysics experiments, it was found that a perceived change in the slant of the La Bella Principessa's mouth influences her expression of contentment thus generating an illusion that we have coined the "uncatchable smile". The elusive quality of the Mona Lisa's smile has been previously reported (Science, 290 (2000) 1299) and so the existence of a similar illusion in a portrait painted prior to the Mona Lisa becomes more interesting. The question remains whether Leonardo da Vinci intended this illusion. In any case, it can be argued that the ambiguity created adds to the portrait's allure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Biologically Inspired Model for Inference of 3D Shape from Texture

    PubMed Central

    Gomez, Olman; Neumann, Heiko

    2016-01-01

    A biologically inspired model architecture for inferring 3D shape from texture is proposed. The model is hierarchically organized into modules roughly corresponding to visual cortical areas in the ventral stream. Initial orientation selective filtering decomposes the input into low-level orientation and spatial frequency representations. Grouping of spatially anisotropic orientation responses builds sketch-like representations of surface shape. Gradients in orientation fields and subsequent integration infers local surface geometry and globally consistent 3D depth. From the distributions in orientation responses summed in frequency, an estimate of the tilt and slant of the local surface can be obtained. The model suggests how 3D shape can be inferred from texture patterns and their image appearance in a hierarchically organized processing cascade along the cortical ventral stream. The proposed model integrates oriented texture gradient information that is encoded in distributed maps of orientation-frequency representations. The texture energy gradient information is defined by changes in the grouped summed normalized orientation-frequency response activity extracted from the textured object image. This activity is integrated by directed fields to generate a 3D shape representation of a complex object with depth ordering proportional to the fields output, with higher activity denoting larger distance in relative depth away from the viewer. PMID:27649387

  13. The Reliability of the CVI Range: A Functional Vision Assessment for Children with Cortical Visual Impairment

    ERIC Educational Resources Information Center

    Newcomb, Sandra

    2010-01-01

    Children who are identified as visually impaired frequently have a functional vision assessment as one way to determine how their visual impairment affects their educational performance. The CVI Range is a functional vision assessment for children with cortical visual impairment. The purpose of the study presented here was to examine the…

  14. Analysis of the attainable efficiency of a direct-bandgap betavoltaic element

    NASA Astrophysics Data System (ADS)

    Sachenko, A. V.; Shkrebtii, A. I.; Korkishko, R. M.; Kostylyov, V. P.; Kulish, M. R.; Sokolovskyi, I. O.; Evstigneev, M.

    2015-11-01

    Conversion of energy of beta-particles into electric energy in a p-n junction based on direct-bandgap semiconductors, such as GaAs, is analyzed considering realistic semiconductor system parameters. An expression for the collection coefficient, Q, of the electron-hole pairs generated by beta-electrons is derived taking into account the existence of the dead layer. We show that the collection coefficient of beta-electrons emitted by a 3H-source to a GaAs p-n junction is close to 1 in a broad range of electron lifetimes in the junction, ranging from 10-9to 10-7 s. For the combination 147Pm/GaAs, Q is relatively large (≥slant 0.4) only for quite long lifetimes (about 10-7 s) and large thicknesses (about 100 μm) of GaAs p-n junctions. For realistic lifetimes of minority carriers and their diffusion coefficients, the open-circuit voltage realized due to the irradiation of a GaAs p-n junction by beta-particles is obtained. The attainable beta-conversion efficiency η in the case of a 3H/GaAs combination is found to exceed that of the 147Pm/GaAs combination.

  15. Algorithms used in the Airborne Lidar Processing System (ALPS)

    USGS Publications Warehouse

    Nagle, David B.; Wright, C. Wayne

    2016-05-23

    The Airborne Lidar Processing System (ALPS) analyzes Experimental Advanced Airborne Research Lidar (EAARL) data—digitized laser-return waveforms, position, and attitude data—to derive point clouds of target surfaces. A full-waveform airborne lidar system, the EAARL seamlessly and simultaneously collects mixed environment data, including submerged, sub-aerial bare earth, and vegetation-covered topographies.ALPS uses three waveform target-detection algorithms to determine target positions within a given waveform: centroid analysis, leading edge detection, and bottom detection using water-column backscatter modeling. The centroid analysis algorithm detects opaque hard surfaces. The leading edge algorithm detects topography beneath vegetation and shallow, submerged topography. The bottom detection algorithm uses water-column backscatter modeling for deeper submerged topography in turbid water.The report describes slant range calculations and explains how ALPS uses laser range and orientation measurements to project measurement points into the Universal Transverse Mercator coordinate system. Parameters used for coordinate transformations in ALPS are described, as are Interactive Data Language-based methods for gridding EAARL point cloud data to derive digital elevation models. Noise reduction in point clouds through use of a random consensus filter is explained, and detailed pseudocode, mathematical equations, and Yorick source code accompany the report.

  16. The 3D-HST Survey: Hubble Space Telescope WFC3/G141 Grism Spectra, Redshifts, and Emission Line Measurements for ~ 100,000 Galaxies

    NASA Astrophysics Data System (ADS)

    Momcheva, Ivelina G.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Skelton, Rosalind E.; Whitaker, Katherine E.; Nelson, Erica J.; Fumagalli, Mattia; Maseda, Michael V.; Leja, Joel; Franx, Marijn; Rix, Hans-Walter; Bezanson, Rachel; Da Cunha, Elisabete; Dickey, Claire; Förster Schreiber, Natascha M.; Illingworth, Garth; Kriek, Mariska; Labbé, Ivo; Ulf Lange, Johannes; Lundgren, Britt F.; Magee, Daniel; Marchesini, Danilo; Oesch, Pascal; Pacifici, Camilla; Patel, Shannon G.; Price, Sedona; Tal, Tomer; Wake, David A.; van der Wel, Arjen; Wuyts, Stijn

    2016-08-01

    We present reduced data and data products from the 3D-HST survey, a 248-orbit HST Treasury program. The survey obtained WFC3 G141 grism spectroscopy in four of the five CANDELS fields: AEGIS, COSMOS, GOODS-S, and UDS, along with WFC3 H 140 imaging, parallel ACS G800L spectroscopy, and parallel I 814 imaging. In a previous paper, we presented photometric catalogs in these four fields and in GOODS-N, the fifth CANDELS field. Here we describe and present the WFC3 G141 spectroscopic data, again augmented with data from GO-1600 in GOODS-N (PI: B. Weiner). We developed software to automatically and optimally extract interlaced two-dimensional (2D) and one-dimensional (1D) spectra for all objects in the Skelton et al. (2014) photometric catalogs. The 2D spectra and the multi-band photometry were fit simultaneously to determine redshifts and emission line strengths, taking the morphology of the galaxies explicitly into account. The resulting catalog has redshifts and line strengths (where available) for 22,548 unique objects down to {{JH}}{IR}≤slant 24 (79,609 unique objects down to {{JH}}{IR}≤slant 26). Of these, 5459 galaxies are at z\\gt 1.5 and 9621 are at 0.7\\lt z\\lt 1.5, where Hα falls in the G141 wavelength coverage. The typical redshift error for {{JH}}{IR}≤slant 24 galaxies is {σ }z≈ 0.003× (1+z), I.e., one native WFC3 pixel. The 3σ limit for emission line fluxes of point sources is 2.1× {10}-17 erg s-1 cm-2. All 2D and 1D spectra, as well as redshifts, line fluxes, and other derived parameters, are publicly available.18

  17. The quantum null energy condition in curved space

    NASA Astrophysics Data System (ADS)

    Fu, Zicao; Koeller, Jason; Marolf, Donald

    2017-11-01

    The quantum null energy condition (QNEC) is a conjectured bound on components (Tkk = Tab ka k^b) of the stress tensor along a null vector k a at a point p in terms of a second k-derivative of the von Neumann entropy S on one side of a null congruence N through p generated by k a . The conjecture has been established for super-renormalizeable field theories at points p that lie on a bifurcate Killing horizon with null tangent k a and for large-N holographic theories on flat space. While the Koeller-Leichenauer holographic argument clearly yields an inequality for general ( p, k^a) , more conditions are generally required for this inequality to be a useful QNEC. For d≤slant 3 , for arbitrary backgroud metric we show that the QNEC is naturally finite and independent of renormalization scheme when the expansion θ of N at the point p vanishes. This is consistent with the original QNEC conjecture which required θ and the shear σab to satisfy θ \\vert _p= \\dotθ\\vert p =0 , σab\\vert _p=0 . But for d=4, 5 more conditions than even these are required. In particular, we also require the vanishing of additional derivatives and a dominant energy condition. In the above cases the holographic argument does indeed yield a finite QNEC, though for d≥slant6 we argue these properties to fail even for weakly isolated horizons (where all derivatives of θ, σab vanish) that also satisfy a dominant energy condition. On the positive side, a corrollary to our work is that, when coupled to Einstein-Hilbert gravity, d ≤slant 3 holographic theories at large N satisfy the generalized second law (GSL) of thermodynamics at leading order in Newton’s constant G. This is the first GSL proof which does not require the quantum fields to be perturbations to a Killing horizon.

  18. Characterization and optimization of slanted well designs for microfluidic mixing under electroosmotic flow.

    PubMed

    Johnson, Timothy J; Locascio, Laurie E

    2002-08-01

    Recently, a series of slanted wells on the floor of a microfluidic channel were experimentally shown to successfully induce off-axis transport and mixing of two confluent streams when operating under electroosmotic (EO) flow. This paper will further explore, through numerical simulations, the parameters that affect off-axis transport under EO flow with an emphasis on optimizing the mixing rate of (a). two confluent streams in steady-state or (b). the transient scenario of two confluent plugs of material, which simulates mixing after an injection. For the steady-state scenario, the degree of mixing was determined to increase by changing any of the following parameters: (1). increasing the well depth, (2). decreasing the well angle relative to the axis of the channel, and (3). increasing the EO mobility of the well walls relative to the mobility of the main channel. Also, it will be shown that folding of the fluid can occur when the well angle is sufficiently reduced and/or when the EO mobility of the wells is increased relative to the channel. The optimum configuration for the transient problem of mixing two confluent plugs includes shallow wells to minimize the well residence time, and an increased EO mobility of the well walls relative to the main channel as well as small well angles to maximize off-axis transport. The final design reported here for the transient study reduces the standard deviation of the concentration across the channel by 72% while only increasing the axial dispersion of the injected plug by 8.6 % when compared to a plug injected into a channel with no wells present. These results indicate that a series of slanted wells on the wall of a microchannel provides a means for controlling and achieving a high degree of off-axis transport and mixing in a passive manner for micro total analysis system (microTAS) devices that are driven by electroosmosis.

  19. Ionospheric and receiver DCB-constrained multi-GNSS single-frequency PPP integrated with MEMS inertial measurements

    NASA Astrophysics Data System (ADS)

    Gao, Zhouzheng; Ge, Maorong; Shen, Wenbin; Zhang, Hongping; Niu, Xiaoji

    2017-11-01

    Single-frequency precise point positioning (SF-PPP) is a potential precise positioning technique due to the advantages of the high accuracy in positioning after convergence and the low cost in operation. However, there are still challenges limiting its applications at present, such as the long convergence time, the low reliability, and the poor satellite availability and continuity in kinematic applications. In recent years, the achievements in the dual-frequency PPP have confirmed that its performance can be significantly enhanced by employing the slant ionospheric delay and receiver differential code bias (DCB) constraint model, and the multi-constellation Global Navigation Satellite Systems (GNSS) data. Accordingly, we introduce the slant ionospheric delay and receiver DCB constraint model, and the multi-GNSS data in SF-PPP modular together. In order to further overcome the drawbacks of SF-PPP in terms of reliability, continuity, and accuracy in the signal easily blocking environments, the inertial measurements are also adopted in this paper. Finally, we form a new approach to tightly integrate the multi-GNSS single-frequency observations and inertial measurements together to ameliorate the performance of the ionospheric delay and receiver DCB-constrained SF-PPP. In such model, the inter-system bias between each two GNSS systems, the inter-frequency bias between each two GLONASS frequencies, the hardware errors of the inertial sensors, the slant ionospheric delays of each user-satellite pair, and the receiver DCB are estimated together with other parameters in a unique Kalman filter. To demonstrate its performance, the multi-GNSS and low-cost inertial data from a land-borne experiment are analyzed. The results indicate that visible positioning improvements in terms of accuracy, continuity, and reliability can be achieved in both open-sky and complex conditions while using the proposed model in this study compared to the conventional GPS SF-PPP.

  20. The Metal Abundances across Cosmic Time (MACT) Survey. II. Evolution of the Mass-metallicity Relation over 8 Billion Years, Using [OIII]4363AA-based Metallicities

    NASA Astrophysics Data System (ADS)

    Ly, Chun; Malkan, Matthew A.; Rigby, Jane R.; Nagao, Tohru

    2016-09-01

    We present the first results from MMT and Keck spectroscopy for a large sample of 0.1≤slant z≤slant 1 emission-line galaxies selected from our narrowband imaging in the Subaru Deep Field. We measured the weak [O III] λ4363 emission line for 164 galaxies (66 with at least 3σ detections, and 98 with significant upper limits). The strength of this line is set by the electron temperature for the ionized gas. Because the gas temperature is regulated by the metal content, the gas-phase oxygen abundance is inversely correlated with [O III] λ4363 line strength. Our temperature-based metallicity study is the first to span ≈ 8 Gyr of cosmic time and ≈ 3 dex in stellar mass for low-mass galaxies, {log}({M}\\star /{M}⊙ )≈ 6.0-9.0. Using extensive multi-wavelength photometry, we measure the evolution of the stellar mass-gas metallicity relation and its dependence on dust-corrected star formation rate (SFR). The latter is obtained from high signal-to-noise Balmer emission-line measurements. Our mass-metallicity relation is consistent with Andrews & Martini at z≤slant 0.3, and evolves toward lower abundances at a given stellar mass, {log}{({{O/H}})\\propto (1+z)}-{2.32-0.26+0.52}. We find that galaxies with lower metallicities have higher SFRs at a given stellar mass and redshift, although the scatter is large (≈ 0.3 dex) and the trend is weaker than seen in local studies. We also compare our mass-metallicity relation against predictions from high-resolution galaxy formation simulations, and find good agreement with models that adopt energy- and momentum-driven stellar feedback. We identified 16 extremely metal-poor galaxies with abundances of less than a tenth of solar; our most metal-poor galaxy at z≈ 0.84 is similar to I Zw 18.

  1. Validation of the technique for absolute total electron content and differential code biases estimation

    NASA Astrophysics Data System (ADS)

    Mylnikova, Anna; Yasyukevich, Yury; Yasyukevich, Anna

    2017-04-01

    We have developed a technique for vertical total electron content (TEC) and differential code biases (DCBs) estimation using data from a single GPS/GLONASS station. The algorithm is based on TEC expansion into Taylor series in space and time (TayAbsTEC). We perform the validation of the technique using Global Ionospheric Maps (GIM) computed by Center for Orbit Determination in Europe (CODE) and Jet Propulsion Laboratory (JPL). We compared differences between absolute vertical TEC (VTEC) from GIM and VTEC evaluated by TayAbsTEC for 2009 year (solar activity minimum - sunspot number about 0), and for 2014 year (solar activity maximum - sunspot number 110). Since there is difference between VTEC from CODE and VTEC from JPL, we compare TayAbsTEC VTEC with both of them. We found that TayAbsTEC VTEC is closer to CODE VTEC than to JPL VTEC. The difference between TayAbsTEC VTEC and GIM VTEC is more noticeable for solar activity maximum (2014) than for solar activity minimum (2009) for both CODE and JPL. The distribution of VTEC differences is close to Gaussian distribution, so we conclude that results of TayAbsTEC are in the agreement with GIM VTEC. We also compared DCBs evaluated by TayAbsTEC and DCBs from GIM, computed by CODE. The TayAbsTEC DCBs are in good agreement with CODE DCBs for GPS satellites, but differ noticeable for GLONASS. We used DCBs to correct slant TEC to find out which DCBs give better results. Slant TEC correction with CODE DCBs produces negative and nonphysical TEC values. Slant TEC correction with TayAbsTEC DCBs doesn't produce such artifacts. The technique we developed is used for VTEC and DCBs calculation given only local GPS/GLONASS networks data. The evaluated VTEC data are in GIM framework which is handy when various data analyses are made.

  2. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    NASA Astrophysics Data System (ADS)

    Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; González Abad, Gonzalo; Liu, Cheng; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; Murcray, Frank; Ruppert, Lyle; Soo, Daniel; Follette-Cook, Melanie B.; Janz, Scott J.; Kowalewski, Matthew G.; Loughner, Christopher P.; Pickering, Kenneth E.; Herman, Jay R.; Beaver, Melinda R.; Long, Russell W.; Szykman, James J.; Judd, Laura M.; Kelley, Paul; Luke, Winston T.; Ren, Xinrong; Al-Saadi, Jassim A.

    2016-06-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm-2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinmann, Amanda L.; Hruska, Carrie B.; Conners, Amy L.

    Purpose: Molecular breast imaging (MBI) is a dedicated nuclear medicine breast imaging modality that employs dual-head cadmium zinc telluride (CZT) gamma cameras to functionally detect breast cancer. MBI has been shown to detect breast cancers otherwise occult on mammography and ultrasound. Currently, a MBI-guided biopsy system does not exist to biopsy such lesions. Our objective was to consider the utility of a novel conical slant-hole (CSH) collimator for rapid (<1 min) and accurate monitoring of lesion position to serve as part of a MBI-guided biopsy system. Methods: An initial CSH collimator design was derived from the dimensions of a parallel-holemore » collimator optimized for MBI performed with dual-head CZT gamma cameras. The parameters of the CSH collimator included the collimator height, cone slant angle, thickness of septa and cones of the collimator, and the annular areas exposed at the base of the cones. These parameters were varied within the geometric constraints of the MBI system to create several potential CSH collimator designs. The CSH collimator designs were evaluated using Monte Carlo simulations. The model included a breast compressed to a thickness of 6 cm with a 1-cm diameter lesion located 3 cm from the collimator face. The number of particles simulated was chosen to represent the count density of a low-dose, screening MBI study acquired with the parallel-hole collimator for 10 min after a {approx}150 MBq (4 mCi) injection of Tc-99m sestamibi. The same number of particles was used for the CSH collimator simulations. In the resulting simulated images, the count sensitivity, spatial resolution, and accuracy of the lesion depth determined from the lesion profile width were evaluated. Results: The CSH collimator design with default parameters derived from the optimal parallel-hole collimator provided 1-min images with error in the lesion depth estimation of 1.1 {+-} 0.7 mm and over 21 times the lesion count sensitivity relative to 1-min images acquired with the current parallel-hole collimator. Sensitivity was increased via more vertical cone slant angles, larger annular areas, thinner cone walls, shorter cone heights, and thinner radiating septa. Full width at half maximum trended in the opposite direction as sensitivity for all parameters. There was less error in the depth estimates for less vertical slant angles, smaller annular areas, thinner cone walls, cone heights near 1 cm, and generally thinner radiating septa. Conclusions: A Monte Carlo model was used to demonstrate the feasibility of a CSH collimator design for rapid biopsy application in molecular breast imaging. Specifically, lesion depth of a 1-cm diameter lesion positioned in the center of a typical breast can be estimated with error of less than 2 mm using circumferential count profiles of images acquired in 1 min.« less

  4. Conformal partition functions of critical percolation from D 3 thermodynamic Bethe Ansatz equations

    NASA Astrophysics Data System (ADS)

    Morin-Duchesne, Alexi; Klümper, Andreas; Pearce, Paul A.

    2017-08-01

    Using the planar Temperley-Lieb algebra, critical bond percolation on the square lattice can be reformulated as a loop model. In this form, it is incorporated as {{ L}}{{ M}}(2, 3) in the Yang-Baxter integrable family of logarithmic minimal models {{ L}}{{ M}}( p, p\\prime) . We consider this model of percolation in the presence of boundaries and with periodic boundary conditions. Inspired by Kuniba, Sakai and Suzuki, we rewrite the recently obtained infinite Y-system of functional equations. In this way, we obtain nonlinear integral equations in the form of a closed finite set of TBA equations described by a D 3 Dynkin diagram. Following the methods of Klümper and Pearce, we solve the TBA equations for the conformal finite-size corrections. For the ground states of the standard modules on the strip, these agree with the known central charge c  =  0 and conformal weights Δ1, s for \\renewcommand≥≥slant} s\\in {{ Z}≥slant 1} with Δr, s=\\big((3r-2s){\\hspace{0pt}}^2-1\\big)/24 . For the periodic case, the finite-size corrections agree with the conformal weights Δ0, s , Δ1, s with \\renewcommand{≥{≥slant} s\\in\\frac{1}{2}{{ Z}≥slant 0} . These are obtained analytically using Rogers dilogarithm identities. We incorporate all finite excitations by formulating empirical selection rules for the patterns of zeros of all the eigenvalues of the standard modules. We thus obtain the conformal partition functions on the cylinder and the modular invariant partition function (MIPF) on the torus. By applying q-binomial and q-Narayana identities, it is shown that our refined finitized characters on the strip agree with those of Pearce, Rasmussen and Zuber. For percolation on the torus, the MIPF is a non-diagonal sesquilinear form in affine u(1) characters given by the u(1) partition function Z2, 3(q)=Z2, 3{Circ}(q) . The u(1) operator content is {{ N}}Δ, \\barΔ=1 for Δ=\\barΔ=-\\frac{1}{24}, \\frac{35}{24} and {{ N}}Δ, \\barΔ=2 for Δ=\\barΔ=\\frac{1}{8}, \\frac{1}{3}, \\frac{5}{8} and (Δ, \\barΔ)=(0, 1), (1, 0) . This result is compatible with the general conjecture of Pearce and Rasmussen, namely Zp, p\\prime(q)=Z{Proj}p, p\\prime(q)+np, p\\prime Z{Min}p, p\\prime(q) with np, p\\prime\\in {{ Z}} , where the minimal partition function is Z{Min}2, 3(q)=1 and the lattice derivation fixes n 2,3  =  -1.

  5. Activity and social factors affect cohesion among individuals in female Japanese macaques: A simultaneous focal-follow study.

    PubMed

    Nishikawa, Mari; Suzuki, Mariko; Sprague, David S

    2014-07-01

    Understanding cohesion among individuals within a group is necessary to reveal the social system of group-living primates. Japanese macaques (Macaca fuscata) are female-philopatric primates that reside in social groups. We investigated whether individual activity and social factors can affect spatio-temporal cohesion in wild female Japanese macaques. We conducted behavioral observation on a group, which contained 38 individuals and ranged over ca. 60 ha during the study period. Two observers carried out simultaneous focal-animal sampling of adult female pairs during full-day follows using global positioning system which enabled us to quantify interindividual distances (IIDs), group members within visual range (i.e., visual unit), and separation duration beyond visual range as indicators of cohesion among individuals. We found considerable variation in spatio-temporal group cohesion. The overall mean IID was 99.9 m (range = 0-618.2 m). The percentage of IIDs within visual range was 23.1%, within auditory range was 59.8%, and beyond auditory range was 17.1%. IIDs varied with activity; they were shorter during grooming and resting, and longer during foraging and traveling. Low-ranking females showed less cohesion than high-ranking ones. Kin females stayed nearly always within audible range. The macaques were weakly cohesive with small mean visual unit size (3.15 counting only adults, 5.99 counting all individuals). Both-sex units were the most frequently observed visual unit type when they were grooming/resting. Conversely, female units were the most frequently observed visual unit type when they were foraging. The overall mean visual separation duration was 25.7 min (range = 3-513 min). Separation duration was associated with dominance rank. These results suggest that Japanese macaques regulate cohesion among individuals depending on their activity and on social relationships; they were separated to adapt food distribution and aggregated to maintain social interactions. © 2014 Wiley Periodicals, Inc.

  6. Hearing the Transformation of Conical to Closed-Pipe Resonances

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    2017-01-01

    The harmonics for an open cone with slant length "L" are the same as the harmonics for an open pipe with length "L." When the cone is transformed through phases of closed-open conical frusta into a cylinder of length "L" closed at one end, the fundamental halves and only odd harmonics remain. A simple approach using…

  7. Check Your SLANT: Adapting Self-Management for Use as a Class-Wide Intervention

    ERIC Educational Resources Information Center

    Briesch, Amy M.; Hemphill, Elizabeth; Daniels, Brian

    2013-01-01

    Class-wide interventions have been effectively used as a primary level of support to increase student engagement, but the management of these interventions can quickly become burdensome for busy classroom teachers. To address this problem, this study combined a class-wide self-management intervention, in which the students were responsible for…

  8. Thinking Skills and Propaganda Detection.

    ERIC Educational Resources Information Center

    Price, John L.; Mann, George

    This paper points out that one of the most appropriate and needed areas in which students should engage in critical thinking is in their everyday responses to messages aimed at them in attempts to persuade and convince them to buy or believe something. Ten commonly used tactics noted in the media are described. Examples are given of slanted or…

  9. A reconsideration for forming mechanism of optic fiber probe fabricated by static chemical etching

    NASA Astrophysics Data System (ADS)

    Chen, Yiru; Shen, Ruiqi

    2016-07-01

    The studies on the mechanism of static chemical etching are supplemented in this paper. Surface tension and diffusion effect are both taken into account. Theoretical analysis and data fitting show that the slant angle of the liquid-liquid interface leads to the maximum liquid rising, when diffusion effect is negligible.

  10. Science News of Controversy: The Case of Marijuana. Journalism Monographs No. 62.

    ERIC Educational Resources Information Center

    Shepherd, R. Gordon

    1979-01-01

    A study of news refraction was conducted to determine how well the press has functioned in popularizing scientific views and findings on a subject with direct implications for a controversial social issue. In reporting the marijuana question, the press produced a certain amount of refraction or news-slanting. For example, science articles…

  11. Data processing technique for multiangle lidar sounding of poorly stratified polluted atmospheres: Theory and experiment

    Treesearch

    Cyle E. Wold; Vladimir A. Kovalev; Alexander P. Petkov; Wei Min Hao

    2012-01-01

    Scanning elastic lidar, which can operate in different slant directions, is the most appropriate remote sensing tool for investigating the optical properties of smoke-polluted atmospheres. However, the commonly used methodologies of multiangle measurements are based on the assumption of horizontal stratification of the searched atmosphere1,2. When working in real...

  12. Understanding Lifelong Learning and Adult Education Policy in Estonia: Tendencies and Contradictions

    ERIC Educational Resources Information Center

    Jogi, Larissa

    2012-01-01

    There have been many theoretical and empirical analyses of lifelong learning policies and how to implement, develop, measure and facilitate lifelong learning and lifelong learning policy in order to cater for the needs and requirements of individuals as well as society in general. The particular slant on lifelong learning in different countries…

  13. Comparative analysis of visual outcomes with 4 intraocular lenses: Monofocal, multifocal, and extended range of vision.

    PubMed

    Pedrotti, Emilio; Carones, Francesco; Aiello, Francesco; Mastropasqua, Rodolfo; Bruni, Enrico; Bonacci, Erika; Talli, Pietro; Nucci, Carlo; Mariotti, Cesare; Marchini, Giorgio

    2018-02-01

    To compare the visual acuity, refractive outcomes, and quality of vision in patients with bilateral implantation of 4 intraocular lenses (IOLs). Department of Neurosciences, Biomedicine and Movement Sciences, Eye Clinic, University of Verona, Verona, and Carones Ophthalmology Center, Milano, Italy. Prospective case series. The study included patients who had bilateral cataract surgery with the implantation of 1 of 4 IOLs as follows: Tecnis 1-piece monofocal (monofocal IOL), Tecnis Symfony extended range of vision (extended-range-of-vision IOL), Restor +2.5 diopter (D) (+2.5 D multifocal IOL), and Restor +3.0 D (+3.0 D multifocal IOL). Visual acuity, refractive outcome, defocus curve, objective optical quality, contrast sensitivity, spectacle independence, and glare perception were evaluated 6 months after surgery. The study comprised 185 patients. The extended-range-of-vision IOL (55 patients) showed better distance visual outcomes than the monofocal IOL (30 patients) and high-addition apodized diffractive-refractive multifocal IOLs (P ≤ .002). The +3.0 D multifocal IOL (50 patients) showed the best near visual outcomes (P < .001). The +2.5 D multifocal IOL (50 patients) and extended-range-of-vision IOL provided significantly better intermediate visual outcomes than the other 2 IOLs, with significantly better vision for a defocus level of -1.5 D (P < .001). Better spectacle independence was shown for the +2.5 D multifocal IOL and extended-range-of-vision IOL (P < .001). The extended-range-of-vision IOL and +2.5 D multifocal IOL provided significantly better intermediate visual restoration after cataract surgery than the monofocal IOL and +3.0 D multifocal IOL, with significantly better quality of vision with the extended-range-of-vision IOL. Copyright © 2018 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. SAR backscatter from coniferous forest gaps

    NASA Technical Reports Server (NTRS)

    Day, John L.; Davis, Frank W.

    1992-01-01

    A study is in progress comparing Airborne Synthetic Aperture Radar (AIRSAR) backscatter from coniferous forest plots containing gaps to backscatter from adjacent gap-free plots. Issues discussed are how do gaps in the range of 400 to 1600 sq m (approximately 4-14 pixels at intermediate incidence angles) affect forest backscatter statistics and what incidence angles, wavelengths, and polarizations are most sensitive to forest gaps. In order to visualize the slant-range imaging of forest and gaps, a simple conceptual model is used. This strictly qualitative model has led us to hypothesize that forest radar returns at short wavelengths (eg., C-band) and large incidence angles (e.g., 50 deg) should be most affected by the presence of gaps, whereas returns at long wavelengths and small angles should be least affected. Preliminary analysis of 1989 AIRSAR data from forest near Mt. Shasta supports the hypothesis. Current forest backscatter models such as MIMICS and Santa Barbara Discontinuous Canopy Backscatter Model have in several cases correctly predicted backscatter from forest stands based on inputs of measured or estimated forest parameters. These models do not, however, predict within-stand SAR scene texture, or 'intrinsic scene variability' as Ulaby et al. has referred to it. For instance, the Santa Barbara model, which may be the most spatially coupled of the existing models, is not truly spatial. Tree locations within a simulated pixel are distributed according to a Poisson process, as they are in many natural forests, but tree size is unrelated to location, which is not the case in nature. Furthermore, since pixels of a simulated stand are generated independently in the Santa Barbara model, spatial processes larger than one pixel are not modeled. Using a different approach, Oliver modeled scene texture based on an hypothetical forest geometry. His simulated scenes do not agree well with SAR data, perhaps due to the simple geometric model used. Insofar as texture is the expression of biological forest processes, such as succession and disease, and physical ones, such as fire and wind-throw, it contains useful information about the forest, and has value in image interpretation and classification. Forest gaps are undoubtedly important contributors to scene variance. By studying the localized effects of gaps on forest backscatter, guided by our qualitative model, we hope to understand more clearly the manner in which spatial heterogeneities in forests produce variations in backscatter, which collectively give rise to scene texture.

  15. The visual white matter: The application of diffusion MRI and fiber tractography to vision science

    PubMed Central

    Rokem, Ariel; Takemura, Hiromasa; Bock, Andrew S.; Scherf, K. Suzanne; Behrmann, Marlene; Wandell, Brian A.; Fine, Ione; Bridge, Holly; Pestilli, Franco

    2017-01-01

    Visual neuroscience has traditionally focused much of its attention on understanding the response properties of single neurons or neuronal ensembles. The visual white matter and the long-range neuronal connections it supports are fundamental in establishing such neuronal response properties and visual function. This review article provides an introduction to measurements and methods to study the human visual white matter using diffusion MRI. These methods allow us to measure the microstructural and macrostructural properties of the white matter in living human individuals; they allow us to trace long-range connections between neurons in different parts of the visual system and to measure the biophysical properties of these connections. We also review a range of findings from recent studies on connections between different visual field maps, the effects of visual impairment on the white matter, and the properties underlying networks that process visual information supporting visual face recognition. Finally, we discuss a few promising directions for future studies. These include new methods for analysis of MRI data, open datasets that are becoming available to study brain connectivity and white matter properties, and open source software for the analysis of these data. PMID:28196374

  16. Reduced response cluster size in early visual areas explains the acuity deficit in amblyopia.

    PubMed

    Huang, Yufeng; Feng, Lixia; Zhou, Yifeng

    2017-05-03

    Focal visual stimulation typically results in the activation of a large portion of the early visual cortex. This spread of activity is attributed to long-range lateral interactions. Such long-range interactions may serve to stabilize a visual representation or to simply modulate incoming signals, and any associated dysfunction in long-range activation may reduce sensitivity to visual information in conditions such as amblyopia. We sought to measure the dispersion of cortical activity following local visual stimulation in a group of patients with amblyopia and matched normal. Twenty adult anisometropic amblyopes and 10 normal controls participated in this study. Using a multifocal stimulation, we simultaneously measured cluster sizes to multiple stimulation points in the visual field. We found that the functional MRI (fMRI) response cluster size that corresponded to the fellow eye was significantly larger as opposed to that corresponding to the amblyopic eye and that the fMRI response cluster size at the two more central retinotopic locations correlated with amblyopia acuity deficit. Our results suggest that the amblyopic visual cortex has a diminished long-range communication as evidenced by significantly smaller cluster of activity as measured with fMRI. These results have important implications for models of amblyopia and approaches to treatment.

  17. Flow Coefficient Behavior for Boundary Layer Bleed Holes and Slots

    NASA Technical Reports Server (NTRS)

    Willis, B. P.; Davis, D. O.; Hingst, W. R.

    1995-01-01

    An experimental investigation into the flow coefficient behavior for nine boundary layer bleed orifice configurations is reported. This test was conducted for the purposes of exploring boundary layer control through mass flow removal and does not address issues of stability bleed. Parametric data consist of bleed region flow coefficient as a function of Mach number, bleed plenum pressure, and bleed orifice geometry. Seven multiple hole configurations and two single slot configurations were tested over a supersonic Mach number range of 1.3 to 2.5 (nominal). Advantages gained by using multiple holes in a bleed region instead of a single spanwise slot are discussed and the issue of modeling an entire array of bleed orifices based on the performance of a single orifice is addressed. Preconditioning the flow approaching a 90 degree inclined (normal) hole configuration resulted in a significant improvement in the performance of the configuration. The same preconditioning caused only subtle changes in performance for a 20 degree inclined (slanted) configuration.

  18. Proximity Link Design and Performance Options for a Mars Areostationary Relay Satellite

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D.; Bell, David J.; Biswas, Abhijit; Cheung, Kar-Ming; Lock, Robert E.

    2016-01-01

    Current and near-term Mars relay telecommunications services are provided by a set of NASA and ESA Mars science orbiters equipped with UHF relay communication payloads employing operationally simple low-gain antennas. These have been extremely successful in supporting a series of landed Mars mission, greatly increasing data return relative to direct-to-Earth lander links. Yet their relay services are fundamentally constrained by the short contact times available from the selected science orbits. Future Mars areostationary orbiters, flying in circular, equatorial, 1- sol orbits, offer the potential for continuous coverage of Mars landers and rovers, radically changing the relay support paradigm. Achieving high rates on the longer slant ranges to areostationary altitude will require steered, high-gain links. Both RF and optical options exist for achieving data rates in excess of 100 Mb/s. Several point designs offer a measure of potential user burden, in terms of mass, volume, power, and pointing requirements for user relay payloads, as a function of desired proximity link performance.

  19. Modified Polar-Format Software for Processing SAR Data

    NASA Technical Reports Server (NTRS)

    Chen, Curtis

    2003-01-01

    HMPF is a computer program that implements a modified polar-format algorithm for processing data from spaceborne synthetic-aperture radar (SAR) systems. Unlike prior polar-format processing algorithms, this algorithm is based on the assumption that the radar signal wavefronts are spherical rather than planar. The algorithm provides for resampling of SAR pulse data from slant range to radial distance from the center of a reference sphere that is nominally the local Earth surface. Then, invoking the projection-slice theorem, the resampled pulse data are Fourier-transformed over radial distance, arranged in the wavenumber domain according to the acquisition geometry, resampled to a Cartesian grid, and inverse-Fourier-transformed. The result of this process is the focused SAR image. HMPF, and perhaps other programs that implement variants of the algorithm, may give better accuracy than do prior algorithms for processing strip-map SAR data from high altitudes and may give better phase preservation relative to prior polar-format algorithms for processing spotlight-mode SAR data.

  20. Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H3+ emissions and comparison with the north aurora

    NASA Astrophysics Data System (ADS)

    Adriani, A.; Mura, A.; Moriconi, M. L.; Dinelli, B. M.; Fabiano, F.; Altieri, F.; Sindoni, G.; Bolton, S. J.; Connerney, J. E. P.; Atreya, S. K.; Bagenal, F.; Gérard, J.-C. M. C.; Filacchione, G.; Tosi, F.; Migliorini, A.; Grassi, D.; Piccioni, G.; Noschese, R.; Cicchetti, A.; Gladstone, G. R.; Hansen, C.; Kurth, W. S.; Levin, S. M.; Mauk, B. H.; McComas, D. J.; Olivieri, A.; Turrini, D.; Stefani, S.; Amoroso, M.

    2017-05-01

    The Jupiter InfraRed Auroral Mapper (JIRAM) aboard Juno observed the Jovian South Pole aurora during the first orbit of the mission. H3+ (trihydrogen cation) and CH4 (methane) emissions have been identified and measured. The observations have been carried out in nadir and slant viewing both by a L-filtered imager and a 2-5 μm spectrometer. Results from the spectral analysis of the all observations taken over the South Pole by the instrument are reported. The coverage of the southern aurora during these measurements has been partial, but sufficient to determine different regions of temperature and abundance of the H3+ ion from its emission lines in the 3-4 μm wavelength range. Finally, the results from the southern aurora are also compared with those from the northern ones from the data taken during the same perijove pass and reported by Dinelli et al. (2017).

  1. Block copolymer templated self-assembly of disk-shaped molecules

    NASA Astrophysics Data System (ADS)

    Aragones, J. L.; Alexander-Katz, A.

    2017-08-01

    Stacking of disk-shaped organic molecules is a promising strategy to develop electronic and photovoltaic devices. Here, we investigate the capability of a soft block copolymer matrix that microphase separates into a cylindrical phase to direct the self-assembly of disk-shaped molecules by means of molecular simulations. We show that two disk molecules confined in the cylinder domain experience a depletion force, induced by the polymer chains, which results in the formation of stacks of disks. This entropic interaction and the soft confinement provided by the matrix are both responsible for the structures that can be self-assembled, which include slanted or columnar stacks. In addition, we evidence the transmission of stresses between the different minority domains of the microphase, which results in the establishment of a long-ranged interaction between disk molecules embedded in different domains; this interaction is of the order of the microphase periodicity and may be exploited to direct assembly of disks at larger scales.

  2. Working Group 1 "Advanced GNSS Processing Techniques" of the COST Action GNSS4SWEC: Overview of main achievements

    NASA Astrophysics Data System (ADS)

    Douša, Jan; Dick, Galina; Kačmařík, Michal; Václavovic, Pavel; Pottiaux, Eric; Zus, Florian; Brenot, Hugues; Moeller, Gregor; Hinterberger, Fabian; Pacione, Rosa; Stuerze, Andrea; Eben, Kryštof; Teferle, Norman; Ding, Wenwu; Morel, Laurent; Kaplon, Jan; Hordyniec, Pavel; Rohm, Witold

    2017-04-01

    The COST Action ES1206 GNSS4SWEC addresses new exploitations of the synergy between developments in GNSS and meteorological communities. The Working Group 1 (Advanced GNSS processing techniques) deals with implementing and assessing new methods for GNSS tropospheric monitoring and precise positioning exploiting all modern GNSS constellations, signals, products etc. Besides other goals, WG1 coordinates development of advanced tropospheric products in support of weather numerical and non-numerical nowcasting. These are ultra-fast and high-resolution tropospheric products available in real time or in a sub-hourly fashion and parameters in support of monitoring an anisotropy of the troposphere, e.g. horizontal gradients and tropospheric slant path delays. This talk gives an overview of WG1 activities and, particularly, achievements in two activities, Benchmark and Real-time demonstration campaigns. For the Benchmark campaign a complex data set of GNSS observations and various meteorological data were collected for a two-month period in 2013 (May-June) which included severe weather events in central Europe. An initial processing of data sets from GNSS and numerical weather models (NWM) provided independently estimated reference parameters - ZTDs and tropospheric horizontal gradients. The comparison of horizontal tropospheric gradients from GNSS and NWM data demonstrated a very good agreement among independent solutions with negligible biases and an accuracy of about 0.5 mm. Visual comparisons of maps of zenith wet delays and tropospheric horizontal gradients showed very promising results for future exploitations of advanced GNSS tropospheric products in meteorological applications such as severe weather event monitoring and weather nowcasting. The Benchmark data set is also used for an extensive validation of line-of-sight tropospheric Slant Total Delays (STD) from GNSS, NWM-raytracing and Water Vapour Radiometer (WVR) solutions. Seven institutions delivered their STDs estimated based on GNSS observations processed using different software and strategies. STDs from NWM ray-tracing came from three institutions using four different NWM models. Results show generally a very good mutual agreement among all solutions from all techniques. The influence of adding not cleaned GNSS post-fit residuals, i.e. residuals that still contains non-tropospheric systematic effects such as multipath, to estimated STDs will be presented. The Real-time demonstration campaign aims at enhancing and assessing ultra-fast GNSS tropospheric products for severe weather and NWM nowcasting. Results are showed from real-time demonstrations as well as offline production simulating real-time using Benchmark campaign.

  3. A Glance at Worldwide Employment of People with Visual Impairments.

    ERIC Educational Resources Information Center

    Wolffe, Karen E.; Spungin, Susan J.

    2002-01-01

    A survey of 75 countries investigated jobs performed by adults with visual impairments throughout the world. Although there is a greater diversity in the range of jobs in developed countries, people who are visually impaired do not have the same range of opportunities available to them as sighted people. (Contains references.) (CR)

  4. Borehole deviation and correction factor data for selected wells in the eastern Snake River Plain aquifer at and near the Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.

    2016-11-29

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, has maintained a water-level monitoring program at the Idaho National Laboratory (INL) since 1949. The purpose of the program is to systematically measure and report water-level data to assess the eastern Snake River Plain aquifer and long term changes in groundwater recharge, discharge, movement, and storage. Water-level data are commonly used to generate potentiometric maps and used to infer increases and (or) decreases in the regional groundwater system. Well deviation is one component of water-level data that is often overlooked and is the result of the well construction and the well not being plumb. Depending on measured slant angle, where well deviation generally increases linearly with increasing slant angle, well deviation can suggest artificial anomalies in the water table. To remove the effects of well deviation, the USGS INL Project Office applies a correction factor to water-level data when a well deviation survey indicates a change in the reference elevation of greater than or equal to 0.2 ft.Borehole well deviation survey data were considered for 177 wells completed within the eastern Snake River Plain aquifer, but not all wells had deviation survey data available. As of 2016, USGS INL Project Office database includes: 57 wells with gyroscopic survey data; 100 wells with magnetic deviation survey data; 11 wells with erroneous gyroscopic data that were excluded; and, 68 wells with no deviation survey data available. Of the 57 wells with gyroscopic deviation surveys, correction factors for 16 wells ranged from 0.20 to 6.07 ft and inclination angles (SANG) ranged from 1.6 to 16.0 degrees. Of the 100 wells with magnetic deviation surveys, a correction factor for 21 wells ranged from 0.20 to 5.78 ft and SANG ranged from 1.0 to 13.8 degrees, not including the wells that did not meet the correction factor criteria of greater than or equal to 0.20 ft.Forty-seven wells had gyroscopic and magnetic deviation survey data for the same well. Datasets for both survey types were compared for the same well to determine whether magnetic survey data were consistent with gyroscopic survey data. Of those 47 wells, 96 percent showed similar correction factor estimates (≤ 0.20 ft) for both magnetic and gyroscopic well deviation surveys. A linear comparison of correction factor estimates for both magnetic and gyroscopic deviation well surveys for all 47 wells indicate good linear correlation, represented by an r-squared of 0.88. The correction factor difference between the gyroscopic and magnetic surveys for 45 of 47 wells ranged from 0.00 to 0.18 ft, not including USGS 57 and USGS 125. Wells USGS 57 and USGS 125 show a correction factor difference of 2.16 and 0.36 ft, respectively; however, review of the data files suggest erroneous SANG data for both magnetic deviation well surveys. The difference in magnetic and gyroscopic well deviation SANG measurements, for all wells, ranged from 0.0 to 0.9 degrees. These data indicate good agreement between SANG data measured using the magnetic deviation survey methods and SANG data measured using gyroscopic deviation survey methods, even for surveys collected years apart.

  5. MAX-DOAS measurements of HONO slant column densities during the MAD-CAT campaign: inter-comparison, sensitivity studies on spectral analysis settings, and error budget

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Beirle, Steffen; Hendrick, Francois; Hilboll, Andreas; Jin, Junli; Kyuberis, Aleksandra A.; Lampel, Johannes; Li, Ang; Luo, Yuhan; Lodi, Lorenzo; Ma, Jianzhong; Navarro, Monica; Ortega, Ivan; Peters, Enno; Polyansky, Oleg L.; Remmers, Julia; Richter, Andreas; Puentedura, Olga; Van Roozendael, Michel; Seyler, André; Tennyson, Jonathan; Volkamer, Rainer; Xie, Pinhua; Zobov, Nikolai F.; Wagner, Thomas

    2017-10-01

    In order to promote the development of the passive DOAS technique the Multi Axis DOAS - Comparison campaign for Aerosols and Trace gases (MAD-CAT) was held at the Max Planck Institute for Chemistry in Mainz, Germany, from June to October 2013. Here, we systematically compare the differential slant column densities (dSCDs) of nitrous acid (HONO) derived from measurements of seven different instruments. We also compare the tropospheric difference of SCDs (delta SCD) of HONO, namely the difference of the SCDs for the non-zenith observations and the zenith observation of the same elevation sequence. Different research groups analysed the spectra from their own instruments using their individual fit software. All the fit errors of HONO dSCDs from the instruments with cooled large-size detectors are mostly in the range of 0.1 to 0.3 × 1015 molecules cm-2 for an integration time of 1 min. The fit error for the mini MAX-DOAS is around 0.7 × 1015 molecules cm-2. Although the HONO delta SCDs are normally smaller than 6 × 1015 molecules cm-2, consistent time series of HONO delta SCDs are retrieved from the measurements of different instruments. Both fits with a sequential Fraunhofer reference spectrum (FRS) and a daily noon FRS lead to similar consistency. Apart from the mini-MAX-DOAS, the systematic absolute differences of HONO delta SCDs between the instruments are smaller than 0.63 × 1015 molecules cm-2. The correlation coefficients are higher than 0.7 and the slopes of linear regressions deviate from unity by less than 16 % for the elevation angle of 1°. The correlations decrease with an increase in elevation angle. All the participants also analysed synthetic spectra using the same baseline DOAS settings to evaluate the systematic errors of HONO results from their respective fit programs. In general the errors are smaller than 0.3 × 1015 molecules cm-2, which is about half of the systematic difference between the real measurements.The differences of HONO delta SCDs retrieved in the selected three spectral ranges 335-361, 335-373 and 335-390 nm are considerable (up to 0.57 × 1015 molecules cm-2) for both real measurements and synthetic spectra. We performed sensitivity studies to quantify the dominant systematic error sources and to find a recommended DOAS setting in the three spectral ranges. The results show that water vapour absorption, temperature and wavelength dependence of O4 absorption, temperature dependence of Ring spectrum, and polynomial and intensity offset correction all together dominate the systematic errors. We recommend a fit range of 335-373 nm for HONO retrievals. In such fit range the overall systematic uncertainty is about 0.87 × 1015 molecules cm-2, much smaller than those in the other two ranges. The typical random uncertainty is estimated to be about 0.16 × 1015 molecules cm-2, which is only 25 % of the total systematic uncertainty for most of the instruments in the MAD-CAT campaign. In summary for most of the MAX-DOAS instruments for elevation angle below 5°, half daytime measurements (usually in the morning) of HONO delta SCD can be over the detection limit of 0.2 × 1015 molecules cm-2 with an uncertainty of ˜ 0.9 × 1015 molecules cm-2.

  6. Canonical Visual Size for Real-World Objects

    PubMed Central

    Konkle, Talia; Oliva, Aude

    2012-01-01

    Real-world objects can be viewed at a range of distances and thus can be experienced at a range of visual angles within the visual field. Given the large amount of visual size variation possible when observing objects, we examined how internal object representations represent visual size information. In a series of experiments which required observers to access existing object knowledge, we observed that real-world objects have a consistent visual size at which they are drawn, imagined, and preferentially viewed. Importantly, this visual size is proportional to the logarithm of the assumed size of the object in the world, and is best characterized not as a fixed visual angle, but by the ratio of the object and the frame of space around it. Akin to the previous literature on canonical perspective, we term this consistent visual size information the canonical visual size. PMID:20822298

  7. Long Term Storage of Ascosphaera aggregata and A. apis Pathogens of the Leafcutting Bee (Megachile rotundata) and the Honey Bee (Apis mellifera)

    USDA-ARS?s Scientific Manuscript database

    Survival of Ascosphaera aggregata and A. apis over the course of a year were tested using different storage treatments. For spores, the methods tested were freeze drying and ultra-low temperature storage, and for hyphae, freeze drying, agar slants covered with water, and two methods of ultra-low tem...

  8. Error Detection in Computerized Information Retrieval Data Bases,

    DTIC Science & Technology

    1977-07-01

    published in London , England? Can citing authors be depended upon to give the full title to journals to avoid confusing Library Science and Documentation...published in New York with Library Science ~ with a slant to 11 ~~~~~~~~~~~~~~~~~ ~• r:-~~~~~~~ . r

  9. Gaps of operators

    NASA Astrophysics Data System (ADS)

    Jung, Il Bong; Lim, Pil Sang; Park, Sang Soo

    2005-04-01

    We construct examples which distinguish clearly the classes of p-hyponormal operators for 0

  10. L. V. Shcherba: A "New Slant" on Modern Foreign Languages in the School Curriculum?

    ERIC Educational Resources Information Center

    Campbell-Thomson, Olga

    2017-01-01

    In this paper, I offer a critical reflection on the thesis of the general educational value of foreign languages developed by Russian linguist Lev Vladimirovich Shcherba. I do so against the background of current debates on the positioning of foreign languages in the school curriculum in the United Kingdom (UK). I argue that Shcherba's thesis,…

  11. Textbooks on Argumentative Writing Display Much Agreement, though Each Has Own Slant.

    ERIC Educational Resources Information Center

    Beason, Larry

    1995-01-01

    A study of 10 freshman composition argumentative textbooks shows that there is a common core, grounded in but not dependent on classical rhetoric (Aristotelian rhetoric in particular). A cursory glance--which is all that many teachers can afford to give such books--might suggest they are all clones. But such is not the case. The authors forefront…

  12. Networked Mediated Influence 2.0

    DTIC Science & Technology

    2014-12-12

    but they communicate the information through different frames of reference. . . . Frames work by accessing a particular perspective on an issue...nature yet attention grabbers.214 Framing. A form of communications where information is presented in a unique slant, focal point, or frame of reference...mental frameworks differ in their implications for decision making, the results can be dramatic.215 Information Communication Technologies (ICTs). A term

  13. An investigation of a mathematical model for atmospheric absorption spectra

    NASA Technical Reports Server (NTRS)

    Niple, E. R.

    1979-01-01

    A computer program that calculates absorption spectra for slant paths through the atmosphere is described. The program uses an efficient convolution technique (Romberg integration) to simulate instrument resolution effects. A brief information analysis is performed on a set of calculated spectra to illustrate how such techniques may be used to explore the quality of the information in a spectrum.

  14. Processing Satellite Data for Slant Total Electron Content Measurements

    NASA Technical Reports Server (NTRS)

    Stephens, Philip John (Inventor); Komjathy, Attila (Inventor); Wilson, Brian D. (Inventor); Mannucci, Anthony J. (Inventor)

    2016-01-01

    A method, system, and apparatus provide the ability to estimate ionospheric observables using space-borne observations. Space-borne global positioning system (GPS) data of ionospheric delay are obtained from a satellite. The space-borne GPS data are combined with ground-based GPS observations. The combination is utilized in a model to estimate a global three-dimensional (3D) electron density field.

  15. Haptic adaptation to slant: No transfer between exploration modes

    PubMed Central

    van Dam, Loes C. J.; Plaisier, Myrthe A.; Glowania, Catharina; Ernst, Marc O.

    2016-01-01

    Human touch is an inherently active sense: to estimate an object’s shape humans often move their hand across its surface. This way the object is sampled both in a serial (sampling different parts of the object across time) and parallel fashion (sampling using different parts of the hand simultaneously). Both the serial (moving a single finger) and parallel (static contact with the entire hand) exploration modes provide reliable and similar global shape information, suggesting the possibility that this information is shared early in the sensory cortex. In contrast, we here show the opposite. Using an adaptation-and-transfer paradigm, a change in haptic perception was induced by slant-adaptation using either the serial or parallel exploration mode. A unified shape-based coding would predict that this would equally affect perception using other exploration modes. However, we found that adaptation-induced perceptual changes did not transfer between exploration modes. Instead, serial and parallel exploration components adapted simultaneously, but to different kinaesthetic aspects of exploration behaviour rather than object-shape per se. These results indicate that a potential combination of information from different exploration modes can only occur at down-stream cortical processing stages, at which adaptation is no longer effective. PMID:27698392

  16. Intuitive physical reasoning about occluded objects by inexperienced chicks

    PubMed Central

    Chiandetti, Cinzia; Vallortigara, Giorgio

    2011-01-01

    Questions concerning the role of nature and nurture in higher cognition appear to be intractable if one restricts one's attention to development in humans. However, in other domains, such as sensory development, much information has been gained from controlled rearing studies with animals. Here, we used a similar experimental strategy to investigate intuitive reasoning about occluded objects. Newborn domestic chicks (Gallus gallus) were reared singly with a small object that became their social partner. They were then accustomed to rejoin such an imprinting object when it was made to move and disappear behind either one of two identical opaque screens. After disappearance of the imprinting object, chicks were faced with two screens of different slants, or of different height or different width, which may or may not have been compatible with the presence of the imprinting object hidden beneath/behind them. Chicks consistently chose the screen of slant/height/width compatible with the presence of the object beneath/behind it. Preventing chicks from touching and pecking at the imprinting object before testing did not affect the results, suggesting that intuitive reasoning about physical objects is largely independent of specific experience of interaction with objects and of objects' occluding events. PMID:21270036

  17. First observation of the depolarization of Thomson scattering radiation by a fusion plasma

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Kempenaars, M.; McCormack, O.; Flanagan, J.; Pasqualotto, R.; contributors, JET

    2018-04-01

    We report the first experimental observation of the depolarization of the Thomson scattering (TS) radiation, a relativistic effect expected to occur in very high {{T}e} plasmas and never observed so far in a fusion machine. A set of unused optical fibers in the collection optics of the high resolution Thomson scattering system of JET has been used to detect the depolarized TS radiation during a JET campaign with {{T}e}≤slant 8 keV . A linear polarizer with the axis perpendicular to the direction of the incident E-field was placed in front of a fiber optic pair observing a region close to the plasma core, while another fiber pair with no polariser simultaneously observed an adjacent plasma region. The measured intensity ratio was found to be consistent with the theory, taking into account sensitivity coefficients of the two measurement channels determined with post-experiment calibrations and Raman scattering. This depolarization effect is at the basis of polarimetric TS, a different and complementary method for the analysis of TS spectra that can provide significant advantages for {{T}e} measurements in very hot plasmas such as in ITER ≤ft({{T}e}≤slant 40 keV \\right) .

  18. Cavity mode enhancement of terahertz emission from equilateral triangular microstrip antennas of the high-T c superconductor Bi2Sr2CaCu2O8 + δ

    NASA Astrophysics Data System (ADS)

    Cerkoney, Daniel P.; Reid, Candy; Doty, Constance M.; Gramajo, Ashley; Campbell, Tyler D.; Morales, Manuel A.; Delfanazari, Kaveh; Tsujimoto, Manabu; Kashiwagi, Takanari; Yamamoto, Takashi; Watanabe, Chiharu; Minami, Hidetoshi; Kadowaki, Kazuo; Klemm, Richard A.

    2017-01-01

    We study the transverse magnetic (TM) electromagnetic cavity mode wave functions for an ideal equilateral triangular microstrip antenna (MSA) exhibiting C 3v point group symmetry. When the C 3v operations are imposed upon the antenna, the TM(m,n) modes with wave vectors \\propto \\sqrt{{{m}2}+nm+{{n}2}} are much less dense than commonly thought. The R 3 operations restrict the integral n and m to satisfy |m-n| =3p , where p≥slant 0 and p≥slant 1 for the modes even and odd under reflections about the three mirror planes, respectively. We calculate the forms of representative wave functions and the angular dependence of the output power when these modes are excited by the uniform and non-uniform ac Josephson current sources in thin, ideally equilateral triangular MSAs employing the intrinsic Josephson junctions in the high transition temperature T c superconductor Bi2Sr2CaCu2 {{\\text{O}}8+δ} , and fit the emissions data from an earlier sample for which the C 3v symmetry was apparently broken.

  19. The hit problem for symmetric polynomials over the Steenrod algebra

    NASA Astrophysics Data System (ADS)

    Janfada, A. S.; Wood, R. M. W.

    2002-09-01

    We cite [18] for references to work on the hit problem for the polynomial algebra P(n) = [open face F]2[x1, ;…, xn] = [oplus B: plus sign in circle]d[gt-or-equal, slanted]0 Pd(n), viewed as a graded left module over the Steenrod algebra [script A] at the prime 2. The grading is by the homogeneous polynomials Pd(n) of degree d in the n variables x1, …, xn of grading 1. The present article investigates the hit problem for the [script A]-submodule of symmetric polynomials B(n) = P(n)[sum L: summation operator]n , where [sum L: summation operator]n denotes the symmetric group on n letters acting on the right of P(n). Among the main results is the symmetric version of the well-known Peterson conjecture. For a positive integer d, let [mu](d) denote the smallest value of k for which d = [sum L: summation operator]ki=1(2[lambda]i[minus sign]1), where [lambda]i [gt-or-equal, slanted] 0.

  20. A Measurement of the Cosmic Microwave Background B-mode Polarization Power Spectrum at Subdegree Scales from Two Years of polarbear Data

    NASA Astrophysics Data System (ADS)

    POLARBEAR Collaboration; Ade, P. A. R.; Aguilar, M.; Akiba, Y.; Arnold, K.; Baccigalupi, C.; Barron, D.; Beck, D.; Bianchini, F.; Boettger, D.; Borrill, J.; Chapman, S.; Chinone, Y.; Crowley, K.; Cukierman, A.; Dünner, R.; Dobbs, M.; Ducout, A.; Elleflot, T.; Errard, J.; Fabbian, G.; Feeney, S. M.; Feng, C.; Fujino, T.; Galitzki, N.; Gilbert, A.; Goeckner-Wald, N.; Groh, J. C.; Hall, G.; Halverson, N.; Hamada, T.; Hasegawa, M.; Hazumi, M.; Hill, C. A.; Howe, L.; Inoue, Y.; Jaehnig, G.; Jaffe, A. H.; Jeong, O.; Kaneko, D.; Katayama, N.; Keating, B.; Keskitalo, R.; Kisner, T.; Krachmalnicoff, N.; Kusaka, A.; Le Jeune, M.; Lee, A. T.; Leitch, E. M.; Leon, D.; Linder, E.; Lowry, L.; Matsuda, F.; Matsumura, T.; Minami, Y.; Montgomery, J.; Navaroli, M.; Nishino, H.; Paar, H.; Peloton, J.; Pham, A. T. P.; Poletti, D.; Puglisi, G.; Reichardt, C. L.; Richards, P. L.; Ross, C.; Segawa, Y.; Sherwin, B. D.; Silva-Feaver, M.; Siritanasak, P.; Stebor, N.; Stompor, R.; Suzuki, A.; Tajima, O.; Takakura, S.; Takatori, S.; Tanabe, D.; Teply, G. P.; Tomaru, T.; Tucker, C.; Whitehorn, N.; Zahn, A.

    2017-10-01

    We report an improved measurement of the cosmic microwave background B-mode polarization power spectrum with the Polarbear experiment at 150 GHz. By adding new data collected during the second season of observations (2013-2014) to re-analyzed data from the first season (2012-2013), we have reduced twofold the band-power uncertainties. The band powers are reported over angular multipoles 500≤slant {\\ell }≤slant 2100, where the dominant B-mode signal is expected to be due to the gravitational lensing of E-modes. We reject the null hypothesis of no B-mode polarization at a confidence of 3.1σ including both statistical and systematic uncertainties. We test the consistency of the measured B-modes with the Λ Cold Dark Matter (ΛCDM) framework by fitting for a single lensing amplitude parameter A L relative to the Planck 2015 best-fit model prediction. We obtain {A}L={0.60}-0.24+0.26({stat}{)}-0.04+0.00({inst}) ± 0.14(foreground) ± 0.04(multi), where {A}L=1 is the fiducial ΛCDM value.

Top